Bacteria mediated gene silencing

Fruehauf; Johannes ;   et al.

Patent Application Summary

U.S. patent application number 12/157969 was filed with the patent office on 2008-12-18 for bacteria mediated gene silencing. Invention is credited to Johannes Fruehauf, Floyd Stephen Laroux, JR., Noel Joy Sauer, Moreshwar Bhanudas Vaze.

Application Number20080311081 12/157969
Document ID /
Family ID40030198
Filed Date2008-12-18

United States Patent Application 20080311081
Kind Code A1
Fruehauf; Johannes ;   et al. December 18, 2008

Bacteria mediated gene silencing

Abstract

Methods are described for the delivery of one or more small interfering RNAs (siRNAs) to a eukaryotic cell using a bacterium or BTP. Methods are also described for using this bacterium to regulate gene expression in eukaryotic cells using RNA interference, and methods for treating viral diseases and disorders. The bacterium or BTP includes one or more siRNAs or one or more DNA molecules encoding one or more siRNAs. Vectors are also described for use with the bacteria of the invention for causing RNA interference in eukaryotic cells.


Inventors: Fruehauf; Johannes; (Newton, MA) ; Vaze; Moreshwar Bhanudas; (Bedford, MA) ; Laroux, JR.; Floyd Stephen; (Brookline, MA) ; Sauer; Noel Joy; (Attleboro, MA)
Correspondence Address:
    MINTZ, LEVIN, COHN, FERRIS, GLOVSKY AND POPEO, P.C;ATTN: PATENT INTAKE
     CUSTOMER NO. 30623
    ONE FINANCIAL CENTER
    BOSTON
    MA
    02111
    US
Family ID: 40030198
Appl. No.: 12/157969
Filed: June 13, 2008

Related U.S. Patent Documents

Application Number Filing Date Patent Number
60934751 Jun 15, 2007
61010028 Jan 4, 2008

Current U.S. Class: 424/93.4 ; 435/252.1; 435/320.1; 435/463
Current CPC Class: C12N 2310/14 20130101; C12N 15/63 20130101; C12N 15/113 20130101; C12N 15/1135 20130101; A61P 37/08 20180101; C12N 2320/30 20130101; C12N 15/1136 20130101; C12N 2320/32 20130101; A61P 37/02 20180101; C12N 15/111 20130101; C12N 2310/111 20130101; C12N 15/1131 20130101
Class at Publication: 424/93.4 ; 435/252.1; 435/320.1; 435/463
International Class: A61K 35/74 20060101 A61K035/74; C12N 1/20 20060101 C12N001/20; C12N 15/63 20060101 C12N015/63; C12N 15/87 20060101 C12N015/87

Claims



1. An invasive bacterium comprising one or more siRNAs or one or more DNA molecules encoding one or more siRNAs, wherein the expressed siRNAs interfere with the mRNA of one or more HPV oncogenes.

2. A prokaryotic vector comprising at least one DNA molecule encoding one or more siRNAs and at least one RNA-polymerase III compatible promoter or at least one prokaryotic promoter, wherein the expressed siRNAs interfere with the mRNA of one or more HPV oncogenes.

3. A method of delivering one or more siRNAs to mammalian cells, the method comprising introducing to said mammalian cells at least one invasive bacterium containing one or more siRNAs or one or more DNA molecules encoding one or more siRNAs, wherein the expressed siRNAs interfere with the mRNA of one or more HPV oncogenes.

4. A method of regulating gene expression in mammalian cells, the method comprising introducing to said mammalian cells at least one invasive bacterium containing one or more siRNAs or one or more DNA molecules encoding one or more siRNAs, wherein the expressed siRNAs interfere with the mRNA of one or more HPV oncogenes.

5. A method of treating or preventing a viral disease or disorder in a mammal, the method comprising regulating the expression of at least one gene in a cell known to increase proliferation, growth or dysplasia, by introducing to the cells of the mammal at least one invasive bacterium containing one or more siRNAs or one or more DNA molecules encoding one or more siRNAs, wherein the expressed siRNAs interfere with the mRNA of one or more HPV oncogenes.

6. The invasive bacterium of claim 1, wherein said invasive bacterium is a non-pathogenic or non-virulent bacterium.

7. The invasive bacterium of claim 1, wherein said invasive bacterium is a therapeutic bacterium.

8. A composition comprising the invasive bacterium of claim 1 and a pharmaceutically acceptable carrier.

9. A eukaryotic host cell comprising the invasive bacterium of claim 1, and a pharmaceutically acceptable carrier.

10. The method of claim 4, wherein said mammalian cells are in vivo or in vitro.

11. The method of claim 4, wherein said mammalian cells are selected from the group consisting of human, bovine, ovine, porcine, feline, buffalo, canine, goat, equine, donkey, deer, avian, bird, chicken, and primate cells.

12. The method of claim 4, wherein said invasive bacterium is a non-pathogenic or non-virulent bacterium.

13. The method of claim 4, wherein said invasive bacterium is a therapeutic bacterium.

14. The method of claim 4, wherein said one or more DNA molecules encoding said one or more siRNAs are transcribed within the mammalian cell.

15. The method of claim 14, wherein said one or more siRNAs are transcribed within the mammalian cell as shRNAs.

16. The method of claim 4, wherein said one or more DNA molecules encoding said one or more siRNAs are transcribed within the bacterium.

17. The method of claim 4, wherein said one or more DNA molecules encoding one or more siRNAs comprise a prokaryotic promoter.

18. The method of claim 17, wherein said prokaryotic promoter is selected from the group consisting of a T7 promoter, a P.sub.gapA promoter, a P.sub.araBAD promoter, a P.sub.tac promoter, a P.sub.lacUV5 promoter and a recA promoter.

19. The method of claim 4, wherein said one or more DNA molecules encoding one or more siRNAs further comprise at least one of enhancer sequence, terminator sequence, invasion factor sequence or lysis regulation sequence.

20. The method of claim 4, wherein said mammalian cells are infected with about 10.sup.3 to 10.sup.11 viable invasive bacteria.

21. The method of claim 20, wherein said mammalian cells are infected with about 10.sup.5 to 10.sup.9 viable invasive bacteria.

22. The method of claim 4, wherein said mammalian cells are infected at a multiplicity of infection ranging from about 0.1 to 10.sup.6.

23. The method of claim 22, wherein said mammalian cells are infected at a multiplicity of infection ranging from about 10.sup.2 to 10.sup.4.

24. The method of claim 4, wherein the expressed siRNAs direct the multienzyme complex RNA-induced silencing complex of the cell to interact with the mRNA of one or more HPV oncogenes.

25. The method of claim 24, wherein said complex degrades said mRNA.

26. The method of claim 4, wherein expression of one or more HPV oncogenes is decreased or inhibited.

27. The method of claim 5, wherein the viral disease or disorder is selected from the group consisting of infection, epithelial dysplasia and cancer caused by HPV infection.

28. The method of claim 5, wherein said mammal is selected from the group consisting of human, bovine, ovine, porcine, feline, buffalo, canine, goat, equine, donkey, deer, avian, bird, chicken, and primate.

29. The method of claim 5, wherein the mammalian cells are selected from the group consisting of a gastrointestinal epithelial cell, a macrophage, a cervical epithelial cell, a rectal epithelial cell and a pharyngeal epithelial cell.

30. The invasive bacterium of claim 1, wherein said invasive bacterium contains the pNJSZc plasmid.
Description



RELATED APPLICATIONS

[0001] This application claims priority to, and the benefit of, U.S. Provisional Patent Application No. 60/934,751, filed Jun. 15, 2007 and U.S. Provisional Patent Application No. 61/010,028, filed Jan. 4, 2008. The contents of these applications are incorporated by reference in their entireties.

BACKGROUND

[0002] Gene silencing through RNAi (RNA-interference) by use of short interfering RNA (siRNA) has emerged as a powerful tool for molecular biology and holds the potential to be used for therapeutic gene silencing. Short hairpin RNA (shRNA) transcribed from small DNA plasmids within the target cell has also been shown to mediate stable gene silencing and achieve gene knockdown at levels comparable to those obtained by transfection with chemically synthesized siRNA (T. R. Brummelkamp, R. Bernards, R. Agami, Science 296, 550 (2002), P. J. Paddison, A. A. Caudiy, G. J. Hannon, PNAS 99, 1443 (2002)).

[0003] Possible applications of RNAi for therapeutic purposes are extensive and include silencing and knockdown of disease genes such as oncogenes or viral genes. One major obstacle for the therapeutic use of RNAi is the delivery of siRNA to the target cell (Zamore P D, Aronin N. Nature Medicine 9, (3):266-8 (2003)). In fact, delivery has been described as the major hurdle now for RNAi (Phillip Sharp, cited by Nature news feature, Vol 425, 2003, 10-12).

[0004] Therefore, new methods are needed for the safe and predictable administration of interfering RNAs to mammals.

SUMMARY OF THE INVENTION

[0005] The present invention provides at least one invasive bacterium, or at least one bacterial therapeutic particle (BTP), including one or more siRNAs or one or more DNA molecules encoding one or more siRNAs. The present invention also provides at least one prokaryotic vector including at least one DNA molecule encoding one or more siRNAs and at least one RNA-polymerase III compatible promoter or at least one prokaryotic promoter, wherein the expressed siRNAs interfere with at least one mRNA of a gene of interest.

[0006] The present invention also provides methods of using the various bacterium, BTP and vectors provided in the invention. For example, the present invention provides methods of delivering one or more siRNAs to mammalian cells. The methods include introducing at least one invasive bacterium, or at least one bacterial therapeutic particle (BTP), containing one or more siRNAs or one or more DNA molecules encoding one or more siRNAs to the mammalian cells.

[0007] The present invention also provides methods of regulating gene expression in mammalian cells. The method includes introducing at least one invasive bacterium, or at least one bacterial therapeutic particle (BTP), containing one or more siRNAs or one or more DNA molecules encoding one or more siRNAs to the mammalian cells, where the expressed siRNAs interfere with at least one mRNA of a gene of interest thereby regulating gene expression.

[0008] The present invention also provides methods of treating or preventing a viral disease or disorder in a mammal. The methods include regulating the expression of at least one gene in a cell known to cause a viral disease or disorder (e.g., known to increase proliferation, growth or dysplasia) by introducing to the cells of the mammal at least one invasive bacterium, or at least one bacterial therapeutic particle (BTP), containing one or more siRNAs or one or more DNA molecules encoding one or more siRNAs, where the expressed siRNAs interfere with the mRNA of the gene known to cause a viral disease or disorder.

[0009] Preferably, the viral disease or disorder can be, but is not limited to, infection, epithelial dysplasia and cancer caused by HPV infection

[0010] The present invention also provides a composition containing at least one invasive bacterium or BTP and a pharmaceutically acceptable carrier. The present invention also provides a eukaryotic host cell containing at least one invasive bacterium or BTP and a pharmaceutically acceptable carrier.

[0011] The invasive bacterium or BTPs of the present invention can be non-pathogenic, non-virulent bacterium or therapeutic bacterium

[0012] The mammalian cells can be ex vivo, in vivo or in vitro. The mammalian cells can be, but are not limited to, human, bovine, ovine, porcine, feline, buffalo, canine, goat, equine, donkey, deer, avian, bird, chicken, and primate cells. Preferably, the mammalian cells are human cells. In some preferred embodiments, the mammalian cells can be, but are not limited to, gastrointestinal epithelial cells, macrophages, cervical epithelial cells, rectal epithelial cells and a pharyngeal epithelial cells.

[0013] The mammalian cells can be infected with about 10.sup.3 to 10.sup.11 viable invasive bacterium or BTPs (or any integer within said ranges). Preferably, the mammalian cells can be infected with about 10.sup.5 to 10.sup.9 viable invasive bacterium or BTPs (or any integer within said ranges). The mammalian cells can be infected at a multiplicity of infection ranging from about 0.1 to 10.sup.6 (or any integer within said ranges). Preferably, the mammalian cells can be infected at a multiplicity of infection ranging from about 10.sup.2 to 10.sup.4 (or any integer within said ranges).

[0014] The mammal can be, but is not limited to, human, bovine, ovine, porcine, feline, buffalo, canine, goat, equine, donkey, deer, avian, bird, chicken, and primate. Preferably, the mammal is a human.

[0015] The one or more DNA molecules encoding the one or more siRNAs can be transcribed within the animal cell or transcribed within the bacterium. Preferably, the one or more siRNAs are transcribed within the animal cell as shRNAs.

[0016] The one or more DNA molecules encoding the one or more siRNAs can include one or more promoter sequences, enhancer sequences, terminator sequences, invasion factor sequences or lysis regulation sequences. The promoter can be a prokaryotic promoter. Preferably, the prokaryotic promoter is a T7 promoter, a P.sub.gapA promoter, a P.sub.araBAD promoter, a P.sub.tac promoter, a P.sub.lacUV5 promoter, or a recA promoter.

[0017] The expressed siRNAs can direct the multienzyme complex RNA-induced silencing complex of the cell to interact with the mRNA of one or more genes of interest. Preferably, the siRNAs interact with the mRNA of one or more HPV oncogenes. Preferably, the complex can degrade the mRNA. Preferably, the expression of one or more genes of interest is decreased or inhibited. The expression is decreased or inhibited as compared to the expression of the gene prior to administration or treatment with an invasive bacterium or BTP containing one or more siRNA or a DNA encoding for one or more siRNAs. Preferably, the expression of one or more HPV oncogenes is decreased or inhibited.

[0018] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In the specification, the singular forms also include the plural unless the context clearly dictates otherwise. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be limiting.

[0019] Other features and advantages of the invention will be apparent from the following detailed description and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIG. 1 is a schematic showing the Transkingdom RNA Interference Plasmid (TRIP) with multiple hairpin express cassettes.

[0021] FIG. 2 is a schematic showing the TRIP system (bacteria and plasmid) modified with the Operator Repressor Titration (ORT) system.

[0022] FIG. 3 is a photograph showing cellular staining of the intestinal epithelial layer demonstrating efficient invasion and plasmid delivery by S. typhimurium.

[0023] FIG. 4 is a photograph showing that bacteria-mediated RNA interference reduces target gene expression in the gastrointestinal epithelium.

[0024] FIG. 5 is a schematic showing pNJSZ plasmid construct.

[0025] FIG. 6 is a schematic showing the use of lamba S and R genes to kill intact bacteria.

[0026] FIG. 7 is a bar graph showing a reduction in HPV oncogene expression with bacterial delivered siRNA.

[0027] FIG. 8 is a bar graph showing a reduction in HPV oncogene expression with bacterial delivered siRNA.

[0028] FIG. 9 is a bar graph showing a reduction in HPV oncogene expression with bacterial delivered siRNA.

[0029] FIG. 10, Panels A-C, are a series of bar graphs showing real time PCR results following invasion of Hela cells with various siRNAs.

[0030] FIG. 11 is a photograph of an immunoblot showing the effects of downregulation of HPV E6 and E7 genes on tumor suppressor pathways and other downstream targets.

[0031] FIG. 12 is a photograph of a colony forming assay showing infection at different multiplicities of infection (MOI).

[0032] FIG. 13 is a line graph of a MTT assay showing infection at different multiplicities of infection (MOI).

[0033] FIG. 14 is a bar graph showing real time PCR results following invasion of Hela cells with various siRNAs FIG. 15, Panels A-C, are a series of bar graphs showing real time PCR results following invasion of Hela cells with various siRNAs.

[0034] FIG. 16 is a photograph of an immunoblot showing the effects of downregulation of HPV E6 and E7 genes on tumor suppressor pathways and other downstream targets.

[0035] FIG. 17 is a bar graph showing real time PCR results following invasion assay of Hela cells with a frozen aliquot of negative sHRNA control and HPV sHRNA in BL21.

[0036] FIG. 18 is a photograph showing the plating efficiency of frozen aliquots of negative sHRNA control and HPV sHRNA in BL21.

[0037] FIG. 19 is a photograph of an immunoblot showing the knockdown of HPV E6 gene assessed by western blotting with HPV 18 E7 antibody.

[0038] FIG. 20 is a bar graph showing the knockdown of CCL20 expression with the various siRNA sequences in CMT93 cells.

[0039] FIG. 21 is a bar graph showing the knockdown of Claudin-2 expression with the various siRNA sequences in CMT93 cells post 24 hr transfection.

[0040] FIG. 22 is a bar graph showing the knockdown of IL6-RA expression with the various siRNA sequences in CMT93 cells post 24 hr transfection.

[0041] FIG. 23 is a bar graph showing the knockdown of IL13-RA1 expression with the various siRNA sequences in CMT93 cells post 24 hr transfection.

[0042] FIG. 24 is a bar graph showing the knockdown of IL18 expression with the various siRNA sequences in CMT93 cells post 24 hr transfection.

[0043] FIG. 25 is a bar graph showing the knockdown of IL-7 expression with the various siRNA sequences in CMT93 cells post 24 hr transfection.

[0044] FIG. 26 is a bar graph showing the knockdown of CH13L1 expression with the various siRNA sequences in CMT93 cells post 24 hr transfection.

[0045] FIG. 27 is a schematic of the pMBV40 or pMBV43 or pMBV44 plasmids.

[0046] FIG. 28 is a schematic of the pNJSZ .DELTA.BamH1 plasmid.

[0047] FIG. 29 is a schematic of the pNJSZ pNJSZc plasmid.

[0048] FIG. 30 is a schematic showing a lysis regulation system in combination with strain-specific nutritional attenuation.

[0049] FIG. 31 is a schematic showing three cassettes in the combination lysis regulation system/nutritional attenuation system.

[0050] FIG. 32 is a schematic showing a lysis regulation system in combination with a Tet-on expression system.

DETAILED DESCRIPTION OF THE INVENTION

[0051] The invention pertains to compositions and methods of delivering small interfering RNAs (siRNAs) to eukaryotic cells using non-pathogenic or therapeutic strains of bacteria or bacterial therapeutic particles (BTPs). The bacteria or BTPs deliver DNA encoding siRNA, or siRNA itself, to effect RNA interference (RNAi)) by invading into the eukaryotic host cells. Generally, to trigger RNA interference in a target cell, it is required to introduce siRNA into the cell. The siRNA is either introduced into the target cell directly or by transfection or can be transcribed within the target cell as hairpin-structured dsRNA (shRNA) from specific plasmids with RNA-polymerase III compatible promoters (e.g., U6, H1) (P. J. Paddison, A. A. Caudiy, G. J. Hannon, PNAS 99, 1443 (2002), T. R. Brummelkamp, R. Bernards, R. Agami, Science 296, 550 (2002)).

[0052] The interfering RNA of the invention regulates gene expression in eukaryotic cells. It silences or knocks down genes of interest inside target cells (e.g., decreases gene activity). The interfering RNA directs the cell-owned multienzyme-complex RISC (RNA-induced silencing complex) to the mRNA of the gene to be silenced. Interaction of RISC and mRNA results in degradation or sequestration of the mRNA. This leads to effective post-transcriptional silencing of the gene of interest. This method is referred to as Bacteria Mediated Gene Silencing (BMGS).

[0053] In the case of BMGS through delivery of siRNA expressing DNA plasmids, shRNA or siRNA are produced within the target cell after liberation of the eukaryotic transcription plasmid and trigger the highly specific process of mRNA degradation, which results in silencing of the targeted gene. Additionally, one or more cell-specific eukaryotic promoters may be used that limit the expression of siRNA or shRNA to specific target cells or tissues that are in particular metabolic states. In one embodiment of this method, the cell-specific promoter is albumin and the target cell or tissue is the liver. In another embodiment of this method, the cell-specific promoter is keratin and the specific target cell or tissue is the skin.

[0054] The non-virulent bacteria and BTPs of the invention have invasive properties (or are modified to have invasive properties) and may enter a mammalian host cell through various mechanisms. In contrast to uptake of bacteria or BTPs by professional phagocytes, which normally results in the destruction of the bacterium or BTP within a specialized lysosome, invasive bacteria or BTP strains have the ability to invade non-phagocytic host cells. Naturally occurring examples of such bacteria or BTPs are intracellular pathogens such as Yersinia, Rickettsia, Legionella, Brucella, Mycobacterium, Helicobacter, Coxiella, Chlamydia, Neisseria, Burkolderia, Bordetella, Borrelia, Listeria, Shigella, Salmonella, Staphylococcus, Streptococcus, Porphyromonas, Treponema, and Vibrio, but this property can also be transferred to other bacteria or BTPs such as E. coli, Lactobacillus or Bifidobacteriae, including probiotics through transfer of invasion-related genes (P. Courvalin, S. Goussard, C. Grillot-Courvalin, C. R. Acad. Sci. Paris 318, 1207 (1995)). In other embodiments of the invention, bacteria or BTPs used to deliver interfering RNAs to host cells include Shigella flexneri (D. R. Sizemore, A. A. Branstrom, J. C. Sadoff, Science 270, 299 (1995)), invasive E. coli (P. Courvalin, S. Goussard, C. Grillot-Courvalin, C. R. Acad. Sci. Paris 318, 1207 (1995), C. Grillot-Courvalin, S. Goussard, F. Huetz, D. M. Ojcius, P. Courvalin, Nat Biotechnol 16, 862 (1998)), Yersinia enterocolitica (A. Al-Mariri A, A. Tibor, P. Lestrate, P. Mertens, X. De Bolle, J. J. Letesson Infect Immun 70, 1915 (2002)) and Listeria monocytogenes (M. Hense, E. Domann, S. Krusch, P. Wachholz, K. E. Dittmar, M. Rohde, J. Wehland, T. Chakraborty, S. Weiss, Cell Microbiol 3, 599 (2001), S. Pilgrim, J. Stritzker, C. Schoen, A. Kolb-Maurer, G. Geginat, M. J. Loessner, I. Gentschev, W. Goebel, Gene Therapy 10, 2036 (2003)). Any invasive bacterium or BTP is useful for DNA transfer into eukaryotic cells (S. Weiss, T. Chakraborty, Curr Opinion Biotechnol 12, 467 (2001)).

[0055] BMGS is performed using the naturally invasive pathogen Salmonella typhimurium. In one aspect of this embodiment, the strains of Salmonella typhimurium include SL 7207 and VNP20009 (S. K. Hoiseth, B. A. D. Stocker, Nature 291, 238 (1981); Pawelek J M, Low K B, Bermudes D. Cancer Res. 57(20): 4537-44 (Oct. 15, 1997)). In another embodiment of the invention, BMGS is performed using attenuated E. coli. In another aspect of this embodiment, the CEQ201 strain is engineered to possess cell-invading properties through an invasion plasmid. In one aspect of the invention, this plasmid is a TRIP (Transkingdom RNA interference plasmid) plasmid or pNJSZ.

[0056] A double "trojan horse" technique is also used with an invasive and auxotrophic bacterium or BTP carrying a eukaryotic transcription plasmid. This plasmid is, in turn, transcribed by the target cell to form one or more hairpin RNA structures that triggers the intracellular process of RNAi. This method of the invention induces significant gene silencing of a variety of genes. In certain aspects of this embodiment, the genes include a transgene (GFP), a mutated oncogene (k-Ras) and a cancer related gene (.beta.-catenin) in vitro.

[0057] Another aspect of BMGS according to this invention is termed Transkingdom RNAi (tkRNAi). In this aspect of the invention, siRNA is directly produced by the invasive bacteria, or accumulated in the BTPs after production in the bacteria, as opposed to the target cell. A transcription plasmid controlled by a prokaryotic promoter (e.g., T7) is inserted into the carrier bacteria through standard transformation protocols. siRNA is produced within the bacteria and is liberated within the mammalian target cell after bacterial lysis triggered either by auxotrophy or by timed addition of antibiotics.

[0058] The RNAi methods of the invention, including BMGS and tkRNAi are used to create transient "knockdown" genetic animal models as opposed to genetically engineered knockout models to discover gene functions. The methods are also used as in vitro transfection tool for research and drug development

[0059] These methods use bacteria with desirable properties (invasiveness, attenuation, steerability) to perform BMGS and tkRNAi. Invasiveness as well as eukaryotic or prokaryotic transcription of one or several shRNA is conferred to a bacterium or BTP using plasmids (e.g., TRIP) and vectors as described in greater detail herein.

1. Bacterium and/or Bacterial Therapeutic Particles (BTPs)

[0060] The present invention provides at least one invasive bacterium, or at least one bacterial therapeutic particle (BTP), including one or more siRNAs or one or more DNA molecules encoding one or more siRNAs.

[0061] According to the invention, any microorganism that is capable of delivering a molecule, e.g., an RNA molecule or an RNA-encoding DNA molecule, into the cytoplasm of a target cell, such as by traversing the membrane and entering the cytoplasm of a cell, can be used to deliver RNA to such cells. In a preferred embodiment, the microorganism is a prokaryote. In an even more preferred embodiment, the prokaryote is a bacterium or BTP. Also within the scope of the invention are microorganisms other than bacteria that can be used for delivering RNA to a cell. For example, the microorganism can be a fungus, e.g., Cryptococcus neoformans, protozoan, e.g., Trypanosoma cruzi Toxoplasma gondii, Leishmania donovani, and plasmodia.

[0062] In a preferred embodiment, the microorganism is a bacterium or BTP. A preferred invasive bacterium or BTP is capable of delivering at least one molecule, e.g., an RNA or RNA-encoding DNA molecule, to a target cells, such as by entering the cytoplasm of a eukaryotic cell. Preferably, the RNA is siRNA or shRNA and the RNA-encoding DNA molecule encodes for siRNA or shRNA.

[0063] BTPs are fragments of bacteria used for therapeutic or preventive purposes. BTPs may include particles known in the art as minicells. Minicells are small cells produced by cell division that is faulty near the pole. They are devoid of nucleoid and, therefore, unable to grow and form colonies (Alder et al., (1967) Proc. Nat. Acad. Sci. U.S.A. 57, 321-326; for reviews see Sullivan and Maddock, (2000) Curr. Biol. 10:R249-R252; Margolin, (2001) Curr. Biol. 11, R395-R398; Howard and Kruse, (2005) J. Cell Biol. 168, 533-536). Minicell formation results due to mutations causing a defect in selection of the site for the septum formation for cell division. Such mutations include null alleles of minC, minD (Davie et al, (1984) J. Bacteriol. 158, 1202-1203; de Boer et al., 1988) J. Bacteriol. 170, 2106-2112) and certain alleles of ftsZ (Bi and Lutkenhaus, (1992) J. Bacteriol. 174, 5414-5423). Overexpression fo FtsZ or MinC-MinD proteins has also been reported to cause the formation of minicells (Ward and Lutkenhaus, 1985; de Boer et al., 1988). Although minicells are devoid of nucleoid, they are capable of transcription and translation (Roozen et al., (1971) J. Bacteriol. 107, 21-33; Shepherd et al., (2001) J. Bacteriol. 183, 2527-34).

[0064] BTPs are distinct from bacteria in that they lack the bacterial genome and, therefore, provide a decreased risk of bacterial proliferation in patients. This is of particular value for immune-compromised patients. Furthermore, the inability of BTPs to proliferate allows for their use in sensitive tissues, e.g., the brain, and other areas of the body traditionally considered inaccessible to traditional siRNA. For example, the intraperitoneal delivery of bacteria can include the risk of adhesions and peritonitis, which is eliminated by utilizing BTPs. However, like the bacteria of this invention, BTPs contain the bacterial cell wall, some bacterial plasma contents and subcellular particles, one or more therapeutic components, e.g., one or more siRNAs, one or more invasion factors, one or more phagosome degradation factors, and one or more factors for targeting specific tissues. The BTPs are produced from bacteria that have produced and accumulated siRNAs inside the bacteria, and then segregate the bacterial fragment (BTP) during cell division. In one embodiment of this invention, BTPs are obtained by fermenting the bacteria, during which the BTPs form abundantly, followed by isolation of the BTPs from live bacteria using differential size filtration, which will retain the bacteria but allow passage and collection of BTPs. In another embodiment of this invention, BTPs are separated from bacteria by centrifugation. In another embodiment of this invention, live bacterial cells are lysed through activation of a death signal. Once isolated, the BTPs can be lyophilized and formulated for use.

[0065] As used herein, the term "invasive" when referring to a microorganism, e.g., a bacterium or BTP, refers to a microorganism that is capable of delivering at least one molecule, e.g., an RNA or RNA-encoding DNA molecule, to a target cell. An invasive microorganism can be a microorganism that is capable of traversing a cell membrane, thereby entering the cytoplasm of said cell, and delivering at least some of its content, e.g., RNA or RNA-encoding DNA, into the target cell. The process of delivery of the at least one molecule into the target cell preferably does not significantly modify the invasion apparatus.

[0066] Invasive microorganisms include microorganisms that are naturally capable of delivering at least one molecule to a target cell, such as by traversing the cell membrane, e.g., a eukaryotic cell membrane, and entering the cytoplasm, as well as microorganisms which are not naturally invasive and which have been modified, e.g., genetically modified, to be invasive. In another preferred embodiment, a microorganism that is not naturally invasive can be modified to become invasive by linking the bacterium or BTP to an "invasion factor", also termed "entry factor" or "cytoplasm-targeting factor". As used herein, an "invasion factor" is a factor, e.g., a protein or a group of proteins which, when expressed by a non-invasive bacterium or BTP, render the bacterium or BTP invasive. As used herein, an "invasion factor" is encoded by a "cytoplasm-targeting gene".

[0067] In one embodiment of this invention, the microorganism is a naturally invasive bacterium or BTP selected from the group that includes, but is not limited to, Yersinia, Rickettsia, Legionella, Brucella, Mycobacterium, Helicobacter, Coxiella, Chlamydia, Neisseria, Burkolderia, Bordetella, Borrelia, Listeria, Shigella, Salmonella, Staphylococcus, Streptococcus, Porphyromonas, Treponema, Vibrio, E. coli, and Bifidobacteriae. Optionally, the naturally invasive bacterium or BTP is Yersinia expressing an invasion factor selected from the group including, but not limited to, invasin and YadA (Yersinia enterocolitica plasmid adhesion factor). Optionally, the naturally invasive bacterium or BTP is Rickettsia expressing the invasion factor RickA (actin polymerization protein). Optionally, the naturally invasive bacterium or BTP is Legionella expressing the invasion factor RaIF (guanine exchange factor). Optionally, the naturally invasive bacterium or BTP is Neisseria expressing an invasion factor selected from the group including, but not limited to, NadA (Neisseria adhesion/invasion factor), OpA and OpC (opacity-associated adhesions). Optionally, the naturally invasive bacterium or BTP is Listeria expressing an invasion factor selected from the group including, but not limited to, InlA (internalin factor), InlB (internalin factor), Hpt (hexose phosphate transporter), and ActA (actin polymerization protein). Optionally, the naturally invasive bacterium or BTP is Shigella expressing an invasion factor selected from the group including, but not limited to, the Shigella secreting factors IpaA (invasion plasmid antigen), IpaB, IpaC, IpgD, IpaB-IpaC complex, VirA, and IcsA. Optionally, the naturally invasive bacterium or BTP is Salmonella expressing an invasion factor selected from the group including, but not limited to, Salmonella secreting/exchange factors SipA, SipC, SpiC, SigD, SopB, SopE, SopE2, and SptP. Optionally, the naturally invasive bacterium or BTP is Staphylococcus expressing an invasion factor selected from the group including, but not limited to, the fibronectin binding proteins FnBPA and FnBPB. Optionally, the naturally invasive bacterium or BTP is Streptococcus expressing an invasion factor selected from the group including, but not limited to, the fibronectin binding proteins ACP, Fba, F2, Sfb1, Sfb2, SOF, and PFBP. Optionally, the naturally invasive bacterium or BTP is Porphyromonas gingivalis expressing the invasion factor FimB (integrin binding protein fibriae).

[0068] In another embodiment of this invention, the microorganism is a bacterium or BTP that is not naturally invasive but has been modified, e.g., genetically modified, to be invasive. Optionally, the bacterium or BTP that is not naturally invasive has been genetically modified to be invasive by expressing an invasion factor selected from the group including, but not limited to, invasin, YadA, RickA, RaIF, NadA, OpA, OpC, InlA, InlB, Hpt, ActA, Ipaa, Ipab, IpaC, IpgD, IpaB-IpaC complex, VirA, IcsA, SipA, SipC, SpiC, SigD, SopB, SopE, SopE2, SptP, FnBPA, FNBPB, ACP, Fba, F2, Sfb1, Sfb2, SOF, PFBP, and FimB.

[0069] In another embodiment of this invention, the microorganism is a bacterium or BTP that may be naturally invasive but has been modified, e.g., genetically modified, to express one or more additional invasion factors. Optionally, the invasion factor is selected from the group that includes, but is not limited to, invasin, YadA, RickA, RaIF, NadA, OpA, OpC, InlA, InlB, Hpt, ActA, lpaA, IpaB, IpaC, IpgD, IpaB-IpaC complex, VirA, IcsA, SipA, SipC, SpiC, SigD, SopB, SopE, SopE2, SptP, FnBPA, FnBPB, ACP, Fba, F2, Sfb1, Sfb2, SOF, PFBP, and FimB.

[0070] Naturally invasive microorganisms, e.g., bacteria or BTPs, may have a certain tropism, i.e., preferred target cells. Alternatively, microorganisms, e.g., bacteria or BTPs can be modified, e.g., genetically, to mimic the tropism of a second microorganism. Optionally, the bacterium or BTP is Streptococcus and the preferred target cells are selected from the group including, but not limited to, pharyngeal epithelial cells, buccal epithelial cells of the tongue, and mucosal epithelial cells. Optionally, the bacterium or BTP is Porphyromonas and the preferred target cells are selected from the group including, but not limited to, oral epithelial cells. Optionally, the bacterium or BTP is Staphylococcus and the preferred target cells are mucosal epithelial cells. Optionally, the bacterium or BTP is Neisseria and the preferred target cells are selected from the group including, but not limited to, urethral epithelial cells and cervical epithelial cells. Optionally, the bacterium or BTP is E. coli and the preferred target cells are selected from the group, including but not limited to, intestinal epithelial cells, urethral epithelial cells, and the cells of the upper urinary tract. Optionally, the bacterium or BTP is Bordetella and the preferred target cells are respiratory epithelial cells. Optionally, the bacterium or BTP is Vibrio and the preferred target cells are intestinal epithelial cells. Optionally, the bacterium or BTP is Treponema and the preferred target cells are mucosal epithelial cells. Optionally, the bacterium or BTP is Mycoplasma and the preferred target cells are respiratory epithelial cells. Optionally, the bacterium or BTP is Helicobacter and the preferred target cells are the endothelial cells of the stomach. Optionally, the bacterium or BTP is Chlamydia and the preferred target cells are selected from the group including, but not limited to, conjunctival cells and urethral epithelial cells.

[0071] In another embodiment of this invention, the microorganism is a bacterium or BTP that has been modified, e.g., genetically modified, to have a certain tropism. Optionally, the preferred target cells are selected from the group including, but not limited to, pharyngeal epithelial cells, buccal epithelial cells of the tongue, mucosal epithelial cells, oral epithelial cells, epithelial cells of the urethra, cervical epithelial cells, intestinal epithelial cells, respiratory epithelial cells, cells of the upper urinary tract, epithelial cells of the stomach, and conjunctival cells. Optionally, the preferred target cells are dysplastic or cancerous epithelial cells. Optionally, the preferred target cells are activated or resting immune cells.

[0072] Delivery of at least one molecule into a target cell can be determined according to methods known in the art. For example, the presence of the molecule, by the decrease in expression of an RNA or protein silenced thereby, can be detected by hybridization or PCR methods, or by immunological methods that may include the use of an antibody.

[0073] Determining whether a microorganism is sufficiently invasive for use in the invention may include determining whether sufficient siRNA was delivered to host cells, relative to the number of microorganisms contacted with the host cells. If the amount of siRNA is low relative to the number of microorganisms used, it may be desirable to further modify the microorganism to increase its invasive potential.

[0074] Bacterial or BTP entry into cells can be measured by various methods. Intracellular bacteria or BTPs survive treatment by aminoglycoside antibiotics, whereas extracellular bacteria are rapidly killed. A quantitative estimate of bacterial or BTP uptake can be achieved by treating cell monolayers with the antibiotic gentamicin to inactivate extracellular bacteria or BTPs, then by removing said antibiotic before liberating the surviving intracellular organisms with gentle detergent and determining viable counts on standard bacteriological medium. Furthermore, bacterial or BTP entry into cells can be directly observed, e.g., by thin-section-transmission electron microscopy of cell layers or by immunofluorescent techniques (Falkow et al. (1992) Annual Rev. Cell Biol. 8:333). Thus, various techniques can be used to determine whether a specific bacterium or BTP is capable of invading a specific type of cell or to confirm bacterial invasion following modification of the bacteria or BTP, such modification of the tropism of the bacteria to mimic that of a second bacterium.

[0075] Bacteria or BTPs that can be used for delivering RNA according to the method of the invention are preferably non-pathogenic. However, pathogenic bacteria or BTPs can also be used, so long as their pathogenicity has been attenuated, to thereby render the bacteria non-harmful to a subject to which it is administered. As used herein, the term "attenuated bacterium or BTP" refers to a bacterium or BTP that has been modified to significantly reduce or eliminate its harmfulness to a subject. A pathogenic bacterium or BTP can be attenuated by various methods, set forth below.

[0076] Without wanting to be limited to a specific mechanism of action, the bacterium or BTP delivering the RNA into the eukaryotic cell can enter various compartments of the cell, depending on the type of bacterium or BTP. For example, the bacterium or BTP can be in a vesicle, e.g., a phagocytic vesicle. Once inside the cell, the bacterium or BTP can be destroyed or lysed and its contents delivered to the eukaryotic cell. A bacterium or BTP can also be engineered to express a phagosome degrading protein to allow leakage of RNA from the phagosome. In one embodiment of this invention, the bacterium or BTP expresses, either naturally or through modification, e.g., genetic modification, a protein that contributes to pore-formation, breakage or degradation of the phagosome. Optionally, the protein is a cholesterol-dependent cytolysin. Optionally, the protein is selected from the group consisting of listeriolysin, ivanolysin, streptolysin, sphingomyelinase, perfringolysin, botulinolysin, leukocidin, anthrax toxin, phospholipase, IpaB (invasion plasmid antigen), IpaH, IcsB (intercellular spread), DOT/Icm (defect in organelle trafficking/intracellular multiplication defective), DOTU (stabilization factor for the DOT/Icm complex), IcmF, and PmrA (multidrug resistance efflux pump).

[0077] In some embodiments, the bacterium can stay alive for various times in the eukaryotic cell and may continue to produce RNA. The RNA or RNA-encoding DNA can then be released from the bacterium into the cell by, e.g., leakage. In certain embodiments of the invention, the bacterium can also replicate in the eukaryotic cell. In a preferred embodiment, bacterial replication does not kill the host cell. The invention is not limited to delivery of RNA or RNA-encoding DNA by a specific mechanism and is intended to encompass methods and compositions permitting delivery of RNA or RNA-encoding DNA by a bacterium independently of the mechanism of delivery.

[0078] In one embodiment, the bacterium or BTP for use in the present invention is non-pathogenic or non-virulent. In another aspect of this embodiment, the bacterium or BTP is therapeutic. In another aspect of this embodiment, the bacterium or BTP is an attenuated strain or derivative thereof selected from, but not limited to, Yersinia, Rickettsia, Legionella, Brucella, Mycobacterium, Helicobacter, Haemophilus, Coxiella, Chlamydia, Neisseria, Burkolderia, Bordetella, Borrelia, Listeria, Shigella, Salmonella, Staphylococcus, Streptococcus, Porphyromonas, Treponema, Vibrio, E. coli, and Bifidobacteriae. Optionally, the Yersinia strain is an attenuated strain of the Yersinia pseudotuberculosis species. Optionally, the Yersinia strain is an attenuated strain of the Yersinia enterocolitica species. Optionally, the Rickettsia strain is an attenuated strain of the Rickettsia coronii species. Optionally, the Legionella strain is an attenuated strain of the Legionella pneumophilia species. Optionally, the Mycobacterium strain is an attenuated strain of the Mycobacterium tuberculosis species. Optionally, the Mycobacterium strain is an attenuated strain of the Mycobacterium bovis BCG species. Optionally, the Helicobacter strain is an attenuated strain of the Helicobacter pylori species. Optionally, the Coxiella strain is an attenuated strain of Coxiella burnetti. Optionally, the Haemophilus strain is an attenuated strain of the Haemophilus influenza species. Optionally, the Chlamydia strain is an attenuated strain of the Chlamydia trachomatis species. Optionally, the Chlamydia strain is an attenuated strain of the Chlamydia pneumoniae species. Optionally, the Neisseria strain is an attenuated strain of the Neisseria gonorrheae species. Optionally, the Neisseria strain is an attenuated strain of the Neisseria meningitides species. Optionally, the Burkolderia strain is an attenuated strain of the Burkolderia cepacia species. Optionally, the Bordetella strain is an attenuated strain of the Bordetella pertussis species. Optionally, the Borrelia strain is an attenuated strain of the Borrelia hermisii species. Optionally, the Listeria strain is an attenuated strain of the Listeria monocytogenes species. Optionally, the Listeria strain is an attenuated strain of the Listeria ivanovii species. Optionally, the Salmonella strain is an attenuated strain of the Salmonella enterica species. Optionally, the Salmonella strain is an attenuated strain of the Salmonella typhimurium species. Optionally, the Salmonella typhimurium strain is SL 7207 or VNP20009. Optionally, the Staphylococcus strain is an attenuated strain of the Staphylococcus aureus species. Optionally, the Streptococcus strain is an attenuated strain of the Streptococcus pyogenes species. Optionally, the Streptococcus strain is an attenuated strain of the Streptococcus mutans species. Optionally, the Streptococcus strain is an attenuated strain of the Streptococcus salivarius species. Optionally, the Streptococcus strain is an attenuated strain of the Streptococcus pneumonia species. Optionally, the Porphyromonas strain is an attenuated strain of the Porphyromonas gingivalis species. Optionally, the Pseudomonas strain is an attenuated strain of the Pseudomonas aeruginosa species. Optionally, the Treponema strain is an attenuated strain of the Treponema pallidum species. Optionally, the Vibrio strain is an attenuated strain of the Vibrio cholerae species. Optionally, the E. coli strain is MM294.

[0079] Set forth below are examples of bacteria that have been described in the literature as being naturally invasive (section 1.1), as well as bacteria which have been described in the literature as being naturally non-invasive bacteria (section 1.2), as well as bacteria which are naturally non-pathogenic or which are attenuated. Although some bacteria have been described as being non-invasive (section 1.2), these may still be sufficiently invasive for use according to the invention. Whether traditionally described as naturally invasive or non-invasive, any bacterial strain can be modified to modulate, in particular to increase, its invasive characteristics (e.g., as described in section 1.3).

1.1 Naturally Invasive Bacteria

[0080] The particular naturally invasive bacteria employed in the present invention are not critical thereto. Examples of such naturally occurring invasive bacteria include, but are not limited to, Shigella spp., Salmonella spp., Listeria spp., Rickettsia spp., and enteroinvasive Escherichia coli.

[0081] The particular Shigella strain employed is not critical to the present invention. Examples of Shigella strains that can be employed in the present invention include Shigella flexneri 2a (ATCC No. 29903), Shigella sonnei (ATCC No. 29930), and Shigella disenteriae (ATCC No. 13313). An attenuated Shigella strain, such as Shigella flexneri 2a 2457T aroA virG mutant CVD 1203 (Noriega et al supra), Shigella flexneri M90T icsA mutant (Goldberg et al. Infect. Immun., 62:5664-5668 (1994)), Shigella flexneri Y SFL114 aroD mutant (Karnell et al. Vacc., 10:167-174 (1992)), and Shigella flexneri aroA aroD mutant (Verma et al. Vacc., 9:6-9 (1991)) are preferably employed in the present invention. Alternatively, new attenuated Shigella spp. strains can be constructed by introducing an attenuating mutation either singularly or in conjunction with one or more additional attenuating mutations.

[0082] At least one advantage to Shigella bacteria as delivery vectors is their tropism for lymphoid tissue in the colonic mucosal surface. In addition, the primary site of Shigella replication is believed to be within dendritic cells and macrophages, which are commonly found at the basal lateral surface of M cells in mucosal lymphoid tissues (reviewed by McGhee, J. R. et al (1994) Reproduction, Fertility, & Development 6:369; Pascual, D. W. et al (1994) Immunomethods 5:56). As such, Shigella vectors may provide a means to target RNA interference or deliver therapeutic molecules to these professional antigen-presenting cells. Another advantage of Shigella vectors is that attenuated Shigella strains deliver nucleic acid reporter genes in vitro and in vivo (Sizemore, D. R. et al (1995) Science 270:299; Courvalin, P. et al (1995) Comptes Rendus de l Academie des Sciences Serie III-Sciences de la Vie-Life Sciences 318:1207; Powell, R. J. et al. (1996) In: Molecular approaches to the control of infectious diseases. F. Brown, E. Norrby, D. Burton and J. Mekalanos, eds. Cold Spring Harbor Laboratory Press, New York. 183; Anderson, R. J. et al. (1997) Abstracts for the 97th General Meeting of the American Society for Microbiology:E.). On the practical side, the tightly restricted host specificity of Shigella stands to prevent the spread of Shigella vectors into the food chain via intermediate hosts. Furthermore, attenuated strains that are highly attenuated in rodents, primates and volunteers have been developed (Anderson et al. (1997) supra; Li, A. et al. (1992) Vaccine 10:395; Li, A. et al. (1993) Vaccine 11:180; Karnell, A. et al. (1995) Vaccine 13:88; Sansonetti, P. J. and J. Arondel (1989) Vaccine 7:443; Fontaine, A. et al. (1990) Research in Microbiology 141:907; Sansonetti, P. J. et al. (1991) Vaccine 9:416; Noriega, F. R. et al. (1994) Infection & Immunity 62:5168; Noriega, F. R. et al. (1996) Infection & Immunity 64:3055; Noriega, F. R. et al. (1996) Infection & Immunity 64:23; Noriega, F. R. et al. (1996) Infection & Immunity 64:3055; Kotloff, K. L. et al. (1996) Infection & Immunity 64:4542). This latter knowledge will allow the development of well-tolerated Shigella vectors for use in humans.

[0083] Attenuating mutations can be introduced into bacterial pathogens using non-specific mutagenesis either chemically, using agents such as N-methyl-N'-nitro-N-nitrosoguanidine, or using recombinant DNA techniques; classic genetic techniques, such as Tn10 mutagenesis, P22-mediated transduction, .lamda. phage mediated crossover, and conjugational transfer; or site-directed mutagenesis using recombinant DNA techniques. Recombinant DNA techniques are preferable since strains constructed by recombinant DNA techniques are far more defined. Examples of such attenuating mutations include, but are not limited to:

[0084] (i) auxotrophic mutations, such as aro (Hoiseth et al. Nature, 291:238-239 (1981)), gua (McFarland et al. Microbiol. Path., 3:129-141 (1987)), nad (Park et al. J. Bact., 170:3725-3730 (1988), thy (Nnalue et al. Infect. Immun., 55:955-962 (1987)), and asd (Curtiss, supra) mutations;

[0085] (ii) mutations that inactivate global regulatory functions, such as cya (Curtiss et al. Infect. Immun., 55:3035-3043 (1987)), crp (Curtiss et al (1987), supra), phoP/phoQ (Groisman et al. Proc. Natl. Acad. Sci., USA, 86:7077-7081 (1989); and Miller et al. Proc. Natl. Acad. Sci., USA, 86:5054-5058 (1989)), phopc (Miller et al. J. Bact., 172:2485-2490 (1990)) or ompR (Dorman et al. Infect. Immun., 57:2136-2140 (1989)) mutations;

[0086] (iii) mutations that modify the stress response, such as recA (Buchmeier et al. Mol. Micro., 7:933-936 (1993)), htrA (Johnson et al. Mol. Micro., 5:401-407 (1991)), htpR (Neidhardt et al. Biochem. Biophys. Res. Com., 100:894-900 (1981)), hsp (Neidhardt et al. Ann. Rev. Genet., 18:295-329 (1984)) and groEL (Buchmeier et al. Sci., 248:730-732 (1990)) mutations;

[0087] (iv) mutations in specific virulence factors, such as IsyA (Libby et al. Proc. Natl. Acad. Sci., USA, 91:489-493 (1994)), pag or prg (Miller et al (1990), supra; and Miller et al (1989), supra), iscA or virG (d'Hauteville et al. Mol. Micro., 6:833-841 (1992)), plcA (Mengaud et al. Mol. Microbiol., 5:367-72 (1991); Camilli et al. J. Exp. Med, 173:751-754 (1991)), and act (Brundage et al. Proc. Natl. Acad. Sci., USA, 90:11890-11894 (1993)) mutations;

[0088] (v) mutations that affect DNA topology, such as topA (Galan et al. Infect. Immun., 58:1879-1885 (1990));

[0089] (vi) mutations that disrupt or modify the cell cycle, such as min (de Boer et al. Cell, 56:641-649 (1989)).

[0090] (vii) introduction of a gene encoding a suicide system, such as sacB (Recorbet et al. App. Environ. Micro., 59:1361-1366 (1993); Quandt et al. Gene, 127:15-21 (1993)), nuc (Ahrenholtz et al. App. Environ. Micro., 60:3746-3751 (1994)), hok, gef, kil, or phlA (Molin et al Ann. Rev. Microbiol., 47:139-166 (1993));

[0091] (viii) mutations that alter the biogenesis of lipopolysaccharide and/or lipid A, such as rFb (Raetz in Esherishia coli and Salmonella typhimurium, Neidhardt et al., Ed., ASM Press, Washington D.C. pp 1035-1063 (1996)), galE (Hone et al. J. Infect. Dis., 156:164-167 (1987)) and htrB (Raetz, supra), msbB (Reatz, supra)

[0092] (ix) introduction of a bacteriophage lysis system, such as lysogens encoded by P22 (Rennell et al. Virol, 143:280-289 (1985)), .lamda. murein transglycosylase (Bienkowska-Szewczyk et al. Mol. Gen. Genet., 184:111-114 (1981)) or S-gene (Reader et al. Virol, 43:623-628 (1971)); and

[0093] The attenuating mutations can be either constitutively expressed or under the control of inducible promoters, such as the temperature sensitive heat shock family of promoters (Neidhardt et al. supra), or the anaerobically induced nirB promoter (Harbome et al. Mol. Micro., 6:2805-2813 (1992)) or repressible promoters, such as uapA (Gorfinkiel et al. J. Biol. Chem., 268:23376-23381 (1993)) or gcv (Stauffer et al. J. Bact., 176:6159-6164 (1994)).

[0094] The particular Listeria strain employed is not critical to the present invention. Examples of Listeria strains that can be employed in the present invention include Listeria monocytogenes (ATCC No. 15313). Attenuated Listeria strains, such as L. monocytogenes actA mutant (Brundage et al. supra) or L. monocytogenes picA (Camilli et al. J. Exp. Med., 173:751-754 (1991)) are preferably used in the present invention. Alternatively, new attenuated Listeria strains can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0095] The particular Salmonella strain employed is not critical to the present invention. Examples of Salmonella strains that can be employed in the present invention include Salmonella typhi (ATCC No. 7251) and S. typhimurium (ATCC No. 13311). Attenuated Salmonella strains are preferably used in the present invention and include S. typhi-aroC-aroD (Hone et al. Vacc. 9:810 (1991) and S. typhimurium-aroA mutant (Mastroeni et al. Micro. Pathol. 13:477 (1992)). Alternatively, new attenuated Salmonella strains can be constructed by introducing one or more attenuating mutations as described for Shigella spp. above.

[0096] The particular Rickettsia strain employed is not critical to the present invention. Examples of Rickettsia strains which can be employed in the present invention include Rickettsia Rickettsiae (ATCC Nos. VR149 and VR891), Rickettsia prowaseckii (ATCC No. VR233), Rickettsia tsutsugamuchi (ATCC Nos. VR312, VR150 and VR609), Rickettsia mooseri (ATCC No. VR144), Rickettsia sibirica (ATCC No. VR151), and Rochalimaea quitana (ATCC No. VR358). Attenuated Rickettsia strains are preferably used in the present invention and can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0097] The particular enteroinvasive Escherichia strain employed is not critical to the present invention. Examples of enteroinvasive Escherichia strains which can be employed in the present invention include Escherichia coli strains 4608-58, 1184-68, 53638-C-17, 13-80, and 6-81 (Sansonetti et al. Ann. Microbiol. (Inst. Pasteur), 132A:351-355 (1982)). Attenuated enteroinvasive Escherichia strains are preferably used in the present invention and can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0098] Furthermore, since certain microorganisms other than bacteria can also interact with integrin molecules (which are receptors for certain invasion factors) for cellular uptake, such microorganisms can also be used for introducing RNA into target cells. For example, viruses, e.g., foot-and-mouth disease virus, echovirus, and adenovirus, and eukaryotic pathogens, e.g., Histoplasma capsulatum and Leishmania major interact with integrin molecules.

1.2 Less Invasive Bacteria

[0099] Examples of bacteria which can be used in the invention and which have been described in the literature as being non-invasive or at least less invasive than the bacteria listed in the previous section (1.1) include, but are not limited to, Yersinia spp., Escherichia spp., Klebsiella spp., Bordetella spp., Neisseria spp., Aeromonas spp., Franciesella spp., Corynebacterium spp., Citrobacter spp., Chlamydia spp., Hemophilus spp., Brucella spp., Mycobacterium spp., Legionella spp., Rhodococcus spp., Pseudomonas spp., Helicobacter spp., Vibrio-spp., Bacillus spp., and Erysipelothrix spp. It may be necessary to modify these bacteria to increase their invasive potential.

[0100] The particular Yersinia strain employed is not critical to the present invention. Examples of Yersinia strains that can be employed in the present invention include Y. enterocolitica (ATCC No. 9610) or Y. pestis (ATCC No. 19428). Attenuated Yersinia strains, such as Y. enterocolitica Ye03-R2 (al-Hendy et al. Infect. Immun., 60:870-875 (1992)) or Y. enterocolitica aroA (O'Gaora et al. Micro. Path., 9:105-116 (1990)) are preferably used in the present invention. Alternatively, new attenuated Yersinia strains can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0101] The particular Escherichia strain employed is not critical to the present invention. Examples of Escherichia strains that can be employed in the present invention include E. coli Nissle 1917, MM294, H10407 (Elinghorst et al. Infect. Immun., 60:2409-2417 (1992)), and E. coli EFC4, CFT325 and CPZ005 (Donnenberg et al. J. Infect. Dis., 169:831-838 (1994)). Attenuated Escherichia strains, such as the attenuated turkey pathogen E. coli O.sub.2 carAB mutant (Kwaga et al. Infect. Immun., 62:3766-3772 (1994)) or CEQ201 are preferably used in the present invention. Alternatively, new attenuated Escherichia strains can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0102] The particular Klebsiella strain employed is not critical to the present invention. Examples of Klebsiella strains that can be employed in the present invention include K. pneumoniae (ATCC No. 13884). Attenuated Klebsiella strains are preferably used in the present invention, and can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0103] The particular Bordetella strain employed is not critical to the present invention. Examples of Bordetella strains that can be employed in the present invention include B. bronchiseptica (ATCC No. 19395). Attenuated Bordetella strains are preferably used in the present invention, and can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0104] The particular Neisseria strain employed is not critical to the present invention. Examples of Neisseria strains that can be employed in the present invention include N. meningitidis (ATCC No. 13077) and N. gonorrhoeae (ATCC No. 19424). Attenuated Neisseria strains, such as N. gonorrhoeae MS11 aro mutant (Chamberlain et al. Micro. Path., 15:51-63 (1993)) are preferably used in the present invention. Alternatively, new attenuated Neisseria strains can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0105] The particular Aeromonas strain employed is not critical to the present invention. Examples of Aeromonas strains that can be employed in the present invention include A. eucrenophila (ATCC No. 23309). Alternatively, new attenuated Aeromonas strains can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0106] The particular Franciesella strain employed is not critical to the present invention. Examples of Franciesella strains that can be employed in the present invention include F. tularensis (ATCC No. 15482). Attenuated Franciesella strains are preferably used in the present invention, and can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0107] The particular Corynebacterium strain employed is not critical to the present invention. Examples of Corynebacterium strains that can be employed in the present invention include C. pseudotuberculosis (ATCC No. 19410). Attenuated Corynebacterium strains are preferably used in the present invention, and can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0108] The particular Citrobacter strain employed is not critical to the present invention. Examples of Citrobacter strains that can be employed in the present invention include C. freundii (ATCC No. 8090). Attenuated Citrobacter strains are preferably used in the present invention, and can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0109] The particular Chlamydia strain employed is not critical to the present invention. Examples of Chlamydia strains that can be employed in the present invention include C. pneumoniae (ATCC No. VR1310). Attenuated Chlamydia strains are preferably used in the present invention, and can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0110] The particular Hemophilus strain employed is not critical to the present invention. Examples of Hemophilus strains that can be employed in the present invention include H. sornnus (ATCC No. 43625). Attenuated Hemophilus strains are preferably used in the present invention, and can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0111] The particular Brucella strain employed is not critical to the present invention. Examples of Brucella strains that can be employed in the present invention include B. abortus (ATCC No. 23448). Attenuated Brucella strains are preferably used in the present invention, and can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0112] The particular Mycobacterium strain employed is not critical to the present invention. Examples of Mycobacterium strains that can be employed in the present invention include M. intracellulare (ATCC No. 13950) and M. tuberculosis (ATCC No. 27294). Attenuated Mycobacterium strains are preferably used in the present invention, and can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0113] The particular Legionella strain employed is not critical to the present invention. Examples of Legionella strains that can be employed in the present invention include L. pneumophila (ATCC No. 33156). Attenuated Legionella strains, such as a L. pneumophila mip mutant (Ott, FEMS Micro. Rev., 14:161-176 (1994)) are preferably used in the present invention. Alternatively, new attenuated Legionella strains can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0114] The particular Rhodococcus strain employed is not critical to the present invention. Examples of Rhodococcus strains that can be employed in the present invention include R. equi (ATCC No. 6939). Attenuated Rhodococcus strains are preferably used in the present invention, and can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0115] The particular Pseudomonas strain employed is not critical to the present invention. Examples of Pseudomonas strains that can be employed in the present invention include P. aeruginosa (ATCC No. 23267). Attenuated Pseudomonas strains are preferably used in the present invention, and can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0116] The particular Helicobacter strain employed is not critical to the present invention. Examples of Helicobacter strains that can be employed in the present invention include H. mustelae (ATCC No. 43772). Attenuated Helicobacter strains are preferably used in the present invention, and can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0117] The particular Salmonella strain employed is not critical to the present invention. Examples of Salmonella strains that can be employed in the present invention include Salmonella typhi (ATCC No. 7251) and S. typhimurium (ATCC No. 13311). Attenuated Salmonella strains are preferably used in the present invention and include S. typhi aroC aroD (Hone et al. Vacc., 9:810-816 (1991)) and S. typhimurium aroA mutant (Mastroeni et al. Micro. Pathol, 13:477-491 (1992))). Alternatively, new attenuated Salmonella strains can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0118] The particular Vibrio strain employed is not critical to the present invention. Examples of Vibrio strains that can be employed in the present invention include Vibrio cholerae (ATCC No. 14035) and Vibrio cincinnatiensis (ATCC No. 35912). Attenuated Vibrio strains are preferably used in the present invention and include V. cholerae RSI virulence mutant (Taylor et al. J. Infect. Dis., 170:1518-1523 (1994)) and V. cholerae ctxa, ace, zot, cep mutant (Waldor et al. J. Infect. Dis., 170:278-283 (1994)). Alternatively, new attenuated Vibrio strains can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0119] The particular Bacillus strain employed is not critical to the present invention. Examples of Bacillus strains that can be employed in the present invention include Bacillus subtilis (ATCC No. 6051). Attenuated Bacillus strains are preferably used in the present invention and include B. anthracis mutant pX01 (Welkos et al. Micro. Pathol, 14:381-388 (1993)) and attenuated BCG strains (Stover et al. Nat., 351:456-460 (1991)). Alternatively, new attenuated Bacillus strains can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

[0120] The particular Erysipelothrix strain employed is not critical to the present invention. Examples of Erysipelothrix strains that can be employed in the present invention include Erysipelothrix rhusiopathiae (ATCC No. 19414) and Erysipelothrix tonsillarum (ATCC No. 43339). Attenuated Erysipelothrix strains are preferably used in the present invention and include E. rhusiopathiae Kg-1a and Kg-2 (Watarai et al. J. Vet. Med. Sci., 55:595-600 (1993)) and E. rhusiopathiae ORVAC mutant (Markowska-Daniel et al. Int. J. Med. Microb. Virol. Parisit. Infect. Dis., 277:547-553 (1992)). Alternatively, new attenuated Erysipelothrix strains can be constructed by introducing one or more attenuating mutations in groups (i) to (vii) as described for Shigella spp. above.

1.3. Methods for Increasing the Invasive Properties of a Bacterial Strain

[0121] Whether organisms have been traditionally described as invasive or non-invasive, these organisms can be engineered to increase their invasive properties, e.g., by mimicking the invasive properties of Shigella spp., Listeria spp., Rickettsia spp., or enteroinvasive E. coli spp. For example, one or more genes that enable the microorganism to access the cytoplasm of a cell, e.g., a cell in the natural host of said non-invasive bacteria, can be introduced into the microorganism.

[0122] Examples of such genes referred to herein as "cytoplasm-targeting genes" include genes encoding the proteins that enable invasion by Shigella or the analogous invasion genes of entero-invasive Escherichia, or listeriolysin 0 of Listeria, as such techniques are known to result in rendering a wide array of invasive bacteria capable of invading and entering the cytoplasm of animal cells (Formal et al. Infect. Immun., 46:465 (1984); Bielecke et al. Nature, 345:175-176 (1990); Small et al. In: Microbiology-1986, pages 121-124, Levine et al. Eds., American Society for Microbiology, Washington, D.C. (1986); Zychlinsky et al. Molec. Micro., 11:619-627 (1994); Gentschev et al. (1995) Infection & Immunity 63:4202; Isberg, R. R. and S. Falkow (1985) Nature 317:262; and Isberg, R. R. et al. (1987) Cell 50:769). Methods for transferring the above cytoplasm-targeting genes into a bacterial strain are well known in the art. Another preferred gene that can be introduced into bacteria to increase their invasive character encodes the invasin protein from Yersinia pseudotuberculosis, (Leong et al. EMBO J., 9:1979 (1990)). Invasin can also be introduced in combination with listeriolysin, thereby further increasing the invasive character of the bacteria relative to the introduction of either of these genes. The above genes have been described for illustrative purposes; however, it will be obvious to those skilled in the art that any gene or combination of genes, from one or more sources, that participates in the delivery of a molecule, in particular an RNA or RNA-encoding DNA molecule, from a microorganism into the cytoplasm of a cell, e.g., an animal cell, will suffice. Thus, such genes are not limited to bacterial genes, and include viral genes, such as influenza virus hemagglutinin HA-2 that promotes endosmolysis (Plank et al. J. Biol. Chem., 269:12918-12924 (1994)).

[0123] The above cytoplasm-targeting genes can be obtained by, e.g. PCR amplification from DNA isolated from an invasive bacterium carrying the desired cytoplasm-targeting gene. Primers for PCR can be designed from the nucleotide sequences available in the art, e.g., in the above-listed references and/or in GenBank, which is publicly available on the internet (www.ncbi.nlm.nih.gov/). The PCR primers can be designed to amplify a cytoplasm-targeting gene, a cytoplasm-targeting operon, a cluster of cytoplasm-targeting genes, or a regulon of cytoplasm-targeting genes. The PCR strategy employed will depend on the genetic organization of the cytoplasm-targeting gene or genes in the target invasive bacteria. The PCR primers are designed to contain a sequence that is homologous to DNA sequences at the beginning and end of the target DNA sequence. The cytoplasm-targeting genes can then be introduced into the target bacterial strain, e.g., by using Hfr transfer or plasmid mobilization (Miller, A Short Course in Bacterial Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1992); Bothwell et al. supra; and Ausubel et al. supra), bacteriophage-mediated transduction (de Boer, supra; Miller, supra; and Ausubel et al. supra), chemical transformation (Bothwell et al. supra; Ausubel et al. supra), electroporation (Bothwel et al. supra; Ausubel et al. supra; and Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) and physical transformation techniques (Johnston et al. supra; and Bothwell, supra). The cytoplasm-targeting genes can be incorporated into lysogenic bacteriophage (de Boer et al. Cell, 56:641-649 (1989)), plasmids vectors (Curtiss et al. supra) or spliced into the chromosome (Hone et al. supra) of the target strain.

[0124] In addition to genetically engineering bacteria and BTPs to increase their invasive properties, as set forth above, bacteria and can also be modified by linking an invasion factor to the bacteria. Accordingly, in one embodiment, a bacterium is rendered more invasive by coating the bacterium, either covalently or non-covalently, with an invasion factor, e.g., the protein invasin, invasin derivatives, or a fragment thereof sufficient for invasiveness. In fact, it has been shown that non-invasive bacterial cells coated with purified invasin from Yersinia pseudotuberculosis or the carboxyl-terminal 192 amino acids of invasin are able to enter mammalian cells (Leong et al. (1990) EMBO J. 9:1979). Furthermore, latex beads coated with the carboxyl terminal region of invasin are efficiently internalized by mammalian cells, as are strains of Staphylococcus aureus coated with antibody-immobilized invasin (reviewed in Isberg and Tran van Nhieu (1994) Ann. Rev. Genet. 27:395). Alternatively, a bacterium can also be coated with an antibody, variant thereof, or fragment thereof, which binds specifically to a surface molecule recognized by a bacterial entry factor. For example, it has been shown that bacteria are internalized if they are coated with a monoclonal antibody directed against an integrin molecule, e.g., .alpha.5.beta.1, known to be the surface molecule with which the bacterial invasin protein interacts (Isberg and Tran van Nhieu, supra). Such antibodies can be prepared according to methods known in the art. The antibodies can be tested for efficacy in mediating bacterial invasiveness by, e.g., coating bacteria with the antibody, contacting the bacteria with eukaryotic cells having a surface receptor recognized by the antibody, and monitoring the presence of intracellular bacteria, according to the methods described above. Methods for linking an invasion factor to the surface of a bacterium are known in the art and include cross-linking.

3. Plasmids and Vectors

[0125] The present invention also provides at least one vector or plasmid including at least one DNA molecule encoding one or more siRNAs and at least one promoter, wherein the expressed siRNAs interfere with at least one mRNA of a gene of interest. In one preferred embodiment, the present invention provides at least one prokaryotic vector including at least one DNA molecule encoding one or more siRNAs and at least one RNA-polymerase III compatible promoter or at least one prokaryotic promoter, wherein the expressed siRNAs interfere with at least one mRNA of a gene of interest.

[0126] The TRIP (transkingdom RNA interference plasmid) vectors and plasmids of the present invention include a multiple cloning site, a promoter sequence and a terminator sequence. The TRIP vectors and plasmids also include one or more sequences encoding for an invasion factor to permit the non-invasive bacterium or BTP to enter mammalian cells (e.g., the Inv locus that encodes invasion that permits the bacterium or BTP to enter .beta.1-integrin-positive mammalian cells) (Young et al., J. Cell Biol. 116, 197-207 (1992)) and one or more sequences to permit the genetic material to escape from the entry vesicles (e.g., Hly A gene that encodes listeriolysin O) (Mathew et al., Gene Ther. 10, 1105-1115 (2003) and Grillot-Courvalin et al., Nat. Biotechnol. 16, 862-866 (1998)). TRIP is further described (including a vector/plasmid schematic) in PCT Publication No. WO 06/066048. In preferred embodiments, the TRIP vectors and plasmids will incorporate a hairpin RNA expression cassette encoding short hairpin RNA under the control of an appropriate promoter sequence and terminator sequence.

[0127] In the design of these constructs, an algorithm was utilized to take into account some known difficulties with the development of siRNA, namely: (1) Exclusion of disqualifying properties (SNPs, interferon motifs); (2) Exclusion of the sequence if there was homology in ref seq (19/21, >17 contiguous to any other genes) and (3) Exclusion of the sequence if there were significant miRNA seed type matches.

[0128] As described herein, the one or more DNA molecules encoding the one or more siRNAs are transcribed within the eukaryotic target cell or transcribed within the bacterium or BTP.

[0129] In embodiments where the DNA is transcribed within the eukaryotic cell, the one or more siRNAs are transcribed within the eukaryotic cells as shRNAs. The eukaryotic cell can be in vivo, in vitro or ex vivo. In one aspect of this embodiment, the one or more DNA molecules encoding the one or more siRNAs contain a eukaryotic promoter. Optionally, the eukaryotic promoter is a RNA-polymerase III promoter. Optionally, the RNA polymerase III promoter is a U6 promoter or an H1 promoter.

[0130] In embodiments where the DNA is transcribed within the bacterium or BTP, the one or more DNA molecules contain a prokaryotic promoter. Optionally, the prokaryotic promoter is an E. coli promoter. Preferably, the E. coli promoter can be a T7 promoter, lacUV5 promoter, RNA polymerase promoter, gapA promoter, pA1 promoter, lac regulated promoter, araC+P.sub.araBAD promoter, T5 promoter, P.sub.tac promoter (Estrem et al, 1998, Proc. Natl. Acad. Sci. USA 95, 9761-9766; Meng et al., 2001, Nucleic Acids Res. 29, 4166-417; De Boer et al., 1983, Proc. Natl. Acad. Sci. USA 80, 21-25) or recA promoter.

[0131] Preferable, promoter sequences are recited in Table 1.

TABLE-US-00001 TABLE 1 Promoter Sequence SEQ ID NO: T7 promoter TAATACGACTCACTATAG 1 lacUV5 promoter TAACCAGGCTTTACACTTTATG 2 CTTCCGGCTCGTATAATGTGTG GAAGGATCC RNA polymerase TAACCAGGCTTTACACTTTATG 3 promoter CTTCCGGCTCGTATAATGTGTG GAA RNA polymerase TAAAATTCAAAAATTTATTTGC 4 promoter TTTCAGGAAAATTTTTCTGTAT AATAGATTC RNA polymerase TAATTGATACTTTATGCTTTTT 5 promoter TCTGTATAAT gapA promoter AAGCTTTCAGTCGCGTAATGCT 6 TAGGCACAGGATTGATTTGTCG CAATGATTGACACGATTCCGCT TGACACTGCGTAAGTTTTGTGT TATAATGGATCC pA1 promoter AAGCTTAAGGAGAGACAACTTA 7 AAGAGACTTAAAAGATTAATTT AAAATTTATCAAAAAGAGTATT GACTTAAAGTCTAACCTATAGG ATACTTGGATCC lac regulated AAGCTTTGTGTGGAATTGTGAG 8 promoter CGGATAACAATTCCACACATTG ACACTTTATGCTTCCGGCTCGT ATAATGGATCC lac regulated AAGCTTGGAAAATTTTTTTTAA 9 promoter AAAAGTCATGTGTGGAATTGTG AGCGGATAACAATTCCACATAT AATGGATCC araC+ GACTTCATATACCCAAGCTTTA 10 P.sub.araBAD promoter AAAAAAAAATCCTTAGCTTTCG CTAAGGATCTCCGTCAAGCCGT CAATTGTCTGATTCGTTACCAA TTATGACAACTTGACGGCTACA TCATTCACTTTTTCTTCACAAC CGGCACGAAACTCGCTCGGGCT GGCCCCGGTGCATTTTTTAAAT ACTCGCGAGAAATAGAGTTGAT CGTCAAAACCAACATTGCGACC GACGGTGGCGATAGGCATCCGG GTAGTGCTCAAAAGCAGCTTCG CCTGACTAATGCGTTGGTCCTC GCGCCAGCTTAAGACGCTAATC CCTAACTGCTGGCGGAAAAGAT GTGACAGACGCGACGGCGACAA GCAAACATGCTGTGCGACGCTG GCGATATCAAAATTGCTGTCTG CCAGGTGATCGCTGATGTACTG ACAAGCCTCGCGTACCCGATTA TCCATCGGTGGATGGAGCGACT CGTTAATCGCTTCCATGCGCCG CAGTAACAATTGCTCAAGCAGA TTTATCGCCAGCAGCTCCGAAT AGCGCCCTTCCCCTTGCCCGGC GTTAATGATTTGCCCAAACAGG TCGCTGAAATGCGGCTGGTGCG CTTCATCCGGGCGAAAGAAACC CGTATTGGCAAATATTGACGGC CAGTTAAGCCATTCATGCCAGT AGGCGCGCGGACGAAAGTAAAC CCACTGGTGATACCATTCGCGA GCCTCCGGATGACGACCGTAGT GATGAATCTCTCCTGGCGGGAA CAGCAAAATATCACCCGGTCGG CAGACAAATTCTCGTCCCTGAT TTTTCACCACCCCCTGACCGCG AATGGTGAGATTGAGAATATAA CCTTTCATTCCCAGCGGTCGGT CGATAAAAAAATCGAGATAACC GTTGGCCTCAATCGGCGTTAAA CCCGCCACCAGATGGGCGTTAA ACGAGTATCCCGGCAGCAGGGG ATCATTTTGCGCTTCAGCCATA CTTTTCATACTCCCACCATTCA GAGAAGAAACCAATTGTCCATA TTGCATCAGACATTGCCGTCAC TGCGTCTTTTACTGGCTCTTCT CGCTAACCCAACCGGTAACCCC GCTTATTAAAAGCATTCTGTAA CAAAGCGGGACCAAAGCCATGA CAAAAACGCGTAACAAAAGTGT CTATAATCACGGCAGAAAAGTC CACATTGATTATTTGCACGGCG TCACACTTTGCTATGCCATAGC ATTTTTATCCATAAGATTAGCG GATCCTACCTGACGCTTTTTAT CGCAACTCTCTACTGTAGATCT ATCTGCGAT T5 promoter TAAAATTCAAAAATTTATTTGC 11 TTTCAGGAAAATTTTTCTGTAT AATAGATTCGGATCC recA promoter TAATTGATACTTTATGCTTTTT 12 TCTGTATAATGGATCC P.sub.tac promoter GACTTCATATACCCAAGCTTGG 378 AAAATTTTTTTTAAAAAAGTCT TGACACTTTATGCTTCCGGCTC GTATAATGGATCC P.sub.atac promoter GGAAAATTTTTTTTAAAAAAGT 379 C

[0132] In embodiments where the DNA is transcribed within the bacterium or BTP, the E. coli promoter is associated with a terminator. Preferably, the E. coli terminator can be a T7 terminator, lacUV5 terminator, Rho-independent terminator, Rho-dependent terminator, or RNA polymerase terminator.

[0133] Preferable, terminator sequences are recited in Table 2.

TABLE-US-00002 TABLE 2 Terminator Sequence SEQ ID NO: T7 terminator TAGCATAACCCCTTGGGGCCTC 13 TAAACGGGTCTTGAGGGGTTTT TTG lacUV5 TTGTCACGTGAGCGGATAACAA 14 terminator TTTCACACAGGAAACAGAATTC TTAAT Rho-independent TTGTCACAAACCCCGCCACCGG 15 terminator CGGGGTTTTTTTCTGCTTAAT Rho-dependent TTGTCACAATTCTATGGTGTAT 16 terminator GCATTTATTTGCATACATTCAA TCAATTGGATCCTGCATTAAT RNA polymerase GTGAGCGGATAACAATTTCACA 17 terminator CAGGAAACAGAATTCTTAAT RNA polymerase AAACCCCGCCACCGGCGGGGTT 18 terminator TTTTTCTGCTTAAT RNA polymerase AATTCTATGGTGTATGCATTTA 19 terminator TTTGCATACATTCAATCAATTG GATCCTGCATTAAT

[0134] In additional embodiments, the vectors and plasmids of the present invention further include one or more enhancer sequences, selection markers, or lysis regulation system sequences.

[0135] In one aspect of the invention, the one or more DNA molecules contain a prokaryotic enhancer. Optionally, the prokaryotic enhancer is a T7 enhancer. Optionally, the T7 enhancer has the sequence GAGACAGG (SEQ ID NO: 42). In another aspect of this embodiment, the one or more DNA molecules contain a prokaryotic terminator.

[0136] In another aspect of the, the one or more DNA molecules are associated with one or more selection markers. In one aspect of this embodiment, the selection marker is an amber suppressor containing one or more mutations or an diamino pimelic acid (DAP) containing one or more mutations. Optionally, the dap gene is selected from, but not limited to, dapA and dapE.

[0137] Preferable, selection marker sequences are recited in Table 3.

TABLE-US-00003 TABLE 3 Selection Marker Sequence SEQ ID NO: amber suppressor AATTCGGGGCTATAGCTCAGCT 20 gene sequence GGGAGAGCGCTTGCATCTAATG CAAGAGGTCAGCGGTTCGATCC CGCTTAGCTCCACCACTGCA amber suppressor AATTCGCCCGGATAGCTCAGTC 21 sequence GGTAGAGCAGGGGATTCTAAAT CCCCGTGTCCTTGGTTCGATTC CGAGTCCGGGCACTGCA Rho-lgt with ATGACCAGTAGCTATCTGCATT 22 double amber AGCCGGAGTAGGATCCGGTCAT mutation (lgt TTTCTCAATAGGACCCGTGGCG am-am allele of CTTCACTGGTACGGCCTGATGT lgt gene) ATCTGGTGGGTTTCATTTTTGC sequence AATGTGGCTGGCAACACGACGG GCGAATCGTCCGGGCAGCGGCT GGACCAAAAATGAAGTTGAAAA CTTACTCTATGCGGGCTTCCTC GGCGTCTTCCTCGGGGGACGTA TTGGTTATGTTCTGTTCTACAA TTTCCCGCAGTTTATGGCCGAT CCGCTGTATCTGTTCCGTGTCT GGGACGGCGGCATGTCTTTCCA CGGCGGCCTGATTGGCGTTATC GTGGTGATGATTATCTTCGCCC GCCGTACTAAACGTTCCTTCTT CCAGGTCTCTGATTTTATCGCA CCACTCATTCCGTTTGGTCTTG GTGCCGGGCGTCTGGGCAACTT TATTAACGGTGAATTGTGGGGC CGCGTTGACCCGAACTTCCCGT TTGCCATGCTGTTCCCTGGCTC CCGTACAGAAGATATTTTGCTG CTGCAAACCAACCCGCAGTGGC AATCCATTTTCGACACTTACGG TGTGCTGCCGCGCCACCCATCA CAGCTTTACGAGCTGCTGCTGG AAGGTGTGGTGCTGTTTATTAT CCTCAACCTGTATATTCGTAAA CCACGCCCAATGGGAGCTGTCT CAGGTTTGTTCCTGATTGGTTA CGGCGCGTTTCGCATCATTGTT GAGTTTTTCCGCCAGCCCGACG CGCAGTTTACCGGTGCCTGGGT GCAGTACATCAGCATGGGGCAA ATTCTTTCCATCCCGATGATTG TCGCGGGTGTGATCATGATGGT CTGGGCATATCGTCGCAGCCCA CAGCAACACGTTTCCTGA murA with double ATGGATAAATTTCGTGTTCAGG 23 amber mutation GGCCAACGAAGCTCCAGGGCGA (murA am-am AGTCACAATTTCCGGCGCTAAA allele of murA AATTAGTAGCTGCCTATCCTTT gene) sequence TTGCCGCACTACTGGCGGAAGA ACCGGTAGAGATCCAGAACGTC CCGAAACTGAAAGACGTCGATA CATCAATGAAGCTGCTAAGCCA GCTGGGTGCGAAAGTAGAACGT AATGGTTCTGTGCATATTGATG CCCGCGACGTTAATGTATTCTG CGCACCTTACGATCTGGTTAAA ACCATGCGTGCTTCTATCTGGG CGCTGGGGCCGCTGGTAGCGCG CTTTGGTCAGGGGCAAGTTTCA CTACCTGGCGGTTGTACGATCG GTGCGCGTCCGGTTGATCTACA CATTTCTGGCCTCGAACAATTA GGCGCGACCATCAAACTGGAAG AAGGTTACGTTAAAGCTTCCGT CGATGGTCGTTTGAAAGGTGCA CATATCGTGATGGATAAAGTCA GCGTTGGCGCAACGGTGACCAT CATGTGTGCTGCAACCCTGGCG GAAGGCACCACGATTATTGAAA ACGCAGCGCGTGAACCGGAAAT CGTCGATACCGCGAACTTCCTG ATTACGCTGGGTGCGAAAATTA GCGGTCAGGGCACCGATCGTAT CGTCATCGAAGGTGTGGAACGT TTAGGCGGCGGTGTCTATCGCG TTCTGCCGGATCGTATCGAAAC CGGTACTTTCCTGGTGGCGGCG GCGATTTCTCGCGGCAAAATTA TCTGCCGTAACGCGCAGCCAGA TACTCTCGACGCCGTGCTGGCG AAACTGCGTGACGCTGGAGCGG ACATCGAAGTCGGCGAAGACTG GATTAGCCTGGATATGCATGGC AAACGTCCGAAGGCTGTTAACG TACGTACCGCGCCGCATCCGGC ATTCCCGACCGATATGCAGGCC CAGTTCACGCTGTTGAACCTGG TGGCAGAAGGGACCGGGTTTAT CACCGAAACGGTCTTTGAAAAC CGCTTTATGCATGTGCCAGAGC TGAGCCGTATGGGCGCGCACGC CGAAATCGAAAGCAATACCGTT ATTTGTCACGGTGTTGAAAAAC TTTCTGGCGCACAGGTTATGGC AACCGATCTGCGTGCATCAGCA AGCCTGGTGCTGGCTGGCTGTA TTGCGGAAGGGACGACGGTGGT TGATCGTATTTATCACATCGAT CGTGGCTACGAACGCATTGAAG ACAAACTGCGCGCTTTAGGTGC AAATATTGAGCGTGTGAAAGGC GAATAA dapA sequence GCCAGGCGACTGTCTTCAATAT 24 TACAGCCGCAACTACTGACATG ACGGGTGATGGTGTTCACAATT CCAGGGCGATCGGCACCCAACG CAGTGATCACCAGATAATGTTG CGATGACAGTGTCAAACTGGTT ATTCCTTTAAGGGGTGAGTTGT TCTTAAGGAAAGCATAAAAAAA ACATGCATACAACAATCAGAAC GGTTCTGTCTGCTTGCTTTTAA TGCCATACCAAACGTACCATTG AGACACTTGTTTGCACAGAGGA TGGCCCATGTTCACGGGAAGTA TTGTCGCGATTGTTACTCCGAT GGATGAAAAAGGTAATGTCTGT CGGGCTAGCTTGAAAAAACTGA TTGATTATCATGTCGCCAGCGG TACTTCGGCGATCGTTTCTGTT GGCACCACTGGCGAGTCCGCTA CCTTAAATCATGACGAACATGC TGATGTGGTGATGATGACGCTG GATCTGGCTGATGGGCGCATTC CGGTAATTGCCGGGACCGGCGC TAACGCTACTGCGGAAGCCATT AGCCTGACGCAGCGCTTCAATG ACAGTGGTATCGTCGGCTGCCT GACGGTAACCCCTTACTACAAT CGTCCGTCGCAAGAAGGTTTGT ATCAGCATTTCAAAGCCATCGC TGAGCATACTGACCTGCCGCAA ATTCTGTATAATGTGCCGTCCC GTACTGGCTGCGATCTGCTCCC GGAAACGGTGGGCCGTCTGGCG AAAGTAAAAAATATTATCGGAA TCAAAGAGGCAACAGGGAACTT AACGCGTGTAAACCAGATCAAA GAGCTGGTTTCAGATGATTTTG TTCTGCTGAGCGGCGATGATGC GAGCGCGCTGGACTTCATGCAA TTGGGCGGTCATGGGGTTATTT CCGTTACGGCTAACGTCGCAGC GCGTGATATGGCCCAGATGTGC AAACTGGCAGCAGAAGGGCATT TTGCCGAGGCACGCGTTATTAA TCAGCGTCTGATGCCATTACAC AACAAACTATTTGTCGAACCCA ATCCAATCCCGGTGAAATGGGC ATGTAAGGAACTGGGTCTTGTG GCGACCGATACGCTGCGCCTGC CAATGACACCAATCACCGACAG TGGTCGTGAGACGGTCAGAGCG GCGCTTAAGCATGCCGGTTTGC TGTAAAGTTTAGGGAGATTTGA TGGCTTACTCTGTTCAAAAGTC GCGCCTGGCAAAGGTTGCGGGT GTTTCGCTTGTTTTATTACTCG CTGCCTGTAGTTCTGACTCACG CTATAAGCGTCAGGTCAGTGGT GATGAAGCCTACCTGGAAGCG

[0138] Optionally, the amber suppressor is associated with a promoter or a terminator. Optionally, the promoter is a lipoprotein promoter. Preferable, promoter sequences are recited in Table 4.

TABLE-US-00004 TABLE 4 Amber Suppressor SEQ ID Promoter Sequence Sequence NO: lipoprotein CATGGCGCCGCTTCTTTGAGCG 25 promoter AACGATCAAAAATAAGTGGCGC CCCATCAAAAAAATATTCTCAA CATAAAAAACTTTGTGTAATAC TTGTAACGCTG lipoprotein CATGGCGCCCCATCAAAAAAAT 26 promoter ATTCTCAACATAAAAAACTTTG TGTAATACTTGTAACGCTG

[0139] Optionally, the terminator is an rmC terminator. Preferable, terminator sequences are recited in Table 5.

TABLE-US-00005 TABLE 5 Amber Suppressor SEQ ID Terminator Sequence Sequence NO: rrnC terminator GATCCTTAGCGAAAGCTAAGGA 27 TTTTTTTTAC rrnC terminator GATCCTTAGCGAAAGCTAAGGA 28 TTTTTTTTTT

[0140] Bacterial and BTP delivery is more attractive than viral delivery because they are more accessible to genetic manipulation, which allows the production of vector strains specifically tailored to certain applications. In one embodiment of the invention, the methods of the invention are used to create bacteria and BTPs that cause RNAi in a tissue specific manner.

[0141] Liberation of the siRNA encoding plasmid or the one or more siRNAs from the intracellular bacteria or BTPs occurs through active mechanisms. One mechanism involves the type III export system in S. typhimuriumm, a specialized multiprotein complex spanning the bacterial or BTP cell membrane whose functions include secretion of virulence factors to the outside of the cell to allow signaling towards the target cell, but which can also be used to deliver antigens into target cells (Russmann H. Int J Med Microbiol, 293:107-12 (2003)), or through bacterial lysis and liberation of bacterial or BTP contents into the cytoplasm. The lysis of intracellular bacteria or BTPs is triggered through various mechanisms, including addition of an intracellularly active antibiotic (tetracycline), naturally through bacterial metabolic attenuation (auxotrophy), or through a lysis regulation system or bacterial suicide system comprising a bacterial regulator, promoter and sensor that is sensitive to the environment, e.g., the pH, magnesium concentration, phosphate concentration, ferric ion concentration, osmolarity, anaerobic conditions, nutritional deficiency and general stress of the target cell or the host phagosome. When the bacteria or BTP lysis regulation system senses one or more of the above environmental conditions, bacterial or BTP lysis is triggered by one or more mechanisms including but not limited to antimicrobial proteins, bacteriophage lysins and autolysins expressed by the bacteria or BTP, either naturally or through modification, or through pore-forming proteins expressed by the bacteria or BTPs, either naturally or through modification, e.g., genetic modification, which break the phagosomes containing the bacteria or BTPs and liberate the siRNA-encoding plasmid or the one or more siRNAs.

[0142] The regulator of the lysis regulation system may be selected from the group that includes but is not limited to OmpR, ArcA, PhoP, PhoB, Fur, RstA, EvgA and RpoS. Preferable, lysis regulator sequences are recited in Table 6.

TABLE-US-00006 TABLE 6 Lysis Regulation System Regulator Sequence Sequence SEQ ID NO: OmpR regulator ATGCAAGAGAACTACAAGATTC 29 TGGTGGTCGATGACGACATGCG CCTGCGTGCGCTGCTGGAACGT TATCTCACCGAACAAGGCTTCC AGGTTCGAAGCGTCGCTAATGC AGAACAGATGGATCGCCTGCTG ACTCGTGAATCTTTCCATCTTA TGGTACTGGATTTAATGTTACC TGGTGAAGATGGCTTGTCGATT TGCCGACGTCTTCGTAGTCAGA GCAACCCGATGCCGATCATTAT GGTGACGGCGAAAGGGGAAGAA GTGGACCGTATCGTAGGCCTGG AGATTGGCGCTGACGACTACAT TCCAAAACCGTTTAACCCGCGT GAACTGCTGGCCCGTATCCGTG CGGTGCTGCGTCGTCAGGCGAA CGAACTGCCAGGCGCACCGTCA CAGGAAGAGGCGGTAATTGCTT TCGGTAAGTTCAAACTTAACCT CGGTACGCGCGAAATGTTCCGC GAAGACGAGCCGATGCCGCTCA CCAGCGGTGAGTTTGCGGTACT GAAGGCACTGGTCAGCCATCCG CGTGAGCCGCTCTCCCGCGATA AGCTGATGAACCTTGCCCGTGG TCGTGAATATTCCGCAATGGAA CGCTCCATCGACGTGCAGATTT CGCGTCTGCGCCGCATGGTGGA AGAAGATCCAGCGCATCCGCGT TACATTCAGACCGTCTGGGGTC TGGGCTACGTCTTTGTACCGGA CGGCTCTAAAGCATGA PhoP regulator ATGCGCGTACTGGTTGTTGAAG 30 ACAATGCGTTGTTACGTCACCA CCTTAAAGTTCAGATTCAGGAT GCTGGTCATCAGGTCGATGACG CAGAAGATGCCAAAGAAGCCGA TTATTATCTCAATGAACATATA CCGGATATTGCGATTGTCGATC TCGGATTGCCAGACGAGGACGG TCTGTCACTGATTCGCCGCTGG CGTAGCAACGATGTTTCACTGC CGATTCTGGTATTAACCGCCCG TGAAAGCTGGCAGGACAAAGTC GAAGTATTAAGTGCCGGTGCTG ATGATTATGTGACTAAACCGTT TCATATTGAAGAGGTGATGGCG CGAATGCAGGCATTAATGCGGC GTAATAGCGGTCTGGCTTCACA GGTCATTTCGCTCCCCCCGTTT CAGGTTGATCTCTCTCGCCGTG AATTATCTATTAATGACGAAGT GATCAAACTGACCGCGTTCGAA TACACTATTATGGAAACGTTGA TACGCAATAATGGCAAAGTGGT CAGCAAAGATTCGTTAATGCTC CAACTCTATCCGGATGCGGAGC TGCGGGAAAGCCATACCATTGA TGTACTGATGGGACGTCTGCGC AAAAAAATTCAGGCACAATATC CCCAAGAAGTGATTACCACCGT TCGCGGCCAGGGCTATCTGTTC GAATTGCGCTGA

[0143] The promoter of the lysis regulation system may be selected from the group that includes but is not limited to ompF, ompC, fadb, phoPQ, mgtA, mgrB, psiB, phnD, Ptrp, soda, sodb, sltA, sltB, asr, csgd, emrKY, yhiUV, acrAB, mdfa and toIC. Preferable, lysis regulation system promoter sequences are recited in Table 7.

TABLE-US-00007 TABLE 7 Lysis Regulation System Promoter Sequence Sequence SEQ ID NO: ompF promoter GATCATCCTGTTACGGAATATT 31 ACATTGCAACATTTACGCGCAA AAACTAATCCGCATTCTTATTG CGGATTAGTTTTTTCTTAGCTA ATAGCACAATTTTCATACTATT TTTTGGCATTCTGGATGTCTGA AAGAAGATTTTGTGCCAGGTCG ATAAAGTTTCCATCAGAAACAA AATTTCCGTTTAGTTAATTTAA ATATAAGGAAATCATATAAATA GATTAAAATTGCTGTAAATATC ATCACGTCTCTATGGAAATATG ACGGTGTTCACAAAGTTCCTTA AATTTTACTTTTGGTTACATAT TTTTTCTTTTTGAAACCAAATC TTTATCTTTGTAGCACTTTCAC GGTAGCGAAACGTTAGTTTGAA TGGAAAGATGCCTGCA ompC promoter TTTAAAAAAGTTCCGTAAAATT 32 CATATTTTGAAACATCTATGTA GATAACTGTAACATCTTAAAAG TTTTAGTATCATATTCGTGTTG GATTATTCTGTATTTTTGCGGA GAATGGACTTGCCGACTGGTTA ATGAGGGTTAACCAGTAAGCAG TGGCATAAAAAAGCAATAAAGG CATATAACAGAGGGTTAATAAC fadB promoter AGTGATTCCATTTTTTACCCTT 33 CTGTTTTTTTGACCTTAAGTCT CCGCATCTTAGCACATCGTTCA TCCAGAGCGTGATTTCTGCCGA GCGTGATCAGATCGGCATTTCT TTAATCTTTTGTTTGCATATTT TTAACACAAAATACACACTTCG ACTCATCTGGTACGACCAGATC ACCTTGCGGATTCAGGAGACTG AC phoPQ promoter GAGCTATCACGATGGTTGATGA 34 GCTGAAATAAACCTCGTATCAG TGCCGGATGGCGATGCTGTCCG GCCTGCTTATTAAGATTATCCG CTTTTTATTTTTTCACTTTACC TCCCCTCCCCGCTGGTTTATTT AATGTTTACCCCCATAACCACA TAATCGCGTTACACTATTTTAA TAATTAAGACAGGGAGAAATAA AA mgtA promoter GCTTCAACACGCTCGCGGGTGA 35 GCTGGCTCACGCCGCTTTCGTT ATTCAGCACCCGGGAAACTGTA GATTTCCCCACGCCGCTTAAGC GCGCGATATCTTTGATGGTCAG CCGATTTTGCATCCTGTTGTCC TGTAACGTGTTGTTTAATTATT TGAGCCTAACGTTACCCGTGCA TTCAGCAATGGGTAAAGTCTGG TTTATCGTTGGTTTAGTTGTCA GCAGGTATTATATCGCCA Ptrp promoter GAGCTGTTGACAATTAATCATC 36 GAACTAGTTAACTAGTACGCAA GTTCACGTAAAAAGGGTATCTA GAATTCT

[0144] The sensor of the lysis regulation system may be selected from the group that includes but is not limited to EnvZ, ArcB, PhoQ, PhoR, RstB and EvgS. Preferable, lysis regulation system sensor sequences are recited in Table 8.

TABLE-US-00008 TABLE 8 Lysis Regulation System Sensor Sequence Sequence SEQ ID NO: EnvZ sensor ATGAGGCGATTGCGCTTCTCGC 37 CACGAAGTTCATTTGCCCGTAC GTTATTGCTCATCGTCACCTTG CTGTTCGCCAGCCTGGTGACGA CTTATCTGGTGGTGCTGAACTT CGCGATTTTGCCGAGCCTCCAG CAGTTTAATAAAGTCCTCGCGT ACGAAGTGCGTATGTTGATGAC CGACAAACTGCAACTGGAGGAC GGCACGCAGTTGGTTGTGCCTC CCGCTTTCCGTCGGGAGATCTA CCGTGAGCTGGGGATCTCTCTC TACTCCAACGAGGCTGCCGAAG AGGCAGGTCTGCGTTGGGCGCA ACACTATGAATTCTTAAGCCAT CAGATGGCGCAGCAACTGGGCG GCCCGACGGAAGTGCGCGTTGA GGTCAACAAAAGTTCGCCTGTC GTCTGGCTGAAAACCTGGCTGT CGCCCAATATCTGGGTACGCGT GCCGCTGACCGAAATTCATCAG GGCGATTTCTCTCCGCTGTTCC GCTATACGCTGGCGATTATGCT ATTGGCGATAGGCGGGGCGTGG CTGTTTATTCGTATCCAGAACC GACCGTTGGTCGATCTCGAACA CGCAGCCTTGCAGGTTGGTAAA GGGATTATTCCGCCGCCGCTGC GTGAGTATGGCGCTTCGGAGGT GCGTTCCGTTACCCGTGCCTTT AACCATATGGCGGCTGGTGTTA AGCAACTGGCGGATGACCGCAC GCTGCTGATGGCGGGGGTAAGT CACGACTTGCGCACGCCGCTGA CGCGTATTCGCCTGGCGACTGA GATGATGAGCGAGCAGGATGGC TATCTGGCAGAATCGATCAATA AAGATATCGAAGAGTGCAACGC CATCATTGAGCAGTTTATCGAC TACCTGCGCACCGGGCAGGAGA TGCCGATGGAAATGGCGGATCT TAATGCAGTACTCGGTGAGGTG ATTGCTGCCGAAAGTGGCTATG AGCGGGAAATTGAAACCGCGCT TTACCCCGGCAGCATTGAAGTG AAAATGCACCCGCTGTCGATCA AACGCGCGGTGGCGAATATGGT GGTCAACGCCGCCCGTTATGGC AATGGCTGGATCAAAGTCAGCA GCGGAACGGAGCCGAATCGCGC CTGGTTCCAGGTGGAAGATGAC GGTCCGGGAATTGCGCCGGAAC AACGTAAGCACCTGTTCCAGCC GTTTGTCCGCGGCGACAGTGCG CGCACCATTAGCGGCACGGGAT TAGGGCTGGCAATTGTGCAGCG TATCGTGGATAACCATAACGGG ATGCTGGAGCTTGGCACCAGCG AGCGGGGCGGGCTTTCCATTCG CGCCTGGCTGCCAGTGCCGGTA ACGCGGGCGCAGGGCACGACAA AAGAAGGGTAA PhoQ sensor ATGAAAAAATTACTGCGTCTTT 38 TTTTCCCGCTCTCGCTGCGGGT ACGTTTTCTGTTGGCAACGGCA GCGGTAGTACTGGTGCTTTCGC TTGCCTACGGAATGGTCGCGCT GATCGGTTATAGCGTCAGTTTC GATAAAACTACGTTTCGGCTGT TACGTGGCGAGAGCAATCTGTT CTATACCCTTGCGAAGTGGGAA AACAATAAGTTGCATGTCGAGT TACCCGAAAATATCGACAAGCA AAGCCCCACCATGACGCTAATT TATGATGAGAACGGGCAGCTTT TATGGGCGCAACGTGACGTGCC CTGGCTGATGAAGATGATCCAG CCTGACTGGCTGAAATCGAATG GTTTTCATGAAATTGAAGCGGA TGTTAACGATACCAGCCTCTTG CTGAGTGGAGATCATTCGATAC AGCAACAGTTGCAGGAAGTGCG GGAAGATGATGACGACGCGGAG ATGACCCACTCGGTGGCAGTAA ACGTCTACCCGGCAACATCGCG GATGCCAAAATTAACCATTGTG GTGGTGGATACCATTCCGGTGG AGCTAAAAAGTTCCTATATGGT CTGGAGCTGGTTTATCTATGTG CTCTCAGCCAATCTGCTGTTAG TGATCCCGCTGCTGTGGGTCGC CGCCTGGTGGAGTTTACGCCCC ATCGAAGCCCTGGCAAAAGAAG TCCGCGAACTGGAAGAACATAA CCGCGAATTGCTCAATCCAGCC ACAACGCGAGAACTGACCAGTC TGGTACGAAACCTGAACCGATT GTTAAAAAGTGAACGCGAACGT TACGACAAATACCGTACGACGC TCACCGACCTGACCCATAGTCT GAAAACGCCACTGGCGGTGCTG CAAAGTACGCTGCGTTCTCTGC GTAGTGAAAAGATGAGCGTCAG TGATGCTGAGCCGGTAATGCTG GAGCAAATCAGCCGCATTTCAC AGCAAATTGGCTACTACCTGCA TCGTGCCAGTATGCGCGGCGGG ACATTGCTCAGCCGCGAGCTGC ATCCGGTCGCCCCACTGCTGGA CAATCTCACCTCAGCGCTGAAC AAAGTGTATCAACGCAAAGGGG TCAATATCTCTCTCGATATTTC GCCAGAGATCAGCTTTGTCGGT GAGCAGAACGATTTTGTCGAGG TGATGGGCAACGTGCTGGATAA TGCCTGTAAATATTGCCTCGAG TTTGTCGAAATTTCTGCAAGGC AAACCGACGAGCATCTCTATAT TGTGGTCGAGGATGATGGCCCC GGTATTCCATTAAGCAAGCGAG AGGTCATTTTCGACCGTGGTCA ACGGGTTGATACTTTACGCCCT GGGCAAGGTGTAGGGCTGGCGG TAGCCCGCGAAATCACCGAGCA ATATGAGGGTAAAATCGTCGCC GGAGAGAGCATGCTGGGCGGTG CGCGGATGGAGGTGATTTTTGG TCGCCAGCATTCTGCGCCGAAA GATGAATAA

[0145] The lysis regulation system may comprise any combination of one or more of the above regulators, promoters and sensors.

[0146] In one example of this embodiment, the lysis regulation system comprises OmpR as the regulator, ompF as the promoter and EnvZ as the sensor and the stimulus is reduced osmolarity. In another example of this embodiment, the lysis regulation system comprises OmpR as the regulator, ompC as the promoter and EnvZ as the sensor and the stimulus is reduced osmolarity.

[0147] In another example of this embodiment, the lysis regulation system comprises the ArcA as the regulator, fad as the promoter and Arc B as the sensor and the stimulus is anaerobic conditions.

[0148] In another example of this embodiment, the lysis regulation system comprises PhoP as the regulator, phoPQ as the promoter and PhoQ as the sensor and the stimulus is reduced magnesium concentration. In another example of this embodiment, the lysis regulation system comprises PhoP as the regulator, mgtA as the promoter and PhoQ as the sensor and the stimulus is reduced magnesium concentration. In another example of this embodiment, the lysis regulation system comprises PhoP as the regulator, mgrB as the promoter and PhoQ as the sensor and the stimulus is reduced magnesium concentration.

[0149] In another example of this embodiment, the lysis regulation system comprises PhoB as the regulator, psiB as the promoter and PhoR as the sensor and the stimulus is reduced phosphate concentration. In another example of this embodiment, the lysis regulation system comprises PhoB as the regulator, phnD as the promoter and PhoR as the sensor and the stimulus is reduced phosphate concentration. In another example of this embodiment, the lysis regulation system comprises RstA as the regulator, asr as the promoter and RstB as the sensor. In another example of this embodiment, the lysis regulation system comprises RstA ast the regulator, csgD as the promoter and RstB as the sensor.

[0150] In another example of this embodiment, the lysis regulation system comprises EvgA as the regulator, emrKY as the promoter and EvgS as the sensor. In another example of this embodiment, the lysis regulation system comprises EvgA as the regulator, yhiUV as the promoter and EvgS as the sensor. In another example of this embodiment, the lysis regulation system comprises EvgA as the regulator, acrAB as the promoter and EvgS as the sensor. In another example of this embodiment, the lysis regulation system comprises EvgA as the regulator, mdfA as the promoter and EvgS as the sensor. In another example of this embodiment, the lysis regulation system comprises EvgA as the regulator, tolC as the promoter and EvgS as the sensor.

[0151] In another example of this embodiment, the lysis regulation system comprises Fur as the regulator in combination with a promoter selected from the group comprising soda, sodB, sltA or sltB.

[0152] The antimicrobial protein may be selected from the group that includes but is not limited to .alpha.- and .beta.-defensins, protegrins, cathelicidins (e.g., indolicidin and bactenecins), granulysin, lysozyme, lactofernin, azurocidin, elastase, bactericidal permeability inducing peptide (BPI), adrenomedullin, brevinin, histatins and hepcidin. Additional antimicrobial proteins are disclosed in the following, each of which is incorporated herein by reference in its entirety: Devine, D. A. et al., Current Pharmaceutical Design, 8, 703-714 (2002); Jack R. W., et al., Microbiological Reviews, 59 (2), 171-200 (June 1995).

[0153] Optionally, the antimicrobial protein is an .alpha.-defensin, .beta.-defensin, or protegrin. Preferable, antimicrobial protein sequences are recited in Table 9.

TABLE-US-00009 TABLE 9 Antimicrobial Protein Sequence Sequence SEQ ID NO: .alpha.-defensin-1 CTATAGAAGACCTGGGACAGAG 39 protein GACTGCTGTCTGCCCTCTCTGG TCACCCTGCCTAGCTAGAGGAT CTGTGACCCCAGCCATGAGGAC CCTCGCCATCCTTGCTGCCATT CTCCTGGTGGCCCTGCAGGCCC AGGCTGAGCCACTCCAGGCAAG AGCTGATGAGGTTGCTGCAGCC CCGGAGCAGATTGCAGCGGACA TCCCAGAAGTGGTTGTTTCCCT TGCATGGGACGAAAGCTTGGCT CCAAAGCATCCAGGCTCAAGGA AAAACATGGCCTGCTATTGCAG AATACCAGCGTGCATTGCAGGA GAACGTCGCTATGGAACCTGCA TCTACCAGGGAAGACTCTGGGC ATTCTGCTGCTGAGCTTGCAGA AAAAGAAAAATGAGCTCAAAAT TTGCTTTGAGAGCTACAGGGAA TTGCTATTACTCCTGTACCTTC TGCTCAATTTCCTTTCCTCATC CCAAATAAATGCCTTGGTACAA GAAAAG .alpha.-defensin-3 CCTTGCTATAGAAGACCTGGGA 40 protein CAGAGGACTGCTGTCTGCCCTC TCTGGTCACCCTGCCTAGCTAG AGGATCTGTGACCCCAGCCATG AGGACCCTCGCCATCCTTGCTG CCATTCTCCTGGTGGCCCTGCA GGCCCAGGCTGAGCCACTCCAG GCAAGAGCTGATGAGGTTGCTG CAGCCCCGGAGCAGATTGCAGC GGACATCCCAGAAGTGGTTGTT TCCCTTGCATGGGACGAAAGCT TGGCTCCAAAGCATCCAGGCTC AAGGAAAAACATGGACTGCTAT TGCAGAATACCAGCGTGCATTG CAGGAGAACGTCGCTATGGAAC CTGCATCTACCAGGGAAGACTC TGGGCATTCTGCTGCTGAGCTT GCAGAAAAAGAAAAATGAGCTC AAAATTTGCTTTGAGAGCTACA GGGAATTGCTATTACTCCTGTA CCTTCTGCTCAATTTCCTTTCC TCATCTCAAATAAATGCCTTGT TAC .alpha.-defensin-4 GTCTGCCCTCTCTGCTCGCCCT 41 protein GCCTAGCTTGAGGATCTGTCAC CCCAGCCATGAGGATTATCGCC CTCCTCGCTGCTATTCTCTTGG TAGCCCTCCAGGTCCGGGCAGG CCCACTCCAGGCAAGAGGTGAT GAGGCTCCAGGCCAGGAGCAGC GTGGGCCAGAAGACCAGGACAT ATCTATTTCCTTTGCATGGGAT AAAAGCTCTGCTCTTCAGGTTT CAGGCTCAACAAGGGGCATGGT CTGCTCTTGCAGATTAGTATTC TGCCGGCGAACAGAACTTCGTG TTGGGAACTGCCTCATTGGTGG TGTGAGTTTCACATACTGCTGC ACGCGTGTCGATTAACGTTCTG CTGTCCAAGAGAATGTCATGCT GGGAACGCCATCATCGGTGGTG TTAGCTTCACATGCTTCTGCAG CTGAGCTTGCAGAATAGAGAAA AATGAGCTCATAATTTGCTTTG AGAGCTACAGGAAATGGTTGTT TCTCCTATACTTTGTCCTTAAC ATCTTTCTTGATCCTAAATATA TATCTCGTAACAAG .alpha.-defensin-5 ATATCCACTCCTGCTCTCCCTC 42 protein CTGCAGGTGACCCCAGCCATGA GGACCATCGCCATCCTTGCTGC CATTCTCCTGGTGGCCCTGCAG GCCCAGGCTGAGTCACTCCAGG AAAGAGCTGATGAGGCTACAAC CCAGAAGCAGTCTGGGGAAGAC AACCAGGACCTTGCTATCTCCT TTGCAGGAAATGGACTCTCTGC TCTTAGAACCTCAGGTTCTCAG GCAAGAGCCACCTGCTATTGCC GAACCGGCCGTTGTGCTACCCG TGAGTCCCTCTCCGGGGTGTGT GAAATCAGTGGCCGCCTCTACA GACTCTGCTGTCGCTGAGCTTC CTAGATAGAAACCAAAGCAGTG CAAGATTCAGTTCAAGGTCCTG AAAAAAGAAAAACATTTTACTC TGTGTACCTTGTGTCTTTCTAA ATTTCTCTCTCCAAAATAAAGT TCAAGCATT .alpha.-defensin-6 ACACATCTGCTCCTGCTCTCTC 43 protein TCCTCCAGCGACCCTAGCCATG AGAACCCTCACCATCCTCACTG CTGTTCTCCTCGTGGCCCTCCA GGCCAAGGCTGAGCCACTCCAA GCTGAGGATGATCCACTGCAGG CAAAAGCTTATGAGGCTGATGC CCAGGAGCAGCGTGGGGCAAAT GACCAGGACTTTGCCGTCTCCT TTGCAGAGGATGCAAGCTCAAG TCTTAGAGCTTTGGGCTCAACA AGGGCTTTCACTTGCCATTGCA GAAGGTCCTGTTATTCAACAGA ATATTCCTATGGGACCTGCACT GTCATGGGTATTAACCACAGAT TCTGCTGCCTCTGAGGGATGAG AACAGAGAGAAATATATTCATA ATTTACTTTATGACCTAGAAGG AAACTGTCGTGTGTCCCATACA TTGCCATCAACTTTGTTTCCTC ATCTCAAATAAAGTCCTTTCAG CAAAAAAAAAAAA .beta.-defensin-1 TCCCTTCAGTTCCGTCGACGAG 44 protein GTTGTGCAATCCACCAGTCTTA TAAATACAGTGACGCTCCAGCC TCTGGAAGCCTCTGTCAGCTCA GCCTCCAAAGGAGCCAGCGTCT CCCCAGTTCCTGAAATCCTGGG TGTTGCCTGCCAGTCGCCATGA GAACTTCCTACCTTCTGCTGTT TACTCTCTGCTTACTTTTGTCT GAGATGGCCTCAGGTGGTAACT TTCTCACAGGCCTTGGCCACAG ATCTGATCATTACAATTGCGTC AGCAGTGGAGGGCAATGTCTCT ATTCTGCCTGCCCGATCTTTAC CAAAATTCAAGGCACCTGTTAC AGAGGGAAGGCCAAGTGCTGCA AGTGAGCTGGGAGTGACCAGAA GAAATGACGCAGAAGTGAAATG AACTTTTTATAAGCATTCTTTT AATAAAGGAAAATTGCTTTTGA AGTATACCTCCTTTGGGCCAAA AAAAAAAAAAAAAAAAAAAAAA .beta.-defensin-3 TGAGTCTCAGCGTGGGGTGAAG 45 protein CCTAGCAGCTATGAGGATCCAT TATCTTCTGTTTGCTTTGCTCT TCCTGTTTTTGGTGCCTGTCCC AGGTCATGGAGGAATCATAAAC ACATTACAGAAATATTATTGCA GAGTCAGAGGCGGCCGGTGTGC TGTGCTCAGCTGCCTTCCAAAG GAGGAACAGATCGGCAAGTGCT CGACGCGTGGCCGAAAATGCTG CCGAAGAAAGAAATAAAAACCC TGAAACATGACGAGAGTGTTGT AAAGTGTGGAAATGCCTTCTTA AAGTTTATAAAAGTAAAATCAA ATTACATTTTTTTTTCAAAAAA AAAAAAA .beta.-defensin-4 AGACTCAGCTCCTGGTGAAGCT 46 protein CCCAGCCATCAGCCATGAGGGT CTTGTATCTCCTCTTCTCGTTC CTCTTCATATTCCTGATGCCTC TTCCAGGTGTTTTTGGTGGTAT AGGCGATCCTGTTACCTGCCTT AAGAGTGGAGCCATATGTCATC CAGTCTTTTGCCCTAGAAGGTA TAAACAAATTGGCACCTGTGGT CTCCCTGGAACAAAATGCTGCA AAAAGCCATGAGGAGGCCAAGA AGCTGCTGTGGCTGATGCGGAT TCAGAAAGGGCTCCCTCATCAG AGACGTGCGACATGTAAACCAA ATTAAACTATGGTGTCCAAAGA TACGCA protegrin-1 ATGGAGACCCAGAGAGCCAGCC 47 protein TGTGCCTGGGGCGCTGGTCACT GTGGCTTCTGCTGCTGGCACTC GTGGTGCCCTCGGCCAGCGCCC AGGCCCTCAGCTACAGGGAGGC CGTGCTTCGTGCTGTGGATCGC CTCAACGAGCAGTCCTCGGAAG CTAATCTCTACCGCCTCCTGGA GCTGGACCAGCCGCCCAAGGCC GACGAGGACCCGGGCACCCCGA AACCTGTGAGCTTCACGGTGAA GGAGACTGTGTGTCCCAGGCCG ACCCGGCAGCCCCCGGAGCTGT GTGACTTCAAGGAGAACGGGCG GGTGAAACAGTGTGTGGGGACA GTCACCCTGGATCAGATCAAGG ACCCGCTCGACATCACCTGCAA TGAGGTTCAAGGTGTCAGGGGA GGTCGCCTGTGCTATTGTAGGC GTAGGTTCTGCGTCTGTGTCGG ACGAGGATGACGGTTGCGACGG CAGGCTTTCCCTCCCCCAATTT TCCCGGGGCCAGGTTTCCGTCC CCCAATTTTTCCGCCTCCACCT TTCCGGCCCGCACCATTCGGTC CACCAAGGTTCCCTGGTAGACG GTGAAGGATTTGCAGGCAACTC ACCCAGAAGGCCTTTCGGTACA TTAAAATCCCAGCAAGGAGACC TAAGCATCTGCTTTGCCCAGGC CCGCATCTGTCAAATAAATTCT TGTGAAACC protegrin-3 ATGGAGACCCAGAGAGCCAGCC 48 protein TGTGCCTGGGGCGCTGGTCACT GTGGCTTCTGCTGCTGGCACTC GTGGTGCCCTCGGCCAGCGCCC AGGCCCTCAGCTACAGGGAGGC CGTGCTTCGTGCTGTGGATCGC CTCAACGAGCAGTCCTCGGAAG CTAATCTCTACCGCCTCCTGGA GCTGGACCAGCCGCCCAAGGCC GACGAGGACCCGGGCACCCCGA AACCTGTGAGCTTCACGGTGAA GGAGACTGTGTGTCCCAGGCCG ACCCGGCAGCCCCCGGAGCTGT GTGACTTCAAGGAGAACGGGCG GGTGAAACAGTGTGTGGGGACA GTCACCCTGGATCAGATCAAGG ACCCGCTCGACATCACCTGCAA TGAGGTTCAAGGTGTCAGGGGA GGTGGCCTGTGCTATTGTAGGC GTAGGTTCTGCGTCTGTGTCGG ACGAGGATGACGGTTGCGACGG CAGGCTTTCCCTCCCCCAATTT TCCCGGGGCCAGGTTTCCGTCC CCCAATTTTTCCGCCTCCACCT TTCCGGCCCGCACCATTCGGTC CACCAAGGTTCCCTGGTAGACG GTGAAGGATTTGCAGGCAACTC ACCCAGAAGGCCTTTCGGTACA TTAAAATCCCAGCAAGGAGACC TAAGCATCTGCTTTGCCCAGGC CCGCATCTGTCAAATAAATTCT TGTGAAACC protegrin-4 ATGGAGACCCAGAGAGCCAGCC 49

protein TGTGCCTGGGGCGCTGGTCACT GTGGCTTCTGCTGCTGGCACTC GTGGTGCCCTCGGCCAGCGCCC AGGCCCTCAGCTACAGGGAGGC CGTGCTTCGTGCTGTGGATCGC CTCAACGAGCAGTCCTCGGAAG CTAATCTCTACCGCCTCCTGGA GCTGGACCAGCCGCCCAAGGCC GACGAGGACCCGGGCACCCCGA AACCTGTGAGCTTCACGGTGAA GGAGACTGTGTGTCCCAGGCCG ACCCGGCAGCCCCCGGAGCTGT GTGACTTCAAGGAGAACGGGCG GGTGAAACAGTGTGTGGGGACA GTCACCCTGGATCAGATCAAGG ACCCGCTCGACATCACCTGCAA TGAGGTTCAAGGTGTCAGGGGA GGTCGCCTGTGCTATTGTAGGG GTTGGATCTGCTTCTGTGTCGG ACGAGGATGACGGTTGCGACGG CAGGCTTTCCCTCCCCCAATTT TCCCGGGGCCAGGTTTCCGTCC CCCAATTTTTCCGCCTCCACCT TTCCGGCCCGCACCATTCGGTC CACCAAGGTTCCCTGGTAGACG GTGAAGGATTTGCAGGCAACTC ACCCAGAAGGCCTTTCGGCACA TTAAAATCCCAGCAAGGAGACC TAAGCATCTGCTTTGCCCAGGC CCGCATCTGTCAAATAAATTCT TGTGAAACC

[0154] The bacteriophase lysin may be selected from the group that includes but is not limited to holins and endolysins or lysins (e.g., lysozyme, amidase and transglycoslate). Additional lysins are disclosed in the following, each of which is incorporated herein by reference in its entirety: Kloos D.-U., et al., Journal of Bacteriology, 176 (23), 7352-7361 (December 1994); Jain V., et al., Infection and Immunity, 68 (2), 986-989 (February 2000); Srividhya K. V., et al., J. Biosci., 32, 979-990 (2007); Young R. V., Microbiological Reviews, 56 (3), 430-481 (September 1992).

[0155] The autolysin may be selected from the group that includes but is not limited to peptidoglycan hydrolases, amidases (e.g., N-acetylmuramyl-L-alanine amidases), transglycosylases, endopeptidases and glucosaminidases. Additional autolysins are disclosed in the following, each of which is incorporated herein by reference in its entirety: Heidrich C., et al., Molecular Microbiology, 41 (1), 167-178 (2001); Kitano K., et al., Journal of Bacteriology, 167 (3), 759-765 (September 1986); Lommatzsch J., et al., Journal of Bacteriology, 179 (17), 5465-5470 (September 1997); Oshida T., et al., PNAS, 92, 285-289 (January 1995); Lenz L. L., et al., PNAS, 100 (21), 12432-12437 (Oct. 14, 2003); Ramadurai L., et al., Journal of Bacteriology, 179 (11), 3625-3631 (June 1997); Kraft A. R., et al., Journal of Bacteriology, 180 (12), 3441-3447 (July 1998); Dijkstra A. J., et al., FEBS Letters, 366, 115-118 (1995); Huard C., et al., Microbiology, 149, 695-705 (2003).

[0156] In one aspect of the invention, the control exerted by the lysis regulation system may further be enhanced by bacterial or BTP strain-specific regulation. In one aspect of this embodiment, the strain-specific regulation is attenuation caused by deletion of a nutritional gene. The nutritional gene may be selected from the group that includes but is not limited to dapA, aroA and guaBA. In one example of this embodiment, dapA attenuation results in deficiency in the biosynthesis of lysine and peptidoglycan. In this particular embodiment, transcription of genes including but not limited to lysC may be activated by mechanisms such as transcriptional induction, antitermination and riboswitch. In another example of this embodiment, aroA attenuation results in deficiency in aromatic amino acids and derepression of one or more genes including but not limited to aroF, aroG and aroH by regulators such as TrpR and TyrR. In another example of this embodiment, guaBA attenuation results in derepression of one or more genes that are repressed by PurR.

[0157] In addition to the lysis regulation system and strain-specific regulation, the bacteria or BTP may further contain an inducible system that includes but is not limited to a Tet-on expression system to facilitate bacterial or BTP lysis at a time desired by the clinician. Upon administration of tetracycline, which activates the Tet-on promoter, the bacteria or BTP express a protein that triggers lysis of the bacteria or BTP. In one example of this embodiment, the protein expressed under the Tet-on expression system is selected from the group that includes but is not limited to defensins and protegrins.

[0158] The present invention also provides a lysis regulation system in combination with strain-specific attenuation (e.g., nutritional attenuation). As shown in FIG. 30, a global regulator can sense an extraceullar condition and regulate transcription, starvation for specific nutrient such as an amino acid in vivo, in contrast to laboratory growth in the presence of excess of the nutrient and a positive or negative regulator in response to starvation. In the schematic shown in FIG. 31 there can be three cassettes, any of which may be place on either the bacterial chromosome or on a plasmid.

[0159] As described, the present invention provides a plasmid containing a lysis regulation system comprising OmpR as the regulator, ompF or ompC as the promoter and protegrin or .beta.-defensin as the antimicrobial protein, in combination with a Tet-on expression system, which provides two levels of control of bacterial lysis. This embodiment is illustrated in FIG. 32.

[0160] In another aspect of the invention, the DNA insert comprises one or more of the following constructs, each of which contains an HPV target sequence, a hairpin sequence and BamH1 and Sal1 restriction sites to facilitate incorporation into the hairpin RNA expression cassette of the TRIP plasmid as shown in Table 10.

TABLE-US-00010 TABLE 10 HPV Target Sequence Construct BamHI sense (19 bp) loop antisense (21bp) SaII 5'-GATCC TAGGTATTTGAATTTGCAT TTCAAGAGA ATGCAAATTCAAATACCTTTT G-3' (SEQ ID NO:50) 3'-G ATCCATAAACTTAAACGTA AAGTTCTCT TACGTTTAAGTTTATGGAAAA CAGCT-5' (SEQ ID NO:51)

4. Cell and Gene Targets

[0161] The present invention also provides methods of using the various bacterium, BTP and vectors provided in the invention. For example, the present invention provides methods of delivering one or more siRNAs to mammalian cells. The methods include introducing at least one invasive bacterium, or at least one bacterial therapeutic particle (BTP), containing one or more siRNAs or one or more DNA molecules encoding one or more siRNAs to the mammalian cells.

[0162] The present invention also provides methods of regulating gene expression in mammalian cells. The method includes introducing at least one invasive bacterium, or at least one bacterial therapeutic particle (BTP), containing one or more siRNAs or one or more DNA molecules encoding one or more siRNAs to the mammalian cells, where the expressed siRNAs interfere with at least one mRNA of a gene of interest thereby regulating gene expression.

[0163] The invention provides a method for delivering RNA to any type of target cell. As used herein, the term "target cell" refers to a cell that can be invaded by a bacterium, i.e., a cell that has the necessary surface receptor for recognition by the bacterium.

[0164] Preferred target cells are eukaryotic cells. Even more preferred target cells are animal cells. "Animal cells" are defined as nucleated, non-chloroplast containing cells derived from or present in multicellular organisms whose taxanomic position lies within the kingdom animalia. The cells may be present in the intact animal, a primary cell culture, explant culture or a transformed cell line. The particular tissue source of the cells is not critical to the present invention.

[0165] The recipient animal cells employed in the present invention are not critical thereto and include cells present in or derived from all organisms within the kingdom animalia, such as those of the families mammalia, pisces, avian, reptilia.

[0166] Preferred animal cells are mammalian cells, such as humans, bovine, ovine, porcine, feline, canine, goat, equine, and primate cells. The most preferred mammalian cells are human cells. The cells can be in vivo, in vitro or ex vivo.

[0167] In some embodiments of the invention, the cell is a cervical epithelial cell, a rectal epithelial cell or a pharyngeal epithelial cell, macrophage, gastrointestinal epithelial cell, skin cell, melanocyte, keratinocyte, hair follicle, colon cancer cell, an ovarian cancer cell, a bladder cancer cell, a pharyngeal cancer cell, a rectal cancer cell, a prostate cancer cell, a breast cancer cell, a lung cancer cell, a renal cancer cell, a pancreatic cancer cell, or a hematologic cancer cell such as a lymphoma or leukemia cell. In one aspect of this embodiment, the colon cancer cell is an SW 480 cell. In another aspect of this embodiment, the pancreatic cancer cell is a CAPAN-1 cell.

[0168] In a preferred embodiment, the target cell is in a mucosal surface. Certain enteric pathogens, e.g., E. coli, Shigella, Listeria, and Salmonella, are naturally adapted for this application, as these organisms possess the ability to attach to and invade host mucosal surfaces (Kreig et al. supra). Therefore, in the present invention, such bacteria can deliver RNA molecules or RNA-encoding DNA to cells in the host mucosal compartment.

[0169] Although certain types of bacteria may have a certain tropism, i.e., preferred target cells, delivery of RNA or RNA-encoding DNA to a certain type of cell can be achieved by choosing a bacterium which has a tropism for the desired cell type or which is modified such as to be able to invade the desired cell type. Thus, e.g., a bacterium could be genetically engineered to mimic mucosal tissue tropism and invasive properties, as discussed above, to thereby allow said bacteria to invade mucosal tissue, and deliver RNA or RNA-encoding DNA to cells in those sites.

[0170] Bacteria can also be targeted to other types of cells. For example, bacteria can be targeted to erythrocytes of humans and primates by modifying bacteria to express on their surface either, or both of, the Plasmodium vivax reticulocyte binding proteins-1 and -2, which bind specifically to erythrocytes in humans and primates (Galinski et al. Cell, 69:1213-1226 (1992)). In another embodiment, bacteria are modified to have on their surface asialoorosomucoid, which is a ligand for the asilogycoprotein receptor on hepatocytes (Wu et al. J. Biol. Chem., 263:14621-14624 (1988)). In yet another embodiment, bacteria are coated with insulin-poly-L-lysine, which has been shown to target plasmid uptake to cells with an insulin receptor (Rosenkranz et al. Expt. Cell Res., 199:323-329 (1992)). Also within the scope of the invention are bacteria modified to have on their surface p60 of Listeria monocytogenes, which allows for tropism for hepatocytes (Hess et al. Infect. Immun., 63:2047-2053 (1995)), or a 60 kD surface protein from Trypanosoma cruzi which causes specific binding to the mammalian extra-cellular matrix by binding to heparin, heparin sulfate and collagen (Ortega-Barria et al. Cell, 67:411-421 (1991)).

[0171] Yet in another embodiment, a cell can be modified to become a target cell of a bacterium for delivery of RNA. Accordingly, a cell can be modified to express a surface antigen that is recognized by a bacterium for its entry into the cell, i.e., a receptor of an invasion factor. The cell can be modified either by introducing into the cell a nucleic acid encoding a receptor of an invasion factor, such that the surface antigen is expressed in the desired conditions. Alternatively, the cell can be coated with a receptor of an invasion factor. Receptors of invasion factors include proteins belonging to the integrin receptor superfamily. A list of the type of integrin receptors recognized by various bacteria and other microorganisms can be found, e.g., in Isberg and Tran Van Nhieu (1994) Ann. Rev. Genet. 27:395. Nucleotide sequences for the integrin subunits can be found, e.g., in GenBank, publicly available on the internet.

[0172] As set forth above, yet other target cells include fish, avian, and reptilian cells. Examples of bacteria that are naturally invasive for fish, avian, and reptilian cells are set forth below.

[0173] Examples of bacteria that can naturally access the cytoplasm of fish cells include, but are not limited to, Aeromonas salminocida (ATCC No. 33658) and Aeromonas schuberii (ATCC No. 43700). Attenuated bacteria are preferably used in the invention, and include A. salmonicidia vapA (Gustafson et al. J. Mol. Biol., 237:452-463 (1994)) or A. salmonicidia aromatic-dependent mutant (Vaughan et al. Infect. Immun., 61:2172-2181 (1993)).

[0174] Examples of bacteria that can naturally access the cytoplasm of avian cells include, but are not restricted to, Salmonella galinarum (ATCC No. 9184), Salmonella enteriditis (ATCC No. 4931) and Salmonella typhimurium (ATCC No. 6994). Attenuated bacteria are preferred to the invention and include attenuated Salmonella strains such as S. galinarum cya crp mutant (Curtiss et al. (1987) supra) or S. enteritidis aroA aromatic-dependent mutant CVL30 (Cooper et al. Infect. Immun., 62:4739-4746 (1994)).

[0175] Examples of bacteria that can naturally access the cytoplasm of reptilian cells include, but are not restricted to, Salmonella typhimurium (ATCC No. 6994). Attenuated bacteria are preferable to the invention and include, attenuated strains such as S. typhimuirum aromatic-dependent mutant (Hormaeche et al. supra).

[0176] The invention also provides for delivery of RNA to other eukaryotic cells, e.g., plant cells, so long as there are microorganisms that are capable of invading such cells, either naturally or after having been modified to become invasive. Examples of microorganisms which can invade plant cells include Agrobacterium tumerfacium, which uses a pilus-like structure which binds to the plant cell via specific receptors, and then through a process that resembles bacterial conjugation, delivers at least some of its content to the plant cell.

[0177] Set forth below are examples of cell lines to which RNA can be delivered according to the method of this invention.

[0178] Examples of human cell lines include but are not limited to ATCC Nos. CCL 62, CCL 159, HTB 151, HTB 22, CCL 2, CRL 1634, CRL 8155, HTB 61, and HTB104.

[0179] Examples of bovine cell lines include ATCC Nos. CRL 6021, CRL 1733, CRL 6033, CRL 6023, CCL 44 and CRL 1390.

[0180] Examples of ovine cells lines include ATCC Nos. CRL 6540, CRL 6538, CRL 6548 and CRL 6546.

[0181] Examples of porcine cell lines include ATCC Nos. CL 184, CRL 6492, and CRL 1746.

[0182] Examples of feline cell lines include CRL 6077, CRL 6113, CRL 6140, CRL 6164, CCL 94, CCL 150, CRL 6075 and CRL 6123.

[0183] Examples of buffalo cell lines include CCL 40 and CRL 6072.

[0184] Examples of canine cells include ATCC Nos. CRL 6213, CCL 34, CRL 6202, CRL 6225, CRL 6215, CRL 6203 and CRL 6575.

[0185] Examples of goat derived cell lines include ATCC No. CCL 73 and ATCC No. CRL 6270.

[0186] Examples of horse derived cell lines include ATCC Nos. CCL 57 and CRL 6583.

[0187] Examples of deer cell lines include ATCC Nos. CRL 6193-6196.

[0188] Examples of primate derived cell lines include those from chimpanzee's such as ATCC Nos. CRL 6312, CRL 6304, and CRL 1868; monkey cell lines such as ATCC Nos. CRL 1576, CCL 26, and CCL 161; orangautan cell line ATCC No. CRL 1850; and gorilla cell line ATCC No. CRL 1854.

[0189] The invention also provides methods of regulating the expression of one or more genes. Preferably, regulating the expression of one or more genes means decreasing or lessening the expression of the gene and/or decreasing or lessening the activity of the gene and its corresponding gene product.

[0190] In one embodiment, the expressed siRNAs direct the multienzyme complex RISC(RNA-induced silencing complex) of the cell to interact with the mRNAs to be regulated. This complex degrades or sequesters the mRNA. This causes the expression of the gene to be decreased or inhibited.

[0191] In some embodiments, the gene is an animal gene. Preferred animal genes are mammalian genes, such as humans, bovine, ovine, porcine, feline, canine, goat, equine, and primate genes. The most preferred mammalian genes are human cells.

[0192] The gene to be regulated can be a viral gene, anti-inflammatory gene, obesity gene or autoimmune disease or disorder gene. In some embodiments, more than one gene can be regulated from a single plasmid or vector.

[0193] In preferred embodiments, the gene can be, but is not limited to, ras, .beta.-catenin, one or more HPV oncogenes, APC, HER-2, MDR-1, MRP-2, FATP4, SGLUT-1, GLUT-2, GLUT-5, apobec-1, MTP, IL-6, IL-6R, IL-7, IL-12, IL-13, IL-13 Ra-1, IL-18, p38/JNK MAP kinase, p65/NF-.kappa.B, CCL20 (MIP-3.alpha.), Claudin-2, Chitinase 3-like 1, apoA-IV, MHC class I and MHC class II. In one aspect of this embodiment, the ras is k-Ras. In another aspect of this embodiment, the HPV oncogene is E6 or E7.

[0194] Preferable .beta.-catenin target gene sequences are recited in Table 11. The sequences in Table II are cross-species target sequences as they are capable of silencing the beta-catenin gene (CTNNB1) in human, mouse, rat, dog and monkey.

TABLE-US-00011 TABLE 11 .beta.-catenin target gene sequences SEQ ID NO: AGCCAATGGCTTGGAATGAGA 52 ATCAGCTGGCCTGGTTTGATA 53 CTGTGAACTTGCTCAGGACAA 54 AGCAATCAGCTGGCCTGGTTT 55 CCTCTGTGAACTTGCTCAGGA 56 TTCCGAATGTCTGAGGACAAG 57 CCAATGGCTTGGAATGAGACT 58 GGTGCTGACTATCCAGTTGAT 59 CAATCAGCTGGCCTGGTTTGA 60 CACCCTGGTGCTGACTATCCA 61 CACCACCCTGGTGCTGACTAT 62 TGCTTTATTCTCCCATTGAAA 63 CTGGTGCTGACTATCCAGTTG 64 TCTGTGCTCTTCGTCATCTGA 65 TGCCATCTGTGCTCTTCGTCA 66 TGGTGCTGACTATCCAGTTGA 67 CCTGGTGCTGACTATCCAGTT 68 ACCCTGGTGCTGACTATCCAG 69 GAGCCTGCCATCTGTGCTCTT 70 CTGGTTTGATACTGACCTGTA 71 TGGTTTGATACTGACCTGTAA 72 TCGAGGAGTAACAATACAAAT 73 ACCATGCAGAATACAAATGAT 74 AGGAGTAACAATACAAATGGA 75 GTCGAGGAGTAACAATACAAA 76 TTGTTGTAACCTGCTGTGATA 77 GAGTAATGGTGTAGAACACTA 78 AGTAATGGTGTAGAACACTAA 79 CACACTAACCAAGCTGAGTTT 80 TTTGGTCGAGGAGTAACAATA 81 TACCATTCCATTGTTTGTGCA 82 TAGGGTAAATCAGTAAGAGGT 83 CTAACCAAGCTGAGTTTCCTA 84 TGGTCGAGGAGTAACAATACA 85 CTGGCCTGGTTTGATACTGAC 86 TAACCTCACTTGCAATAATTA 87 ATCCCACTGGCCTCTGATAAA 88 GACCACAAGCAGAGTGCTGAA 89 CACAAGCAGAGTGCTGAAGGT 90 CTAACCTCACTTGCAATAATT 91 AGCTGATATTGATGGACAG 92

[0195] Preferable HPV target gene sequences are recited in Table 12. The sequences in Table 12 are target sequences as they are capable of silencing the HPV E6 oncogene.

TABLE-US-00012 TABLE 12 HPV target gene sequences SEQ ID NO: CGGTGCCAGAAACCGTTGAATCC 93 CACTGCAAGACATAGAAATAACC 94 AGGTGCCTGCGGTGCCAGAAACC 95 GCGGTGCCAGAAACCGTTGAATC 96 TCACTGCAAGACATAGAAATAAC 97 CCCATGCTGCATGCCATAAATGT 98 ATGCTGCATGCCATAAATGTATA 99 GTGGTGTATAGAGACAGTATACC 100 GCGCGCTTTGAGGATCCAACACG 101 CTGCGGTGCCAGAAACCGTTGAA 102 CCCCATGCTGCATGCCATAAATG 103 ACCCCATGCTGCATGCCATAAAT 104 AACACTGGGTTATACAATTTATT 105 ACGACGCAGAGAAACACAAGTAT 106 AAGGTGCCTGCGGTGCCAGAAAC 107 GGTGCCTGCGGTGCCAGAAACCG 108 CATGCTGCATGCCATAAATGTAT 109 GACGCAGAGAAACACAAGTATAA 110 TTCACTGCAAGACATAGAAATAA 111 GGTGCCAGAAACCGTTGAATCCA 112 TGGCGCGCTTTGAGGATCCAACA 113 TGTGGTGTATAGAGACAGTATAC 114 GTGCCTGCGGTGCCAGAAACCGT 115 CTGCATGCCATAAATGTATAGAT 116 GACTCCAACGACGCAGAGAAACA 117 CTGGGCACTATAGAGGCCAGTGC 118 TGCTGCATGCCATAAATGTATAG 119 GTGCCAGAAACCGTTGAATCCAG 120 TTACAGAGGTATTTGAATTTGCA 121 GAGGCCAGTGCCATTCGTGCTGC 122

[0196] Additional preferable HPV target gene sequences are recited in Table 13. The sequences in Table 13 are target sequences as they are capable of silencing the HPV E7 oncogene.

TABLE-US-00013 TABLE 13 HPV target gene sequences SEQ ID NO: ATTCCGGTTGACCTTCTATGTCA 123 GATGGAGTTAATCATCAACATTT 124 AAGCCAGAATTGAGCTAGTAGTA 125 CATGGACCTAAGGCAACATTGCA 126 AACCACAACGTCACACAATGTTG 127 ATGGACCTAAGGCAACATTGCAA 128 TAAGCGACTCAGAGGAAGAAAAC 129 GAAGCCAGAATTGAGCTAGTAGT 130 GAGCCGAACCACAACGTCACACA 131 ACGTCACACAATGTTGTGTATGT 132 GAACCACAACGTCACACAATGTT 133 AGGCAACATTGCAAGACATTGTA 134 AAGACATTGTATTGCATTTAGAG 135 TAAGGCAACATTGCAAGACATTG 136 CCAGCCCGACGAGCCGAACCACA 137 AAGCTCAGCAGACGACCTTCGAG 138 GCCCGACGAGCCGAACCACAACG 139 TTCCGGTTGACCTTCTATGTCAC 140 TGCATGGACCTAAGGCAACATTG 141 TTCCAGCAGCTGTTTCTGAACAC 142 AACACCCTGTCCTTTGTGTGTCC 143 CTTCTATGTCACGAGCAATTAAG 144 ACGAGCCGAACCACAACGTCACA 145 TTGAGCTAGTAGTAGAAAGCTCA 146 CAGCAGACGACCTTCGAGCATTC 147 AGCCAGAATTGAGCTAGTAGTAG 148 GTCACACAATGTTGTGTATGTGT 149 CCGACGAGCCGAACCACAACGTC 150 AATTCCGGTTGACCTTCTATGTC 151 ATTCCAGCAGCTGTTTCTGAACA 152

[0197] Additional preferable HPV target gene sequences are recited in Table 14. The sequences in Table 14 are target sequences shared by both HPV E6 and E6.

TABLE-US-00014 TABLE 14 HPV target gene sequences SEQ ID NO: TAGGTATTTGAATTTGCAT 153 GAGGTATTTGAATTTGCAT 154

[0198] A preferable MDR-1 target gene sequence is recited in Table 15. The sequence in Table 15 is capable of silencing the MDR-1 gene in human.

TABLE-US-00015 TABLE 15 MDR-1 target gene sequences SEQ ID NO: ATGTTGTCTGGACAAGCACT 155

[0199] A preferable k-Ras target gene sequence is recited in Table 16. The sequence in Table 16 is capable of silencing the k-Ras gene in human.

TABLE-US-00016 TABLE 16 k-Ras target gene sequences SEQ ID NO: GTTGGAGCTGTTGGCGTAG 156

[0200] Preferable IL-6R target gene sequence are recited in Table 17. The sequences in Table 17 are capable of silencing IL-6R in human.

TABLE-US-00017 TABLE 17 IL-6R target gene sequences SEQ ID NO: CTCCTGGAACTCATCTTTCTA 157 GCTCTCCTGCTTCCGGAAGAG 158 CTCCACGACTCTGGAAACTAT 159 CAGAAGTTCTCCTGCCAGTTA 160 CCGGAAGACAATGCCACTGTT 161 CTGAACGGTCAAAGACATTCA 162 CACAACATGGATGGTCAAGGA 163 ATGCAGGCACTTACTACTAAT 164 ATCGGGCTGAACGGTCAAAGA 165 AGCTCTCCTGCTTCCGGAAGA 166 CAGCTCTCCTGCTTCCGGAAG 167 CAGGCACTTACTACTAATAAA 168 CACTTGCTGGTGGATGTTCCC 169 AACGGTCAAAGACATTCACAA 170 TGCACAAGCTGCACCCTCAGG 171

[0201] Additional referable IL-6R target gene sequences are recited in Table 18. The sequences in Table 18 are capable of silencing the IL-6R gene in mouse.

TABLE-US-00018 TABLE 18 IL-6R target gene sequences SEQ ID NO: ATCCTGGAGGGTGACAAAGTA 172 TGGGTCTGACAATACCGTAAA 173 AACGAAGCGTTTCACAGCTTA 174 CCGCTGTTTCCTATAACAGAA 175 ACGAAGCGTTTCACAGCTTAA 176 CTGCTGTGAAAGGGAAATTTA 177 AACCTTGTGGTATCAGCCATA 178 CACAGTGTGGTGCTTAGATTA 179 CAGCTTCGATACCGACCTGTA 180 CAGTGTGGTGCTTAGATTAAA 181 CCCGGCAGGAATCCTCTGGAA 182 CCCGCTGTTTCCTATAACAGA 183 AACCACGAGGATCAGTACGAA 184 ACCTGCCGTCTTACTGAACTA 185 ACCACGAGGATCAGTACGAAA 186 ACAGCTTGTGATGACTGAATA 187 AGGATCAGTACGAAAGTTCTA 188 AACCCGCTGTTTCCTATAACA 189 CAGTACGAAAGTTCTACAGAA 190 TACGCGAGTGACAATTTCTCA 191 ACGAAAGTTCTACAGAAGCAA 192 CAGGCACTTACTACTAATAAA 193 CACTTGCTGGTGGATGTTCCC 194 AACGGTCAAAGACATTCACAA 195 TGCACAAGCTGCACCCTCAGG 196

[0202] Preferable IL-7 target gene sequences are recited in Table 19. The sequences in Table 19 are capable of silencing the IL-7 gene in human.

TABLE-US-00019 TABLE 19 IL-7 target gene sequences SEQ ID NO: TAAGAGAGTCATAAACCTTAA 197 AACAAGGTCCAAGATACCTAA 198 AAGATTGAACCTGCAGACCAA 199 AAGAGATTTCAAGAGATTTAA 200 AAGCGCAAAGTAGAAACTGAA 201 TAGCATCATCTGATTGTGATA 202 TAAGATAATAATATATGTTTA 203 ATGGTCAGCATCGATCAATTA 204 TTGCCTGAATAATGAATTTAA 205 ATCTGTGATGCTAATAAGGAA 206 AACAAACTATTTCTTATATAT 207 AACATTTATCAATCAGTATAA 208 ATCAATCAGTATAATTCTGTA 209 AAGGTATCAGTTGCAATAATA 210

[0203] Additional preferable IL-7 target gene sequences are recited in Table 20. The sequences in Table 20 are capable of silencing the IL-7 gene in mouse.

TABLE-US-00020 TABLE 20 IL-7 target gene sequences SEQ ID NO: CGGATCCTACGGAAGTTATGG 211 GACCATGTTCCATGTTTCTTT 212 AACCTAAATGACCTTTATTAA 213 CAGGAGACTAGGACCCTATAA 214 TAGGGTCTTATTCGTATCTAA 215 ATGAGCCAATATGCTTAATTA 216 GCCAATATGCTTAATTAGAAA 217 CAGCATCGATGAATTGGACAA 218 TTGCCTGAATAATGAATTTAA 219 CTGATAGTAATTGCCCGAATA 220 AAGGGTTTGCTTGTACTGAAT 221 AACATGTATGTGATGATACAA 222 TTGCAACATGTAATAATTTAA 223 AAGAGACTACTGAGAGAAATA 224 AAGAATCTACTGGTTCATATA 225 TGCCGTCAGCATATACATATA 226 AGGGCTCACGGTGATGGATAA 227

[0204] Additional preferable IL-7 target gene sequences are recited in Table 21. The sequences in Table 21 are cross species sequences as they are capable of silencing the IL-7 gene in human and mouse.

TABLE-US-00021 TABLE 21 IL-7 target gene sequences SEQ ID NO: CGCCTCCCGCAGACCATGTTC 228 TCCGTGCTGCTCGCAAGTTGA 229 GCCTCCCGCAGACCATGTTCC 230 CCTCCCGCAGACCATGTTCCA 231 CTCCCGCAGACCATGTTCCAT 232 TCCCGCAGACCATGTTCCATG 233 CCCGCAGACCATGTTCCATGT 234 CCGCAGACCATGTTCCATGTT 235 CGCAGACCATGTTCCATGTTT 236 GCAGACCATGTTCCATGTTTC 237 CAGACCATGTTCCATGTTTCT 238 AGACCATGTTCCATGTTTCTT 239

[0205] Preferable IL-13Ra-1 target gene sequences are recited in Table 22. The sequences in Table 22 are capable of silencing the IL-13Ra-1 gene in human.

TABLE-US-00022 TABLE 22 IL-13Ra-1 target gene sequences SEQ ID NO: AACCTGATCCTCCACATATTA 240 CCTGATCCTCCACATATTAAA 241 AGAAATGTTTGGAGACCAGAA 242 CAAATAATGGTCAAGGATAAT 243 TTCCTGATCCTGGCAAGATTT 244 TAAAGAAATGTTTGGAGACCA 245 ATGTTTGGAGACCAGAATGAT 246 CTCCAATTCCTGATCCTGGCA 247

[0206] Additional preferable IL-13Ra-1 target gene sequences are recited in Table 23. The sequences in Table 23 are capable of silencing the IL-13Ra-1 gene in mouse.

TABLE-US-00023 TABLE 23 IL-13Ra-1 target gene sequences SEQ ID NO: CAAGAAGACTCTAATGATGTA 248 CACAGTCAGAGTAAGAGTCAA 249 ACCCAGGGTATCATAGTTCTA 250 CTGCTTTGAAATTTCCAGAAA 251 ATCATAGTTCTAAGAATGAAA 252 AAGGCTTAAGATCATTATATT 253 AACTACTTATAAGAAAGTAAA 254 CACAGAACATCTAGCAAACAA 255 CTCGTTCTTGTTCAATCCTAA 256 AACTTGTAGGTTCACATATTA 257 AACCATTTCTGCAAATTTAAA 258 CTCAGTGTAGTGCCAATGAAA 259 CAGGCCTTAGGGACTCATAAA 260 AAGTATGACATCTATGAGAAA 261 GTGGAGGTCAATAATACTCAA 262 CAGAGTATAGGTAAGGAGCAA 263

[0207] A preferable IL-18 target gene sequence is recited in Table 24. The sequence in Table 24 is capable of silencing the IL-18 gene in human.

TABLE-US-00024 TABLE 24 IL-18 target gene sequences SEQ ID NO: TTGAATGACCAAGTTCTCTTC 264

[0208] Additional preferable IL-18 target gene sequences are recited in Table 25. The sequences in Table 25 are capable of silencing the IL-18 gene in mouse.

TABLE-US-00025 TABLE 25 IL-18 target gene sequences SEQ ID NO: CTCTCTGTGAAGGATAGTAAA 265 CCGCAGTAATACGGAATATAA 266 CAAGGAAATGATGTTTATTGA 267 CAGACTGATAATATACATGTA 268 TTGGCCGACTTCACTGTACAA 269 CCAGACCAGACTGATAATATA 270 AAGATGGAGTTTGAATCTTCA 271 ACGCTTTACTTTATACCTGAA 272 TACAACCGCAGTAATACGGAA 273 CTGCATGATTTATAGAGTAAA 274 CCCGAGGCTGCATGATTTATA 275 CACGCTTTACTTTATACCTGA 276 CGCCTGTATTTCCATAACAGA 277 CGCAGTAATACGGAATATAAA 278 TACATGTACAAAGACAGTGAA 279 CAGGCCTGACATCTTCTGCAA 280 TTCGAGGATATGACTGATATT 281 CTGTATTTCCATAACAGAATA 282 GAGGATATGACTGATATTGAT 283 CAAGTTCTCTTCGTTGACAAA 284 CACTAACTTACATCAAAGTTA 285 ACCGCAGTAATACGGAATATA 286 CTCTCACTAACTTACATCAAA 287

[0209] Preferable CCL20 target gene sequences are recited in Table 26. The sequences in Table 26 are capable of silencing the CCL20 gene in human.

TABLE-US-00026 TABLE 26 CCL20 target gene sequences SEQ ID NO: ATCATCTTTCACACAAAGAAA 288 AACAGACTTGGGTGAAATATA 289 ATGGAATTGGACATAGCCCAA 290 GAGGGTTTAGTGCTTATCTAA 291 CTCACTGGACTTGTCCAATTA 292 ATCATAGTTTGCTTTGTTTAA 293 TTGTTTAAGCATCACATTAAA 294 AAGCATCACATTAAAGTTAAA 295 CCCAAAGAACTGGGTACTCAA 296 CACATTAAAGTTAAACTGTAT 297 CAGATCTGTTCTTTGAGCTAA 298 TTGGTTTAGTGCAAAGTATAA 299 CAGACCGTATTCTTCATCCTA 300 AACATTAATAAGACAAATATT 301 GACCGTATTCTTCATCCTAAA 302

[0210] Additional referable CCL20 target gene sequences are recited in Table 27. The sequences in Table 27 are capable of silencing the CCL20 gene in mouse.

TABLE-US-00027 TABLE 27 CCL20 target gene sequences SEQ ID NO: AAGCTTGTGACATTAATGCTA 303 CAATAAGCTATTGTAAAGATA 304 ATCATCTTTCACACGAAGAAA 305 AGCTATTGTAAAGATATTTAA 306 CAGCCTAAGAGTCAAGAAGAT 307 CCCAGTGGACTTGTCAATGGA 308 ATGAAGTTGATTCATATTGCA 309 AAGTTGATTCATATTGCATCA 310 TCACATTAGAGTTAAGTTGTA 311 CACATTAGAGTTAAGTTGTAT 312 TATGTTATTTATAGATCTGAA 313 ATGTTTAGCTATTTAATGTTA 314 TTAGTGGAAGGATTAATATTA 315 ACCCAGCACTGAGTACATCAA 316 TATGTTTAAGGGAATAGTTTA 317

[0211] Additional preferable CCL20 target gene sequences are recited in Table 28. The sequences in Table 28 are cross-species target sequences as they are capable of silencing the CCL20 gene in human and mouse.

TABLE-US-00028 TABLE 28 CCL20 target gene sequences SEQ ID NO: ATGAAGTTGATTCATATTGCA 318 TGAAGTTGATTCATATTGCAT 319 GAAGTTGATTCATATTGCATC 320 AAGTTGATTCATATTGCATCA 321 AGTTGATTCATATTGCATCAT 322 GTTGATTCATATTGCATCATA 323 TTGATTCATATTGCATCATAG 324 TGATTCATATTGCATCATAGT 325 TCAATGCTATCATCTTTCACA 326 CAATGCTATCATCTTTCACAC 327 TAATGAAGTTGATTCATATTG 328 AATGAAGTTGATTCATATTGC 329

[0212] Preferable CCL20 target gene sequences are recited in Table 29. The sequences in Table 29 are capable of silencing the CCL20 gene in human.

TABLE-US-00029 TABLE 29 Claudin-2 target gene sequences SEQ ID NO: AGCATGAAATTTGAGATTGGA 330 TACAGAGCCTCTGAAAGACCA 331 CACTACAGAGCCTCTGAAAGA 332 CTGACAGCATGAAATTTGAGA 333 ATCTCTGTGGTGGGCATGAGA 334 CATGAAATTTGAGATTGGAGA 335 TCTGGCTGAGGTTGGCTCTTA 336 GTGGGCTACATCCTAGGCCTT 337

[0213] Additional preferable CCL20 target gene sequences are recited in Table 30. The sequences in Table 30 are capable of silencing the CCL20 gene in mouse.

TABLE-US-00030 TABLE 30 Claudin-2 target gene sequences SEQ ID NO: CAGCTTCCTGCTAAACCACAA 338 CAAGAGTGAGTTCAACTCATA 339 CTGGTTCCTGACAGCATGAAA 340 TGGCTGGGACTATATATATAA 341 GAGGGCAATTGCTATATCTTA 342 CAGCAGCCAAACGACAAGCAA 343 CAAGGGTTTCCTTAAGGACAA 344 CAGATACTTGTAAGGAGGAAA 345 AAGAAATGGATTAGTCAGTAA 346 AAGGAAAGCACAAGAAGCCAA 347 CTGGCTGAGGTTGGCTCTTAA 348 AACCTGGGATCTAAAGAAACA 349 AAGGGCTTGGGTATCAAAGAA 350 CAGGCTCCGAAGATACTTCTA 351 CCCAATATATAAATTGCCTAA 352 CTGACCCAGCTTCCTGCTAAA 353

[0214] Preferable Chitinase-3 target gene sequences are recited in Table 31. The sequences in Table 31 are capable of silencing the Chitinase-3 gene in human.

TABLE-US-00031 TABLE 31 Chitinase-3 target gene sequences SEQ ID NO: ACCCACATCATCTACAGCTTT 354 CATCATCTACAGCTTTGCCAA 355 CAGCTGGTCCCAGTACCGGGA 356 CACCAAGGAGGCAGGGACCCT 357 CCGGTTCACCAAGGAGGCAGG 358 AGCTGGTCCCAGTACCGGGAA 359 CAGGCCGGTTCACCAAGGAGG 360 GGCCGGTTCACCAAGGAGGCA 361

[0215] Additional preferable Chitinase-3 target gene sequences are recited in Table 32. The sequences in Table 32 are capable of silencing the Chitinase-3 gene in mouse.

TABLE-US-00032 TABLE 32 Chitinase-3 target gene sequences SEQ ID NO: TAGGTTTGACAGATACAGCAA 362 AACCCTGTTAAGGAATGCAAA 363 ATCAAGTAGGCAAATATCTTA 364 CGCAGCTTTGTCAGCAGGAAA 365 TTGGATCAAGTAGGCAAATAT 366 TTGAGGGACCATACTAATTAT 367 GAGGACAAGGAGAGTGTCAAA 368 TGCGTACAAGCTGGTCTGCTA 369 CAGGAGTTTAATCTCTTGCAA 370 ATCAAGGAACTGAATGCGGAA 371 CACCCTGATCAAGGAACTGAA 372 CACTTGGATCAAGTAGGCAAA 373 CAGGATTGAGGGACCATACTA 374 AACTATGACAAGCTGAATAAA 375 ATGCAAATTCTCAGACTCTAA 376 ATCCTTCCCTTAGGAACTTAA 377

5. Treatment of Diseases and Disorders

[0216] The present invention also provides methods of treating or preventing a disease or disorder in a mammal. The methods include regulating the expression of at least one gene in a cell known to cause a disease or disorder by introducing to the cells of the mammal at least one invasive bacterium, or at least one bacterial therapeutic particle (BTP), containing one or more siRNAs or one or more DNA molecules encoding one or more siRNAs, where the expressed siRNAs interfere with the mRNA of the gene known to cause the disease or disorder of interest.

[0217] The RNAi methods of the invention, including BMGS and tkRNAi are used to treat any disease or disorder for which gene expression regulation would be beneficial. This method is effected by silencing or knocking down (decreasing) genes involved with one or more diseases and disorders.

[0218] The gene to be regulated to treat or prevent a disease or disorder of interest, can be, but is not limited to, ras, .beta.-catenin, one or more HPV oncogenes, APC, HER-2, MDR-1, MRP-2, FATP4, SGLUT-1, GLUT-2, GLUT-5, apobec-1, MTP, IL-6, IL-6R, IL-7, IL-12, IL-13, IL-13 Ra-1, IL-18, p38/JNK MAP kinase, p65/NF-.kappa.B, CCL20 (MIP-3.alpha.), Claudin-2, Chitinase 3-like 1, apoA-IV, MHC class I and MHC class II. In one aspect of this embodiment, the ras is k-Ras. In another aspect of this embodiment, the HPV oncogene is E6 or E7.

[0219] Preferably, the present invention provides methods of treating or preventing cancer or a cell proliferation disorder, viral disease, an inflammatory disease or disorder, a metabolic disease or disorder, an autoimmune disease or disorder, or a disease, disorder or cosmetic concern in the skin or hair in a mammal by regulating the expression of a gene or several genes known to be associated with the onset, propagation or prolongation of the disease or disorder by introducing a bacterium or BTP to the cell. The bacterium or BTP contain one or more siRNAs or one or more DNA molecules encoding one or more siRNAs, where the expressed siRNAs interfere with the mRNA of the gene known to cause, propagate or prolong the disease or disorder of interest.

[0220] In some preferred embodiments, the viral disease can be, but is not limited to, hepatitis B, hepatitis C, Human Papilloma Virus (HPV) infection or epithelial dysplasia or cancer caused by HPV infection or HPV induced transformation, including cervical cancer, rectal cancer and pharyngeal cancer.

[0221] In some preferred embodiments, the inflammatory disease or disorder can be, but is not limited to, inflammatory bowel disease, Crohn's disease, ulcerative colitis, an allergy, rheumatoid arthritis.

[0222] In some preferred embodiments, the autoimmune disease or disorder can be, but is not limited to, celiac disease.

[0223] In some preferred embodiments, the disease, disorder or cosmetic concern can be, but is not limited to, psoriasis, eczema, albinism, balding or gray hair.

[0224] The mammal can be any mammal including, but not limited to, human, bovine, ovine, porcine, feline, canine, goat, equine, or primate. Preferably, the mammal is a human.

[0225] The terms "treating" and "treatment" as used herein refer to the administration of an agent or formulation (e.g., bacterium and/or BTP containing an siRNA or a DNA encoding for an siRNA) to a clinically symptomatic individual afflicted with an adverse condition, disorder, or disease, so as to effect a reduction in severity and/or frequency of symptoms, eliminate the symptoms and/or their underlying cause, and/or facilitate improvement or remediation of damage.

[0226] The terms "preventing" and "prevention" refer to the administration of an agent or composition to a clinically asymptomatic individual who is susceptible to a particular adverse condition, disorder, or disease, and thus relates to the prevention of the occurrence of symptoms and/or their underlying cause.

6. Pharmaceutical Compositions and Modes of Administration

[0227] In a preferred embodiment of the invention, the invasive bacteria or BTPs containing the RNA molecules, and/or DNA encoding such, are introduced into an animal by intravenous, intramuscular, intradermal, intraperitoneally, peroral, intranasal, intraocular, intrarectal, intravaginal, intraosseous, oral, immersion and intraurethral inoculation routes.

[0228] The amount of the invasive bacteria or BTPs of the present invention to be administered to a subject will vary depending on the species of the subject, as well as the disease or condition that is being treated. Generally, the dosage employed will be about 10.sup.3 to 10.sup.11 viable organisms, preferably about 10.sup.5 to 10.sup.9 viable organisms per subject.

[0229] The invasive bacteria or BTPs of the present invention are generally administered along with a pharmaceutically acceptable carrier and/or diluent. The particular pharmaceutically acceptable carrier an/or diluent employed is not critical to the present invention. Examples of diluents include a phosphate buffered saline, buffer for buffering against gastric acid in the stomach, such as citrate buffer (pH 7.0) containing sucrose, bicarbonate buffer (pH 7.0) alone (Levine et al. J. Clin. Invest., 79:888-902 (1987); and Black et al J. Infect. Dis., 155:1260-1265 (1987)), or bicarbonate buffer (pH 7.0) containing ascorbic acid, lactose, and optionally aspartame (Levine et al. Lancet, II:467-470 (1988)). Examples of carriers include proteins, e.g., as found in skim milk, sugars, e.g., sucrose, or polyvinylpyrrolidone. Typically these carriers would be used at a concentration of about 0.1-30% (w/v) but preferably at a range of 1-10% (w/v).

[0230] Set forth below are other pharmaceutically acceptable carriers or diluents which may be used for delivery specific routes. Any such carrier or diluent can be used for administration of the bacteria of the invention, so long as the bacteria or BTPs are still capable of invading a target cell. In vitro or in vivo tests for invasiveness can be performed to determine appropriate diluents and carriers. The compositions of the invention can be formulated for a variety of types of administration, including systemic and topical or localized administration. Lyophilized forms are also included, so long as the bacteria are invasive upon contact with a target cell or upon administration to the subject. Techniques and formulations generally may be found in Remington's Pharmaceutical Sciences, Meade Publishing Co., Easton, Pa. For systemic administration, injection is preferred, including intramuscular, intravenous, intraperitoneal, and subcutaneous. For injection, the composition, e.g., bacteria or BTPs, of the invention can be formulated in liquid solutions, preferably in physiologically compatible buffers such as Hank's solution or Ringer's solution.

[0231] For oral administration, the pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate). The tablets may be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g. sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate.

[0232] Preparations for oral administration may be suitably formulated to give controlled release of the active compound. For buccal administration the compositions may take the form of tablets or lozenges formulated in conventional manner.

[0233] For administration by inhalation, the pharmaceutical compositions for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of e.g. gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the composition, e.g. bacteria, and a suitable powder base such as lactose or starch.

[0234] The pharmaceutical compositions may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

[0235] The pharmaceutical compositions may also be formulated in rectal, intravaginal or intraurethral compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.

[0236] Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration bile salts and fusidic acid derivatives. In addition, detergents may be used to facilitate permeation. Transmucosal administration may be through nasal sprays or using suppositories. For topical administration, the bacteria of the invention are formulated into ointments, salves, gels, or creams as generally known in the art, so long as the bacteria are still invasive upon contact with a target cell.

[0237] The compositions may, if desired, be presented in a pack or dispenser device and/or a kit that may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.

[0238] The invasive bacteria or BTPs containing the RNA or RNA-encoding DNA to be introduced can be used to infect animal cells that are cultured in vitro, such as cells obtained from a subject. These in vitro-infected cells can then be introduced into animals, e.g., the subject from which the cells were obtained initially, intravenously, intramuscularly, intradermally, or intraperitoneally, or by any inoculation route that allows the cells to enter the host tissue. When delivering RNA to individual cells, the dosage of viable organisms administered will be at a multiplicity of infection ranging from about 0.1 to 10.sup.6, preferably about 10.sup.2 to 10.sup.4 bacteria per cell.

[0239] In yet another embodiment of the present invention, bacteria can also deliver RNA molecules encoding proteins to cells, e.g., animal cells, from which the proteins can later be harvested or purified. For example, a protein can be produced in a tissue culture cell.

[0240] While the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

[0241] The present invention is further illustrated by the following examples that should not be construed as limiting in any way. The contents of all cited references including literature references, issued patents, published patent applications as cited throughout this application are hereby expressly incorporated by reference. The practice of the present invention will employ, unless otherwise indicated, conventional techniques of cell biology, cell culture, molecular biology, transgenic biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See, for example, Molecular Cloning A Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press: 1989); DNA Cloning, Volumes I and II (D. N. Glover ed., 1985); Oligonucleotide Synthesis (M. J. Gait ed., 1984); Mullis et al. U.S. Pat. No. 4,683,195; Nucleic Acid Hybridization (B. D. Hames & S. J. Higgins eds. 1984); Transcription And Translation (B. D. Hames & S. J. Higgins eds. 1984); Culture Of Animal Cells (R. I. Freshney, Alan R. Liss, Inc., 1987); Immobilized Cells And Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide To Molecular Cloning (1984); the treatise, Methods In Enzymology (Academic Press, Inc., N.Y.); Gene Transfer Vectors For Mammalian Cells (J. H. Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); Methods In Enzymology, Vols. 154 and 155 (Wu et al. eds.), Immunochemical Methods In Cell And Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987); Handbook Of Experimental Immunology, Volumes 1-IV (D. M. Weir and C. C. Blackwell, eds., 1986); Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986).

[0242] The following non-limiting examples are merely illustrative of the preferred embodiments of the present invention, and are not to be construed as limiting the invention.

EXAMPLES

Example 1

Knockdown of .beta.-Catenin and k-Ras

[0243] Previous studies have demonstrated the powerful nature of the siRNA knockdown technology disclosed herein. For example, in vitro and in vivo knockdown of beta catenin and k-ras utilizing bacterial delivery is described in PCT Publication No. WO 06/066048, which is incorporated herein by reference in its entirety.

Example 2

TRIP with Multiple shRNA Expression Cassettes

[0244] The TRIP described herein, and described in further detail in PCT Publication No. WO 06/066048, can be modified to produce a plasmid which allows targeting of multiple genes simultaneously or multiple sequences within one gene simultaneously. For example, TRIP with multiple hairpin expression cassettes to produce shRNA can target different sequences in a given gene, or target multiple genes through a simultaneous bacterial treatment.

[0245] The TRIP plasmid can incorporate multiple (up to ten) cloning sites to express different shRNA constructs (FIG. 1). The purpose of such a plasmid will be to allow silencing of various genes through a single therapeutic bacterium which will be empowered by the Multiple-expression cassette-TRIP (mec-TRIP) to synthesize short hairpin RNA against a variety of targets simultaneously.

[0246] These different hairpins can either be expressed competitively at high levels through the use of an identical high level promoter (such as T7 promoter or a different high level bacterial promoter), or they can be expressed at different levels through the use of promoters with different levels of activity, this will depend on the intended use of the plasmid and the desired relative silencing levels of the target gene.

[0247] This mec-TRIP could be useful to treat complex diseases as described herein (e.g. inflammatory diseases, or cancer), through the simultaneous silencing (targeting) of multiple targets as described herein (e.g. multiple oncogenes, such as k-ras and beta-catenin in the case of colon cancer, or HER-2 and MDR-1 in breast cancer, or other combinations).

Example 3

Operator Repressor Titration System

[0248] The TRIP system (bacteria and plasmid) have been modified to include the ORT (Operator Repressor Titration) system from Cobra Biomanufacturing (Keele, UK). This adaptation helps to maintain the plasmid in suitable strains in the absence of selective antibiotics. The bacterial carrier strain has been modified accordingly to allow for the ORT system to function (deletion of the DAP gene and replacement with an ORT-controlled DAP gene expression system). The plasmid has been modified to remove the antibiotic selection sequences to support the ORT system. Further changes have been introduced to the bacterial genome, including for example, (a) deletion of the aroA gene (in some CEQ strains) to make the bacteria more susceptible to nutrient shortage, particularly in the intracellular compartment where they will die due to lack of nutrients; (b) insertion of T7RNA polymerase gene into the chromosome and or (c) integration of a shRNA expression cassette under T7 promoter into the chromosome.

[0249] FIG. 2 shows development examples of bacterial strains. Further strains developed include, but are not limited to, CEQ922 (CEQ919 without aroA deletion), CEQ923 (CEQ920 without aroA deletion), CEQ924 (CEQ921 without aroA deletion).

Example 4

Intestinal Tract Gene Delivery

[0250] S. typhimurium was investigated to determine if it could be used as a vector for RNAi delivery into the epithelial cells lining the intestinal tract. Mice were treated orally with a single dose of 10.sup.8 SL 7207 and sacrificed at various time points after administration. SL7207 were then stained using the Salmonella specific antibody. 2 h after treatment, numerous SL7207 could be seen invading the intestinal epithelial layer (Salmonella stained red), suggesting that oral administration of SL7207 may be a useful tool to deliver payloads to the intestinal and colonic mucosa. In a follow up experiment, mice were treated with SL7207 harboring a GFP expression plasmid (pEGFPC1, Invitrogen). At 24 h after a single treatment, a small percentage (approximately 1%) of cells was clearly found to express GFP.

[0251] FIG. 3 shows the efficient invasion and plasmid delivery into the intestinal mucosa by S. typhimurium. SL7207 were stained using red fluorescent antibody 6 h after oral administration. Intact SL7207 and fragments of SL7207 were seen in epithelial cells as well as underlying cells of the lamina propria (top left/right). SL7207 successfully deliver expressed DNA into the intestinal mucosa: intestinal mucosal cells expressing GFP after treatment with SL7207 carrying a eukaryotic expression plasmid for GFP (pEGFP-C1)(lower left). For fluorescence microscopy, SL7207 were stained with red fluorescent antibody and nuclei were counterstained with Hoechst 37111.

[0252] To test whether SL7207 could be used for the delivery of RNAi to target genes in the intestinal tract, GFP transgenic mice (4 per group) were treated with S. typhimurium harboring a shRNA expression plasmid directed against GFP (SL-siGFP) or a shRNA expression plasmid directed against k-RAS (SL-siRAS). 10.sup.8 c.f.u. was given three times weekly for two weeks by oral gavage. Colonic tissues were subsequently reviewed with fluorescent microscopy (data not shown) and stained analyzed after immunohistochemistry staining for GFP expression using a specific antibody (Living Colors.RTM., Invitrogen). There was a significant reduction in the overall GFP expression level and significant reduction in the number of GFP expressing crypts in the SL-siGFP treated animals compared with the SL-siRAS treated animals (33.9% vs 50%, p<0.05), suggesting that this method could be useful to deliver therapeutic RNAi into the colonic epithelium.

[0253] FIG. 4 shows that bacteria-mediated RNA interference reduces target gene expression in the gastrointestinal epithelium. After treatment with SL7207 carrying expression plasmids targeting GFP (SL-siGFP, right bottom panel), colon tissues showed lower levels of GFP expression, and fewer colonic crypts were stained positive for GFP compared with animals treated with SL-siRAS (left bottom panel). Slides were stained with GFP-specific antibody.

Example 5

Construction of CEQ503 Bacterial Strain

[0254] Derivation and Description of CEO 503 (Strain CEQ201 (pNJSZ))

[0255] CEQ503 consists of a combination of an attenuated E. coli strain (CEQ201) with a specially engineered TRIP plasmid (pNJSZ). The plasmid confers the abilities required to induce tkRNAi (in this case: invasiveness, escape from the entry vesicle, expression of short hairpin RNA). Strain Description of CEQ503 (pNJSZ): [0256] 1. Genotype: Escherichia coli CEQ201 [glnV44(AS),LAM,rfbCL,endAl, spoTl, thi-1, hsdR17, (r.sub.k.sup.-m.sub.k.sup.+),creC510 .DELTA.dapA, .DELTA.recA]. [0257] 2. Derivation of CEQ201

[0257] ##STR00001## [0258] 3. Plasmid: pNJSZ, shown schematically in FIG. 5, is a 10.4 kb plasmid that confers kanamycin resistance to our bacterial strain (CEA503). This plasmid contains two genes, hly and inv, and

Example 6

BTP Production

[0259] BTPs or minicells containing a suitable plasmid such as TRIP have been engineered for delivery of tkRNAi. These cells will express invasin or Opa to enable entry into mammalian cells and listeriolysin will allow lysis of phagosome following minicell degradation/lysis. Additionally, a method for manufacturing minicells has been developed that utilizes a suicide construct for killing intact cells to aid in the purification of minicells. Such suicide plasmids have been described in the literature (Kloos et al., (1994) J. Bacteriol. 176, 7352-61; Jain and Mekalanos, (2000) Infect. Immun. 68, 986-989). Summarily, the lambda S and R genes that code for holing and lysozyme are placed under regulation of an inducible promoter on the bacterial chromosome. When induced, they will lyse intact cells but not minicells since minicells lack chromosomes. A number of different types of regulators such as lacI, araC, lambda cI857 and rhaS-rhaR can be used for development of an inducible suicide gene construct. Similarly, a number of different types of suicide genes, including E. coli autolysis genes and antimicrobial small peptides, can be used in a similar scheme. Purification is enhanced by treatments or mutations that induce filamentation (see, for example, Ward and Lutkenhaus, (1985) Cell 42, 941-949; Bi and Lutkenhaus, 1992). Initial purification involves low speed centrifugation to separate intact cells and retain minicells in the supernatant. This can be followed by density gradient purification or filtration (for example, Shull et al., (1971) J. Bacteriol. 106, 626-633).

[0260] Any cell death-triggering gene, also known as a suicide gene, including but not limited to genes encoding antimicrobial proteins, bacteriophage lysins or autolysins can be used in this method for obtaining BTPs from a mixture containing BTPs and bacteria. Suicide genes can kill live bacteria by mechanisms that include but are not limited to cell lysis, or by the destruction, degradation or poisoning of cellular components such as chromosomal DNA or filament components. Any inducible promoter may be used in conjunction with this system. In one embodiment of this invention, the suicide genes are integrated within the chromosome, thereby limiting their presence only in intact bacterial cells as BTPs or minicells will not incorporate these genes because they do not harbor chromosomal DNA.

[0261] As shown in FIG. 6, induction of suicide genes will lyse intact bacterial cells. The lambda S and R genes (suicide genes) are put under the control of P.sub.lacUV5 (inducible promoter). The leaky basal activity is repressed by a "super-repressor" coded by lacI.sup.q gene on a P.sub.gapA (strong promoter). This cassette is put at the minCD locus.

Example 7

siRNA Inhibition of Human Papillomavirus (HPV) Ongogenes

Experimental Procedures

[0262] Cell Culture Hela cells were cultured in Minimum Essential Medium (MEM, ATCC No. 30-2003) with 10% FBS supplemented with antibiotics: 100 U/ml penicillin G, 10 .mu.g/ml streptomycin (Sigma).

[0263] Bacterial Culture: Plasmids were transformed into BL21(DE3) strain (Invitrogen). Bacteria were grown at 37.degree. C. in LB Broth containing 100 .mu.g/ml ampicillin. Bacterial cell density (in CFU/ml) was calculated using OD.sub.600 measurement. For cell infection, overnight cultures were inoculated into fresh medium for another 2-3 h growth until the optical density at 600 nm [OD600] reached 0.6.

[0264] Invasion Assay: For bacterial invasion, Hela cells were plated in 6-well dishes at 200,000 cells/well and allowed to incubate overnight in 2 ml complete growth medium. The bacterial cells were grown to mid-exponential phase with optical density at 600 nm [OD600] 0.6 in LB Broth with Ampicillin, and then centrifuged at 3,400 rpm for 10 minutes at 4.degree. C. Bacterial pellets were resuspended in MEM without serum or the antibiotics and the bacteria were added to the cells at an MOI of 1:1000, 1:500, 1:250, 1:125, or 1:62.5 and allowed to invade the Hela cells for 2 hours at 37.degree. C. in 5% CO2. The cells were washed 4 times with MEM containing 10% FBS and penicillin-streptomycin (100 IU of penicillin and 100 .mu.g of streptomycin per ml). Cells were incubated in fresh complete medium for further 48 hours at 37.degree. C. in 5% CO2 and total RNA was then isolated by the Qiagen RNeasy system with on-column DNAse digestion or by TRIZOL extraction method.

[0265] siRNA Transfection: One day before the transfection, cells were plated in complete growth medium without antibiotics so that the cells will be 30-50% confluent at the time of transfection. Diluted various concentrations of siRNA from a stock of 20 .mu.M in 175 .mu.l of Opti-MEM. Mixed 4 .mu.l of Oligofectamine separately in 15 .mu.l of Opti-MEM. Mixed gently and incubated for 5-10 min at room temperature. Combined the diluted siRNA with diluted oligofectamine and incubated for 15-20 min at room temperature. While the complexes were being formed, removed the growth medium from the cells and added 800 .mu.l of medium without serum to each well containing cells. Added the 200 .mu.l of siRNA/oligofectamine complexes to the cells and incubated at 37.degree. C. for 4 h. Added 1 ml of growth medium containing 3.times. the normal concentration of serum without removing the transfection mixture. Gene silencing was assayed at 48 h.

[0266] RT-PCR: Quantitative real-time reverse transcription PCR (RT-PCR) was performed with the TaqMan RT-PCR master Mix Reagents Kit (Applied Biosystems) using the following primers and a probe set for detection of HPV18E6E7 transcripts:

TABLE-US-00033 Forward Primer: (SEQ ID NO:381) 5'-CTGATCTGTGCACGGAACTGA-3' (148-168) Reverse Primer: (SEQ ID NO:382) 5'-TGTCTAAGTTTTTCTGCTGGATTCA-3' (439-463) Probe: (SEQ ID NO:383) 5'-TTGGAACTTACAGAGGTGCCTGCGC-3' (219-233 and 416-425)

[0267] The probe was labeled at the 5' end with a reporter fluorescent dye, FAM and at the 3' end with fluorescent dye quencher TAMRA. GAPDH was used to detect human GAPDH transcripts for the normalization.

TABLE-US-00034 HPVsHRNA sequences: H1 (working sequence) (SEQ ID NO:384) 5' - ggATCCTAGGTATTTGAATTTGCATTTCAAGAGAATGCAAATTC AAATACCTTTTgTCgAC (SEQ ID NO:385) 5' - GTCGACAAAAGGTATTTGAATTTGCATTCTCTTGAAATGCAAATT CAAATACCTAGGATCC H2 (ineffective sequence) (SEQ ID NO:386) 5' - ggATCCTCAGAAAAACTTAGACACCTTCAAGAGAGGTGTCTAAGT TTTTCTGTTTgTCgAC (SEQ ID NO:387) 5' - GTCGACAAACAGAAAAACTTAGACACCTCTCTTGAAGGTGTCTAA GTTTTTCTGAGGATCC

[0268] Western Blot: Hela cells were lysed using 1.times. Cell lysis Buffer (Cell Signaling Technology, Cat No. 9803). For electrophoresis, 50 .mu.g of total protein in 2.times. loading buffer was loaded to each well of a 12% SDS-PAGE gel. After transferring the blot was blocked and probed with primary antibody at 2 h followed by incubation with HRP-conjugated secondary antibody before detection by ECL. All primary antibodies were used at 1/1000 dilution except HPV18E7 antibody at 1/250.

Anti-Human pRb antibody: BD Pharmingen (Cat No. 554136), Sec Ab: HRP-anti Mouse HPV18E7: Santa Cruz (Cat No. sc-1590), Sec Ab:donkey anti-goat IgG-HRP Cat no. sc 2020 p53: Santa Cruz (Cat No. sc-126), Sec Ab: HRP-anti Mouse p21: Santa Cruz (Cat No. sc-397), Sec Ab: HRP-anti Rabbit c-Myc: Cell Signaling Technology (Cat No. 9402), Sec Ab: HRP-anti Rabbit

[0269] Colony Formation Assay: Hela cells were harvested after bacterial invasion for 2 h. The cells in either control treated or HPV shRNA treated cells were washed 3.times. times with complete MEM and one time with PBS. The cells were then trypsinized and counted. 500 cells from each treatment were added to a single well of a six well plate containing 2 ml of complete growth medium. The cells were allowed to grow for 10 days following which the colonies were fixed with GEIMSA stain.

[0270] MTT Assay: Hela cells were harvested after bacterial invasion for 2 h. The cells in either control treated or HPV shRNA treated cells were washed 3.times. times with complete MEM and one time with PBS. The cells were then trypsinized and counted. 5000 cells from each treatment were added to a single well of a 96 well plate in 100 .mu.l of complete growth medium in triplicates. The cells were incubated at 37.degree. C. for 48-72 h following which 10 .mu.l of 0.5 mg/ml MTT was added to each well. The plate was further incubated at 37.degree. C. for 3 h, the medium was aspirated off from the wells and after incubation, 100 .mu.l of MTT solubilization solution [10% Triton X-100 in acidic isoproponal (0.1 N HCl)] was added to each well to stop the reaction. The absorbance was read at 570 nm on the plate reader.

Results

[0271] In this example, the suppressive effect of a short hairpin RNA directed towards HPV 18 E6 and E7 oncogenes was investigated. The short hairpin RNA was delivered by infecting human cervical cancer cells (Hela) with bacterial strains that produce the short hairpin RNA. The shRNA expression cassette contained 19 nucleotide (nt) of the target sequence followed by the loop sequence (TTCAAGAGA) (SEQ ID NO:388) and the reverse complement to the 19 nt. For the 19 nt, two shRNA sequences published in Cancer Gene Therapy (2006) 13, 1023-1032, were used to measure siRNA delivery and gene silencing efficiency, oligofectamine reagent in a 6 well format was used. Briefly, Hela cells were plated at a cell density of about 40% confluence in antibiotic free medium. On the next day, siRNA was added to 6 well plates at varying concentrations of 50, 100, 200 nM. The control siRNA was added at a single concentration of 100 nM.

[0272] As shown in FIG. 7, the oligofectamine transfection method resulted in a decrease in E6 mRNA in Hela cells with respect to the control siRNA. The siRNA (H1) showed up to about 40% of reduction in E6 mRNA. The knockdown response was not dose dependent.

[0273] Next, the hairpin of the siRNA (H1) was cloned into the TRIP vector. In order to determine if gene silencing could be achieved through the transkingdom system, the shRNA in human cervical cancer cells (Hela) was tested in an invasion assay. Briefly, Hela cells were plated in a six-well plate at 2.times.10.sup.5 cells/well, allowed to grow overnight and incubated the next day for 2 h at different MOIs with bacteria (E. coli) engineered to produce the hairpin RNA. The bacteria were washed off with medium containing 10% FBS and Pen Strep four times and the mammalian cells were further incubated for an additional 48 h in the complete medium. RNA or protein was isolated from the bacteria.

[0274] FIG. 8 and FIG. 9 demonstrate that siRNA downregulates HPV E6 expression in Hela cells. Cells were plated in six well plates and allowed to grow to a confluence of 40% (about 40,000 cells). Oligofectamine/siRNA transfection complexes were prepared in Opti-MEM serum-free medium by mixing 4 .mu.l of oligofectamine with siRNAs (final concentration in 185 .mu.l of medium is 50, 100, 200 nM). 48 hours post-transfection cells were harvested and analyzed by real-time RT-PCR for both target and GAPDH mRNA levels. Data were normalized against the GAPDH signal. Two different negative control siRNAs were used at a single concentration of 200 nM.

[0275] FIG. 10, Panels A-C show real time PCR results following invasion assay of Hela cells. Hela cells were incubated for 2 h with shRNA-expressing BL21 (DE3) at different multiplicities of infection (MOI). Forty-eight hours post-infection the cells were harvested and analyzed by real-time RT-PCR for both target and GAPDH mRNA levels. Data were normalized against the GAPDH signal. These data were then further normalized to untreated control cells.

[0276] FIG. 11 shows the effects of downregulation of HPV E6 and E7 genes on tumor suppressor pathways and other downstream targets. Hela cells were incubated for 2 h with shRNA-expressing BL21(DE3) at different multiplicities of infection (MOI). Forty-eight hours post-infection cells were harvested and analyzed by western blotting. 50 .mu.g of protein was loaded in each lane and resolved by gel electrophoresis, transferred to a membrane and probed with antibodies specific for HPV 18 E7, p53, actin, p110Rb, p21 and c-myc as indicated.

[0277] FIGS. 12 and 13 show a colony formation and MTT assay, respectively. Hela cells were incubated for 2 h with shRNA-expressing BL21(DE3) at different multiplicities of infection (MOI). 2 h post-infection cells were washed trypsinized and counted and an equal number of cells for each MOI was added to a well of a six well plate (For CFA: added 500 cells to each well of a 6 well plate, for MTT added 5000 cells in each well of a 96 well plate). For colony formation, the cells were allowed to grow for 10 days and stained with Geimsa, MTT assay was analyzed at 72 h post plating.

[0278] FIGS. 14 and 15 show real time PCR results following invasion assay of Hela cells. Hela cells were incubated for 2 h with shRNA-expressing BL21(DE3) at different multiplicities of infection (MOI). Forty-eight hours post-infection cells were harvested and analyzed by real-time RT-PCR for both target and GAPDH mRNA levels. Data were normalized against the GAPDH signal. These data were then further normalized to untreated control cells.

[0279] FIG. 16 shows the effects of downregulation of HPV E6 and E7 genes on tumor suppressor pathways and other downstream targets. Hela cells were incubated for 2 h with shRNA-expressing BL21(DE3) at different multiplicities of infection (MOI). Forty-eight hours post-infection cells were harvested and analyzed by western blotting. 50 .mu.g of protein was loaded in each lane and resolved by gel electrophoresis, transferred to a membrane and probed with antibodies specific for HPV 18 E7, p53, actin, p110Rb as indicated.

[0280] FIG. 17 shows real time PCR results following invasion assay of Hela cells with a frozen aliquot of negative sHRNA control and HPV sHRNA in BL21 (DE3). Hela cells were incubated for 2 h with shRNA-expressing BL21 (DE3) at different multiplicities of infection (MOI). Forty-eight hours post-infection cells were harvested and analyzed by real-time RT-PCR for both target and GAPDH mRNA levels. Data were normalized against the GAPDH signal. These data were then further normalized to untreated control cells.

[0281] FIG. 18 shows the plating efficiency of frozen aliquots of negative sHRNA control and HPV sHRNA in BL21 (DE3). The frozen bacteria were thawed and resuspended to a final concentration of 3.38.times.10.sup.8 cells/ml. Invasion assay was performed with this concentration taking 2 mls of 3.38.times.10.sup.8 cells/ml as an MOI of 1000. Some stock control bacteria or HPV bacteria were serially diluted (1:100) and plated on LB plates to assess for the number and viability of bacteria treated cells at 48 h. Gene silencing was analyzed either by quantitative real-time PCR using the .DELTA..DELTA.Ct relative quantitation method or by western blot analysis. HPVE6 mRNA levels were normalized to an endogenous control, GAPDH. The final data were further normalized to the RNA from the untreated cells. For Protein analysis, cell lysates were prepared in Cell Lysis Buffer (Cell Signaling Technology) and the protein concentration was determined using a BCA kit from BioRad. For electrophoresis, the protein expression was normalized to Actin loading control.

Example 8

Knockdown of HPV E6 Gene Assessed by Western Blotting with HPV 18 E7 Antibody

[0282] Hela cells were incubated for 2 h with shRNA-expressing BL21(DE3) (HPVH1 construct below) at different multiplicities of infection (MOI). Forty-eight hours post-infection cells were harvested and analyzed by western blotting. The HPV E6 specific knockdown was compared with a negative shRNA control. Briefly, 50 .mu.g of protein was loaded in each lane and resolved by gel electrophoresis, transferred to a membrane and probed with antibodies specific for HPV 18 E7, and actin as indicated.

TABLE-US-00035 HPVH1 (SEQ ID NO:389) 5'-GATCC TAGGTATTTGAATTTGCAT TTCAAGAGA ATGCAAATTC AAATACCTTTT G-3' (SEQ ID NO:390) 3'-G ATCCATAAACTTAAACGTA AAGTTCTCT TACGTTTAAGTTTAT GGAAAA CAGCT-5'

[0283] FIG. 19 shows the knockdown of HPV E6 gene assessed by western blotting with HPV 18 E7 antibody. Hela cells were incubated for 2 h with shRNA-expressing BL21 (DE3) at different multiplicities of infection (MOI). Forty-eight hours post-infection cells were harvested and analyzed by western blotting. The HPV E6 specific knockdown was compared with a negative sHRNA control. Briefly, 50 .mu.g of protein was loaded in each lane and resolved by gel electrophoresis, transferred to a membrane and probed with antibodies specific for HPV 18 E7 and actin as indicated.

Example 9

Inhibition of CCL20 Expression in CMT93 Cells

[0284] One confluent T-175 flask of CMT93 cells was trypsinized in 10 mls until the cells detached. Trypsin was inactivated by addition of 30 mls of DMEM (10% FCS, pen/strep) and the cells thoroughly mixed by pipetting. From this solution, 8 mls was transferred into a sterile 50 ml tube and 32 mLs of DMEM 10% added. Cells were well mixed and 250 uLs added to each well of a 48 well plate and incubated overnight at 37 C resulting in adherent cells that were approximately 70% confluent the following morning. The next day, siRNA transfection complexes were created by the following method.

[0285] Sequences were ordered from Qiagen as pre-annealed siRNA duplexes. Each well was resuspended in 250 ul of siRNA buffer (from Qiagen) to give a stock concentration of 20 uM. The plate was then placed in a water bath at 95 C for 5 minutes and then allowed to slowly cool to resuspend the duplexes and break apart aggregates. The suspended duplexes were then used in transfection experiments described in standard protocols. The formulation is per well of a 48 well plate containing 250 uL of media; each screen was performed in biological triplicate so the solution was made for 4 wells; 3 for transfection and 1 extra.

[0286] 0.3 uL of the appropriate siRNA (from a 20 uM stock solution) were diluted to 47 uL with serum/antibiotic free media and mixed. To this solution was added 3 uL of HiPerfect transfection reagent (Qiagen) followed by brief vortexing and incubation at room temperature for 20 minutes. 50 uLs of the complex containing mixture was added to each of 3 wells in a 48 well plate containing CMT93 cells. Transfection was for 24 hours at 37 C at which time the media was removed and replaced with 400 uLs of DMEM/10% FCS containing 100 ng/mL of LPS for 2 hours. Following stimulation, the cells were washed and RNA isolated for qRT-PCR according the Qiagen Quantitech method (see manufacturer's protocol) for 50 cycles.

[0287] FIG. 20 shows the knockdown of CCL20 expression with the various siRNA sequences in CMT93 cells. The siRNA sequences tested are listed below:

TABLE-US-00036 SEQ ID SEQ ID Well siRNA sense 5'.fwdarw.3' NO: siRNA antisense 5'.fwdarw.3' NO: G1 GCUUGUGACAUUAAUGCUAtt 391 UAGCAUUAAUGUCACAAGCtt 392 H1 AUAAGCUAUUGUAAAGAUAtt 393 UAUCUUUACAAUAGCUUAUtg 394 G2 CAUCUUUCACACGAAGAAAtt 395 UUUCUUCGUGUGAAAGAUGat 396 H2 CUAUUGUAAAGAUAUUUAAtt 397 UUAAAUAUCUUUACAAUAGct 398 G3 GCCUAAGAGUCAAGAAGAUtt 399 AUCUUCUUGACUCUUAGGCtg 400 G4 CAGUGGACUUGUCAAUGGAtt 401 UCCAUUGACAAGUCCACUGgg 402 G5 GAAGUUGAUUCAUAUUGCAtt 403 UGCAAUAUGAAUCAACUUCat 404 G6 GUUGAUUCAUAUUGCAUCAtt 405 UGAUGCAAUAUGAAUCAACtt 406 G7 ACAUUAGAGUUAAGUUGUAtt 407 UACAACUUAACUCUAAUGUga 408 G8 CAUUAGAGUUAAGUUGUAUtt 409 AUACAACUUAACUCUAAUGtg 410 G9 UGUUAUUUAUAGAUCUGAAtt 411 UUCAGAUCUAUAAAUAACAta 412 G10 GUUUAGCUAUUUAAUGUUAtt 413 UAACAUUAAAUAGCUAAACat 414 G11 AGUGGAAGGAUUAAUAUUAtt 415 UAAUAUUAAUCCUUCCACUaa 416 F12 CCAGCACUGAGUACAUCAAtt 417 UUGAUGUACUCAGUGCUGGgt 418 G12 UGUUUAAGGGAAUAGUUUAtt 419 UAAACUAUUCCCUUAAACAta 420

Example 10

Inhibition of Expression of Claudin-2 in CMT93 Cells

[0288] One confluent T-175 flask of CMT93 cells was trypsinized in 10 mls until the cells detached. Trypsin was inactivated by addition of 30 mls of DMEM (10% FCS, pen/strep) and the cells thoroughly mixed by pipetting. From this solution, 8 mls was transferred into a sterile 50 ml tube and 32 mLs of DMEM 10% added. Cells were well mixed and 250 uL added to each well of a 48 well plate and incubated overnight at 37 C resulting in adherent cells that were approximately 70% confluent the following morning. The next day, siRNA transfection complexes were created by the following method:

[0289] Sequences were ordered from Qiagen as pre-annealed siRNA duplexes. Each well was resuspended in 250 ul of siRNA buffer (from Qiagen) to give a stock concentration of 20 uM. The plate was then placed in a water bath at 95 C for 5 minutes and then allowed to slowly cool to resuspend the duplexes and break apart aggregates. The suspended duplexes were then used in transfection experiments described in standard protocols. The formulation is per well of a 48 well plate containing 250 uL of media; each screen was performed in biological triplicate so the solution was made for 4 wells; 3 for transfection and 1 extra.

[0290] 0.3 uL of the appropriate siRNA (from a 20 uM stock solution) to 47 uL of serum/antibiotic free media and mixed. To this solution was added 3 uL of HiPerfect transfection reagent (Qiagen) followed by brief vortexing and incubation at room temperature for 20 minutes. 50 uLs of the complex containing mixture was added to each of 3 wells in a 48 well plate containing CMT93 cells. Transfection was for 24 or 48 hours at 37 C at which time the cells were washed and RNA isolated for qRT-PCR according the Qiagen Quantitech method (see manufacturer's protocol) for 50 cycles.

[0291] FIG. 21 shows the knockdown of Claudin-2 expression with the various siRNA sequences in CMT93 cells post 24 hr transfection. The siRNA sequences tested are listed below:

TABLE-US-00037 SEQ ID SEQ ID Well siRNA sense 5'.fwdarw.3' NO: siRNA antisense 5'.fwdarw.3' NO: D4 GCUGGGACUAUAUAUAUAAtt 421 UUAUAUAUAUAGUCCCAGCca 422 D5 GGGCAAUUGCUAUAUCUUAtt 423 UAAGAUAUAGCAAUUGCCCtc 424 D6 GCAGCCAAACGACAAGCAAtt 425 UUGCUUGUCGUUUGGCUGCtg 426 D7 AGGGUUUCCUUAAGGACAAtt 427 UUGUCCUUAAGGAAACCCUtg 428 C9 GAAAUGGAUUAGUCAGUAAtt 429 UUACUGACUAAUCCAUUUCtt 430 D11 GGCUCCGAAGAUACUUCUAtt 431 UAGAAGUAUCUUCGGAGCCtg 432

Example 11

Inhibition of Expression of IL6-Ra in CMT93 Cells

[0292] One confluent T-175 flask of CMT93 cells was trypsinized in 10 mls until the cells detached. Trypsin was inactivated by addition of 30 mls of DMEM (10% FCS, pen/strep) and the cells thoroughly mixed by pipetting. From this solution, 8 mls was transferred into a sterile 50 ml tube and 32 mLs of DMEM 10% added. Cells were well mixed and 250 uLs added to each well of a 48 well plate and incubated overnight at 37 C resulting in adherent cells that were approximately 70% confluent the following morning. The next day, siRNA transfection complexes were created by the following method:

[0293] Sequences were ordered from Qiagen as pre-annealed siRNA duplexes. Each well was resuspended in 250 ul of siRNA buffer (from Qiagen) to give a stock concentration of 20 uM. The plate was then placed in a water bath at 95 C for 5 minutes and then allowed to slowly cool to resuspend the duplexes and break apart aggregates. The suspended duplexes were then used in transfection experiments described in standard protocols. The formulation is per well of a 48 well plate containing 250 uL of media; each screen was performed in biological triplicate so the solution was made for 4 wells; 3 for transfection and 1 extra.

[0294] 0.3 uL of the appropriate siRNA (from a 20 uM stock solution) to 47 uL of serum/antibiotic free media and mixed. To this solution was added 3 uL of HiPerfect transfection reagent (Qiagen) followed by brief vortexing and incubation at room temperature for 20 minutes. 50 uLs of the complex containing mixture was added to each of 3 wells in a 48 well plate containing CMT93 cells. Transfection was for 24, 48 or 72 hours at 37 C at which time the cells were washed and RNA isolated for qRT-PCR according the Qiagen Quantitech method (see manufacturer's protocol) for 40 cycles.

[0295] FIG. 22 shows the knockdown of IL6-RA expression with the various siRNA sequences in CMT93 cells post 24 hr transfection. The siRNA sequences tested are listed below:

TABLE-US-00038 SEQ ID SEQ ID Well siRNA sense 5'.fwdarw.3' NO: siRNA antisense 5'.fwdarw.3' NO: E1 CCUGGAGGGUGACAAAGUAtt 433 UACUUUGUCACCCUCCAGGat 434 F1 GGUCUGACAAUACCGUAAAtt 435 UUUACGGUAUUGUCAGACCca 436 F2 GCUGUUUCCUAUAACAGAAtt 437 UUCUGUUAUAGGAAACAGCgg 438 F3 GCUGUGAAAGGGAAAUUUAtt 439 UAAAUUUCCCUUUCACAGCag 440 E4 CCUUGUGGUAUCAGCCAUAtt 441 UAUGGCUGAUACCACAAGGtt 442 E5 GCUUCGAUACCGACCUGUAtt 443 UACAGGUCGGUAUCGAAGCtg 444 E6 CGGCAGGAAUCCUCUGGAAtt 445 UUCCAGAGGAUUCCUGCCGgg 446 E7 CCACGAGGAUCAGUACGAAtt 447 UUCGUACUGAUCCUCGUGGtt 448 E8 CACGAGGAUCAGUACGAAAtt 449 UUUCGUACUGAUCCUCGUGgt 450 E9 GAUCAGUACGAAAGUUCUAtt 451 UAGAACUUUCGUACUGAUCct 452 E10 GUACGAAAGUUCUACAGAAtt 453 UUCUGUAGAACUUUCGUACtg 454 E11 GAAAGUUCUACAGAAGCAAtt 455 UUGCUUCUGUAGAACUUUCgt 456 E12 GGGUCUGACAAUACCGUAAtt 457 UUACGGUAUUGUCAGACCCag 458

Example 12

Inhibition of Expression of IL13-Ra1 in CMT93 Cells

[0296] One confluent T-175 flask of CMT93 cells was trypsinized in 10 mls until the cells detached. Trypsin was inactivated by addition of 30 mls of DMEM (10% FCS, pen/strep) and the cells thoroughly mixed by pipetting. From this solution, 8 mls was transferred into a sterile 50 ml tube and 32 mLs of DMEM 10% added. Cells were well mixed and 250 uLs added to each well of a 48 well plate and incubated overnight at 37 C resulting in adherent cells that were approximately 70% confluent the following morning. The next day, siRNA transfection complexes were created by the following method:

[0297] Sequences were ordered from Qiagen as pre-annealed siRNA duplexes. Each well was resuspended in 250 ul of siRNA buffer (from Qiagen) to give a stock concentration of 20 uM. The plate was then placed in a water bath at 95 C for 5 minutes and then allowed to slowly cool to resuspend the duplexes and break apart aggregates. The suspended duplexes were then used in transfection experiments described in standard protocols. The formulation is per well of a 48 well plate containing 250 uL of media; each screen was performed in biological triplicate so the solution was made for 4 wells; 3 for transfection and 1 extra. 0.3 uL of the appropriate siRNA (from a 20 uM stock solution) to 47 uL of serum/antibiotic free media and mixed. To this solution was added 3 uL of HiPerfect transfection reagent (Qiagen) followed by brief vortexing and incubation at room temperature for 20 minutes. 50 uLs of the complex containing mixture was added to each of 3 wells in a 48 well plate containing CMT93 cells. Transfection was for 24 or 72 hours at 37 C at which time the cells were washed and RNA isolated for qRT-PCR according the Qiagen Quantitech method (see manufacturer's protocol) for 40 cycles.

[0298] FIG. 23 shows the knockdown of IL13-RA1 expression with the various siRNA sequences in CMT93 cells post 24 hr transfection. The siRNA sequences tested are listed below:

TABLE-US-00039 SEQ ID SEQ ID Well siRNA sense 5'.fwdarw.3' NO: siRNA antisense 5'.fwdarw.3' NO: F1 AGAAGACUCUAAUGAUGUAtt 459 UACAUCAUUAGAGUCUUCUtg 460 F2 CAGUCAGAGUAAGAGUCAAtt 461 UUGACUCUUACUCUGACUGtg 462 F8 CAGAACAUCUAGCAAACAAtt 463 UUGUUUGCUAGAUGUUCUGtg 464 F9 CUUGUAGGUUCACAUAUUAtt 465 UAAUAUGUGAACCUACAAGtt 466 F10 CAGUGUAGUGCCAAUGAAAtt 467 UUUCAUUGGCACUACACUGag 468 F11 GUAUGACAUCUAUGAGAAAtt 469 UUUCUCAUAGAUGUCAUACtt 470

Example 13

Inhibition of Expression of IL-18 in CMT93 Cells

[0299] One confluent T-175 flask of CMT93 cells was trypsinized in 10 mls until the cells detached. Trypsin was inactivated by addition of 30 mls of DMEM (10% FCS, pen/strep) and the cells thoroughly mixed by pipetting. From this solution, 8 mls was transferred into a sterile 50 ml tube and 32 mLs of DMEM 10% added. Cells were well mixed and 250 uLs added to each well of a 48 well plate and incubated overnight at 37 C resulting in adherent cells that were approximately 70% confluent the following morning. The next day, siRNA transfection complexes were created by the following method:

[0300] Sequences were ordered from Qiagen as pre-annealed siRNA duplexes. Each well was resuspended in 250 ul of siRNA buffer (from Qiagen) to give a stock concentration of 20 uM. The plate was then placed in a water bath at 95 C for 5 minutes and then allowed to slowly cool to resuspend the duplexes and break apart aggregates. The suspended duplexes were then used in transfection experiments described in standard protocols. The formulation is per well of a 48 well plate containing 250 uL of media; each screen was performed in biological triplicate so the solution was made for 4 wells; 3 for transfection and 1 extra.

[0301] 0.3 uL of the appropriate siRNA (from a 20 uM stock solution) to 47 uL of serum/antibiotic free media and mixed. To this solution was added 3 uL of Lipofectamine RNAiMAX transfection reagent (Invitrogen) followed by brief vortexing and incubation at room temperature for 20 minutes. 50 uLs of the complex containing mixture was added to each of 3 wells in a 48 well plate containing CMT93 cells. Transfection was for 24 hours at 37 C at which time the cells were washed and RNA isolated for qRT-PCR according the Qiagen Quantitech method (see manufacturer's protocol) for 40 cycles.

[0302] FIG. 24 shows the knockdown of IL18 expression with the various siRNA sequences in CMT93 cells post 24 hr transfection. The siRNA sequences tested are listed below:

TABLE-US-00040 SEQ ID SEQ ID Well siRNA sense 5'.fwdarw.3' NO: siRNA antisense 5'.fwdarw.3' NO: B2 AGGAAAUGAUGUUUAUUGAtt 471 UCAAUAAACAUCAUUUCCUtg 472 B3 GGCCGACUUCACUGUACAAtt 473 UUGUACAGUGAAGUCGGCCaa 474 B4 GAUGGAGUUUGAAUCUUCAtt 475 UGAAGAUUCAAACUCCAUCtt 476 B5 CAACCGCAGUAAUACGGAAtt 477 UUCCGUAUUACUGCGGUUGta 478 B6 CGAGGCUGCAUGAUUUAUAtt 479 UAUAAAUCAUGCAGCCUCGgg 480 B7 CCUGUAUUUCCAUAACAGAtt 481 UCUGUUAUGGAAAUACAGGcg 482 B8 CAUGUACAAAGACAGUGAAtt 483 UUCACUGUCUUUGUACAUGta 484 B9 CGAGGAUAUGACUGAUAUUtt 485 AAUAUCAGUCAUAUCCUCGaa 486 B10 GGAUAUGACUGAUAUUGAUtt 487 AUCAAUAUCAGUCAUAUCCtc 488 B11 CUAACUUACAUCAAAGUUAtt 489 UAACUUUGAUGUAAGUUAGtg 490 B12 CUCACUAACUUACAUCAAAtt 491 UUUGAUGUAAGUUAGUGAGag 492

Example 14

Inhibition of Expression of IL-7 in CMT93 Cells

[0303] One confluent T-175 flask of CMT93 cells was trypsinized in 10 mls until the cells detached. Trypsin was inactivated by addition of 30 mls of DMEM (10% FCS, pen/strep) and the cells thoroughly mixed by pipetting. From this solution, 8 mls was transferred into a sterile 50 ml tube and 32 mLs of DMEM 10% added. Cells were well mixed and 250 uLs added to each well of a 48 well plate and incubated overnight at 37 C resulting in adherent cells that were approximately 70% confluent the following morning. The next day, siRNA transfection complexes were created by the following method:

[0304] Sequences were ordered from Qiagen as pre-annealed siRNA duplexes. Each well was resuspended in 250 ul of siRNA buffer (from Qiagen) to give a stock concentration of 20 uM. The plate was then placed in a water bath at 95 C for 5 minutes and then allowed to slowly cool to resuspend the duplexes and break apart aggregates. The suspended duplexes were then used in transfection experiments described in standard protocols. The formulation is per well of a 48 well plate containing 250 uL of media; each screen was performed in biological triplicate so the solution was made for 4 wells; 3 for transfection and 1 extra.

[0305] 0.3 uL of the appropriate siRNA (from a 20 uM stock solution) to 47 uL of serum/antibiotic free media and mixed. To this solution was added 3 uL of Lipofectamine RNAiMAX transfection reagent (Invitrogen) followed by brief vortexing and incubation at room temperature for 20 minutes. 50 uLs of the complex containing mixture was added to each of 3 wells in a 48 well plate containing CMT93 cells. Transfection was for 24 hours at 37 C at which time the cells were washed and RNA isolated for qRT-PCR according the Qiagen Quantitech method (see manufacturer's protocol) for 40 cycles.

[0306] FIG. 25 shows the knockdown of IL-7 expression with the various siRNA sequences in CMT93 cells post 24 hr transfection. The siRNA sequences tested are listed below:

TABLE-US-00041 SEQ ID SEQ ID Well siRNA sense 5'.fwdarw.3' NO: siRNA antisense 5'.fwdarw.3' NO: A1 GAUCCUACGGAAGUUAUGGtt 493 CCAUAACUUCCGUAGGAUCcg 494 B1 CCAUGUUCCAUGUUUCUUUtt 495 AAAGAAACAUGGAACAUGGtc 496 A2 CCUCCCGCAGACCAUGUUCtt 497 GAACAUGGUCUGCGGGAGGcg 498 A3 CUCCCGCAGACCAUGUUCCtt 499 GGAACAUGGUCUGCGGGAGgc 500 A4 UCCCGCAGACCAUGUUCCAtt 501 UGGAACAUGGUCUGCGGGAgg 502 A5 CCCGCAGACCAUGUUCCAUtt 503 AUGGAACAUGGUCUGCGGGag 504 A6 CCGCAGACCAUGUUCCAUGtt 505 CAUGGAACAUGGUCUGCGGga 506 A7 CGCAGACCAUGUUCCAUGUtt 507 ACAUGGAACAUGGUCUGCGgg 508 A10 AGACCAUGUUCCAUGUUUCtt 509 GAAACAUGGAACAUGGUCUgc 510 A12 ACCAUGUUCCAUGUUUCUUtt 511 AAGAAACAUGGAACAUGGUct 512

Example 15

Inhibition of Expression of Chitinase3-Like-1 (CH13L1) Expression in CMT93 Cells

[0307] In a 1.7 ml microcentrifuge tube, 2.4 .mu.l of 20 .mu.M double-stranded RNA solution (from Qiagen) was diluted into 394 .mu.l Opti-MEM serum-free medium (Invitrogen) containing 1 .mu.l Lipofectamine RNAiMAX (Invitrogen), mixed, and incubated 10 min at room temperature to enable the formation of transfection complexes. 100 .mu.l of this mixture was added to each of three wells of a 24-well tissue culture dish, on top of which CMT-93 cells were plated in a 500 .mu.l volume, resulting in a final volume of 600 .mu.l per well and a final RNA concentration of 20 nM. After 24 h transfection, 0.1 .mu.g/ml lipopolysaccharide (LPS) (Sigma) was added to each well and cells were incubated for a further 24 h to stimulate CH13L1 production, after which cells were washed in PBS and harvested for RNA extraction. CMT-93 cells were prepared for transfection as follows. 1 confluent T-175 flask of CMT93 cells was trypsinized in 10 mls until the cells detached. Trypsin was inactivated by addition of 30 mls of DMEM (10% FBS) and the cells thoroughly mixed by pipetting. From this solution, 10 mls was transferred into a sterile 50 ml tube and 40 mLs of DMEM 10% FBS added. Cells were well mixed and 500 .mu.Ls added to each well of a 24-well plate. This concentration of cells resulted in approximately 70% confluency after 24 h of growth.

[0308] FIG. 26 shows the knockdown of CH13L1 expression with the various siRNA sequences in CMT93 cells post 24 hr transfection. The siRNA sequences tested are listed below:

TABLE-US-00042 SEQ ID SEQ ID Well siRNA sense 5'.fwdarw.3' NO: siRNA antisense 5'.fwdarw.3' NO: G1 CCACAUCAUCUACAGCUUUtt 513 AAAGCUGUAGAUGAUGUGGgt 514 H1 GGUUUGACAGAUACAGCAAtt 515 UUGCUGUAUCUGUCAAACCta 516 G2 UCAUCUACAGCUUUGCCAAtt 517 UUGGCAAAGCUGUAGAUGAtg 518 H2 CCCUGUUAAGGAAUGCAAAtt 519 UUUGCAUUCCUUAACAGGGtt 520 H3 CAAGUAGGCAAAUAUCUUAtt 521 UAAGAUAUUUGCCUACUUGat 522 H4 CAGCUUUGUCAGCAGGAAAtt 523 UUUCCUGCUGACAAAGCUGcg 524 G5 GGUUCACCAAGGAGGCAGGtt 525 CCUGCCUCCUUGGUGAACCgg 526 H5 GGAUCAAGUAGGCAAAUAUtt 527 AUAUUUGCCUACUUGAUCCaa 528 H6 GAGGGACCAUACUAAUUAUtt 529 AUAAUUAGUAUGGUCCCUCaa 530 G7 GGCCGGUUCACCAAGGAGGtt 531 CCUCCUUGGUGAACCGGCCtg 532 H7 GGACAAGGAGAGUGUCAAAtt 533 UUUGACACUCUCCUUGUCCtc 534 G8 CCGGUUCACCAAGGAGGCAtt 535 UGCCUCCUUGGUGAACCGGcc 536 H8 CGUACAAGCUGGUCUGCUAtt 537 UAGCAGACCAGCUUGUACGca 538 G9 GGAGUUUAAUCUCUUGCAAtt 539 UUGCAAGAGAUUAAACUCCtg 540 H9 CAAGGAACUGAAUGCGGAAtt 541 UUCCGCAUUCAGUUCCUUGat 542 G10 CCCUGAUCAAGGAACUGAAtt 543 UUCAGUUCCUUGAUCAGGGtg 544 H10 CUUGGAUCAAGUAGGCAAAtt 545 UUUGCCUACUUGAUCCAAGtg 546 G11 GGAUUGAGGGACCAUACUAtt 547 UAGUAUGGUCCCUCAAUCCtg 548 G12 GCAAAUUCUCAGACUCUAAtt 549 UUAGAGUCUGAGAAUUUGCat 550 H12 CCUUCCCUUAGGAACUUAAtt 551 UUAAGUUCCUAAGGGAAGGat 552

Example 16

Construction of CEQ200

[0309] CEQ200 has the following genotype: glnV44(AS), LAM.sup.-, rfbC1, endA1, spoT1, thi-1, hsdR17, (r.sub.k.sup.-m.sub.k.sup.+),creC510 .DELTA.dapA. The MM294 has the following genotype: glnV44(AS), LAM.sup.-, rfbC1, endA1, spoT1, thi-1, hsdR17, (r.sub.k.sup.-m.sub.k.sup.+),creC510. We purchased the plasmids from CGSC (see Datsenko et al., (2000) Proc. Natl. Acad. Sci. USA 97, 6640-6645).

##STR00002##

Example 17

Construction of CEQ201

[0310] CEQ201 has the following genotype: CEQ200 [glnV44(AS), LAM, rjbC1, endA1, spoT1, thi-1, hsdR17, (r.sub.k.sup.-m.sub.k.sup.+),creC510 .DELTA.dapA .DELTA.recA. The MM294 has the following genotype: glnV44(AS), LAM.sup.-, rfbC1, endA1, spoT1, thi-1, hsdR17, (r.sub.k.sup.-m.sub.k.sup.+),creC510. We purchased the plasmids from CGSC (see Datsenko et al., (2000) Proc. Natl. Acad. Sci. USA 97, 6640-6645).

##STR00003##

Example 18

Construction of BTPs (CEQ210) by Deletion of minC and/or minD Genes from MM294

##STR00004##

[0311] Example 19

Illustration of the pMBV40, pMBV43 and pMBV44 Plasmids

[0312] The pMBV40, pMBV43 and pMBV44 plasmids may be used as final or intermediary plasmid in the tkRNA system and may be constructed as follows: pUC19 digested with restriction enzyme PvuII. Resultant .about.2.4 kb fragment was ligated with a .about.200 bp DNA fragment generated by annealing oligonucleotides with each other. The oligonucleotides have the following names and sequences:

TABLE-US-00043 OHTOP1: (SEQ ID NO:553) GACTTCATATACCCAAGCTTGGAAAATTTTTTTTAAAAAAGTCTTGACAC TTTATGCTTCCGGCTCGTATAATGGATCCAGGAGTAACAATACAAATGGA OHTOP2: (SEQ ID NO:554) TTCAAGAGATCCATTTGTATTGTTACTCCTTTTTTTTTTTGTCGACGATC CTTAGCGAAAGCTAAGGATTTTTTTTTTACTCGAGCGGATTACTACATAC OHBOT1: (SEQ ID NO:555) GTATGTAGTAATCCGCTCGAGTAAAAAAAAAATCCTTAGCTTTCGCTAAG GATCGTCGACAAAAAAAAAA OHBOT2: (SEQ ID NO:556) AGGAGTAACAATACAAATGGATCTCTTGAATCCATTTGTATTGTTACTCC TGGATCCATT OHBOT3: (SEQ ID NO:557) ATACGAGCCGGAAGCATAAAGTGTCAAGACTTTTTTAAAAAAAATTTTCC AAGCTTGGGTATATGAAGTC .dwnarw. Ligation mix was transformed in E. coli and Ampicillin resistant transformants were selected. Plasmid DNA from a transformant that had the expected DNA sequence of the insert and restriction map was named pMBV38. .dwnarw. pMBV38 was digested with NdeI and blunt end ligated with a ~6 kb fragment generated by BamHI-SalI digestion of the plasmid pKSII-inv-hly

The predicted sequence of pKSII-inv-hly is as follows:

TABLE-US-00044 (SEQ ID NO:558) CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTT AAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTAT AAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAA CAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAA CCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGT TTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAG CCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGG AAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCG GTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACA GGGCGCGTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGAT CGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCT GCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTG TAAAACGACGGCCAGTGAGCGCGCGTAATACGACTCACTATAGGGCGAAT TGGAGCTCCACCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCCCCCGGG CTGCAGCTGGGCCGTAAGATCGGCATTTAATCGCGACAATCCTTTTAAAA AAACAGCGCCGCTCAATTAACCTGAGCGGCGTTGTTCTTCTGGACGTTTG CTACTTATGGGGCGAGTCTAGGATTGCCGGACTCCCATTCGCGCCCCAAA TAATCAGCTCATTAAACTGTTCTTATTGCTATCTGTTATCTGGTTATATT GACAGCGCACAGAGCGGGAACGCCAAGTATGCAGGCCCTGGTTGCAGTGC GCCTGTGTCCATATTCATGGTTTCAAAATCCGTGCTGGTCTTTTTGACCC AATATTCACCAGATTGCCAATCAGAACTATACGCGGTCAAGCTCCCCCAC TCGCCCCACAATGTCCCGTCAGGCGCACGCGTTCCGTTGGTTGCACGTGA GGATTCAAGAACCGCAGACATATCTGAACCTTGGCATTGTCTGCTGGCCT CGAGACTGGATACCAGCGATCTGCCGCCATCGTATATCCACCGATTTGGG TAGAACCGATAACTCACCGAATAACTTGGGAATTTTTTACTTTTCGCCGT CACAGCCACTTCGCTATAGGTTTGGTAGGTAATCGTCACCTGACCCTGAT CGTTAACCGATACATTGGGTGTGAATGACGACGACCACTCATACTGAGTA TTATTAGCAACATCGTTATCCATCTGTAACTGGAATGTGGCGTTTTTAAA GATCGTTTTCGGGAACCCTTTATCCGTAGCGAAATTTTGCCCGTTAACCA GAATACCGGTCAGCGTAGGTACCGGGAATAGGGATATTTTTTTCTGCAAT GTACTCAGTATCAGGGTATCAACCTGCGGCGTGATTGTGACATCACCGAC ACTATTCCCAACCACCGTCGCGGTATAGCTATCTGGCTGCTCGGTAATGG GGCTAATACTCACCGGCACACCGTTTTGAGTAAAACTCAAGCCCTGCATC CCACTGATAAAATGGCCATTCTTATCGACAGGGACAAAGGATAATGTGGA ACTCATCGTGCCATCAGCCAAGATATCCGGTGTGGAGACGGTGAAACTGG AGCGGCCAGCATCTGGAATAGGATCTGCCGTGAAATTAACCGTCACACTC GGCACACTGAACGCAGCCCCATCCACTTTCACCGTTACTGTTGCTACCCC CAACGTGGTACTGGTCAATGGTGCGCTATAAGTGCCGTCATTGTGATCCG TGATAACGCCCATATTGCCTAAGGTTGTGTCAAAAGCCACATTCGCGCCA GCCTGCGGGTCCCCATAGGTATCCTTCAACTCCAACGTGATGGTTGAAGC CATTAGACCATCAGCGATGATAGATGTCGGTACCGCAGCCAGAGTGGATT TATCCGCCGCGATAGTACCCTTAACAAAGTGGGTATCAACACTTTGCCGT TGCCCCTCCACTTCTGCTGTGACTACCGTCACGCCATCTGTCGTATTGGT TAATGCAATGCGCGCGACGCCATTTGCATCTGTCTTTTCCGTGATTTTAT TCGGTAGCGCACCATTATTGGTGGTTATCACCACCTCCTGCCCGGCTAAG GGTTTCCCCTCAAAATCAGCAACGGTGAACTCAACGGTGATTGCAGTTTT CCCATTAGCCGGTGCGCCATCACCAATGACGGCCGCCGTTAATGTCAACT GAGGCTGCTGAACGGTGACGCTCAATGTGAATGAGTTAGATCGGTTTCCT TGGTGATCAACCGCGAGCGCACTAAGCGAATAAAAGTTGGCTGTCAGGTC GTCCGTTACCCGACTCACTTGTGCTGTGCGTTTATAAGGCGGTAAAACCA AGTTGAATTGTGTGGTACTCAGTGGTGTTAATGTGCCGCCAGCGGCAATC AGTTCGGCATCACTCCAGACAATTTCCCTTACAGCAGATGCCCCTTGTAC TTGTGCGTTCACCTGATAAACCTGACCCGGCAGGCCGGAGATAGTTGCTG GCGATAATGTCAGTTTAACCACCTGCTGTTTCTGATACTCCAACACGATA TTATTGTTACGATCGACAAGGTTATAGCGGCTCTCCGCCAGTAGACGTGT TCCTGCCACCGCTGAAGGGCTAAGTTGCGACTGAAAACTCTCGCCCAGGC GATAGTTCATTTGGAGGTTCCACTGTGTTTCATGCTTACTGCTTTTCCCC ATACGCTGATCTACCCCGACAGTGAGTAGAGGCACGGGGGTGTAATTGAT CCCGGCAGTCACGGCATAAGGGTTGCGTTGCAGATTATCTTTACCAAATA AAGCAACACGCTCACCGGTGTATTGCTCATACATCAACTTCCCCCCCAGT TGTGGGAGTGCAGGTAAATAAGCATTCGCGCGCAAATCCCCCCCAGTGGC TGGGCGCTCTTTATAGTCGGAGAAATCACGCGACGAGTGCCATCCATTGA GGCGAAAATACCCATTGGCAGCCAACTGTAAATAATCGGTCCAGGCCTCG GCACCAAGACCGATACGGTGGTTGTGGCCGGTCAAATCATTATCATAAAA AGTATTAAGTCCGTACAGCCAACCGTTCTCCAATGTACGTATCCCGACGC CAAGGTTAAGTGTGTTGCGGCTGTCTTTATTGCGAATACCTAACTGACTA AAAAAGAGGAATGAAGCAGAGTCATACCAAGGAGCCAGCCAATCAAGAGA GCTTTCTTTTAGCGAAAAATTTTTGTCAAAATTCAGATTAACTTGAGCCG TACCGAATCGATTTAACCACTGTTTGATTTCTTGATTAACCGCATCGCCC ACCATTGAGTGAGCAACATCAGATGCCCTGCCTGATGCAGCTAACCTGGC CCCGGTGCTTATCATCTTATTCACCGCTTCAGTCTCCTGCTCCTTATTGG CGCGATCTATTATTGCAGCATTTCTTTCTGTATCCGATGCGGPAAAGGGA TTGATTGAACTCTCCATTTCATTATTAGGATGGAGATTTTCAAATGCAGA TGAAGAGACAGAATAAGGCTGGACCTGTTGCGGTGCGTTAGCATCATATT TTTCTGAAGCCCCAGCCATGAACATTCCACATATCAAAAAGATACAAATA ACTATTCGTGAAATAATATTAAATGAATTATTTTATTAAAATACATAGAC ATTCCCGCATTCCTTATCAAGAGAAACTCACTGATTGGCTGGAAAACCAT CATAATTTAAATGAAATAAAGCATACCTGTCATACGTCAAACTGCATGTG CGTTGGCTGTGCTCAACAACTTGAGTTATTTGAGGTATAACTGGCCACAA ACGAGCATTTGAAATCACCTTGACCATTAATTAAAGATGCAATAGTTGAA AGTGAAACTTGTTTTCTAATTTAGTAAAGACATTAAGAGGATAGCACTTT TTTAAAAAACCAGACTGGGCAGATTAAAAATATTCAAAATATATAATAAA CAGTCTATACCATACAGCGATAGAATTGATTTATTGTAACTAAGCAGGTG AGAATATCAAAAAAAACAAAAATACAAAATGAACTATTATCATATAAATA ATATCAATTAGAATAAGCCCCCTTCATTTGATGTTGTCAGTTGTCTGCTG CGGTTTTTATTTCTACTTTCAGTCTGAAGTGTTACTCCGCAATATCCGCA TTAATCCTGATGGTTGCCTTGATGACTGCAGGAATTCGATCCCTCCTTTG ATTAGTATATTCCTATCTTAAAGTGACTTTTATGTTGAGGCATTAACATT TGTTAACGACGATAAGGGACAGCAGGACTAGAATAAGCTATAAAGCAAGC ATATAATATTGCGTTTCATCTTTAGAAGCGAATTTCGCCAAATATTATAA TTATCAAAGAGAGGGGTGGCAAACGGTATTTGGCATTATTAGGTTAAAAA ATGTAGAAGGAGAGTGAAACCCATGAAAAAAATAATGCTAGTTTTTATTA CACTTATATTAGTTAGTCTACCAATTGCGCAACAACTGAAGCAAAAGGAT GCATCTGCATTCAATAAAGAAAATTCAATTTCATCCATGGCACCACCAGC ATCTCCGCCTGCAAGTCCTAAGACGCCAATCGAAAAAGAACACGCGGATG AAATCGATAAGTATATACAAGGATTGGATTACAATAAAAACAATGTATTA GTATACCACGGAGATGCAGTGACAAATGTGCCGCCAAGAAAAGGTTACAA AGATGGAAAATGAATATATTGTTGTGGAGAAAAGAAGAAATCCATCAATC AAATAATGCAGACATTCAAGTTGTGAATGCAATTTCGAGCCTAACCTATC CAGGTGCTCTCGTAAAAGCGAATTCGGAATTAGTAGAAAATCAACCAGAT GTTCTCCCTGTAAAACGTGATTCATTAACACTCAGCATTGATTTGCCAGG TATGACTAATCAAGACAATAAATCGTTGTAAAAAATGCCACTAATCAACG TTAACAACGCAGTAAATACATTAGTGGAAAGATGGAATGAAAATATGCTC AAAGCTTATCcAAATGTAAGTGCAAAAATTGATTATGATGACGAAATGGC TTACAGTGAATCACAATTAATTGCGAAATTTGGTACAGCATTTAAGCTGT AATAATAGCTTGAATGTAAAACTTCGGCGCAATCAGTGAAGGGAAAATGC ATAAGAAGAAGTCATTAGTTTTAAACAAATTTACTATAACGTGAATGTTA ATGAACCTACAAGACCTTCCAGATTTTTCGGCAAAGCTGTTACTAAAGAG CAGTTGCAAGCGCTTGGAGTGAATGCAGAAAATCCTCCTGCATATATCTC AAGTGTGGCGTATGGCCGTCAAGTTTATTTGAAATTATCAACTAATTCCC ATAGTACTAAAGTAAAAGCTGCTTTTGATGCTGCCGTAAGCGGAAAATCT GTCTCAGGTGATGTAGAACTAACAAATATCATCAAAATTCTTCCTTCAAG CCGTAATTTACGGAGGTTCCGCAAAAGATGAAGTTCAAATCATCGACGGC AACCTCGGAGACTTACGCGATATTTTGAAAAAAGGCGCTACTTTTAATCG AGAAACACCAGGAGTTCCCATTGCTTATACAACAACTTCCTIGACAATGA ATTAGCTGTTATTAAAAACAACTCAGAATATATTGAACAACTTCAAAAGC TTATACAGATGGAAAAATTAACATCGATCACTCTGGAGGATACGTTGCTC AAATTCACATTTCTTGGGATGAAGTAATTATGATCCTGAAGGTAACGAAA TTGTTCAACATAAACTGGAGCGAAAACAATAAAAGCAAGCTAGCTCATTT CACATCGTCCATCTATTTGCCAGGTAACGCGAGAAATATTAATGTTTACG CTAAAGAATGCACTGGTTTAGCTTGGGAATGGTGGAGAACGGTAATTGAT GACCGGAACTTACCACTTGTGAAAAATAGAAATATCTCCATCTGGGGCAC CACGCTTTATCCGAAATATAGTAATAAAGTAGATAATCCAATCGAATAAT TGTAAAAGTAATAAAAAATTAAGAATAAAACCGCTTAACACACACGAAAA AATAAGCTTGTTTTGCACTCTTCGTAAATTATTTTGTGAAGAATGTAGAA

ACAGGCTTATTTTTTAATTTTTTTAGAAGAATTAACAAATGTAAAAGAAT ATCTGACTGTTTATCCATATAATATAAGCATATCCCAAAGTTTAAGCCAC CTATAGTTTCTACTGCAAAACGTATAATTTAGTTCCCACATATACTAAAA AACGTGTCCTTAACTCTCTCTGTCAGATTAGTTGTAGGTGGCTTAAACTT AGTTTTACGAATTAAAAAGGAGCGGTGAAATGAAAAGTAAACTTATTTGT ATCATCATGGTAATAGCTTTTCAGGCTCATTTCACTATGACGGTAAAAGC AGATTCTGTCGGGGAAGAAAAACTTCAAAATAATACACAAGCCAAAAAGA CCCCTGCTGATTTAAAAGCTTATCAAGCTTATCGATACCGTCGACCTCGA GGGGGGGCCCGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCG CGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCC GCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCT GGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTG CCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGG CCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCT CGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCA GCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGC AGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAA AGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCAT CACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATA AAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTC CGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGC GTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGT CGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACC GCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAG GTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCT ACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACC TTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGG TAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAA GGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTG GAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGA TCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAA AGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGA GGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGAC TCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCC AGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATC AGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAA CTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTA AGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGG CATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTT CCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCG GTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGT GTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGC CATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTC TGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACG GGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAA AACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCC AGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTAC TTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAA AAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTT TTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATA CATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACAT TTCCCCGAAAAGTGCCAC .dwnarw. Ligation mix was transformed in E. coli and Ampicillin resistant transformants were selected. Plasmid DNA from a transformant that had insertion of inv and hly genes was named pMBV40. .dwnarw. pMBV40 was digested with BspHI and the resultant 7.4 kb DNA fragment was ligated with a PCR fragment containing kan gene generated using plasmid pKD4 (purchased from CGSC (see Datsenko et al., (2000) Proc. Natl. Acad. Sci. USA 97,6640-6645) as the template. .dwnarw. Ligation mix was transformed in E. coli and Kanamycin resistant transformants were selected. They were screened restriction mapping. They two different orientation of kan gene. The plasmids having clockwise and anticlockwise orientation of open reading frame of kan gene were called pMBV43 and pMBV44, respectively

[0313] As shown in FIG. 27, the pMBV40 (amp selected having H3 hairpin) or pMBV43 and pMBV44 (kan selected having H3 hairpin) plasmids, are followed by the respective sequences.

TABLE-US-00045 pMBV40 (SEQ ID NO:559) TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAA- G CGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTAT- G CGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATCGACGGTATCGATAAGCTTGATAAGCTTTTAAATCAG- C AGGGGTCTTTTTGGCTTGTGTATTATTTTGAAGTTTTTCTTCCCCGACAGAATCTGCTTTTACCGTCATAGTGA- A ATGAGCCTGAAAAGCTATTACCATGATGATACAAATAAGTTTACTTTTCATTTCACCGCTCCTTTTTAATTCGT- A AAACTAAGTTTAAGCCACCTACAACTAATCTGACAGAGAGAGTTAAGGACACGTTTTTTAGTATATGTGGGAAC- T AAATTATACGTTTTGCAGTAGAAACTATAGGTGGCTTAAACTTTGGGATATGCTTATATTATATGGATAAACAG- T CAGATATTCTTTTACATTTGTTAATTCTTCTAAAAAAATTAAAAAATAAGCCTGTTTCTACATTCTTCACAAAA- T AATTTACGAAGAGTGCAAAACAAGCTTATTTTTTCGTGTGTGTTAAGCGGTTTTATTCTTAATTTTTTATTACT- T TTACAATTATTCGATTGGATTATCTACTTTATTACTATATTTCGGATAAAGCGTGGTGCCCCAGATGGAGATAT- T TCTATTTTTCACAAGTGGTAAGTTCCGGTCATCAATTACCGTTCTCCACCATTCCCAAGCTAAACCAGTGCATT- C TTTAGCGTAAACATTAATATTTCTCGCGTTACCTGGCAAATAGATGGACGATGTGAAATGAGCTAGCTTGCTTT- T ATTGTTTTCGCTCCAGTTTTTATGTTGAACAATTTCGTTACCTTCAGGATCATAATTTACTTCATCCCAAGAAA- T GTTGAATTGAGCAACGTATCCTCCAGAGTGATCGATGTTAATTTTTCCATCTGTATAAGCTTTTGAAGTTGTTT- C AATATATTCTGAGTTGTTTTTAATAACAGCTAATTCATTGTCTTTTAGGAAGTTTGTTGTATAAGCAATGGGAA- C TCCTGGTGTTTCTCGATTAAAAGTAGCGCCTTTTTTCAAAATATCGCGTAAGTCTCCGAGGTTGCCGTCGATGA- T TTGAACTTCATCTTTTGCGGAACCTCCGTAAATTACGGCTTTGAAGGAAGAATTTTTGATGATATTTGTTAGTT- C TACATCACCTGAGACAGATTTTCCGCTTACGGCAGCATCAAAAGCAGCTTTTACTTTAGTACTATGGGAATTAG- T TGATAATTTCAAATAAACTTGACGGCCATACGCCACACTTGAGATATATGCAGGAGGATTTTCTGCATTCACTC- C AAGCGCTTGCAACTGCTCTTTAGTAACAGCTTTGCCGAAAAATCTGGAAGGTCTTGTAGGTTCATTAACATTCA- C GTTATAGTAAATTTGTTTAAAACTAATGACTTCTTCTTGCATTTTCCCTTCACTGATTGCGCCGAAGTTTACAT- T CAAGCTATTATTTACAGCTTTAAATGCTGTACCAAATTTCGCAATTAATTGTGATTCACTGTAAGCCATTTCGT- C ATCATAATCAATTTTTGCACTTACATTTGGATAAGCTTGAGCATATTTTTCATTCCATCTTTCCACTAATGTAT- T TACTGCGTTGTTAACGTTTGATTTAGTGGCATTTTTTACAACGATTTTATTGTCTTGATTAGTCATACCTGGCA- A ATCAATGCTGAGTGTTAATGAATCACGTTTTACAGGGAGAACATCTGGTTGATTTTCTACTAATTCCGAATTCG- C TTTTACGAGAGCACCTGGATAGGTTAGGCTCGAAATTGCATTCACAACTTGAATGTCTGCATTATTTTGATTGA- T GGATTTCTTCTTTTTCTCCACAACAATATATTCATTTCCATCTTTGTAACCTTTTCTTGGCGGCACATTTGTCA- C TGCATCTCCGTGGTATACTAATACATTGTTTTTATTGTAATCCAATCCTTGTATATACTTATCGATTTCATCCG- C GTGTTTCTTTTCGATTGGCGTCTTAGGACTTGCAGGCGGAGATGCTGGTGGTGCCATGGATGAAATTGAATTTT- C TTTATTGAATGCAGATGCATCCTTTGCTTCAGTTTGTTGCGCAATTGGTAGACTAACTAATATAAGTGTAATAA- A AACTAGCATTATTTTTTTCATGGGTTTCACTCTCCTTCTACATTTTTTAACCTAATAATGCCAAATACCGTTTG- C CACCCCTCTCTTTTGATAATTATAATATTGGCGAAATTCGCTTCTAAAGATGAAACGCAATATTATATGCTTGC- T TTATAGCTTTATTCTAGTCCTGCTGTCCCTTTATCGTCGTTAACAAATGTTAATGCCTCAACATAAAAGTCACT- T TAAGATAGGAATATACTAATCAAAGGAGGGATCGAATTCCTGCAGTCATCAAGGCAACCATCAGGATTAATGCG- G ATATTGCGGAGTAACACTTCAGACTGAAAGTAGAAATAAAAACCGCAGCAGACAACTGACAACATCAAATGAAG- G GGGCTTATTCTAATTGATATTATTTATATGATAATAGTTCATTTTGTATTTTTGTTTTTTTTGATATTCTCACC- T GCTTAGTTACAATAAATCAATTCTATCGCTGTATGGTATAGACTGTTTTATTATATATTTTGAATATTTTTAAT- C TGCCCAGTCTGGTTTTTTAAAAAAGTGCTATCCTCTTAATGTCTTTACTAAATTAGAAAACAAGTTTCACTTTC- A ACTATTGCATCTTTAATTAATGGTCAAGGTGATTTCAAATGCTCGTTTGTGGCCAGTTATACCTCAAATAACTC- A AGTTGTTGAGCACAGCCAACGCACATGCAGTTTGACGTATGACAGGTATGCTTTATTTCATTTAAATTATGATG- G TTTTCCAGCCAATCAGTGAGTTTCTCTTGATAAGGAATGCGGGAATGTCTATGTATTTTAATAAAATAATTTCA- T TTAATATTATTTCACGAATAGTTATTTGTATCTTTTTGATATGTGGAATGTTCATGGCTGGGGCTTCAGAAAAA- T ATGATGCTAACGCACCGCAACAGGTCCAGCCTTATTCTGTCTCTTCATCTGCATTTGAAAATCTCCATCCTAAT- A ATGAAATGGAGAGTTCAATCAATCCCTTTTCCGCATCGGATACAGAAAGAAATGCTGCAATAATAGATCGCGCC- A ATAAGGAGCAGGAGACTGAAGCGGTGAATAAGATGATAAGCACCGGGGCCAGGTTAGCTGCATCAGGCAGGGCA- T CTGATGTTGCTCACTCAATGGTGGGCGATGCGGTTAATCAAGAAATCAAACAGTGGTTAAATCGATTCGGTACG- G CTCAAGTTAATCTGAATTTTGACAAAAATTTTTCGCTAAAAGAAAGCTCTCTTGATTGGCTGGCTCCTTGGTAT- G ACTCTGCTTCATTCCTCTTTTTTAGTCAGTTAGGTATTCGCAATAAAGACAGCCGCAACACACTTAACCTTGGC- G TCGGGATACGTACATTGGAGAACGGTTGGCTGTACGGACTTAATACTTTTTATGATAATGATTTGACCGGCCAC- A ACCACCGTATCGGTCTTGGTGCCGAGGCCTGGACCGATTATTTACAGTTGGCTGCCAATGGGTATTTTCGCCTC- A ATGGATGGCACTCGTCGCGTGATTTCTCCGACTATAAAGAGCGCCCAGCCACTGGGGGGGATTTGCGCGCGAAT- G CTTATTTACCTGCACTCCCACAACTGGGGGGGAAGTTGATGTATGAGCAATACACCGGTGAGCGTGTTGCTTTA- T TTGGTAAAGATAATCTGCAACGCAACCCTTATGCCGTGACTGCCGGGATCAATTACACCCCCGTGCCTCTACTC- A CTGTCGGGGTAGATCAGCGTATGGGGAAAAGCAGTAAGCATGAAACACAGTGGAACCTCCAAATGAACTATCGC- C TGGGCGAGAGTTTTCAGTCGCAACTTAGCCCTTCAGCGGTGGCAGGAACACGTCTACTGGCGGAGAGCCGCTAT- A ACCTTGTCGATCGTAACAATAATATCGTGTTGGAGTATCAGAAACAGCAGGTGGTTAAACTGACATTATCGCCA- G CAACTATCTCCGGCCTGCCGGGTCAGGTTTATCAGGTGAACGCACAAGTACAAGGGGCATCTGCTGTAAGGGAA- A TTGTCTGGAGTGATGCCGAACTGATTGCCGCTGGCGGCACATTAACACCACTGAGTACCACACAATTCAACTTG- G TTTTACCGCCTTATAAACGCACAGCACAAGTGAGTCGGGTAACGGACGACCTGACAGCCAACTTTTATTCGCTT- A GTGCGCTCGCGGTTGATCACCAAGGAAACCGATCTAACTCATTCACATTGAGCGTCACCGTTCAGCAGCCTCAG- T TGACATTAACGGCGGCCGTCATTGGTGATGGCGCACCGGCTAATGGGAAAACTGCAATCACCGTTGAGTTCACC- G TTGCTGATTTTGAGGGGAAACCCTTAGCCGGGCAGGAGGTGGTGATAACCACCAATAATGGTGCGCTACCGAAT- A AAATCACGGAAAAGACAGATGCAAATGGCGTCGCGCGCATTGCATTAACCAATACGACAGATGGCGTGACGGTA- G TCACAGCAGAAGTGGAGGGGCAACGGCAAAGTGTTGATACCCACTTTGTTAAGGGTACTATCGCGGCGGATAAA- T CCACTCTGGCTGCGGTACCGACATCTATCATCGCTGATGGTCTAATGGCTTCAACCATCACGTTGGAGTTGAAG- G ATACCTATGGGGACCCGCAGGCTGGCGCGAATGTGGCTTTTGACACAACCTTAGGCAATATGGGCGTTATCACG- G ATCACAATGACGGCACTTATAGCGCACCATTGACCAGTACCACGTTGGGGGTAGCAACAGTAACGGTGAAAGTG- G ATGGGGCTGCGTTCAGTGTGCCGAGTGTGACGGTTAATTTCACGGCAGATCCTATTCCAGATGCTGGCCGCTCC- A GTTTCACCGTCTCCACACCGGATATCTTGGCTGATGGCACGATGAGTTCCACATTATCCTTTGTCCCTGTCGAT- A AGAATGGCCATTTTATCAGTGGGATGCAGGGCTTGAGTTTTACTCAAAACGGTGTGCCGGTGAGTATTAGCCCC- A TTACCGAGCAGCCAGATAGCTATACCGCGACGGTGGTTGGGAATAGTGTCGGTGATGTCACAATCACGCCGCAG- G TTGATACCCTGATACTGAGTACATTGCAGAAAAAAATATCCCTATTCCCGGTACCTACGCTGACCGGTATTCTG- G TTAACGGGCAAAATTTCGCTACGGATAAAGGGTTCCCGAAAACGATCTTTAAAAACGCCACATTCCAGTTACAG- A TGGATAACGATGTTGCTAATAATACTCAGTATGAGTGGTCGTCGTCATTCACACCCAATGTATCGGTTAACGAT- C AGGGTCAGGTGACGATTACCTACCAAACCTATAGCGAAGTGGCTGTGACGGCGAAAAGTAAAAAATTCCCAAGT- T ATTCGGTGAGTTATCGGTTCTACCCAAATCGGTGGATATACGATGGCGGCAGATCGCTGGTATCCAGTCTCGAG- G CCAGCAGACAATGCCAAGGTTCAGATATGTCTGCGGTTCTTGAATCCTCACGTGCAACCAACGGAACGCGTGCG- C CTGACGGGACATTGTGGGGCGAGTGGGGGAGCTTGACCGCGTATAGTTCTGATTGGCAATCTGGTGAATATTGG- G TCAAAAAGACCAGCACGGATTTTGAAACCATGAATATGGACACAGGCGCACTGCAACCAGGGCCTGCATACTTG- G CGTTCCCGCTCTGTGCGCTGTCAATATAACCAGATAACAGATAGCAATAAGAACAGTTTAATGAGCTGATTATT- T GGGGCGCGAATGGGAGTCCGGCAATCCTAGACTCGCCCCATAAGTAGCAAACGTCCAGAAGAACAACGCCGCTC- A GGTTAATTGAGCGGCGCTGTTTTTTTAAAAGGATTGTCGCGATTAAATGCCGATCTTACGGCCCAGCTGCAGCC- C GGGGGATCTATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCATTCGCCATT- C

AGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGGACTTCATATACCCAAG- C TTGGAAAATTTTTTTTAAAAAAGTCTTGACACTTTATGCTTCCGGCTCGTATAATGGATCCAGGAGTAACAATA- C AAATGGATTCAAGAGATCCATTTGTATTGTTACTCCTTTTTTTTTTTGTCGACGATCCTTAGCGAAAGCTAAGG- A TTTTTTTTTTACTCGAGCGGATTACTACATACCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTG- C GTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCA- G CTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGC- C AGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCAT- C ACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGA- A GCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGC- G TGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTG- C ACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC- G ACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTC- T TGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACC- T TCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAG- C AGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGG- A ACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAA- A AATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAG- G CACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATA- C GGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCA- G CAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATT- A ATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGC- A TCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGA- T CCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTG- T TATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACT- G GTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGG- G ATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCA- A GGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACT- T TCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAA- T GTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATAC- A TATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTC- T AAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTC pMBV43 (SEQ ID NO:560) TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAA- G CGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTAT- G CGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATCGACGGTATCGATAAGCTTGATAAGCTTTTAAATCAG- C AGGGGTCTTTTTGGCTTGTGTATTATTTTGAAGTTTTTCTTCCCCGACAGAATCTGCTTTTACCGTCATAGTGA- A ATGAGCCTGAAAAGCTATTACCATGATGATACAAATAAGTTTACTTTTCATTTCACCGCTCCTTTTTAATTCGT- A AAACTAAGTTTAAGCCACCTACAACTAATCTGACAGAGAGAGTTAAGGACACGTTTTTTAGTATATGTGGGAAC- T AAATTATACGTTTTGCAGTAGAAACTATAGGTGGCTTAAACTTTGGGATATGCTTATATTATATGGATAAACAG- T CAGATATTCTTTTACATTTGTTAATTCTTCTAAAAAAATTAAAAAATAAGCCTGTTTCTACATTCTTCACAAAA- T AATTTACGAAGAGTGCAAAACAAGCTTATTTTTTCGTGTGTGTTAAGCGGTTTTATTCTTAATTTTTTATTACT- T TTACAATTATTCGATTGGATTATCTACTTTATTACTATATTTCGGATAAAGCGTGGTGCCCCAGATGGAGATAT- T TCTATTTTTCACAAGTGGTAAGTTCCGGTCATCAATTACCGTTCTCCACCATTCCCAAGCTAAACCAGTGCATT- C TTTAGCGTAAACATTAATATTTCTCGCGTTACCTGGCAAATAGATGGACGATGTGAAATGAGCTAGCTTGCTTT- T ATTGTTTTCGCTCCAGTTTTTATGTTGAACAATTTCGTTACCTTCAGGATCATAATTTACTTCATCCCAAGAAA- T GTTGAATTGAGCAACGTATCCTCCAGAGTGATCGATGTTAATTTTTCCATCTGTATAAGCTTTTGAAGTTGTTT- C AATATATTCTGAGTTGTTTTTAATAACAGCTAATTCATTGTCTTTTAGGAAGTTTGTTGTATAAGCAATGGGAA- C TCCTGGTGTTTCTCGATTAAAAGTAGCGCCTTTTTTCAAAATATCGCGTAAGTCTCCGAGGTTGCCGTCGATGA- T TTGAACTTCATCTTTTGCGGAACCTCCGTAAATTACGGCTTTGAAGGAAGAATTTTTGATGATATTTGTTAGTT- C TACATCACCTGAGACAGATTTTCCGCTTACGGCAGCATCAAAAGCAGCTTTTACTTTAGTACTATGGGAATTAG- T TGATAATTTCAAATAAACTTGACGGCCATACGCCACACTTGAGATATATGCAGGAGGATTTTCTGCATTCACTC- C AAGCGCTTGCAACTGCTCTTTAGTAACAGCTTTGCCGAAAAATCTGGAAGGTCTTGTAGGTTCATTAACATTCA- C GTTATAGTAAATTTGTTTAAAACTAATGACTTCTTCTTGCATTTTCCCTTCACTGATTGCGCCGAAGTTTACAT- T CAAGCTATTATTTACAGCTTTAAATGCTGTACCAAATTTCGCAATTAATTGTGATTCACTGTAAGCCATTTCGT- C ATCATAATCAATTTTTGCACTTACATTTGGATAAGCTTGAGCATATTTTTCATTCCATCTTTCCACTAATGTAT- T TACTGCGTTGTTAACGTTTGATTTAGTGGCATTTTTTACAACGATTTTATTGTCTTGATTAGTCATACCTGGCA- A ATCAATGCTGAGTGTTAATGAATCACGTTTTACAGGGAGAACATCTGGTTGATTTTCTACTAATTCCGAATTCG- C TTTTACGAGAGCACCTGGATAGGTTAGGCTCGAAATTGCATTCACAACTTGAATGTCTGCATTATTTTGATTGA- T GGATTTCTTCTTTTTCTCCACAACAATATATTCATTTCCATCTTTGTAACCTTTTCTTGGCGGCACATTTGTCA- C TGCATCTCCGTGGTATACTAATACATTGTTTTTATTGTAATCCAATCCTTGTATATACTTATCGATTTCATCCG- C GTGTTTCTTTTCGATTGGCGTCTTAGGACTTGCAGGCGGAGATGCTGGTGGTGCCATGGATGAAATTGAATTTT- C TTTATTGAATGCAGATGCATCCTTTGCTTCAGTTTGTTGCGCAATTGGTAGACTAACTAATATAAGTGTAATAA- A AACTAGCATTATTTTTTTCATGGGTTTCACTCTCCTTCTACATTTTTTAACCTAATAATGCCAAATACCGTTTG- C CACCCCTCTCTTTTGATAATTATAATATTGGCGAAATTCGCTTCTAAAGATGAAACGCAATATTATATGCTTGC- T TTATAGCTTTATTCTAGTCCTGCTGTCCCTTTATCGTCGTTAACAAATGTTAATGCCTCAACATAAAAGTCACT- T TAAGATAGGAATATACTAATCAAAGGAGGGATCGAATTCCTGCAGTCATCAAGGCAACCATCAGGATTAATGCG- G ATATTGCGGAGTAACACTTCAGACTGAAAGTAGAAATAAAAACCGCAGCAGACAACTGACAACATCAAATGAAG- G GGGCTTATTCTAATTGATATTATTTATATGATAATAGTTCATTTTGTATTTTTGTTTTTTTTGATATTCTCACC- T GCTTAGTTACAATAAATCAATTCTATCGCTGTATGGTATAGACTGTTTTATTATATATTTTGAATATTTTTAAT- C TGCCCAGTCTGGTTTTTTAAAAAAGTGCTATCCTCTTAATGTCTTTACTAAATTAGAAAACAAGTTTCACTTTC- A ACTATTGCATCTTTAATTAATGGTCAAGGTGATTTCAAATGCTCGTTTGTGGCCAGTTATACCTCAAATAACTC- A AGTTGTTGAGCACAGCCAACGCACATGCAGTTTGACGTATGACAGGTATGCTTTATTTCATTTAAATTATGATG- G TTTTCCAGCCAATCAGTGAGTTTCTCTTGATAAGGAATGCGGGAATGTCTATGTATTTTAATAAAATAATTTCA- T TTAATATTATTTCACGAATAGTTATTTGTATCTTTTTGATATGTGGAATGTTCATGGCTGGGGCTTCAGAAAAA- T ATGATGCTAACGCACCGCAACAGGTCCAGCCTTATTCTGTCTCTTCATCTGCATTTGAAAATCTCCATCCTAAT- A ATGAAATGGAGAGTTCAATCAATCCCTTTTCCGCATCGGATACAGAAAGAAATGCTGCAATAATAGATCGCGCC- A ATAAGGAGCAGGAGACTGAAGCGGTGAATAAGATGATAAGCACCGGGGCCAGGTTAGCTGCATCAGGCAGGGCA- T CTGATGTTGCTCACTCAATGGTGGGCGATGCGGTTAATCAAGAAATCAAACAGTGGTTAAATCGATTCGGTACG- G CTCAAGTTAATCTGAATTTTGACAAAAATTTTTCGCTAAAAGAAAGCTCTCTTGATTGGCTGGCTCCTTGGTAT- G ACTCTGCTTCATTCCTCTTTTTTAGTCAGTTAGGTATTCGCAATAAAGACAGCCGCAACACACTTAACCTTGGC- G TCGGGATACGTACATTGGAGAACGGTTGGCTGTACGGACTTAATACTTTTTATGATAATGATTTGACCGGCCAC- A ACCACCGTATCGGTCTTGGTGCCGAGGCCTGGACCGATTATTTACAGTTGGCTGCCAATGGGTATTTTCGCCTC- A ATGGATGGCACTCGTCGCGTGATTTCTCCGACTATAAAGAGCGCCCAGCCACTGGGGGGGATTTGCGCGCGAAT- G CTTATTTACCTGCACTCCCACAACTGGGGGGGAAGTTGATGTATGAGCAATACACCGGTGAGCGTGTTGCTTTA- T

TTGGTAAAGATAATCTGCAACGCAACCCTTATGCCGTGACTGCCGGGATCAATTACACCCCCGTGCCTCTACTC- A CTGTCGGGGTAGATCAGCGTATGGGGAAAAGCAGTAAGCATGAAACACAGTGGAACCTCCAAATGAACTATCGC- C TGGGCGAGAGTTTTCAGTCGCAACTTAGCCCTTCAGCGGTGGCAGGAACACGTCTACTGGCGGAGAGCCGCTAT- A ACCTTGTCGATCGTAACAATAATATCGTGTTGGAGTATCAGAAACAGCAGGTGGTTAAACTGACATTATCGCCA- G CAACTATCTCCGGCCTGCCGGGTCAGGTTTATCAGGTGAACGCACAAGTACAAGGGGCATCTGCTGTAAGGGAA- A TTGTCTGGAGTGATGCCGAACTGATTGCCGCTGGCGGCACATTAACACCACTGAGTACCACACAATTCAACTTG- G TTTTACCGCCTTATAAACGCACAGCACAAGTGAGTCGGGTAACGGACGACCTGACAGCCAACTTTTATTCGCTT- A GTGCGCTCGCGGTTGATCACCAAGGAAACCGATCTAACTCATTCACATTGAGCGTCACCGTTCAGCAGCCTCAG- T TGACATTAACGGCGGCCGTCATTGGTGATGGCGCACCGGCTAATGGGAAAACTGCAATCACCGTTGAGTTCACC- G TTGCTGATTTTGAGGGGAAACCCTTAGCCGGGCAGGAGGTGGTGATAACCACCAATAATGGTGCGCTACCGAAT- A AAATCACGGAAAAGACAGATGCAAATGGCGTCGCGCGCATTGCATTAACCAATACGACAGATGGCGTGACGGTA- G TCACAGCAGAAGTGGAGGGGCAACGGCAAAGTGTTGATACCCACTTTGTTAAGGGTACTATCGCGGCGGATAAA- T CCACTCTGGCTGCGGTACCGACATCTATCATCGCTGATGGTCTAATGGCTTCAACCATCACGTTGGAGTTGAAG- G ATACCTATGGGGACCCGCAGGCTGGCGCGAATGTGGCTTTTGACACAACCTTAGGCAATATGGGCGTTATCACG- G ATCACAATGACGGCACTTATAGCGCACCATTGACCAGTACCACGTTGGGGGTAGCAACAGTAACGGTGAAAGTG- G ATGGGGCTGCGTTCAGTGTGCCGAGTGTGACGGTTAATTTCACGGCAGATCCTATTCCAGATGCTGGCCGCTCC- A GTTTCACCGTCTCCACACCGGATATCTTGGCTGATGGCACGATGAGTTCCACATTATCCTTTGTCCCTGTCGAT- A AGAATGGCCATTTTATCAGTGGGATGCAGGGCTTGAGTTTTACTCAAAACGGTGTGCCGGTGAGTATTAGCCCC- A TTACCGAGCAGCCAGATAGCTATACCGCGACGGTGGTTGGGAATAGTGTCGGTGATGTCACAATCACGCCGCAG- G TTGATACCCTGATACTGAGTACATTGCAGAAAAAAATATCCCTATTCCCGGTACCTACGCTGACCGGTATTCTG- G TTAACGGGCAAAATTTCGCTACGGATAAAGGGTTCCCGAAAACGATCTTTAAAAACGCCACATTCCAGTTACAG- A TGGATAACGATGTTGCTAATAATACTCAGTATGAGTGGTCGTCGTCATTCACACCCAATGTATCGGTTAACGAT- C AGGGTCAGGTGACGATTACCTACCAAACCTATAGCGAAGTGGCTGTGACGGCGAAAAGTAAAAAATTCCCAAGT- T ATTCGGTGAGTTATCGGTTCTACCCAAATCGGTGGATATACGATGGCGGCAGATCGCTGGTATCCAGTCTCGAG- G CCAGCAGACAATGCCAAGGTTCAGATATGTCTGCGGTTCTTGAATCCTCACGTGCAACCAACGGAACGCGTGCG- C CTGACGGGACATTGTGGGGCGAGTGGGGGAGCTTGACCGCGTATAGTTCTGATTGGCAATCTGGTGAATATTGG- G TCAAAAAGACCAGCACGGATTTTGAAACCATGAATATGGACACAGGCGCACTGCAACCAGGGCCTGCATACTTG- G CGTTCCCGCTCTGTGCGCTGTCAATATAACCAGATAACAGATAGCAATAAGAACAGTTTAATGAGCTGATTATT- T GGGGCGCGAATGGGAGTCCGGCAATCCTAGACTCGCCCCATAAGTAGCAAACGTCCAGAAGAACAACGCCGCTC- A GGTTAATTGAGCGGCGCTGTTTTTTTAAAAGGATTGTCGCGATTAAATGCCGATCTTACGGCCCAGCTGCAGCC- C GGGGGATCTATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCATTCGCCATT- C AGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGGACTTCATATACCCAAG- C TTGGAAAATTTTTTTTAAAAAAGTCTTGACACTTTATGCTTCCGGCTCGTATAATGGATCCAGGAGTAACAATA- C AAATGGATTCAAGAGATCCATTTGTATTGTTACTCCTTTTTTTTTTTGTCGACGATCCTTAGCGAAAGCTAAGG- A TTTTTTTTTTACTCGAGCGGATTACTACATACCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTG- C GTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCA- G CTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGC- C AGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCAT- C ACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGA- A GCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGC- G TGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTG- C ACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC- G ACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTC- T TGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACC- T TCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAG- C AGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGG- A ACGAAAACTCACGTTAAGGGATTTTGGTCATGATCTGGTAAGGTTGGGAAGCCCTGCAAAGTAAACTGGATGGC- T TTCTTGCCGCCAAGGATCTGATGGCGCAGGGGATCAAGATCTGATCAAGAGACAGGATGAGGATCGTTTCGCAT- G ATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACA- A CAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGAC- C GACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCC- T TGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGA- T CTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCT- T GATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGG- T CTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGC- G CGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGG- C CGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCG- T GATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTC- G CAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAGCGGGACTCTGGGGTTCGAAATGACCGACCAA- G CGACGCCCAACCTGCCATCACGAGATTTCGATTCCACCGCCGCCTTCTATGAAATCATGACATTAACCTATAAA- A ATAGGCGTATCACGAGGCCCTTTCGTC pMBV44 (SEQ ID NO:561) TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAA- G CGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTAT- G CGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATCGACGGTATCGATAAGCTTGATAAGCTTTTAAATCAG- C AGGGGTCTTTTTGGCTTGTGTATTATTTTGAAGTTTTTCTTCCCCGACAGAATCTGCTTTTACCGTCATAGTGA- A ATGAGCCTGAAAAGCTATTACCATGATGATACAAATAAGTTTACTTTTCATTTCACCGCTCCTTTTTAATTCGT- A AAACTAAGTTTAAGCCACCTACAACTAATCTGACAGAGAGAGTTAAGGACACGTTTTTTAGTATATGTGGGAAC- T AAATTATACGTTTTGCAGTAGAAACTATAGGTGGCTTAAACTTTGGGATATGCTTATATTATATGGATAAACAG- T CAGATATTCTTTTACATTTGTTAATTCTTCTAAAAAAATTAAAAAATAAGCCTGTTTCTACATTCTTCACAAAA- T AATTTACGAAGAGTGCAAAACAAGCTTATTTTTTCGTGTGTGTTAAGCGGTTTTATTCTTAATTTTTTATTACT- T TTACAATTATTCGATTGGATTATCTACTTTATTACTATATTTCGGATAAAGCGTGGTGCCCCAGATGGAGATAT- T TCTATTTTTCACAAGTGGTAAGTTCCGGTCATCAATTACCGTTCTCCACCATTCCCAAGCTAAACCAGTGCATT- C TTTAGCGTAAACATTAATATTTCTCGCGTTACCTGGCAAATAGATGGACGATGTGAAATGAGCTAGCTTGCTTT- T ATTGTTTTCGCTCCAGTTTTTATGTTGAACAATTTCGTTACCTTCAGGATCATAATTTACTTCATCCCAAGAAA- T GTTGAATTGAGCAACGTATCCTCCAGAGTGATCGATGTTAATTTTTCCATCTGTATAAGCTTTTGAAGTTGTTT- C AATATATTCTGAGTTGTTTTTAATAACAGCTAATTCATTGTCTTTTAGGAAGTTTGTTGTATAAGCAATGGGAA- C TCCTGGTGTTTCTCGATTAAAAGTAGCGCCTTTTTTCAAAATATCGCGTAAGTCTCCGAGGTTGCCGTCGATGA- T TTGAACTTCATCTTTTGCGGAACCTCCGTAAATTACGGCTTTGAAGGAAGAATTTTTGATGATATTTGTTAGTT- C TACATCACCTGAGACAGATTTTCCGCTTACGGCAGCATCAAAAGCAGCTTTTACTTTAGTACTATGGGAATTAG- T TGATAATTTCAAATAAACTTGACGGCCATACGCCACACTTGAGATATATGCAGGAGGATTTTCTGCATTCACTC- C AAGCGCTTGCAACTGCTCTTTAGTAACAGCTTTGCCGAAAAATCTGGAAGGTCTTGTAGGTTCATTAACATTCA- C GTTATAGTAAATTTGTTTAAAACTAATGACTTCTTCTTGCATTTTCCCTTCACTGATTGCGCCGAAGTTTACAT- T CAAGCTATTATTTACAGCTTTAAATGCTGTACCAAATTTCGCAATTAATTGTGATTCACTGTAAGCCATTTCGT- C ATCATAATCAATTTTTGCACTTACATTTGGATAAGCTTGAGCATATTTTTCATTCCATCTTTCCACTAATGTAT-

T TACTGCGTTGTTAACGTTTGATTTAGTGGCATTTTTTACAACGATTTTATTGTCTTGATTAGTCATACCTGGCA- A ATCAATGCTGAGTGTTAATGAATCACGTTTTACAGGGAGAACATCTGGTTGATTTTCTACTAATTCCGAATTCG- C TTTTACGAGAGCACCTGGATAGGTTAGGCTCGAAATTGCATTCACAACTTGAATGTCTGCATTATTTTGATTGA- T GGATTTCTTCTTTTTCTCCACAACAATATATTCATTTCCATCTTTGTAACCTTTTCTTGGCGGCACATTTGTCA- C TGCATCTCCGTGGTATACTAATACATTGTTTTTATTGTAATCCAATCCTTGTATATACTTATCGATTTCATCCG- C GTGTTTCTTTTCGATTGGCGTCTTAGGACTTGCAGGCGGAGATGCTGGTGGTGCCATGGATGAAATTGAATTTT- C TTTATTGAATGCAGATGCATCCTTTGCTTCAGTTTGTTGCGCAATTGGTAGACTAACTAATATAAGTGTAATAA- A AACTAGCATTATTTTTTTCATGGGTTTCACTCTCCTTCTACATTTTTTAACCTAATAATGCCAAATACCGTTTG- C CACCCCTCTCTTTTGATAATTATAATATTGGCGAAATTCGCTTCTAAAGATGAAACGCAATATTATATGCTTGC- T TTATAGCTTTATTCTAGTCCTGCTGTCCCTTTATCGTCGTTAACAAATGTTAATGCCTCAACATAAAAGTCACT- T TAAGATAGGAATATACTAATCAAAGGAGGGATCGAATTCCTGCAGTCATCAAGGCAACCATCAGGATTAATGCG- G ATATTGCGGAGTAACACTTCAGACTGAAAGTAGAAATAAAAACCGCAGCAGACAACTGACAACATCAAATGAAG- G GGGCTTATTCTAATTGATATTATTTATATGATAATAGTTCATTTTGTATTTTTGTTTTTTTTGATATTCTCACC- T GCTTAGTTACAATAAATCAATTCTATCGCTGTATGGTATAGACTGTTTTATTATATATTTTGAATATTTTTAAT- C TGCCCAGTCTGGTTTTTTAAAAAAGTGCTATCCTCTTAATGTCTTTACTAAATTAGAAAACAAGTTTCACTTTC- A ACTATTGCATCTTTAATTAATGGTCAAGGTGATTTCAAATGCTCGTTTGTGGCCAGTTATACCTCAAATAACTC- A AGTTGTTGAGCACAGCCAACGCACATGCAGTTTGACGTATGACAGGTATGCTTTATTTCATTTAAATTATGATG- G TTTTCCAGCCAATCAGTGAGTTTCTCTTGATAAGGAATGCGGGAATGTCTATGTATTTTAATAAAATAATTTCA- T TTAATATTATTTCACGAATAGTTATTTGTATCTTTTTGATATGTGGAATGTTCATGGCTGGGGCTTCAGAAAAA- T ATGATGCTAACGCACCGCAACAGGTCCAGCCTTATTCTGTCTCTTCATCTGCATTTGAAAATCTCCATCCTAAT- A ATGAAATGGAGAGTTCAATCAATCCCTTTTCCGCATCGGATACAGAAAGAAATGCTGCAATAATAGATCGCGCC- A ATAAGGAGCAGGAGACTGAAGCGGTGAATAAGATGATAAGCACCGGGGCCAGGTTAGCTGCATCAGGCAGGGCA- T CTGATGTTGCTCACTCAATGGTGGGCGATGCGGTTAATCAAGAAATCAAACAGTGGTTAAATCGATTCGGTACG- G CTCAAGTTAATCTGAATTTTGACAAAAATTTTTCGCTAAAAGAAAGCTCTCTTGATTGGCTGGCTCCTTGGTAT- G ACTCTGCTTCATTCCTCTTTTTTAGTCAGTTAGGTATTCGCAATAAAGACAGCCGCAACACACTTAACCTTGGC- G TCGGGATACGTACATTGGAGAACGGTTGGCTGTACGGACTTAATACTTTTTATGATAATGATTTGACCGGCCAC- A ACCACCGTATCGGTCTTGGTGCCGAGGCCTGGACCGATTATTTACAGTTGGCTGCCAATGGGTATTTTCGCCTC- A ATGGATGGCACTCGTCGCGTGATTTCTCCGACTATAAAGAGCGCCCAGCCACTGGGGGGGATTTGCGCGCGAAT- G CTTATTTACCTGCACTCCCACAACTGGGGGGGAAGTTGATGTATGAGCAATACACCGGTGAGCGTGTTGCTTTA- T TTGGTAAAGATAATCTGCAACGCAACCCTTATGCCGTGACTGCCGGGATCAATTACACCCCCGTGCCTCTACTC- A CTGTCGGGGTAGATCAGCGTATGGGGAAAAGCAGTAAGCATGAAACACAGTGGAACCTCCAAATGAACTATCGC- C TGGGCGAGAGTTTTCAGTCGCAACTTAGCCCTTCAGCGGTGGCAGGAACACGTCTACTGGCGGAGAGCCGCTAT- A ACCTTGTCGATCGTAACAATAATATCGTGTTGGAGTATCAGAAACAGCAGGTGGTTAAACTGACATTATCGCCA- G CAACTATCTCCGGCCTGCCGGGTCAGGTTTATCAGGTGAACGCACAAGTACAAGGGGCATCTGCTGTAAGGGAA- A TTGTCTGGAGTGATGCCGAACTGATTGCCGCTGGCGGCACATTAACACCACTGAGTACCACACAATTCAACTTG- G TTTTACCGCCTTATAAACGCACAGCACAAGTGAGTCGGGTAACGGACGACCTGACAGCCAACTTTTATTCGCTT- A GTGCGCTCGCGGTTGATCACCAAGGAAACCGATCTAACTCATTCACATTGAGCGTCACCGTTCAGCAGCCTCAG- T TGACATTAACGGCGGCCGTCATTGGTGATGGCGCACCGGCTAATGGGAAAACTGCAATCACCGTTGAGTTCACC- G TTGCTGATTTTGAGGGGAAACCCTTAGCCGGGCAGGAGGTGGTGATAACCACCAATAATGGTGCGCTACCGAAT- A AAATCACGGAAAAGACAGATGCAAATGGCGTCGCGCGCATTGCATTAACCAATACGACAGATGGCGTGACGGTA- G TCACAGCAGAAGTGGAGGGGCAACGGCAAAGTGTTGATACCCACTTTGTTAAGGGTACTATCGCGGCGGATAAA- T CCACTCTGGCTGCGGTACCGACATCTATCATCGCTGATGGTCTAATGGCTTCAACCATCACGTTGGAGTTGAAG- G ATACCTATGGGGACCCGCAGGCTGGCGCGAATGTGGCTTTTGACACAACCTTAGGCAATATGGGCGTTATCACG- G ATCACAATGACGGCACTTATAGCGCACCATTGACCAGTACCACGTTGGGGGTAGCAACAGTAACGGTGAAAGTG- G ATGGGGCTGCGTTCAGTGTGCCGAGTGTGACGGTTAATTTCACGGCAGATCCTATTCCAGATGCTGGCCGCTCC- A GTTTCACCGTCTCCACACCGGATATCTTGGCTGATGGCACGATGAGTTCCACATTATCCTTTGTCCCTGTCGAT- A AGAATGGCCATTTTATCAGTGGGATGCAGGGCTTGAGTTTTACTCAAAACGGTGTGCCGGTGAGTATTAGCCCC- A TTACCGAGCAGCCAGATAGCTATACCGCGACGGTGGTTGGGAATAGTGTCGGTGATGTCACAATCACGCCGCAG- G TTGATACCCTGATACTGAGTACATTGCAGAAAAAAATATCCCTATTCCCGGTACCTACGCTGACCGGTATTCTG- G TTAACGGGCAAAATTTCGCTACGGATAAAGGGTTCCCGAAAACGATCTTTAAAAACGCCACATTCCAGTTACAG- A TGGATAACGATGTTGCTAATAATACTCAGTATGAGTGGTCGTCGTCATTCACACCCAATGTATCGGTTAACGAT- C AGGGTCAGGTGACGATTACCTACCAAACCTATAGCGAAGTGGCTGTGACGGCGAAAAGTAAAAAATTCCCAAGT- T ATTCGGTGAGTTATCGGTTCTACCCAAATCGGTGGATATACGATGGCGGCAGATCGCTGGTATCCAGTCTCGAG- G CCAGCAGACAATGCCAAGGTTCAGATATGTCTGCGGTTCTTGAATCCTCACGTGCAACCAACGGAACGCGTGCG- C CTGACGGGACATTGTGGGGCGAGTGGGGGAGCTTGACCGCGTATAGTTCTGATTGGCAATCTGGTGAATATTGG- G TCAAAAAGACCAGCACGGATTTTGAAACCATGAATATGGACACAGGCGCACTGCAACCAGGGCCTGCATACTTG- G CGTTCCCGCTCTGTGCGCTGTCAATATAACCAGATAACAGATAGCAATAAGAACAGTTTAATGAGCTGATTATT- T GGGGCGCGAATGGGAGTCCGGCAATCCTAGACTCGCCCCATAAGTAGCAAACGTCCAGAAGAACAACGCCGCTC- A GGTTAATTGAGCGGCGCTGTTTTTTTAAAAGGATTGTCGCGATTAAATGCCGATCTTACGGCCCAGCTGCAGCC- C GGGGGATCTATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCATTCGCCATT- C AGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGGACTTCATATACCCAAG- C TTGGAAAATTTTTTTTAAAAAAGTCTTGACACTTTATGCTTCCGGCTCGTATAATGGATCCAGGAGTAACAATA- C AAATGGATTCAAGAGATCCATTTGTATTGTTACTCCTTTTTTTTTTTGTCGACGATCCTTAGCGAAAGCTAAGG- A TTTTTTTTTTACTCGAGCGGATTACTACATACCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTG- C GTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCA- G CTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGC- C AGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCAT- C ACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGA- A GCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGC- G TGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTG- C ACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC- G ACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTC- T TGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACC- T TCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAG- C AGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGG- A ACGAAAACTCACGTTAAGGGATTTTGGTCATGATTTCATAGAAGGCGGCGGTGGAATCGAAATCTCGTGATGGC- A GGTTGGGCGTCGCTTGGTCGGTCATTTCGAACCCCAGAGTCCCGCTCAGAAGAACTCGTCAAGAAGGCGATAGA- A GGCGATGCGCTGCGAATCGGGAGCGGCGATACCGTAAAGCACGAGGAAGCGGTCAGCCCATTCGCCGCCAAGCT- C TTCAGCAATATCACGGGTAGCCAACGCTATGTCCTGATAGCGGTCCGCCACACCCAGCCGGCCACAGTCGATGA- A TCCAGAAAAGCGGCCATTTTCCACCATGATATTCGGCAAGCAGGCATCGCCATGGGTCACGACGAGATCCTCGC- C GTCGGGCATGCGCGCCTTGAGCCTGGCGAACAGTTCGGCTGGCGCGAGCCCCTGATGCTCTTCGTCCAGATCAT- C CTGATCGACAAGACCGGCTTCCATCCGAGTACGTGCTCGCTCGATGCGATGTTTCGCTTGGTGGTCGAATGGGC- A GGTAGCCGGATCAAGCGTATGCAGCCGCCGCATTGCATCAGCCATGATGGATACTTTCTCGGCAGGAGCAAGGT- G

AGATGACAGGAGATCCTGCCCCGGCACTTCGCCCAATAGCAGCCAGTCCCTTCCCGCTTCAGTGACAACGTCGA- G CACAGCTGCGCAAGGAACGCCCGTCGTGGCCAGCCACGATAGCCGCGCTGCCTCGTCCTGCAGTTCATTCAGGG- C ACCGGACAGGTCGGTCTTGACAAAAAGAACCGGGCGCCCCTGCGCTGACAGCCGGAACACGGCGGCATCAGAGC- A GCCGATTGTCTGTTGTGCCCAGTCATAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGAACCTGCGTGCAATC- C ATCTTGTTCAATCATGCGAAACGATCCTCATCCTGTCTCTTGATCAGATCTTGATCCCCTGCGCCATCAGATCC- T TGGCGGCAAGAAAGCCATCCAGTTTACTTTGCAGGGCTTCCCAACCTTACCAGATCATGACATTAACCTATAAA- A ATAGGCGTATCACGAGGCCCTTTCGTC

Example 23

Construction of pNJSZc Plasmid

[0314] pNJSZ is a 10.4 kb plasmid that confers the abilities required to induce tkRNAi. It contains two genes, inv and hly, that allows bacteria to invade mammalian cells and to escape from the entry vacuole. Expression of the short hairpin RNA is different between the original Trip plasmid and pNJSZ. In pNJSZ, expression of shRNA is under the control of a constitutive bacterial promoter which allows for continuous expression. This is different from the original Trip plasmid, which has an ITPG inducible promoter, which controls the expression of the shRNA. Moreover, pNJSZ and the original Trip plasmid contain different antibiotic resistant genes. pNJSZ has the kanamycin resistance gene, whereas the original Trip plasmid has the ampicillin resistance gene. pNJSZc was constructed from pNJSZ by removing any regions of pNJSZ that were not required for its maintenance or abilities to induce tkRNAi.

[0315] Step 1 as shown in FIG. 28: Removed an extra BamH1 site at 9778 by digesting pNJSZ with both SpeI (9784) and XmaI (9772), T4 DNA polymerase filled-in these two sites and then allowed the plasmid to self ligate, creating pNJSZ .DELTA.BamH1.

[0316] Step 2 as shown in FIG. 29: Removed both an extra SalI site at 972 and the f1 origin of replication by digesting pNJSZ .DELTA.BamH1 with BglI (208) and PmeI (982), T4 DNA polymerase filled-in these two sites and allowed the plasmid to self ligate, creating pNJSZc.

[0317] The pNJSZc DNA sequence is as follows:

TABLE-US-00046 (SEQ ID NO:562) GGCCGCTCGAGCATGCATCTAGAGGGCCCAATTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTT- T TACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGC- T GGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAAAAACCGCGCCATGGTG- T GTAGGCTGGAGCTGCTTCGAAGTTCCTATACTTTCTAGAGAATAGGAACTTCGGAATAGGAACTTCAAGATCCC- C CACGCTGCCGCAAGCACTCAGGGCGCAAGGGCTGCTAAAGGAAACGGAACACGTAGAAAGCCAGTCCGCAGAAA- C GGTGCTGACCCCGGATGAATGTCAGCTACTGGGCTATCTGGACAAGGGAAAACGCAAGCGCAAAGAGAAAGCAG- G TAGCTTGCAGTGGGCTTACATGGCGATAGCTAGACTGGGCGGTTTTATGGACAGCAAGCGAACCGGAATTGCCA- G CTGGGGCGCCCTCTGGTAAGGTTGGGAAGCCCTGCAAAGTAAACTGGATGGCTTTCTTGCCGCCAAGGATCTGA- T GGCGCAGGGGATCAAGATCTGATCAAGAGACAGGATGAGGATCGTTTCGCATGATTGAACAAGATGGATTGCAC- G CAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGAT- G CCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAAT- G AACTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTT- G TCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCT- C CTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTC- G ACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTG- G ACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGAT- C TCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGAC- T GTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGC- G GCGAGTGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGC- C TTCTTGACGAGTTCTTCTGAGCGGGACTCTGGGGTTCGAAATGACCGACCAAGCGACGCCCAACCTGCCATCAC- G AGATTTCGATTCCACCGCCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGA- T CCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCCAGCTTCAAAAGCGCTCTGAAGTTCCTATACT- T TCTAGAGAATAGGAACTTCGGAATAGGAACTAAGGAGGATATTCATATGGACCATGGCGCGGCATGCAAGCTCG- G TATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAA- C TATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAG- T TTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTG- A TAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAG- G ATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGG- T TTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATA- C TGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGC- T AATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTAC- C GGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCG- A ACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGG- T AAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTG- T CGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACG- C CAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCC- C TGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCA- G CGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATT- A ATGCAGCTGGCACGACAGTATCGATAAGCTTGATAAGCTTTTAAATCAGCAGGGGTCTTTTTGGCTTGTGTATT- A TTTTGAAGTTTTTCTTCCCCGACAGAATCTGCTTTTACCGTCATAGTGAAATGAGCCTGAAAAGCTATTACCAT- G ATGATACAAATAAGTTTACTTTTCATTTCACCGCTCCTTTTTAATTCGTAAAACTAAGTTTAAGCCACCTACAA- C TAATCTGACAGAGAGAGTTAAGGACACGTTTTTTAGTATATGTGGGAACTAAATTATACGTTTTGCAGTAGAAA- C TATAGGTGGCTTAAACTTTGGGATATGCTTATATTATATGGATAAACAGTCAGATATTCTTTTACATTTGTTAA- T TCTTCTAAAAAAATTAAAAAATAAGCCTGTTTCTACATTCTTCACAAAATAATTTACGAAGAGTGCAAAACAAG- C TTATTTTTTCGTGTGTGTTAAGCGGTTTTATTCTTAATTTTTTATTACTTTTACAATTATTCGATTGGATTATC- T ACTTTATTACTATATTTCGGATAAAGCGTGGTGCCCCAGATGGAGATATTTCTATTTTTCACAAGTGGTAAGTT- C CGGTCATCAATTACCGTTCTCCACCATTCCCAAGCTAAACCAGTGCATTCTTTAGCGTAAACATTAATATTTCT- C GCGTTACCTGGCAAATAGATGGACGATGTGAAATGAGCTAGCTTGCTTTTATTGTTTTCGCTCCAGTTTTTATG- T TGAACAATTTCGTTACCTTCAGGATCATAATTTACTTCATCCCAAGAAATGTTGAATTGAGCAACGTATCCTCC- A GAGTGATCGATGTTAATTTTTCCATCTGTATAAGCTTTTGAAGTTGTTTCAATATATTCTGAGTTGTTTTTAAT- A ACAGCTAATTCATTGTCTTTTAGGAAGTTTGTTGTATAAGCAATGGGAACTCCTGGTGTTTCTCGATTAAAAGT- A GCGCCTTTTTTCAAAATATCGCGTAAGTCTCCGAGGTTGCCGTCGATGATTTGAACTTCATCTTTTGCGGAACC- T CCGTAAATTACGGCTTTGAAGGAAGAATTTTTGATGATATTTGTTAGTTCTACATCACCTGAGACAGATTTTCC- G CTTACGGCAGCATCAAAAGCAGCTTTTACTTTAGTACTATGGGAATTAGTTGATAATTTCAAATAAACTTGACG- G CCATACGCCACACTTGAGATATATGCAGGAGGATTTTCTGCATTCACTCCAAGCGCTTGCAACTGCTCTTTAGT- A ACAGCTTTGCCGAAAAATCTGGAAGGTCTTGTAGGTTCATTAACATTCACGTTATAGTAAATTTGTTTAAAACT- A ATGACTTCTTCTTGCATTTTCCCTTCACTGATTGCGCCGAAGTTTACATTCAAGCTATTATTTACAGCTTTAAA- T GCTGTACCAAATTTCGCAATTAATTGTGATTCACTGTAAGCCATTTCGTCATCATAATCAATTTTTGCACTTAC- A TTTGGATAAGCTTGAGCATATTTTTCATTCCATCTTTCCACTAATGTATTTACTGCGTTGTTAACGTTTGATTT- A GTGGCATTTTTTACAACGATTTTATTGTCTTGATTAGTCATACCTGGCAAATCAATGCTGAGTGTTAATGAATC- A CGTTTTACAGGGAGAACATCTGGTTGATTTTCTACTAATTCCGAATTCGCTTTTACGAGAGCACCTGGATAGGT- T AGGCTCGAAATTGCATTCACAACTTGAATGTCTGCATTATTTTGATTGATGGATTTCTTCTTTTTCTCCACAAC- A ATATATTCATTTCCATCTTTGTAACCTTTTCTTGGCGGCACATTTGTCACTGCATCTCCGTGGTATACTAATAC- A TTGTTTTTATTGTAATCCAATCCTTGTATATACTTATCGATTTCATCCGCGTGTTTCTTTTCGATTGGCGTCTT- A GGACTTGCAGGCGGAGATGCTGGTGGTGCCATGGATGAAATTGAATTTTCTTTATTGAATGCAGATGCATCCTT- T GCTTCAGTTTGTTGCGCAATTGGTAGACTAACTAATATAAGTGTAATAAAAACTAGCATTATTTTTTTCATGGG- T TTCACTCTCCTTCTACATTTTTTAACCTAATAATGCCAAATACCGTTTGCCACCCCTCTCTTTTGATAATTATA- A TATTGGCGAAATTCGCTTCTAAAGATGAAACGCAATATTATATGCTTGCTTTATAGCTTTATTCTAGTCCTGCT- G TCCCTTTATCGTCGTTAACAAATGTTAATGCCTCAACATAAAAGTCACTTTAAGATAGGAATATACTAATCAAA- G GAGGGATCGAATTCCTGCAGTCATCAAGGCAACCATCAGGATTAATGCGGATATTGCGGAGTAACACTTCAGAC- T GAAAGTAGAAATAAAAACCGCAGCAGACAACTGACAACATCAAATGAAGGGGGCTTATTCTAATTGATATTATT- T ATATGATAATAGTTCATTTTGTATTTTGTTTTTTTGATATTCTCACCTGCTTAGTTACAATAAATCAATTCTAT- C GCTGTATGGTATAGACTGTTTTATTATATATTTTGAATATTTTTAATCTGCCCAGTCTGGTTTTTTAAAAAAGT- G CTATCCTCTTAATGTCTTTACTAAATTAGAAAACAAGTTTCACTTTCAACTATTGCATCTTTAATTAATGGTCA- A GGTGATTTCAAATGCTCGTTTGTGGCCAGTTATACCTCAAATAACTCAAGTTGTTGAGCACAGCCAACGCACAT- G CAGTTTGACGTATGACAGGTATGCTTTATTTCATTTAAATTATGATGGTTTTCCAGCCAATCAGTGAGTTTCTC- T TGATAAGGAATGCGGGAATGTCTATGTATTTTAATAAAATAATTTCATTTAATATTATTTCACGAATAGTTATT- T GTATCTTTTTGATATGTGGAATGTTCATGGCTGGGGCTTCAGAAAAATATGATGCTAACGCACCGCAACAGGTC- C AGCCTTATTCTGTCTCTTCATCTGCATTTGAAAATCTCCATCCTAATAATGAAATGGAGAGTTCAATCAATCCC- T TTTCCGCATCGGATACAGAAAGAAATGCTGCAATAATAGATCGCGCCAATAAGGAGCAGGAGACTGAAGCGGTG- A ATAAGATGATAAGCACCGGGGCCAGGTTAGCTGCATCAGGCAGGGCATCTGATGTTGCTCACTCAATGGTGGGC- G ATGCGGTTAATCAAGAAATCAAACAGTGGTTAAATCGATTCGGTACGGCTCAAGTTAATCTGAATTTTGACAAA- A ATTTTTCGCTAAAAGAAAGCTCTCTTGATTGGCTGGCTCCTTGGTATGACTCTGCTTCATTCCTCTTTTTTAGT- C

AGTTAGGTATTCGCAATAAAGACAGCCGCAACACACTTAACCTTGGCGTCGGGATACGTACATTGGAGAACGGT- T GGCTGTACGGACTTAATACTTTTTATGATAATGATTTGACCGGCCACAACCACCGTATCGGTCTTGGTGCCGAG- G CCTGGACCGATTATTTACAGTTGGCTGCCAATGGGTATTTTCGCCTCAATGGATGGCACTCGTCGCGTGATTTC- T CCGACTATAAAGAGCGCCCAGCCACTGGGGGGGATTTGCGCGCGAATGCTTATTTACCTGCACTCCCACAACTG- G GGGGGAAGTTGATGTATGAGCAATACACCGGTGAGCGTGTTGCTTTATTTGGTAAAGATAATCTGCAACGCAAC- C CTTATGCCGTGACTGCCGGGATCAATTACACCCCCGTGCCTCTACTCACTGTCGGGGTAGATCAGCGTATGGGG- A AAAGCAGTAAGCATGAAACACAGTGGAACCTCCAAATGAACTATCGCCTGGGCGAGAGTTTTCAGTCGCAACTT- A GCCCTTCAGCGGTGGCAGGAACACGTCTACTGGCGGAGAGCCGCTATAACCTTGTCGATCGTAACAATAATATC- G TGTTGGAGTATCAGAAACAGCAGGTGGTTAAACTGACATTATCGCCAGCAACTATCTCCGGCCTGCCGGGTCAG- G TTTATCAGGTGAACGCACAAGTACAAGGGGCATCTGCTGTAAGGGAAATTGTCTGGAGTGATGCCGAACTGATT- G CCGCTGGCGGCACATTAACACCACTGAGTACCACACAATTCAACTTGGTTTTACCGCCTTATAAACGCACAGCA- C AAGTGAGTCGGGTAACGGACGACCTGACAGCCAACTTTTATTCGCTTAGTGCGCTCGCGGTTGATCACCAAGGA- A ACCGATCTAACTCATTCACATTGAGCGTCACCGTTCAGCAGCCTCAGTTGACATTAACGGCGGCCGTCATTGGT- G ATGGCGCACCGGCTAATGGGAAAACTGCAATCACCGTTGAGTTCACCGTTGCTGATTTTGAGGGGAAACCCTTA- G CCGGGCAGGAGGTGGTGATAACCACCAATAATGGTGCGCTACCGAATAAAATCACGGAAAAGACAGATGCAAAT- G GCGTCGCGCGCATTGCATTAACCAATACGACAGATGGCGTGACGGTAGTCACAGCAGAAGTGGAGGGGCAACGG- C AAAGTGTTGATACCCACTTTGTTAAGGGTACTATCGCGGCGGATAAATCCACTCTGGCTGCGGTACCGACATCT- A TCATCGCTGATGGTCTAATGGCTTCAACCATCACGTTGGAGTTGAAGGATACCTATGGGGACCCGCAGGCTGGC- G CGAATGTGGCTTTTGACACAACCTTAGGCAATATGGGCGTTATCACGGATCACAATGACGGCACTTATAGCGCA- C CATTGACCAGTACCACGTTGGGGGTAGCAACAGTAACGGTGAAAGTGGATGGGGCTGCGTTCAGTGTGCCGAGT- G TGACGGTTAATTTCACGGCAGATCCTATTCCAGATGCTGGCCGCTCCAGTTTCACCGTCTCCACACCGGATATC- T TGGCTGATGGCACGATGAGTTCCACATTATCCTTTGTCCCTGTCGATAAGAATGGCCATTTTATCAGTGGGATG- C AGGGCTTGAGTTTTACTCAAAACGGTGTGCCGGTGAGTATTAGCCCCATTACCGAGCAGCCAGATAGCTATACC- G CGACGGTGGTTGGGAATAGTGTCGGTGATGTCACAATCACGCCGCAGGTTGATACCCTGATACTGAGTACATTG- C AGAAAAAAATATCCCTATTCCCGGTACCTACGCTGACCGGTATTCTGGTTAACGGGCAAAATTTCGCTACGGAT- A AAGGGTTCCCGAAAACGATCTTTAAAAACGCCACATTCCAGTTACAGATGGATAACGATGTTGCTAATAATACT- C AGTATGAGTGGTCGTCGTCATTCACACCCAATGTATCGGTTAACGATCAGGGTCAGGTGACGATTACCTACCAA- A CCTATAGCGAAGTGGCTGTGACGGCGAAAAGTAAAAAATTCCCAAGTTATTCGGTGAGTTATCGGTTCTACCCA- A ATCGGTGGATATACGATGGCGGCAGATCGCTGGTATCCAGTCTCGAGGCCAGCAGACAATGCCAAGGTTCAGAT- A TGTCTGCGGTTCTTGAATCCTCACGTGCAACCAACGGAACGCGTGCGCCTGACGGGACATTGTGGGGCGAGTGG- G GGAGCTTGACCGCGTATAGTTCTGATTGGCAATCTGGTGAATATTGGGTCAAAAAGACCAGCACGGATTTTGAA- A CCATGAATATGGACACAGGCGCACTGCAACCAGGGCCTGCATACTTGGCGTTCCCGCTCTGTGCGCTGTCAATA- T AACCAGATAACAGATAGCAATAAGAACAGTTTAATGAGCTGATTATTTGGGGCGCGAATGGGAGTCCGGCAATC- C TAGACTCGCCCCATAAGTAGCAAACGTCCAGAGAACAACGCCGCTCAGGTTAATTGAGCGGCGTTGTTTTTTTA- A AAGGATTTGTCGCGATAAGCGTGAGCTGGCGTTAAATGCCGATCTTACGGCCCAGCTGCAGCCCGGCTAGTAAC- G GCCGCCAGTGTGCTGGAATTCGCCCTTAATCGGCATCATTCACCAAGCTTGCCAGGCGACTGTCTTCAATATTA- C AGCCGCAACTACTGACATGGCGGGTGATGGTGTTCACTATTCCAGGGCGATCGGCACCCAACGCAGTGATCACC- A GATAATGTTGCGATGACAGTGTCAAACTGGTTATTCCTTCAAGGGGTGAGTTGTTCTTAAGCATGCCGGTTTGC- T GTAAAGTTTAGGGAGATTTGATGGCTTACTCTGTTCAAAAGTCGCGCCTGGCAAAGGTTGCGGGTGTTTCGCTT- G TTTTATTACTCGCTGCCTGTAGTTCTGACTCACGCTATAAGCGTCAGGTCAGTGGTGATGAAGCCTACCTGGAA- G CGCCATGGCATGCAAGGGCGAATTCTGCAGATATCCATCACACTGGCGGCCCTAGACCAGGCTTTACACTTTAT- G CTTCCGGCTCGTATAATGTGTGGAAGGATCCAGGAGTAACAATACAAATGGATTCAAGAGATCCATTTGTATTG- T TACTCCTTTGTCGACTGGACAGTTCAAGAGACTGTCCATCAATATCAGCTTTGTCACAAACCCCGCCACCGGCG- G GGTTTTTTTCTGCTCTAGGGCCGCTCGAGCATGCATCTAGAGGGCCCAATTCGCCCTATAGTGAGTCGTATTAC- A ATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCA- C ATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTG- A AAAACCGCGCCATGGTGTGTAGGCTGGAGCTGCTTCGAAGTTCCTATACTTTCTAGAGAATAGGAACTTCGGAA- T AGGAACTTCAAGATCCCCCACGCTGCCGCAAGCACTCAGGGCGCAAGGGCTGCTAAAGGAAACGGAACACGTAG- A AAGCCAGTCCGCAGAAACGGTGCTGACCCCGGATGAATGTCAGCTACTGGGCTATCTGGACAAGGGAAAACGCA- A GCGCAAAGAGAAAGCAGGTAGCTTGCAGTGGGCTTACATGGCGATAGCTAGACTGGGCGGTTTTATGGACAGCA- A GCGAACCGGAATTGCCAGCTGGGGCGCCCTCTGGTAAGGTTGGGAAGCCCTGCAAAGTAAACTGGATGGCTTTC- T TGCCGCCAAGGATCTGATGGCGCAGGGGATCAAGATCTGATCAAGAGACAGGATGAGGATCGTTTCGCATGATT- G AACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAG- A CAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGAC- C TGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGC- G CAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTC- C TGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGAT- C CGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTT- G TCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGC- A TGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGC- T TTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGAT- A TTGCTGAAGAGCTTGGCGGCGAGTGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAG- C GCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAGCGGGACTCTGGGGTTCGAAATGACCGACCAAGCGA- C GCCCAACCTGCCATCACGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCC- G GGACGCCGGCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCCAGCTTCAAAAGCG- C TCTGAAGTTCCTATACTTTCTAGAGAATAGGAACTTCGGAATAGGAACTAAGGAGGATATTCATATGGACCATG- G CGCGGCATGCAAGCTCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACA- C GACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATT- G GTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCT- A GGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACC- C CGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAAC- C ACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCA- G AGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGC- C TACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGG- A CTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGG- A GCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAA- A GGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCT- G GTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGC- G GAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGT- T CTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCA- G CCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCG- C GCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGTATCGATAAGCTTGATAAGCTTTTAAATCAGCAGGGGT- C TTTTTGGCTTGTGTATTATTTTGAAGTTTTTCTTCCCCGACAGAATCTGCTTTTACCGTCATAGTGAAATGAGC- C TGAAAAGCTATTACCATGATGATACAAATAAGTTTACTTTTCATTTCACCGCTCCTTTTTAATTCGTAAAACTA- A

GTTTAAGCCACCTACAACTAATCTGACAGAGAGAGTTAAGGACACGTTTTTTAGTATATGTGGGAACTAAATTA- T ACGTTTTGCAGTAGAAACTATAGGTGGCTTAAACTTTGGGATATGCTTATATTATATGGATAAACAGTCAGATA- T TCTTTTACATTTGTTAATTCTTCTAAAAAAATTAAAAAATAAGCCTGTTTCTACATTCTTCACAAAATAATTTA- C GAAGAGTGCAAAACAAGCTTATTTTTTCGTGTGTGTTAAGCGGTTTTATTCTTAATTTTTTATTACTTTTACAA- T TATTCGATTGGATTATCTACTTTATTACTATATTTCGGATAAAGCGTGGTGCCCCAGATGGAGATATTTCTATT- T TTCACAAGTGGTAAGTTCCGGTCATCAATTACCGTTCTCCACCATTCCCAAGCTAAACCAGTGCATTCTTTAGC- G TAAACATTAATATTTCTCGCGTTACCTGGCAAATAGATGGACGATGTGAAATGAGCTAGCTTGCTTTTATTGTT- T TCGCTCCAGTTTTTATGTTGAACAATTTCGTTACCTTCAGGATCATAATTTACTTCATCCCAAGAAATGTTGAA- T TGAGCAACGTATCCTCCAGAGTGATCGATGTTAATTTTTCCATCTGTATAAGCTTTTGAAGTTGTTTCAATATA- T TCTGAGTTGTTTTTAATAACAGCTAATTCATTGTCTTTTAGGAAGTTTGTTGTATAAGCAATGGGAACTCCTGG- T GTTTCTCGATTAAAAGTAGCGCCTTTTTTCAAAATATCGCGTAAGTCTCCGAGGTTGCCGTCGATGATTTGAAC- T TCATCTTTTGCGGAACCTCCGTAAATTACGGCTTTGAAGGAAGAATTTTTGATGATATTTGTTAGTTCTACATC- A CCTGAGACAGATTTTCCGCTTACGGCAGCATCAAAAGCAGCTTTTACTTTAGTACTATGGGAATTAGTTGATAA- T TTCAAATAAACTTGACGGCCATACGCCACACTTGAGATATATGCAGGAGGATTTTCTGCATTCACTCCAAGCGC- T TGCAACTGCTCTTTAGTAACAGCTTTGCCGAAAAATCTGGAAGGTCTTGTAGGTTCATTAACATTCACGTTATA- G TAAATTTGTTTAAAACTAATGACTTCTTCTTGCATTTTCCCTTCACTGATTGCGCCGAAGTTTACATTCAAGCT- A TTATTTACAGCTTTAAATGCTGTACCAAATTTCGCAATTAATTGTGATTCACTGTAAGCCATTTCGTCATCATA- A TCAATTTTTGCACTTACATTTGGATAAGCTTGAGCATATTTTTCATTCCATCTTTCCACTAATGTATTTACTGC- G TTGTTAACGTTTGATTTAGTGGCATTTTTTACAACGATTTTATTGTCTTGATTAGTCATACCTGGCAAATCAAT- G CTGAGTGTTAATGAATCACGTTTTACAGGGAGAACATCTGGTTGATTTTCTACTAATTCCGAATTCGCTTTTAC- G AGAGCACCTGGATAGGTTAGGCTCGAAATTGCATTCACAACTTGAATGTCTGCATTATTTTGATTGATGGATTT- C TTCTTTTTCTCCACAACAATATATTCATTTCCATCTTTGTAACCTTTTCTTGGCGGCACATTTGTCACTGCATC- T CCGTGGTATACTAATACATTGTTTTTATTGTAATCCAATCCTTGTATATACTTATCGATTTCATCCGCGTGTTT- C TTTTCGATTGGCGTCTTAGGACTTGCAGGCGGAGATGCTGGTGGTGCCATGGATGAAATTGAATTTTCTTTATT- G AATGCAGATGCATCCTTTGCTTCAGTTTGTTGCGCAATTGGTAGACTAACTAATATAAGTGTAATAAAAACTAG- C ATTATTTTTTTCATGGGTTTCACTCTCCTTCTACATTTTTTAACCTAATAATGCCAAATACCGTTTGCCACCCC- T CTCTTTTGATAATTATAATATTGGCGAAATTCGCTTCTAAAGATGAAACGCAATATTATATGCTTGCTTTATAG- C TTTATTCTAGTCCTGCTGTCCCTTTATCGTCGTTAACAAATGTTAATGCCTCAACATAAAAGTCACTTTAAGAT- A GGAATATACTAATCAAAGGAGGGATCGAATTCCTGCAGTCATCAAGGCAACCATCAGGATTAATGCGGATATTG- C GGAGTAACACTTCAGACTGAAAGTAGAAATAAAAACCGCAGCAGACAACTGACAACATCAAATGAAGGGGGCTT- A TTCTAATTGATATTATTTATATGATAATAGTTCATTTTGTATTTTGTTTTTTTGATATTCTCACCTGCTTAGTT- A CAATAAATCAATTCTATCGCTGTATGGTATAGACTGTTTTATTATATATTTTGAATATTTTTAATCTGCCCAGT- C TGGTTTTTTAAAAAAGTGCTATCCTCTTAATGTCTTTACTAAATTAGAAAACAAGTTTCACTTTCAACTATTGC- A TCTTTAATTAATGGTCAAGGTGATTTCAAATGCTCGTTTGTGGCCAGTTATACCTCAAATAACTCAAGTTGTTG- A GCACAGCCAACGCACATGCAGTTTGACGTATGACAGGTATGCTTTATTTCATTTAAATTATGATGGTTTTCCAG- C CAATCAGTGAGTTTCTCTTGATAAGGAATGCGGGAATGTCTATGTATTTTAATAAAATAATTTCATTTAATATT- A TTTCACGAATAGTTATTTGTATCTTTTTGATATGTGGAATGTTCATGGCTGGGGCTTCAGAAAAATATGATGCT- A ACGCACCGCAACAGGTCCAGCCTTATTCTGTCTCTTCATCTGCATTTGAAAATCTCCATCCTAATAATGAAATG- G AGAGTTCAATCAATCCCTTTTCCGCATCGGATACAGAAAGAAATGCTGCAATAATAGATCGCGCCAATAAGGAG- C AGGAGACTGAAGCGGTGAATAAGATGATAAGCACCGGGGCCAGGTTAGCTGCATCAGGCAGGGCATCTGATGTT- G CTCACTCAATGGTGGGCGATGCGGTTAATCAAGAAATCAAACAGTGGTTAAATCGATTCGGTACGGCTCAAGTT- A ATCTGAATTTTGACAAAAATTTTTCGCTAAAAGAAAGCTCTCTTGATTGGCTGGCTCCTTGGTATGACTCTGCT- T CATTCCTCTTTTTTAGTCAGTTAGGTATTCGCAATAAAGACAGCCGCAACACACTTAACCTTGGCGTCGGGATA- C GTACATTGGAGAACGGTTGGCTGTACGGACTTAATACTTTTTATGATAATGATTTGACCGGCCACAACCACCGT- A TCGGTCTTGGTGCCGAGGCCTGGACCGATTATTTACAGTTGGCTGCCAATGGGTATTTTCGCCTCAATGGATGG- C ACTCGTCGCGTGATTTCTCCGACTATAAAGAGCGCCCAGCCACTGGGGGGGATTTGCGCGCGAATGCTTATTTA- C CTGCACTCCCACAACTGGGGGGGAAGTTGATGTATGAGCAATACACCGGTGAGCGTGTTGCTTTATTTGGTAAA- G ATAATCTGCAACGCAACCCTTATGCCGTGACTGCCGGGATCAATTACACCCCCGTGCCTCTACTCACTGTCGGG- G TAGATCAGCGTATGGGGAAAAGCAGTAAGCATGAAACACAGTGGAACCTCCAAATGAACTATCGCCTGGGCGAG- A GTTTTCAGTCGCAACTTAGCCCTTCAGCGGTGGCAGGAACACGTCTACTGGCGGAGAGCCGCTATAACCTTGTC- G ATCGTAACAATAATATCGTGTTGGAGTATCAGAAACAGCAGGTGGTTAAACTGACATTATCGCCAGCAACTATC- T CCGGCCTGCCGGGTCAGGTTTATCAGGTGAACGCACAAGTACAAGGGGCATCTGCTGTAAGGGAAATTGTCTGG- A GTGATGCCGAACTGATTGCCGCTGGCGGCACATTAACACCACTGAGTACCACACAATTCAACTTGGTTTTACCG- C CTTATAAACGCACAGCACAAGTGAGTCGGGTAACGGACGACCTGACAGCCAACTTTTATTCGCTTAGTGCGCTC- G CGGTTGATCACCAAGGAAACCGATCTAACTCATTCACATTGAGCGTCACCGTTCAGCAGCCTCAGTTGACATTA- A CGGCGGCCGTCATTGGTGATGGCGCACCGGCTAATGGGAAAACTGCAATCACCGTTGAGTTCACCGTTGCTGAT- T TTGAGGGGAAACCCTTAGCCGGGCAGGAGGTGGTGATAACCACCAATAATGGTGCGCTACCGAATAAAATCACG- G AAAAGACAGATGCAAATGGCGTCGCGCGCATTGCATTAACCAATACGACAGATGGCGTGACGGTAGTCACAGCA- G AAGTGGAGGGGCAACGGCAAAGTGTTGATACCCACTTTGTTAAGGGTACTATCGCGGCGGATAAATCCACTCTG- G CTGCGGTACCGACATCTATCATCGCTGATGGTCTAATGGCTTCAACCATCACGTTGGAGTTGAAGGATACCTAT- G GGGACCCGCAGGCTGGCGCGAATGTGGCTTTTGACACAACCTTAGGCAATATGGGCGTTATCACGGATCACAAT- G ACGGCACTTATAGCGCACCATTGACCAGTACCACGTTGGGGGTAGCAACAGTAACGGTGAAAGTGGATGGGGCT- G CGTTCAGTGTGCCGAGTGTGACGGTTAATTTCACGGCAGATCCTATTCCAGATGCTGGCCGCTCCAGTTTCACC- G TCTCCACACCGGATATCTTGGCTGATGGCACGATGAGTTCCACATTATCCTTTGTCCCTGTCGATAAGAATGGC- C ATTTTATCAGTGGGATGCAGGGCTTGAGTTTTACTCAAAACGGTGTGCCGGTGAGTATTAGCCCCATTACCGAG- C AGCCAGATAGCTATACCGCGACGGTGGTTGGGAATAGTGTCGGTGATGTCACAATCACGCCGCAGGTTGATACC- C TGATACTGAGTACATTGCAGAAAAAAATATCCCTATTCCCGGTACCTACGCTGACCGGTATTCTGGTTAACGGG- C AAAATTTCGCTACGGATAAAGGGTTCCCGAAAACGATCTTTAAAAACGCCACATTCCAGTTACAGATGGATAAC- G ATGTTGCTAATAATACTCAGTATGAGTGGTCGTCGTCATTCACACCCAATGTATCGGTTAACGATCAGGGTCAG- G TGACGATTACCTACCAAACCTATAGCGAAGTGGCTGTGACGGCGAAAAGTAAAAAATTCCCAAGTTATTCGGTG- A GTTATCGGTTCTACCCAAATCGGTGGATATACGATGGCGGCAGATCGCTGGTATCCAGTCTCGAGGCCAGCAGA- C AATGCCAAGGTTCAGATATGTCTGCGGTTCTTGAATCCTCACGTGCAACCAACGGAACGCGTGCGCCTGACGGG- A CATTGTGGGGCGAGTGGGGGAGCTTGACCGCGTATAGTTCTGATTGGCAATCTGGTGAATATTGGGTCAAAAAG- A CCAGCACGGATTTTGAAACCATGAATATGGACACAGGCGCACTGCAACCAGGGCCTGCATACTTGGCGTTCCCG- C TCTGTGCGCTGTCAATATAACCAGATAACAGATAGCAATAAGAACAGTTTAATGAGCTGATTATTTGGGGCGCG- A ATGGGAGTCCGGCAATCCTAGACTCGCCCCATAAGTAGCAAACGTCCAGAGAACAACGCCGCTCAGGTTAATTG- A GCGGCGTTGTTTTTTTAAAAGGATTTGTCGCGATAAGCGTGAGCTGGCGTTAAATGCCGATCTTACGGCCCAGC- T GCAGCCCGGCTAGTAACGGCCGCCAGTGTGCTGGAATTCGCCCTTAATCGGCATCATTCACCAAGCTTGCCAGG- C GACTGTCTTCAATATTACAGCCGCAACTACTGACATGGCGGGTGATGGTGTTCACTATTCCAGGGCGATCGGCA- C CCAACGCAGTGATCACCAGATAATGTTGCGATGACAGTGTCAAACTGGTTATTCCTTCAAGGGGTGAGTTGTTC- T TAAGCATGCCGGTTTGCTGTAAAGTTTAGGGAGATTTGATGGCTTACTCTGTTCAAAAGTCGCGCCTGGCAAAG- G TTGCGGGTGTTTCGCTTGTTTTATTACTCGCTGCCTGTAGTTCTGACTCACGCTATAAGCGTCAGGTCAGTGGT- G ATGAAGCCTACCTGGAAGCGCCATGGCATGCAAGGGCGAATTCTGCAGATATCCATCACACTGGCGGCCCTAGA- C CAGGCTTTACACTTTATGCTTCCGGCTCGTATAATGTGTGGAAGGATCCAGGAGTAACAATACAAATGGATTCA-

A GAGATCCATTTGTATTGTTACTCCTTTGTCGACTGGACAGTTCAAGAGACTGTCCATCAATATCAGCTTTGTCA- C AAACCCCGCCACCGGCGGGGTTTTTTTCTGCTCTAG

Sequence CWU 1

1

563118DNAEscherichia coli 1taatacgact cactatag 18253DNAEscherichia coli 2taaccaggct ttacacttta tgcttccggc tcgtataatg tgtggaagga tcc 53347DNAEscherichia coli 3taaccaggct ttacacttta tgcttccggc tcgtataatg tgtggaa 47453DNAEscherichia coli 4taaaattcaa aaatttattt gctttcagga aaatttttct gtataataga ttc 53532DNAEscherichia coli 5taattgatac tttatgcttt tttctgtata at 326100DNAEscherichia coli 6aagctttcag tcgcgtaatg cttaggcaca ggattgattt gtcgcaatga ttgacacgat 60tccgcttgac actgcgtaag ttttgtgtta taatggatcc 1007100DNAEscherichia coli 7aagcttaagg agagacaact taaagagact taaaagatta atttaaaatt tatcaaaaag 60agtattgact taaagtctaa cctataggat acttggatcc 100877DNAEscherichia coli 8aagctttgtg tggaattgtg agcggataac aattccacac attgacactt tatgcttccg 60gctcgtataa tggatcc 77975DNAEscherichia coli 9aagcttggaa aatttttttt aaaaaagtca tgtgtggaat tgtgagcgga taacaattcc 60acatataatg gatcc 75101285DNAEscherichia coli 10gacttcatat acccaagctt taaaaaaaaa atccttagct ttcgctaagg atctccgtca 60agccgtcaat tgtctgattc gttaccaatt atgacaactt gacggctaca tcattcactt 120tttcttcaca accggcacga aactcgctcg ggctggcccc ggtgcatttt ttaaatactc 180gcgagaaata gagttgatcg tcaaaaccaa cattgcgacc gacggtggcg ataggcatcc 240gggtagtgct caaaagcagc ttcgcctgac taatgcgttg gtcctcgcgc cagcttaaga 300cgctaatccc taactgctgg cggaaaagat gtgacagacg cgacggcgac aagcaaacat 360gctgtgcgac gctggcgata tcaaaattgc tgtctgccag gtgatcgctg atgtactgac 420aagcctcgcg tacccgatta tccatcggtg gatggagcga ctcgttaatc gcttccatgc 480gccgcagtaa caattgctca agcagattta tcgccagcag ctccgaatag cgcccttccc 540cttgcccggc gttaatgatt tgcccaaaca ggtcgctgaa atgcggctgg tgcgcttcat 600ccgggcgaaa gaaacccgta ttggcaaata ttgacggcca gttaagccat tcatgccagt 660aggcgcgcgg acgaaagtaa acccactggt gataccattc gcgagcctcc ggatgacgac 720cgtagtgatg aatctctcct ggcgggaaca gcaaaatatc acccggtcgg cagacaaatt 780ctcgtccctg atttttcacc accccctgac cgcgaatggt gagattgaga atataacctt 840tcattcccag cggtcggtcg ataaaaaaat cgagataacc gttggcctca atcggcgtta 900aacccgccac cagatgggcg ttaaacgagt atcccggcag caggggatca ttttgcgctt 960cagccatact tttcatactc ccaccattca gagaagaaac caattgtcca tattgcatca 1020gacattgccg tcactgcgtc ttttactggc tcttctcgct aacccaaccg gtaaccccgc 1080ttattaaaag cattctgtaa caaagcggga ccaaagccat gacaaaaacg cgtaacaaaa 1140gtgtctataa tcacggcaga aaagtccaca ttgattattt gcacggcgtc acactttgct 1200atgccatagc atttttatcc ataagattag cggatcctac ctgacgcttt ttatcgcaac 1260tctctactgt agatctatct gcgat 12851159DNAEscherichia coli 11taaaattcaa aaatttattt gctttcagga aaatttttct gtataataga ttcggatcc 591238DNAEscherichia coli 12taattgatac tttatgcttt tttctgtata atggatcc 381347DNAEscherichia coli 13tagcataacc ccttggggcc tctaaacggg tcttgagggg ttttttg 471449DNAEscherichia coli 14ttgtcacgtg agcggataac aatttcacac aggaaacaga attcttaat 491543DNAEscherichia coli 15ttgtcacaaa ccccgccacc ggcggggttt ttttctgctt aat 431665DNAEscherichia coli 16ttgtcacaat tctatggtgt atgcatttat ttgcatacat tcaatcaatt ggatcctgca 60ttaat 651742DNAEscherichia coli 17gtgagcggat aacaatttca cacaggaaac agaattctta at 421836DNAEscherichia coli 18aaaccccgcc accggcgggg tttttttctg cttaat 361958DNAEscherichia coli 19aattctatgg tgtatgcatt tatttgcata cattcaatca attggatcct gcattaat 582086DNAEscherichia coli 20aattcggggc tatagctcag ctgggagagc gcttgcatct aatgcaagag gtcagcggtt 60cgatcccgct tagctccacc actgca 862183DNAEscherichia coli 21aattcgcccg gatagctcag tcggtagagc aggggattct aaatccccgt gtccttggtt 60cgattccgag tccgggcact gca 8322876DNAEscherichia coli 22atgaccagta gctatctgca ttagccggag taggatccgg tcattttctc aataggaccc 60gtggcgcttc actggtacgg cctgatgtat ctggtgggtt tcatttttgc aatgtggctg 120gcaacacgac gggcgaatcg tccgggcagc ggctggacca aaaatgaagt tgaaaactta 180ctctatgcgg gcttcctcgg cgtcttcctc gggggacgta ttggttatgt tctgttctac 240aatttcccgc agtttatggc cgatccgctg tatctgttcc gtgtctggga cggcggcatg 300tctttccacg gcggcctgat tggcgttatc gtggtgatga ttatcttcgc ccgccgtact 360aaacgttcct tcttccaggt ctctgatttt atcgcaccac tcattccgtt tggtcttggt 420gccgggcgtc tgggcaactt tattaacggt gaattgtggg gccgcgttga cccgaacttc 480ccgtttgcca tgctgttccc tggctcccgt acagaagata ttttgctgct gcaaaccaac 540ccgcagtggc aatccatttt cgacacttac ggtgtgctgc cgcgccaccc atcacagctt 600tacgagctgc tgctggaagg tgtggtgctg tttattatcc tcaacctgta tattcgtaaa 660ccacgcccaa tgggagctgt ctcaggtttg ttcctgattg gttacggcgc gtttcgcatc 720attgttgagt ttttccgcca gcccgacgcg cagtttaccg gtgcctgggt gcagtacatc 780agcatggggc aaattctttc catcccgatg attgtcgcgg gtgtgatcat gatggtctgg 840gcatatcgtc gcagcccaca gcaacacgtt tcctga 876231260DNAEscherichia coli 23atggataaat ttcgtgttca ggggccaacg aagctccagg gcgaagtcac aatttccggc 60gctaaaaatt agtagctgcc tatccttttt gccgcactac tggcggaaga accggtagag 120atccagaacg tcccgaaact gaaagacgtc gatacatcaa tgaagctgct aagccagctg 180ggtgcgaaag tagaacgtaa tggttctgtg catattgatg cccgcgacgt taatgtattc 240tgcgcacctt acgatctggt taaaaccatg cgtgcttcta tctgggcgct ggggccgctg 300gtagcgcgct ttggtcaggg gcaagtttca ctacctggcg gttgtacgat cggtgcgcgt 360ccggttgatc tacacatttc tggcctcgaa caattaggcg cgaccatcaa actggaagaa 420ggttacgtta aagcttccgt cgatggtcgt ttgaaaggtg cacatatcgt gatggataaa 480gtcagcgttg gcgcaacggt gaccatcatg tgtgctgcaa ccctggcgga aggcaccacg 540attattgaaa acgcagcgcg tgaaccggaa atcgtcgata ccgcgaactt cctgattacg 600ctgggtgcga aaattagcgg tcagggcacc gatcgtatcg tcatcgaagg tgtggaacgt 660ttaggcggcg gtgtctatcg cgttctgccg gatcgtatcg aaaccggtac tttcctggtg 720gcggcggcga tttctcgcgg caaaattatc tgccgtaacg cgcagccaga tactctcgac 780gccgtgctgg cgaaactgcg tgacgctgga gcggacatcg aagtcggcga agactggatt 840agcctggata tgcatggcaa acgtccgaag gctgttaacg tacgtaccgc gccgcatccg 900gcattcccga ccgatatgca ggcccagttc acgctgttga acctggtggc agaagggacc 960gggtttatca ccgaaacggt ctttgaaaac cgctttatgc atgtgccaga gctgagccgt 1020atgggcgcgc acgccgaaat cgaaagcaat accgttattt gtcacggtgt tgaaaaactt 1080tctggcgcac aggttatggc aaccgatctg cgtgcatcag caagcctggt gctggctggc 1140tgtattgcgg aagggacgac ggtggttgat cgtatttatc acatcgatcg tggctacgaa 1200cgcattgaag acaaactgcg cgctttaggt gcaaatattg agcgtgtgaa aggcgaataa 1260241297DNAEscherichia coli 24gccaggcgac tgtcttcaat attacagccg caactactga catgacgggt gatggtgttc 60acaattccag ggcgatcggc acccaacgca gtgatcacca gataatgttg cgatgacagt 120gtcaaactgg ttattccttt aaggggtgag ttgttcttaa ggaaagcata aaaaaaacat 180gcatacaaca atcagaacgg ttctgtctgc ttgcttttaa tgccatacca aacgtaccat 240tgagacactt gtttgcacag aggatggccc atgttcacgg gaagtattgt cgcgattgtt 300actccgatgg atgaaaaagg taatgtctgt cgggctagct tgaaaaaact gattgattat 360catgtcgcca gcggtacttc ggcgatcgtt tctgttggca ccactggcga gtccgctacc 420ttaaatcatg acgaacatgc tgatgtggtg atgatgacgc tggatctggc tgatgggcgc 480attccggtaa ttgccgggac cggcgctaac gctactgcgg aagccattag cctgacgcag 540cgcttcaatg acagtggtat cgtcggctgc ctgacggtaa ccccttacta caatcgtccg 600tcgcaagaag gtttgtatca gcatttcaaa gccatcgctg agcatactga cctgccgcaa 660attctgtata atgtgccgtc ccgtactggc tgcgatctgc tcccggaaac ggtgggccgt 720ctggcgaaag taaaaaatat tatcggaatc aaagaggcaa cagggaactt aacgcgtgta 780aaccagatca aagagctggt ttcagatgat tttgttctgc tgagcggcga tgatgcgagc 840gcgctggact tcatgcaatt gggcggtcat ggggttattt ccgttacggc taacgtcgca 900gcgcgtgata tggcccagat gtgcaaactg gcagcagaag ggcattttgc cgaggcacgc 960gttattaatc agcgtctgat gccattacac aacaaactat ttgtcgaacc caatccaatc 1020ccggtgaaat gggcatgtaa ggaactgggt cttgtggcga ccgatacgct gcgcctgcca 1080atgacaccaa tcaccgacag tggtcgtgag acggtcagag cggcgcttaa gcatgccggt 1140ttgctgtaaa gtttagggag atttgatggc ttactctgtt caaaagtcgc gcctggcaaa 1200ggttgcgggt gtttcgcttg ttttattact cgctgcctgt agttctgact cacgctataa 1260gcgtcaggtc agtggtgatg aagcctacct ggaagcg 12972599DNAEscherichia coli 25catggcgccg cttctttgag cgaacgatca aaaataagtg gcgccccatc aaaaaaatat 60tctcaacata aaaaactttg tgtaatactt gtaacgctg 992663DNAEscherichia coli 26catggcgccc catcaaaaaa atattctcaa cataaaaaac tttgtgtaat acttgtaacg 60ctg 632732DNAEscherichia coli 27gatccttagc gaaagctaag gatttttttt ac 322832DNAEscherichia coli 28gatccttagc gaaagctaag gatttttttt tt 3229720DNAEscherichia coli 29atgcaagaga actacaagat tctggtggtc gatgacgaca tgcgcctgcg tgcgctgctg 60gaacgttatc tcaccgaaca aggcttccag gttcgaagcg tcgctaatgc agaacagatg 120gatcgcctgc tgactcgtga atctttccat cttatggtac tggatttaat gttacctggt 180gaagatggct tgtcgatttg ccgacgtctt cgtagtcaga gcaacccgat gccgatcatt 240atggtgacgg cgaaagggga agaagtggac cgtatcgtag gcctggagat tggcgctgac 300gactacattc caaaaccgtt taacccgcgt gaactgctgg cccgtatccg tgcggtgctg 360cgtcgtcagg cgaacgaact gccaggcgca ccgtcacagg aagaggcggt aattgctttc 420ggtaagttca aacttaacct cggtacgcgc gaaatgttcc gcgaagacga gccgatgccg 480ctcaccagcg gtgagtttgc ggtactgaag gcactggtca gccatccgcg tgagccgctc 540tcccgcgata agctgatgaa ccttgcccgt ggtcgtgaat attccgcaat ggaacgctcc 600atcgacgtgc agatttcgcg tctgcgccgc atggtggaag aagatccagc gcatccgcgt 660tacattcaga ccgtctgggg tctgggctac gtctttgtac cggacggctc taaagcatga 72030672DNAEscherichia coli 30atgcgcgtac tggttgttga agacaatgcg ttgttacgtc accaccttaa agttcagatt 60caggatgctg gtcatcaggt cgatgacgca gaagatgcca aagaagccga ttattatctc 120aatgaacata taccggatat tgcgattgtc gatctcggat tgccagacga ggacggtctg 180tcactgattc gccgctggcg tagcaacgat gtttcactgc cgattctggt attaaccgcc 240cgtgaaagct ggcaggacaa agtcgaagta ttaagtgccg gtgctgatga ttatgtgact 300aaaccgtttc atattgaaga ggtgatggcg cgaatgcagg cattaatgcg gcgtaatagc 360ggtctggctt cacaggtcat ttcgctcccc ccgtttcagg ttgatctctc tcgccgtgaa 420ttatctatta atgacgaagt gatcaaactg accgcgttcg aatacactat tatggaaacg 480ttgatacgca ataatggcaa agtggtcagc aaagattcgt taatgctcca actctatccg 540gatgcggagc tgcgggaaag ccataccatt gatgtactga tgggacgtct gcgcaaaaaa 600attcaggcac aatatcccca agaagtgatt accaccgttc gcggccaggg ctatctgttc 660gaattgcgct ga 67231390DNAEscherichia coli 31gatcatcctg ttacggaata ttacattgca acatttacgc gcaaaaacta atccgcattc 60ttattgcgga ttagtttttt cttagctaat agcacaattt tcatactatt ttttggcatt 120ctggatgtct gaaagaagat tttgtgccag gtcgataaag tttccatcag aaacaaaatt 180tccgtttagt taatttaaat ataaggaaat catataaata gattaaaatt gctgtaaata 240tcatcacgtc tctatggaaa tatgacggtg ttcacaaagt tccttaaatt ttacttttgg 300ttacatattt tttctttttg aaaccaaatc tttatctttg tagcactttc acggtagcga 360aacgttagtt tgaatggaaa gatgcctgca 39032198DNAEscherichia coli 32tttaaaaaag ttccgtaaaa ttcatatttt gaaacatcta tgtagataac tgtaacatct 60taaaagtttt agtatcatat tcgtgttgga ttattctgta tttttgcgga gaatggactt 120gccgactggt taatgagggt taaccagtaa gcagtggcat aaaaaagcaa taaaggcata 180taacagaggg ttaataac 19833200DNAEscherichia coli 33agtgattcca ttttttaccc ttctgttttt ttgaccttaa gtctccgcat cttagcacat 60cgttcatcca gagcgtgatt tctgccgagc gtgatcagat cggcatttct ttaatctttt 120gtttgcatat ttttaacaca aaatacacac ttcgactcat ctggtacgac cagatcacct 180tgcggattca ggagactgac 20034200DNAEscherichia coli 34gagctatcac gatggttgat gagctgaaat aaacctcgta tcagtgccgg atggcgatgc 60tgtccggcct gcttattaag attatccgct ttttattttt tcactttacc tcccctcccc 120gctggtttat ttaatgttta cccccataac cacataatcg cgttacacta ttttaataat 180taagacaggg agaaataaaa 20035238DNAEscherichia coli 35gcttcaacac gctcgcgggt gagctggctc acgccgcttt cgttattcag cacccgggaa 60actgtagatt tccccacgcc gcttaagcgc gcgatatctt tgatggtcag ccgattttgc 120atcctgttgt cctgtaacgt gttgtttaat tatttgagcc taacgttacc cgtgcattca 180gcaatgggta aagtctggtt tatcgttggt ttagttgtca gcaggtatta tatcgcca 2383673DNAEscherichia coli 36gagctgttga caattaatca tcgaactagt taactagtac gcaagttcac gtaaaaaggg 60tatctagaat tct 73371353DNAEscherichia coli 37atgaggcgat tgcgcttctc gccacgaagt tcatttgccc gtacgttatt gctcatcgtc 60accttgctgt tcgccagcct ggtgacgact tatctggtgg tgctgaactt cgcgattttg 120ccgagcctcc agcagtttaa taaagtcctc gcgtacgaag tgcgtatgtt gatgaccgac 180aaactgcaac tggaggacgg cacgcagttg gttgtgcctc ccgctttccg tcgggagatc 240taccgtgagc tggggatctc tctctactcc aacgaggctg ccgaagaggc aggtctgcgt 300tgggcgcaac actatgaatt cttaagccat cagatggcgc agcaactggg cggcccgacg 360gaagtgcgcg ttgaggtcaa caaaagttcg cctgtcgtct ggctgaaaac ctggctgtcg 420cccaatatct gggtacgcgt gccgctgacc gaaattcatc agggcgattt ctctccgctg 480ttccgctata cgctggcgat tatgctattg gcgataggcg gggcgtggct gtttattcgt 540atccagaacc gaccgttggt cgatctcgaa cacgcagcct tgcaggttgg taaagggatt 600attccgccgc cgctgcgtga gtatggcgct tcggaggtgc gttccgttac ccgtgccttt 660aaccatatgg cggctggtgt taagcaactg gcggatgacc gcacgctgct gatggcgggg 720gtaagtcacg acttgcgcac gccgctgacg cgtattcgcc tggcgactga gatgatgagc 780gagcaggatg gctatctggc agaatcgatc aataaagata tcgaagagtg caacgccatc 840attgagcagt ttatcgacta cctgcgcacc gggcaggaga tgccgatgga aatggcggat 900cttaatgcag tactcggtga ggtgattgct gccgaaagtg gctatgagcg ggaaattgaa 960accgcgcttt accccggcag cattgaagtg aaaatgcacc cgctgtcgat caaacgcgcg 1020gtggcgaata tggtggtcaa cgccgcccgt tatggcaatg gctggatcaa agtcagcagc 1080ggaacggagc cgaatcgcgc ctggttccag gtggaagatg acggtccggg aattgcgccg 1140gaacaacgta agcacctgtt ccagccgttt gtccgcggcg acagtgcgcg caccattagc 1200ggcacgggat tagggctggc aattgtgcag cgtatcgtgg ataaccataa cgggatgctg 1260gagcttggca ccagcgagcg gggcgggctt tccattcgcg cctggctgcc agtgccggta 1320acgcgggcgc agggcacgac aaaagaaggg taa 1353381461DNAEscherichia coli 38atgaaaaaat tactgcgtct ttttttcccg ctctcgctgc gggtacgttt tctgttggca 60acggcagcgg tagtactggt gctttcgctt gcctacggaa tggtcgcgct gatcggttat 120agcgtcagtt tcgataaaac tacgtttcgg ctgttacgtg gcgagagcaa tctgttctat 180acccttgcga agtgggaaaa caataagttg catgtcgagt tacccgaaaa tatcgacaag 240caaagcccca ccatgacgct aatttatgat gagaacgggc agcttttatg ggcgcaacgt 300gacgtgccct ggctgatgaa gatgatccag cctgactggc tgaaatcgaa tggttttcat 360gaaattgaag cggatgttaa cgataccagc ctcttgctga gtggagatca ttcgatacag 420caacagttgc aggaagtgcg ggaagatgat gacgacgcgg agatgaccca ctcggtggca 480gtaaacgtct acccggcaac atcgcggatg ccaaaattaa ccattgtggt ggtggatacc 540attccggtgg agctaaaaag ttcctatatg gtctggagct ggtttatcta tgtgctctca 600gccaatctgc tgttagtgat cccgctgctg tgggtcgccg cctggtggag tttacgcccc 660atcgaagccc tggcaaaaga agtccgcgaa ctggaagaac ataaccgcga attgctcaat 720ccagccacaa cgcgagaact gaccagtctg gtacgaaacc tgaaccgatt gttaaaaagt 780gaacgcgaac gttacgacaa ataccgtacg acgctcaccg acctgaccca tagtctgaaa 840acgccactgg cggtgctgca aagtacgctg cgttctctgc gtagtgaaaa gatgagcgtc 900agtgatgctg agccggtaat gctggagcaa atcagccgca tttcacagca aattggctac 960tacctgcatc gtgccagtat gcgcggcggg acattgctca gccgcgagct gcatccggtc 1020gccccactgc tggacaatct cacctcagcg ctgaacaaag tgtatcaacg caaaggggtc 1080aatatctctc tcgatatttc gccagagatc agctttgtcg gtgagcagaa cgattttgtc 1140gaggtgatgg gcaacgtgct ggataatgcc tgtaaatatt gcctcgagtt tgtcgaaatt 1200tctgcaaggc aaaccgacga gcatctctat attgtggtcg aggatgatgg ccccggtatt 1260ccattaagca agcgagaggt cattttcgac cgtggtcaac gggttgatac tttacgccct 1320gggcaaggtg tagggctggc ggtagcccgc gaaatcaccg agcaatatga gggtaaaatc 1380gtcgccggag agagcatgct gggcggtgcg cggatggagg tgatttttgg tcgccagcat 1440tctgcgccga aagatgaata a 146139490DNAHomo sapiens 39ctatagaaga cctgggacag aggactgctg tctgccctct ctggtcaccc tgcctagcta 60gaggatctgt gaccccagcc atgaggaccc tcgccatcct tgctgccatt ctcctggtgg 120ccctgcaggc ccaggctgag ccactccagg caagagctga tgaggttgct gcagccccgg 180agcagattgc agcggacatc ccagaagtgg ttgtttccct tgcatgggac gaaagcttgg 240ctccaaagca tccaggctca aggaaaaaca tggcctgcta ttgcagaata ccagcgtgca 300ttgcaggaga acgtcgctat ggaacctgca tctaccaggg aagactctgg gcattctgct 360gctgagcttg cagaaaaaga aaaatgagct caaaatttgc tttgagagct acagggaatt 420gctattactc ctgtaccttc tgctcaattt cctttcctca tcccaaataa atgccttggt 480acaagaaaag 49040487DNAHomo sapiens 40ccttgctata gaagacctgg gacagaggac tgctgtctgc cctctctggt caccctgcct 60agctagagga tctgtgaccc cagccatgag gaccctcgcc atccttgctg ccattctcct 120ggtggccctg caggcccagg ctgagccact ccaggcaaga gctgatgagg ttgctgcagc 180cccggagcag attgcagcgg acatcccaga agtggttgtt tcccttgcat gggacgaaag 240cttggctcca aagcatccag gctcaaggaa aaacatggac tgctattgca gaataccagc 300gtgcattgca ggagaacgtc gctatggaac ctgcatctac cagggaagac tctgggcatt 360ctgctgctga gcttgcagaa aaagaaaaat gagctcaaaa tttgctttga gagctacagg 420gaattgctat tactcctgta ccttctgctc aatttccttt cctcatctca aataaatgcc 480ttgttac 48741542DNAHomo sapiens 41gtctgccctc tctgctcgcc ctgcctagct tgaggatctg tcaccccagc catgaggatt 60atcgccctcc tcgctgctat tctcttggta gccctccagg tccgggcagg cccactccag 120gcaagaggtg atgaggctcc aggccaggag cagcgtgggc cagaagacca ggacatatct 180atttcctttg catgggataa aagctctgct cttcaggttt caggctcaac aaggggcatg 240gtctgctctt gcagattagt attctgccgg cgaacagaac ttcgtgttgg gaactgcctc 300attggtggtg tgagtttcac atactgctgc

acgcgtgtcg attaacgttc tgctgtccaa 360gagaatgtca tgctgggaac gccatcatcg gtggtgttag cttcacatgc ttctgcagct 420gagcttgcag aatagagaaa aatgagctca taatttgctt tgagagctac aggaaatggt 480tgtttctcct atactttgtc cttaacatct ttcttgatcc taaatatata tctcgtaaca 540ag 54242449DNAHomo sapiens 42atatccactc ctgctctccc tcctgcaggt gaccccagcc atgaggacca tcgccatcct 60tgctgccatt ctcctggtgg ccctgcaggc ccaggctgag tcactccagg aaagagctga 120tgaggctaca acccagaagc agtctgggga agacaaccag gaccttgcta tctcctttgc 180aggaaatgga ctctctgctc ttagaacctc aggttctcag gcaagagcca cctgctattg 240ccgaaccggc cgttgtgcta cccgtgagtc cctctccggg gtgtgtgaaa tcagtggccg 300cctctacaga ctctgctgtc gctgagcttc ctagatagaa accaaagcag tgcaagattc 360agttcaaggt cctgaaaaaa gaaaaacatt ttactctgtg taccttgtgt ctttctaaat 420ttctctctcc aaaataaagt tcaagcatt 44943475DNAHomo sapiens 43acacatctgc tcctgctctc tctcctccag cgaccctagc catgagaacc ctcaccatcc 60tcactgctgt tctcctcgtg gccctccagg ccaaggctga gccactccaa gctgaggatg 120atccactgca ggcaaaagct tatgaggctg atgcccagga gcagcgtggg gcaaatgacc 180aggactttgc cgtctccttt gcagaggatg caagctcaag tcttagagct ttgggctcaa 240caagggcttt cacttgccat tgcagaaggt cctgttattc aacagaatat tcctatggga 300cctgcactgt catgggtatt aaccacagat tctgctgcct ctgagggatg agaacagaga 360gaaatatatt cataatttac tttatgacct agaaggaaac tgtcgtgtgt cccatacatt 420gccatcaact ttgtttcctc atctcaaata aagtcctttc agcaaaaaaa aaaaa 47544484DNAHomo sapiens 44tcccttcagt tccgtcgacg aggttgtgca atccaccagt cttataaata cagtgacgct 60ccagcctctg gaagcctctg tcagctcagc ctccaaagga gccagcgtct ccccagttcc 120tgaaatcctg ggtgttgcct gccagtcgcc atgagaactt cctaccttct gctgtttact 180ctctgcttac ttttgtctga gatggcctca ggtggtaact ttctcacagg ccttggccac 240agatctgatc attacaattg cgtcagcagt ggagggcaat gtctctattc tgcctgcccg 300atctttacca aaattcaagg cacctgttac agagggaagg ccaagtgctg caagtgagct 360gggagtgacc agaagaaatg acgcagaagt gaaatgaact ttttataagc attcttttaa 420taaaggaaaa ttgcttttga agtatacctc ctttgggcca aaaaaaaaaa aaaaaaaaaa 480aaaa 48445337DNAHomo sapiens 45tgagtctcag cgtggggtga agcctagcag ctatgaggat ccattatctt ctgtttgctt 60tgctcttcct gtttttggtg cctgtcccag gtcatggagg aatcataaac acattacaga 120aatattattg cagagtcaga ggcggccggt gtgctgtgct cagctgcctt ccaaaggagg 180aacagatcgg caagtgctcg acgcgtggcc gaaaatgctg ccgaagaaag aaataaaaac 240cctgaaacat gacgagagtg ttgtaaagtg tggaaatgcc ttcttaaagt ttataaaagt 300aaaatcaaat tacatttttt tttcaaaaaa aaaaaaa 33746336DNAHomo sapiens 46agactcagct cctggtgaag ctcccagcca tcagccatga gggtcttgta tctcctcttc 60tcgttcctct tcatattcct gatgcctctt ccaggtgttt ttggtggtat aggcgatcct 120gttacctgcc ttaagagtgg agccatatgt catccagtct tttgccctag aaggtataaa 180caaattggca cctgtggtct ccctggaaca aaatgctgca aaaagccatg aggaggccaa 240gaagctgctg tggctgatgc ggattcagaa agggctccct catcagagac gtgcgacatg 300taaaccaaat taaactatgg tgtccaaaga tacgca 33647691DNAHomo sapiens 47atggagaccc agagagccag cctgtgcctg gggcgctggt cactgtggct tctgctgctg 60gcactcgtgg tgccctcggc cagcgcccag gccctcagct acagggaggc cgtgcttcgt 120gctgtggatc gcctcaacga gcagtcctcg gaagctaatc tctaccgcct cctggagctg 180gaccagccgc ccaaggccga cgaggacccg ggcaccccga aacctgtgag cttcacggtg 240aaggagactg tgtgtcccag gccgacccgg cagcccccgg agctgtgtga cttcaaggag 300aacgggcggg tgaaacagtg tgtggggaca gtcaccctgg atcagatcaa ggacccgctc 360gacatcacct gcaatgaggt tcaaggtgtc aggggaggtc gcctgtgcta ttgtaggcgt 420aggttctgcg tctgtgtcgg acgaggatga cggttgcgac ggcaggcttt ccctccccca 480attttcccgg ggccaggttt ccgtccccca atttttccgc ctccaccttt ccggcccgca 540ccattcggtc caccaaggtt ccctggtaga cggtgaagga tttgcaggca actcacccag 600aaggcctttc ggtacattaa aatcccagca aggagaccta agcatctgct ttgcccaggc 660ccgcatctgt caaataaatt cttgtgaaac c 69148691DNAHomo sapiens 48atggagaccc agagagccag cctgtgcctg gggcgctggt cactgtggct tctgctgctg 60gcactcgtgg tgccctcggc cagcgcccag gccctcagct acagggaggc cgtgcttcgt 120gctgtggatc gcctcaacga gcagtcctcg gaagctaatc tctaccgcct cctggagctg 180gaccagccgc ccaaggccga cgaggacccg ggcaccccga aacctgtgag cttcacggtg 240aaggagactg tgtgtcccag gccgacccgg cagcccccgg agctgtgtga cttcaaggag 300aacgggcggg tgaaacagtg tgtggggaca gtcaccctgg atcagatcaa ggacccgctc 360gacatcacct gcaatgaggt tcaaggtgtc aggggaggtg gcctgtgcta ttgtaggcgt 420aggttctgcg tctgtgtcgg acgaggatga cggttgcgac ggcaggcttt ccctccccca 480attttcccgg ggccaggttt ccgtccccca atttttccgc ctccaccttt ccggcccgca 540ccattcggtc caccaaggtt ccctggtaga cggtgaagga tttgcaggca actcacccag 600aaggcctttc ggtacattaa aatcccagca aggagaccta agcatctgct ttgcccaggc 660ccgcatctgt caaataaatt cttgtgaaac c 69149691DNAHomo sapiens 49atggagaccc agagagccag cctgtgcctg gggcgctggt cactgtggct tctgctgctg 60gcactcgtgg tgccctcggc cagcgcccag gccctcagct acagggaggc cgtgcttcgt 120gctgtggatc gcctcaacga gcagtcctcg gaagctaatc tctaccgcct cctggagctg 180gaccagccgc ccaaggccga cgaggacccg ggcaccccga aacctgtgag cttcacggtg 240aaggagactg tgtgtcccag gccgacccgg cagcccccgg agctgtgtga cttcaaggag 300aacgggcggg tgaaacagtg tgtggggaca gtcaccctgg atcagatcaa ggacccgctc 360gacatcacct gcaatgaggt tcaaggtgtc aggggaggtc gcctgtgcta ttgtaggggt 420tggatctgct tctgtgtcgg acgaggatga cggttgcgac ggcaggcttt ccctccccca 480attttcccgg ggccaggttt ccgtccccca atttttccgc ctccaccttt ccggcccgca 540ccattcggtc caccaaggtt ccctggtaga cggtgaagga tttgcaggca actcacccag 600aaggcctttc ggcacattaa aatcccagca aggagaccta agcatctgct ttgcccaggc 660ccgcatctgt caaataaatt cttgtgaaac c 6915055DNAArtificial SequenceConstruct containing an HPV target sequence, a hairpin sequence and BamH1 and SalI restriction sites. 50gatcctaggt atttgaattt gcatttcaag agaatgcaaa ttcaaatacc ttttg 555155DNAArtificial SequenceConstruct containing an HPV target sequence, a hairpin sequence and BamH1 and SalI restriction sites. Sequence given in 3' to 5' orientation. 51gatccataaa cttaaacgta aagttctctt acgtttaagt ttatggaaaa cagct 555221DNAHomo sapiens 52agccaatggc ttggaatgag a 215321DNAHomo sapiens 53atcagctggc ctggtttgat a 215421DNAHomo sapiens 54ctgtgaactt gctcaggaca a 215521DNAHomo sapiens 55agcaatcagc tggcctggtt t 215621DNAHomo sapiens 56cctctgtgaa cttgctcagg a 215721DNAHomo sapiens 57ttccgaatgt ctgaggacaa g 215821DNAHomo sapiens 58ccaatggctt ggaatgagac t 215921DNAHomo sapiens 59ggtgctgact atccagttga t 216021DNAHomo sapiens 60caatcagctg gcctggtttg a 216121DNAHomo sapiens 61caccctggtg ctgactatcc a 216221DNAHomo sapiens 62caccaccctg gtgctgacta t 216321DNAHomo sapiens 63tgctttattc tcccattgaa a 216421DNAHomo sapiens 64ctggtgctga ctatccagtt g 216521DNAHomo sapiens 65tctgtgctct tcgtcatctg a 216621DNAHomo sapiens 66tgccatctgt gctcttcgtc a 216721DNAHomo sapiens 67tggtgctgac tatccagttg a 216821DNAHomo sapiens 68cctggtgctg actatccagt t 216921DNAHomo sapiens 69accctggtgc tgactatcca g 217021DNAHomo sapiens 70gagcctgcca tctgtgctct t 217121DNAHomo sapiens 71ctggtttgat actgacctgt a 217221DNAHomo sapiens 72tggtttgata ctgacctgta a 217321DNAHomo sapiens 73tcgaggagta acaatacaaa t 217421DNAHomo sapiens 74accatgcaga atacaaatga t 217521DNAHomo sapiens 75aggagtaaca atacaaatgg a 217621DNAHomo sapiens 76gtcgaggagt aacaatacaa a 217721DNAHomo sapiens 77ttgttgtaac ctgctgtgat a 217821DNAHomo sapiens 78gagtaatggt gtagaacact a 217921DNAHomo sapiens 79agtaatggtg tagaacacta a 218021DNAHomo sapiens 80cacactaacc aagctgagtt t 218121DNAHomo sapiens 81tttggtcgag gagtaacaat a 218221DNAHomo sapiens 82taccattcca ttgtttgtgc a 218321DNAHomo sapiens 83tagggtaaat cagtaagagg t 218421DNAHomo sapiens 84ctaaccaagc tgagtttcct a 218521DNAHomo sapiens 85tggtcgagga gtaacaatac a 218621DNAHomo sapiens 86ctggcctggt ttgatactga c 218721DNAHomo sapiens 87taacctcact tgcaataatt a 218821DNAHomo sapiens 88atcccactgg cctctgataa a 218921DNAHomo sapiens 89gaccacaagc agagtgctga a 219021DNAHomo sapiens 90cacaagcaga gtgctgaagg t 219121DNAHomo sapiens 91ctaacctcac ttgcaataat t 219219DNAHomo sapiens 92agctgatatt gatggacag 199323DNAHuman papillomavirus 93cggtgccaga aaccgttgaa tcc 239423DNAHuman papillomavirus 94cactgcaaga catagaaata acc 239523DNAHuman papillomavirus 95aggtgcctgc ggtgccagaa acc 239623DNAHuman papillomavirus 96gcggtgccag aaaccgttga atc 239723DNAHuman papillomavirus 97tcactgcaag acatagaaat aac 239823DNAHuman papillomavirus 98cccatgctgc atgccataaa tgt 239923DNAHuman papillomavirus 99atgctgcatg ccataaatgt ata 2310023DNAHuman papillomavirus 100gtggtgtata gagacagtat acc 2310123DNAHuman papillomavirus 101gcgcgctttg aggatccaac acg 2310223DNAHuman papillomavirus 102ctgcggtgcc agaaaccgtt gaa 2310323DNAHuman papillomavirus 103ccccatgctg catgccataa atg 2310423DNAHuman papillomavirus 104accccatgct gcatgccata aat 2310523DNAHuman papillomavirus 105aacactgggt tatacaattt att 2310623DNAHuman papillomavirus 106acgacgcaga gaaacacaag tat 2310723DNAHuman papillomavirus 107aaggtgcctg cggtgccaga aac 2310823DNAHuman papillomavirus 108ggtgcctgcg gtgccagaaa ccg 2310923DNAHuman papillomavirus 109catgctgcat gccataaatg tat 2311023DNAHomo sapiens 110gacgcagaga aacacaagta taa 2311123DNAHuman papillomavirus 111ttcactgcaa gacatagaaa taa 2311223DNAHuman papillomavirus 112ggtgccagaa accgttgaat cca 2311323DNAHuman papillomavirus 113tggcgcgctt tgaggatcca aca 2311423DNAHuman papillomavirus 114tgtggtgtat agagacagta tac 2311523DNAHuman papillomavirus 115gtgcctgcgg tgccagaaac cgt 2311623DNAHuman papillomavirus 116ctgcatgcca taaatgtata gat 2311723DNAHuman papillomavirus 117gactccaacg acgcagagaa aca 2311823DNAHuman papillomavirus 118ctgggcacta tagaggccag tgc 2311923DNAHuman papillomavirus 119tgctgcatgc cataaatgta tag 2312023DNAHuman papillomavirus 120gtgccagaaa ccgttgaatc cag 2312123DNAHuman papillomavirus 121ttacagaggt atttgaattt gca 2312223DNAHuman papillomavirus 122gaggccagtg ccattcgtgc tgc 2312323DNAHuman papillomavirus 123attccggttg accttctatg tca 2312423DNAHuman papillomavirus 124gatggagtta atcatcaaca ttt 2312523DNAHuman papillomavirus 125aagccagaat tgagctagta gta 2312623DNAHuman papillomavirus 126catggaccta aggcaacatt gca 2312723DNAHuman papillomavirus 127aaccacaacg tcacacaatg ttg 2312823DNAHuman papillomavirus 128atggacctaa ggcaacattg caa 2312923DNAHuman papillomavirus 129taagcgactc agaggaagaa aac 2313023DNAHuman papillomavirus 130gaagccagaa ttgagctagt agt 2313123DNAHuman papillomavirus 131gagccgaacc acaacgtcac aca 2313223DNAHuman papillomavirus 132acgtcacaca atgttgtgta tgt 2313323DNAHuman papillomavirus 133gaaccacaac gtcacacaat gtt 2313423DNAHuman papillomavirus 134aggcaacatt gcaagacatt gta 2313523DNAHuman papillomavirus 135aagacattgt attgcattta gag 2313623DNAHuman papillomavirus 136taaggcaaca ttgcaagaca ttg 2313723DNAHuman papillomavirus 137ccagcccgac gagccgaacc aca 2313823DNAHuman papillomavirus 138aagctcagca gacgaccttc gag 2313923DNAHuman papillomavirus 139gcccgacgag ccgaaccaca acg 2314023DNAHuman papillomavirus 140ttccggttga ccttctatgt cac 2314123DNAHuman papillomavirus 141tgcatggacc taaggcaaca ttg 2314223DNAHuman papillomavirus 142ttccagcagc tgtttctgaa cac 2314323DNAHuman papillomavirus 143aacaccctgt cctttgtgtg tcc 2314423DNAHuman papillomavirus 144cttctatgtc acgagcaatt aag 2314523DNAHuman papillomavirus 145acgagccgaa ccacaacgtc aca 2314623DNAHuman papillomavirus 146ttgagctagt agtagaaagc tca 2314723DNAHuman papillomavirus 147cagcagacga ccttcgagca ttc 2314823DNAHuman papillomavirus 148agccagaatt gagctagtag tag 2314923DNAHuman papillomavirus 149gtcacacaat gttgtgtatg tgt 2315023DNAHuman papillomavirus 150ccgacgagcc gaaccacaac gtc 2315123DNAHuman papillomavirus 151aattccggtt gaccttctat gtc 2315223DNAHuman papillomavirus 152attccagcag ctgtttctga aca 2315319DNAHuman papillomavirus 153taggtatttg aatttgcat 1915419DNAHuman papillomavirus 154gaggtatttg aatttgcat 1915520DNAHomo sapiens 155atgttgtctg gacaagcact 2015619DNAHomo sapiens 156gttggagctg ttggcgtag 1915721DNAHomo sapiens 157ctcctggaac tcatctttct a 2115821DNAHomo sapiens 158gctctcctgc ttccggaaga g 2115921DNAHomo sapiens 159ctccacgact ctggaaacta t 2116021DNAHomo sapiens 160cagaagttct cctgccagtt a 2116121DNAHomo sapiens 161ccggaagaca atgccactgt t 2116221DNAHomo sapiens 162ctgaacggtc aaagacattc a 2116321DNAHomo sapiens 163cacaacatgg atggtcaagg a 2116421DNAHomo sapiens 164atgcaggcac ttactactaa t 2116521DNAHomo sapiens 165atcgggctga acggtcaaag a 2116621DNAHomo sapiens 166agctctcctg cttccggaag a 2116721DNAHomo sapiens 167cagctctcct gcttccggaa g 2116821DNAHomo

sapiens 168caggcactta ctactaataa a 2116921DNAHomo sapiens 169cacttgctgg tggatgttcc c 2117021DNAHomo sapiens 170aacggtcaaa gacattcaca a 2117121DNAHomo sapiens 171tgcacaagct gcaccctcag g 2117221DNAMouse 172atcctggagg gtgacaaagt a 2117321DNAMouse 173tgggtctgac aataccgtaa a 2117421DNAMouse 174aacgaagcgt ttcacagctt a 2117521DNAMouse 175ccgctgtttc ctataacaga a 2117621DNAMouse 176acgaagcgtt tcacagctta a 2117721DNAMouse 177ctgctgtgaa agggaaattt a 2117821DNAMouse 178aaccttgtgg tatcagccat a 2117921DNAMouse 179cacagtgtgg tgcttagatt a 2118021DNAMouse 180cagcttcgat accgacctgt a 2118121DNAMouse 181cagtgtggtg cttagattaa a 2118221DNAMouse 182cccggcagga atcctctgga a 2118321DNAMouse 183cccgctgttt cctataacag a 2118421DNAMouse 184aaccacgagg atcagtacga a 2118521DNAMouse 185acctgccgtc ttactgaact a 2118621DNAMouse 186accacgagga tcagtacgaa a 2118721DNAMouse 187acagcttgtg atgactgaat a 2118821DNAMouse 188aggatcagta cgaaagttct a 2118921DNAMouse 189aacccgctgt ttcctataac a 2119021DNAMouse 190cagtacgaaa gttctacaga a 2119121DNAMouse 191tacgcgagtg acaatttctc a 2119221DNAMouse 192acgaaagttc tacagaagca a 2119321DNAMouse 193caggcactta ctactaataa a 2119421DNAMouse 194cacttgctgg tggatgttcc c 2119521DNAMouse 195aacggtcaaa gacattcaca a 2119621DNAMouse 196tgcacaagct gcaccctcag g 2119721DNAHomo sapiens 197taagagagtc ataaacctta a 2119821DNAHomo sapiens 198aacaaggtcc aagataccta a 2119921DNAHomo sapiens 199aagattgaac ctgcagacca a 2120021DNAHomo sapiens 200aagagatttc aagagattta a 2120121DNAHomo sapiens 201aagcgcaaag tagaaactga a 2120221DNAHomo sapiens 202tagcatcatc tgattgtgat a 2120321DNAHomo sapiens 203taagataata atatatgttt a 2120421DNAHomo sapiens 204atggtcagca tcgatcaatt a 2120521DNAHomo sapiens 205ttgcctgaat aatgaattta a 2120621DNAHomo sapiens 206atctgtgatg ctaataagga a 2120721DNAHomo sapiens 207aacaaactat ttcttatata t 2120821DNAHomo sapiens 208aacatttatc aatcagtata a 2120921DNAHomo sapiens 209atcaatcagt ataattctgt a 2121021DNAHomo sapiens 210aaggtatcag ttgcaataat a 2121121DNAMouse 211cggatcctac ggaagttatg g 2121221DNAMouse 212gaccatgttc catgtttctt t 2121321DNAMouse 213aacctaaatg acctttatta a 2121421DNAMouse 214caggagacta ggaccctata a 2121521DNAMouse 215tagggtctta ttcgtatcta a 2121621DNAMouse 216atgagccaat atgcttaatt a 2121721DNAMouse 217gccaatatgc ttaattagaa a 2121821DNAMouse 218cagcatcgat gaattggaca a 2121921DNAMouse 219ttgcctgaat aatgaattta a 2122021DNAMouse 220ctgatagtaa ttgcccgaat a 2122121DNAMouse 221aagggtttgc ttgtactgaa t 2122221DNAMouse 222aacatgtatg tgatgataca a 2122321DNAMouse 223ttgcaacatg taataattta a 2122421DNAMouse 224aagagactac tgagagaaat a 2122521DNAMouse 225aagaatctac tggttcatat a 2122621DNAMouse 226tgccgtcagc atatacatat a 2122721DNAMouse 227agggctcacg gtgatggata a 2122821DNAHomo sapiens 228cgcctcccgc agaccatgtt c 2122921DNAHomo sapiens 229tccgtgctgc tcgcaagttg a 2123021DNAHomo sapiens 230gcctcccgca gaccatgttc c 2123121DNAHomo sapiens 231cctcccgcag accatgttcc a 2123221DNAHomo sapiens 232ctcccgcaga ccatgttcca t 2123321DNAHomo sapiens 233tcccgcagac catgttccat g 2123421DNAHomo sapiens 234cccgcagacc atgttccatg t 2123521DNAHomo sapiens 235ccgcagacca tgttccatgt t 2123621DNAHomo sapiens 236cgcagaccat gttccatgtt t 2123721DNAHomo sapiens 237gcagaccatg ttccatgttt c 2123821DNAHomo sapiens 238cagaccatgt tccatgtttc t 2123921DNAHomo sapiens 239agaccatgtt ccatgtttct t 2124021DNAHomo sapiens 240aacctgatcc tccacatatt a 2124121DNAHomo sapiens 241cctgatcctc cacatattaa a 2124221DNAHomo sapiens 242agaaatgttt ggagaccaga a 2124321DNAHomo sapiens 243caaataatgg tcaaggataa t 2124421DNAHomo sapiens 244ttcctgatcc tggcaagatt t 2124521DNAHomo sapiens 245taaagaaatg tttggagacc a 2124621DNAHomo sapiens 246atgtttggag accagaatga t 2124721DNAHomo sapiens 247ctccaattcc tgatcctggc a 2124821DNAMouse 248caagaagact ctaatgatgt a 2124921DNAMouse 249cacagtcaga gtaagagtca a 2125021DNAMouse 250acccagggta tcatagttct a 2125121DNAMouse 251ctgctttgaa atttccagaa a 2125221DNAMouse 252atcatagttc taagaatgaa a 2125321DNAMouse 253aaggcttaag atcattatat t 2125421DNAMouse 254aactacttat aagaaagtaa a 2125521DNAMouse 255cacagaacat ctagcaaaca a 2125621DNAMouse 256ctcgttcttg ttcaatccta a 2125721DNAMouse 257aacttgtagg ttcacatatt a 2125821DNAMouse 258aaccatttct gcaaatttaa a 2125921DNAMouse 259ctcagtgtag tgccaatgaa a 2126021DNAMouse 260caggccttag ggactcataa a 2126121DNAMouse 261aagtatgaca tctatgagaa a 2126221DNAMouse 262gtggaggtca ataatactca a 2126321DNAMouse 263cagagtatag gtaaggagca a 2126421DNAHomo sapiens 264ttgaatgacc aagttctctt c 2126521DNAMouse 265ctctctgtga aggatagtaa a 2126621DNAMouse 266ccgcagtaat acggaatata a 2126721DNAMouse 267caaggaaatg atgtttattg a 2126821DNAMouse 268cagactgata atatacatgt a 2126921DNAMouse 269ttggccgact tcactgtaca a 2127021DNAMouse 270ccagaccaga ctgataatat a 2127121DNAMouse 271aagatggagt ttgaatcttc a 2127221DNAMouse 272acgctttact ttatacctga a 2127321DNAMouse 273tacaaccgca gtaatacgga a 2127421DNAMouse 274ctgcatgatt tatagagtaa a 2127521DNAMouse 275cccgaggctg catgatttat a 2127621DNAMouse 276cacgctttac tttatacctg a 2127721DNAMouse 277cgcctgtatt tccataacag a 2127821DNAMouse 278cgcagtaata cggaatataa a 2127921DNAMouse 279tacatgtaca aagacagtga a 2128021DNAMouse 280caggcctgac atcttctgca a 2128121DNAMouse 281ttcgaggata tgactgatat t 2128221DNAMouse 282ctgtatttcc ataacagaat a 2128321DNAMouse 283gaggatatga ctgatattga t 2128421DNAMouse 284caagttctct tcgttgacaa a 2128521DNAMouse 285cactaactta catcaaagtt a 2128621DNAMouse 286accgcagtaa tacggaatat a 2128721DNAMouse 287ctctcactaa cttacatcaa a 2128821DNAHomo sapiens 288atcatctttc acacaaagaa a 2128921DNAHomo sapiens 289aacagacttg ggtgaaatat a 2129021DNAHomo sapiens 290atggaattgg acatagccca a 2129121DNAHomo sapiens 291gagggtttag tgcttatcta a 2129221DNAHomo sapiens 292ctcactggac ttgtccaatt a 2129321DNAHomo sapiens 293atcatagttt gctttgttta a 2129421DNAHomo sapiens 294ttgtttaagc atcacattaa a 2129521DNAHomo sapiens 295aagcatcaca ttaaagttaa a 2129621DNAHomo sapiens 296cccaaagaac tgggtactca a 2129721DNAHomo sapiens 297cacattaaag ttaaactgta t 2129821DNAHomo sapiens 298cagatctgtt ctttgagcta a 2129921DNAHomo sapiens 299ttggtttagt gcaaagtata a 2130021DNAHomo sapiens 300cagaccgtat tcttcatcct a 2130121DNAHomo sapiens 301aacattaata agacaaatat t 2130221DNAHomo sapiens 302gaccgtattc ttcatcctaa a 2130321DNAMouse 303aagcttgtga cattaatgct a 2130421DNAMouse 304caataagcta ttgtaaagat a 2130521DNAMouse 305atcatctttc acacgaagaa a 2130621DNAMouse 306agctattgta aagatattta a 2130721DNAMouse 307cagcctaaga gtcaagaaga t 2130821DNAMouse 308cccagtggac ttgtcaatgg a 2130921DNAMouse 309atgaagttga ttcatattgc a 2131021DNAMouse 310aagttgattc atattgcatc a 2131121DNAMouse 311tcacattaga gttaagttgt a 2131221DNAMouse 312cacattagag ttaagttgta t 2131321DNAMouse 313tatgttattt atagatctga a 2131421DNAMouse 314atgtttagct atttaatgtt a 2131521DNAMouse 315ttagtggaag gattaatatt a 2131621DNAMouse 316acccagcact gagtacatca a 2131721DNAMouse 317tatgtttaag ggaatagttt a 2131821DNAHomo sapiens 318atgaagttga ttcatattgc a 2131921DNAHomo sapiens 319tgaagttgat tcatattgca t 2132021DNAHomo sapiens 320gaagttgatt catattgcat c 2132121DNAHomo sapiens 321aagttgattc atattgcatc a 2132221DNAHomo sapiens 322agttgattca tattgcatca t 2132321DNAHomo sapiens 323gttgattcat attgcatcat a 2132421DNAHomo sapiens 324ttgattcata ttgcatcata g 2132521DNAHomo sapiens 325tgattcatat tgcatcatag t 2132621DNAHomo sapiens 326tcaatgctat catctttcac a 2132721DNAHomo sapiens 327caatgctatc atctttcaca c 2132821DNAHomo sapiens 328taatgaagtt gattcatatt g 2132921DNAHomo sapiens 329aatgaagttg attcatattg c 2133021DNAHomo sapiens 330agcatgaaat ttgagattgg a 2133121DNAHomo sapiens 331tacagagcct ctgaaagacc a 2133221DNAHomo sapiens 332cactacagag cctctgaaag a 2133321DNAHomo sapiens 333ctgacagcat gaaatttgag a 2133421DNAHomo sapiens 334atctctgtgg tgggcatgag a 2133521DNAHomo sapiens 335catgaaattt gagattggag a 2133621DNAHomo sapiens 336tctggctgag gttggctctt a 2133721DNAHomo sapiens 337gtgggctaca tcctaggcct t 2133821DNAMouse 338cagcttcctg ctaaaccaca a 2133921DNAMouse 339caagagtgag ttcaactcat a 2134021DNAMouse 340ctggttcctg acagcatgaa a 2134121DNAMouse 341tggctgggac tatatatata a 2134221DNAMouse 342gagggcaatt gctatatctt a 2134321DNAMouse 343cagcagccaa acgacaagca a 2134421DNAMouse 344caagggtttc cttaaggaca a 2134521DNAMouse 345cagatacttg taaggaggaa a 2134621DNAMouse 346aagaaatgga ttagtcagta a 2134721DNAMouse 347aaggaaagca caagaagcca a 2134821DNAMouse 348ctggctgagg ttggctctta a 2134921DNAMouse 349aacctgggat ctaaagaaac a 2135021DNAMouse 350aagggcttgg gtatcaaaga a 2135121DNAMouse 351caggctccga agatacttct a 2135221DNAMouse 352cccaatatat aaattgccta a 2135321DNAMouse 353ctgacccagc ttcctgctaa a 2135421DNAHomo sapiens 354acccacatca tctacagctt t 2135521DNAHomo sapiens 355catcatctac agctttgcca a 2135621DNAHomo sapiens 356cagctggtcc cagtaccggg a 2135721DNAHomo sapiens 357caccaaggag gcagggaccc t 2135821DNAHomo sapiens 358ccggttcacc aaggaggcag g 2135921DNAHomo sapiens 359agctggtccc agtaccggga a 2136021DNAHomo sapiens 360caggccggtt caccaaggag g 2136121DNAHomo sapiens 361ggccggttca ccaaggaggc a 2136221DNAMouse 362taggtttgac agatacagca a

2136321DNAMouse 363aaccctgtta aggaatgcaa a 2136421DNAMouse 364atcaagtagg caaatatctt a 2136521DNAMouse 365cgcagctttg tcagcaggaa a 2136621DNAMouse 366ttggatcaag taggcaaata t 2136721DNAMouse 367ttgagggacc atactaatta t 2136821DNAMouse 368gaggacaagg agagtgtcaa a 2136921DNAMouse 369tgcgtacaag ctggtctgct a 2137021DNAMouse 370caggagttta atctcttgca a 2137121DNAMouse 371atcaaggaac tgaatgcgga a 2137221DNAMouse 372caccctgatc aaggaactga a 2137321DNAMouse 373cacttggatc aagtaggcaa a 2137421DNAMouse 374caggattgag ggaccatact a 2137521DNAMouse 375aactatgaca agctgaataa a 2137621DNAMouse 376atgcaaattc tcagactcta a 2137721DNAMouse 377atccttccct taggaactta a 2137879DNAEscherichia coli 378gacttcatat acccaagctt ggaaaatttt ttttaaaaaa gtcttgacac tttatgcttc 60cggctcgtat aatggatcc 7937923DNAEscherichia coli 379ggaaaatttt ttttaaaaaa gtc 2338065DNAArtificial SequenceHairpin sequence which contains BamHI and SalI restriction sites. 380ggatccagga gtaacaatac aaatggattc aagagatcca tttgtattgt tactcctttg 60tcgac 6538121DNAHuman papillomavirus 381ctgatctgtg cacggaactg a 2138225DNAHuman papillomavirus 382tgtctaagtt tttctgctgg attca 2538325DNAHuman papillomavirus 383ttggaactta cagaggtgcc tgcgc 2538461DNAArtificial SequenceHPV shRNA 384ggatcctagg tatttgaatt tgcatttcaa gagaatgcaa attcaaatac cttttgtcga 60c 6138561DNAArtificial SequenceHPV shRNA 385gtcgacaaaa ggtatttgaa tttgcattct cttgaaatgc aaattcaaat acctaggatc 60c 6138661DNAArtificial SequenceHPV shRNA 386ggatcctcag aaaaacttag acaccttcaa gagaggtgtc taagtttttc tgtttgtcga 60c 6138761DNAArtificial SequenceHPV shRNA 387gtcgacaaac agaaaaactt agacacctct cttgaaggtg tctaagtttt tctgaggatc 60c 613889DNAArtificial SequenceLoop Sequence 388ttcaagaga 938955DNAArtificial SequenceHPV shRNA 389gatcctaggt atttgaattt gcatttcaag agaatgcaaa ttcaaatacc ttttg 5539055DNAArtificial SequenceHPV shRNA, sequence written in 3' to 5' orientation 390gatccataaa cttaaacgta aagttctctt acgtttaagt ttatggaaaa cagct 5539121DNAArtificial SequencesiRNA sense strand 391gcuugugaca uuaaugcuat t 2139221DNAArtificial SequencesiRNA antisense strand 392uagcauuaau gucacaagct t 2139321DNAArtificial SequencesiRNA sense strand 393auaagcuauu guaaagauat t 2139421DNAArtificial SequencesiRNA antisense strand 394uaucuuuaca auagcuuaut g 2139521DNAArtificial SequencesiRNA sense strand 395caucuuucac acgaagaaat t 2139621DNAArtificial SequencesiRNA antisense strand 396uuucuucgug ugaaagauga t 2139721DNAArtificial SequencesiRNA sense strand 397cuauuguaaa gauauuuaat t 2139821DNAArtificial SequencesiRNA antisense strand 398uuaaauaucu uuacaauagc t 2139921DNAArtificial SequencesiRNA sense strand 399gccuaagagu caagaagaut t 2140021DNAArtificial SequencesiRNA antisense strand 400aucuucuuga cucuuaggct g 2140121DNAArtificial SequencesiRNA sense strand 401caguggacuu gucaauggat t 2140221DNAArtificial SequencesiRNA antisense strand 402uccauugaca aguccacugg g 2140321DNAArtificial SequencesiRNA sense strand 403gaaguugauu cauauugcat t 2140421DNAArtificial SequencesiRNA antisense strand 404ugcaauauga aucaacuuca t 2140521DNAArtificial SequencesiRNA sense strand 405guugauucau auugcaucat t 2140621DNAArtificial SequencesiRNA antisense strand 406ugaugcaaua ugaaucaact t 2140721DNAArtificial SequencesiRNA sense strand 407acauuagagu uaaguuguat t 2140821DNAArtificial SequencesiRNA antisense strand 408uacaacuuaa cucuaaugug a 2140921DNAArtificial SequencesiRNA sense strand 409cauuagaguu aaguuguaut t 2141021DNAArtificial SequencesiRNA antisense strand 410auacaacuua acucuaaugt g 2141121DNAArtificial SequencesiRNA sense strand 411uguuauuuau agaucugaat t 2141221DNAArtificial SequencesiRNA antisense strand 412uucagaucua uaaauaacat a 2141321DNAArtificial SequencesiRNA sense strand 413guuuagcuau uuaauguuat t 2141421DNAArtificial SequencesiRNA antisense strand 414uaacauuaaa uagcuaaaca t 2141521DNAArtificial SequencesiRNA sense strand 415aguggaagga uuaauauuat t 2141621DNAArtificial SequencesiRNA antisense strand 416uaauauuaau ccuuccacua a 2141721DNAArtificial SequencesiRNA sense strand 417ccagcacuga guacaucaat t 2141821DNAArtificial SequencesiRNA antisense strand 418uugauguacu cagugcuggg t 2141921DNAArtificial SequencesiRNA sense strand 419uguuuaaggg aauaguuuat t 2142021DNAArtificial SequencesiRNA antisense strand 420uaaacuauuc ccuuaaacat a 2142121DNAArtificial SequencesiRNA sense strand 421gcugggacua uauauauaat t 2142221DNAArtificial SequencesiRNA antisense strand 422uuauauauau agucccagcc a 2142321DNAArtificial SequencesiRNA sense strand 423gggcaauugc uauaucuuat t 2142421DNAArtificial SequencesiRNA antisense strand 424uaagauauag caauugccct c 2142521DNAArtificial SequencesiRNA sense strand 425gcagccaaac gacaagcaat t 2142621DNAArtificial SequencesiRNA antisense strand 426uugcuugucg uuuggcugct g 2142721DNAArtificial SequencesiRNA sense strand 427aggguuuccu uaaggacaat t 2142821DNAArtificial SequencesiRNA antisense strand 428uuguccuuaa ggaaacccut g 2142921DNAArtificial SequencesiRNA sense strand 429gaaauggauu agucaguaat t 2143021DNAArtificial SequencesiRNA antisense strand 430uuacugacua auccauuuct t 2143121DNAArtificial SequencesiRNA sense strand 431ggcuccgaag auacuucuat t 2143221DNAArtificial SequencesiRNA antisense strand 432uagaaguauc uucggagcct g 2143321DNAArtificial SequencesiRNA sense strand 433ccuggagggu gacaaaguat t 2143421DNAArtificial SequencesiRNA antisense strand 434uacuuuguca cccuccagga t 2143521DNAArtificial SequencesiRNA sense strand 435ggucugacaa uaccguaaat t 2143621DNAArtificial SequencesiRNA antisense strand 436uuuacgguau ugucagaccc a 2143721DNAArtificial SequencesiRNA sense strand 437gcuguuuccu auaacagaat t 2143821DNAArtificial SequencesiRNA antisense strand 438uucuguuaua ggaaacagcg g 2143921DNAArtificial SequencesiRNA sense strand 439gcugugaaag ggaaauuuat t 2144021DNAArtificial SequencesiRNA antisense strand 440uaaauuuccc uuucacagca g 2144121DNAArtificial SequencesiRNA sense strand 441ccuuguggua ucagccauat t 2144221DNAArtificial SequencesiRNA antisense strand 442uauggcugau accacaaggt t 2144321DNAArtificial SequencesiRNA sense strand 443gcuucgauac cgaccuguat t 2144421DNAArtificial SequencesiRNA antisense strand 444uacaggucgg uaucgaagct g 2144521DNAArtificial SequencesiRNA sense strand 445cggcaggaau ccucuggaat t 2144621DNAArtificial SequencesiRNA antisense strand 446uuccagagga uuccugccgg g 2144721DNAArtificial SequencesiRNA sense strand 447ccacgaggau caguacgaat t 2144821DNAArtificial SequencesiRNA antisense strand 448uucguacuga uccucguggt t 2144921DNAArtificial SequencesiRNA sense strand 449cacgaggauc aguacgaaat t 2145021DNAArtificial SequencesiRNA antisense strand 450uuucguacug auccucgugg t 2145121DNAArtificial SequencesiRNA sense strand 451gaucaguacg aaaguucuat t 2145221DNAArtificial SequencesiRNA antisense strand 452uagaacuuuc guacugaucc t 2145321DNAArtificial SequencesiRNA sense strand 453guacgaaagu ucuacagaat t 2145421DNAArtificial SequencesiRNA antisense strand 454uucuguagaa cuuucguact g 2145521DNAArtificial SequencesiRNA sense strand 455gaaaguucua cagaagcaat t 2145621DNAArtificial SequencesiRNA antisense strand 456uugcuucugu agaacuuucg t 2145721DNAArtificial SequencesiRNA sense strand 457gggucugaca auaccguaat t 2145821DNAArtificial SequencesiRNA antisense strand 458uuacgguauu gucagaccca g 2145921DNAArtificial SequencesiRNA sense strand 459agaagacucu aaugauguat t 2146021DNAArtificial SequencesiRNA antisense strand 460uacaucauua gagucuucut g 2146121DNAArtificial SequencesiRNA sense strand 461cagucagagu aagagucaat t 2146221DNAArtificial SequencesiRNA antisense strand 462uugacucuua cucugacugt g 2146321DNAArtificial SequencesiRNA sense strand 463cagaacaucu agcaaacaat t 2146421DNAArtificial SequencesiRNA antisense strand 464uuguuugcua gauguucugt g 2146521DNAArtificial SequencesiRNA sense strand 465cuuguagguu cacauauuat t 2146621DNAArtificial SequencesiRNA antisense strand 466uaauauguga accuacaagt t 2146721DNAArtificial SequencesiRNA sense strand 467caguguagug ccaaugaaat t 2146821DNAArtificial SequencesiRNA antisense strand 468uuucauuggc acuacacuga g 2146921DNAArtificial SequencesiRNA sense strand 469guaugacauc uaugagaaat t 2147021DNAArtificial SequencesiRNA antisense strand 470uuucucauag augucauact t 2147121DNAArtificial SequencesiRNA sense strand 471aggaaaugau guuuauugat t 2147221DNAArtificial SequencesiRNA antisense strand 472ucaauaaaca ucauuuccut g 2147321DNAArtificial SequencesiRNA sense strand 473ggccgacuuc acuguacaat t 2147421DNAArtificial SequencesiRNA antisense strand 474uuguacagug aagucggcca a 2147521DNAArtificial SequencesiRNA sense strand 475gauggaguuu gaaucuucat t 2147621DNAArtificial SequencesiRNA antisense strand 476ugaagauuca aacuccauct t 2147721DNAArtificial SequencesiRNA sense strand 477caaccgcagu aauacggaat t 2147821DNAArtificial SequencesiRNA antisense strand 478uuccguauua cugcgguugt a 2147921DNAArtificial SequencesiRNA sense strand 479cgaggcugca ugauuuauat t 2148021DNAArtificial SequencesiRNA antisense strand 480uauaaaucau gcagccucgg g 2148121DNAArtificial SequencesiRNA sense strand 481ccuguauuuc cauaacagat t 2148221DNAArtificial SequencesiRNA antisense strand 482ucuguuaugg aaauacaggc g 2148321DNAArtificial SequencesiRNA sense strand 483cauguacaaa gacagugaat t 2148421DNAArtificial SequencesiRNA antisense strand 484uucacugucu uuguacaugt a 2148521DNAArtificial SequencesiRNA sense strand 485cgaggauaug acugauauut t 2148621DNAArtificial SequencesiRNA antisense strand 486aauaucaguc auauccucga a 2148721DNAArtificial SequencesiRNA sense strand 487ggauaugacu gauauugaut t 2148821DNAArtificial SequencesiRNA antisense strand 488aucaauauca gucauaucct c 2148921DNAArtificial SequencesiRNA sense strand 489cuaacuuaca ucaaaguuat t 2149021DNAArtificial SequencesiRNA antisense strand 490uaacuuugau guaaguuagt g 2149121DNAArtificial SequencesiRNA sense strand 491cucacuaacu uacaucaaat t 2149221DNAArtificial SequencesiRNA antisense strand 492uuugauguaa guuagugaga g 2149321DNAArtificial SequencesiRNA sense strand 493gauccuacgg aaguuauggt t 2149421DNAArtificial SequencesiRNA antisense strand 494ccauaacuuc cguaggaucc g 2149521DNAArtificial SequencesiRNA sense strand 495ccauguucca uguuucuuut t 2149621DNAArtificial SequencesiRNA antisense strand 496aaagaaacau ggaacauggt c 2149721DNAArtificial SequencesiRNA sense strand 497ccucccgcag accauguuct t 2149821DNAArtificial SequencesiRNA antisense strand 498gaacaugguc ugcgggaggc g 2149921DNAArtificial SequencesiRNA sense strand 499cucccgcaga ccauguucct t 2150021DNAArtificial SequencesiRNA antisense strand 500ggaacauggu cugcgggagg c 2150121DNAArtificial SequencesiRNA sense strand 501ucccgcagac cauguuccat t 2150221DNAArtificial SequencesiRNA antisense strand 502uggaacaugg ucugcgggag g 2150321DNAArtificial SequencesiRNA sense strand 503cccgcagacc auguuccaut t 2150421DNAArtificial SequencesiRNA antisense strand 504auggaacaug gucugcggga g 2150521DNAArtificial SequencesiRNA sense strand 505ccgcagacca uguuccaugt t 2150621DNAArtificial SequencesiRNA antisense strand 506cauggaacau ggucugcggg a 2150721DNAArtificial SequencesiRNA sense strand 507cgcagaccau guuccaugut t

2150821DNAArtificial SequencesiRNA antisense strand 508acauggaaca uggucugcgg g 2150921DNAArtificial SequencesiRNA sense strand 509agaccauguu ccauguuuct t 2151021DNAArtificial SequencesiRNA antisense strand 510gaaacaugga acauggucug c 2151121DNAArtificial SequencesiRNA sense strand 511accauguucc auguuucuut t 2151221DNAArtificial SequencesiRNA antisense strand 512aagaaacaug gaacaugguc t 2151321DNAArtificial SequencesiRNA sense strand 513ccacaucauc uacagcuuut t 2151421DNAArtificial SequencesiRNA antisense strand 514aaagcuguag augauguggg t 2151521DNAArtificial SequencesiRNA sense strand 515gguuugacag auacagcaat t 2151621DNAArtificial SequencesiRNA antisense strand 516uugcuguauc ugucaaacct a 2151721DNAArtificial SequencesiRNA sense strand 517ucaucuacag cuuugccaat t 2151821DNAArtificial SequencesiRNA antisense strand 518uuggcaaagc uguagaugat g 2151921DNAArtificial SequencesiRNA sense strand 519cccuguuaag gaaugcaaat t 2152021DNAArtificial SequencesiRNA antisense strand 520uuugcauucc uuaacagggt t 2152121DNAArtificial SequencesiRNA sense strand 521caaguaggca aauaucuuat t 2152221DNAArtificial SequencesiRNA antisense strand 522uaagauauuu gccuacuuga t 2152321DNAArtificial SequencesiRNA sense strand 523cagcuuuguc agcaggaaat t 2152421DNAArtificial SequencesiRNA antisense strand 524uuuccugcug acaaagcugc g 2152521DNAArtificial SequencesiRNA sense strand 525gguucaccaa ggaggcaggt t 2152621DNAArtificial SequencesiRNA antisense strand 526ccugccuccu uggugaaccg g 2152721DNAArtificial SequencesiRNA sense strand 527ggaucaagua ggcaaauaut t 2152821DNAArtificial SequencesiRNA antisense strand 528auauuugccu acuugaucca a 2152921DNAArtificial SequencesiRNA sense strand 529gagggaccau acuaauuaut t 2153021DNAArtificial SequencesiRNA antisense strand 530auaauuagua uggucccuca a 2153121DNAArtificial SequencesiRNA sense strand 531ggccgguuca ccaaggaggt t 2153221DNAArtificial SequencesiRNA antisense strand 532ccuccuuggu gaaccggcct g 2153321DNAArtificial SequencesiRNA sense strand 533ggacaaggag agugucaaat t 2153421DNAArtificial SequencesiRNA antisense strand 534uuugacacuc uccuugucct c 2153521DNAArtificial SequencesiRNA sense strand 535ccgguucacc aaggaggcat t 2153621DNAArtificial SequencesiRNA antisense strand 536ugccuccuug gugaaccggc c 2153721DNAArtificial SequencesiRNA sense strand 537cguacaagcu ggucugcuat t 2153821DNAArtificial SequencesiRNA antisense strand 538uagcagacca gcuuguacgc a 2153921DNAArtificial SequencesiRNA sense strand 539ggaguuuaau cucuugcaat t 2154021DNAArtificial SequencesiRNA antisense strand 540uugcaagaga uuaaacucct g 2154121DNAArtificial SequencesiRNA sense strand 541caaggaacug aaugcggaat t 2154221DNAArtificial SequencesiRNA antisense strand 542uuccgcauuc aguuccuuga t 2154321DNAArtificial SequencesiRNA sense strand 543cccugaucaa ggaacugaat t 2154421DNAArtificial SequencesiRNA antisense strand 544uucaguuccu ugaucagggt g 2154521DNAArtificial SequencesiRNA sense strand 545cuuggaucaa guaggcaaat t 2154621DNAArtificial SequencesiRNA antisense strand 546uuugccuacu ugauccaagt g 2154721DNAArtificial SequencesiRNA sense strand 547ggauugaggg accauacuat t 2154821DNAArtificial SequencesiRNA antisense strand 548uaguaugguc ccucaaucct g 2154921DNAArtificial SequencesiRNA sense strand 549gcaaauucuc agacucuaat t 2155021DNAArtificial SequencesiRNA antisense strand 550uuagagucug agaauuugca t 2155121DNAArtificial SequencesiRNA sense strand 551ccuucccuua ggaacuuaat t 2155221DNAArtificial SequencesiRNA antisense strand 552uuaaguuccu aagggaagga t 21553100DNAArtificial SequenceOHBOT Oligonucleotide 553gacttcatat acccaagctt ggaaaatttt ttttaaaaaa gtcttgacac tttatgcttc 60cggctcgtat aatggatcca ggagtaacaa tacaaatgga 100554100DNAArtificial SequenceOHBOT Oligonucleotide 554ttcaagagat ccatttgtat tgttactcct tttttttttt gtcgacgatc cttagcgaaa 60gctaaggatt ttttttttac tcgagcggat tactacatac 10055570DNAArtificial SequenceOHBOT Oligonucleotide 555gtatgtagta atccgctcga gtaaaaaaaa aatccttagc tttcgctaag gatcgtcgac 60aaaaaaaaaa 7055660DNAArtificial SequenceOHBOT Oligonucleotide 556aggagtaaca atacaaatgg atctcttgaa tccatttgta ttgttactcc tggatccatt 6055770DNAArtificial SequenceOHBOT Oligonucleotide 557atacgagccg gaagcataaa gtgtcaagac ttttttaaaa aaaattttcc aagcttgggt 60atatgaagtc 705588884DNAArtificial SequencepKSII-inv-hly 558ctaaattgta agcgttaata ttttgttaaa attcgcgtta aatttttgtt aaatcagctc 60attttttaac caataggccg aaatcggcaa aatcccttat aaatcaaaag aatagaccga 120gatagggttg agtgttgttc cagtttggaa caagagtcca ctattaaaga acgtggactc 180caacgtcaaa gggcgaaaaa ccgtctatca gggcgatggc ccactacgtg aaccatcacc 240ctaatcaagt tttttggggt cgaggtgccg taaagcacta aatcggaacc ctaaagggag 300cccccgattt agagcttgac ggggaaagcc ggcgaacgtg gcgagaaagg aagggaagaa 360agcgaaagga gcgggcgcta gggcgctggc aagtgtagcg gtcacgctgc gcgtaaccac 420cacacccgcc gcgcttaatg cgccgctaca gggcgcgtcc cattcgccat tcaggctgcg 480caactgttgg gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc tggcgaaagg 540gggatgtgct gcaaggcgat taagttgggt aacgccaggg ttttcccagt cacgacgttg 600taaaacgacg gccagtgagc gcgcgtaata cgactcacta tagggcgaat tggagctcca 660ccgcggtggc ggccgctcta gaactagtgg atcccccggg ctgcagctgg gccgtaagat 720cggcatttaa tcgcgacaat ccttttaaaa aaacagcgcc gctcaattaa cctgagcggc 780gttgttcttc tggacgtttg ctacttatgg ggcgagtcta ggattgccgg actcccattc 840gcgccccaaa taatcagctc attaaactgt tcttattgct atctgttatc tggttatatt 900gacagcgcac agagcgggaa cgccaagtat gcaggccctg gttgcagtgc gcctgtgtcc 960atattcatgg tttcaaaatc cgtgctggtc tttttgaccc aatattcacc agattgccaa 1020tcagaactat acgcggtcaa gctcccccac tcgccccaca atgtcccgtc aggcgcacgc 1080gttccgttgg ttgcacgtga ggattcaaga accgcagaca tatctgaacc ttggcattgt 1140ctgctggcct cgagactgga taccagcgat ctgccgccat cgtatatcca ccgatttggg 1200tagaaccgat aactcaccga ataacttggg aattttttac ttttcgccgt cacagccact 1260tcgctatagg tttggtaggt aatcgtcacc tgaccctgat cgttaaccga tacattgggt 1320gtgaatgacg acgaccactc atactgagta ttattagcaa catcgttatc catctgtaac 1380tggaatgtgg cgtttttaaa gatcgttttc gggaaccctt tatccgtagc gaaattttgc 1440ccgttaacca gaataccggt cagcgtaggt accgggaata gggatatttt tttctgcaat 1500gtactcagta tcagggtatc aacctgcggc gtgattgtga catcaccgac actattccca 1560accaccgtcg cggtatagct atctggctgc tcggtaatgg ggctaatact caccggcaca 1620ccgttttgag taaaactcaa gccctgcatc ccactgataa aatggccatt cttatcgaca 1680gggacaaagg ataatgtgga actcatcgtg ccatcagcca agatatccgg tgtggagacg 1740gtgaaactgg agcggccagc atctggaata ggatctgccg tgaaattaac cgtcacactc 1800ggcacactga acgcagcccc atccactttc accgttactg ttgctacccc caacgtggta 1860ctggtcaatg gtgcgctata agtgccgtca ttgtgatccg tgataacgcc catattgcct 1920aaggttgtgt caaaagccac attcgcgcca gcctgcgggt ccccataggt atccttcaac 1980tccaacgtga tggttgaagc cattagacca tcagcgatga tagatgtcgg taccgcagcc 2040agagtggatt tatccgccgc gatagtaccc ttaacaaagt gggtatcaac actttgccgt 2100tgcccctcca cttctgctgt gactaccgtc acgccatctg tcgtattggt taatgcaatg 2160cgcgcgacgc catttgcatc tgtcttttcc gtgattttat tcggtagcgc accattattg 2220gtggttatca ccacctcctg cccggctaag ggtttcccct caaaatcagc aacggtgaac 2280tcaacggtga ttgcagtttt cccattagcc ggtgcgccat caccaatgac ggccgccgtt 2340aatgtcaact gaggctgctg aacggtgacg ctcaatgtga atgagttaga tcggtttcct 2400tggtgatcaa ccgcgagcgc actaagcgaa taaaagttgg ctgtcaggtc gtccgttacc 2460cgactcactt gtgctgtgcg tttataaggc ggtaaaacca agttgaattg tgtggtactc 2520agtggtgtta atgtgccgcc agcggcaatc agttcggcat cactccagac aatttccctt 2580acagcagatg ccccttgtac ttgtgcgttc acctgataaa cctgacccgg caggccggag 2640atagttgctg gcgataatgt cagtttaacc acctgctgtt tctgatactc caacacgata 2700ttattgttac gatcgacaag gttatagcgg ctctccgcca gtagacgtgt tcctgccacc 2760gctgaagggc taagttgcga ctgaaaactc tcgcccaggc gatagttcat ttggaggttc 2820cactgtgttt catgcttact gcttttcccc atacgctgat ctaccccgac agtgagtaga 2880ggcacggggg tgtaattgat cccggcagtc acggcataag ggttgcgttg cagattatct 2940ttaccaaata aagcaacacg ctcaccggtg tattgctcat acatcaactt cccccccagt 3000tgtgggagtg caggtaaata agcattcgcg cgcaaatccc ccccagtggc tgggcgctct 3060ttatagtcgg agaaatcacg cgacgagtgc catccattga ggcgaaaata cccattggca 3120gccaactgta aataatcggt ccaggcctcg gcaccaagac cgatacggtg gttgtggccg 3180gtcaaatcat tatcataaaa agtattaagt ccgtacagcc aaccgttctc caatgtacgt 3240atcccgacgc caaggttaag tgtgttgcgg ctgtctttat tgcgaatacc taactgacta 3300aaaaagagga atgaagcaga gtcataccaa ggagccagcc aatcaagaga gctttctttt 3360agcgaaaaat ttttgtcaaa attcagatta acttgagccg taccgaatcg atttaaccac 3420tgtttgattt cttgattaac cgcatcgccc accattgagt gagcaacatc agatgccctg 3480cctgatgcag ctaacctggc cccggtgctt atcatcttat tcaccgcttc agtctcctgc 3540tccttattgg cgcgatctat tattgcagca tttctttctg tatccgatgc ggaaaaggga 3600ttgattgaac tctccatttc attattagga tggagatttt caaatgcaga tgaagagaca 3660gaataaggct ggacctgttg cggtgcgtta gcatcatatt tttctgaagc cccagccatg 3720aacattccac atatcaaaaa gatacaaata actattcgtg aaataatatt aaatgaaatt 3780attttattaa aatacataga cattcccgca ttccttatca agagaaactc actgattggc 3840tggaaaacca tcataattta aatgaaataa agcatacctg tcatacgtca aactgcatgt 3900gcgttggctg tgctcaacaa cttgagttat ttgaggtata actggccaca aacgagcatt 3960tgaaatcacc ttgaccatta attaaagatg caatagttga aagtgaaact tgttttctaa 4020tttagtaaag acattaagag gatagcactt ttttaaaaaa ccagactggg cagattaaaa 4080atattcaaaa tatataataa aacagtctat accatacagc gatagaattg atttattgta 4140actaagcagg tgagaatatc aaaaaaaaca aaaatacaaa atgaactatt atcatataaa 4200taatatcaat tagaataagc ccccttcatt tgatgttgtc agttgtctgc tgcggttttt 4260atttctactt tcagtctgaa gtgttactcc gcaatatccg cattaatcct gatggttgcc 4320ttgatgactg caggaattcg atccctcctt tgattagtat attcctatct taaagtgact 4380tttatgttga ggcattaaca tttgttaacg acgataaagg gacagcagga ctagaataaa 4440gctataaagc aagcatataa tattgcgttt catctttaga agcgaatttc gccaatatta 4500taattatcaa aagagagggg tggcaaacgg tatttggcat tattaggtta aaaaatgtag 4560aaggagagtg aaacccatga aaaaaataat gctagttttt attacactta tattagttag 4620tctaccaatt gcgcaacaaa ctgaagcaaa ggatgcatct gcattcaata aagaaaattc 4680aatttcatcc atggcaccac cagcatctcc gcctgcaagt cctaagacgc caatcgaaaa 4740gaaacacgcg gatgaaatcg ataagtatat acaaggattg gattacaata aaaacaatgt 4800attagtatac cacggagatg cagtgacaaa tgtgccgcca agaaaaggtt acaaagatgg 4860aaatgaatat attgttgtgg agaaaaagaa gaaatccatc aatcaaaata atgcagacat 4920tcaagttgtg aatgcaattt cgagcctaac ctatccaggt gctctcgtaa aagcgaattc 4980ggaattagta gaaaatcaac cagatgttct ccctgtaaaa cgtgattcat taacactcag 5040cattgatttg ccaggtatga ctaatcaaga caataaaatc gttgtaaaaa atgccactaa 5100atcaaacgtt aacaacgcag taaatacatt agtggaaaga tggaatgaaa aatatgctca 5160agcttatcca aatgtaagtg caaaaattga ttatgatgac gaaatggctt acagtgaatc 5220acaattaatt gcgaaatttg gtacagcatt taaagctgta aataatagct tgaatgtaaa 5280cttcggcgca atcagtgaag ggaaaatgca agaagaagtc attagtttta aacaaattta 5340ctataacgtg aatgttaatg aacctacaag accttccaga tttttcggca aagctgttac 5400taaagagcag ttgcaagcgc ttggagtgaa tgcagaaaat cctcctgcat atatctcaag 5460tgtggcgtat ggccgtcaag tttatttgaa attatcaact aattcccata gtactaaagt 5520aaaagctgct tttgatgctg ccgtaagcgg aaaatctgtc tcaggtgatg tagaactaac 5580aaatatcatc aaaaattctt ccttcaaagc cgtaatttac ggaggttccg caaaagatga 5640agttcaaatc atcgacggca acctcggaga cttacgcgat attttgaaaa aaggcgctac 5700ttttaatcga gaaacaccag gagttcccat tgcttataca acaaacttcc taaaagacaa 5760tgaattagct gttattaaaa acaactcaga atatattgaa acaacttcaa aagcttatac 5820agatggaaaa attaacatcg atcactctgg aggatacgtt gctcaattca acatttcttg 5880ggatgaagta aattatgatc ctgaaggtaa cgaaattgtt caacataaaa actggagcga 5940aaacaataaa agcaagctag ctcatttcac atcgtccatc tatttgccag gtaacgcgag 6000aaatattaat gtttacgcta aagaatgcac tggtttagct tgggaatggt ggagaacggt 6060aattgatgac cggaacttac cacttgtgaa aaatagaaat atctccatct ggggcaccac 6120gctttatccg aaatatagta ataaagtaga taatccaatc gaataattgt aaaagtaata 6180aaaaattaag aataaaaccg cttaacacac acgaaaaaat aagcttgttt tgcactcttc 6240gtaaattatt ttgtgaagaa tgtagaaaca ggcttatttt ttaatttttt tagaagaatt 6300aacaaatgta aaagaatatc tgactgttta tccatataat ataagcatat cccaaagttt 6360aagccaccta tagtttctac tgcaaaacgt ataatttagt tcccacatat actaaaaaac 6420gtgtccttaa ctctctctgt cagattagtt gtaggtggct taaacttagt tttacgaatt 6480aaaaaggagc ggtgaaatga aaagtaaact tatttgtatc atcatggtaa tagcttttca 6540ggctcatttc actatgacgg taaaagcaga ttctgtcggg gaagaaaaac ttcaaaataa 6600tacacaagcc aaaaagaccc ctgctgattt aaaagcttat caagcttatc gataccgtcg 6660acctcgaggg ggggcccggt acccagcttt tgttcccttt agtgagggtt aattgcgcgc 6720ttggcgtaat catggtcata gctgtttcct gtgtgaaatt gttatccgct cacaattcca 6780cacaacatac gagccggaag cataaagtgt aaagcctggg gtgcctaatg agtgagctaa 6840ctcacattaa ttgcgttgcg ctcactgccc gctttccagt cgggaaacct gtcgtgccag 6900ctgcattaat gaatcggcca acgcgcgggg agaggcggtt tgcgtattgg gcgctcttcc 6960gcttcctcgc tcactgactc gctgcgctcg gtcgttcggc tgcggcgagc ggtatcagct 7020cactcaaagg cggtaatacg gttatccaca gaatcagggg ataacgcagg aaagaacatg 7080tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc 7140cataggctcc gcccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga 7200aacccgacag gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct 7260cctgttccga ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg 7320gcgctttctc atagctcacg ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag 7380ctgggctgtg tgcacgaacc ccccgttcag cccgaccgct gcgccttatc cggtaactat 7440cgtcttgagt ccaacccggt aagacacgac ttatcgccac tggcagcagc cactggtaac 7500aggattagca gagcgaggta tgtaggcggt gctacagagt tcttgaagtg gtggcctaac 7560tacggctaca ctagaaggac agtatttggt atctgcgctc tgctgaagcc agttaccttc 7620ggaaaaagag ttggtagctc ttgatccggc aaacaaacca ccgctggtag cggtggtttt 7680tttgtttgca agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc 7740ttttctacgg ggtctgacgc tcagtggaac gaaaactcac gttaagggat tttggtcatg 7800agattatcaa aaaggatctt cacctagatc cttttaaatt aaaaatgaag ttttaaatca 7860atctaaagta tatatgagta aacttggtct gacagttacc aatgcttaat cagtgaggca 7920cctatctcag cgatctgtct atttcgttca tccatagttg cctgactccc cgtcgtgtag 7980ataactacga tacgggaggg cttaccatct ggccccagtg ctgcaatgat accgcgagac 8040ccacgctcac cggctccaga tttatcagca ataaaccagc cagccggaag ggccgagcgc 8100agaagtggtc ctgcaacttt atccgcctcc atccagtcta ttaattgttg ccgggaagct 8160agagtaagta gttcgccagt taatagtttg cgcaacgttg ttgccattgc tacaggcatc 8220gtggtgtcac gctcgtcgtt tggtatggct tcattcagct ccggttccca acgatcaagg 8280cgagttacat gatcccccat gttgtgcaaa aaagcggtta gctccttcgg tcctccgatc 8340gttgtcagaa gtaagttggc cgcagtgtta tcactcatgg ttatggcagc actgcataat 8400tctcttactg tcatgccatc cgtaagatgc ttttctgtga ctggtgagta ctcaaccaag 8460tcattctgag aatagtgtat gcggcgaccg agttgctctt gcccggcgtc aatacgggat 8520aataccgcgc cacatagcag aactttaaaa gtgctcatca ttggaaaacg ttcttcgggg 8580cgaaaactct caaggatctt accgctgttg agatccagtt cgatgtaacc cactcgtgca 8640cccaactgat cttcagcatc ttttactttc accagcgttt ctgggtgagc aaaaacagga 8700aggcaaaatg ccgcaaaaaa gggaataagg gcgacacgga aatgttgaat actcatactc 8760ttcctttttc aatattattg aagcatttat cagggttatt gtctcatgag cggatacata 8820tttgaatgta tttagaaaaa taaacaaata ggggttccgc gcacatttcc ccgaaaagtg 8880ccac 88845598538DNAArtificial SequencepMBV40 559tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180accatatcga cggtatcgat aagcttgata agcttttaaa tcagcagggg tctttttggc 240ttgtgtatta ttttgaagtt tttcttcccc gacagaatct gcttttaccg tcatagtgaa 300atgagcctga aaagctatta ccatgatgat acaaataagt ttacttttca tttcaccgct 360cctttttaat tcgtaaaact aagtttaagc cacctacaac taatctgaca gagagagtta 420aggacacgtt ttttagtata tgtgggaact aaattatacg ttttgcagta

gaaactatag 480gtggcttaaa ctttgggata tgcttatatt atatggataa acagtcagat attcttttac 540atttgttaat tcttctaaaa aaattaaaaa ataagcctgt ttctacattc ttcacaaaat 600aatttacgaa gagtgcaaaa caagcttatt ttttcgtgtg tgttaagcgg ttttattctt 660aattttttat tacttttaca attattcgat tggattatct actttattac tatatttcgg 720ataaagcgtg gtgccccaga tggagatatt tctatttttc acaagtggta agttccggtc 780atcaattacc gttctccacc attcccaagc taaaccagtg cattctttag cgtaaacatt 840aatatttctc gcgttacctg gcaaatagat ggacgatgtg aaatgagcta gcttgctttt 900attgttttcg ctccagtttt tatgttgaac aatttcgtta ccttcaggat cataatttac 960ttcatcccaa gaaatgttga attgagcaac gtatcctcca gagtgatcga tgttaatttt 1020tccatctgta taagcttttg aagttgtttc aatatattct gagttgtttt taataacagc 1080taattcattg tcttttagga agtttgttgt ataagcaatg ggaactcctg gtgtttctcg 1140attaaaagta gcgccttttt tcaaaatatc gcgtaagtct ccgaggttgc cgtcgatgat 1200ttgaacttca tcttttgcgg aacctccgta aattacggct ttgaaggaag aatttttgat 1260gatatttgtt agttctacat cacctgagac agattttccg cttacggcag catcaaaagc 1320agcttttact ttagtactat gggaattagt tgataatttc aaataaactt gacggccata 1380cgccacactt gagatatatg caggaggatt ttctgcattc actccaagcg cttgcaactg 1440ctctttagta acagctttgc cgaaaaatct ggaaggtctt gtaggttcat taacattcac 1500gttatagtaa atttgtttaa aactaatgac ttcttcttgc attttccctt cactgattgc 1560gccgaagttt acattcaagc tattatttac agctttaaat gctgtaccaa atttcgcaat 1620taattgtgat tcactgtaag ccatttcgtc atcataatca atttttgcac ttacatttgg 1680ataagcttga gcatattttt cattccatct ttccactaat gtatttactg cgttgttaac 1740gtttgattta gtggcatttt ttacaacgat tttattgtct tgattagtca tacctggcaa 1800atcaatgctg agtgttaatg aatcacgttt tacagggaga acatctggtt gattttctac 1860taattccgaa ttcgctttta cgagagcacc tggataggtt aggctcgaaa ttgcattcac 1920aacttgaatg tctgcattat tttgattgat ggatttcttc tttttctcca caacaatata 1980ttcatttcca tctttgtaac cttttcttgg cggcacattt gtcactgcat ctccgtggta 2040tactaataca ttgtttttat tgtaatccaa tccttgtata tacttatcga tttcatccgc 2100gtgtttcttt tcgattggcg tcttaggact tgcaggcgga gatgctggtg gtgccatgga 2160tgaaattgaa ttttctttat tgaatgcaga tgcatccttt gcttcagttt gttgcgcaat 2220tggtagacta actaatataa gtgtaataaa aactagcatt atttttttca tgggtttcac 2280tctccttcta cattttttaa cctaataatg ccaaataccg tttgccaccc ctctcttttg 2340ataattataa tattggcgaa attcgcttct aaagatgaaa cgcaatatta tatgcttgct 2400ttatagcttt attctagtcc tgctgtccct ttatcgtcgt taacaaatgt taatgcctca 2460acataaaagt cactttaaga taggaatata ctaatcaaag gagggatcga attcctgcag 2520tcatcaaggc aaccatcagg attaatgcgg atattgcgga gtaacacttc agactgaaag 2580tagaaataaa aaccgcagca gacaactgac aacatcaaat gaagggggct tattctaatt 2640gatattattt atatgataat agttcatttt gtatttttgt tttttttgat attctcacct 2700gcttagttac aataaatcaa ttctatcgct gtatggtata gactgtttta ttatatattt 2760tgaatatttt taatctgccc agtctggttt tttaaaaaag tgctatcctc ttaatgtctt 2820tactaaatta gaaaacaagt ttcactttca actattgcat ctttaattaa tggtcaaggt 2880gatttcaaat gctcgtttgt ggccagttat acctcaaata actcaagttg ttgagcacag 2940ccaacgcaca tgcagtttga cgtatgacag gtatgcttta tttcatttaa attatgatgg 3000ttttccagcc aatcagtgag tttctcttga taaggaatgc gggaatgtct atgtatttta 3060ataaaataat ttcatttaat attatttcac gaatagttat ttgtatcttt ttgatatgtg 3120gaatgttcat ggctggggct tcagaaaaat atgatgctaa cgcaccgcaa caggtccagc 3180cttattctgt ctcttcatct gcatttgaaa atctccatcc taataatgaa atggagagtt 3240caatcaatcc cttttccgca tcggatacag aaagaaatgc tgcaataata gatcgcgcca 3300ataaggagca ggagactgaa gcggtgaata agatgataag caccggggcc aggttagctg 3360catcaggcag ggcatctgat gttgctcact caatggtggg cgatgcggtt aatcaagaaa 3420tcaaacagtg gttaaatcga ttcggtacgg ctcaagttaa tctgaatttt gacaaaaatt 3480tttcgctaaa agaaagctct cttgattggc tggctccttg gtatgactct gcttcattcc 3540tcttttttag tcagttaggt attcgcaata aagacagccg caacacactt aaccttggcg 3600tcgggatacg tacattggag aacggttggc tgtacggact taatactttt tatgataatg 3660atttgaccgg ccacaaccac cgtatcggtc ttggtgccga ggcctggacc gattatttac 3720agttggctgc caatgggtat tttcgcctca atggatggca ctcgtcgcgt gatttctccg 3780actataaaga gcgcccagcc actggggggg atttgcgcgc gaatgcttat ttacctgcac 3840tcccacaact gggggggaag ttgatgtatg agcaatacac cggtgagcgt gttgctttat 3900ttggtaaaga taatctgcaa cgcaaccctt atgccgtgac tgccgggatc aattacaccc 3960ccgtgcctct actcactgtc ggggtagatc agcgtatggg gaaaagcagt aagcatgaaa 4020cacagtggaa cctccaaatg aactatcgcc tgggcgagag ttttcagtcg caacttagcc 4080cttcagcggt ggcaggaaca cgtctactgg cggagagccg ctataacctt gtcgatcgta 4140acaataatat cgtgttggag tatcagaaac agcaggtggt taaactgaca ttatcgccag 4200caactatctc cggcctgccg ggtcaggttt atcaggtgaa cgcacaagta caaggggcat 4260ctgctgtaag ggaaattgtc tggagtgatg ccgaactgat tgccgctggc ggcacattaa 4320caccactgag taccacacaa ttcaacttgg ttttaccgcc ttataaacgc acagcacaag 4380tgagtcgggt aacggacgac ctgacagcca acttttattc gcttagtgcg ctcgcggttg 4440atcaccaagg aaaccgatct aactcattca cattgagcgt caccgttcag cagcctcagt 4500tgacattaac ggcggccgtc attggtgatg gcgcaccggc taatgggaaa actgcaatca 4560ccgttgagtt caccgttgct gattttgagg ggaaaccctt agccgggcag gaggtggtga 4620taaccaccaa taatggtgcg ctaccgaata aaatcacgga aaagacagat gcaaatggcg 4680tcgcgcgcat tgcattaacc aatacgacag atggcgtgac ggtagtcaca gcagaagtgg 4740aggggcaacg gcaaagtgtt gatacccact ttgttaaggg tactatcgcg gcggataaat 4800ccactctggc tgcggtaccg acatctatca tcgctgatgg tctaatggct tcaaccatca 4860cgttggagtt gaaggatacc tatggggacc cgcaggctgg cgcgaatgtg gcttttgaca 4920caaccttagg caatatgggc gttatcacgg atcacaatga cggcacttat agcgcaccat 4980tgaccagtac cacgttgggg gtagcaacag taacggtgaa agtggatggg gctgcgttca 5040gtgtgccgag tgtgacggtt aatttcacgg cagatcctat tccagatgct ggccgctcca 5100gtttcaccgt ctccacaccg gatatcttgg ctgatggcac gatgagttcc acattatcct 5160ttgtccctgt cgataagaat ggccatttta tcagtgggat gcagggcttg agttttactc 5220aaaacggtgt gccggtgagt attagcccca ttaccgagca gccagatagc tataccgcga 5280cggtggttgg gaatagtgtc ggtgatgtca caatcacgcc gcaggttgat accctgatac 5340tgagtacatt gcagaaaaaa atatccctat tcccggtacc tacgctgacc ggtattctgg 5400ttaacgggca aaatttcgct acggataaag ggttcccgaa aacgatcttt aaaaacgcca 5460cattccagtt acagatggat aacgatgttg ctaataatac tcagtatgag tggtcgtcgt 5520cattcacacc caatgtatcg gttaacgatc agggtcaggt gacgattacc taccaaacct 5580atagcgaagt ggctgtgacg gcgaaaagta aaaaattccc aagttattcg gtgagttatc 5640ggttctaccc aaatcggtgg atatacgatg gcggcagatc gctggtatcc agtctcgagg 5700ccagcagaca atgccaaggt tcagatatgt ctgcggttct tgaatcctca cgtgcaacca 5760acggaacgcg tgcgcctgac gggacattgt ggggcgagtg ggggagcttg accgcgtata 5820gttctgattg gcaatctggt gaatattggg tcaaaaagac cagcacggat tttgaaacca 5880tgaatatgga cacaggcgca ctgcaaccag ggcctgcata cttggcgttc ccgctctgtg 5940cgctgtcaat ataaccagat aacagatagc aataagaaca gtttaatgag ctgattattt 6000ggggcgcgaa tgggagtccg gcaatcctag actcgcccca taagtagcaa acgtccagaa 6060gaacaacgcc gctcaggtta attgagcggc gctgtttttt taaaaggatt gtcgcgatta 6120aatgccgatc ttacggccca gctgcagccc gggggatcta tgcggtgtga aataccgcac 6180agatgcgtaa ggagaaaata ccgcatcagg cgccattcgc cattcaggct gcgcaactgt 6240tgggaagggc gatcggtgcg ggcctcttcg ctattacgcc aggacttcat atacccaagc 6300ttggaaaatt ttttttaaaa aagtcttgac actttatgct tccggctcgt ataatggatc 6360caggagtaac aatacaaatg gattcaagag atccatttgt attgttactc cttttttttt 6420ttgtcgacga tccttagcga aagctaagga tttttttttt actcgagcgg attactacat 6480acctgcatta atgaatcggc caacgcgcgg ggagaggcgg tttgcgtatt gggcgctctt 6540ccgcttcctc gctcactgac tcgctgcgct cggtcgttcg gctgcggcga gcggtatcag 6600ctcactcaaa ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca 6660tgtgagcaaa aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt 6720tccataggct ccgcccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc 6780gaaacccgac aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct 6840ctcctgttcc gaccctgccg cttaccggat acctgtccgc ctttctccct tcgggaagcg 6900tggcgctttc tcatagctca cgctgtaggt atctcagttc ggtgtaggtc gttcgctcca 6960agctgggctg tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta tccggtaact 7020atcgtcttga gtccaacccg gtaagacacg acttatcgcc actggcagca gccactggta 7080acaggattag cagagcgagg tatgtaggcg gtgctacaga gttcttgaag tggtggccta 7140actacggcta cactagaagg acagtatttg gtatctgcgc tctgctgaag ccagttacct 7200tcggaaaaag agttggtagc tcttgatccg gcaaacaaac caccgctggt agcggtggtt 7260tttttgtttg caagcagcag attacgcgca gaaaaaaagg atctcaagaa gatcctttga 7320tcttttctac ggggtctgac gctcagtgga acgaaaactc acgttaaggg attttggtca 7380tgagattatc aaaaaggatc ttcacctaga tccttttaaa ttaaaaatga agttttaaat 7440caatctaaag tatatatgag taaacttggt ctgacagtta ccaatgctta atcagtgagg 7500cacctatctc agcgatctgt ctatttcgtt catccatagt tgcctgactc cccgtcgtgt 7560agataactac gatacgggag ggcttaccat ctggccccag tgctgcaatg ataccgcgag 7620acccacgctc accggctcca gatttatcag caataaacca gccagccgga agggccgagc 7680gcagaagtgg tcctgcaact ttatccgcct ccatccagtc tattaattgt tgccgggaag 7740ctagagtaag tagttcgcca gttaatagtt tgcgcaacgt tgttgccatt gctacaggca 7800tcgtggtgtc acgctcgtcg tttggtatgg cttcattcag ctccggttcc caacgatcaa 7860ggcgagttac atgatccccc atgttgtgca aaaaagcggt tagctccttc ggtcctccga 7920tcgttgtcag aagtaagttg gccgcagtgt tatcactcat ggttatggca gcactgcata 7980attctcttac tgtcatgcca tccgtaagat gcttttctgt gactggtgag tactcaacca 8040agtcattctg agaatagtgt atgcggcgac cgagttgctc ttgcccggcg tcaatacggg 8100ataataccgc gccacatagc agaactttaa aagtgctcat cattggaaaa cgttcttcgg 8160ggcgaaaact ctcaaggatc ttaccgctgt tgagatccag ttcgatgtaa cccactcgtg 8220cacccaactg atcttcagca tcttttactt tcaccagcgt ttctgggtga gcaaaaacag 8280gaaggcaaaa tgccgcaaaa aagggaataa gggcgacacg gaaatgttga atactcatac 8340tcttcctttt tcaatattat tgaagcattt atcagggtta ttgtctcatg agcggataca 8400tatttgaatg tatttagaaa aataaacaaa taggggttcc gcgcacattt ccccgaaaag 8460tgccacctga cgtctaagaa accattatta tcatgacatt aacctataaa aataggcgta 8520tcacgaggcc ctttcgtc 85385608427DNAArtificial SequencepMBV43 560tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180accatatcga cggtatcgat aagcttgata agcttttaaa tcagcagggg tctttttggc 240ttgtgtatta ttttgaagtt tttcttcccc gacagaatct gcttttaccg tcatagtgaa 300atgagcctga aaagctatta ccatgatgat acaaataagt ttacttttca tttcaccgct 360cctttttaat tcgtaaaact aagtttaagc cacctacaac taatctgaca gagagagtta 420aggacacgtt ttttagtata tgtgggaact aaattatacg ttttgcagta gaaactatag 480gtggcttaaa ctttgggata tgcttatatt atatggataa acagtcagat attcttttac 540atttgttaat tcttctaaaa aaattaaaaa ataagcctgt ttctacattc ttcacaaaat 600aatttacgaa gagtgcaaaa caagcttatt ttttcgtgtg tgttaagcgg ttttattctt 660aattttttat tacttttaca attattcgat tggattatct actttattac tatatttcgg 720ataaagcgtg gtgccccaga tggagatatt tctatttttc acaagtggta agttccggtc 780atcaattacc gttctccacc attcccaagc taaaccagtg cattctttag cgtaaacatt 840aatatttctc gcgttacctg gcaaatagat ggacgatgtg aaatgagcta gcttgctttt 900attgttttcg ctccagtttt tatgttgaac aatttcgtta ccttcaggat cataatttac 960ttcatcccaa gaaatgttga attgagcaac gtatcctcca gagtgatcga tgttaatttt 1020tccatctgta taagcttttg aagttgtttc aatatattct gagttgtttt taataacagc 1080taattcattg tcttttagga agtttgttgt ataagcaatg ggaactcctg gtgtttctcg 1140attaaaagta gcgccttttt tcaaaatatc gcgtaagtct ccgaggttgc cgtcgatgat 1200ttgaacttca tcttttgcgg aacctccgta aattacggct ttgaaggaag aatttttgat 1260gatatttgtt agttctacat cacctgagac agattttccg cttacggcag catcaaaagc 1320agcttttact ttagtactat gggaattagt tgataatttc aaataaactt gacggccata 1380cgccacactt gagatatatg caggaggatt ttctgcattc actccaagcg cttgcaactg 1440ctctttagta acagctttgc cgaaaaatct ggaaggtctt gtaggttcat taacattcac 1500gttatagtaa atttgtttaa aactaatgac ttcttcttgc attttccctt cactgattgc 1560gccgaagttt acattcaagc tattatttac agctttaaat gctgtaccaa atttcgcaat 1620taattgtgat tcactgtaag ccatttcgtc atcataatca atttttgcac ttacatttgg 1680ataagcttga gcatattttt cattccatct ttccactaat gtatttactg cgttgttaac 1740gtttgattta gtggcatttt ttacaacgat tttattgtct tgattagtca tacctggcaa 1800atcaatgctg agtgttaatg aatcacgttt tacagggaga acatctggtt gattttctac 1860taattccgaa ttcgctttta cgagagcacc tggataggtt aggctcgaaa ttgcattcac 1920aacttgaatg tctgcattat tttgattgat ggatttcttc tttttctcca caacaatata 1980ttcatttcca tctttgtaac cttttcttgg cggcacattt gtcactgcat ctccgtggta 2040tactaataca ttgtttttat tgtaatccaa tccttgtata tacttatcga tttcatccgc 2100gtgtttcttt tcgattggcg tcttaggact tgcaggcgga gatgctggtg gtgccatgga 2160tgaaattgaa ttttctttat tgaatgcaga tgcatccttt gcttcagttt gttgcgcaat 2220tggtagacta actaatataa gtgtaataaa aactagcatt atttttttca tgggtttcac 2280tctccttcta cattttttaa cctaataatg ccaaataccg tttgccaccc ctctcttttg 2340ataattataa tattggcgaa attcgcttct aaagatgaaa cgcaatatta tatgcttgct 2400ttatagcttt attctagtcc tgctgtccct ttatcgtcgt taacaaatgt taatgcctca 2460acataaaagt cactttaaga taggaatata ctaatcaaag gagggatcga attcctgcag 2520tcatcaaggc aaccatcagg attaatgcgg atattgcgga gtaacacttc agactgaaag 2580tagaaataaa aaccgcagca gacaactgac aacatcaaat gaagggggct tattctaatt 2640gatattattt atatgataat agttcatttt gtatttttgt tttttttgat attctcacct 2700gcttagttac aataaatcaa ttctatcgct gtatggtata gactgtttta ttatatattt 2760tgaatatttt taatctgccc agtctggttt tttaaaaaag tgctatcctc ttaatgtctt 2820tactaaatta gaaaacaagt ttcactttca actattgcat ctttaattaa tggtcaaggt 2880gatttcaaat gctcgtttgt ggccagttat acctcaaata actcaagttg ttgagcacag 2940ccaacgcaca tgcagtttga cgtatgacag gtatgcttta tttcatttaa attatgatgg 3000ttttccagcc aatcagtgag tttctcttga taaggaatgc gggaatgtct atgtatttta 3060ataaaataat ttcatttaat attatttcac gaatagttat ttgtatcttt ttgatatgtg 3120gaatgttcat ggctggggct tcagaaaaat atgatgctaa cgcaccgcaa caggtccagc 3180cttattctgt ctcttcatct gcatttgaaa atctccatcc taataatgaa atggagagtt 3240caatcaatcc cttttccgca tcggatacag aaagaaatgc tgcaataata gatcgcgcca 3300ataaggagca ggagactgaa gcggtgaata agatgataag caccggggcc aggttagctg 3360catcaggcag ggcatctgat gttgctcact caatggtggg cgatgcggtt aatcaagaaa 3420tcaaacagtg gttaaatcga ttcggtacgg ctcaagttaa tctgaatttt gacaaaaatt 3480tttcgctaaa agaaagctct cttgattggc tggctccttg gtatgactct gcttcattcc 3540tcttttttag tcagttaggt attcgcaata aagacagccg caacacactt aaccttggcg 3600tcgggatacg tacattggag aacggttggc tgtacggact taatactttt tatgataatg 3660atttgaccgg ccacaaccac cgtatcggtc ttggtgccga ggcctggacc gattatttac 3720agttggctgc caatgggtat tttcgcctca atggatggca ctcgtcgcgt gatttctccg 3780actataaaga gcgcccagcc actggggggg atttgcgcgc gaatgcttat ttacctgcac 3840tcccacaact gggggggaag ttgatgtatg agcaatacac cggtgagcgt gttgctttat 3900ttggtaaaga taatctgcaa cgcaaccctt atgccgtgac tgccgggatc aattacaccc 3960ccgtgcctct actcactgtc ggggtagatc agcgtatggg gaaaagcagt aagcatgaaa 4020cacagtggaa cctccaaatg aactatcgcc tgggcgagag ttttcagtcg caacttagcc 4080cttcagcggt ggcaggaaca cgtctactgg cggagagccg ctataacctt gtcgatcgta 4140acaataatat cgtgttggag tatcagaaac agcaggtggt taaactgaca ttatcgccag 4200caactatctc cggcctgccg ggtcaggttt atcaggtgaa cgcacaagta caaggggcat 4260ctgctgtaag ggaaattgtc tggagtgatg ccgaactgat tgccgctggc ggcacattaa 4320caccactgag taccacacaa ttcaacttgg ttttaccgcc ttataaacgc acagcacaag 4380tgagtcgggt aacggacgac ctgacagcca acttttattc gcttagtgcg ctcgcggttg 4440atcaccaagg aaaccgatct aactcattca cattgagcgt caccgttcag cagcctcagt 4500tgacattaac ggcggccgtc attggtgatg gcgcaccggc taatgggaaa actgcaatca 4560ccgttgagtt caccgttgct gattttgagg ggaaaccctt agccgggcag gaggtggtga 4620taaccaccaa taatggtgcg ctaccgaata aaatcacgga aaagacagat gcaaatggcg 4680tcgcgcgcat tgcattaacc aatacgacag atggcgtgac ggtagtcaca gcagaagtgg 4740aggggcaacg gcaaagtgtt gatacccact ttgttaaggg tactatcgcg gcggataaat 4800ccactctggc tgcggtaccg acatctatca tcgctgatgg tctaatggct tcaaccatca 4860cgttggagtt gaaggatacc tatggggacc cgcaggctgg cgcgaatgtg gcttttgaca 4920caaccttagg caatatgggc gttatcacgg atcacaatga cggcacttat agcgcaccat 4980tgaccagtac cacgttgggg gtagcaacag taacggtgaa agtggatggg gctgcgttca 5040gtgtgccgag tgtgacggtt aatttcacgg cagatcctat tccagatgct ggccgctcca 5100gtttcaccgt ctccacaccg gatatcttgg ctgatggcac gatgagttcc acattatcct 5160ttgtccctgt cgataagaat ggccatttta tcagtgggat gcagggcttg agttttactc 5220aaaacggtgt gccggtgagt attagcccca ttaccgagca gccagatagc tataccgcga 5280cggtggttgg gaatagtgtc ggtgatgtca caatcacgcc gcaggttgat accctgatac 5340tgagtacatt gcagaaaaaa atatccctat tcccggtacc tacgctgacc ggtattctgg 5400ttaacgggca aaatttcgct acggataaag ggttcccgaa aacgatcttt aaaaacgcca 5460cattccagtt acagatggat aacgatgttg ctaataatac tcagtatgag tggtcgtcgt 5520cattcacacc caatgtatcg gttaacgatc agggtcaggt gacgattacc taccaaacct 5580atagcgaagt ggctgtgacg gcgaaaagta aaaaattccc aagttattcg gtgagttatc 5640ggttctaccc aaatcggtgg atatacgatg gcggcagatc gctggtatcc agtctcgagg 5700ccagcagaca atgccaaggt tcagatatgt ctgcggttct tgaatcctca cgtgcaacca 5760acggaacgcg tgcgcctgac gggacattgt ggggcgagtg ggggagcttg accgcgtata 5820gttctgattg gcaatctggt gaatattggg tcaaaaagac cagcacggat tttgaaacca 5880tgaatatgga cacaggcgca ctgcaaccag ggcctgcata cttggcgttc ccgctctgtg 5940cgctgtcaat ataaccagat aacagatagc aataagaaca gtttaatgag ctgattattt 6000ggggcgcgaa tgggagtccg gcaatcctag actcgcccca taagtagcaa acgtccagaa 6060gaacaacgcc gctcaggtta attgagcggc gctgtttttt taaaaggatt gtcgcgatta 6120aatgccgatc ttacggccca gctgcagccc gggggatcta tgcggtgtga aataccgcac 6180agatgcgtaa ggagaaaata ccgcatcagg cgccattcgc cattcaggct gcgcaactgt 6240tgggaagggc gatcggtgcg ggcctcttcg ctattacgcc aggacttcat atacccaagc 6300ttggaaaatt ttttttaaaa aagtcttgac actttatgct tccggctcgt ataatggatc 6360caggagtaac aatacaaatg gattcaagag atccatttgt attgttactc cttttttttt 6420ttgtcgacga tccttagcga aagctaagga tttttttttt actcgagcgg attactacat 6480acctgcatta atgaatcggc caacgcgcgg ggagaggcgg tttgcgtatt gggcgctctt 6540ccgcttcctc gctcactgac tcgctgcgct cggtcgttcg gctgcggcga gcggtatcag 6600ctcactcaaa ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca 6660tgtgagcaaa aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt 6720tccataggct ccgcccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc 6780gaaacccgac aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct 6840ctcctgttcc gaccctgccg cttaccggat acctgtccgc ctttctccct tcgggaagcg 6900tggcgctttc

tcatagctca cgctgtaggt atctcagttc ggtgtaggtc gttcgctcca 6960agctgggctg tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta tccggtaact 7020atcgtcttga gtccaacccg gtaagacacg acttatcgcc actggcagca gccactggta 7080acaggattag cagagcgagg tatgtaggcg gtgctacaga gttcttgaag tggtggccta 7140actacggcta cactagaagg acagtatttg gtatctgcgc tctgctgaag ccagttacct 7200tcggaaaaag agttggtagc tcttgatccg gcaaacaaac caccgctggt agcggtggtt 7260tttttgtttg caagcagcag attacgcgca gaaaaaaagg atctcaagaa gatcctttga 7320tcttttctac ggggtctgac gctcagtgga acgaaaactc acgttaaggg attttggtca 7380tgatctggta aggttgggaa gccctgcaaa gtaaactgga tggctttctt gccgccaagg 7440atctgatggc gcaggggatc aagatctgat caagagacag gatgaggatc gtttcgcatg 7500attgaacaag atggattgca cgcaggttct ccggccgctt gggtggagag gctattcggc 7560tatgactggg cacaacagac aatcggctgc tctgatgccg ccgtgttccg gctgtcagcg 7620caggggcgcc cggttctttt tgtcaagacc gacctgtccg gtgccctgaa tgaactgcag 7680gacgaggcag cgcggctatc gtggctggcc acgacgggcg ttccttgcgc agctgtgctc 7740gacgttgtca ctgaagcggg aagggactgg ctgctattgg gcgaagtgcc ggggcaggat 7800ctcctgtcat ctcaccttgc tcctgccgag aaagtatcca tcatggctga tgcaatgcgg 7860cggctgcata cgcttgatcc ggctacctgc ccattcgacc accaagcgaa acatcgcatc 7920gagcgagcac gtactcggat ggaagccggt cttgtcgatc aggatgatct ggacgaagag 7980catcaggggc tcgcgccagc cgaactgttc gccaggctca aggcgcgcat gcccgacggc 8040gaggatctcg tcgtgaccca tggcgatgcc tgcttgccga atatcatggt ggaaaatggc 8100cgcttttctg gattcatcga ctgtggccgg ctgggtgtgg cggaccgcta tcaggacata 8160gcgttggcta cccgtgatat tgctgaagag cttggcggcg aatgggctga ccgcttcctc 8220gtgctttacg gtatcgccgc tcccgattcg cagcgcatcg ccttctatcg ccttcttgac 8280gagttcttct gagcgggact ctggggttcg aaatgaccga ccaagcgacg cccaacctgc 8340catcacgaga tttcgattcc accgccgcct tctatgaaat catgacatta acctataaaa 8400ataggcgtat cacgaggccc tttcgtc 84275618427DNAArtificial SequencepMBV44 561tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180accatatcga cggtatcgat aagcttgata agcttttaaa tcagcagggg tctttttggc 240ttgtgtatta ttttgaagtt tttcttcccc gacagaatct gcttttaccg tcatagtgaa 300atgagcctga aaagctatta ccatgatgat acaaataagt ttacttttca tttcaccgct 360cctttttaat tcgtaaaact aagtttaagc cacctacaac taatctgaca gagagagtta 420aggacacgtt ttttagtata tgtgggaact aaattatacg ttttgcagta gaaactatag 480gtggcttaaa ctttgggata tgcttatatt atatggataa acagtcagat attcttttac 540atttgttaat tcttctaaaa aaattaaaaa ataagcctgt ttctacattc ttcacaaaat 600aatttacgaa gagtgcaaaa caagcttatt ttttcgtgtg tgttaagcgg ttttattctt 660aattttttat tacttttaca attattcgat tggattatct actttattac tatatttcgg 720ataaagcgtg gtgccccaga tggagatatt tctatttttc acaagtggta agttccggtc 780atcaattacc gttctccacc attcccaagc taaaccagtg cattctttag cgtaaacatt 840aatatttctc gcgttacctg gcaaatagat ggacgatgtg aaatgagcta gcttgctttt 900attgttttcg ctccagtttt tatgttgaac aatttcgtta ccttcaggat cataatttac 960ttcatcccaa gaaatgttga attgagcaac gtatcctcca gagtgatcga tgttaatttt 1020tccatctgta taagcttttg aagttgtttc aatatattct gagttgtttt taataacagc 1080taattcattg tcttttagga agtttgttgt ataagcaatg ggaactcctg gtgtttctcg 1140attaaaagta gcgccttttt tcaaaatatc gcgtaagtct ccgaggttgc cgtcgatgat 1200ttgaacttca tcttttgcgg aacctccgta aattacggct ttgaaggaag aatttttgat 1260gatatttgtt agttctacat cacctgagac agattttccg cttacggcag catcaaaagc 1320agcttttact ttagtactat gggaattagt tgataatttc aaataaactt gacggccata 1380cgccacactt gagatatatg caggaggatt ttctgcattc actccaagcg cttgcaactg 1440ctctttagta acagctttgc cgaaaaatct ggaaggtctt gtaggttcat taacattcac 1500gttatagtaa atttgtttaa aactaatgac ttcttcttgc attttccctt cactgattgc 1560gccgaagttt acattcaagc tattatttac agctttaaat gctgtaccaa atttcgcaat 1620taattgtgat tcactgtaag ccatttcgtc atcataatca atttttgcac ttacatttgg 1680ataagcttga gcatattttt cattccatct ttccactaat gtatttactg cgttgttaac 1740gtttgattta gtggcatttt ttacaacgat tttattgtct tgattagtca tacctggcaa 1800atcaatgctg agtgttaatg aatcacgttt tacagggaga acatctggtt gattttctac 1860taattccgaa ttcgctttta cgagagcacc tggataggtt aggctcgaaa ttgcattcac 1920aacttgaatg tctgcattat tttgattgat ggatttcttc tttttctcca caacaatata 1980ttcatttcca tctttgtaac cttttcttgg cggcacattt gtcactgcat ctccgtggta 2040tactaataca ttgtttttat tgtaatccaa tccttgtata tacttatcga tttcatccgc 2100gtgtttcttt tcgattggcg tcttaggact tgcaggcgga gatgctggtg gtgccatgga 2160tgaaattgaa ttttctttat tgaatgcaga tgcatccttt gcttcagttt gttgcgcaat 2220tggtagacta actaatataa gtgtaataaa aactagcatt atttttttca tgggtttcac 2280tctccttcta cattttttaa cctaataatg ccaaataccg tttgccaccc ctctcttttg 2340ataattataa tattggcgaa attcgcttct aaagatgaaa cgcaatatta tatgcttgct 2400ttatagcttt attctagtcc tgctgtccct ttatcgtcgt taacaaatgt taatgcctca 2460acataaaagt cactttaaga taggaatata ctaatcaaag gagggatcga attcctgcag 2520tcatcaaggc aaccatcagg attaatgcgg atattgcgga gtaacacttc agactgaaag 2580tagaaataaa aaccgcagca gacaactgac aacatcaaat gaagggggct tattctaatt 2640gatattattt atatgataat agttcatttt gtatttttgt tttttttgat attctcacct 2700gcttagttac aataaatcaa ttctatcgct gtatggtata gactgtttta ttatatattt 2760tgaatatttt taatctgccc agtctggttt tttaaaaaag tgctatcctc ttaatgtctt 2820tactaaatta gaaaacaagt ttcactttca actattgcat ctttaattaa tggtcaaggt 2880gatttcaaat gctcgtttgt ggccagttat acctcaaata actcaagttg ttgagcacag 2940ccaacgcaca tgcagtttga cgtatgacag gtatgcttta tttcatttaa attatgatgg 3000ttttccagcc aatcagtgag tttctcttga taaggaatgc gggaatgtct atgtatttta 3060ataaaataat ttcatttaat attatttcac gaatagttat ttgtatcttt ttgatatgtg 3120gaatgttcat ggctggggct tcagaaaaat atgatgctaa cgcaccgcaa caggtccagc 3180cttattctgt ctcttcatct gcatttgaaa atctccatcc taataatgaa atggagagtt 3240caatcaatcc cttttccgca tcggatacag aaagaaatgc tgcaataata gatcgcgcca 3300ataaggagca ggagactgaa gcggtgaata agatgataag caccggggcc aggttagctg 3360catcaggcag ggcatctgat gttgctcact caatggtggg cgatgcggtt aatcaagaaa 3420tcaaacagtg gttaaatcga ttcggtacgg ctcaagttaa tctgaatttt gacaaaaatt 3480tttcgctaaa agaaagctct cttgattggc tggctccttg gtatgactct gcttcattcc 3540tcttttttag tcagttaggt attcgcaata aagacagccg caacacactt aaccttggcg 3600tcgggatacg tacattggag aacggttggc tgtacggact taatactttt tatgataatg 3660atttgaccgg ccacaaccac cgtatcggtc ttggtgccga ggcctggacc gattatttac 3720agttggctgc caatgggtat tttcgcctca atggatggca ctcgtcgcgt gatttctccg 3780actataaaga gcgcccagcc actggggggg atttgcgcgc gaatgcttat ttacctgcac 3840tcccacaact gggggggaag ttgatgtatg agcaatacac cggtgagcgt gttgctttat 3900ttggtaaaga taatctgcaa cgcaaccctt atgccgtgac tgccgggatc aattacaccc 3960ccgtgcctct actcactgtc ggggtagatc agcgtatggg gaaaagcagt aagcatgaaa 4020cacagtggaa cctccaaatg aactatcgcc tgggcgagag ttttcagtcg caacttagcc 4080cttcagcggt ggcaggaaca cgtctactgg cggagagccg ctataacctt gtcgatcgta 4140acaataatat cgtgttggag tatcagaaac agcaggtggt taaactgaca ttatcgccag 4200caactatctc cggcctgccg ggtcaggttt atcaggtgaa cgcacaagta caaggggcat 4260ctgctgtaag ggaaattgtc tggagtgatg ccgaactgat tgccgctggc ggcacattaa 4320caccactgag taccacacaa ttcaacttgg ttttaccgcc ttataaacgc acagcacaag 4380tgagtcgggt aacggacgac ctgacagcca acttttattc gcttagtgcg ctcgcggttg 4440atcaccaagg aaaccgatct aactcattca cattgagcgt caccgttcag cagcctcagt 4500tgacattaac ggcggccgtc attggtgatg gcgcaccggc taatgggaaa actgcaatca 4560ccgttgagtt caccgttgct gattttgagg ggaaaccctt agccgggcag gaggtggtga 4620taaccaccaa taatggtgcg ctaccgaata aaatcacgga aaagacagat gcaaatggcg 4680tcgcgcgcat tgcattaacc aatacgacag atggcgtgac ggtagtcaca gcagaagtgg 4740aggggcaacg gcaaagtgtt gatacccact ttgttaaggg tactatcgcg gcggataaat 4800ccactctggc tgcggtaccg acatctatca tcgctgatgg tctaatggct tcaaccatca 4860cgttggagtt gaaggatacc tatggggacc cgcaggctgg cgcgaatgtg gcttttgaca 4920caaccttagg caatatgggc gttatcacgg atcacaatga cggcacttat agcgcaccat 4980tgaccagtac cacgttgggg gtagcaacag taacggtgaa agtggatggg gctgcgttca 5040gtgtgccgag tgtgacggtt aatttcacgg cagatcctat tccagatgct ggccgctcca 5100gtttcaccgt ctccacaccg gatatcttgg ctgatggcac gatgagttcc acattatcct 5160ttgtccctgt cgataagaat ggccatttta tcagtgggat gcagggcttg agttttactc 5220aaaacggtgt gccggtgagt attagcccca ttaccgagca gccagatagc tataccgcga 5280cggtggttgg gaatagtgtc ggtgatgtca caatcacgcc gcaggttgat accctgatac 5340tgagtacatt gcagaaaaaa atatccctat tcccggtacc tacgctgacc ggtattctgg 5400ttaacgggca aaatttcgct acggataaag ggttcccgaa aacgatcttt aaaaacgcca 5460cattccagtt acagatggat aacgatgttg ctaataatac tcagtatgag tggtcgtcgt 5520cattcacacc caatgtatcg gttaacgatc agggtcaggt gacgattacc taccaaacct 5580atagcgaagt ggctgtgacg gcgaaaagta aaaaattccc aagttattcg gtgagttatc 5640ggttctaccc aaatcggtgg atatacgatg gcggcagatc gctggtatcc agtctcgagg 5700ccagcagaca atgccaaggt tcagatatgt ctgcggttct tgaatcctca cgtgcaacca 5760acggaacgcg tgcgcctgac gggacattgt ggggcgagtg ggggagcttg accgcgtata 5820gttctgattg gcaatctggt gaatattggg tcaaaaagac cagcacggat tttgaaacca 5880tgaatatgga cacaggcgca ctgcaaccag ggcctgcata cttggcgttc ccgctctgtg 5940cgctgtcaat ataaccagat aacagatagc aataagaaca gtttaatgag ctgattattt 6000ggggcgcgaa tgggagtccg gcaatcctag actcgcccca taagtagcaa acgtccagaa 6060gaacaacgcc gctcaggtta attgagcggc gctgtttttt taaaaggatt gtcgcgatta 6120aatgccgatc ttacggccca gctgcagccc gggggatcta tgcggtgtga aataccgcac 6180agatgcgtaa ggagaaaata ccgcatcagg cgccattcgc cattcaggct gcgcaactgt 6240tgggaagggc gatcggtgcg ggcctcttcg ctattacgcc aggacttcat atacccaagc 6300ttggaaaatt ttttttaaaa aagtcttgac actttatgct tccggctcgt ataatggatc 6360caggagtaac aatacaaatg gattcaagag atccatttgt attgttactc cttttttttt 6420ttgtcgacga tccttagcga aagctaagga tttttttttt actcgagcgg attactacat 6480acctgcatta atgaatcggc caacgcgcgg ggagaggcgg tttgcgtatt gggcgctctt 6540ccgcttcctc gctcactgac tcgctgcgct cggtcgttcg gctgcggcga gcggtatcag 6600ctcactcaaa ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca 6660tgtgagcaaa aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt 6720tccataggct ccgcccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc 6780gaaacccgac aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct 6840ctcctgttcc gaccctgccg cttaccggat acctgtccgc ctttctccct tcgggaagcg 6900tggcgctttc tcatagctca cgctgtaggt atctcagttc ggtgtaggtc gttcgctcca 6960agctgggctg tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta tccggtaact 7020atcgtcttga gtccaacccg gtaagacacg acttatcgcc actggcagca gccactggta 7080acaggattag cagagcgagg tatgtaggcg gtgctacaga gttcttgaag tggtggccta 7140actacggcta cactagaagg acagtatttg gtatctgcgc tctgctgaag ccagttacct 7200tcggaaaaag agttggtagc tcttgatccg gcaaacaaac caccgctggt agcggtggtt 7260tttttgtttg caagcagcag attacgcgca gaaaaaaagg atctcaagaa gatcctttga 7320tcttttctac ggggtctgac gctcagtgga acgaaaactc acgttaaggg attttggtca 7380tgatttcata gaaggcggcg gtggaatcga aatctcgtga tggcaggttg ggcgtcgctt 7440ggtcggtcat ttcgaacccc agagtcccgc tcagaagaac tcgtcaagaa ggcgatagaa 7500ggcgatgcgc tgcgaatcgg gagcggcgat accgtaaagc acgaggaagc ggtcagccca 7560ttcgccgcca agctcttcag caatatcacg ggtagccaac gctatgtcct gatagcggtc 7620cgccacaccc agccggccac agtcgatgaa tccagaaaag cggccatttt ccaccatgat 7680attcggcaag caggcatcgc catgggtcac gacgagatcc tcgccgtcgg gcatgcgcgc 7740cttgagcctg gcgaacagtt cggctggcgc gagcccctga tgctcttcgt ccagatcatc 7800ctgatcgaca agaccggctt ccatccgagt acgtgctcgc tcgatgcgat gtttcgcttg 7860gtggtcgaat gggcaggtag ccggatcaag cgtatgcagc cgccgcattg catcagccat 7920gatggatact ttctcggcag gagcaaggtg agatgacagg agatcctgcc ccggcacttc 7980gcccaatagc agccagtccc ttcccgcttc agtgacaacg tcgagcacag ctgcgcaagg 8040aacgcccgtc gtggccagcc acgatagccg cgctgcctcg tcctgcagtt cattcagggc 8100accggacagg tcggtcttga caaaaagaac cgggcgcccc tgcgctgaca gccggaacac 8160ggcggcatca gagcagccga ttgtctgttg tgcccagtca tagccgaata gcctctccac 8220ccaagcggcc ggagaacctg cgtgcaatcc atcttgttca atcatgcgaa acgatcctca 8280tcctgtctct tgatcagatc ttgatcccct gcgccatcag atccttggcg gcaagaaagc 8340catccagttt actttgcagg gcttcccaac cttaccagat catgacatta acctataaaa 8400ataggcgtat cacgaggccc tttcgtc 842756218936DNAArtificial SequencepNJSZc 562ggccgctcga gcatgcatct agagggccca attcgcccta tagtgagtcg tattacaatt 60cactggccgt cgttttacaa cgtcgtgact gggaaaaccc tggcgttacc caacttaatc 120gccttgcagc acatccccct ttcgccagct ggcgtaatag cgaagaggcc cgcaccgatc 180gcccttccca acagttgcgc agcctgaaaa accgcgccat ggtgtgtagg ctggagctgc 240ttcgaagttc ctatactttc tagagaatag gaacttcgga ataggaactt caagatcccc 300cacgctgccg caagcactca gggcgcaagg gctgctaaag gaaacggaac acgtagaaag 360ccagtccgca gaaacggtgc tgaccccgga tgaatgtcag ctactgggct atctggacaa 420gggaaaacgc aagcgcaaag agaaagcagg tagcttgcag tgggcttaca tggcgatagc 480tagactgggc ggttttatgg acagcaagcg aaccggaatt gccagctggg gcgccctctg 540gtaaggttgg gaagccctgc aaagtaaact ggatggcttt cttgccgcca aggatctgat 600ggcgcagggg atcaagatct gatcaagaga caggatgagg atcgtttcgc atgattgaac 660aagatggatt gcacgcaggt tctccggccg cttgggtgga gaggctattc ggctatgact 720gggcacaaca gacaatcggc tgctctgatg ccgccgtgtt ccggctgtca gcgcaggggc 780gcccggttct ttttgtcaag accgacctgt ccggtgccct gaatgaactg caggacgagg 840cagcgcggct atcgtggctg gccacgacgg gcgttccttg cgcagctgtg ctcgacgttg 900tcactgaagc gggaagggac tggctgctat tgggcgaagt gccggggcag gatctcctgt 960catctcacct tgctcctgcc gagaaagtat ccatcatggc tgatgcaatg cggcggctgc 1020atacgcttga tccggctacc tgcccattcg accaccaagc gaaacatcgc atcgagcgag 1080cacgtactcg gatggaagcc ggtcttgtcg atcaggatga tctggacgaa gagcatcagg 1140ggctcgcgcc agccgaactg ttcgccaggc tcaaggcgcg catgcccgac ggcgaggatc 1200tcgtcgtgac ccatggcgat gcctgcttgc cgaatatcat ggtggaaaat ggccgctttt 1260ctggattcat cgactgtggc cggctgggtg tggcggaccg ctatcaggac atagcgttgg 1320ctacccgtga tattgctgaa gagcttggcg gcgagtgggc tgaccgcttc ctcgtgcttt 1380acggtatcgc cgctcccgat tcgcagcgca tcgccttcta tcgccttctt gacgagttct 1440tctgagcggg actctggggt tcgaaatgac cgaccaagcg acgcccaacc tgccatcacg 1500agatttcgat tccaccgccg ccttctatga aaggttgggc ttcggaatcg ttttccggga 1560cgccggctgg atgatcctcc agcgcgggga tctcatgctg gagttcttcg cccaccccag 1620cttcaaaagc gctctgaagt tcctatactt tctagagaat aggaacttcg gaataggaac 1680taaggaggat attcatatgg accatggcgc ggcatgcaag ctcggtatca ttgcagcact 1740ggggccagat ggtaagccct cccgtatcgt agttatctac acgacgggga gtcaggcaac 1800tatggatgaa cgaaatagac agatcgctga gataggtgcc tcactgatta agcattggta 1860actgtcagac caagtttact catatatact ttagattgat ttaaaacttc atttttaatt 1920taaaaggatc taggtgaaga tcctttttga taatctcatg accaaaatcc cttaacgtga 1980gttttcgttc cactgagcgt cagaccccgt agaaaagatc aaaggatctt cttgagatcc 2040tttttttctg cgcgtaatct gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt 2100ttgtttgccg gatcaagagc taccaactct ttttccgaag gtaactggct tcagcagagc 2160gcagatacca aatactgttc ttctagtgta gccgtagtta ggccaccact tcaagaactc 2220tgtagcaccg cctacatacc tcgctctgct aatcctgtta ccagtggctg ctgccagtgg 2280cgataagtcg tgtcttaccg ggttggactc aagacgatag ttaccggata aggcgcagcg 2340gtcgggctga acggggggtt cgtgcacaca gcccagcttg gagcgaacga cctacaccga 2400actgagatac ctacagcgtg agctatgaga aagcgccacg cttcccgaag ggagaaaggc 2460ggacaggtat ccggtaagcg gcagggtcgg aacaggagag cgcacgaggg agcttccagg 2520gggaaacgcc tggtatcttt atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg 2580atttttgtga tgctcgtcag gggggcggag cctatggaaa aacgccagca acgcggcctt 2640tttacggttc ctggcctttt gctggccttt tgctcacatg ttctttcctg cgttatcccc 2700tgattctgtg gataaccgta ttaccgcctt tgagtgagct gataccgctc gccgcagccg 2760aacgaccgag cgcagcgagt cagtgagcga ggaagcggaa gagcgcccaa tacgcaaacc 2820gcctctcccc gcgcgttggc cgattcatta atgcagctgg cacgacagta tcgataagct 2880tgataagctt ttaaatcagc aggggtcttt ttggcttgtg tattattttg aagtttttct 2940tccccgacag aatctgcttt taccgtcata gtgaaatgag cctgaaaagc tattaccatg 3000atgatacaaa taagtttact tttcatttca ccgctccttt ttaattcgta aaactaagtt 3060taagccacct acaactaatc tgacagagag agttaaggac acgtttttta gtatatgtgg 3120gaactaaatt atacgttttg cagtagaaac tataggtggc ttaaactttg ggatatgctt 3180atattatatg gataaacagt cagatattct tttacatttg ttaattcttc taaaaaaatt 3240aaaaaataag cctgtttcta cattcttcac aaaataattt acgaagagtg caaaacaagc 3300ttattttttc gtgtgtgtta agcggtttta ttcttaattt tttattactt ttacaattat 3360tcgattggat tatctacttt attactatat ttcggataaa gcgtggtgcc ccagatggag 3420atatttctat ttttcacaag tggtaagttc cggtcatcaa ttaccgttct ccaccattcc 3480caagctaaac cagtgcattc tttagcgtaa acattaatat ttctcgcgtt acctggcaaa 3540tagatggacg atgtgaaatg agctagcttg cttttattgt tttcgctcca gtttttatgt 3600tgaacaattt cgttaccttc aggatcataa tttacttcat cccaagaaat gttgaattga 3660gcaacgtatc ctccagagtg atcgatgtta atttttccat ctgtataagc ttttgaagtt 3720gtttcaatat attctgagtt gtttttaata acagctaatt cattgtcttt taggaagttt 3780gttgtataag caatgggaac tcctggtgtt tctcgattaa aagtagcgcc ttttttcaaa 3840atatcgcgta agtctccgag gttgccgtcg atgatttgaa cttcatcttt tgcggaacct 3900ccgtaaatta cggctttgaa ggaagaattt ttgatgatat ttgttagttc tacatcacct 3960gagacagatt ttccgcttac ggcagcatca aaagcagctt ttactttagt actatgggaa 4020ttagttgata atttcaaata aacttgacgg ccatacgcca cacttgagat atatgcagga 4080ggattttctg cattcactcc aagcgcttgc aactgctctt tagtaacagc tttgccgaaa 4140aatctggaag gtcttgtagg ttcattaaca ttcacgttat agtaaatttg tttaaaacta 4200atgacttctt cttgcatttt cccttcactg attgcgccga agtttacatt caagctatta 4260tttacagctt taaatgctgt accaaatttc gcaattaatt gtgattcact gtaagccatt 4320tcgtcatcat aatcaatttt tgcacttaca tttggataag cttgagcata tttttcattc 4380catctttcca ctaatgtatt tactgcgttg ttaacgtttg atttagtggc attttttaca 4440acgattttat tgtcttgatt agtcatacct ggcaaatcaa tgctgagtgt taatgaatca 4500cgttttacag ggagaacatc tggttgattt tctactaatt ccgaattcgc ttttacgaga 4560gcacctggat aggttaggct cgaaattgca ttcacaactt gaatgtctgc attattttga 4620ttgatggatt tcttcttttt ctccacaaca atatattcat ttccatcttt gtaacctttt 4680cttggcggca catttgtcac tgcatctccg tggtatacta atacattgtt tttattgtaa 4740tccaatcctt gtatatactt atcgatttca tccgcgtgtt tcttttcgat tggcgtctta 4800ggacttgcag gcggagatgc tggtggtgcc atggatgaaa ttgaattttc tttattgaat 4860gcagatgcat cctttgcttc agtttgttgc gcaattggta gactaactaa tataagtgta 4920ataaaaacta gcattatttt tttcatgggt ttcactctcc ttctacattt

tttaacctaa 4980taatgccaaa taccgtttgc cacccctctc ttttgataat tataatattg gcgaaattcg 5040cttctaaaga tgaaacgcaa tattatatgc ttgctttata gctttattct agtcctgctg 5100tccctttatc gtcgttaaca aatgttaatg cctcaacata aaagtcactt taagatagga 5160atatactaat caaaggaggg atcgaattcc tgcagtcatc aaggcaacca tcaggattaa 5220tgcggatatt gcggagtaac acttcagact gaaagtagaa ataaaaaccg cagcagacaa 5280ctgacaacat caaatgaagg gggcttattc taattgatat tatttatatg ataatagttc 5340attttgtatt ttgttttttt gatattctca cctgcttagt tacaataaat caattctatc 5400gctgtatggt atagactgtt ttattatata ttttgaatat ttttaatctg cccagtctgg 5460ttttttaaaa aagtgctatc ctcttaatgt ctttactaaa ttagaaaaca agtttcactt 5520tcaactattg catctttaat taatggtcaa ggtgatttca aatgctcgtt tgtggccagt 5580tatacctcaa ataactcaag ttgttgagca cagccaacgc acatgcagtt tgacgtatga 5640caggtatgct ttatttcatt taaattatga tggttttcca gccaatcagt gagtttctct 5700tgataaggaa tgcgggaatg tctatgtatt ttaataaaat aatttcattt aatattattt 5760cacgaatagt tatttgtatc tttttgatat gtggaatgtt catggctggg gcttcagaaa 5820aatatgatgc taacgcaccg caacaggtcc agccttattc tgtctcttca tctgcatttg 5880aaaatctcca tcctaataat gaaatggaga gttcaatcaa tcccttttcc gcatcggata 5940cagaaagaaa tgctgcaata atagatcgcg ccaataagga gcaggagact gaagcggtga 6000ataagatgat aagcaccggg gccaggttag ctgcatcagg cagggcatct gatgttgctc 6060actcaatggt gggcgatgcg gttaatcaag aaatcaaaca gtggttaaat cgattcggta 6120cggctcaagt taatctgaat tttgacaaaa atttttcgct aaaagaaagc tctcttgatt 6180ggctggctcc ttggtatgac tctgcttcat tcctcttttt tagtcagtta ggtattcgca 6240ataaagacag ccgcaacaca cttaaccttg gcgtcgggat acgtacattg gagaacggtt 6300ggctgtacgg acttaatact ttttatgata atgatttgac cggccacaac caccgtatcg 6360gtcttggtgc cgaggcctgg accgattatt tacagttggc tgccaatggg tattttcgcc 6420tcaatggatg gcactcgtcg cgtgatttct ccgactataa agagcgccca gccactgggg 6480gggatttgcg cgcgaatgct tatttacctg cactcccaca actggggggg aagttgatgt 6540atgagcaata caccggtgag cgtgttgctt tatttggtaa agataatctg caacgcaacc 6600cttatgccgt gactgccggg atcaattaca cccccgtgcc tctactcact gtcggggtag 6660atcagcgtat ggggaaaagc agtaagcatg aaacacagtg gaacctccaa atgaactatc 6720gcctgggcga gagttttcag tcgcaactta gcccttcagc ggtggcagga acacgtctac 6780tggcggagag ccgctataac cttgtcgatc gtaacaataa tatcgtgttg gagtatcaga 6840aacagcaggt ggttaaactg acattatcgc cagcaactat ctccggcctg ccgggtcagg 6900tttatcaggt gaacgcacaa gtacaagggg catctgctgt aagggaaatt gtctggagtg 6960atgccgaact gattgccgct ggcggcacat taacaccact gagtaccaca caattcaact 7020tggttttacc gccttataaa cgcacagcac aagtgagtcg ggtaacggac gacctgacag 7080ccaactttta ttcgcttagt gcgctcgcgg ttgatcacca aggaaaccga tctaactcat 7140tcacattgag cgtcaccgtt cagcagcctc agttgacatt aacggcggcc gtcattggtg 7200atggcgcacc ggctaatggg aaaactgcaa tcaccgttga gttcaccgtt gctgattttg 7260aggggaaacc cttagccggg caggaggtgg tgataaccac caataatggt gcgctaccga 7320ataaaatcac ggaaaagaca gatgcaaatg gcgtcgcgcg cattgcatta accaatacga 7380cagatggcgt gacggtagtc acagcagaag tggaggggca acggcaaagt gttgataccc 7440actttgttaa gggtactatc gcggcggata aatccactct ggctgcggta ccgacatcta 7500tcatcgctga tggtctaatg gcttcaacca tcacgttgga gttgaaggat acctatgggg 7560acccgcaggc tggcgcgaat gtggcttttg acacaacctt aggcaatatg ggcgttatca 7620cggatcacaa tgacggcact tatagcgcac cattgaccag taccacgttg ggggtagcaa 7680cagtaacggt gaaagtggat ggggctgcgt tcagtgtgcc gagtgtgacg gttaatttca 7740cggcagatcc tattccagat gctggccgct ccagtttcac cgtctccaca ccggatatct 7800tggctgatgg cacgatgagt tccacattat cctttgtccc tgtcgataag aatggccatt 7860ttatcagtgg gatgcagggc ttgagtttta ctcaaaacgg tgtgccggtg agtattagcc 7920ccattaccga gcagccagat agctataccg cgacggtggt tgggaatagt gtcggtgatg 7980tcacaatcac gccgcaggtt gataccctga tactgagtac attgcagaaa aaaatatccc 8040tattcccggt acctacgctg accggtattc tggttaacgg gcaaaatttc gctacggata 8100aagggttccc gaaaacgatc tttaaaaacg ccacattcca gttacagatg gataacgatg 8160ttgctaataa tactcagtat gagtggtcgt cgtcattcac acccaatgta tcggttaacg 8220atcagggtca ggtgacgatt acctaccaaa cctatagcga agtggctgtg acggcgaaaa 8280gtaaaaaatt cccaagttat tcggtgagtt atcggttcta cccaaatcgg tggatatacg 8340atggcggcag atcgctggta tccagtctcg aggccagcag acaatgccaa ggttcagata 8400tgtctgcggt tcttgaatcc tcacgtgcaa ccaacggaac gcgtgcgcct gacgggacat 8460tgtggggcga gtgggggagc ttgaccgcgt atagttctga ttggcaatct ggtgaatatt 8520gggtcaaaaa gaccagcacg gattttgaaa ccatgaatat ggacacaggc gcactgcaac 8580cagggcctgc atacttggcg ttcccgctct gtgcgctgtc aatataacca gataacagat 8640agcaataaga acagtttaat gagctgatta tttggggcgc gaatgggagt ccggcaatcc 8700tagactcgcc ccataagtag caaacgtcca gagaacaacg ccgctcaggt taattgagcg 8760gcgttgtttt tttaaaagga tttgtcgcga taagcgtgag ctggcgttaa atgccgatct 8820tacggcccag ctgcagcccg gctagtaacg gccgccagtg tgctggaatt cgcccttaat 8880cggcatcatt caccaagctt gccaggcgac tgtcttcaat attacagccg caactactga 8940catggcgggt gatggtgttc actattccag ggcgatcggc acccaacgca gtgatcacca 9000gataatgttg cgatgacagt gtcaaactgg ttattccttc aaggggtgag ttgttcttaa 9060gcatgccggt ttgctgtaaa gtttagggag atttgatggc ttactctgtt caaaagtcgc 9120gcctggcaaa ggttgcgggt gtttcgcttg ttttattact cgctgcctgt agttctgact 9180cacgctataa gcgtcaggtc agtggtgatg aagcctacct ggaagcgcca tggcatgcaa 9240gggcgaattc tgcagatatc catcacactg gcggccctag accaggcttt acactttatg 9300cttccggctc gtataatgtg tggaaggatc caggagtaac aatacaaatg gattcaagag 9360atccatttgt attgttactc ctttgtcgac tggacagttc aagagactgt ccatcaatat 9420cagctttgtc acaaaccccg ccaccggcgg ggtttttttc tgctctaggg ccgctcgagc 9480atgcatctag agggcccaat tcgccctata gtgagtcgta ttacaattca ctggccgtcg 9540ttttacaacg tcgtgactgg gaaaaccctg gcgttaccca acttaatcgc cttgcagcac 9600atcccccttt cgccagctgg cgtaatagcg aagaggcccg caccgatcgc ccttcccaac 9660agttgcgcag cctgaaaaac cgcgccatgg tgtgtaggct ggagctgctt cgaagttcct 9720atactttcta gagaatagga acttcggaat aggaacttca agatccccca cgctgccgca 9780agcactcagg gcgcaagggc tgctaaagga aacggaacac gtagaaagcc agtccgcaga 9840aacggtgctg accccggatg aatgtcagct actgggctat ctggacaagg gaaaacgcaa 9900gcgcaaagag aaagcaggta gcttgcagtg ggcttacatg gcgatagcta gactgggcgg 9960ttttatggac agcaagcgaa ccggaattgc cagctggggc gccctctggt aaggttggga 10020agccctgcaa agtaaactgg atggctttct tgccgccaag gatctgatgg cgcaggggat 10080caagatctga tcaagagaca ggatgaggat cgtttcgcat gattgaacaa gatggattgc 10140acgcaggttc tccggccgct tgggtggaga ggctattcgg ctatgactgg gcacaacaga 10200caatcggctg ctctgatgcc gccgtgttcc ggctgtcagc gcaggggcgc ccggttcttt 10260ttgtcaagac cgacctgtcc ggtgccctga atgaactgca ggacgaggca gcgcggctat 10320cgtggctggc cacgacgggc gttccttgcg cagctgtgct cgacgttgtc actgaagcgg 10380gaagggactg gctgctattg ggcgaagtgc cggggcagga tctcctgtca tctcaccttg 10440ctcctgccga gaaagtatcc atcatggctg atgcaatgcg gcggctgcat acgcttgatc 10500cggctacctg cccattcgac caccaagcga aacatcgcat cgagcgagca cgtactcgga 10560tggaagccgg tcttgtcgat caggatgatc tggacgaaga gcatcagggg ctcgcgccag 10620ccgaactgtt cgccaggctc aaggcgcgca tgcccgacgg cgaggatctc gtcgtgaccc 10680atggcgatgc ctgcttgccg aatatcatgg tggaaaatgg ccgcttttct ggattcatcg 10740actgtggccg gctgggtgtg gcggaccgct atcaggacat agcgttggct acccgtgata 10800ttgctgaaga gcttggcggc gagtgggctg accgcttcct cgtgctttac ggtatcgccg 10860ctcccgattc gcagcgcatc gccttctatc gccttcttga cgagttcttc tgagcgggac 10920tctggggttc gaaatgaccg accaagcgac gcccaacctg ccatcacgag atttcgattc 10980caccgccgcc ttctatgaaa ggttgggctt cggaatcgtt ttccgggacg ccggctggat 11040gatcctccag cgcggggatc tcatgctgga gttcttcgcc caccccagct tcaaaagcgc 11100tctgaagttc ctatactttc tagagaatag gaacttcgga ataggaacta aggaggatat 11160tcatatggac catggcgcgg catgcaagct cggtatcatt gcagcactgg ggccagatgg 11220taagccctcc cgtatcgtag ttatctacac gacggggagt caggcaacta tggatgaacg 11280aaatagacag atcgctgaga taggtgcctc actgattaag cattggtaac tgtcagacca 11340agtttactca tatatacttt agattgattt aaaacttcat ttttaattta aaaggatcta 11400ggtgaagatc ctttttgata atctcatgac caaaatccct taacgtgagt tttcgttcca 11460ctgagcgtca gaccccgtag aaaagatcaa aggatcttct tgagatcctt tttttctgcg 11520cgtaatctgc tgcttgcaaa caaaaaaacc accgctacca gcggtggttt gtttgccgga 11580tcaagagcta ccaactcttt ttccgaaggt aactggcttc agcagagcgc agataccaaa 11640tactgttctt ctagtgtagc cgtagttagg ccaccacttc aagaactctg tagcaccgcc 11700tacatacctc gctctgctaa tcctgttacc agtggctgct gccagtggcg ataagtcgtg 11760tcttaccggg ttggactcaa gacgatagtt accggataag gcgcagcggt cgggctgaac 11820ggggggttcg tgcacacagc ccagcttgga gcgaacgacc tacaccgaac tgagatacct 11880acagcgtgag ctatgagaaa gcgccacgct tcccgaaggg agaaaggcgg acaggtatcc 11940ggtaagcggc agggtcggaa caggagagcg cacgagggag cttccagggg gaaacgcctg 12000gtatctttat agtcctgtcg ggtttcgcca cctctgactt gagcgtcgat ttttgtgatg 12060ctcgtcaggg gggcggagcc tatggaaaaa cgccagcaac gcggcctttt tacggttcct 12120ggccttttgc tggccttttg ctcacatgtt ctttcctgcg ttatcccctg attctgtgga 12180taaccgtatt accgcctttg agtgagctga taccgctcgc cgcagccgaa cgaccgagcg 12240cagcgagtca gtgagcgagg aagcggaaga gcgcccaata cgcaaaccgc ctctccccgc 12300gcgttggccg attcattaat gcagctggca cgacagtatc gataagcttg ataagctttt 12360aaatcagcag gggtcttttt ggcttgtgta ttattttgaa gtttttcttc cccgacagaa 12420tctgctttta ccgtcatagt gaaatgagcc tgaaaagcta ttaccatgat gatacaaata 12480agtttacttt tcatttcacc gctccttttt aattcgtaaa actaagttta agccacctac 12540aactaatctg acagagagag ttaaggacac gttttttagt atatgtggga actaaattat 12600acgttttgca gtagaaacta taggtggctt aaactttggg atatgcttat attatatgga 12660taaacagtca gatattcttt tacatttgtt aattcttcta aaaaaattaa aaaataagcc 12720tgtttctaca ttcttcacaa aataatttac gaagagtgca aaacaagctt attttttcgt 12780gtgtgttaag cggttttatt cttaattttt tattactttt acaattattc gattggatta 12840tctactttat tactatattt cggataaagc gtggtgcccc agatggagat atttctattt 12900ttcacaagtg gtaagttccg gtcatcaatt accgttctcc accattccca agctaaacca 12960gtgcattctt tagcgtaaac attaatattt ctcgcgttac ctggcaaata gatggacgat 13020gtgaaatgag ctagcttgct tttattgttt tcgctccagt ttttatgttg aacaatttcg 13080ttaccttcag gatcataatt tacttcatcc caagaaatgt tgaattgagc aacgtatcct 13140ccagagtgat cgatgttaat ttttccatct gtataagctt ttgaagttgt ttcaatatat 13200tctgagttgt ttttaataac agctaattca ttgtctttta ggaagtttgt tgtataagca 13260atgggaactc ctggtgtttc tcgattaaaa gtagcgcctt ttttcaaaat atcgcgtaag 13320tctccgaggt tgccgtcgat gatttgaact tcatcttttg cggaacctcc gtaaattacg 13380gctttgaagg aagaattttt gatgatattt gttagttcta catcacctga gacagatttt 13440ccgcttacgg cagcatcaaa agcagctttt actttagtac tatgggaatt agttgataat 13500ttcaaataaa cttgacggcc atacgccaca cttgagatat atgcaggagg attttctgca 13560ttcactccaa gcgcttgcaa ctgctcttta gtaacagctt tgccgaaaaa tctggaaggt 13620cttgtaggtt cattaacatt cacgttatag taaatttgtt taaaactaat gacttcttct 13680tgcattttcc cttcactgat tgcgccgaag tttacattca agctattatt tacagcttta 13740aatgctgtac caaatttcgc aattaattgt gattcactgt aagccatttc gtcatcataa 13800tcaatttttg cacttacatt tggataagct tgagcatatt tttcattcca tctttccact 13860aatgtattta ctgcgttgtt aacgtttgat ttagtggcat tttttacaac gattttattg 13920tcttgattag tcatacctgg caaatcaatg ctgagtgtta atgaatcacg ttttacaggg 13980agaacatctg gttgattttc tactaattcc gaattcgctt ttacgagagc acctggatag 14040gttaggctcg aaattgcatt cacaacttga atgtctgcat tattttgatt gatggatttc 14100ttctttttct ccacaacaat atattcattt ccatctttgt aaccttttct tggcggcaca 14160tttgtcactg catctccgtg gtatactaat acattgtttt tattgtaatc caatccttgt 14220atatacttat cgatttcatc cgcgtgtttc ttttcgattg gcgtcttagg acttgcaggc 14280ggagatgctg gtggtgccat ggatgaaatt gaattttctt tattgaatgc agatgcatcc 14340tttgcttcag tttgttgcgc aattggtaga ctaactaata taagtgtaat aaaaactagc 14400attatttttt tcatgggttt cactctcctt ctacattttt taacctaata atgccaaata 14460ccgtttgcca cccctctctt ttgataatta taatattggc gaaattcgct tctaaagatg 14520aaacgcaata ttatatgctt gctttatagc tttattctag tcctgctgtc cctttatcgt 14580cgttaacaaa tgttaatgcc tcaacataaa agtcacttta agataggaat atactaatca 14640aaggagggat cgaattcctg cagtcatcaa ggcaaccatc aggattaatg cggatattgc 14700ggagtaacac ttcagactga aagtagaaat aaaaaccgca gcagacaact gacaacatca 14760aatgaagggg gcttattcta attgatatta tttatatgat aatagttcat tttgtatttt 14820gtttttttga tattctcacc tgcttagtta caataaatca attctatcgc tgtatggtat 14880agactgtttt attatatatt ttgaatattt ttaatctgcc cagtctggtt ttttaaaaaa 14940gtgctatcct cttaatgtct ttactaaatt agaaaacaag tttcactttc aactattgca 15000tctttaatta atggtcaagg tgatttcaaa tgctcgtttg tggccagtta tacctcaaat 15060aactcaagtt gttgagcaca gccaacgcac atgcagtttg acgtatgaca ggtatgcttt 15120atttcattta aattatgatg gttttccagc caatcagtga gtttctcttg ataaggaatg 15180cgggaatgtc tatgtatttt aataaaataa tttcatttaa tattatttca cgaatagtta 15240tttgtatctt tttgatatgt ggaatgttca tggctggggc ttcagaaaaa tatgatgcta 15300acgcaccgca acaggtccag ccttattctg tctcttcatc tgcatttgaa aatctccatc 15360ctaataatga aatggagagt tcaatcaatc ccttttccgc atcggataca gaaagaaatg 15420ctgcaataat agatcgcgcc aataaggagc aggagactga agcggtgaat aagatgataa 15480gcaccggggc caggttagct gcatcaggca gggcatctga tgttgctcac tcaatggtgg 15540gcgatgcggt taatcaagaa atcaaacagt ggttaaatcg attcggtacg gctcaagtta 15600atctgaattt tgacaaaaat ttttcgctaa aagaaagctc tcttgattgg ctggctcctt 15660ggtatgactc tgcttcattc ctctttttta gtcagttagg tattcgcaat aaagacagcc 15720gcaacacact taaccttggc gtcgggatac gtacattgga gaacggttgg ctgtacggac 15780ttaatacttt ttatgataat gatttgaccg gccacaacca ccgtatcggt cttggtgccg 15840aggcctggac cgattattta cagttggctg ccaatgggta ttttcgcctc aatggatggc 15900actcgtcgcg tgatttctcc gactataaag agcgcccagc cactgggggg gatttgcgcg 15960cgaatgctta tttacctgca ctcccacaac tgggggggaa gttgatgtat gagcaataca 16020ccggtgagcg tgttgcttta tttggtaaag ataatctgca acgcaaccct tatgccgtga 16080ctgccgggat caattacacc cccgtgcctc tactcactgt cggggtagat cagcgtatgg 16140ggaaaagcag taagcatgaa acacagtgga acctccaaat gaactatcgc ctgggcgaga 16200gttttcagtc gcaacttagc ccttcagcgg tggcaggaac acgtctactg gcggagagcc 16260gctataacct tgtcgatcgt aacaataata tcgtgttgga gtatcagaaa cagcaggtgg 16320ttaaactgac attatcgcca gcaactatct ccggcctgcc gggtcaggtt tatcaggtga 16380acgcacaagt acaaggggca tctgctgtaa gggaaattgt ctggagtgat gccgaactga 16440ttgccgctgg cggcacatta acaccactga gtaccacaca attcaacttg gttttaccgc 16500cttataaacg cacagcacaa gtgagtcggg taacggacga cctgacagcc aacttttatt 16560cgcttagtgc gctcgcggtt gatcaccaag gaaaccgatc taactcattc acattgagcg 16620tcaccgttca gcagcctcag ttgacattaa cggcggccgt cattggtgat ggcgcaccgg 16680ctaatgggaa aactgcaatc accgttgagt tcaccgttgc tgattttgag gggaaaccct 16740tagccgggca ggaggtggtg ataaccacca ataatggtgc gctaccgaat aaaatcacgg 16800aaaagacaga tgcaaatggc gtcgcgcgca ttgcattaac caatacgaca gatggcgtga 16860cggtagtcac agcagaagtg gaggggcaac ggcaaagtgt tgatacccac tttgttaagg 16920gtactatcgc ggcggataaa tccactctgg ctgcggtacc gacatctatc atcgctgatg 16980gtctaatggc ttcaaccatc acgttggagt tgaaggatac ctatggggac ccgcaggctg 17040gcgcgaatgt ggcttttgac acaaccttag gcaatatggg cgttatcacg gatcacaatg 17100acggcactta tagcgcacca ttgaccagta ccacgttggg ggtagcaaca gtaacggtga 17160aagtggatgg ggctgcgttc agtgtgccga gtgtgacggt taatttcacg gcagatccta 17220ttccagatgc tggccgctcc agtttcaccg tctccacacc ggatatcttg gctgatggca 17280cgatgagttc cacattatcc tttgtccctg tcgataagaa tggccatttt atcagtggga 17340tgcagggctt gagttttact caaaacggtg tgccggtgag tattagcccc attaccgagc 17400agccagatag ctataccgcg acggtggttg ggaatagtgt cggtgatgtc acaatcacgc 17460cgcaggttga taccctgata ctgagtacat tgcagaaaaa aatatcccta ttcccggtac 17520ctacgctgac cggtattctg gttaacgggc aaaatttcgc tacggataaa gggttcccga 17580aaacgatctt taaaaacgcc acattccagt tacagatgga taacgatgtt gctaataata 17640ctcagtatga gtggtcgtcg tcattcacac ccaatgtatc ggttaacgat cagggtcagg 17700tgacgattac ctaccaaacc tatagcgaag tggctgtgac ggcgaaaagt aaaaaattcc 17760caagttattc ggtgagttat cggttctacc caaatcggtg gatatacgat ggcggcagat 17820cgctggtatc cagtctcgag gccagcagac aatgccaagg ttcagatatg tctgcggttc 17880ttgaatcctc acgtgcaacc aacggaacgc gtgcgcctga cgggacattg tggggcgagt 17940gggggagctt gaccgcgtat agttctgatt ggcaatctgg tgaatattgg gtcaaaaaga 18000ccagcacgga ttttgaaacc atgaatatgg acacaggcgc actgcaacca gggcctgcat 18060acttggcgtt cccgctctgt gcgctgtcaa tataaccaga taacagatag caataagaac 18120agtttaatga gctgattatt tggggcgcga atgggagtcc ggcaatccta gactcgcccc 18180ataagtagca aacgtccaga gaacaacgcc gctcaggtta attgagcggc gttgtttttt 18240taaaaggatt tgtcgcgata agcgtgagct ggcgttaaat gccgatctta cggcccagct 18300gcagcccggc tagtaacggc cgccagtgtg ctggaattcg cccttaatcg gcatcattca 18360ccaagcttgc caggcgactg tcttcaatat tacagccgca actactgaca tggcgggtga 18420tggtgttcac tattccaggg cgatcggcac ccaacgcagt gatcaccaga taatgttgcg 18480atgacagtgt caaactggtt attccttcaa ggggtgagtt gttcttaagc atgccggttt 18540gctgtaaagt ttagggagat ttgatggctt actctgttca aaagtcgcgc ctggcaaagg 18600ttgcgggtgt ttcgcttgtt ttattactcg ctgcctgtag ttctgactca cgctataagc 18660gtcaggtcag tggtgatgaa gcctacctgg aagcgccatg gcatgcaagg gcgaattctg 18720cagatatcca tcacactggc ggccctagac caggctttac actttatgct tccggctcgt 18780ataatgtgtg gaaggatcca ggagtaacaa tacaaatgga ttcaagagat ccatttgtat 18840tgttactcct ttgtcgactg gacagttcaa gagactgtcc atcaatatca gctttgtcac 18900aaaccccgcc accggcgggg tttttttctg ctctag 189365638DNAArtificial SequenceLoop Sequence 563gagacagg 8

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed