Nucleotide Sequences And Corresponding Polypeptides Conferring Modulated Growth Rate And Biomass In Plants Grown In Saline And Oxidative Conditions

Zhou; Fasong ;   et al.

Patent Application Summary

U.S. patent application number 11/858117 was filed with the patent office on 2008-09-18 for nucleotide sequences and corresponding polypeptides conferring modulated growth rate and biomass in plants grown in saline and oxidative conditions. This patent application is currently assigned to CERES, INC.. Invention is credited to Kenneth A. Feldmann, Julissa Sosa, Fasong Zhou.

Application Number20080229442 11/858117
Document ID /
Family ID39796831
Filed Date2008-09-18

United States Patent Application 20080229442
Kind Code A1
Zhou; Fasong ;   et al. September 18, 2008

NUCLEOTIDE SEQUENCES AND CORRESPONDING POLYPEPTIDES CONFERRING MODULATED GROWTH RATE AND BIOMASS IN PLANTS GROWN IN SALINE AND OXIDATIVE CONDITIONS

Abstract

The present invention related to isolated nucleic acid molecules and their corresponding encoded polypeptides able confer the trait of improved plant size, vegetative growth, growth rate seedling vigor and/or biomass in plants challenged with saline and/or oxidative stress conditions. The present invention further relates to the use of these nucleic acid molecules and polypeptides in making transgenic plants, plant cells, plant materials or seeds of a plant having plant size, vegetative growth, growth rate, seedling vigor and/or biomass that are improved in saline and/or oxidative stress conditions with respect to wild-type plants grown under similar conditions.


Inventors: Zhou; Fasong; (Oxnard, CA) ; Feldmann; Kenneth A.; (Newbury Park, CA) ; Sosa; Julissa; (Northridge, CA)
Correspondence Address:
    BIRCH STEWART KOLASCH & BIRCH
    PO BOX 747
    FALLS CHURCH
    VA
    22040-0747
    US
Assignee: CERES, INC.
Thousand Oaks
CA

Family ID: 39796831
Appl. No.: 11/858117
Filed: September 19, 2007

Related U.S. Patent Documents

Application Number Filing Date Patent Number
PCT/US2007/006544 Mar 15, 2007
11858117

Current U.S. Class: 800/266 ; 435/419; 506/5; 536/23.1; 800/278; 800/298
Current CPC Class: C12N 15/8273 20130101; C12N 15/8271 20130101; C07K 14/415 20130101
Class at Publication: 800/266 ; 800/278; 435/419; 800/298; 536/23.1; 435/6
International Class: A01H 1/02 20060101 A01H001/02; A01H 1/06 20060101 A01H001/06; C12N 5/14 20060101 C12N005/14; A01H 5/00 20060101 A01H005/00; C07H 21/04 20060101 C07H021/04; C12Q 1/68 20060101 C12Q001/68

Claims



1. A method of producing a plant having increased tolerance to salinity or increased tolerance to oxidative stress, said method comprising growing a plant cell comprising an exogenous nucleic acid, said exogenous nucleic acid comprising a regulatory region operably linked to a nucleotide sequence encoding a polypeptide, and wherein the HMM bit score of the amino acid sequence encoded by said polypeptide is greater than about 30, said HMM based on the amino acid sequences depicted in one of FIGS. 1-6, and wherein said plant has a difference in the level of tolerance to salinity or oxidative stress as compared to the corresponding level in tolerance to salinity or oxidative stress of a control plant that does not comprise said nucleic acid.

2. The method according to claim 1, wherein the HMM bit score of the amino acid sequence encoded by said polypeptide is greater than about 400, said HMM based on the amino acid sequences depicted in FIG. 1.

3. The method according to claim 1, wherein the HMM bit score of the amino acid sequence encoded by said polypeptide is greater than about 30, said HMM based on the amino acid sequences depicted in FIG. 2.

4. The method according to claim 1, wherein the HMM bit score of the amino acid sequence encoded by said polypeptide is greater than about 120, said HMM based on the amino acid sequences depicted in FIG. 3.

5. The method according to claim 1, wherein the HMM bit score of the amino acid sequence encoded by said polypeptide is greater than about 150, said HMM based on the amino acid sequences depicted in FIG. 4.

6. The method according to claim 1, wherein the HMM bit score of the amino acid sequence encoded by said polypeptide is greater than about 425, said HMM based on the amino acid sequences depicted in FIG. 5.

7. The method according to claim 1, wherein the HMM bit score of the amino acid sequence encoded by said polypeptide is greater than about 550, said HMM based on the amino acid sequences depicted in FIG. 6.

8. A method of producing a plant having increased tolerance to salinity or increased tolerance to oxidative stress, said method comprising growing a plant cell comprising an exogenous nucleic acid, said exogenous nucleic acid comprising a regulatory region operably linked to a nucleotide sequence encoding a polypeptide having 85 percent or greater sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, 6, 8, 9, 11, 13, 14, 15, 17, 19, 20, 22, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 49, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 69, 71, 73, 74, 76, 78, 80, 81, 83, 84, 86, 88, 90, 91, 93, 94, 96, 98, 100, 101, 102, 104, 106, 107, 109, 110, 112, 114, 116, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 132, 134, 136, 138, 140, 141, 142, 143, 144, 145, 147, 149, 151, 153, 154, 156, 158, 160, 162, 163, 165, 166, 167, 168, and amino acid coordinates 1 to 135 of SEQ ID NO: 140, wherein said plant produced from said plant cell has a difference in the level of tolerance to salinity or oxidative stress as compared to the corresponding level in a control plant that does not comprise said nucleic acid.

9. A method of producing a plant, said method comprising growing a plant cell comprising an exogenous nucleic acid, said exogenous nucleic acid comprising a regulatory region operably linked to a nucleotide sequence having 85 percent or greater sequence identity to a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1, 3, 5, 7, 10, 12, 16, 18, 21, 26, 28, 32, 34, 40, 46, 48, 51, 53, 55, 57, 59, 61, 65, 67, 70, 72, 75, 77, 79, 82, 85, 87, 89, 92, 95, 97, 99, 103, 105, 108, 111, 113, 115, 117, 120, 124, 131, 133, 135, 137, 139, 146, 148, 150, 152, 155, 157, 159, 161, and 164, wherein a plant produced from said plant cell has a difference in the level of tolerance to salinity or oxidative stress as compared to the corresponding level in tolerance to salinity or oxidative stress of a control plant that does not comprise said nucleic acid.

10. A method of modulating the level of tolerance to salinity or oxidative stress in a plant, said method comprising introducing into a plant cell an exogenous nucleic acid, said exogenous nucleic acid comprising a regulatory region operably linked to a nucleotide sequence encoding a polypeptide, wherein the HMM bit score of the amino acid sequence of said polypeptide is greater than about 30, said HMM based on the amino acid sequences depicted in one of FIGS. 1-6, and wherein a plant produced from said plant cell has a difference in the level of tolerance to salinity or oxidative stress as compared to the corresponding level in tolerance to salinity or oxidative stress of a control plant that does not comprise said exogenous nucleic acid.

11. A method of modulating the level of tolerance to salinity or oxidative stress in a plant, said method comprising introducing into a plant cell an exogenous nucleic acid, said exogenous nucleic acid comprising a regulatory region operably linked to a nucleotide sequence encoding a polypeptide having 85 percent or greater sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, 6, 8, 9, 11, 13, 14, 15, 17, 19, 20, 22, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 49, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 69, 71, 73, 74, 76, 78, 80, 81, 83, 84, 86, 88, 90, 91, 93, 94, 96, 98, 100, 101, 102, 104, 106, 107, 109, 110, 112, 114, 116, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 132, 134, 136, 138, 140, 141, 142, 143, 144, 145, 147, 149, 151, 153, 154, 156, 158, 160, 162, 163, 165, 166, 167, 168, and amino acid coordinates 1 to 135 of SEQ ID NO: 140, wherein a plant produced from said plant cell has a difference in the level of tolerance to salinity or oxidative stress as compared to the corresponding level in tolerance to salinity or oxidative stress of a control plant that does not comprise said nucleic acid.

12. The method of any one of claims 1-8, 10 or 11, wherein said polypeptide is selected from the group consisting of SEQ ID NO: 43, 44, 45, 86, 140, 141, 142, 143, 144, and amino acid coordinates 1 to 135 of SEQ ID NO: 140, and said plant has a difference in the level of tolerance to salinity as compared to the corresponding level in tolerance to salinity of a control plant that does not comprise said nucleic acid.

13. The method of any one of claims 1-8, 10 or 11, wherein said polypeptide is selected from the group consisting of SEQ ID NO: 136, and 141, and said plant has a difference in the level of tolerance to oxidative stress as compared to the corresponding level in tolerance to oxidative stress of a control plant that does not comprise said nucleic acid.

14. A method of modulating the level of tolerance to salinity or oxidative stress in a plant, said method comprising introducing into a plant cell an exogenous nucleic acid, said exogenous nucleic acid comprising a regulatory region operably linked to a nucleotide sequence having 85 percent or greater sequence identity to a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1, 3, 5, 7, 10, 12, 16, 18, 21, 26, 28, 32, 34, 40, 46, 48, 51, 53, 55, 57, 59, 61, 65, 67, 70, 72, 75, 77, 79, 82, 85, 87, 89, 92, 95, 97, 99, 103, 105, 108, 111, 113, 115, 117, 120, 124, 131, 133, 135, 137, 139, 146, 148, 150, 152, 155, 157, 159, 161, and 164, wherein a plant produced from said plant cell has a difference in the level of tolerance to salinity or oxidative stress as compared to the corresponding level in tolerance to salinity or oxidative stress of a control plant that does not comprise said nucleic acid.

15. A plant cell comprising an exogenous nucleic acid said exogenous nucleic acid comprising a regulatory region operably linked to a nucleotide sequence encoding a polypeptide, wherein the HMM bit score of the amino acid sequence of said polypeptide is greater than about 30, said HMM based on the amino acid sequences depicted in one of FIGS. 1-6, and wherein said plant cell has a difference in the level of tolerance to salinity or oxidative stress as compared to the corresponding level in tolerance to salinity or oxidative stress of a control plant that does not comprise said nucleic acid.

16. A plant cell comprising an exogenous nucleic acid said exogenous nucleic acid comprising a regulatory region operably linked to a nucleotide sequence encoding a polypeptide having 85 percent or greater sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, 6, 8, 9, 11, 13, 14, 15, 17, 19, 20, 22, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 49, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 69, 71, 73, 74, 76, 78, 80, 81, 83, 84, 86, 88, 90, 91, 93, 94, 96, 98, 100, 101, 102, 104, 106, 107, 109, 110, 112, 114, 116, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 132, 134, 136, 138, 140, 141, 142, 143, 144, 145, 147, 149, 151, 153, 154, 156, 158, 160, 162, 163, 165, 166, 167, 168, and amino acid coordinates 1 to 135 of SEQ ID NO: 140, wherein a plant produced from said plant cell has a difference in the level of tolerance to salinity or oxidative stress as compared to the corresponding level in tolerance to salinity or oxidative stress of a control plant that does not comprise said nucleic acid.

17. A plant cell comprising an exogenous nucleic acid said exogenous nucleic acid comprising a regulatory region operably linked to a nucleotide sequence having 85 percent or greater sequence identity to a nucleotide sequence selected from the group consisting of SEQ ID NO: 1, 3, 5, 7, 10, 12, 16, 18, 21, 26, 28, 32, 34, 40, 46, 48, 51, 53, 55, 57, 59, 61, 65, 67, 70, 72, 75, 77, 79, 82, 85, 87, 89, 92, 95, 97, 99, 103, 105, 108, 111, 113, 115, 117, 120, 124, 131, 133, 135, 137, 139, 146, 148, 150, 152, 155, 157, 159, 161, and 164, wherein a plant produced from said plant cell has a difference in the level of tolerance to salinity or oxidative stress as compared to the corresponding level in tolerance to salinity or oxidative stress of a control plant that does not comprise said nucleic acid.

18. A transgenic plant comprising the plant cell of any one of claims 15-17.

19. The transgenic plant of claim 18, wherein said plant is a member of a species selected from the group consisting of Panicum virgatum (switchgrass), Sorghum bicolor (sorghum, sudangrass), Miscanthus giganteus (miscanthus), Saccharum sp. (energycane), Populus balsamifera (poplar), Zea mays (corn), Glycine max (soybean), Brassica napus (canola), Triticum aestivum (wheat), Gossypium hirsutum (cotton), Oryza sativa (rice), Helianthus annuus (sunflower), Medicago sativa (alfalfa), Beta vulgaris (sugarbeet), or Pennisetum glaucum (pearl millet).

20. A product comprising seed or vegetative tissue from a transgenic plant according to claim 15-17.

21. The product of claim 20, wherein said product is a food or feed product.

22. An isolated nucleic acid comprising a nucleotide sequence encoding a polypeptide having 80% or greater sequence identity to the amino acid sequence set forth in SEQ ID NOs: 2, 4, 6, 22, 27, 29, 49, 52, 54, 56, 60, 62, 68, 76, 83, 88, 90, 96, 98, 104, 106, 112, 114, 132, 134, 149, 151, or 160.

23. A method of identifying whether a polymorphism is associated with variation in a trait, said method comprising: a) determining whether one or more genetic polymorphisms in a population of plants is associated with the locus for a polypeptide selected from the group consisting of the polypeptides depicted in FIGS. 1-6 and functional homologs thereof; and b) measuring the correlation between variation in said trait in plants of said population and the presence of said one or more polymorphisms in plants of said population, thereby identifying whether or not said one or more polymorphisms are associated with variation in said trait.

24. The method of claim 23, wherein said trait is an increased tolerance to salinity, an increased tolerance to oxidative stress, or increased biomass.

25. A method of making a plant line, said method comprising: a) determining whether one or more genetic polymorphisms in a population of plants is associated with the locus for a polypeptide selected from the group consisting of the polypeptides depicted in FIGS. 1-6 and functional homologs thereof; b) identifying one or more plants in said population in which the presence of at least one allele at said one or more polymorphisms is associated with variation in salt tolerance or oxidative stress tolerance; c) crossing each said one or more identified plants with itself or a different plant to produce seed; d) crossing at least one progeny plant grown from said seed with itself or a different plant; and e) repeating steps c) and d) for an additional 0-5 generations to make said plant line, wherein said at least one allele is present in said plant line.

26. The method of claim 24 or 25, wherein said population is a population of switchgrass plants.

27. The method of any one of claims 1, 8, 10 or 11 with the proviso that said nucleotide sequence encoding a polypeptide does not encode a polypeptide specifically described in the Sequence Listing of PCT/US2007/06544.

28. The method of any one of claims 1, 8, 10 or 11 with the proviso that said nucleotide sequence encoding a polypeptide does not encode one of the following polypeptide sequences of PCT/US2007/06544: SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:180, SEQ ID NO:252, SEQ ID NO:298, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:306 and SEQ ID NO:312.

29. The method of claim 9 or 14 with the proviso that said nucleotide sequence is not specifically described in the Sequence Listing of PCT/US2007/06544.

30. The method of claims 9 or 14 with the proviso that said nucleotide sequence is not one of the following nucleotide sequences of PCT/US2007/06544: SEQ ID NO:98, SEQ ID NO:101, SEQ ID NO:225 and SEQ ID NO:299.

31. The plant cell of claim 15 or 16 with the proviso that said nucleotide sequence encoding a polypeptide does not encode a polypeptide specifically described in the Sequence Listing of PCT/US2007/06544.

32. The plant cell of claim 15 or 16 with the proviso that said nucleotide sequence encoding a polypeptide does not encode one of the following polypeptide sequences of PCT/US2007/06544: SEQ ID NO:99, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:180, SEQ ID NO:252, SEQ ID NO:298, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:306 and SEQ ID NO:312.

33. The plant cell of claim 17 with the proviso that said nucleotide sequence is not specifically described in the Sequence Listing of PCT/US2007/06544.

34. The plant cell of claim 17 with the proviso that said nucleotide sequence is not one of the following nucleotide sequences of PCT/US2007/06544: SEQ ID NO:98, SEQ ID NO: 101, SEQ ID NO:225 and SEQ ID NO:299.

35. The nucleic acid of claim 22 with the proviso that said nucleotide sequence not specifically described in the Sequence Listing of PCT/US2007/06544.

36. The nucleic acid of claim 22 with the proviso that said nucleotide sequence is not one of the following nucleotide sequences of PCT/US2007/06544: SEQ ID NO:98, SEQ ID NO: 101, SEQ ID NO:225 and SEQ ID NO:299.

37. The method of claim 23 or 25 with the proviso that said polypeptide is not specifically described in the Sequence Listing of PCT/US2007/06544.

38. The method of claim 23 or 25 with the proviso that said polypeptide is not one of the following polypeptide sequences of PCT/US2007/06544: SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:180, SEQ ID NO:252, SEQ ID NO:298, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:306 and SEQ ID NO:312.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a Continuation in Part of co-pending PCT application serial number PCT/US2007/06544, filed on Mar. 14, 2007, and claims priority under 35 U.S.C .sctn.120 of PCT application serial number PCT/US2007/06544, which claims priority under 35 U.S.C. .sctn.119 of U.S. provisional application No. 60/782,735, filed on Mar. 14, 2006, the contents of both of which are hereby incorporated by reference in their entirety.

TECHNICAL FIELD

[0002] The present invention relates to isolated nucleic acid molecules and their corresponding encoded polypeptides able to enhance plant growth under saline and/or oxidative stress conditions. The present invention further relates to using the nucleic acid molecules and polypeptides to make transgenic plants, plant cells, plant materials or seeds of a plant having improved growth rate, vegetative growth, seedling vigor and/or biomass under saline and/or oxidative stress conditions as compared to wild-type plants grown under similar conditions.

BACKGROUND

[0003] Plants specifically improved for agriculture, horticulture, biomass conversion, and other industries (e.g. paper industry, plants as production factories for proteins or other compounds) can be obtained using molecular technologies. As an example, great agronomic value can result from enhancing plant growth in saline and/or oxidative stress conditions.

Salinity

[0004] A wide variety agriculturally important plant species demonstrate significant sensitivity to saline and/or oxidative stress conditions. Upon salt concentration exceeding a relatively low threshold, many plants suffer from stunted growth, necrosis, and death that results in an overall stunted appearance and reduced yields of plant material, seeds, fruit and other valuable products. Physiologically, plants challenged with salinity experience disruption in ion and water homeostasis, inhibition of metabolism, and damage to cellular membranes that result in developmental arrest and cell death (Huh et al. (2002) Plant J, 29(5):649-59).

[0005] In many of the world's most productive agricultural regions, agricultural activities themselves lead to increased water and soil salinity, which threatens their sustained productivity. One example is crop irrigation in arid regions that have abundant sunlight. After irrigation water is applied to cropland, it is removed by the processes of evaporation and transpiration. While these processes remove water from the soil, they leave behind dissolved salts carried in irrigation water. Consequently, soil and groundwater salt concentrations build over time, rendering the land and shallow groundwater saline and thus damaging to crops.

[0006] In addition to human activities, natural geological processes have created vast tracts of saline land that would be highly productive if not saline. In total, approximately 20% of the irrigated lands are negatively affected by salinity. (Yamaguchi and Blumwald, 2005, Trends in Plant Science, 10: 615-620). For these and other reasons, it is of great interest and importance to identify genes that confer improved salt tolerance characteristics to thereby enable one to create transgenic plants (such as crop plants) with enhanced growth and/or productivity characteristics in saline conditions.

[0007] Despite this progress, today there continues to be a great need for generally applicable processes that improve forest or agricultural plant growth to suit particular needs depending on specific environmental conditions. To this end, the present invention is directed to advantageously manipulating plant tolerance to salinity in order to maximize the benefits of various crops depending on the benefit sought, and is characterized by expression of recombinant DNA molecules in plants. These molecules may be from the plant itself, and simply expressed at a higher or lower level, or the molecules may be from different plant species.

Oxidative Stress

[0008] Plants lead a sessile lifestyle and so are generally destined to reside where their seed germinates. Consequently, they can be exposed to unfavorable environmental conditions arising from weather, pollution and location. Stress conditions, such as extremes in temperature, drought and desiccation, salinity, soil nutrient content, heavy metals, UV radiation, pollutants such as ozone and SO.sub.2, mechanical stress, high light and pathogen attack, have a large impact on plant growth and development. These types of stress exposure induce formation of toxic oxygen species, which are generated in all aerobic cells and are associated with oxidative damage at the cellular level. Several recently published reports have characterized toxic oxygen species generation and the subsequent oxidative damage caused by abiotic stresses (see Larkindale and Knight (2002); Borsani et al. (2001); Lee et al (2004); Aroca et al (2005); Luna et al (2005); and Noctor et al (2002)).

[0009] The toxic oxygen species are referred to as reactive oxygen species (ROS), reactive oxygen intermediates (ROI) or activated oxygen species (AOS) and are partially reduced or activated derivatives of oxygen. ROS/ROI/AOS include the oxygen-centered superoxide (O.sub.2) and hydroxyl (.OH) free radicals as well as hydrogen peroxide (H.sub.2O.sub.2), nitric oxide (NO) and O.sub.2.sup.1. These oxygen species are generated as byproducts from reactions that occur during photosynthesis, respiration and photorespiration, and are predominantly formed in the chloroplasts, mitochondria, endoplasmic reticulum, microbodies (e.g. peroxisomes and glyoxysomes), plasma membranes and cell walls. While the toxicity of O.sub.2.sup.- and H.sub.2O.sub.2 themselves is relatively low, their metal-dependent conversion to highly toxic .OH is thought to be responsible for the majority of the biological damage associated with these molecules.

[0010] Oxidative stress damages cell structure and affects cell metabolism and catabolism. Membrane lipids are subject to oxidation by ROS/ROI/AOS, resulting in accumulation of high molecular weight, cross-linked fatty acids and phospholipids. Oxidative attack on proteins results in site-specific amino acid modifications, fragmentation of the peptide chain, aggregation of cross-linked reaction products, altered electrical charge and increased susceptibility to proteolysis, all of which frequently leads to elimination of enzyme activity. ROS/ROI/AOS that generate oxygen free radicals, such as ionizing radiation, also induce numerous lesions in DNA at both the sugar and base moieties which cause deletions, mutation and other lethal genetic effects such as base degradation, single strand breakage and cross-linking to proteins. Morphologically, the adverse effects of high levels of ROS accumulation are manifested as stunted growth and necrotic lesions.

[0011] Although capable of producing damage, ROS/ROI/AOS are also key regulators of metabolic and defense pathways, playing roles as signaling or secondary messenger molecules. For example, pathogen-induced ROS/ROI/AOS production is critical in disease resistance where these molecules are involved at three different levels: penetration resistance, hypersensitive response (HR) and systemic acquired resistance (Levine et al. (1994); Lamb and Dixon (1997); Zhou et al. (2000); Aviv et al. (2002)). In penetration resistance, ROS/ROI/AOS function by reinforcing cell walls through polyphenolic cross-linking. With respect to hypersensitive response, H.sub.2O.sub.2 is an active signaling molecule whose effect is dose dependent. At high dosages, H.sub.2O.sub.2 triggers hypersensitive cell death and thus restricts the pathogen to local infection sites (Lamb and Dixon (1997)) while low dosages block cell cycle progression (Reichheld et al. (1999)) and signal secondary wall differentiation (Potikha et al. (1999)). Lastly, ROS/ROI/AOS molecules play a role in broad-spectrum systemic acquired disease resistance by triggering micro-HR systematically after the first pathogen inoculation.

[0012] In the signal cascades leading to oxidative stress, salicylic acid (SA) has been identified as an important signaling molecule to mediate ROS/ROI/AOS accumulation in various stress conditions, such as salt and osmotic stress (Borsani et al. (2001)), drought (Senaratna et al. (2000)), heat (Dat et al. (1998)), cold (Scott et al. (2004)), UV-light (Surplus et al. (1998)), paraquat (Kim et al. (2003)) and disease resistance against different pathogens (Zhou et al. (2004)). High levels of SA induce H.sub.2O.sub.2 production as well as cell death.

[0013] Several signaling components required for SA-mediated ROS/ROI/AOS accumulation and gene expression have been characterized. For example, NPR1 is required for SA-induced PR gene expression and disease resistance (Cao et al. (1994)). The mutations in eds1 and eds5 block SA-mediated signaling and enhance disease susceptibility (Rusterucci et al. (2001)). Over-expression of NahG in various plant species also suppresses SA-induced responses to both abiotic and biotic stresses (Delaney et al. (1994)). Recently, Scott and colleagues (2004) reported that chilling treatment induced accumulation of SA in Arabidopsis and the degradation of SA by overexpression of NahG enhanced cold tolerance in a transgenic plant.

[0014] SA, as a phytohormone, also promotes early flowering (Martinez et al. (2004)). SA at various levels may play different roles in plant growth and stress responses. However, most of the time, the increased tolerance to high levels of SA appears to be beneficial, since it reduces the side effects of SA accumulation while stimulating SA-mediated stress responses.

[0015] Similarly, NO is capable of generating ROS/ROI/AOS and is a plant signaling molecule involved in the regulation of seed germination, stomatal closure (Mata and Lamattina (2001); Desikan et al (2002)), flowering time (He et al. (2004)), antioxidant reactions to suppress cell death (Beligni et al. (2002)) and tolerance to biotic and abiotic stress conditions (Mata and Lamattina (2001)). While the effects of NO can be mimicked through the application of sodium nitroprusside (SNP), endogenous NO production in plants results from the activity of a nitric oxide synthase that uses L-arginine (Guo et al. (2003)) as well as nitrate reductase-mediated reactions (Desikan et al (2002)). NO can react with redox centers in proteins and membranes, thereby causing cell damage and inducing cell death.

[0016] In order to control the two-fold nature of ROS/ROI/AOS molecules, plants have developed a sophisticated regulatory system which involves both production and scavenging of ROS/ROI/AOS in cells. During normal growth and development, this pathway monitors the level of ROS/ROI/AOS produced by metabolism and controls the expression and activity of ROS/ROI/AOS scavenging pathways. The major ROS/ROI/AOS scavenging mechanisms include the action of the superoxide dismutase (SOD), ascorbate perioxidase (APX) and catalase (CAT) enzymes as well as nonenzymatic components such as ascorbic acid, .alpha.-tocopherol and glutathione.

[0017] The antioxidant enzymes are believed to be critical components in preventing oxidative stress, in part because pretreatment of plants with one form of stress, and which induces expression of these enzymes, can increase tolerance for a different stress (cross-tolerance) Allen (1995)). In addition, plant lines selected for resistance to herbicides that function by inducing ROS/ROI/AOS generally have increased levels of one or more of these antioxidant enzymes and also exhibit cross-tolerance (Gressel and Galun (1994)).

[0018] Plant development and yield depend on the ability of the plant to manage oxidative stress, whether it is via the signaling or the scavenging pathways. Consequently, improvements in a plant's ability to withstand oxidative stress, or to obtain a higher degree of cross-tolerance once oxidative stress has been experienced, has significant value in agriculture. The sequences and methods of the invention provide the means by which tolerance to oxidative stress can be improved, either via the signaling or the scavenging pathways.

[0019] The availability and sustainability of a stream of food and feed for people and domesticated animals has been a high priority throughout the history of human civilization and lies at the origin of agriculture. Specialists and researchers in the fields of agronomy science, agriculture, crop science, horticulture, and forest science are even today constantly striving to find and produce plants with an increased growth potential to feed an increasing world population and to guarantee a supply of reproducible raw materials. The robust level of research in these fields of science indicates the level of importance leaders in every geographic environment and climate around the world place on providing sustainable sources of food, feed and energy.

[0020] Manipulation of crop performance has been accomplished conventionally for centuries through selection and plant breeding. The breeding process is, however, both time-consuming and labor-intensive. Furthermore, appropriate breeding programs must be specially designed for each relevant plant species.

[0021] On the other hand, great progress has been made in using molecular genetic approaches to manipulate plants to provide better crops. Through the introduction and expression of recombinant nucleic acid molecules in plants, researchers are now poised to provide the community with plant species tailored to grow more efficiently and yield more product despite suboptimal geographic and/or climatic environments. These new approaches have the additional advantage of not being limited to one plant species, but instead being applicable to multiple different plant species (Zhang et al. (2004) Plant Physiol. 135:615; Zhang et al. (2001) Proc. Natl. Acad. Sci. USA 98:12832).

SUMMARY

[0022] This document provides methods and materials related to plants having modulated levels of tolerance to salinity and/or oxidative stress. For example, this document provides transgenic plants and plant cells having increased levels of tolerance to salinity and/or oxidative stress, nucleic acids used to generate transgenic plants and plant cells having increased levels of tolerance to salinity and/or oxidative stress, and methods for making plants and plant cells having increased levels of tolerance to salinity and/or oxidative stress. Such plants and plant cells provide the opportunity to produce crops or plants under saline and/or oxidative stress conditions without stunted growth and diminished yields. Increased levels of tolerance to salinity and/or oxidative stress may be useful to produce biomass which may be converted to a liquid fuel or other chemicals and/or to produce food and feed on land that is currently marginally productive, resulting in an overall expansion of arable land.

[0023] Methods of producing a plant and/or plant tissue are provided herein. In one aspect, a method comprises growing a plant cell comprising an exogenous nucleic acid. The exogenous nucleic acid comprises a regulatory region operably linked to a nucleotide sequence encoding a polypeptide. The Hidden Markov Model (HMM) bit score of the amino acid sequence of the polypeptide is greater than about 30 using an HMM generated from the amino acid sequences depicted in one of FIGS. 1-6. The plant and/or plant tissue has a difference in the level of tolerance to salinity and/or oxidative stress as compared to the corresponding level in tolerance to salinity and/or oxidative stress of a control plant that does not comprise the exogenous nucleic acid. In some embodiments the amino acid sequence of the polypeptide has an HMM bit score greater than about 400 using an HMM generated from the amino acid sequences depicted in FIG. 1. In some embodiments the amino acid sequence of the polypeptide has an HMM bit score greater than about 30 using an HMM generated from the amino acid sequences depicted in FIG. 2. In some embodiments the amino acid sequence of the polypeptide has an HMM bit score greater than about 120 using an HMM generated from the amino acid sequences depicted in FIG. 3. In some embodiments the amino acid sequence of the polypeptide has an HMM bit score greater than about 150 using an HMM generated from the amino acid sequences depicted in FIG. 4. In some embodiments the amino acid sequence of the polypeptide has an HMM bit score greater than about 425 using an HMM generated from the amino acid sequences depicted in FIG. 5. In some embodiments the amino acid sequence of the polypeptide has an HMM bit score greater than about 550 using an HMM generated from the amino acid sequences depicted in FIG. 6.

[0024] In another aspect, a method comprises growing a plant cell comprising an exogenous nucleic acid. The exogenous nucleic acid comprises a regulatory region operably linked to a nucleotide sequence encoding a polypeptide having 85 percent or greater sequence identity to an amino acid sequence set forth in SEQ ID NOs: 2, 4, 6, 8, 9, 11, 13, 14, 15, 17, 19, 20, 22, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 49, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 69, 71, 73, 74, 76, 78, 80, 81, 83, 84, 86, 88, 90, 91, 93, 94, 96, 98, 100, 101, 102, 104, 106, 107, 109, 110, 112, 114, 116, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 132, 134, 136, 138, 140, 141, 142, 143, 144, 145, 147, 149, 151, 153, 154, 156, 158, 160, 162, 163, 165, 166, 167, 168, and amino acid coordinates 1 to 135 of SEQ ID NO: 140. A plant produced from the plant cell has a difference in the level of tolerance to salinity and/or oxidative stress as compared to the corresponding level in a control plant that does not comprise the exogenous nucleic acid.

[0025] In another aspect, a method comprises growing a plant cell comprising an exogenous nucleic acid. The exogenous nucleic acid comprises a regulatory region operably linked to a nucleotide sequence having 85 percent or greater sequence identity to at least a fragment of a nucleotide sequence set forth in SEQ ID NOs. 1, 3, 5, 7, 10, 12, 16, 18, 21, 26, 28, 32, 34, 40, 46, 48, 51, 53, 55, 57, 59, 61, 65, 67, 70, 72, 75, 77, 79, 82, 85, 87, 89, 92, 95, 97, 99, 103, 105, 108, 111, 113, 115, 117, 120, 124, 131, 133, 135, 137, 139, 146, 148, 150, 152, 155, 157, 159, 161, and 164 and to a nucleotide sequence encoding any of the amino acid sequences set forth in the sequence listing. A plant and/or plant tissue produced from the plant cell has a difference in the level of salinity and/or oxidative stress tolerance as compared to the corresponding level in a control plant that does not comprise the exogenous nucleic acid.

[0026] Methods of modulating the level of salt tolerance and/or oxidative stress tolerance in a plant are provided herein. In one aspect, a method comprises introducing into a plant cell an exogenous nucleic acid, that comprises a regulatory region operably linked to a nucleotide sequence encoding a polypeptide. The HMM bit score of the amino acid sequence of the polypeptide is greater than 30, using an HMM generated from the amino acid sequences depicted in one of FIGS. 1-6. A plant and/or plant tissue produced from the plant cell has a difference in the level of tolerance to salinity and/or oxidative stress as compared to the corresponding level in a control plant that does not comprise the exogenous nucleic acid.

[0027] In another aspect, a method comprises introducing into a plant cell an exogenous nucleic acid that comprises a regulatory region operably linked to a nucleotide sequence encoding a polypeptide having 85% percent or greater sequence identity to an amino acid sequence set forth in SEQ ID NOs: 2, 4, 6, 8, 9, 11, 13, 14, 15, 17, 19, 20, 22, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 49, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 69, 71, 73, 74, 76, 78, 80, 81, 83, 84, 86, 88, 90, 91, 93, 94, 96, 98, 100, 101, 102, 104, 106, 107, 109, 110, 112, 114, 116, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 132, 134, 136, 138, 140, 141, 142, 143, 144, 145, 147, 149, 151, 153, 154, 156, 158, 160, 162, 163, 165, 166, 167, 168, and amino acid coordinates 1 to 135 of SEQ ID NO: 140. A plant and/or plant tissue produced from the plant cell has a difference in the level of tolerance to salinity or oxidative stress as compared to the corresponding level in a control plant that does not comprise the exogenous nucleic acid.

[0028] In some embodiments, the methods comprise introducing into the plant cell an exogenous nucleic acid encoding polypeptides selected from the group consisting of SEQ ID NOs: 43, 44, 45, 86, 140, 141, 142, 143, 144, and amino acid coordinates 1 to 135 of SEQ ID NO: 140. A plant and/or plant tissue produced from the plant cell has a difference in the level of tolerance to salinity as compared to the corresponding level in a control plant that does not comprise the exogenous nucleic acid. In some embodiments, the methods comprise introducing into the plant cell an exogenous nucleic acid encoding polypeptides selected from the group consisting of SEQ ID NO: 136, and 141, and a plant and/or plant tissue produced from the plant cell has a difference in the level of tolerance to oxidative stress as compared to the corresponding level in a control plant that does not comprise the exogenous nucleic acid.

[0029] In another aspect, a method comprises introducing into a plant cell an exogenous nucleic acid, that comprises a regulatory region operably linked to a nucleotide sequence having 85 percent or greater sequence identity to a nucleotide sequence set forth in SEQ ID NOs: 1, 3, 5, 7, 10, 12, 16, 18, 21, 26, 28, 32, 34, 40, 46, 48, 51, 53, 55, 57, 59, 61, 65, 67, 70, 72, 75, 77, 79, 82, 85, 87, 89, 92, 95, 97, 99, 103, 105, 108, 111, 113, 115, 117, 120, 124, 131, 133, 135, 137, 139, 146, 148, 150, 152, 155, 157, 159, 161, and 164 and to a nucleotide sequence encoding any of the amino acid sequences set forth in the sequence listing. A plant and/or plant tissue produced from the plant cell has a difference in the level of tolerance to salinity or oxidative stress as compared to the corresponding level in a control plant that does not comprise the exogenous nucleic acid.

[0030] Plant cells comprising an exogenous nucleic acid are provided herein. In one aspect, the exogenous nucleic acid comprises a regulatory region operably linked to a nucleotide sequence encoding a polypeptide. The HMM bit score of the amino acid sequence of the polypeptide is greater than 30, using an HMM based on the amino acid sequences depicted in one of FIGS. 1-6. The plant and/or plant tissue has a difference in the level of tolerance to salinity or oxidative stress as compared to the corresponding level in a control plant that does not comprise the exogenous nucleic acid. In another aspect, the exogenous nucleic acid comprises a regulatory region operably linked to a nucleotide sequence encoding a polypeptide having 85 percent or greater sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, 6, 8, 9, 11, 13, 14, 15, 17, 19, 20, 22, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 49, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 69, 71, 73, 74, 76, 78, 80, 81, 83, 84, 86, 88, 90, 91, 93, 94, 96, 98, 100, 101, 102, 104, 106, 107, 109, 110, 112, 114, 116, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 132, 134, 136, 138, 140, 141, 142, 143, 144, 145, 147, 149, 151, 153, 154, 156, 158, 160, 162, 163, 165, 166, 167, 168, and amino acid coordinates 1 to 135 of SEQ ID NO: 140 A plant and/or plant tissue produced from the plant cell has a difference in the level of tolerance to salinity or oxidative stress as compared to the corresponding level in a control plant that does not comprise the exogenous nucleic acid. In another aspect, the exogenous nucleic acid comprises a regulatory region operably linked to a nucleotide sequence having 85 percent or greater sequence identity to at least a fragment of a nucleotide sequence selected from the group consisting of SEQ ID Nos. 1, 3, 5, 7, 10, 12, 16, 18, 21, 26, 28, 32, 34, 40, 46, 48, 51, 53, 55, 57, 59, 61, 65, 67, 70, 72, 75, 77, 79, 82, 85, 87, 89, 92, 95, 97, 99, 103, 105, 108, 111, 113, 115, 117, 120, 124, 131, 133, 135, 137, 139, 146, 148, 150, 152, 155, 157, 159, 161, and 164, and to a nucleotide sequence encoding any of the amino acid sequences set forth in the sequence listing. A plant and/or plant tissue produced from the plant cell has a difference in the level of tolerance to salinity or oxidative stress as compared to the corresponding level in a control plant that does not comprise the exogenous nucleic acid. A transgenic plant comprising such a plant cell is also provided. In some embodiments, the transgenic plant is a member of a species selected from the group consisting of Panicum virgatum (switchgrass), Sorghum bicolor (sorghum, sudangrass), Miscanthus giganteus (miscanthus), Saccharum sp. (energycane), Populus balsamifera (poplar), Zea mays (corn), Glycine max (soybean), Brassica napus (canola), Triticum aestivum (wheat), Gossypium hirsutum (cotton), Oryza sativa (rice), Helianthus annuus (sunflower), Medicago sativa (alfalfa), Beta vulgaris (sugarbeet), or Pennisetum glaucum (pearl millet). Some embodiments are related to products comprising seed or vegetative tissue from transgenic plants as described above. Some embodiments relate to food or feed products from transgenic plants as described above.

[0031] In another aspect, an isolated nucleic acid comprises a nucleotide sequence encoding a polypeptide having 80% or greater sequence identity to the amino acid sequence set forth in SEQ ID Nos. 2, 4, 6, 22, 27, 29, 49, 52, 54, 56, 60, 62, 68, 76, 83, 88, 90, 96, 98, 104, 106, 112, 114, 132, 134, 149, 151, or 160.

[0032] In another aspect, methods of identifying a genetic polymorphism associated with variation in the level of salinity and/or oxidative stress tolerance are provided. The methods include providing a population of plants, and determining whether one or more genetic polymorphisms in the population are genetically linked to the locus for a polypeptide selected from the group consisting of the polypeptides depicted in FIGS. 1-6 and functional homologs thereof. The correlation between variation in the level of salinity tolerance and/or oxidative stress tolerance in plants and/or plant tissues of the population and the presence of the one or more polymorphisms in plants of the population is measured, thereby permitting identification of whether or not the one or more polymorphisms are associated with such variation.

[0033] In another aspect, methods of making a plant line is provided. The methods include determining whether one or more genetic polymorphisms in a population of plants is associated with the locus for a polypeptide selected from the group consisting of the polypeptides depicted in FIGS. 1-6 and functional homologs thereof, identifying one or more plants in the population in which the presence of at least one allele at the one or more polymorphisms is associated with variation in salt tolerance or oxidative stress tolerance, crossing each of the one or more identified plants with itself or a different plant to produce seed, crossing at least one progeny plant grown from said seed with itself or a different plant, and repeating the crossing steps for an additional 0-5 generations to make the plant line. The at least one allele will be present in the plant line. The method of making a plant line may be applied, for example, to a population of switchgrass plants.

[0034] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or equivalent to those described herein can be used to practice the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

[0035] The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF THE FIGURES

[0036] FIG. 1 is an alignment of amino acid sequences of homologues of (ME08768; SEQ ID NO: 86). In all the alignment Figures shown herein, a dash in an aligned sequence represents a gap, i.e., a lack of an amino acid at that position. Identical amino acids or conserved amino acid substitutions among aligned sequences are identified by boxes. FIG. 1 and the other alignment Figures provided herein were generated using the program MUSCLE version 3.52

[0037] FIG. 2 is an alignment of amino acid sequences of homologues of ME06748 (SEQ ID NO: 41).

[0038] FIG. 3 is an alignment of amino acid sequences of homologues of ME19173 (SEQ ID NO: 109).

[0039] FIG. 4 is an alignment of amino acid sequences of homologues of ME02064C (SEQ ID NO: 140).

[0040] FIG. 5 is an alignment of amino acid sequences of homologues of Ceres Clone ID No. 1792354 (SEQ ID NO:2).

[0041] FIG. 6 is an alignment of amino acid sequences of homologues of Ceres Clone ID No. 56784328 (SEQ ID NO: 35).

DETAILED DESCRIPTION

[0042] The invention features methods and materials related to modulating salinity tolerance and/or oxidative stress tolerance levels in plants and/or plant tissues. In some embodiments, the plants may also have increased biomass and/or yield. The methods can include transforming a plant cell with a nucleic acid encoding a salinity and/or oxidative stress tolerance-modulating polypeptide, wherein expression of the polypeptide results in a modulated level of salinity tolerance and/or oxidative stress tolerance. Plant cells produced using such methods can be grown to produce plants having an increased salinity tolerance, oxidative stress tolerance, and/or biomass, in comparison to wild type plants grown under the same conditions. Such plants, and the seeds of such plants, may be used to produce, for example, yield and/or biomass utilized for biofuel production, such as, but not limited to, ethanol and butanol.

I. Definitions

[0043] "Amino acid" refers to one of the twenty biologically occurring amino acids and to synthetic amino acids, including D/L optical isomers.

[0044] "Cell type-preferential promoter" or "tissue-preferential promoter" refers to a promoter that drives expression preferentially in a target cell type or tissue, respectively, but may also lead to some transcription in other cell types or tissues as well.

[0045] "Control plant" refers to a plant that does not contain the exogenous nucleic acid present in a transgenic plant of interest, but otherwise has the same or similar genetic background as such a transgenic plant. A suitable control plant can be a non-transgenic wild type plant, a non-transgenic segregant from a transformation experiment, or a transgenic plant that contains an exogenous nucleic acid other than the exogenous nucleic acid of interest.

[0046] "Domains" are groups of substantially contiguous amino acids in a polypeptide that can be used to characterize protein families and/or parts of proteins. Such domains have a "fingerprint" or "signature" that can comprise conserved primary sequence, secondary structure, and/or three-dimensional conformation. Generally, domains are correlated with specific in vitro and/or in vivo activities. A domain can have a length of from 10 amino acids to 400 amino acids, e.g., 10 to 50 amino acids, or 25 to 100 amino acids, or 35 to 65 amino acids, or 35 to 55 amino acids, or 45 to 60 amino acids, or 200 to 300 amino acids, or 300 to 400 amino acids.

[0047] "Down-regulation" refers to regulation that decreases production of expression products (mRNA, polypeptide, or both) relative to basal or native states.

[0048] "Exogenous" with respect to a nucleic acid indicates that the nucleic acid is part of a recombinant nucleic acid construct, or is not in its natural environment. For example, an exogenous nucleic acid can be a sequence from one species introduced into another species, i.e., a heterologous nucleic acid. Typically, such an exogenous nucleic acid is introduced into the other species via a recombinant nucleic acid construct. An exogenous nucleic acid can also be a sequence that is native to an organism and that has been reintroduced into cells of that organism. An exogenous nucleic acid that includes a native sequence can often be distinguished from the naturally occurring sequence by the presence of non-natural sequences linked to the exogenous nucleic acid, e.g., non-native regulatory sequences flanking a native sequence in a recombinant nucleic acid construct. In addition, stably transformed exogenous nucleic acids typically are integrated at positions other than the position where the native sequence is found. It will be appreciated that an exogenous nucleic acid may have been introduced into a progenitor and not into the cell under consideration. For example, a transgenic plant containing an exogenous nucleic acid can be the progeny of a cross between a stably transformed plant and a non-transgenic plant. Such progeny are considered to contain the exogenous nucleic acid.

[0049] "Expression" refers to the process of converting genetic information of a polynucleotide into RNA through transcription, which is catalyzed by an enzyme, RNA polymerase, and into protein, through translation of mRNA on ribosomes.

[0050] "Heterologous polypeptide" as used herein refers to a polypeptide that is not a naturally occurring polypeptide in a plant cell, e.g., a transgenic Panicum virgatum plant transformed with and expressing the coding sequence for a nitrogen transporter polypeptide from a Zea mays plant.

[0051] "Isolated nucleic acid" as used herein includes a naturally-occurring nucleic acid, provided one or both of the sequences immediately flanking that nucleic acid in its naturally-occurring genome is removed or absent. Thus, an isolated nucleic acid includes, without limitation, a nucleic acid that exists as a purified molecule or a nucleic acid molecule that is incorporated into a vector or a virus. A nucleic acid existing among hundreds to millions of other nucleic acids within, for example, cDNA libraries, genomic libraries, or gel slices containing a genomic DNA restriction digest, is not to be considered an isolated nucleic acid.

[0052] "Modulation" of the level of a compound or constituent refers to the change in the level of the indicated compound or constituent that is observed as a result of expression of, or transcription from, an exogenous nucleic acid in a plant cell. The change in level is measured relative to the corresponding level in control plants.

[0053] "Nucleic acid" and "polynucleotide" are used interchangeably herein, and refer to both RNA and DNA, including cDNA, genomic DNA, synthetic DNA, and DNA or RNA containing nucleic acid analogs. Polynucleotides can have any three-dimensional structure. A nucleic acid can be double-stranded or single-stranded (i.e., a sense strand or an antisense strand). Non-limiting examples of polynucleotides include genes, gene fragments, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, siRNA, micro-RNA, ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, nucleic acid probes and nucleic acid primers. A polynucleotide may contain unconventional or modified nucleotides.

[0054] "Operably linked" refers to the positioning of a regulatory region and a sequence to be transcribed in a nucleic acid so that the regulatory region is effective for regulating transcription or translation of the sequence. For example, to operably link a coding sequence and a regulatory region, the translation initiation site of the translational reading frame of the coding sequence is typically positioned between one and about fifty nucleotides downstream of the regulatory region. A regulatory region can, however, be positioned as much as about 5,000 nucleotides upstream of the translation initiation site, or about 2,000 nucleotides upstream of the transcription start site.

[0055] "Polypeptide" as used herein refers to a compound of two or more subunit amino acids, amino acid analogs, or other peptidomimetics, regardless of post-translational modification, e.g., phosphorylation or glycosylation. The subunits may be linked by peptide bonds or other bonds such as, for example, ester or ether bonds. Full-length polypeptides, truncated polypeptides, point mutants, insertion mutants, splice variants, chimeric proteins, and fragments thereof are encompassed by this definition.

[0056] "Progeny" includes descendants of a particular plant or plant line. Progeny of an instant plant include seeds formed on F.sub.1, F.sub.2, F.sub.3, F.sub.4, F.sub.5, F.sub.6 and subsequent generation plants, or seeds formed on BC.sub.1, BC.sub.2, BC.sub.3, and subsequent generation plants, or seeds formed on F.sub.1BC.sub.1, F.sub.1BC.sub.2, F.sub.1BC.sub.3, and subsequent generation plants. The designation F.sub.1 refers to the progeny of a cross between two parents that are genetically distinct. The designations F.sub.2, F.sub.3, F.sub.4, F.sub.5 and F.sub.6 refer to subsequent generations of self- or sib-pollinated progeny of an F.sub.1 plant.

[0057] "Regulatory region" refers to a nucleic acid having nucleotide sequences that influence transcription or translation initiation and rate, and stability and/or mobility of a transcription or translation product. Regulatory regions include, without limitation, promoter sequences, enhancer sequences, response elements, protein recognition sites, inducible elements, protein binding sequences, 5' and 3' untranslated regions (UTRs), transcriptional start sites, termination sequences, polyadenylation sequences, introns, and combinations thereof. A regulatory region typically comprises at least a core (basal) promoter. A regulatory region also may include at least one control element, such as an enhancer sequence, an upstream element or an upstream activation region (UAR). For example, a suitable enhancer is a cis-regulatory element (-212 to -154) from the upstream region of the octopine synthase (ocs) gene. Fromm et al., The Plant Cell, 1:977-984 (1989).

[0058] "Up-regulation" refers to regulation that increases the level of an expression product (mRNA, polypeptide, or both) relative to basal or native states.

[0059] "Vector" refers to a replicon, such as a plasmid, phage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment. Generally, a vector is capable of replication when associated with the proper control elements. The term "vector" includes cloning and expression vectors, as well as viral vectors and integrating vectors. An "expression vector" is a vector that includes a regulatory region.

[0060] Oxidative stress: Plant species vary in their capacity to tolerate ROS/ROI/AOS. "Oxidative stress" can be defined as the set of environmental conditions under which a plant will begin to suffer the effects of elevated ROS/ROI/AOS concentration, such as decreases in enzymatic activity, DNA breakage, DNA-protein crosslinking, necrosis and stunted growth. For these reasons, plants experiencing oxidative stress typically exhibit a significant reduction in biomass and/or yield.

[0061] Elevated oxidative stress may be caused by natural, geological processes and by human activities, such as pollution. Since plant species vary in their capacity to tolerate oxidative stress, the precise environmental conditions that cause stress cannot be generalized. However, under oxidative stress conditions, oxidative stress tolerant plants produce higher biomass, yield and survivorship than plants that are not oxidative stress tolerant. Differences in physical appearance, recovery and yield can be quantified

[0062] Photosynthetic efficiency: photosynthetic efficiency, or electron transport via photosystem II, is estimated by the relationship between Fm, the maximum fluorescence signal and the variable fluorescence, Fv. A reduction in the optimum quantum yield (Fv/Fm) indicates stress and can be used to monitor the performance of transgenic plants compared to non-transgenic plants under salt or oxidative stress conditions.

[0063] Salicylic Acid Growth Index (SAGI): Photosynthetic efficiency.times.seedling area.

[0064] Salt growth index (SGI): Photosynthetic efficiency.times.seedling area (under salinity stress condition).

[0065] Salinity: Plant species vary in their capacity to tolerate salinity. "Salinity" can be defined as the set of environmental conditions under which a plant will begin to suffer the effects of elevated salt concentration, such as ion imbalance, decreased stomatal conductance, decreased photosynthesis, decreased growth rate, increased cell death, loss of turgor (wilting), or ovule abortion. For these reasons, plants experiencing salinity stress typically exhibit a significant reduction in biomass and/or yield.

[0066] Elevated salinity may be caused by natural, geological processes and by human activities, such as pollution. Since plant species vary in their capacity to tolerate salinity, the precise environmental conditions that cause stress cannot be generalized. However, under saline conditions, salinity tolerant plants produce higher biomass, yield and survivorship than plants that are not saline tolerant. Differences in physical appearance, recovery and yield can be quantified.

[0067] Elevated salinity may be caused by natural, geological processes and by human activities, such as irrigation. Since plant species vary in their capacity to tolerate water deficit, the precise environmental salt conditions that cause stress cannot be generalized. However, under saline conditions, salt tolerant plants produce higher biomass, yield and survivorship than plants that are not salt tolerant. Differences in physical appearance, recovery and yield can be quantified and statistically analyzed using well known measurement and analysis methods.

II. Polypeptides

[0068] Polypeptides described herein include salinity tolerance and/or oxidative stress tolerance-modulating polypeptides. Salinity tolerance and/or oxidative stress tolerance--modulating polypeptides can be effective to modulate salinity tolerance and/or oxidative stress tolerance levels when expressed in a plant or plant cell. Such polypeptides typically contain at least one domain indicative of salinity tolerance and/or oxidative stress tolerance-modulating polypeptides, as described in more detail herein. Salinity tolerance and/or oxidative stress tolerance-modulating polypeptides typically have an HMM bit score that is greater than 30, as described in more detail herein. In some embodiments, salinity tolerance and/or oxidative stress tolerance-modulating polypeptides have greater than 85% identity to SEQ ID NOs: 2, 4, 6, 8, 9, 11, 13, 14, 15, 17, 19, 20, 22, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 49, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 69, 71, 73, 74, 76, 78, 80, 81, 83, 84, 86, 88, 90, 91, 93, 94, 96, 98, 100, 101, 102, 104, 106, 107, 109, 110, 112, 114, 116, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 132, 134, 136, 138, 140, 141, 142, 143, 144, 145, 147, 149, 151, 153, 154, 156, 158, 160, 162, 163, 165, 166, 167, 168, and amino acid coordinates 1 to 135 of SEQ ID NO: 140 as described in more detail herein.

[0069] A. Domains Indicative of Salinity Tolerance and/or Oxidative Stress Tolerance--Modulating Polypeptides

[0070] A salinity tolerance and/or oxidative stress tolerance-modulating polypeptide can contain an IQ calmodulin-binding motif domain, which is predicted to be characteristic of an salinity tolerance and/or oxidative stress tolerance-modulating polypeptide. Calmodulin (CaM) is recognized as a major calcium sensor and orchestrator of regulatory events through its interaction with a diverse group of cellular proteins. Three classes of recognition motifs exist for many of the known CaM binding proteins; the IQ motif as a consensus for Ca2.sup.+-independent binding and two related motifs for Ca2.sup.+-dependent binding, termed 18-14 and 1-5-10 based on the position of conserved hydrophobic residues PUBMED:9141499.

[0071] For example, the regulatory domain of scallop myosin is a three-chain protein complex that switches on this motor in response to Ca2.sup.+ binding. Side-chain interactions link the two light chains in tandem to adjacent segments of the heavy chain bearing the IQ-sequence motif. The Ca2.sup.+-binding site is a novel EF-hand motif on the essential light chain and is stabilized by linkages involving the heavy chain and both light chains, accounting for the requirement of all three chains for Ca2.sup.+ binding and regulation in the intact myosin molecule PUBMED:8127365.

[0072] For example, SEQ ID NO:86 sets forth the amino acid sequence of an Arabidopsis clone, identified herein as Ceres SEEDLINE ID no. ME08768, that is predicted to encode a polypeptide containing a IQ calmodulin-binding motif domain from residues 116-136.

[0073] In some embodiments, a salinity tolerance and/or oxidative stress tolerance-modulating polypeptide is truncated at the amino- or carboxy-terminal end of a naturally occurring polypeptide. A truncated polypeptide may retain certain domains of the naturally occurring polypeptide while lacking others. Thus, length variants that are up to 5 amino acids shorter or longer typically exhibit the salinity tolerance and/or oxidative stress tolerance-modulating activity of a truncated polypeptide. In some embodiments, a truncated polypeptide is a dominant negative polypeptide. SEQ ID NO: 138 sets forth the amino sequence of a salinity tolerance and/or oxidative stress tolerance-modulating polypeptide that is truncated at the 5' end relative to the naturally occurring polypeptide. Expression in a plant of such a truncated polypeptide confers a difference in the level of salinity tolerance and/or oxidative stress tolerance in a plant and/or plant tissue as compared to the corresponding level a control plant and/or tissue thereof that does not comprise the truncation.

[0074] B. Functional Homologs Identified by Reciprocal BLAST

[0075] In some embodiments, one or more functional homologs of a reference salinity tolerance and/or oxidative stress tolerance-modulating polypeptide defined by one or more of the pfam descriptions indicated above are suitable for use as salinity tolerance and/or oxidative stress tolerance-modulating polypeptides. A functional homolog is a polypeptide that has sequence similarity to a reference polypeptide, and that carries out one or more of the biochemical or physiological function(s) of the reference polypeptide. A functional homolog and the reference polypeptide may be natural occurring polypeptides, and the sequence similarity may be due to convergent or divergent evolutionary events. As such, functional homologs are sometimes designated in the literature as homologs, or orthologs, or paralogs. Variants of a naturally occurring functional homolog, such as polypeptides encoded by mutants of a wild type coding sequence, may themselves be functional homologs. Functional homologs can also be created via site-directed mutagenesis of the coding sequence for a salinity tolerance and/or oxidative stress tolerance-modulating polypeptide, or by combining domains from the coding sequences for different naturally-occurring salinity tolerance and/or oxidative stress tolerance-modulating polypeptides ("domain swapping"). The term "functional homolog" is sometimes applied to the nucleic acid that encodes a functionally homologous polypeptide.

[0076] Functional homologs can be identified by analysis of nucleotide and polypeptide sequence alignments. For example, performing a query on a database of nucleotide or polypeptide sequences can identify homologs of salinity tolerance and/or oxidative stress tolerance-modulating polypeptides. Sequence analysis can involve BLAST, Reciprocal BLAST, or PSI-BLAST analysis of nonredundant databases using a salinity tolerance and/or oxidative stress tolerance-modulating polypeptide amino acid sequence as the reference sequence. Amino acid sequence is, in some instances, deduced from the nucleotide sequence. Those polypeptides in the database that have greater than 40% sequence identity are candidates for further evaluation for suitability as a salinity tolerance and/or oxidative stress tolerance-modulating polypeptide. Amino acid sequence similarity allows for conservative amino acid substitutions, such as substitution of one hydrophobic residue for another or substitution of one polar residue for another. If desired, manual inspection of such candidates can be carried out in order to narrow the number of candidates to be further evaluated. Manual inspection can be performed by selecting those candidates that appear to have domains present in salinity tolerance and/or oxidative stress tolerance-modulating polypeptides, e.g., conserved functional domains.

[0077] Conserved regions can be identified by locating a region within the primary amino acid sequence of a salinity tolerance and/or oxidative stress tolerance-modulating polypeptide that is a repeated sequence, forms some secondary structure (e.g., helices and beta sheets), establishes positively or negatively charged domains, or represents a protein motif or domain. See, e.g., the Pfam web site describing consensus sequences for a variety of protein motifs and domains on the World Wide Web at sanger.ac.uk/Software/Pfam/ and pfamjanelia.org/. A description of the information included at the Pfam database is described in Sonnhammer et al., Nucl. Acids Res., 26:320-322 (1998); Sonnhammer et al., Proteins, 28:405-420 (1997); and Bateman et al., Nucl. Acids Res., 27:260-262 (1999). Conserved regions also can be determined by aligning sequences of the same or related polypeptides from closely related species. Closely related species preferably are from the same family. In some embodiments, alignment of sequences from two different species is adequate.

[0078] Typically, polypeptides that exhibit at least about 40% amino acid sequence identity are useful to identify conserved regions. Conserved regions of related polypeptides exhibit at least 45% amino acid sequence identity (e.g., at least 50%, at least 60%, at least 70%, at least 80%, or at least 90% amino acid sequence identity). In some embodiments, a conserved region exhibits at least 92%, 94%, 96%, 98%, or 99% amino acid sequence identity.

[0079] Amino acid sequences of functional homologs of the polypeptide set forth in SEQ ID NO: 86 are provided in FIG. 1 and in the Sequence Listing. Such functional homologs include (SEQ ID NO: 88, 90, 91, 93, 94, 96, 98, 100, 101, 102, 104, 106, and 107). In some cases, a functional homolog of SEQ ID NO: 86 has an amino acid sequence with at least 50% sequence identity, e.g., 50%, 52%, 56%, 59%, 61%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity, to the amino acid sequence set forth in SEQ ID NO: 86.

[0080] Amino acid sequences of functional homologs of the polypeptide set forth in SEQ ID NO: 41 are provided in FIG. 2. Such functional homologs include (SEQ ID NO: 42, 43, 44, 45, 47, 49, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 69, 71, 73, 74, 76, 78, 80, 81, 83, and 84). In some cases, a functional homolog of SEQ ID NO: 41 has an amino acid sequence with at least 50% sequence identity, e.g., 50%, 52%, 56%, 59%, 61%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity, to the amino acid sequence set forth in SEQ ID NO: 41.

[0081] Amino acid sequences of functional homologs of the polypeptide set forth in SEQ ID NO: 109 are provided in FIG. 3. Such functional homologs include (SEQ ID NO: 110, 112, 114, 116, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 132, and 134). In some cases, a functional homolog of SEQ ID NO: 109 has an amino acid sequence with at least 50% sequence identity, e.g., 50%, 52%, 56%, 59%, 61%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity, to the amino acid sequence set forth in SEQ ID NO: 109.

[0082] Amino acid sequences of functional homologs of the polypeptide set forth in SEQ ID NO:140 are provided in FIG. 4. Such functional homologs include (SEQ ID NO: 136, 138, 140, 141, 142, 143, 144, 145, 147, 149, 151, 153, 154, 156, 158, 160, 162, 163, 165, 166, 167, and 168). In some cases, a functional homolog of SEQ ID NO: 140 has an amino acid sequence with at least 50% sequence identity, e.g., 50%, 52%, 56%, 59%, 61%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity, to the amino acid sequence set forth in SEQ ID NO: 140.

[0083] Amino acid sequences of functional homologs of the polypeptide set forth in SEQ ID NO: 2 are provided in FIG. 5. Such functional homologs include (SEQ ID NO: 2, 4, 6, 8, 9, 11, 13, 14, 15, 17, 19, 20, 22, 23, 24, 25, 27, 29, 30, 31, and 33). In some cases, a functional homolog of SEQ ID NO: 2 has an amino acid sequence with at least 50% sequence identity, e.g., 50%, 52%, 56%, 59%, 61%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity, to the amino acid sequence set forth in SEQ ID NO: 2.

[0084] Amino acid sequences of functional homologs of the polypeptide set forth in SEQ ID NO: 35 are provided in FIG. 6. Such functional homologs include (SEQ ID NO: 35, 36, 37, 38, and 39). In some cases, a functional homolog of SEQ ID NO: 35 has an amino acid sequence with at least 50% sequence identity, e.g., 50%, 52%, 56%, 59%, 61%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity, to the amino acid sequence set forth in SEQ ID NO: 35.

[0085] The identification of conserved regions in a salinity tolerance and/or oxidative stress tolerance-modulating polypeptide facilitates production of variants of salinity tolerance and/or oxidative stress tolerance-modulating polypeptides. Variants of salinity tolerance and/or oxidative stress tolerance-modulating polypeptides typically have 10 or fewer conservative amino acid substitutions within the primary amino acid sequence, e.g., 7 or fewer conservative amino acid substitutions, 5 or fewer conservative amino acid substitutions, or between 1 and 5 conservative substitutions. A useful variant polypeptide can be constructed based on one of the alignments set forth in FIGS. 1 thru 6. Such a polypeptide includes the conserved regions, arranged in the order depicted in the Figure from amino-terminal end to carboxy-terminal end. Such a polypeptide may also include zero, one, or more than one amino acid in positions marked by dashes. When no amino acids are present at positions marked by dashes, the length of such a polypeptide is the sum of the amino acid residues in all conserved regions. When amino acids are present at all positions marked by dashes, such a polypeptide has a length that is the sum of the amino acid residues in all conserved regions and all dashes.

[0086] C. Functional Homologues Identified by Hmm

[0087] In some embodiments, useful salinity and/or oxidative stress tolerance-modulating polypeptides include those that fit a Hidden Markov Model based on the polypeptides set forth in any one of FIGS. 1-6. A Hidden Markov Model (HMM) is a statistical model of a consensus sequence for a group of functional homologs. See, Durbin et al., Biological Sequence Analysis Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press, Cambridge, UK (1998). An HMM is generated by the program HMMER 2.3.2 with default program parameters, using the sequences of the group of functional homologs as input. The multiple sequence alignment is generated by ProbCons (Do et al., Genome Res., 15(2):330-40 (2005)) version 1.11 using a set of default parameters: -c, --consistency REPS of 2; -ir, --iterative-refinement REPS of 100; -pre, --pre-training REPS of 0. ProbCons is a public domain software program provided by Stanford University.

[0088] The default parameters for building an HMM (hmmbuild) are as follows: the default "architecture prior" (archpri) used by MAP architecture construction is 0.85, and the default cutoff threshold (idlevel) used to determine the effective sequence number is 0.62. HMMER 2.3.2 was released Oct. 3, 2003 under a GNU general public license, and is available from various sources on the World Wide Web. Hmmbuild outputs the model as a text file.

[0089] The HMM for a group of functional homologs can be used to determine the likelihood that a candidate salinity tolerance and/or oxidative stress tolerance-modulating polypeptide sequence is a better fit to that particular HMM than to a null HMM generated using a group of sequences that are not structurally or functionally related. The likelihood that a subject polypeptide sequence is a better fit to an HMM than to a null HMM is indicated by the HMM bit score, a number generated when the candidate sequence is fitted to the HMM profile using the HMMER hmmsearch program. The following default parameters are used when running hmmsearch: the default E-value cutoff (E) is 10.0, the default bit score cutoff (T) is negative infinity, the default number of sequences in a database (Z) is the real number of sequences in the database, the default E-value cutoff for the per-domain ranked hit list (domE) is infinity, and the default bit score cutoff for the per-domain ranked hit list (domT) is negative infinity. A high HMM bit score indicates a greater likelihood that the subject sequence carries out one or more of the biochemical or physiological function(s) of the polypeptides used to generate the HMM. A high HMM bit score is at least 20, and often is higher.

[0090] As those of skill in the art would appreciate, the HMM scores provided in the sequence listing are merely exemplary. Since multiple sequence alignment algorithms, such as ProbCons, can only generate near-optimal results, slight variations of the model can arise due to factors such as the order in which sequences are processed for alignment. Nevertheless, HMM score variability is minor, and so the HMM scores in the sequence listing are representative of models made with the respective sequences.

[0091] The salinity and/or oxidative stress-modulating polypeptides discussed below fit the indicated HMM with an HMM bit score greater than 20 (e.g., greater than 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, or 500). In some embodiments, the HMM bit score of a salinity and/or oxidative stress-modulating polypeptide discussed below is about 50%, 60%, 70%, 80%, 90%, or 95% of the HMM bit score of a functional homolog provided in the Sequence Listing. In some embodiments, a salinity and/or oxidative stress-modulating polypeptide discussed below fits the indicated HMM with an HMM bit score greater than 20, and has a domain indicative of an salinity and/or oxidative stress-modulating polypeptide. In some embodiments, a salinity and/or oxidative stress-modulating polypeptide discussed below fits the indicated HMM with an HMM bit score greater than 20, and has 85% or greater sequence identity (e.g., 75%, 80%, 85%, 90%, 95%, or 100% sequence identity) to an amino acid sequence shown in any one of FIGS. 1 thru 6 or to an amino acid sequence correlated in the Sequence Listing to a any one of FIGS. 1 thru 6._.

[0092] In the Sequence Listing polypeptides are provided that have HMM bit scores greater than 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, or 1100, when fitted to an HMM generated from the amino acid sequences set forth in FIG. 1. Such polypeptides include Ceres SEEDLINE ID no. ME08768, Ceres CLONE ID no. 1943807, Ceres ANNOT ID no. 1471392, Public GI ID no. 6715635, Ceres CLONE ID no. 910109, Public GI ID no. 115474509, Ceres CLONE ID no. 1780908, Ceres ANNOT ID no. 1520883, Ceres CLONE ID no. 148018, Public GI ID no. 18378797, Public GI ID no. 21553500, Ceres ANNOT ID no. 1444522, Ceres ANNOT ID no. 146751, and Public GI ID no. 125559938 (SEQ ID NO: 86, 88, 90, 91, 93, 94, 96, 98, 100, 101, 102, 104, 106, and 107)

[0093] In the Sequence Listing polypeptides are provided that have HMM bit scores greater than 30, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, or 1000 when fitted to an HMM generated from the amino acid sequences set forth in FIG. 2. Such polypeptides include Ceres SEEDLINE ID no. ME06748, Ceres SEEDLINE ID no. ME20711, Ceres SEEDLINE ID no. ME18973, Ceres SEEDLINE ID no. ME08732, Ceres SEEDLINE ID no. ME19657, Ceres CLONE ID no. 835818, Ceres CLONE ID no. 1796745, Public GI ID no. 125543896, Ceres ANNOT ID no. 1483984, Ceres CLONE ID no. 1924654, Ceres ANNOT ID no. 1468861, Ceres CLONE ID no. 1641776, Ceres ANNOT ID no. 1438750, Ceres ANNOT ID no. 1447395, Public GI ID no. 79482785, Public GI ID no. 3292832, Ceres CLONE ID no. 1559074, Ceres CLONE ID no. 1726548, Public GI ID no. 115459996, Ceres CLONE ID no. 697034, Ceres CLONE ID no. 353438, Public GI ID no. 125593074, Ceres CLONE ID no. 1920115, Ceres CLONE ID no. 21821, Ceres CLONE ID no. 560066, Public GI ID no. 115453071, Ceres CLONE ID no. 1968211, and Public GI ID no. 116310011_(SEQ ID NO: 42, 43, 44, 45, 47, 49, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 69, 71, 73, 74, 76, 78, 80, 81, 83, and 84).

[0094] In the Sequence Listing polypeptides are provided that have HMM bit scores greater than 120, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, or 1200 when fitted to an HMM generated from the amino acid sequences set forth in FIG. 3. Such polypeptides include Ceres SEEDLINE ID no. ME19173, Public GI ID no. 115435054, Ceres CLONE ID no. 1847857, Ceres ANNOT ID no. 1455219, Ceres CLONE ID no. 352452, Ceres CLONE ID no. 787908, Ceres LOCUS ID no. Os01m00929_AP002743, Ceres CLONE ID no. 246398, Public GI ID no. 125527441, Public GI ID no. 125595056, Ceres CLONE ID no. 236071, Public GI ID no. 125524760, Public GI ID no. 125569365, Public GI ID no. 115439499, Public GI ID no. 15225258, Public GI ID no. 115465173, Ceres ANNOT ID no. 1477059, and Ceres ANNOT ID no. 1530547 (SEQ ID NO: 110, 112, 114, 116, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 132, and 134).

[0095] In the Sequence Listing polypeptides are provided that have HMM bit scores greater than 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, or 1350 when fitted to an HMM generated from the amino acid sequences set forth in FIG. 4. Such polypeptides include Ceres SEEDLINE ID no. ME24091, Ceres CLONE ID no. 375578, Ceres CLONE ID no. 375578, Ceres SEEDLINE ID no. ME10681, Ceres SEEDLINE ID no. ME03140, Ceres SEEDLINE ID no. ME24076, Ceres SEEDLINE ID no. ME24217, Public GI ID no. 115440873, Ceres CLONE ID no. 826796, Ceres ANNOT ID no. 1465047, Ceres CLONE ID no. 1919901, Ceres CLONE ID no. 520008, Public GI ID no. 7413581, Ceres CLONE ID no. 228069, Ceres CLONE ID no. 467508, Ceres CLONE ID no. 1829581, Ceres CLONE ID no. 229668, Public GI ID no. 125550655, Ceres CLONE ID no. 106263, Public GI ID no. 15231175, Public GI ID no. 145357576, and Public GI ID no. 125528277 (SEQ ID NO: 136, 138, 140, 141, 142, 143, 144, 145, 147, 149, 151, 153, 154, 156, 158, 160, 162, 163, 165, 166, 167, and 168).

[0096] In the Sequence Listing polypeptides are provided that have HMM bit scores greater than 425, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, 1500, or 1550, when fitted to an HMM generated from the amino acid sequences set forth in FIG. 5. Such polypeptides include Ceres CLONE ID no. 1792354, Ceres CLONE ID no. 1925477, Ceres ANNOT ID no. 1521592, Ceres CLONE ID no. 463594, Public GI ID no. 22330633, Ceres CLONE ID no. 345954, Ceres LOCUS ID no. Os01m05025_AP003288, GI ID no. 56784330, Public GI ID no. 125527495, Public GI ID no. 125553119, Ceres CLONE ID no. 236431, Ceres CLONE ID no. 908518, Public GI ID no. 115465121, Ceres CLONE ID no. 1791910, Public GI ID no. 125595019, Public GI ID no. 42568886, Public GI ID no. 2947062, Ceres ANNOT ID no. 1468228, Ceres CLONE ID no. 1942388, Public GI ID no. 12324824, Public GI ID no. 5882749, and Ceres CLONE ID no. 325403 (SEQ ID NO: 2, 4, 6, 8, 9, 11, 13, 14, 15, 17, 19, 20, 22, 23, 24, 25, 27, 29, 30, 31, and 33).

[0097] In the Sequence Listing polypeptides are provided that have HMM bit scores greater than 550, 600, 650, or 700 when fitted to an HMM generated from the amino acid sequences set forth in FIG. 6. Such polypeptides include Ceres GI ID no. 56784328, Public GI ID no. 56784330, Public GI ID no. 125528718, Public GI ID no. 125572975, and Public GI ID no. 125528716 (SEQ ID NO: 35, 36, 37, 38, and 39).

[0098] D. Percent Identity

[0099] In some embodiments, a salinity and/or oxidative stress tolerance-modulating polypeptide has an amino acid sequence with at least 50% sequence identity, e.g., 50%, 52%, 56%, 59%, 61%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity, to one of the amino acid sequences set forth in SEQ ID NOs: 2, 4, 6, 8, 9, 11, 13, 14, 15, 17, 19, 20, 22, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 49, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 69, 71, 73, 74, 76, 78, 80, 81, 83, 84, 86, 88, 90, 91, 93, 94, 96, 98, 100, 101, 102, 104, 106, 107, 109, 110, 112, 114, 116, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 132, 134, 136, 138, 140, 141, 142, 143, 144, 145, 147, 149, 151, 153, 154, 156, 158, 160, 162, 163, 165, 166, 167, 168, and amino acid coordinates 1 to 135 of SEQ ID NO: 140. Polypeptides having such a percent sequence identity often have a domain indicative of a salinity and/or oxidative stress-modulating polypeptide and/or have an HMM bit score that is greater than 20, as discussed above. Examples of amino acid sequences of salinity and/or oxidative stress tolerance-modulating polypeptides having at least 85% sequence identity to one of the amino acid sequences set forth in SEQ ID NOs: 2, 4, 6, 8, 9, 11, 13, 14, 15, 17, 19, 20, 22, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 49, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 69, 71, 73, 74, 76, 78, 80, 81, 83, 84, 86, 88, 90, 91, 93, 94, 96, 98, 100, 101, 102, 104, 106, 107, 109, 110, 112, 114, 116, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 132, 134, 136, 138, 140, 141, 142, 143, 144, 145, 147, 149, 151, 153, 154, 156, 158, 160, 162, 163, 165, 166, 167, 168, and amino acid coordinates 1 to 135 of SEQ ID NO: 140 are provided in FIGS. 1-6.

[0100] "Percent sequence identity" refers to the degree of sequence identity between any given reference sequence, e.g., SEQ ID NOs: 2, 4, 6, 8, 9, 11, 13, 14, 15, 17, 19, 20, 22, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 49, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 69, 71, 73, 74, 76, 78, 80, 81, 83, 84, 86, 88, 90, 91, 93, 94, 96, 98, 100, 101, 102, 104, 106, 107, 109, 110, 112, 114, 116, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 132, 134, 136, 138, 140, 141, 142, 143, 144, 145, 147, 149, 151, 153, 154, 156, 158, 160, 162, 163, 165, 166, 167, 168, and amino acid coordinates 1 to 135 of SEQ ID NO: 140, and a candidate salinity and/or oxidative stress-modulating sequence. A candidate sequence typically has a length that is from 80 percent to 200 percent of the length of the reference sequence, e.g., 82, 85, 87, 89, 90, 93, 95, 97, 99, 100, 105, 110, 115, 120, 130, 140, 150, 160, 170, 180, 190, or 200 percent of the length of the reference sequence. A percent identity for any candidate nucleic acid or polypeptide relative to a reference nucleic acid or polypeptide can be determined as follows. A reference sequence (e.g., a nucleic acid sequence or an amino acid sequence) is aligned to one or more candidate sequences using the computer program ClustalW (version 1.83, default parameters), which allows alignments of nucleic acid or polypeptide sequences to be carried out across their entire length (global alignment). Chema et al., Nucleic Acids Res., 31(13):3497-500 (2003).

[0101] ClustalW calculates the best match between a reference and one or more candidate sequences, and aligns them so that identities, similarities and differences can be determined. Gaps of one or more residues can be inserted into a reference sequence, a candidate sequence, or both, to maximize sequence alignments. For fast pairwise alignment of nucleic acid sequences, the following default parameters are used: word size: 2; window size: 4; scoring method: percentage; number of top diagonals: 4; and gap penalty: 5. For multiple alignment of nucleic acid sequences, the following parameters are used: gap opening penalty: 10.0; gap extension penalty: 5.0; and weight transitions: yes. For fast pairwise alignment of protein sequences, the following parameters are used: word size: 1; window size: 5; scoring method: percentage; number of top diagonals: 5; gap penalty: 3. For multiple alignment of protein sequences, the following parameters are used: weight matrix: blosum; gap opening penalty: 10.0; gap extension penalty: 0.05; hydrophilic gaps: on; hydrophilic residues: Gly, Pro, Ser, Asn, Asp, Gln, Glu, Arg, and Lys; residue-specific gap penalties: on. The ClustalW output is a sequence alignment that reflects the relationship between sequences. ClustalW can be run, for example, at the Baylor College of Medicine Search Launcher site (searchlauncher.bcm.tmc.edu/multi-align/multi-align.html) and at the European Bioinformatics Institute site on the World Wide Web (ebi.ac.uk/clustalw).

[0102] To determine percent identity of a candidate nucleic acid or amino acid sequence to a reference sequence, the sequences are aligned using ClustalW, the number of identical matches in the alignment is divided by the length of the reference sequence, and the result is multiplied by 100. It is noted that the percent identity value can be rounded to the nearest tenth. For example, 78.11, 78.12, 78.13, and 78.14 are rounded down to 78.1, while 78.15, 78.16, 78.17, 78.18, and 78.19 are rounded up to 78.2.

[0103] In some cases, a salinity and/or oxidative stress tolerance-modulating polypeptide has an amino acid sequence with at least 50% sequence identity, e.g., 50%, 52%, 56%, 59%, 61%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity, to one or more of the amino acid sequence set forth in SEQ ID NO: 86 Amino acid sequences of polypeptides having high sequence identity to the polypeptide set forth in SEQ ID NO: 86 are provided in the Sequence Listing. Such polypeptides include SEQ ID NO: 88, 90, 91, 93, 94, 96, 98, 100, 101, 102, 104, 106, and 107.

[0104] In some cases, a salinity and/or oxidative stress tolerance-modulating polypeptide has an amino acid sequence with at least 50% sequence identity, e.g., 50%, 52%, 56%, 59%, 61%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity, to the amino acid sequence set forth in SEQ ID NO: 41. Amino acid sequences of polypeptides having high sequence identity to the polypeptide set forth in SEQ ID NO: 41 are provided in the Sequence Listing. Such polypeptides include SEQ ID NO: 42, 43, 44, 45, 47, 49, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 69, 71, 73, 74, 76, 78, 80, 81, 83, and 84.

[0105] In some cases, a salinity and/or oxidative stress-modulating polypeptide has an amino acid sequence with at least 50% sequence identity, e.g., 50%, 52%, 56%, 59%, 61%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity, to the amino acid sequence set forth in SEQ ID NO: 109. Amino acid sequences of polypeptides having high sequence identity to the polypeptide set forth in SEQ ID NO: 109 are provided in the Sequence Listing. Such polypeptides include SEQ ID NO: 110, 112, 114, 116, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 132, and 134.

[0106] In some cases, a salinity and/or oxidative stress-modulating polypeptide has an amino acid sequence with at least 50% sequence identity, e.g., 50%, 52%, 56%, 59%, 61%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity, to the amino acid sequence set forth in SEQ ID NO: 140. Amino acid sequences of polypeptides having high sequence identity to the polypeptide set forth in SEQ ID NO: 140 are provided in the Sequence Listing. Such polypeptides include SEQ ID NO: 136, 138, 141, 142, 143, 144, 145, 147, 149, 151, 153, 154, 156, 158, 160, 162, 163, 165, 166, 167, and 168.

[0107] In some cases, a salinity and/or oxidative stress-modulating polypeptide has an amino acid sequence with at least 50% sequence identity, e.g., 50%, 52%, 56%, 59%, 61%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity, to the amino acid sequence set forth in SEQ ID NO: 2. Amino acid sequences of polypeptides having high sequence identity to the polypeptide set forth in SEQ ID NO: 2 are provided in the Sequence Listing. Such polypeptides include SEQ ID NO: 4, 6, 8, 9, 11, 13, 14, 15, 17, 19, 20, 22, 23, 24, 25, 27, 29, 30, 31, and 33.

[0108] In some cases, a salinity and/or oxidative stress-modulating polypeptide has an amino acid sequence with at least 50% sequence identity, e.g., 50%, 52%, 56%, 59%, 61%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity, to the amino acid sequence set forth in SEQ ID NO: 35. Amino acid sequences of polypeptides having high sequence identity to the polypeptide set forth in SEQ ID NO: 35 are provided in the Sequence Listing. Such polypeptides include SEQ ID NO: 36, 37, 38, and 39.

[0109] E. Other Sequences

[0110] It should be appreciated that a salinity and/or oxidative stress tolerance-modulating polypeptide can include additional amino acids that are not involved in salinity and/or oxidative stress tolerance modulation, and thus such a polypeptide can be longer than would otherwise be the case. For example, a salinity and/or oxidative stress-tolerance modulating polypeptide can include a purification tag, a chloroplast transit peptide, an amyloplast transit peptide, a mitochondrial transit peptide, or a leader sequence added to the amino or carboxy terminus. In some embodiments, a salinity and/or oxidative stress-tolerance modulating polypeptide includes an amino acid sequence that functions as a reporter, e.g., a green fluorescent protein or yellow fluorescent protein.

III. Nucleic Acids

[0111] Nucleic acids described herein include nucleic acids that are effective to modulate salinity and/or oxidative stress tolerance levels when transcribed in a plant or plant cell. Such nucleic acids include, without limitation, those that encode a salinity and/or oxidative stress tolerance-modulating polypeptide and those that can be used to inhibit expression of a salinity tolerance and/or oxidative stress tolerance-modulating polypeptide via a nucleic acid based method.

[0112] A. Nucleic Acids Encoding Salinity Tolerance and/or Oxidative Stress Tolerance-Modulating Polypeptides

[0113] Nucleic acids encoding salinity tolerance and/or oxidative stress tolerance-modulating polypeptides are described herein. Such nucleic acids include SEQ ID NOs: 1, 3, 5, 7, 10, 12, 16, 18, 21, 26, 28, 32, 34, 40, 46, 48, 51, 53, 55, 57, 59, 61, 65, 67, 70, 72, 75, 77, 79, 82, 85, 87, 89, 92, 95, 97, 99, 103, 105, 108, 111, 113, 115, 117, 120, 124, 131, 133, 135, 137, 139, 146, 148, 150, 152, 155, 157, 159, 161, and 164, as described in more detail below.

[0114] A salinity tolerance and/or oxidative stress tolerance-modulating nucleic acid can comprise the nucleotide sequence set forth in SEQ ID NO: 85. Alternatively, a salinity tolerance and/or oxidative stress tolerance-modulating nucleic acid can be a variant of the nucleic acid having the nucleotide sequence set forth in SEQ ID NO: 85. For example, a salinity tolerance and/or oxidative stress tolerance-modulating nucleic acid can have a nucleotide sequence with at least 80% sequence identity, e.g., 81%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity, to the nucleotide sequence set forth in SEQ ID NO: 85, 87, 89, 92, 95, 97, 99, 103, and 105.

[0115] A salinity tolerance and/or oxidative stress tolerance-modulating nucleic acid can comprise the nucleotide sequence set forth in SEQ ID NO: 40. Alternatively, a salinity tolerance and/or oxidative stress tolerance-modulating nucleic acid can be a variant of the nucleic acid having the nucleotide sequence set forth in SEQ ID NO: 40. For example, a salinity tolerance and/or oxidative stress tolerance-modulating nucleic acid can have a nucleotide sequence with at least 80% sequence identity, e.g., 81%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity, to the nucleotide sequence set forth in SEQ ID NO: 40, 46, 48, 51, 53, 55, 57, 59, 61, 65, 67, 70, 72, 75, 77, 79, and 82.

[0116] A salinity tolerance and/or oxidative stress tolerance-modulating nucleic acid can comprise the nucleotide sequence set forth in SEQ ID NO: 108. Alternatively, a salinity tolerance and/or oxidative stress tolerance-modulating nucleic acid can be a variant of the nucleic acid having the nucleotide sequence set forth in SEQ ID NO: 108. For example, a salinity tolerance and/or oxidative stress tolerance-modulating nucleic acid can have a nucleotide sequence with at least 80% sequence identity, e.g., 81%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity, to the nucleotide sequence set forth in SEQ ID NO: 108, 111, 113, 115, 117, 120, 124, 131, and 133.

[0117] A salinity tolerance and/or oxidative stress tolerance-modulating nucleic acid can comprise the nucleotide sequence set forth in SEQ ID NO: 139. Alternatively, a salinity tolerance and/or oxidative stress tolerance-modulating nucleic acid can be a variant of the nucleic acid having the nucleotide sequence set forth in SEQ ID NO: 139. For example, a salinity tolerance and/or oxidative stress tolerance-modulating nucleic acid can have a nucleotide sequence with at least 80% sequence identity, e.g., 81%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity, to the nucleotide sequence set forth in SEQ ID NO: 135, 137, 139, 146, 148, 150, 152, 155, 157, 159, 161, and 164.

[0118] A salinity tolerance and/or oxidative stress tolerance-modulating nucleic acid can comprise the nucleotide sequence set forth in SEQ ID NO: 1. Alternatively, a salinity tolerance and/or oxidative stress tolerance-modulating nucleic acid can be a variant of the nucleic acid having the nucleotide sequence set forth in SEQ ID NO: 1. For example, a salinity tolerance and/or oxidative stress tolerance-modulating nucleic acid can have a nucleotide sequence with at least 80% sequence identity, e.g., 81%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity, to the nucleotide sequence set forth in SEQ ID NO: 1, 3, 5, 7, 10, 12, 16, 18, 21, 26, 28, and 32.

[0119] A salinity tolerance and/or oxidative stress tolerance-modulating nucleic acid can comprise the nucleotide sequence set forth in SEQ ID NO: 34. Alternatively, a salinity tolerance and/or oxidative stress tolerance-modulating nucleic acid can be a variant of the nucleic acid having the nucleotide sequence set forth in SEQ ID NO: 34. For example, a salinity tolerance and/or oxidative stress tolerance-modulating nucleic acid can have a nucleotide sequence with at least 80% sequence identity, e.g., 81%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity, to the nucleotide sequence set forth in SEQ ID NO:34.

[0120] Isolated nucleic acid molecules can be produced by standard techniques. For example, polymerase chain reaction (PCR) techniques can be used to obtain an isolated nucleic acid containing a nucleotide sequence described herein. PCR can be used to amplify specific sequences from DNA as well as RNA, including sequences from total genomic DNA or total cellular RNA. Various PCR methods are described, for example, in PCR Primer: A Laboratory Manual, Dieffenbach and Dveksler, eds., Cold Spring Harbor Laboratory Press, 1995. Generally, sequence information from the ends of the region of interest or beyond is employed to design oligonucleotide primers that are identical or similar in sequence to opposite strands of the template to be amplified. Various PCR strategies also are available by which site-specific nucleotide sequence modifications can be introduced into a template nucleic acid. Isolated nucleic acids also can be chemically synthesized, either as a single nucleic acid molecule (e.g., using automated DNA synthesis in the 3' to 5' direction using phosphoramidite technology) or as a series of oligonucleotides. For example, one or more pairs of long oligonucleotides (e.g., >100 nucleotides) can be synthesized that contain the desired sequence, with each pair containing a short segment of complementarity (e.g., about 15 nucleotides) such that a duplex is formed when the oligonucleotide pair is annealed. DNA polymerase is used to extend the oligonucleotides, resulting in a single, double-stranded nucleic acid molecule per oligonucleotide pair, which then can be ligated into a vector. Isolated nucleic acids of the invention also can be obtained by mutagenesis of, e.g., a naturally occurring DNA.

[0121] B. Use of Nucleic Acids to Modulate Expression of Polypeptides

[0122] i. Expression of a Salinity Tolerance and/or Oxidative Stress Tolerance-Modulating Polypeptide

[0123] A nucleic acid encoding one of the salinity tolerance and/or oxidative stress tolerance-modulating polypeptides described herein can be used to express the polypeptide in a plant species of interest, typically by transforming a plant cell with a nucleic acid having the coding sequence for the polypeptide operably linked in sense orientation to one or more regulatory regions. It will be appreciated that because of the degeneracy of the genetic code, a number of nucleic acids can encode a particular salinity tolerance and/or oxidative stress tolerance-modulating polypeptide; i.e., for many amino acids, there is more than one nucleotide triplet that serves as the codon for the amino acid. Thus, codons in the coding sequence for a given salinity tolerance and/or oxidative stress tolerance-modulating polypeptide can be modified such that optimal expression in a particular plant species is obtained, using appropriate codon bias tables for that species.

[0124] In some cases, expression of a salinity tolerance and/or oxidative stress tolerance-modulating polypeptide inhibits one or more functions of an endogenous polypeptide. For example, a nucleic acid that encodes a dominant negative polypeptide can be used to inhibit protein function. A dominant negative polypeptide typically is mutated or truncated relative to an endogenous wild type polypeptide, and its presence in a cell inhibits one or more functions of the wild type polypeptide in that cell, i.e., the dominant negative polypeptide is genetically dominant and confers a loss of function. The mechanism by which a dominant negative polypeptide confers such a phenotype can vary but often involves a protein-protein interaction or a protein-DNA interaction. For example, a dominant negative polypeptide can be an enzyme that is truncated relative to a native wild type enzyme, such that the truncated polypeptide retains domains involved in binding a first protein but lacks domains involved in binding a second protein. The truncated polypeptide is thus unable to properly modulate the activity of the second protein. See, e.g., US 2007/0056058. As another example, a point mutation that results in a non-conservative amino acid substitution in a catalytic domain can result in a dominant negative polypeptide. See, e.g., US 2005/032221. As another example, a dominant negative polypeptide can be a transcription factor that is truncated relative to a native wild type transcription factor, such that the truncated polypeptide retains the DNA binding domain(s) but lacks the activation domain(s). Such a truncated polypeptide can inhibit the wild type transcription factor from binding DNA, thereby inhibiting transcription activation.

[0125] ii. Inhibition of Expression of a Salinity Tolerance and/or Oxidative Stress Tolerance-Modulating Polypeptide

[0126] Polynucleotides and recombinant constructs described herein can be used to inhibit expression of a salinity tolerance and/or oxidative stress tolerance-modulating polypeptide in a plant species of interest. See, e.g., Matzke and Birchler, Nature Reviews Genetics 6:24-35 (2005); Akashi et al., Nature Reviews Mol. Cell. Biology 6:413-422 (2005); Mittal, Nature Reviews Genetics 5:355-365 (2004); Dorsett and Tuschl, Nature Reviews Drug Discovery 3: 318-329 (2004); and Nature Reviews RNA interference collection, October 2005 at nature.com/reviews/focus/mai. A number of nucleic acid based methods, including antisense RNA, ribozyme directed RNA cleavage, post-transcriptional gene silencing (PTGS), e.g., RNA interference (RNAi), and transcriptional gene silencing (TGS) are known to inhibit gene expression in plants. Antisense technology is one well-known method. In this method, a nucleic acid segment from a gene to be repressed is cloned and operably linked to a regulatory region and a transcription termination sequence so that the antisense strand of RNA is transcribed. The recombinant construct is then transformed into plants, as described herein, and the antisense strand of RNA is produced. The nucleic acid segment need not be the entire sequence of the gene to be repressed, but typically will be substantially complementary to at least a portion of the sense strand of the gene to be repressed. Generally, higher homology can be used to compensate for the use of a shorter sequence. Typically, a sequence of at least 30 nucleotides is used, e.g., at least 40, 50, 80, 100, 200, 500 nucleotides or more.

[0127] In another method, a nucleic acid can be transcribed into a ribozyme, or catalytic RNA, that affects expression of an mRNA. See, U.S. Pat. No. 6,423,885. Ribozymes can be designed to specifically pair with virtually any target RNA and cleave the phosphodiester backbone at a specific location, thereby functionally inactivating the target RNA. Heterologous nucleic acids can encode ribozymes designed to cleave particular mRNA transcripts, thus preventing expression of a polypeptide. Hammerhead ribozymes are useful for destroying particular mRNAs, although various ribozymes that cleave mRNA at site-specific recognition sequences can be used. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The sole requirement is that the target RNA contains a 5'-UG-3' nucleotide sequence. The construction and production of hammerhead ribozymes is known in the art. See, for example, U.S. Pat. No. 5,254,678 and WO 02/46449 and references cited therein. Hammerhead ribozyme sequences can be embedded in a stable RNA such as a transfer RNA (tRNA) to increase cleavage efficiency in vivo. Perriman et al., Proc. Natl. Acad. Sci. USA, 92(13):6175-6179 (1995); de Feyter and Gaudron, Methods in Molecular Biology, Vol. 74, Chapter 43, "Expressing Ribozymes in Plants", Edited by Turner, P. C., Humana Press Inc., Totowa, N.J. RNA endoribonucleases which have been described, such as the one that occurs naturally in Tetrahymena thermophila, can be useful. See, for example, U.S. Pat. Nos. 4,987,071 and 6,423,885.

[0128] PTGS, e.g., RNAi, can also be used to inhibit the expression of a gene. For example, a construct can be prepared that includes a sequence that is transcribed into an RNA that can anneal to itself, e.g., a double stranded RNA having a stem-loop structure. In some embodiments, one strand of the stem portion of a double stranded RNA comprises a sequence that is similar or identical to the sense coding sequence of a salinity tolerance and/or oxidative stress tolerance-modulating polypeptide, and that is from about 10 nucleotides to about 2,500 nucleotides in length. The length of the sequence that is similar or identical to the sense coding sequence can be from 10 nucleotides to 500 nucleotides, from 15 nucleotides to 300 nucleotides, from 20 nucleotides to 100 nucleotides, or from 25 nucleotides to 100 nucleotides. The other strand of the stem portion of a double stranded RNA comprises a sequence that is similar or identical to the antisense strand of the coding sequence of the salinity tolerance and/or oxidative stress tolerance-modulating polypeptide, and can have a length that is shorter, the same as, or longer than the corresponding length of the sense sequence. In some cases, one strand of the stem portion of a double stranded RNA comprises a sequence that is similar or identical to the 3' or 5' untranslated region of an mRNA encoding a salinity tolerance and/or oxidative stress tolerance-modulating polypeptide, and the other strand of the stem portion of the double stranded RNA comprises a sequence that is similar or identical to the sequence that is complementary to the 3' or 5' untranslated region, respectively, of the mRNA encoding the salinity tolerance and/or oxidative stress tolerance-modulating polypeptide. In other embodiments, one strand of the stem portion of a double stranded RNA comprises a sequence that is similar or identical to the sequence of an intron in the pre-mRNA encoding a salinity tolerance and/or oxidative stress tolerance-modulating polypeptide, and the other strand of the stem portion comprises a sequence that is similar or identical to the sequence that is complementary to the sequence of the intron in the pre-mRNA. The loop portion of a double stranded RNA can be from 3 nucleotides to 5,000 nucleotides, e.g., from 3 nucleotides to 25 nucleotides, from 15 nucleotides to 1,000 nucleotides, from 20 nucleotides to 500 nucleotides, or from 25 nucleotides to 200 nucleotides. The loop portion of the RNA can include an intron. A double stranded RNA can have zero, one, two, three, four, five, six, seven, eight, nine, ten, or more stem-loop structures. A construct including a sequence that is operably linked to a regulatory region and a transcription termination sequence, and that is transcribed into an RNA that can form a double stranded RNA, is transformed into plants as described herein. Methods for using RNAi to inhibit the expression of a gene are known to those of skill in the art. See, e.g., U.S. Pat. Nos. 5,034,323; 6,326,527; 6,452,067; 6,573,099; 6,753,139; and 6,777,588. See also WO 97/01952; WO 98/53083; WO 99/32619; WO 98/36083; and U.S. Patent Publications 20030175965, 20030175783, 20040214330, and 20030180945.

[0129] Constructs containing regulatory regions operably linked to nucleic acid molecules in sense orientation can also be used to inhibit the expression of a gene. The transcription product can be similar or identical to the sense coding sequence of a salinity tolerance and/or oxidative stress tolerance-modulating polypeptide. The transcription product can also be unpolyadenylated, lack a 5' cap structure, or contain an unsplicable intron. Methods of inhibiting gene expression using a full-length cDNA as well as a partial cDNA sequence are known in the art. See, e.g., U.S. Pat. No. 5,231,020.

[0130] In some embodiments, a construct containing a nucleic acid having at least one strand that is a template for both sense and antisense sequences that are complementary to each other is used to inhibit the expression of a gene. The sense and antisense sequences can be part of a larger nucleic acid molecule or can be part of separate nucleic acid molecules having sequences that are not complementary. The sense or antisense sequence can be a sequence that is identical or complementary to the sequence of an mRNA, the 3' or 5' untranslated region of an mRNA, or an intron in a pre-mRNA encoding a salinity tolerance and/or oxidative stress tolerance-modulating polypeptide. In some embodiments, the sense or antisense sequence is identical or complementary to a sequence of the regulatory region that drives transcription of the gene encoding a salinity tolerance and/or oxidative stress tolerance-modulating polypeptide. In each case, the sense sequence is the sequence that is complementary to the antisense sequence.

[0131] The sense and antisense sequences can be any length greater than about 12 nucleotides (e.g., 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more nucleotides). For example, an antisense sequence can be 21 or 22 nucleotides in length. Typically, the sense and antisense sequences range in length from about 15 nucleotides to about 30 nucleotides, e.g., from about 18 nucleotides to about 28 nucleotides, or from about 21 nucleotides to about 25 nucleotides.

[0132] In some embodiments, an antisense sequence is a sequence complementary to an mRNA sequence encoding a salinity tolerance and/or oxidative stress tolerance-modulating polypeptide described herein. The sense sequence complementary to the antisense sequence can be a sequence present within the mRNA of the salinity tolerance and/or oxidative stress tolerance-modulating polypeptide. Typically, sense and antisense sequences are designed to correspond to a 15-30 nucleotide sequence of a target mRNA such that the level of that target mRNA is reduced.

[0133] In some embodiments, a construct containing a nucleic acid having at least one strand that is a template for more than one sense sequence (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more sense sequences) can be used to inhibit the expression of a gene. Likewise, a construct containing a nucleic acid having at least one strand that is a template for more than one antisense sequence (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more antisense sequences) can be used to inhibit the expression of a gene. For example, a construct can contain a nucleic acid having at least one strand that is a template for two sense sequences and two antisense sequences. The multiple sense sequences can be identical or different, and the multiple antisense sequences can be identical or different. For example, a construct can have a nucleic acid having one strand that is a template for two identical sense sequences and two identical antisense sequences that are complementary to the two identical sense sequences. Alternatively, an isolated nucleic acid can have one strand that is a template for (1) two identical sense sequences 20 nucleotides in length, (2) one antisense sequence that is complementary to the two identical sense sequences 20 nucleotides in length, (3) a sense sequence 30 nucleotides in length, and (4) three identical antisense sequences that are complementary to the sense sequence 30 nucleotides in length. The constructs provided herein can be designed to have any arrangement of sense and antisense sequences. For example, two identical sense sequences can be followed by two identical antisense sequences or can be positioned between two identical antisense sequences.

[0134] A nucleic acid having at least one strand that is a template for one or more sense and/or antisense sequences can be operably linked to a regulatory region to drive transcription of an RNA molecule containing the sense and/or antisense sequence(s). In addition, such a nucleic acid can be operably linked to a transcription terminator sequence, such as the terminator of the nopaline synthase (nos) gene. In some cases, two regulatory regions can direct transcription of two transcripts: one from the top strand, and one from the bottom strand. See, for example, Yan et al., Plant Physiol., 141:1508-1518 (2006). The two regulatory regions can be the same or different. The two transcripts can form double-stranded RNA molecules that induce degradation of the target RNA. In some cases, a nucleic acid can be positioned within a T-DNA or plant-derived transfer DNA (P-DNA) such that the left and right T-DNA border sequences, or the left and right border-like sequences of the P-DNA, flank or are on either side of the nucleic acid. See, US 2006/0265788. The nucleic acid sequence between the two regulatory regions can be from about 15 to about 300 nucleotides in length. In some embodiments, the nucleic acid sequence between the two regulatory regions is from about 15 to about 200 nucleotides in length, from about 15 to about 100 nucleotides in length, from about 15 to about 50 nucleotides in length, from about 18 to about 50 nucleotides in length, from about 18 to about 40 nucleotides in length, from about 18 to about 30 nucleotides in length, or from about 18 to about 25 nucleotides in length.

[0135] In some nucleic-acid based methods for inhibition of gene expression in plants, a suitable nucleic acid can be a nucleic acid analog. Nucleic acid analogs can be modified at the base moiety, sugar moiety, or phosphate backbone to improve, for example, stability, hybridization, or solubility of the nucleic acid. Modifications at the base moiety include deoxyuridine for deoxythymidine, and 5-methyl-2'-deoxycytidine and 5-bromo-2'-deoxycytidine for deoxycytidine. Modifications of the sugar moiety include modification of the 2' hydroxyl of the ribose sugar to form 2'-O-methyl or 2'-O-allyl sugars. The deoxyribose phosphate backbone can be modified to produce morpholino nucleic acids, in which each base moiety is linked to a six-membered morpholino ring, or peptide nucleic acids, in which the deoxyphosphate backbone is replaced by a pseudopeptide backbone and the four bases are retained. See, for example, Summerton and Weller, 1997, Antisense Nucleic Acid Drug Dev., 7:187-195; Hyrup et al., Bioorgan. Med. Chem., 4:5-23 (1996). In addition, the deoxyphosphate backbone can be replaced with, for example, a phosphorothioate or phosphorodithioate backbone, a phosphoroamidite, or an alkyl phosphotriester backbone.

[0136] C. Constructs/Vectors

[0137] Recombinant constructs provided herein can be used to transform plants or plant cells in order to modulate salinity tolerance and/or oxidative stress tolerance levels. A recombinant nucleic acid construct can comprise a nucleic acid encoding a salinity tolerance and/or oxidative stress tolerance-modulating polypeptide as described herein, operably linked to a regulatory region suitable for expressing the salinity tolerance and/or oxidative stress tolerance-modulating polypeptide in the plant or cell. Thus, a nucleic acid can comprise a coding sequence that encodes any of the salinity tolerance and/or oxidative stress tolerance-modulating polypeptides as set forth in SEQ ID NOs: 1, 3, 5, 7, 10, 12, 16, 18, 21, 26, 28, 32, 34, 40, 46, 48, 51, 53, 55, 57, 59, 61, 65, 67, 70, 72, 75, 77, 79, 82, 85, 87, 89, 92, 95, 97, 99, 103, 105, 108, 111, 113, 115, 117, 120, 124, 131, 133, 135, 137, 139, 146, 148, 150, 152, 155, 157, 159, 161, and 164. Examples of nucleic acids encoding salinity tolerance and/or oxidative stress tolerance-modulating polypeptides are set forth in SEQ ID NOs: 2, 4, 6, 8, 9, 11, 13, 14, 15, 17, 19, 20, 22, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 49, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 69, 71, 73, 74, 76, 78, 80, 81, 83, 84, 86, 88, 90, 91, 93, 94, 96, 98, 100, 101, 102, 104, 106, 107, 109, 110, 112, 114, 116, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 132, 134, 136, 138, 140, 141, 142, 143, 144, 145, 147, 149, 151, 153, 154, 156, 158, 160, 162, 163, 165, 166, 167, 168, and amino acid coordinates 1 to 135 of SEQ ID NO: 140. The salinity tolerance and/or oxidative stress tolerance-modulating polypeptide encoded by a recombinant nucleic acid can be a native salinity tolerance and/or oxidative stress tolerance-modulating polypeptide, or can be heterologous to the cell. In some cases, the recombinant construct contains a nucleic acid that inhibits expression of a salinity tolerance and/or oxidative stress tolerance-modulating polypeptide, operably linked to a regulatory region. Examples of suitable regulatory regions are described in the section entitled "Regulatory Regions."

[0138] Vectors containing recombinant nucleic acid constructs such as those described herein also are provided. Suitable vector backbones include, for example, those routinely used in the art such as plasmids, viruses, artificial chromosomes, BACs, YACs, or PACs. Suitable expression vectors include, without limitation, plasmids and viral vectors derived from, for example, bacteriophage, baculoviruses, and retroviruses. Numerous vectors and expression systems are commercially available from such corporations as Novagen (Madison, Wis.), Clontech (Palo Alto, Calif.), Stratagene (La Jolla, Calif.), and Invitrogen/Life Technologies (Carlsbad, Calif.).

[0139] The vectors provided herein also can include, for example, origins of replication, scaffold attachment regions (SARs), and/or markers. A marker gene can confer a selectable phenotype on a plant cell. For example, a marker can confer biocide resistance, such as resistance to an antibiotic (e.g., kanamycin, G418, bleomycin, or hygromycin), or an herbicide (e.g., glyphosate, chlorsulfuron or phosphinothricin). In addition, an expression vector can include a tag sequence designed to facilitate manipulation or detection (e.g., purification or localization) of the expressed polypeptide. Tag sequences, such as luciferase, .beta.-glucuronidase (GUS), green fluorescent protein (GFP), glutathione S-transferase (GST), polyhistidine, c-myc, hemagglutinin, or Flag.TM. tag (Kodak, New Haven, Conn.) sequences typically are expressed as a fusion with the encoded polypeptide. Such tags can be inserted anywhere within the polypeptide, including at either the carboxyl or amino terminus.

[0140] D. Regulatory Regions

[0141] The choice of regulatory regions to be included in a recombinant construct depends upon several factors, including, but not limited to, efficiency, selectability, inducibility, desired expression level, and cell- or tissue-preferential expression. It is a routine matter for one of skill in the art to modulate the expression of a coding sequence by appropriately selecting and positioning regulatory regions relative to the coding sequence. Transcription of a nucleic acid can be modulated in a similar manner.

[0142] Some suitable promoters initiate transcription only, or predominantly, in certain cell types. The choice of regulatory regions to be included in a recombinant construct depends upon several factors, including, but not limited to, efficiency, selectability, inducibility, desired expression level, and cell- or tissue-preferential expression. It is a routine matter for one of skill in the art to modulate the expression of a coding sequence by appropriately selecting and positioning regulatory regions relative to the coding sequence. Transcription of a nucleic acid can be modulated in a similar manner.

[0143] Some suitable regulatory regions initiate transcription only, or predominantly, in certain cell types. Methods for identifying and characterizing regulatory regions in plant genomic DNA are known, including, for example, those described in the following references: Jordano et al., Plant Cell, 1:855-866 (1989); Bustos et al., Plant Cell, 1:839-854 (1989); Green et al., EMBO J., 7:4035-4044 (1988); Meier et al., Plant Cell, 3:309-316 (1991); and Zhang et al., Plant Physiology, 110: 1069-1079 (1996).

[0144] Examples of various classes of regulatory regions are described below. Some of the regulatory regions indicated below as well as additional regulatory regions are described in more detail in U.S. Patent Application Ser. Nos. 60/505,689; 60/518,075; 60/544,771; 60/558,869; 60/583,691; 60/619,181; 60/637,140; 60/757,544; 60/776,307; Ser. Nos. 10/957,569; 11/058,689; 11/172,703; 11/208,308; 11/274,890; 60/583,609; 60/612,891; 11/097,589; 11/233,726; 11/408,791; 11/414,142; 10/950,321; 11/360,017; PCT/US05/011105; PCT/US05/23639; PCT/US05/034308; PCT/US05/034343; and PCT/US06/038236; PCT/US06/040572; and PCT/U.S.07/62762.

[0145] For example, the sequences of regulatory regions p326, YP0144, YP0190, p13879, YP0050, p32449, 21876, YP0158, YP0214, YP0380, PT0848, PT0633, YP0128, YP0275, PT0660, PT0683, PT0758, PT0613, PT0672, PT0688, PT0837, YP0092, PT0676, PT0708, YP0396, YP0007, YP0111, YP0103, YP0028, YP0121, YP0008, YP0039, YP0115, YP0119, YP0120, YP0374, YP0101, YP0102, YP0110, YP0117, YP0137, YP0285, YP0212, YP0097, YP0107, YP0088, YP0143, YP0156, PT0650, PT0695, PT0723, PT0838, PT0879, PT0740, PT0535, PT0668, PT0886, PT0585, YP0381, YP0337, PT0710, YP0356, YP0385, YP0384, YP0286, YP0377, PD1367, PT0863, PT0829, PT0665, PT0678, YP0086, YP0188, YP0263, PT0743 and YP0096 are set forth in the sequence listing of PCT/US06/040572; the sequence of regulatory region PT0625 is set forth in the sequence listing of PCT/US05/034343; the sequences of regulatory regions PT0623, YP0388, YP0087, YP0093, YP0108, YP0022 and YP0080 are set forth in the sequence listing of U.S. patent application Ser. No. 11/172,703; the sequence of regulatory region PR0924 is set forth in the sequence listing of PCT/U.S.07/62762; and the sequences of regulatory regions p530c10, pOsFIE2-2, pOsMEA, pOsYp102, and pOsYp285 are set forth in the sequence listing of PCT/US06/038236.

[0146] It will be appreciated that a regulatory region may meet criteria for one classification based on its activity in one plant species, and yet meet criteria for a different classification based on its activity in another plant species.

[0147] i. Broadly Expressing Promoters

[0148] A promoter can be said to be "broadly expressing" when it promotes transcription in many, but not necessarily all, plant tissues. For example, a broadly expressing promoter can promote transcription of an operably linked sequence in one or more of the shoot, shoot tip (apex), and leaves, but weakly or not at all in tissues such as roots or stems. As another example, a broadly expressing promoter can promote transcription of an operably linked sequence in one or more of the stem, shoot, shoot tip (apex), and leaves, but can promote transcription weakly or not at all in tissues such as reproductive tissues of flowers and developing seeds. Non-limiting examples of broadly expressing promoters that can be included in the nucleic acid constructs provided herein include the p326, YP0144, YP0190, p13879, YP0050, p32449, 21876, YP0158, YP0214, YP0380, PT0848, and PT0633 promoters. Additional examples include the cauliflower mosaic virus (CaMV) 35S promoter, the mannopine synthase (MAS) promoter, the 1' or 2' promoters derived from T-DNA of Agrobacterium tumefaciens, the figwort mosaic virus 34S promoter, actin promoters such as the rice actin promoter, and ubiquitin promoters such as the maize ubiquitin-1 promoter. In some cases, the CaMV 35S promoter is excluded from the category of broadly expressing promoters.

[0149] ii. Root Promoters

[0150] Root-active promoters confer transcription in root tissue, e.g., root endodermis, root epidermis, or root vascular tissues. In some embodiments, root-active promoters are root-preferential promoters, i.e., confer transcription only or predominantly in root tissue. Root-preferential promoters include the YP0128, YP0275, PT0625, PT0660, PT0683, and PT0758 promoters. Other root-preferential promoters include the PT0613, PT0672, PT0688, and PT0837 promoters, which drive transcription primarily in root tissue and to a lesser extent in ovules and/or seeds. Other examples of root-preferential promoters include the root-specific subdomains of the CaMV 35S promoter (Lam et al., Proc. Natl. Acad. Sci. USA, 86:7890-7894 (1989)), root cell specific promoters reported by Conkling et al., Plant Physiol., 93:1203-1211 (1990), and the tobacco RD2 promoter.

[0151] iii. Maturing Endosperm Promoters

[0152] In some embodiments, promoters that drive transcription in maturing endosperm can be useful. Transcription from a maturing endosperm promoter typically begins after fertilization and occurs primarily in endosperm tissue during seed development and is typically highest during the cellularization phase. Most suitable are promoters that are active predominantly in maturing endosperm, although promoters that are also active in other tissues can sometimes be used. Non-limiting examples of maturing endosperm promoters that can be included in the nucleic acid constructs provided herein include the napin promoter, the Arcelin-5 promoter, the phaseolin promoter (Bustos et al., Plant Cell, 1(9):839-853 (1989)), the soybean trypsin inhibitor promoter (Riggs et al., Plant Cell, 1(6):609-621 (1989)), the ACP promoter (Baerson et al., Plant Mol. Biol., 22(2):255-267 (1993)), the stearoyl-ACP desaturase promoter (Slocombe et al., Plant Physiol., 104(4):167-176 (1994)), the soybean .alpha.' subunit of .beta.-conglycinin promoter (Chen et al., Proc. Natl. Acad. Sci. USA, 83:8560-8564 (1986)), the oleosin promoter (Hong et al., Plant Mol. Biol., 34(3):549-555 (1997)), and zein promoters, such as the 15 kD zein promoter, the 16 kD zein promoter, 19 kD zein promoter, 22 kD zein promoter and 27 kD zein promoter. Also suitable are the Osgt-1 promoter from the rice glutelin-1 gene (Zheng et al., Mol. Cell. Biol., 13:5829-5842 (1993)), the beta-amylase promoter, and the barley hordein promoter. Other maturing endosperm promoters include the YP0092, PT0676, and PT0708 promoters.

[0153] iv. Ovary Tissue Promoters

[0154] Promoters that are active in ovary tissues such as the ovule wall and mesocarp can also be useful, e.g., a polygalacturonidase promoter, the banana TRX promoter, the melon actin promoter, YP0396, and PT0623. Examples of promoters that are active primarily in ovules include YP0007, YP0111, YP0092, YP0103, YP0028, YP0121, YP0008, YP0039, YP0115, YP0119, YP0120, and YP0374.

[0155] v. Embryo Sac/Early Endosperm Promoters

[0156] To achieve expression in embryo sac/early endosperm, regulatory regions can be used that are active in polar nuclei and/or the central cell, or in precursors to polar nuclei, but not in egg cells or precursors to egg cells. Most suitable are promoters that drive expression only or predominantly in polar nuclei or precursors thereto and/or the central cell. A pattern of transcription that extends from polar nuclei into early endosperm development can also be found with embryo sac/early endosperm-preferential promoters, although transcription typically decreases significantly in later endosperm development during and after the cellularization phase. Expression in the zygote or developing embryo typically is not present with embryo sac/early endosperm promoters.

[0157] Promoters that may be suitable include those derived from the following genes: Arabidopsis viviparous-1 (see, GenBank No. U93215); Arabidopsis atmycl (see, Urao (1996) Plant Mol. Biol., 32:571-57; Conceicao (1994) Plant, 5:493-505); Arabidopsis FIE (GenBank No. AF129516); Arabidopsis MEA; Arabidopsis FIS2 (GenBank No. AF096096); and FIE 1.1 (U.S. Pat. No. 6,906,244). Other promoters that may be suitable include those derived from the following genes: maize MAC1 (see, Sheridan (1996) Genetics, 142:1009-1020); maize Cat3 (see, GenBank No. L05934; Abler (1993) Plant Mol. Biol., 22:10131-1038). Other promoters include the following Arabidopsis promoters: YP0039, YP0101, YP0102, YP0110, YP0117, YP0119, YP0137, DME, YP0285, and YP0212. Other promoters that may be useful include the following rice promoters: p530c10, pOsFIE2-2, pOsMEA, pOsYp102, and pOsYp285.

[0158] vi. Embryo Promoters

[0159] Regulatory regions that preferentially drive transcription in zygotic cells following fertilization can provide embryo-preferential expression. Most suitable are promoters that preferentially drive transcription in early stage embryos prior to the heart stage, but expression in late stage and maturing embryos is also suitable. Embryo-preferential promoters include the barley lipid transfer protein (Ltp1) promoter (Plant Cell Rep (2001) 20:647-654), YP0097, YP0107, YP0088, YP0143, YP0156, PT0650, PT0695, PT0723, PT0838, PT0879, and PT0740.

[0160] vii. Photosynthetic Tissue Promoters

[0161] Promoters active in photosynthetic tissue confer transcription in green tissues such as leaves and stems. Most suitable are promoters that drive expression only or predominantly in such tissues. Examples of such promoters include the ribulose-1,5-bisphosphate carboxylase (RbcS) promoters such as the RbcS promoter from eastern larch (Larix laricina), the pine cab6 promoter (Yamamoto et al., Plant Cell Physiol., 35:773-778 (1994)), the Cab-1 promoter from wheat (Fejes et al., Plant Mol. Biol., 15:921-932 (1990)), the CAB-1 promoter from spinach (Lubberstedt et al., Plant Physiol., 104:997-1006 (1994)), the cab1R promoter from rice (Luan et al., Plant Cell, 4:971-981 (1992)), the pyruvate orthophosphate dikinase (PPDK) promoter from corn (Matsuoka et al., Proc. Natl. Acad. Sci. USA, 90:9586-9590 (1993)), the tobacco Lhcb1*2 promoter (Cerdan et al., Plant Mol. Biol., 33:245-255 (1997)), the Arabidopsis thaliana SUC2 sucrose-H+ symporter promoter (Truernit et al., Planta, 196:564-570 (1995)), and thylakoid membrane protein promoters from spinach (psaD, psaF, psaE, PC, FNR, atpC, atpD, cab, rbcS). Other photosynthetic tissue promoters include PT0535, PT0668, PT0886, YP0144, YP0380 and PT0585.

[0162] viii. Vascular Tissue Promoters

[0163] Examples of promoters that have high or preferential activity in vascular bundles include YP0087, YP0093, YP0108, YP0022, and YP0080. Other vascular tissue-preferential promoters include the glycine-rich cell wall protein GRP 1.8 promoter (Keller and Baumgartner, Plant Cell, 3(10):1051-1061 (1991)), the Commelina yellow mottle virus (CoYMV) promoter (Medberry et al., Plant Cell, 4(2):185-192 (1992)), and the rice tungro bacilliform virus (RTBV) promoter (Dai et al., Proc. Natl. Acad. Sci. USA, 101(2):687-692 (2004)).

[0164] ix. Inducible Promoters

[0165] Inducible promoters confer transcription in response to external stimuli such as chemical agents or environmental stimuli. For example, inducible promoters can confer transcription in response to hormones such as giberellic acid or ethylene, or in response to light or drought. Examples of drought-inducible promoters include YP0380, PT0848, YP0381, YP0337, PT0633, YP0374, PT0710, YP0356, YP0385, YP0396, YP0388, YP0384, PT0688, YP0286, YP0377, PD1367, and PD0901. Examples of nitrogen-inducible promoters include PT0863, PT0829, PT0665, and PT0886. Examples of shade-inducible promoters include PR0924 and PT0678. An example of a promoter induced by salt is rd29A (Kasuga et al. (1999) Nature Biotech 17: 287-291).

[0166] x. Basal Promoters

[0167] A basal promoter is the minimal sequence necessary for assembly of a transcription complex required for transcription initiation. Basal promoters frequently include a "TATA box" element that may be located between about 15 and about 35 nucleotides upstream from the site of transcription initiation. Basal promoters also may include a "CCAAT box" element (typically the sequence CCAAT) and/or a GGGCG sequence, which can be located between about 40 and about 200 nucleotides, typically about 60 to about 120 nucleotides, upstream from the transcription start site.

[0168] xi. Other Promoters

[0169] Other classes of promoters include, but are not limited to, shoot-preferential, callus-preferential, trichome cell-preferential, guard cell-preferential such as PT0678, tuber-preferential, parenchyma cell-preferential, and senescence-preferential promoters. Promoters designated YP0086, YP0188, YP0263, PT0758, PT0743, PT0829, YP0119, and YP0096, as described in the above-referenced patent applications, may also be useful.

[0170] xii. Other Regulatory Regions

[0171] A 5' untranslated region (UTR) can be included in nucleic acid constructs described herein. A 5' UTR is transcribed, but is not translated, and lies between the start site of the transcript and the translation initiation codon and may include the +1 nucleotide. A 3' UTR can be positioned between the translation termination codon and the end of the transcript. UTRs can have particular functions such as increasing mRNA stability or attenuating translation. Examples of 3' UTRs include, but are not limited to, polyadenylation signals and transcription termination sequences, e.g., a nopaline synthase termination sequence.

[0172] It will be understood that more than one regulatory region may be present in a recombinant polynucleotide, e.g., introns, enhancers, upstream activation regions, transcription terminators, and inducible elements. Thus, for example, more than one regulatory region can be operably linked to the sequence of a polynucleotide encoding a salt and/or oxidative stress tolerance modulating polypeptide.

[0173] Regulatory regions, such as promoters for endogenous genes, can be obtained by chemical synthesis or by subcloning from a genomic DNA that includes such a regulatory region. A nucleic acid comprising such a regulatory region can also include flanking sequences that contain restriction enzyme sites that facilitate subsequent manipulation.

[0174] Alternatively, misexpression can be accomplished using a two component system, whereby the first component consists of a transgenic plant comprising a transcriptional activator operatively linked to a promoter and the second component consists of a transgenic plant that comprise a nucleic acid molecule of the invention operatively linked to the target-binding sequence/region of the transcriptional activator. The two transgenic plants are crossed and the nucleic acid molecule of the invention is expressed in the progeny of the plant. In another alternative embodiment of the present invention, the misexpression can be accomplished by having the sequences of the two component system transformed in one transgenic plant line.

IV. Transgenic Plants and Plant Cells

[0175] A. Transformation

[0176] The invention also features transgenic plant cells and plants comprising at least one recombinant nucleic acid construct described herein. A plant or plant cell can be transformed by having a construct integrated into its genome, i.e., can be stably transformed. Stably transformed cells typically retain the introduced nucleic acid with each cell division. A plant or plant cell can also be transiently transformed such that the construct is not integrated into its genome. Transiently transformed cells typically lose all or some portion of the introduced nucleic acid construct with each cell division such that the introduced nucleic acid cannot be detected in daughter cells after a sufficient number of cell divisions. Both transiently transformed and stably transformed transgenic plants and plant cells can be useful in the methods described herein.

[0177] Transgenic plant cells used in methods described herein can constitute part or all of a whole plant. Such plants can be grown in a manner suitable for the species under consideration, either in a growth chamber, a greenhouse, or in a field. Transgenic plants can be bred as desired for a particular purpose, e.g., to introduce a recombinant nucleic acid into other lines, to transfer a recombinant nucleic acid to other species, or for further selection of other desirable traits. Alternatively, transgenic plants can be propagated vegetatively for those species amenable to such techniques. As used herein, a transgenic plant also refers to progeny of an initial transgenic plant having the transgene. Seeds produced by a transgenic plant can be grown and then selfed (or outcrossed and selfed) to obtain seeds homozygous for the nucleic acid construct.

[0178] Transgenic plants can be grown in suspension culture, or tissue or organ culture. For the purposes of this invention, solid and/or liquid tissue culture techniques can be used. When using solid medium, transgenic plant cells can be placed directly onto the medium or can be placed onto a filter that is then placed in contact with the medium. When using liquid medium, transgenic plant cells can be placed onto a flotation device, e.g., a porous membrane that contacts the liquid medium. A solid medium can be, for example, Murashige and Skoog (MS) medium containing agar and a suitable concentration of an auxin, e.g., 2,4-dichlorophenoxyacetic acid (2,4-D), and a suitable concentration of a cytokinin, e.g., kinetin.

[0179] When transiently transformed plant cells are used, a reporter sequence encoding a reporter polypeptide having a reporter activity can be included in the transformation procedure and an assay for reporter activity or expression can be performed at a suitable time after transformation. A suitable time for conducting the assay typically is about 1-21 days after transformation, e.g., about 1-14 days, about 1-7 days, or about 1-3 days. The use of transient assays is particularly convenient for rapid analysis in different species, or to confirm expression of a heterologous salinity tolerance and/or oxidative stress tolerance-modulating polypeptide whose expression has not previously been confirmed in particular recipient cells.

[0180] Techniques for introducing nucleic acids into monocotyledonous and dicotyledonous plants are known in the art, and include, without limitation, Agrobacterium-mediated transformation, viral vector-mediated transformation, electroporation and particle gun transformation, e.g., U.S. Pat. Nos. 5,538,880; 5,204,253; 6,329,571 and 6,013,863. If a cell or cultured tissue is used as the recipient tissue for transformation, plants can be regenerated from transformed cultures if desired, by techniques known to those skilled in the art.

[0181] B. Screening/Selection

[0182] A population of transgenic plants can be screened and/or selected for those members of the population that have a trait or phenotype conferred by expression of the transgene. For example, a population of progeny of a single transformation event can be screened for those plants having a desired level of expression of a salinity tolerance and/or oxidative stress tolerance-modulating polypeptide or nucleic acid. Physical and biochemical methods can be used to identify expression levels. These include Southern analysis or PCR amplification for detection of a polynucleotide; Northern blots, S1 RNase protection, primer-extension, or RT-PCR amplification for detecting RNA transcripts; enzymatic assays for detecting enzyme or ribozyme activity of polypeptides and polynucleotides; and protein gel electrophoresis, Western blots, immunoprecipitation, and enzyme-linked immunoassays to detect polypeptides. Other techniques such as in situ hybridization, enzyme staining, and immunostaining also can be used to detect the presence or expression of polypeptides and/or polynucleotides. Methods for performing all of the referenced techniques are known. As an alternative, a population of plants comprising independent transformation events can be screened for those plants having a desired trait, such as a modulated level of salinity tolerance and/or oxidative stress tolerance. Selection and/or screening can be carried out over one or more generations, and/or in more than one geographic location. In some cases, transgenic plants can be grown and selected under conditions which induce a desired phenotype or are otherwise necessary to produce a desired phenotype in a transgenic plant. In addition, selection and/or screening can be applied during a particular developmental stage in which the phenotype is expected to be exhibited by the plant. Selection and/or screening can be carried out to choose those transgenic plants having a statistically significant difference in a salinity tolerance and/or oxidative stress tolerance level relative to a control plant that lacks the transgene. Selected or screened transgenic plants have an altered phenotype as compared to a corresponding control plant, as described in the "Transgenic Plant Phenotypes" section herein.

[0183] A population of transgenic plants can be screened and/or selected for those members of the population that have a trait or phenotype conferred by expression of the transgene. For example, a population of progeny of a single transformation event can be screened for those plants having a desired level of expression of a saline and/or oxidative stress tolerance-modulating polypeptide and/or nucleic acid. Physical and biochemical methods can be used to identify expression levels. These include Southern analysis or PCR amplification for detection of a polynucleotide; Northern blots, S1 RNase protection, primer-extension, or RT-PCR amplification for detecting RNA transcripts; enzymatic assays for detecting enzyme or ribozyme activity of polypeptides and polynucleotides; and protein gel electrophoresis, Western blots, immunoprecipitation, and enzyme-linked immunoassays to detect polypeptides. Other techniques such as in situ hybridization, enzyme staining, and immunostaining also can be used to detect the presence or expression of polypeptides and/or polynucleotides. Methods for performing all of the referenced techniques are known. As an alternative, a population of plants comprising independent transformation events can be screened for those plants having a desired trait, such as a modulated level of saline and/or oxidative stress tolerance. Selection and/or screening can be carried out over one or more generations, and/or in more than one geographic location. In some cases, transgenic plants can be grown and selected under conditions which induce a desired phenotype or are otherwise necessary to produce a desired phenotype in a transgenic plant. In addition, selection and/or screening can be applied during a particular developmental stage in which the phenotype is expected to be exhibited by the plant. Selection and/or screening can be carried out to choose those transgenic plants having a statistically significant difference in a saline and/or oxidative stress tolerance level relative to a control plant that lacks the transgene. Selected or screened transgenic plants have an altered phenotype as compared to a corresponding control plant, as described in the "Transgenic Plant Phenotypes" section herein.

[0184] C. Plant Species

[0185] The polynucleotides and vectors described herein can be used to transform a number of monocotyledonous and dicotyledonous plants and plant cell systems, including species from one of the following families: Acanthaceae, Alliaceae, Alstroemeriaceae, Amaryllidaceae, Apocynaceae, Arecaceae, Asteraceae, Berberidaceae, Bixaceae, Brassicaceae, Bromeliaceae, Cannabaceae, Caryophyllaceae, Cephalotaxaceae, Chenopodiaceae, Colchicaceae, Cucurbitaceae, Dioscoreaceae, Ephedraceae, Erythroxylaceae, Euphorbiaceae, Fabaceae, Lamiaceae, Linaceae, Lycopodiaceae, Malvaceae, Melanthiaceae, Musaceae, Myrtaceae, Nyssaceae, Papaveraceae, Pinaceae, Plantaginaceae, Poaceae, Rosaceae, Rubiaceae, Salicaceae, Sapindaceae, Solanaceae, Taxaceae, Theaceae, or Vitaceae.

[0186] Suitable species may include members of the genus Abelmoschus, Abies, Acer, Agrostis, Allium, Alstroemeria, Ananas, Andrographis, Andropogon, Artemisia, Arundo, Atropa, Berberis, Beta, Bixa, Brassica, Calendula, Camellia, Camptotheca, Cannabis, Capsicum, Carthamus, Catharanthus, Cephalotaxus, Chrysanthemum, Cinchona, Citrullus, Coffea, Colchicum, Coleus, Cucumis, Cucurbita, Cynodon, Datura, Dianthus, Digitalis, Dioscorea, Elaeis, Ephedra, Erianthus, Erythroxylum, Eucalyptus, Festuca, Fragaria, Galanthus, Glycine, Gossypium, Helianthus, Hevea, Hordeum, Hyoscyamus, Jatropha, Lactuca, Linum, Lolium, Lupinus, Lycopersicon, Lycopodium, Manihot, Medicago, Mentha, Miscanthus, Musa, Nicotiana, Oryza, Panicum, Papaver, Parthenium, Pennisetum, Petunia, Phalaris, Phleum, Pinus, Poa, Poinsettia, Populus, Rauwolfia, Ricinus, Rosa, Saccharum, Salix, Sanguinaria, Scopolia, Secale, Solanum, Sorghum, Spartina, Spinacea, Tanacetum, Taxus, Theobroma, Triticosecale, Triticum, Uniola, Veratrum, Vinca, Vitis, and Zea.

[0187] Suitable species include Panicum spp., Sorghum spp., Miscanthus spp., Saccharum spp., Erianthus spp., Populus spp., Andropogon gerardii (big bluestem), Pennisetum purpureum (elephant grass), Phalaris arundinacea (reed canarygrass), Cynodon dactylon (bermudagrass), Festuca arundinacea (tall fescue), Spartina pectinata (prairie cord--grass), Medicago sativa (alfalfa), Arundo donax (giant reed), Secale cereale (rye), Salix spp. (willow), Eucalyptus spp. (eucalyptus), Triticosecale (triticum--wheat X rye) and bamboo.

[0188] Suitable species also include Helianthus annuus (sunflower), Carthamus tinctorius (safflower), Jatropha curcas (jatropha), Ricinus communis (castor), Elaeis guineensis (palm), Linum usitatissimum (flax), and Brassica juncea.

[0189] Suitable species also include Beta vulgaris (sugarbeet), and Manihot esculenta (cassava).

[0190] Suitable species also include Lycopersicon esculentum (tomato), Lactuca sativa (lettuce), Musa paradisiaca (banana), Solanum tuberosum (potato), Brassica oleracea (broccoli, cauliflower, brusselsprouts), Camellia sinensis (tea), Fragaria ananassa (strawberry), Theobroma cacao (cocoa), Coffea arabica (coffee), Vitis vinifera (grape), Ananas comosus (pineapple), Capsicum annum (hot & sweet pepper), Allium cepa (onion), Cucumis melo (melon), Cucumis sativus (cucumber), Cucurbita maxima (squash), Cucurbita moschata (squash), Spinacea oleracea (spinach), Citrullus lanatus (watermelon), Abelmoschus esculentus (okra), and Solanum melongena (eggplant).

[0191] Suitable species also include Papaver somniferum (opium poppy), Papaver orientale, Taxus baccata, Taxus brevifolia, Artemisia annua, Cannabis sativa, Camptotheca acuminate, Catharanthus roseus, Vinca rosea, Cinchona officinalis, Colchicum autumnale, Veratrum californica., Digitalis lanata, Digitalis purpurea, Dioscorea spp., Andrographis paniculata, Atropa belladonna, Datura stomonium, Berberis spp., Cephalotaxus spp., Ephedra sinica, Ephedra spp., Erythroxylum coca, Galanthus wornorii, Scopolia spp., Lycopodium serratum (=Huperzia serrata), Lycopodium spp., Rauwolfia serpentina, Rauwolfia spp., Sanguinaria canadensis, Hyoscyamus spp., Calendula officinalis, Chrysanthemum parthenium, Coleus forskohlii, and Tanacetum parthenium.

[0192] Suitable species also include Parthenium argentatum (guayule), Hevea spp. (rubber), Mentha spicata (mint), Mentha piperita (mint), Bixa orellana, and Alstroemeria spp.

[0193] Suitable species also include Rosa spp. (rose), Dianthus caryophyllus (carnation), Petunia spp. (petunia) and Poinsettia pulcherrima (poinsettia).

[0194] Suitable species also include Nicotiana tabacum (tobacco), Lupinus albus (lupin), Uniola paniculata (oats), bentgrass (Agrostis spp.), Populus tremuloides (aspen), Pinus spp. (pine), Abies spp. (fir), Acer spp. (maple, Hordeum vulgare (barley), Poa pratensis (bluegrass), Lolium spp. (ryegrass) and Phleum pratense (timothy).

[0195] Thus, the methods and compositions can be used over a broad range of plant species, including species from the dicot genera Brassica, Carthamus, Glycine, Gossypium, Helianthus, Jatropha, Parthenium, Populus, and Ricinus; and the monocot genera Elaeis, Festuca, Hordeum, Lolium, Oryza, Panicum, Pennisetum, Phleum, Poa, Saccharum, Secale, Sorghum, Triticosecale, Triticur, and Zea. In some embodiments, a plant is a member of the species Panicum virgatum (switchgrass), Sorghum bicolor (sorghum, sudangrass), Miscanthus giganteus (miscanthus), Saccharum sp. (energycane), Populus balsamifera (poplar), Zea mays (corn), Glycine max (soybean), Brassica napus (canola), Triticum aestivum (wheat), Gossypium hirsutum (cotton), Oryza sativa (rice), Helianthus annuus (sunflower), Medicago sativa (alfalfa), Beta vulgaris (sugarbeet), or Pennisetum glaucum (pearl millet).

[0196] In certain embodiments, the polynucleotides and vectors described herein can be used to transform a number of monocotyledonous and dicotyledonous plants and plant cell systems, wherein such plants are hybrids of different species or varieties of a species (e.g., Saccharum sp. X Miscanthus sp.)

[0197] D. Transgenic Plant Phenotypes

[0198] In some embodiments, a plant in which expression of a salinity and/or oxidative stress modulating polypeptide is modulated can have increased levels of tolerance to salinity and/or oxidative stress. For example, a salinity and/or oxidative stress-modulating polypeptide described herein can be expressed in a transgenic plant, resulting in increased levels of tolerance to salinity and/or oxidative stress. The salinity and/or oxidative stress tolerance levels can be increased by at least 2 percent, e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, or more than 60 percent, as compared to those levels in a corresponding control plant that does not express the transgene.

[0199] The nucleic acid molecules and polypeptides of the present invention are of interest because when the nucleic acid molecules are mis-expressed (i.e., when expressed at a non-natural location or in an increased or decreased amount relative to wild-type) they produce plants that exhibit improved salt tolerance and/or oxidation tolerance as compared to wild-type plants, as evidenced in part by the results of various experiments disclosed below. In particular, plants transformed with the nucleic acid molecules and polypeptides of the present invention can have any of a number of modified characteristics as compared to wild-type plants. Examples of modified characteristics include photosynthetic efficiency, seedling area, and biomass as it may be measured by plant height, leaf or rosette area, or dry mass. The modified characteristics may be observed and measured at different plant developmental stages, e.g. seed, seedling, bolting, senescense, etc. Often, salt or oxidative tolerance can be expressed as ratios or combinations of measurements, such as salt growth index values, or salicylic acid growth index values. For example, plants transformed with the sequences of the present invention can exhibit increases in SGI, seedling area and/or SAGI values of at least 5%, at least 10%, at least 25%, at least 50%, at least 75%, at least 100%, at least 200%, at least 300%, at least 400%, or even at least 500%. These traits can be used to exploit or maximize plant products. For example, the nucleic acid molecules and polypeptides of the present invention are used to increase the expression of genes that cause the plant to have improved biomass, growth rate and/or seedling vigor in saline and/or oxidative conditions, in comparison to wild type plants under the same conditions.

[0200] Because the disclosed sequences and methods increase vegetative growth and growth rate in saline and/or oxidative conditions, the disclosed methods can be used to enhance plant growth in plants grown in saline and/or oxidative conditions. For example, plants of the present invention show, under saline and/or oxidative conditions, increased photosynthetic efficiency and increased seedling area as compared to a plant of the same species that is not genetically modified for substantial vegetative growth. Examples of increases in biomass production include increases of at least 5%, at least 20%, or even at least 50%, when compared to an amount of biomass production by a wild-type plant of the same species under identical conditions.

[0201] Typically, a difference in the amount of tolerance to salinity and/or oxidative stress in a transgenic plant or cell relative to a control plant or cell is considered statistically significant at p<0.05 with an appropriate parametric or non-parametric statistic, e.g., Chi-square test, Student's t-test, Mann-Whitney test, or F-test. In some embodiments, a difference in the amount of tolerance to salinity and/or oxidative stress is statistically significant at p<0.01, p<0.005, or p<0.001.

[0202] The phenotype of a transgenic plant is evaluated relative to a control plant. A plant is said "not to express" a polypeptide when the plant exhibits less than 10%, e.g., less than 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.01%, or 0.001%, of the amount of polypeptide or mRNA encoding the polypeptide exhibited by the plant of interest. Expression can be evaluated using methods including, for example, RT-PCR, Northern blots, S1 RNase protection, primer extensions, Western blots, protein gel electrophoresis, immunoprecipitation, enzyme-linked immunoassays, chip assays, and mass spectrometry. It should be noted that if a polypeptide is expressed under the control of a tissue-preferential or broadly expressing promoter, expression can be evaluated in the entire plant or in a selected tissue. Similarly, if a polypeptide is expressed at a particular time, e.g., at a particular time in development or upon induction, expression can be evaluated selectively at a desired time period.

V. Plant Breeding

[0203] Genetic polymorphisms are discrete allelic sequence differences in a population. Typically, an allele that is present at 1% or greater is considered to be a genetic polymorphism. The discovery that polypeptides disclosed herein can modulate salinity tolerance and/or oxidative stress tolerance content is useful in plant breeding, because genetic polymorphisms exhibiting a degree of linkage with loci for such polypeptides are more likely to be correlated with variation in a salinity tolerance and/or oxidative stress tolerance trait. For example, genetic polymorphisms linked to the loci for such polypeptides are more likely to be useful in marker-assisted breeding programs to create lines having a desired modulation in the salinity tolerance and/or oxidative stress tolerance traits.

[0204] Thus, one aspect of the invention includes methods of identifying whether one or more genetic polymorphisms are associated with variation in a salinity tolerance and/or oxidative stress tolerance trait. Such methods involve determining whether genetic polymorphisms in a given population exhibit linkage with the locus for one of the polypeptides depicted in FIGS. 1 thru 6 and/or a functional homolog thereof, such as, but not limited to, those in the Sequence Listing. The correlation is measured between variation in the salinity tolerance and/or oxidative stress tolerance traits in plants of the population and the presence of the genetic polymorphism(s) in plants of the population, thereby identifying whether or not the genetic polymorphism(s) are associated with variation for the traits. If the presence of a particular allele is statistically significantly correlated with a desired modulation in the salinity tolerance and/or oxidative stress tolerance traits, the allele is associated with variation for one or both of the traits and is useful as a marker for one or more of the traits. If, on the other hand, the presence of a particular allele is not significantly correlated with the desired modulation, the allele is not associated with variation for one or more of the traits and is not useful as a marker.

[0205] Such methods are applicable to populations containing the naturally occurring endogenous polypeptide rather than an exogenous nucleic acid encoding the polypeptide, i.e., populations that are not transgenic for the exogenous nucleic acid. It will be appreciated, however, that populations suitable for use in the methods may contain a transgene for another, different trait, e.g., herbicide resistance.

[0206] Genetic polymorphisms that are useful in such methods include simple sequence repeats (SSRs, or microsatellites), rapid amplification of polymorphic DNA (RAPDs), single nucleotide polymorphisms (SNPs), amplified fragment length polymorphisms (AFLPs) and restriction fragment length polymorphisms (RFLPs). SSR polymorphisms can be identified, for example, by making sequence specific probes and amplifying template DNA from individuals in the population of interest by PCR. If the probes flank an SSR in the population, PCR products of different sizes will be produced. See, e.g., U.S. Pat. No. 5,766,847. Alternatively, SSR polymorphisms can be identified by using PCR product(s) as a probe against Southern blots from different individuals in the population. See, U. H. Refseth et al., (1997) Electrophoresis 18: 1519. The identification of RFLPs is discussed, for example, in Alonso-Blanco et al. (Methods in Molecular Biology, vol. 82, "Arabidopsis Protocols", pp. 137-146, J. M. Martinez-Zapater and J. Salinas, eds., c. 1998 by Humana Press, Totowa, N.J.); Burr ("Mapping Genes with Recombinant Inbreds", pp. 249-254, in Freeling, M. and V. Walbot (Ed.), The Maize Handbook, c. 1994 by Springer-Verlag New York, Inc.: New York, N.Y., USA; Berlin Germany; Burr et al. Genetics (1998) 118: 519; and Gardiner, J. et al., (1993) Genetics 134: 917). The identification of AFLPs is discussed, for example, in EP 0 534 858 and U.S. Pat. No. 5,878,215.

[0207] In some embodiments, the methods are directed to breeding a plant line. Such methods use genetic polymorphisms identified as described above in a marker assisted breeding program to facilitate the development of lines that have a desired alteration in the salinity tolerance and/or oxidative stress tolerance trait(s). Once a suitable genetic polymorphism is identified as being associated with variation for the trait, one or more individual plants are identified that possess the polymorphic allele correlated with the desired variation. Those plants are then used in a breeding program to combine the polymorphic allele with a plurality of other alleles at other loci that are correlated with the desired variation. Techniques suitable for use in a plant breeding program are known in the art and include, without limitation, backcrossing, mass selection, pedigree breeding, bulk selection, crossing to another population and recurrent selection. These techniques can be used alone or in combination with one or more other techniques in a breeding program. Thus, each identified plants is selfed or crossed a different plant to produce seed which is then germinated to form progeny plants. At least one such progeny plant is then selfed or crossed with a different plant to form a subsequent progeny generation. The breeding program can repeat the steps of selfing or outcrossing for an additional 0 to 5 generations as appropriate in order to achieve the desired uniformity and stability in the resulting plant line, which retains the polymorphic allele. In most breeding programs, analysis for the particular polymorphic allele will be carried out in each generation, although analysis can be carried out in alternate generations if desired.

[0208] In some cases, selection for other useful traits is also carried out, e.g., selection for fungal resistance or bacterial resistance. Selection for such other traits can be carried out before, during or after identification of individual plants that possess the desired polymorphic allele.

VI. Articles of Manufacture

[0209] Transgenic plants provided herein have various uses in the agricultural and energy production industries. For example, transgenic plants described herein can be used to make animal feed and food products. Such plants, however, are often particularly useful as a feedstock for energy production.

[0210] Transgenic plants described herein often produce higher yields of grain and/or biomass per hectare, relative to control plants that lack the exogenous nucleic acid. In some embodiments, such transgenic plants provide equivalent or even increased yields of grain and/or biomass per hectare relative to control plants when grown under conditions of reduced inputs such as fertilizer and/or water. Thus, such transgenic plants can be used to provide yield stability at a lower input cost and/or under environmentally stressful conditions such as drought. In some embodiments, plants described herein have a composition that permits more efficient processing into free sugars, and subsequently ethanol, for energy production. In some embodiments, such plants provide higher yields of ethanol, butanol, other biofuel molecules, and/or sugar-derived co-products per kilogram of plant material, relative to control plants. By providing higher yields at an equivalent or even decreased cost of production relative to controls, the transgenic plants described herein improve profitability for farmers and processors as well as decrease costs to consumers.

[0211] Seeds from transgenic plants described herein can be conditioned and bagged in packaging material by means known in the art to form an article of manufacture. Packaging material such as paper and cloth are well known in the art. A package of seed can have a label, e.g., a tag or label secured to the packaging material, a label printed on the packaging material, or a label inserted within the package, that describes the nature of the seeds therein.

[0212] Enhanced salt and/or oxidative stress tolerance gives the opportunity to grow crops in saline or oxidative stress conditions without stunted growth and diminished yields due to salt-induced ion imbalance, disruption of water homeostasis, inhibition of metabolism, damage to membranes, and/or cell death. The ability to grow plants in saline or oxidative stress conditions would result in an overall expansion of arable land and increased output of land currently marginally productive due to elevated salinity or oxidative stress conditions.

[0213] Seed or seedling vigor is an important characteristic that can greatly influence successful growth of a plant, such as crop plants. Adverse environmental conditions, such as saline and/or oxidative conditions, can affect a plant growth cycle, germination of seeds and seedling vigor (i.e. vitality and strength under such conditions can differentiate between successful and failed plant growth). Seedling vigor has often been defined to comprise the seed properties that determine "the potential for rapid, uniform emergence and development of normal seedlings under a wide range of field conditions". Hence, it would be advantageous to develop plant seeds with increased vigor, particularly in elevated salinity and/or in oxidative stress conditions.

[0214] For example, increased seedling vigor would be advantageous for cereal plants such as rice, maize, wheat, etc. production. For these crops, germination and growth can often be slowed or stopped by salination and/or oxidation. Genes associated with increased seed vigor under saline and/or oxidative stress conditions have therefore been sought for producing improved plant varieties. (Walia et al. (2005) Plant Physiology 139:822-835).

[0215] The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.

VII. Examples

Example 1

Agrobacterium-Mediated Transformation of Arabidopsis

[0216] Host Plants and Transgenes: Wild-type Arabidopsis thaliana Wassilewskija (WS) plants were independently transformed with Ti plasmids containing clones encoding polypeptides at SEQ ID NOs: 43, 44, 45, 86, 136, 138, 140, 141, 142, 143, 144, and amino acid coordinates 1 to 135 of SEQ ID NO: 140. Examples include Ceres CLONE ID no. 1792354, Ceres SEEDLINE ID no. ME06748, Ceres SEEDLINE ID no. ME08768, Ceres SEEDLINE ID no. ME19173, and Ceres CLONE ID no. 375578. Unless otherwise indicated, each Ceres Clone and/or Seedline derived from a Clone is in the sense orientation relative to either the 35S promoter in a Ti plasmid. A Ti plasmid vector useful for these constructs, CRS 338, contains the Ceres-constructed, plant selectable marker gene phosphinothricin acetyltransferase (PAT), which confers herbicide resistance to transformed plants.

[0217] Preparation of Soil Mixture: 24 L Sunshine Mix #5 soil (Sun Gro Horticulture, Ltd., Bellevue, Wash.) is mixed with 16 L Therm-O-Rock vermiculite (Therm-O-Rock West, Inc., Chandler, Ariz.) in a cement mixer to make a 60:40 soil mixture. To the soil mixture is added 2 Tbsp Marathon 1% granules (Hummert, Earth City, Mo.), 3 Tbsp OSMOCOTE.RTM. 14-14-14 (Hummert, Earth City, Mo.) and 1 Tbsp Peters fertilizer 20-20-20 (J.R. Peters, Inc., Allentown, Pa.), which are first added to 3 gallons of water and then added to the soil and mixed thoroughly. Generally, 4-inch diameter pots are filled with soil mixture. Pots are then covered with 8-inch squares of nylon netting.

[0218] Planting: Using a 60 mL syringe, 35 mL of the seed mixture is aspirated. 25 drops are added to each pot. Clear propagation domes are placed on top of the pots that are then placed under 55% shade cloth and subirrigated by adding 1 inch of water.

[0219] Plant Maintenance: 3 to 4 days after planting, lids and shade cloth are removed. Plants are watered as needed. After 7-10 days, pots are thinned to 20 plants per pot using forceps. After 2 weeks, all plants are subirrigated with Peters fertilizer at a rate of 1 Tsp per gallon of water. When bolts are about 5-10 cm long, they are clipped between the first node and the base of stem to induce secondary bolts. Dipping infiltration is performed 6 to 7 days after clipping.

[0220] Preparation of Agrobacterium: To 150 mL fresh YEB is added 0.1 mL each of carbenicillin, spectinomycin and rifampicin (each at 100 mg/ml stock concentration). Agrobacterium starter blocks are obtained (96-well block with Agrobacterium cultures grown to an OD.sub.600 of approximately 1.0) and inoculated one culture vessel per construct by transferring 1 mL from appropriate well in the starter block. Cultures are then incubated with shaking at 27.degree. C. Cultures are spun down after attaining an OD.sub.600 of approximately 1.0 (about 24 hours). 200 mL infiltration media is added to resuspend Agrobacterium pellets. Infiltration media is prepared by adding 2.2 g MS salts, 50 g sucrose, and 5 .mu.L 2 mg/ml benzylaminopurine to 900 ml water.

[0221] Dipping Infiltration: The pots are inverted and submerged for 5 minutes so that the aerial portion of the plant is in the Agrobacterium suspension. Plants are allowed to grow normally and seed is collected.

Example 2

Saline Condition Screening

[0222] Saline condition screening: Screening is routinely performed by high-salt agar plate assay and also by high-salt soil assay. Traits assessed in high-salt conditions include: seedling area, photosynthesis efficiency, salt growth index and regeneration ability.

[0223] Seedling area: the total leaf area of a young plant about 2 weeks old.

[0224] Photosynthesis efficiency (Fv/Fm): Seedling photosynthetic efficiency, or electron transport via photosystem II, is estimated by the relationship between Fm, the maximum fluorescence signal and the variable fluorescence, Fv. Here, a reduction in the optimum quantum yield (Fv/Fm) indicates stress, and so can be used to monitor the performance of transgenic plants compared to non-transgenic plants under salt stress conditions.

[0225] Salt growth index=seedling area.times.photosynthesis efficiency (Fv/Fm).

[0226] Regeneration ability: the ability of a plant to regenerate shoots in saline soil after stems are cut off and the soil is irrigated with 200 mM NaCl solution.

[0227] Transformant identification: PCR was used to amplify the cDNA insert in one randomly chosen T.sub.2plant. This PCR product was then sequenced to confirm the sequence in the plants.

[0228] Identification of Tolerant Plant to Salt Stress: A superpool of seeds was screened for transgenic plants that show enhanced tolerance to SA, as detailed below, and high salt. Three independent candidate plants were sequenced and the transgene sequence matched ME02064.

[0229] Assessing Tolerance to Salt Stress: Generally, between four and ten independently transformed plant lines are selected and qualitatively evaluated for their tolerance to salt stress in the T.sub.1 generation. Two or three of the transformed lines that qualitatively show the strongest tolerance to salt stress in the T.sub.1 generation are selected for further evaluation in the T.sub.2 and T.sub.3 generations. This evaluation involves sowing seeds from the selected transformed plant lines on MS agar plates containing either 100 mM or 150 mM NaCl and incubating the seeds for 5 to 14 days to allow for germination and growth. For example, for ME02064 five T2 events were compared to wild-type Ws for salt stress tolerance on salt plates. Three events, ME02064-01, -03 and -04 were selected based on the measurement of seedling area on 36 plants of each event as compared to the control, Ws. Further evaluation of salt tolerance in ME02064-01, -03 and -04 was performed with T.sub.2 and T.sub.3 generations.

[0230] Calculating SGI: After germination and growth, seedling area and photosynthesis efficiency of transformed lines and a wild-type control are determined. From these measurements, the Salt Growth Index (SGI) is calculated and compared between wild-type and transformed seedlings. The SGI calculation is made by multiplying seedling area with photosynthesis efficiency measurements taken from two replicates of 36 seedlings for each transformed line and a wild-type control and performing a t-test.

[0231] Determining Transgene Copy Number: T.sub.2 generation transformed plants are tested on BASTA.TM. plates in order to determine the transgene copy number of each transformed line. A BASTA.TM. resistant:BASTA.TM. sensitive segregation ratio of 15:1 generally indicates two copies of the transgene, and such a segregation ratio of 3:1 generally indicates one copy of the transgene.

Example 3

Oxidative Stress Conditions Screening

[0232] Under normal growth conditions, Arabidopsis rosette contains about 0.5 .mu.g/g fresh weight of free SA. In response to stress conditions or pathogen attacks, the free SA levels can reach as high as 10 .mu.g/g fresh weight, which is approximately equivalent to 60 .mu.M. The exogenous application of 100-500 .mu.M SA to Arabidopsis leaves by spraying is able to induce strong defense responses without triggering obvious necrotic lesion formation. Once the SA concentration increases to 5 mM or above, the cell death in form of necrotic lesions will appear on the sprayed leaves. If SA is applied through growth media, Arabidopsis is more sensitive to SA-induced oxidative stress, probably because of continuous absorption. The addition of 100-150 .mu.M SA to growth media significant reduces plant growth but does not kills the plants in wild type Arabidopsis Ws. Therefore we use this range of SA to screen for enhanced oxidative stress tolerance.

[0233] Salicylic Acid Screening: Screening is routinely performed by agar plate assay using 100 .mu.M or 150 .mu.M exogenous sodium salicylate. Media contains 1/2.times. MS (Sigma), 150 .mu.M sodium salicylate (Sigma), 0.5 g MES hydrate (Sigma) and 0.7% phytagar (EM Science), adjusted to pH 5.7 using 10N KOH.

[0234] To screen superpools, seeds are surface sterilized in 30% bleach solution for 5 minutes and then rinsed repeatedly with sterile water. Approximately 2500 seeds are sown on media plates in a monolayer at a density of 850 seeds per plate. Wild-type and positive controls are grown on comparable plates. Plates are wrapped with vent tape and placed at 4.degree. C. in the dark for three days to stratify. At the end of this time, plates are transferred to a Conviron growth chamber set at 22.degree. C., 16:8 hour light:dark cycle, 70% humidity with a combination of incandescent and fluorescent lamps emitting a light intensity of .about.100 .mu.Einsteins.

[0235] Seedlings are screened daily starting at 6 days. Seedlings that grow larger and stay greener compared to WS control plants are selected as positive candidates and transferred to soil for recovery and seed set.

[0236] Candidate plants are re-screened by placing 36 seeds from each candidate together with a WS control on the same sodium salicylate plate. Plates are treated as described above and seedling screening begun after at 4 days after germination. Leaf tissue is harvested from confirmed tolerant candidates for DNA extraction and amplification of the transgene by PCR.

[0237] Alternatively, superpool seeds are sown directly on soil and sprayed with 10 mM SA. Leaf tissue is harvested from tolerant candidate plants to isolate DNA for PCR amplification of the transgene and subsequent sequencing of the PCR product.

[0238] Traits assessed under sodium salicylate conditions include: seedling area, photosynthesis efficiency, salicylic acid growth index (SAG) and regeneration ability.

[0239] Seedling area: the total leaf area of a young plant about 2 weeks old.

[0240] Photosynthesis efficiency (Fv/Fm): Seedling photosynthetic efficiency, or electron transport via photosystem II, is estimated by the relationship between Fm, the maximum fluorescence signal and the variable fluorescence, Fv. Here, a reduction in the optimum quantum yield (Fv/Fm) indicates stress, and so can be used to monitor the performance of transgenic plants compared to non-transgenic plants under oxidative stress conditions.

[0241] Salicylic Acid Growth (SAG) Index=seedling area (cm.sup.2).times.photosynthesis efficiency (Fv/Fm).

[0242] PCR was used to amplify the cDNA insert in one randomly chosen T.sub.2 plant. This PCR product was then sequenced to confirm the sequence in the plants.

[0243] Assessing Tolerance to Oxidative Stress: Initially, All available independently transformed T2 plant lines are qualitatively evaluated for their tolerance to oxidative stress as compared to wild-type controls. The positive transgenic lines that qualitatively show the strongest tolerance to oxidative stress are selected for further evaluation in the T.sub.2 and T.sub.3 generations using internal non-transgenic segregants as controls. This evaluation involves sowing seeds from the selected transformed plant lines on MS agar plates containing 100 .mu.M or 150 .mu.M sodium salicylate and incubating the seeds for at least 4 days to allow for germination and growth and transgene status analysis.

[0244] Calculating SAG: After germination and growth, seedling area and photosynthesis efficiency of transformed lines and a wild-type control are determined. From these measurements, the Salicylic Acid Growth Index (SAG) is calculated and compared between wild-type and transformed seedlings. The SAG calculation is made by multiplying seedling area with photosynthesis efficiency measurements taken from two replicates of 36 seedlings for each transformed line and a wild-type control and performing a t-test.

[0245] Determining Transgene Copy Number: T.sub.2 generation transformed plants are tested on BASTA.TM. plates in order to determine the transgene copy number of each transformed line. A BASTA.TM. resistant:BASTA.TM. sensitive segregation ratio of 15:1 generally indicates two copies of the transgene, and such a segregation ratio of 3:1 generally indicates one copy of the transgene.

[0246] In some cases, validation is performed using media that is further supplemented with 100 uM SNP.

Example 4

ME02064 (Ceres clone 375578; SEQ ID No.138)

[0247] Wild-type Arabidopsis thaliana Wassilewskija was transformed with a Ti plasmid carrying the 35S promoter and Ceres Clone 375578. Three transformed lines, ME02064-01 and ME02064-03, ME02064-04, showed the strongest qualitative tolerance to salt stress in a prevalidation assay (Table 4-1). Their tolerance to 150 mM NaCl was further evaluated in a validation assay for two generations. Segregation ratios (BASTA.TM. resistant: BASTA.TM. sensitive) indicated ME02064-01 and ME02064-03, ME02064-04 transformed lines each carry one copy of the transgene.

TABLE-US-00001 TABLE 4-1 Prevalidation assay of ME02064 salt tolerance as compared to wild-type Ws Ws Wild- ME02064- ME02064- ME02064- ME02064- ME02064- type 01 02 03 04 05 Mean* 0.0359 0.0435 0.0346 0.0441 0.0438 0.0305 Standard Error 0.0016 0.0048 0.004 0.0041 0.0035 0.0019 *Average seedling area of 36 plants grown on MS agar plates containing 150 mM NaCl for 14 days

[0248] When grown on MS agar plates containing 150 mM NaCl, ME02064-01 and ME02064-03, ME02064-04 transgenic plants showed significantly greater seedling area and SGI relative to non-transgenic plants. As shown in Table 4-2, the T2-generation SGI value for ME02064-01 seedlings increased by 110% while ME02064-03 seedlings increased by 131% and ME02064-04 seedlings increased by 72% compared to non-transgenic control seedlings. In the T.sub.3 generation, the SGI increase was 43% for ME02064-01, 47% for ME02064-03, and 64% for ME02064-04. The differences between transgenic and non-transgenic seedlings are statistically significant, and clearly demonstrate that the enhanced tolerance to salt stress was a result of the ectopic expression of Ceres Clone 375578 in the ME02064 transformant lines.

TABLE-US-00002 TABLE 4-2 Validation assay of ME02064 on salt tolerance in two generations SGI of SGI* of pooled non- % of transgenics transgenics t-Test SGI ME Events Avg SE N Avg SE N t-value t.sub.0.05 increase ME02064-01-T.sub.2 2.057 0.249 12 0.977 0.205 17 3.35 1.70 110.5 ME02064-03-T.sub.2 2.237 0.371 5 0.968 0.140 24 3.20 1.70 131.1 ME02064-04-T.sub.2 1.810 0.146 14 1.055 0.135 13 3.81 1.70 71.6 ME02064-01-T.sub.3 2.438 0.170 21 1.708 0.289 9 2.18 1.70 42.7 ME02064-03-T.sub.3 2.837 0.257 20 1.927 0.271 14 2.43 1.70 47.2 ME02064-04-T.sub.3 2.770 0.318 16 1.688 0.188 19 2.93 1.70 64.1 *SGI (Salt Growth Index) = seedling area .times. Fv/Fm (photosynthesis efficiency)

Summary of Results:

[0249] Ectopic expression of Ceres Clone 375578 under the control of the 35S promoter enhances tolerance to salt stress that causes necrotic lesions and stunted growth in wild-type Ws seedlings.

Example 5

ME03140; clone 375578; SEQ ID No. 142

[0250] Wild-type Arabidopsis thaliana Wassilewskija was transformed with a Ti plasmid carrying the 35S promoter operatively linked to Ceres Clone 375578 (SEQ ID NO: 142), and five transgenic lines, ME03140-01, ME03140-02, ME03140-03, ME03140-04 and ME03140-05 were investigated for tolerance to salt stress. When grown on MS agar plates containing 150 mM NaCl, these transgenic lines showed increased tolerance to salt stress in quantitative assays as compared to non-transgenic control seedlings.

[0251] When grown on MS agar plates containing 150 mM NaCl, ME03140-01, ME03140-O.sub.2, ME03140-03, ME03140-04 and ME03140-05 transgenic plants showed significantly greater seedling area and SGI relative to non-transgenic plants. As shown in Table 5, the T2-generation SGI value for ME03140-01 seedlings increased 102.18%, ME03140-02 seedlings increased 60.78%, ME03140-03 seedlings increased 120.32%, ME03140-04 seedlings increased 45.07% and ME03140-05 seedlings increased 90.53% as compared to non-transgenic control seedlings. The differences in SGI values between transgenic and non-transgenic seedlings have statistically significant P values for all transgenic lines, and these quantitative experiments clearly demonstrate that ectopic expression of Ceres Clone 375578 confers enhanced tolerance to salt stress in transgenic seedlings.

TABLE-US-00003 TABLE 5 Validation assay of ME03140 salt stress tolerance in one generation SGI of pooled non- % of SGI* of transgenics transgenics P SGI ME Events Avg SE N Avg SE N value increase ME03140- 4.34 0.590403017 17 2.15 0.478695 26 3.10E-03 102.18% 01-T.sub.2 ME03140- 4.09 0.395692005 18 2.54 0.367281 28 3.22E-03 60.78% 02-T.sub.2 ME03140- 4.03 0.646365854 12 1.83 0.397508 36 2.86E-03 120.32% 03-T.sub.2 ME03140- 4.86 0.534320049 17 3.35 0.446161 36 1.74E-02 45.07% 04-T.sub.2 ME03140- 4.31 0.5237326 25 2.26 0.665646 20 9.91E-03 90.53% 05-T.sub.2 *SGI (Salt Growth Index) = seedling area .times. Fv/Fm (photosynthesis efficiency)

Summary of Results:

[0252] Ectopic expression of Ceres Clone 375578 under the control of the 35S promoter enhances tolerance to salt stress that causes necrotic lesions and stunted growth in wild-type Ws seedlings.

Example 6

ME08732; clone 560066; SEQ ID No. 44

[0253] Wild-type Arabidopsis thaliana Wassilewskija was transformed with a Ti plasmid carrying the 35S promoter operatively linked to Ceres Clone 560066 (SEQ ID NO: 44), and three transgenic lines, ME08732-01, ME08732-02 and ME08732-03, were investigated for tolerance to salt stress. When grown on MS agar plates containing 150 mM NaCl, these transgenic lines showed increased tolerance to salt stress in quantitative assays as compared to non-transgenic control seedlings.

[0254] When grown on MS agar plates containing 150 mM NaCl, ME08732-01, ME08732-02 and ME08732-03 transgenic plants showed significantly greater seedling area and SGI relative to non-transgenic plants. As shown in Table 6, the T2-generation SGI value for ME08732-01 seedlings increased 88.35%, ME08732-02 seedlings increased 41.72% and ME08732-03 seedlings increased 26.23%, as compared to non-transgenic control seedlings. The differences in SGI values between transgenic and non-transgenic seedlings have statistically significant P values for ME08732-01 and ME08732-02 transgenic lines, and these quantitative experiments clearly demonstrate that ectopic expression of Ceres Clone 560066 confers enhanced tolerance to salt stress in transgenic seedlings.

TABLE-US-00004 TABLE 6 Validation assay of ME08732 salt stress tolerance in one generation SGI of pooled non- SGI* of transgenics transgenics P % of SGI ME Events Avg SE N Avg SE N value increase ME08732- 4.07 0.164301729 24 2.16 0.472565 14 2.57E-04 88.35% 01-T.sub.2 ME08732- 3.42 0.391450599 21 2.41 0.336042 26 2.86E-02 41.72% 02-T.sub.2 ME08732- 4.71 0.566761111 10 3.73 0.285925 52 6.44E-02 26.23% 03-T.sub.2 *SGI (Salt Growth Index) = seedling area .times. Fv/Fm (photosynthesis efficiency)

Summary of Results:

[0255] Ectopic expression of Ceres Clone 560066 under the control of the 35S promoter enhances tolerance to salt stress that causes necrotic lesions and stunted growth in wild-type Ws seedlings.

Example 7

ME08768; clone 539458; SEQ ID No.86

[0256] Wild-type Arabidopsis thaliana Wassilewskija was transformed with a Ti plasmid carrying the 35S promoter operatively linked to Ceres Clone 539458 (SEQ ID NO: 86), and five transgenic lines, ME08768-01, ME08768-02, ME08768-03, ME08768-04 and ME08768-05, were investigated for tolerance to salt stress. When grown on MS agar plates containing 150 mM NaCl, these transgenic lines showed increased tolerance to salt stress in quantitative assays as compared to non-transgenic control seedlings.

[0257] When grown on MS agar plates containing 150 mM NaCl, ME08768-01, ME08768-O.sub.2, ME08768-03, ME08768-04 and ME08768-05 transgenic plants showed significantly greater seedling area and SGI relative to non-transgenic plants. As shown in Table 7, the T2-generation SGI value for ME08768-01 seedlings increased 80.04%, ME008768-02 seedlings increased 111.63%, ME008768-03 seedlings increased 22.62%, ME008768-04 seedlings increased 115.40% and ME008768-05 seedlings increased 74.41% as compared to non-transgenic control seedlings. The differences in SGI values between transgenic and non-transgenic seedlings have statistically significant P values for ME08768-01, ME08768-02, ME08768-04 and ME08768-05 transgenic lines, and these quantitative experiments clearly demonstrate that ectopic expression of Ceres Clone 539458 confers enhanced tolerance to salt stress in transgenic seedlings.

TABLE-US-00005 TABLE 7 Validation assay of ME08768 salt stress tolerance in one generation SGI of pooled non- % of SGI* of transgenics transgenics SGI ME Events Avg SE N Avg SE N P value increase ME08768- 14.48 1.254125111 20 8.04 1.321838 26 4.91E-04 80.04% 01-T.sub.2 ME08768- 11.09 0.822117225 20 5.24 0.751908 32 1.55E-06 111.63% 02-T.sub.2 ME08768- 13.72 1.676864172 21 11.19 1.57188 30 0.1380406 22.62% 03-T.sub.2 ME08768- 14.82 1.3958585 16 6.88 0.777162 40 3.58E-06 115.40% 04-T.sub.2 ME08768- 10.02 1.365308 13 5.75 0.751134 38 4.23E-03 74.41% 05-T.sub.2 *SGI (Salt Growth Index) = seedling area .times. Fv/Fm (photosynthesis efficiency)

Summary of Results:

[0258] Ectopic expression of Ceres Clone 539458 under the control of the 35S promoter enhances tolerance to salt stress that causes necrotic lesions and stunted growth in wild-type Ws seedlings.

Example 8

ME10681; clone 335348 SEQ ID No. 141

[0259] Wild-type Arabidopsis thaliana Wassilewskija was transformed with a Ti plasmid carrying the 35S promoter operatively linked to Ceres Clone 335348 (SEQ ID NO: 141), and six transgenic lines, ME10681-01-T.sub.2, ME10681-01-T3, ME10681-02-T.sub.2, ME10681-02-T3, ME10681-04-T.sub.2 and ME10681-05-T.sub.2, were investigated for tolerance to salt stress. When grown on MS agar plates containing 150 mM NaCl, these transgenic lines showed increased tolerance to salt stress in quantitative assays as compared to non-transgenic control seedlings.

[0260] When grown on MS agar plates containing 150 mM NaCl, ME10681-01-T.sub.2, ME10681-01-T.sub.3, ME10681-02-T.sub.2, ME10681-02-T.sub.3, ME10681-04-T.sub.2 and ME10681-05-T.sub.2 transgenic plants showed significantly greater seedling area and SGI relative to non-transgenic plants. As shown in Table 8, the T2-generation SGI value for ME010681-01-T.sub.2 seedlings increased 39.17%, ME010681-01-T.sub.3 seedlings increased 19.77%%, ME10681-02-T.sub.2 seedlings increased 119.17%, ME10681-02-T.sub.3 seedlings increased 6.21%, ME010681-04-T.sub.2 seedlings increased 113.51% and ME010681-05-T.sub.2 seedlings increased 103.98%, as compared to non-transgenic control seedlings. The differences in SGI values between transgenic and non-transgenic seedlings have statistically significant P values for ME10681-01-T.sub.3, ME10681-02-T.sub.2, ME10681-04-T.sub.2 and ME10681-05-T.sub.2 transgenic lines, and these quantitative experiments clearly demonstrate that ectopic expression of Ceres Clone 335348 confers enhanced tolerance to salt stress in transgenic seedlings.

TABLE-US-00006 TABLE 8 Validation assay of ME10681 salt stress tolerance in two generations SGI of pooled non- % of SGI* of transgenics transgenics SGI ME Events Avg SE N Avg SE N P value increase ME10681- 3.87 0.683711333 9 2.78 0.302501 48 7.54E-02 39.17% 01-T.sub.2 ME10681- 4.7 0.31544415 23 3.93 0.3015141 43 3.99E-02 19.77% 01-T.sub.3 ME10681- 4.13 0.3353564 25 1.89 0.3969 22 4.16E-05 119.17% 02-T.sub.2 ME10681- 3.65 0.258400663 31 3.44 0.3060094 34 0.2980488 6.21% 02-T.sub.3 ME10681- 6.22 0.478672159 12 2.91 0.39405 30 2.04E-06 113.51% 04-T.sub.2 ME10681- 5.25 0.391550037 20 2.57 0.4265902 30 1.44E-05 103.98% 05-T.sub.2 *SGI (Salt Growth Index) = seedling area .times. Fv/Fm (photosynthesis efficiency)

Summary of Results:

[0261] Ectopic expression of Ceres Clone 335348 under the control of the 35S promoter enhances tolerance to salt stress that causes necrotic lesions and stunted growth in wild-type Ws seedlings.

Example 9

ME18973; Ceres cDNA ID 23457556; SEQ ID No.43

[0262] Wild-type Arabidopsis thaliana Wassilewskija was transformed with a Ti plasmid carrying the 35S promoter operatively linked to Ceres cDNA ID 23457556 (SEQ ID NO: 43), and six transgenic lines, ME18973-01-T.sub.2, ME18973-02-T.sub.2, ME18973-02-01-T.sub.3, ME18973-03-T.sub.2, ME18973-05-T.sub.2 and ME18973-05-03-T.sub.3 were investigated for tolerance to salt stress. When grown on MS agar plates containing 150 mM NaCl, these transgenic lines showed increased tolerance to salt stress in quantitative assays as compared to non-transgenic control seedlings.

[0263] When grown on MS agar plates containing 150 mM NaCl, ME18973-01, ME18973-O.sub.2-T.sub.2, ME18973-02-01-T.sub.3, ME18973-03-T.sub.2, ME18973-05-T.sub.2 and ME18973-05-03-T.sub.3 transgenic plants showed significantly greater seedling area and SGI relative to non-transgenic plants. As shown in Table 9, the T2 & T3-generation SGI value for ME018973-01-T.sub.2 seedlings increased 230.01%, ME18973-02-T.sub.2 seedlings increased 22.44%, ME18973-O.sub.2-01-T.sub.3 seedlings increased 14.96%, ME18973-05-T.sub.2 seedlings increased 16.12% and ME18973-05-03-T.sub.3 seedlings increased 13.97%, as compared to non-transgenic control seedlings. The differences in SGI values between transgenic and non-transgenic seedlings have statistically significant P values for the ME18973 transgenic lines, and these quantitative experiments clearly demonstrate that ectopic expression of Ceres cDNA ID 23457556 results in enhanced tolerance to salt stress in transgenic seedlings.

TABLE-US-00007 TABLE 9 Validation assay of ME18973 salt stress tolerance in two generations SGI of pooled non- % of SGI* of transgenics transgenics SGI ME Events Avg SE N Avg SE N P value increase ME18973- 4.41 0.253654648 26 1.34 0.367022 18 1.03E-08 230.01% 01-T.sub.2 ME18973- 4.47 0.373604899 27 3.65 0.526316 18 0.1058348 22.44% 02-T.sub.2 ME18973- 4.82 0.205971746 44 4.19 0.3832982 25 7.71E-02 14.96% 02-01-T.sub.3 ME18973- 4.74 0 1 4.09 0.503725 26 0.160517 16.12% 05-T.sub.2 ME18973- 4.38 0.233610226 32 3.84 0.503725 37 6.89E-02 13.97% 05-03-T.sub.3 *SGI (Salt Growth Index) = seedling area .times. Fv/Fm (photosynthesis efficiency)

Summary of Results:

[0264] Ectopic expression of Ceres cDNA ID 23457556 under the control of the 35S promoter enhances tolerance to salt stress that causes necrotic lesions and stunted growth in wild-type Ws seedlings.

Example 10

ME19657; cDNA ID 23621377; SEQ ID No.45

[0265] Wild-type Arabidopsis thaliana Wassilewskija was transformed with a Ti plasmid carrying the 35S promoter operatively linked to Ceres cDNA ID 23621377 (SEQ ID NO: 45), and two transgenic lines, ME19657-01-T.sub.2, ME19657-01-05-T.sub.3, ME19657-01-08-T.sub.3, ME19657-02-T.sub.2, ME19657-03-T.sub.2, ME19657-04-T.sub.2 and ME19657-04-01-T.sub.3, were investigated for tolerance to salt stress. When grown on MS agar plates containing 150 mM NaCl, these transgenic lines showed increase tolerance to salt stress in quantitative assays as compared to non-transgenic control seedlings.

[0266] When grown on MS agar plates containing 150 mM NaCl, ME19657-01-T.sub.2, ME19657-01-05-T.sub.3, ME19657-01-08-T.sub.3, ME19657-02-T.sub.2, ME19657-03-T.sub.2, ME19657-04-T.sub.2 and ME19657-04-01-T.sub.3 transgenic plants showed significantly greater seedling area and SGI relative to non-transgenic plants. As shown in Table 10, the T2 & T3-generation SGI value for ME19657-01-T.sub.2 seedlings increased 82.29%, ME19657-01-05-T.sub.3 seedlings increased 82.29%, ME19657-01-08-T.sub.3 seedlings increased 21.90%, ME19657-02-T.sub.2 seedlings increased 39.50%, ME19657-03-T.sub.2 seedlings increased 98.28%, and ME19657-04-T.sub.2 seedlings increased 4.38% and ME19657-04-01-T.sub.2 seedlings increased 7.44%, as compared to non-transgenic control seedlings. The differences in SGI values between transgenic and non-transgenic seedlings have statistically significant P values for ME19657-01-T.sub.2, ME19657-01-05-T.sub.3, ME19657-01-08-T.sub.3, ME19657-02-T.sub.2 and ME19657-03-T.sub.2 transgenic lines, and these quantitative experiments clearly demonstrate that ectopic expression of Ceres cDNA ID 23621377 results in enhanced tolerance to salt stress in transgenic seedlings.

TABLE-US-00008 TABLE 10 Validation assay of ME19657 salt stress tolerance in two generations SGI of pooled non- SGI* of transgenics transgenics % of SGI ME Events Avg SE N Avg SE N P value increase ME19657- 4.54 0.311964078 21 2.49 0.539972 15 5.62E-05 82.29% 01-T.sub.2 ME19657- 0.7 0.311964078 21 0.7 0.5399721 15 1.18E-03 82.29% 01-05-T.sub.3 ME19657- 5.4 0.278520121 27 4.43 0.3061552 36 1.18E-03 21.90% 01-08-T.sub.3 ME19657- 3.97 0.32089576 23 2.84 0.527849 18 0.0111868 39.50% 02-T.sub.2 ME19657- 4.79 0.313786256 22 2.41 0.299954 22 3.83E-02 98.28% 03-T.sub.2 ME19657- 3.67 0.341681304 15 3.52 0.324049 40 1.15E-06 4.38% 04-T.sub.2 ME19657- 4.56 0.495154 9 4.25 0.3487774 37 0.3723989 7.44% 04-01-T.sub.3 *SGI (Salt Growth Index) = seedling area .times. Fv/Fm (photosynthesis efficiency)

Summary of Results:

[0267] Ectopic expression of Ceres cDNA ID 23621377 under the control of the 35S promoter enhances tolerance to salt stress that causes necrotic lesions and stunted growth in wild-type Ws seedlings.

Example 11

ME24076; Clone 229668; SEQ ID No. 143

[0268] Wild-type Arabidopsis thaliana Wassilewskija was transformed with a Ti plasmid carrying the 35S promoter operatively linked to Ceres Clone: 229668 (SEQ ID NO: 143), and two transgenic lines, ME24076-01 and ME24076-02, were investigated for tolerance to salt stress. When grown on MS agar plates containing 150 mM NaCl, these transgenic lines showed increase tolerance to salt stress in quantitative assays as compared to non-transgenic control seedlings.

[0269] When grown on MS agar plates containing 150 mM NaCl, only ME024076-01-T.sub.2 and transgenic plants showed significantly greater seedling area and SGI relative to non-transgenic plants. As shown in Table 11, the T2-generation SGI value for ME24076-01-T.sub.2 seedlings increased 65.57% and ME24076-02-T.sub.2 seedlings decreased by 1.12%, as compared to non-transgenic control seedlings. The differences in SGI values between transgenic and non-transgenic seedlings have statistically significant P values for transgenic line ME24076-01, and these quantitative experiments clearly demonstrate that ectopic expression of Ceres Clone 229668 results in enhanced tolerance to salt stress in transgenic seedlings.

TABLE-US-00009 TABLE 11 Validation assay of ME24076 salt stress tolerance in one generation SGI of pooled non- SGI* of transgenics transgenics % of SGI ME Events Avg SE N Avg SE N P value increase ME24076- 11.18 0.924279499 17 6.75 0.9761984 32 9.45E-04 65.57% 01-T.sub.2 ME24076- 0.7 0.082529059 10 0.7 0.0506174 48 0.4675565 -1.12% 02-T.sub.2 *SGI (Salt Growth Index) = seedling area .times. Fv/Fm (photosynthesis efficiency)

Summary of Results:

[0270] Ectopic expression of Ceres Clone 229668 under the control of the 35S promoter enhances tolerance to salt stress that causes necrotic lesions and stunted growth in wild-type Ws seedlings.

Example 12

ME24217; clone 375578; SEQ ID No. 144

[0271] Wild-type Arabidopsis thaliana Wassilewskija was transformed with a Ti plasmid carrying the 35S promoter operatively linked to Ceres Clone 375578 (SEQ ID NO: 144), and two transgenic lines, ME24217-07-T.sub.2 and ME24217-09-T.sub.2, were investigated for tolerance to salt stress. When grown on MS agar plates containing 150 mM NaCl, these transgenic lines showed increase tolerance to salt stress in quantitative assays as compared to non-transgenic control seedlings.

[0272] When grown on MS agar plates containing 150 mM NaCl, ME24217-07-T.sub.2 and ME24217-09-T.sub.2 transgenic plants showed significantly greater seedling area and SGI relative to non-transgenic plants. As shown in Table 12, the T2-generation SGI value for ME24217-07 seedlings increased 30.41% and ME24217-09 seedlings increased 134.46%, as compared to non-transgenic control seedlings. The differences in SGI values between transgenic and non-transgenic seedlings have statistically significant P values for ME24217-07-T.sub.2 and ME24217-09-T.sub.2 transgenic lines, and these quantitative experiments clearly demonstrate that ectopic expression of Ceres Clone 375578 results in enhanced tolerance to salt stress in transgenic seedlings.

TABLE-US-00010 TABLE 12 Validation assay of ME24217salt stress tolerance in one generation SGI of pooled non- % of SGI* of transgenics transgenics P SGI ME Events Avg SE N Avg SE N value increase ME24217- 4.69 0.413823734 20 3.6 0.4284669 30 3.62E-02 30.41% 07-T.sub.2 ME24217- 4.92 0.446345081 22 2.1 0.506974 22 7.20E-05 134.46% 09-T.sub.2 *SGI (Salt Growth Index) = seedling area .times. Fv/Fm (photosynthesis efficiency)

Summary of Results:

[0273] Ectopic expression of Ceres Clone 375578 under the control of the 35S promoter enhances tolerance to salt stress that causes necrotic lesions and stunted growth in wild-type Ws seedlings.

Example 13

ME02064C: clone 375578C: SEQ ID No. 140

[0274] Wild-type Arabidopsis thaliana Wassilewskija was transformed with a Ti plasmid carrying the 35S promoter operatively linked to Ceres Clone 375578 (SEQ ID NO: 140), and six transgenic lines, ME02064C-01-T.sub.2, ME02064C-02-T.sub.2, ME02064C-03-T.sub.2, ME02064C-04-T.sub.2, ME02064C-05-T.sub.2 and ME02064C-06-T.sub.2 were investigated for tolerance to salt stress. When grown on MS agar plates containing 150 mM NaCl, most of these transgenic lines did not show tolerance to salt stress in quantitative assays as compared to non-transgenic control seedlings.

[0275] Table 13 shows that, when grown on MS agar plates containing 100 mM NaCl, the T2-generation SGI value for: ME02064C-01-T.sub.2 seedlings as compared to non-transgenic control seedlings was 0.55%; ME02064C-02-T.sub.2 seedlings as compared to non-transgenic control seedlings was 1.31%; ME02064C-03-T.sub.2 seedlings as compared to non-transgenic control seedlings was 9.67%; ME02064C-04-T.sub.2 seedlings as compared to non-transgenic control seedlings was -7.78%; ME02064C-05-T.sub.2 seedlings as compared to non-transgenic control seedlings was -15.77%; and ME02064C-06-T.sub.2 seedlings as compared to non-transgenic control seedlings 17.78%.

TABLE-US-00011 TABLE 13 Validation assay of ME02064C salt stress tolerance in one generation SGI of pooled non- % of ME SGI* of transgenics transgenics SGI Events Avg SE N Avg SE N P value increase ME02064C- 10.89 0.735174679 33 10.83 0.707901 34 0.4769106 0.55% 01-T.sub.2 ME02064C- 10.7 0.595225094 50 10.56 0.971548 21 0.4517289 1.31% 02-T.sub.2 ME02064C- 9.39 0.582009053 48 8.56 0.958475 23 0.2314441 9.67% 03-T.sub.2 ME02064C- 10.66 0.555387069 51 11.56 1.046386 21 0.2252269 -7.78% 04-T.sub.2 ME02064C- 10.84 0.60377588 48 12.87 0.839921 24 2.68E-02 -15.77% 05-T.sub.2 ME02064C- 12.55 0.608556025 44 10.65 0.764179 28 2.83E-02 17.78% 06-T.sub.2 *SGI (Salt Growth Index) = seedling area .times. Fv/Fm (photosynthesis efficiency)

Summary of Results:

[0276] Ectopic expression of Ceres Clone 375578 under the control of the 35S might not promote enhances tolerance to salt stress that causes necrotic lesions and stunted growth in wild-type Ws seedlings.

Example 14

ME02064P1; clone 375578P1--Amino Acids 1 to 135 of SEQ ID No. 140

[0277] Wild-type Arabidopsis thaliana Wassilewskija was transformed with a Ti plasmid carrying the 35S promoter operatively linked to a nucleic acid encoding Ceres Clone 375578P1 (amino acids 1 to 135 of SEQ ID NO: 140), a 3' truncation variant of Ceres Clone 375578 described above in Example 1. Five transgenic lines, ME02064P1-03-T.sub.2, ME02064P1-07-T.sub.2, ME02064 P1-09-T.sub.2, ME02064 P1-10-T.sub.2 and ME02064P1-15-T.sub.2 were investigated for tolerance to salt stress. All five of these transgenic lines showed tolerance to salt stress in quantitative assays as compared to non-transgenic control seedlings. As shown in Table 10, the T2-generation SGI value for ME02064P1 seedlings increased by 32.57%, 89.52%, 66.84%, 25.43%, 36.95%. compared to non-transgenic control seedlings.

[0278] When grown on MS agar plates containing 150 mM NaCl, ME02064P1-03, ME02064P1-07, ME02064 P1-09, ME02064P1-10 and ME02064P1-15 transgenic plants showed significantly greater seedling area and SGI relative to non-transgenic plants. As shown in Table 14, the T2-generation SGI value for ME02064P1-03 seedlings increased 32.57%, ME02064P1-07 seedlings increased 89.52%, ME02064 P1-09 seedlings increased 66.84%, ME02064 P1-10 seedlings increased 25.43% and ME02064P1-15 seedlings increased 36.95% as compared to non-transgenic control seedlings. The differences in SGI values between transgenic and non-transgenic seedlings have statistically significant under P values for transgenic lines ME02064P1-03-T.sub.2, ME02064P1-07-T.sub.2, ME02064 P1-09-T.sub.2, ME02064 P1-10-T.sub.2 and ME02064P1-15-T.sub.2, and these quantitative experiments clearly demonstrate that ectopic expression of Ceres Clone 37558P1 results in enhanced tolerance to salt stress in transgenic seedlings.

TABLE-US-00012 TABLE 14 Validation assay of ME02064P1 salt stress tolerance in one generation SGI of pooled non- SGI* of transgenics transgenics P % of SGI ME Events Avg SE N Avg SE N value increase ME02064P1- 10.76 0.507929031 47 8.12 0.925474 25 7.29E-03 32.57% 03-T.sub.2 ME02064P1- 13.26 0.561088966 54 7 1.165372 16 3.87E-06 89.52% 07-T.sub.2 ME02064P1- 12.23 0.654850534 54 7.33 1.141553 17 1.99E-04 66.84% 09-T.sub.2 ME02064P1- 15.63 0.570291003 40 12.46 0.845552 32 1.36E-03 25.43% 10-T.sub.2 ME02064P1- 11.84 0.607966 42 8.64 0.959856 30 3.20E-03 36.95% 15-T.sub.2 *SGI (Salt Growth Index) = seedling area .times. Fv/Fm (photosynthesis efficiency)

Summary of Results:

[0279] Ectopic expression of Clone 375587P1 under the control of the 35S promoter enhances tolerance to salt stress.

Example 15

ME02064P2; Clone 375578P2--Amino Acids 188 to 498 of SEQ ID No.140

[0280] Wild-type Arabidopsis thaliana Wassilewskija was transformed with a Ti plasmid carrying the 35S promoter and a nucleic acid encoding Ceres Clone 375578P2 (amino acids 188 to 498 of SEQ ID NO: 140), a 5' truncation variant of Ceres Clone 375578 described above in Example 1. Eight ME02064P2 transgenic lines were investigated for tolerance to salt. Four transgenic lines, ME02064P2-01-T.sub.2, ME02064CP2-04-T.sub.2, ME02064P2-05-T.sub.2, ME02064P2-06-T.sub.2 ME02064P2-07-T.sub.2, ME02064P2-T.sub.2-08 and ME02064P2-09-T.sub.2 did show statistically significant salt tolerance in quantitative assays as compared to non-transgenic control seedlings; and one transgenic lines, ME02064P2-10-T.sub.2, showed statistically significant reduction in salt tolerance as compared to non-transgenic control seedlings.

[0281] Table 15 shows that, when grown on MS agar plates containing 100 mM NaCl, the T2-generation SGI value for: ME02064P2-01-T.sub.2 seedlings as compared to non-transgenic control seedlings was 1.62%, ME02064P2-04-T.sub.2 seedlings as compared to non-transgenic control seedlings was 20.31%, ME02064P2-05-T.sub.2 seedlings as compared to non-transgenic control seedlings was 31.24%, ME02064P2-06-T.sub.2 seedlings as compared to non-transgenic control seedlings was 41.14%, ME02064P2-07-T.sub.2 seedlings as compared to non-transgenic control seedlings was 15.91%, ME02064P2-08-T.sub.2 seedlings as compared to non-transgenic control seedlings was 40.82%, ME02064P2-09-T.sub.2 seedlings as compared to non-transgenic control seedlings was 135.79%, and ME02064P2-10-T.sub.2 was -12.36% as compared to non-transgenic control seedlings.

[0282] When grown on MS agar plates containing 100 mM NaCl, ME02064P2-01-T.sub.2, ME02064P2-04-T.sub.2, ME02064P2-05-T.sub.2, ME02064P2-06-T.sub.2, ME02064P2-07-T.sub.2, ME02064P2-08-T.sub.2 and ME02064P2-09-T.sub.2 transgenic plants showed significantly greater seedling area and SGI relative to non-transgenic plants. However as shown in Table 3, the T2-generation SGI value for ME02064P2-10-T.sub.2 seedlings showed a decrease in SGI compared to non-transgenic control seedlings.

TABLE-US-00013 TABLE 15 Validation assay of ME02064P2 on salt tolerance in one generation SGI of pooled non- % of SGI* of transgenics transgenics SGI ME Events Avg SE N Avg SE N P value increase ME02064P2- 9.84 0.687493743 53 9.68 1.261045 19 0.4567634 1.62% 01-T.sub.2 ME02064P2- 5.2 0.558723451 47 4.32 0.560634 25 0.1357713 20.31% 04-T.sub.2 ME02064P2- 8.42 0.714218299 45 6.41 0.623421 27 0.0190578 31.24% 05-T.sub.2 ME02064P2- 8.56 0.515029349 48 6.07 0.654098 24 1.88E-03 41.14% 06-T.sub.2 ME02064P2- 12.3 0.647077232 47 10.61 0.8768 25 6.29E-02 15.91% 07-T.sub.2 ME02064P2- 9.16 0.724681422 37 6.51 0.73405 35 6.08E-03 40.82% 08-T.sub.2 ME02064P2- 5.72 0.489863069 47 2.43 0.182583 24 1.19E-08 135.79% 09-T.sub.2 ME02064P2- 9.32 0.908174851 21 10.63 0.70877 51 0.1289273 12.36% 10-T.sub.2 *SGI (Salt Growth Index) = seedling area .times. Fv/Fm (photosynthesis efficiency

Summary of Results:

[0283] Ectopic expression of Clone 375587P2 under the control of the 35S promoter enhances tolerance to salt stress. [0284] Ceres Clone 375578P2 retains the .alpha.-.beta. domains of Ceres Clone 375578 located within amino acid residues 137-157 of SEQ ID NO: 140) but does not retain the 6-r domains of Ceres Clone 375578 of SEQ ID NO: 140.

Example 16

ME10681; Clone 335348 SEQ ID No. 141

[0285] Wild-type Arabidopsis thaliana Wassilewskija was transformed with a Ti plasmid carrying the 35S promoter operatively linked to Ceres cDNA 335348 (SEQ ID NO: 141). Wildtype Ws seedlings showed necrotic lesions and stunted growth on plates containing 100 or 150 .mu.M SA, whereas the transgenic plants showed significantly better growth.

[0286] Three transformed lines, ME10681-01, ME10681-02 and ME10681-05, were quantitatively studied by growth on MS agar plates containing 100 .mu.M SA. After 14 days, plates were scanned using an EPSON color scanner or fluorescence scanner and SAGI calculated for each plant. The data is summarized in Table 16.

[0287] When grown on MS agar plates containing 100 .mu.M SA, ME10681-02-T.sub.2 and ME10681-05-T.sub.2 transgenic plants showed significantly increased seedling area and SAGI relative to non-transgenic plants. However ME10681-01-T.sub.2 showed a slight decrease in SAGI relative to non-transgenic plants. As shown in Table 12, the T.sub.2 generation SAGI value for ME10681-01-T.sub.2, ME10681-02-T.sub.2 and ME10681-05-T.sub.2 seedlings was -3.29%, 17.65% and 51.84%, respectively. The differences between transgenic and non-transgenic seedlings have statistically significant P values for lines ME10681-02-T.sub.2 and ME10681-05-T.sub.2, and clearly demonstrate enhanced tolerance to oxidative stress is a result of the ectopic expression of Ceres cDNA 36505846 in the ME10681 transformant lines.

TABLE-US-00014 TABLE 16 Salicylic acid validation assay of ME10681 in one generation Seedling area of % Seedling area of pooled non- Seedling transgenics transgenics area ME Events Avg SE N Avg SE N P value increase ME10681- 0.56 0.096445 18 0.58 0.061856 53 0.434159 -3.29% 01-T.sub.2 ME10681- 0.67 0.06042 38 0.38 0.079644 32 0.002198 17.65% 02-T.sub.2 ME10681- 0.68 0.072271 43 0.45 0.108539 25 0.039761 51.84% 05-T.sub.2

Summary of Results:

[0288] In sum, ectopic expression of Ceres Clone 335348 under the control of the 35S promoter enhances oxidative stress tolerance that causes necrotic lesions and stunted growth in wild-type WS seedlings.

Example 17

ME24091; Clone 106263; SEQ ID No. 136

[0289] Wild-type Arabidopsis thaliana Wassilewskija was transformed with a Ti plasmid carrying the 35S promoter operatively linked to Ceres cDNA 016263 (SEQ ID NO: 135). Wildtype Ws seedlings showed necrotic lesions and stunted growth on plates containing 100 or 150 .mu.M SA, whereas the transgenic plants showed significantly better growth.

[0290] Ten transformed lines, ME24091-01-T.sub.2, ME24091-02-T.sub.2, ME24091-03-T.sub.2, ME24091-04-T.sub.2 ME24091-05-T.sub.2, ME24091-06-T.sub.2 ME24091-07-T.sub.2, ME24091-08-T.sub.2, ME24091-09-T.sub.2 and ME24091-10-T.sub.2, were quantitatively studied by growth on MS agar plates containing 100 .mu.M SA. After 14 days, plates were scanned using an EPSON color scanner or fluorescence scanner and SAGI calculated for each plant.

[0291] When grown on MS agar plates containing 100 .mu.M SA, ME24091-01-T.sub.2, ME24091-O.sub.2-T.sub.2, ME24091-03-T.sub.2, ME24091-04-01-T.sub.3, ME24091-04-T.sub.2, ME24091-05-01-T.sub.3, ME24091-05-T.sub.2, ME24091-06-01, ME24091-06, ME24091-07-01, ME24091-07, ME24091-08-01, ME24091-08, ME24091-09-01, ME24091-09, ME24091-10-01 and ME24091-10 transgenic plants showed significantly increased seedling area and SAGI relative to non-transgenic plants. As shown in Table 17, the T.sub.2 generation SAGI value for ME24091-01, ME24091-02, ME24091-03, ME24091-04 ME24091-05, ME24091-06 ME24091-07, ME24091-08, ME24091-09 and ME24091-10 seedlings increased by 119.47%, 198.00% and 133.67%, 241.50%, 143.70% and 248.12%, 186.59%, 188.86%, 285.42% and 180.46% respectively. The differences between transgenic and non-transgenic seedlings have statistically significant P values for transgenic lines ME24091-01, ME24091-02, ME24091-03, ME24091-04-01, ME24091-04 ME24091-05-01, ME24091-05, ME24091-06-01, ME24091-06, ME24091-07-01, ME24091-07, ME24091-08, ME24091-09-01, ME24091-09, and ME24091-10, and clearly demonstrate that the enhanced tolerance to oxidative stress is a result of the ectopic expression of Ceres Clone 106263 in the ME24091 transformant lines.

TABLE-US-00015 TABLE 17 Salicylic acid validation assay of ME24091 in two generation Seedling area Seedling area of of pooled transgenics non-transgenics % Seedling ME Events Avg SE N Avg SE N P value area increase ME24091-01-T.sub.2 0.69 0.055882059 29 0.58 0.070002209 38 0.105475324 19.47% ME24091-02-T.sub.2 0.44 0.050576014 41 0.22 0.054717602 27 0.002577564 98.00% ME24091-03-T.sub.2 0.58 0.054269056 43 0.44 0.085715224 26 0.076183067 33.67% ME24091-04-T.sub.2 0.54 0.050859903 45 0.22 0.077668008 19 0.000634704 141.50% ME24091-04-01- 0.39 0.07715765 20 0.24 0.07271465 20 0.081950663 61.93% T.sub.3 ME24091-05-T.sub.2 0.55 0.048581793 42 0.38 0.072915009 27 0.029849118 43.70% ME24091-05-01- 0.38 0.068463201 21 0.15 0.05109963 30 0.005958129 144.90% T.sub.3 ME24091-06-T.sub.2 0.71 0.049360913 39 0.29 0.063969074 23 1.13831E-06 148.12% ME24091-06-01- 0.49 0.073404661 19 0.22 0.063271768 22 0.004691952 118.19% T.sub.2 ME24091-07-T.sub.2 0.69 0.054095931 37 0.37 0.07390372 25 0.000414138 86.59% ME24091-07-01- 0.49 0.052850446 33 0.19 0.049649799 22 5.3153E-05 162.61% T.sub.3 ME24091-08-T.sub.2 0.64 0.059981819 24 0.34 0.071776729 23 0.00111815 88.86% ME24091-08-01- 0.44 0.050181996 27 0.40 0.074557785 26 0.306877156 11.48% T.sub.3 ME24091-09-T.sub.2 0.81 0.056031311 38 0.29 0.067403065 22 5.88685E-08 185.42% ME24091-09-01- 0.45 0.055439617 36 0.28 0.05131548 31 0.0116714 62.95% T.sub.3 ME24091-10-T.sub.2 0.56 0.048643058 39 0.31 0.062146975 29 0.001240527 80.46% ME24091-10-01- 0.36 0.051198395 31 0.26 0.066281225 22 0.114418402 39.44% T.sub.3

Summary of Results:

[0292] In sum, ectopic expression of Ceres cDNA Clone 106263 under the control of the 35S promoter enhances oxidative stress tolerance that causes necrotic lesions and stunted growth in wild-type Ws seedlings.

Example 18

Determination of Functional Homologs by Reciprocal BLAST

[0293] A candidate sequence was considered a functional homolog of a reference sequence if the candidate and reference sequences encoded proteins having a similar function and/or activity. A process known as Reciprocal BLAST (Rivera et al., Proc. Natl. Acad. Sci. USA, 95:6239-6244 (1998)) was used to identify potential functional homolog sequences from databases consisting of all available public proprietary peptide sequences, including NR from NCBI and peptide translations from Ceres clones.

[0294] Before starting a Reciprocal BLAST process, a specific reference polypeptide was searched against all peptides from its source species using BLAST in order to identify polypeptides having BLAST sequence identity of 80% or greater to the reference polypeptide and an alignment length of 85% or greater along the shorter sequence in the alignment. The reference polypeptide and any of the aforementioned identified polypeptides were designated as a cluster.

[0295] The BLASTP version 2.0 program from Washington University at Saint Louis, Mo., USA was used to determine BLAST sequence identity and E-value. The BLASTP version 2.0 program includes the following parameters: 1) an E-value cutoff of 1.0e-5; 2) a word size of 5; and 3) the -postsw option. The BLAST sequence identity was calculated based on the alignment of the first BLAST HSP (High-scoring Segment Pairs) of the identified potential functional homolog sequence with a specific reference polypeptide. The number of identically matched residues in the BLAST HSP alignment was divided by the HSP length, and then multiplied by 100 to get the BLAST sequence identity. The HSP length typically included gaps in the alignment, but in some cases gaps were excluded.

[0296] The main Reciprocal BLAST process consists of two rounds of BLAST searches; forward search and reverse search. In the forward search step, a reference polypeptide sequence, "polypeptide A," from source species SA was BLASTed against all protein sequences from a species of interest. Top hits were determined using an E-value cutoff of 10.sup.-5 and a sequence identity cutoff of 35%. Among the top hits, the sequence having the lowest E-value was designated as the best hit, and considered a potential functional homolog or ortholog. Any other top hit that had a sequence identity of 80% or greater to the best hit or to the original reference polypeptide was considered a potential functional homolog or ortholog as well. This process was repeated for all species of interest.

[0297] In the reverse search round, the top hits identified in the forward search from all species were BLASTed against all protein sequences from the source species SA. A top hit from the forward search that returned a polypeptide from the aforementioned cluster as its best hit was also considered as a potential functional homolog.

[0298] Functional homologs were identified by manual inspection of potential functional homolog sequences. Representative functional homologs for SEQ ID Nos. 2, 35, 41, 43, 44, 45, 86, 109, 135, 136, 138, 140, 141, 142, 143 and to amino acids X-Y of SEQ ID NO: 140 and to amino acids X-Y of SEQ ID NO: 140 are shown in FIGS. 1-6 and the Sequence Listing.

Example 19

Determination of Functional Homologs by Hidden Markov Models

[0299] Hidden Markov Models (HMMs) were generated by the program HMMER 2.3.2. To generate each HMM, the default HMMER 2.3.2 program parameters, configured for glocal alignments, were used.

[0300] An HMM was generated using the sequences shown in FIG. 1 as input. These sequences were input into the model and the HMM bit score for each sequence is shown in the Sequence Listing. Additional sequences were input into the model, and the HMM bit scores for the additional sequences are shown in the Sequence Listing. The results indicate that these additional sequences are functional homologs of SEQ ID NO: 86.

[0301] HMMs were also generated using the sequences shown in FIGS. 2-6 as input. These sequences were input into the respective models and the corresponding HMM bit score for each sequence is shown in the Sequence Listing. Additional sequences were input into the models, and the HMM bit scores for the additional sequences are shown in the Sequence Listing. The results indicate that these additional sequences are functional homologs of the groups in FIGS. 2-6.

[0302] In an alternative embodiment, the HMM is generated with the proviso that none of the amino acids specifically described in PCT/US2007/06544 are used. In particular the following amino acids appearing in the Sequence Listing of PCT/US2007/06544 are excluded: SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:180, SEQ ID NO:252, SEQ ID NO:298, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:306 and SEQ ID NO:312.

REFERENCES

[0303] The following references are cited in the Specification. Each of the references from the patent and periodical literature cited herein is hereby expressly incorporated in its entirety by such citation. [0304] Zhang et al. (2004) Plant Physiol. 135:615. [0305] Salomon et al. (1984) EMBO J. 3:141. [0306] Herrera-Estrella et al. (1983) EMBO J. 2:987. [0307] Escudero et al. (1996) Plant J. 10:355. [0308] Ishida et al. (1996) Nature Biotechnology 14:745. [0309] May et al. (1995) Bio/Technology 13:486) [0310] Armaleo et al. (1990) Current Genetics 17:97. [0311] Smith. T. F. and Waterman, M. S. (1981) Adv. App. Math. 2:482. [0312] Needleman and Wunsch (1970) J. Mol. Biol. 48:443. [0313] Pearson and Lipman (1988) Proc. Natl. Acad. Sci. (USA) 85: 2444. [0314] Yamauchi et al. (1996) Plant Mol. Biol. 30:321-9. [0315] Xu et al. (1995) Plant Mol. Biol. 27:237. [0316] Yamamoto et al. (1991) Plant Cell 3:371. [0317] P. Tijessen, "Hybridization with Nucleic Acid Probes" In Laboratory Techniques in Biochemistry and Molecular Biology, P. C. vand der Vliet, ed., c. 1993 by Elsevier, Amsterdam. [0318] Bonner et al., (1973) J. Mol. Biol. 81:123. [0319] Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, 1989, New York. [0320] Shizuya et al. (1992) Proc. Natl. Acad. Sci. USA, 89: 8794-8797. [0321] Hamilton et al. (1996) Proc. Natl. Acad. Sci. USA, 93: 9975-9979. [0322] Burke et al. (1987) Science, 236:806-812. [0323] Sternberg N. et al. (1990) Proc Natl Acad Sci USA., 87:103-7. [0324] Bradshaw et al. (1995) Nucl Acids Res, 23: 4850-4856. [0325] Frischauf et al. (1983) J. Mol. Biol, 170: 827-842. [0326] Huynh et al., Glover N M (ed) DNA Cloning: A practical Approach, Vol. 1 Oxford: IRL Press (1985). [0327] Walden et al. (1990) Mol Cell Biol 1: 175-194. [0328] Vissenberg et al. (2005) Plant Cell Physiol 46:192. [0329] Husebye et al. (2002) Plant Physiol 128:1180. [0330] Plesch et al. (2001) Plant J 28:455. [0331] Weising et al. (1988) Ann. Rev. Genet., 22:421. [0332] Christou (1995) Euphytica, v. 85, n. 1-3:13-27. [0333] Newell (2000) [0334] Griesbach (1987) Plant Sci. 50:69-77. [0335] Fromm et al. (1985) Proc. Natl. Acad. Sci. USA 82:5824. [0336] Paszkowski et al. (1984) EMBO J. 3:2717. [0337] Klein et al. (1987) Nature 327:773. [0338] Willmitzer, L. (1993) Transgenic Plants. In: iotechnology, A Multi-Volume Comprehensive treatise (H. J. Rehm, G. Reed, A. Puiler, P. Stadler, eds., Vol. 2, 627-659, VCH Weinheim-New York-Basel-Cambridge). [0339] Crit. Rev. Plant. Sci. 4:1-46. [0340] Fromm et al. (1990) Biotechnology 8:833-844. [0341] Cho et al. (2000) Planta 210:195-204. [0342] Brootghaerts et al. (2005) Nature 433:629-633. [0343] Lincoln et al. (1998) Plant Mol. Biol. Rep. 16:1-4. [0344] Lacomme et al. (2001), "Genetically Engineered Viruses" (C. J. A. Ring and E. D. Blair, Eds). [0345] Pp. 59-99, BIOS Scientific Publishers, Ltd. Oxford, UK. [0346] Huh G H, Damsz B, Matsumoto T K, Reddy M P, Rus A M, Ibeas J I, Narasimhan M L, Bressan R A, Hasegawa P M, 2002, Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. Plant J 29(5):649-59. [0347] Kang D K, Li X M, Ochi K, Horinouchi S, 1999, Possible involvement of cAMP in aerial mycelium formation and secondary metabolism in Streptomyces griseus. Microbiology, 145 (Pt 5):1161-72. [0348] Kerk D, Bulgrien J, Smith D W, Gribskov M, 2003, Arabidopsis proteins containing similarity to the universal stress protein domain of bacteria. Plant Physiol. 131(3):1209-19. [0349] Zhu J K, 2001, Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol. 4(5):401-6. [0350] Susstrunk U, Pidoux J, Taubert S, Ullmann A, Thompson C J, 1998, Pleiotropic effects of cAMP on germination, antibiotic biosynthesis and morphological development in Streptomyces coelicolor. Mol Microbiol 30(1):33-46. [0351] Davletova S, Schlauch K, Coutu J, Mittler R., 2005, The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139(2):847-56. [0352] Fowler S G, Cook D, Thomashow M F., 2005, Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol 137(3):961-8. [0353] Nachin L, Nannmark U, Nystom T (2005) Differential roles of the universal stress proteins of Escherichia coli in oxidative stress resistance, adhesion and motility J Bacteriol 187(18):6265-72. [0354] Rizhsky L, Davletova S, Liang H, Mittler R, 2004, The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol. Chem. 19; 279(12): 11736-43. -- [0355] Vogel J T, Zarka D G, Van Buskirk H A, Fowler S G, Thomashow M F, 2005, Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J. 41(2):195-211. [0356] Sanchez-Barrena M J, Martinez-Ripoll M, Zhu J K, Albert A., 2005, The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response J Mol Biol. 345(5):1253-64. [0357] Griffen, H. G, and Gasson, M. J. (1995) The Gene (aroK) Encoding Shikimate Kinase I from E. Coli. DNA Seq., 5(3):195-197. [0358] Susstrunk et al. (1998) Mol Microbiol, 30(1):33-46 [0359] Kang et al. (1999) Microbiology, 145:1161-72. [0360] Sauter M, Rzewuski G, Marwedel T, Lorbiecke R (2002) The novel ethylene-regulated gene OsUsp1 from rice encodes a member of a plant protein family related to prokaryotic universal stress proteins. J Exp Bot 53 (379):2325-31. [0361] Kasuga et al. (1999) Nature Biotech 17: 287-291. [0362] Rus et al. (2001) PNAS 98:14150-14155. [0363] Shi et al. (2000) PNAS 97:6896-6901. [0364] Apse et al. (1999) Science 285:1256-1258. [0365] Zhang et al. (2001) PNAS 98:12832-12836. [0366] Berthomieu et al. (2003) EMBO J 22:2004-2014. [0367] Ren et al. (2005) Nat. Genet. 37:1029-30 [0368] Davletova et al (2005) Plant Physiol. 139:847-56

Sequence CWU 1

1

16812343DNAPanicum virgatummisc_featureCeres CLONE ID no.1792354 1agtgactagt gagctcactc cctcctcctt cccacttgac tctgcccgcc agctactgaa 60ccaaccaaca aatacctccg ggctccctcc ggctttgcca ctcccatgga ttggaggttg 120gaggcctgaa gggggaggtg ggtcgccgga cagggacggg gagacggcga gagggcgttc 180cgcaggagcc gttcccgtgc ttcctccacc gaccgggccg acgcgccgcg ccgctgtttc 240aggttccaga atttcaagta ttggccgctt taggatacta tgggaaagtc cccggggaag 300tggatcaagt ctgtgctctt ggggaagaaa tcgactaaat ccggttctac caaggcaaat 360gagtcgaagg ctacaaataa caatggacac tcagctgggg aggagcgtgc attttctgaa 420aattctccag tgatctctga gccggtgctt gttgaagccc acaaaaatgg agctgtttca 480gttaatggga aggctgaaga tgtcaatttg ccaagtgaca gggctggcca acaagatctg 540cagaaccaaa gtattgttga gtccgaaaca tcagttcctg ggcaattggg agaagaccaa 600gctgcagtga aggcacaggc agcatttcgc ggttacctag cacgaaggtc attccgtgca 660ttgaaaggta tcataagact ccaggtactg attcgagggc atcttgtaag gagacaggct 720gtttcaaccc ttcgaactac ttggttgatt gtgaagtttc aatctctagt tcgtggaaga 780aatgtcagac tctctggtgc tgacattcaa ctcaatgtga agcttggcca acataacctt 840ggtggcacta gatcatctga tgcatggaaa gagaagttat cttcaaatgc ctatgttcgg 900aagcttctgt cttcaccaat agtgctagaa cctcttcact tccagtatga caagagggat 960cccaattcaa cctataactg gctagagaga tggaccatag gctgcatctg gaagcctgtt 1020tttcaaccaa aaagagttcc tgatgggaaa ctgctggtaa ggaaggctag ttatgcaatg 1080gaaactgaat cagccaagtt aaagcgcaac attaggaagg gctctgctgc tacagttgag 1140agtttccata caagagtgac tggtgaatct gagaaactta aacgtaatcc aaagaaattc 1200tcaaacttcc ctgctgactc agtaccagat agccagttat ctgaacttga gaaggttaaa 1260aggaacctga ggaaggtaac tgattccatg gctgaagcct caaagatctc tagttccagg 1320gttgattcct caaaggtatc tgattctaca cctgatgctc caaaagtatc taatcctgtg 1380gccgaaatct caaagacatc tagtctcctg aacgggatct ctgaccatca agacagccaa 1440tgtgaaaaag cactacagaa tacacgtgag gcttcatttc ctcttgaaac tcaagattac 1500tctggcaatg gtcagctatt ggaatattca gatatggata acttcgactt ggtacctggt 1560ttgaaaagtg atctggaaac tcagcttgat tcagtttcta taggagaaaa tgttgatgag 1620cccactgttg gtgcttcagc agctgaaggt atgccactgc agaacattga tgagcccatt 1680agtttaggga agaaagagga agcaaggtcc aaggaagagc atctgtctaa tggaagcctt 1740agaactggca agagaaagtc ttcatcccca tacaaatcag aatatgtgga aaacgggact 1800cacactactc ctgctcagcc aaggaagcca agctatatgg ctgcaacgga gtctgcgaag 1860gcgaaattac gagcacagaa ttcacccagg gtggattctg attcatcagc agaaaagaat 1920ggcttcactc gacgccactc tcttccttcc ggtacaaaca gtagggcgat caaagctgaa 1980tggaagcgct gaggaggcat tgacttgaat tgaatagtgc gattgtctga atctctgctg 2040ggtgaactct gccgctgctt gctccttttt atttatcctg cgatgtaaag agaagacatt 2100gtccctgtat tgaacaatct ttgtgatgag tgcgtctggt tcagtctgtg gtaggttcac 2160gtgccaggcc tagtgccccg ttcattgtat agtcacagtt ctctcgggat tgaaatcgat 2220tcctcgtgta agctgatgtt aggactgcag tctgatcgaa taacatcatc cgcttgcaca 2280ctgccttaag cccttaattg atatgatacc gggcaatttc gtgaaaaaaa aaaaaaaaaa 2340aaa 23432570PRTPanicum virgatummisc_featureCeres CLONE ID no.1792354 2Met Gly Lys Ser Pro Gly Lys Trp Ile Lys Ser Val Leu Leu Gly Lys1 5 10 15Lys Ser Thr Lys Ser Gly Ser Thr Lys Ala Asn Glu Ser Lys Ala Thr 20 25 30Asn Asn Asn Gly His Ser Ala Gly Glu Glu Arg Ala Phe Ser Glu Asn35 40 45Ser Pro Val Ile Ser Glu Pro Val Leu Val Glu Ala His Lys Asn Gly50 55 60Ala Val Ser Val Asn Gly Lys Ala Glu Asp Val Asn Leu Pro Ser Asp65 70 75 80Arg Ala Gly Gln Gln Asp Leu Gln Asn Gln Ser Ile Val Glu Ser Glu 85 90 95Thr Ser Val Pro Gly Gln Leu Gly Glu Asp Gln Ala Ala Val Lys Ala 100 105 110Gln Ala Ala Phe Arg Gly Tyr Leu Ala Arg Arg Ser Phe Arg Ala Leu115 120 125Lys Gly Ile Ile Arg Leu Gln Val Leu Ile Arg Gly His Leu Val Arg130 135 140Arg Gln Ala Val Ser Thr Leu Arg Thr Thr Trp Leu Ile Val Lys Phe145 150 155 160Gln Ser Leu Val Arg Gly Arg Asn Val Arg Leu Ser Gly Ala Asp Ile 165 170 175Gln Leu Asn Val Lys Leu Gly Gln His Asn Leu Gly Gly Thr Arg Ser 180 185 190Ser Asp Ala Trp Lys Glu Lys Leu Ser Ser Asn Ala Tyr Val Arg Lys195 200 205Leu Leu Ser Ser Pro Ile Val Leu Glu Pro Leu His Phe Gln Tyr Asp210 215 220Lys Arg Asp Pro Asn Ser Thr Tyr Asn Trp Leu Glu Arg Trp Thr Ile225 230 235 240Gly Cys Ile Trp Lys Pro Val Phe Gln Pro Lys Arg Val Pro Asp Gly 245 250 255Lys Leu Leu Val Arg Lys Ala Ser Tyr Ala Met Glu Thr Glu Ser Ala 260 265 270Lys Leu Lys Arg Asn Ile Arg Lys Gly Ser Ala Ala Thr Val Glu Ser275 280 285Phe His Thr Arg Val Thr Gly Glu Ser Glu Lys Leu Lys Arg Asn Pro290 295 300Lys Lys Phe Ser Asn Phe Pro Ala Asp Ser Val Pro Asp Ser Gln Leu305 310 315 320Ser Glu Leu Glu Lys Val Lys Arg Asn Leu Arg Lys Val Thr Asp Ser 325 330 335Met Ala Glu Ala Ser Lys Ile Ser Ser Ser Arg Val Asp Ser Ser Lys 340 345 350Val Ser Asp Ser Thr Pro Asp Ala Pro Lys Val Ser Asn Pro Val Ala355 360 365Glu Ile Ser Lys Thr Ser Ser Leu Leu Asn Gly Ile Ser Asp His Gln370 375 380Asp Ser Gln Cys Glu Lys Ala Leu Gln Asn Thr Arg Glu Ala Ser Phe385 390 395 400Pro Leu Glu Thr Gln Asp Tyr Ser Gly Asn Gly Gln Leu Leu Glu Tyr 405 410 415Ser Asp Met Asp Asn Phe Asp Leu Val Pro Gly Leu Lys Ser Asp Leu 420 425 430Glu Thr Gln Leu Asp Ser Val Ser Ile Gly Glu Asn Val Asp Glu Pro435 440 445Thr Val Gly Ala Ser Ala Ala Glu Gly Met Pro Leu Gln Asn Ile Asp450 455 460Glu Pro Ile Ser Leu Gly Lys Lys Glu Glu Ala Arg Ser Lys Glu Glu465 470 475 480His Leu Ser Asn Gly Ser Leu Arg Thr Gly Lys Arg Lys Ser Ser Ser 485 490 495Pro Tyr Lys Ser Glu Tyr Val Glu Asn Gly Thr His Thr Thr Pro Ala 500 505 510Gln Pro Arg Lys Pro Ser Tyr Met Ala Ala Thr Glu Ser Ala Lys Ala515 520 525Lys Leu Arg Ala Gln Asn Ser Pro Arg Val Asp Ser Asp Ser Ser Ala530 535 540Glu Lys Asn Gly Phe Thr Arg Arg His Ser Leu Pro Ser Gly Thr Asn545 550 555 560Ser Arg Ala Ile Lys Ala Glu Trp Lys Arg 565 57032278DNAGossypium hirsutummisc_featureCeres CLONE ID no.1925477 3cccgctccat tgatgtcact aaccctaatt atacttacac acctacttct cttgtgattc 60attttacaca tttaatttct gaaggccgtt ttcatctctt tcttagcttt tatttagttt 120taaattcact ccaaaaaaaa aaaaaaaaac actgcacggg aatctcttgt tcgaggaatc 180cttcacggta cgaaattcgt tcttcagatc tctgaatgct cactgtttaa ctgttccttg 240gttttttctt ctggtaatgg cagcttagta gcgaacaagg acttcaaatt tgctgcattt 300ttcagatttc cagatttaga aacttggaat tttaattatt tttgggtcta acggagatgg 360gaaaatctcc agcaaaatgg atcaagacct tacttcttgg gaagaaatct tcaaagtcca 420gtttctcaaa aggaaaagag aagctgaaat ctgcaaataa aggtgaggtt ttggtttctt 480ccaaggtgac tgtgtctgac ctatcagtgg atcctccatc aatttcagca cctattctag 540tgaatagcgc taggaatgtg gtggactctg agaagggtat acctgcccaa ttgccaaatg 600atggggcaaa tattccatct ccaaaagtgg atggaaatga tgccacaact ggtaattttg 660gtaacccaga aaatcctgat aggattgggc ttgacccagc tgctgtgacg gtacaggctg 720ctttcagagg ttatctggct cgcagggcat ttcgaaccct caagggcatt ataaggctgc 780aagcagttat tcgtggtcac ttggttagaa gacaagctgt tgctacttta tgctgtacat 840ggggaattgt taagttgcaa gcactagctc gtggtcaaaa ggtcagatgt tcagatattg 900ccatggaaat acaagaaaaa catctaagac tgcttcaggg ttctaaaagc tcggattcta 960ttggagtgag cacatcttct aaggtgaaga atttatcaaa taatgtgttt gttcagaagc 1020ttttggcctc atcaccttct gtattacctc tacaacttca atatgttcca gaggagccta 1080actcatcctg gcagtggctt ctacgatgga caatgtcaca tttttgggta tcccctttaa 1140aaccagttag gagtggaaag acaaaacgaa gtattcagaa actgtccaat gcaaaagttg 1200ttaatggatc tagtcattct accttggagc atgaaaaaaa caaacgaggt gtgaggagag 1260tttctggcaa ctcagcagca gattcagttc ggaagcatcc acaaaatgag cttgagaggg 1320ttaagcgcag tttacgaaag ctttctgact cttcaaagga ggtttctgat aagtctgaag 1380tttttaatga gaaaacaaag aagactccga aaaaaacttc taattctaat gaccctgatt 1440tttcagaaca ggaatccgct gagaagataa gagatgtgac tgcaacacta tcagaactgt 1500caattcttga ggcagatctg aaaatttccc tagaagatcc ttctcttggt gagcctaatc 1560tctgtcctgc agttgatttg tcacctgctg aaaacaatcg taaacttgag gtaatagagg 1620agttaatctc taaagacaag caggttggtg atgagagctc aaacacaagc caaagaagag 1680cttctttccc tgcaaaaatt gataatcagg cgaatgggtt aaatctcatg ccaaaagtgc 1740ccagttatat ggcagcaact gaatctgcaa aagctagact taggggtcaa ggctccccaa 1800tgtttacccc ggaggctgtt gagaaaaatg ggttaaacag gcgatattct ctgccatctt 1860caacctatag taatacaagt tcacagtccc cacatggtca aagacgggtt cgagtagctg 1920gcaaaggtgc taacatcagt gacaaatctc aatcatcctc taaagatgct aatgataagg 1980ttgtcagagc tgagtggagg aggtaattct tgcatgggga attgtttcga tgaagtttcc 2040atggagtttg tgcacggatg ctacttaaca aaacttccct tatgtgttgt aaacttctga 2100tgtttggttg tagaagcagg agagtgaatc atctaatctt ttgttgcttg gtgtatcttt 2160ttaagtttcc ttggcacttt caggtttgta gatgggtaaa tatttgtaga tgttacagtt 2220ggttatttgg tttatttggt tcgtttgtgt ttgtacgcaa aaaaaaaaaa aaaaaaaa 22784549PRTGossypium hirsutummisc_featureCeres CLONE ID no.1925477 4Met Gly Lys Ser Pro Ala Lys Trp Ile Lys Thr Leu Leu Leu Gly Lys1 5 10 15Lys Ser Ser Lys Ser Ser Phe Ser Lys Gly Lys Glu Lys Leu Lys Ser 20 25 30Ala Asn Lys Gly Glu Val Leu Val Ser Ser Lys Val Thr Val Ser Asp35 40 45Leu Ser Val Asp Pro Pro Ser Ile Ser Ala Pro Ile Leu Val Asn Ser50 55 60Ala Arg Asn Val Val Asp Ser Glu Lys Gly Ile Pro Ala Gln Leu Pro65 70 75 80Asn Asp Gly Ala Asn Ile Pro Ser Pro Lys Val Asp Gly Asn Asp Ala 85 90 95Thr Thr Gly Asn Phe Gly Asn Pro Glu Asn Pro Asp Arg Ile Gly Leu 100 105 110Asp Pro Ala Ala Val Thr Val Gln Ala Ala Phe Arg Gly Tyr Leu Ala115 120 125Arg Arg Ala Phe Arg Thr Leu Lys Gly Ile Ile Arg Leu Gln Ala Val130 135 140Ile Arg Gly His Leu Val Arg Arg Gln Ala Val Ala Thr Leu Cys Cys145 150 155 160Thr Trp Gly Ile Val Lys Leu Gln Ala Leu Ala Arg Gly Gln Lys Val 165 170 175Arg Cys Ser Asp Ile Ala Met Glu Ile Gln Glu Lys His Leu Arg Leu 180 185 190Leu Gln Gly Ser Lys Ser Ser Asp Ser Ile Gly Val Ser Thr Ser Ser195 200 205Lys Val Lys Asn Leu Ser Asn Asn Val Phe Val Gln Lys Leu Leu Ala210 215 220Ser Ser Pro Ser Val Leu Pro Leu Gln Leu Gln Tyr Val Pro Glu Glu225 230 235 240Pro Asn Ser Ser Trp Gln Trp Leu Leu Arg Trp Thr Met Ser His Phe 245 250 255Trp Val Ser Pro Leu Lys Pro Val Arg Ser Gly Lys Thr Lys Arg Ser 260 265 270Ile Gln Lys Leu Ser Asn Ala Lys Val Val Asn Gly Ser Ser His Ser275 280 285Thr Leu Glu His Glu Lys Asn Lys Arg Gly Val Arg Arg Val Ser Gly290 295 300Asn Ser Ala Ala Asp Ser Val Arg Lys His Pro Gln Asn Glu Leu Glu305 310 315 320Arg Val Lys Arg Ser Leu Arg Lys Leu Ser Asp Ser Ser Lys Glu Val 325 330 335Ser Asp Lys Ser Glu Val Phe Asn Glu Lys Thr Lys Lys Thr Pro Lys 340 345 350Lys Thr Ser Asn Ser Asn Asp Pro Asp Phe Ser Glu Gln Glu Ser Ala355 360 365Glu Lys Ile Arg Asp Val Thr Ala Thr Leu Ser Glu Leu Ser Ile Leu370 375 380Glu Ala Asp Leu Lys Ile Ser Leu Glu Asp Pro Ser Leu Gly Glu Pro385 390 395 400Asn Leu Cys Pro Ala Val Asp Leu Ser Pro Ala Glu Asn Asn Arg Lys 405 410 415Leu Glu Val Ile Glu Glu Leu Ile Ser Lys Asp Lys Gln Val Gly Asp 420 425 430Glu Ser Ser Asn Thr Ser Gln Arg Arg Ala Ser Phe Pro Ala Lys Ile435 440 445Asp Asn Gln Ala Asn Gly Leu Asn Leu Met Pro Lys Val Pro Ser Tyr450 455 460Met Ala Ala Thr Glu Ser Ala Lys Ala Arg Leu Arg Gly Gln Gly Ser465 470 475 480Pro Met Phe Thr Pro Glu Ala Val Glu Lys Asn Gly Leu Asn Arg Arg 485 490 495Tyr Ser Leu Pro Ser Ser Thr Tyr Ser Asn Thr Ser Ser Gln Ser Pro 500 505 510His Gly Gln Arg Arg Val Arg Val Ala Gly Lys Gly Ala Asn Ile Ser515 520 525Asp Lys Ser Gln Ser Ser Ser Lys Asp Ala Asn Asp Lys Val Val Arg530 535 540Ala Glu Trp Arg Arg54551908DNAPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1521592 5atggggagaa aatcacctgc gaaatggata aagactgttt tgtttggaaa gaagtcttcc 60aaatctctta ttgtcaaagg aagggagaga actgtgaatg acaaagagac attggttgct 120gtcagagccg tggaagctga tgtgacctca gttcctccgg tggtcaagcc gacagccccc 180actaccacta atatcactga aaggatgtta gagctagaga gcagggaaac tacagaatca 240tcacgtgatg gaggtatatt gtcaactgga aatcaagatg caaatcattc tcaattatac 300actcctgatg ctcctccatc tgatgctgac aaaataaggc ttgatgaagc tgcgacaatg 360gcacaagccg catttagggg ttacttggct cgccgagcat ttcgagctct taaaggcata 420ataaggcttc aggctcttat ccgtggacac ttggttagaa ggcaagctgt tgctactctc 480tgctgtgtgc tcggagttgt caagttacag gctcttgctc gaggaagaat ggttaggaat 540tcagagattg gctatgaggt tcataaatta tgcagccaag taaaactgcc ggagggcaag 600cttgcagatt ctagtggagt tggtatacaa atggccaagc tgtcatcaaa tgcttttgtt 660cgcaagcttc ttgctccatc acctgctgta atgcctttgc aactccccta tgattccatg 720gaaccaaact cagttgcaaa ctggttagag tgctggtcag cgtcctcttt ctggaaacca 780gttccccaac caaaaaaaat tacttgctca aaaactcaga gaaagcagag taatggtcaa 840atagtggaag ctgaaactgg taggccaaag cgcactgttc ggagggtccc tgctgcaaat 900gttgacagta cctcagtaca agcagcctct gaatttgaga aacccaagcg caatttgagg 960aaagtttcaa gccatccagc tgattcagca gaaaattcac agattgagct tgaaaaggta 1020aagcgcagct taagaaaggt taataacccc gttatagaaa actctgctca ttcagaggtt 1080gaaaatgaaa agccaaagca aggtctagaa aaggtatctg gcacttcagg tgataatgtt 1140ttgggatgga gcgtaagtaa ttcagctgag aagatgaaga aagaagctac cttgacaaca 1200tccaatgtac ctgatgtggt gaagaatgat ccaaacttga tgtccaagtt gcctgatgca 1260gagacagctg atgaacctgt agaaatgatc aaggcattgg aatcatcaca tgacgatcaa 1320gctgtggtag aatctaaagc ttcagtagat actggtggta tagttgagaa tatgcaaata 1380aatgggaagt ccatacacca ggatgatcca acaagcaatg aaaatcacaa aactgccaag 1440aaaccttcat tcacaatgaa accagaacgt gccgagaatg ggctacagag cagtcccacc 1500ctccctagct acatggcagc aactgaatct gcaaaggcaa agctgagaat gcaaggctcc 1560ccaagattta gtgaagatcg agttgagaaa aataacatca cccgtcgtca ttctctgccc 1620tcttcaacta atagcaaaat cagctccgag tccccgagga cacaaagagc agttcatggt 1680agtggcaaag gggggaataa gagtgacaag tctttattgt cttcaagaga tggaaatgct 1740aagggagccc aaccagagtg gaagagatca tggtgtagca gtgaaacatg gtctatagcc 1800ggaagggggg gaataaagag aaaagaagga aaaaaaaata aaagtccacc aatgacaaac 1860caaccaccta acattgacac gcgtcgcccc aaaataaaga ggacatga 19086589PRTPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1521592 6Met Gly Arg Lys Ser Pro Ala Lys Trp Ile Lys Thr Val Leu Phe Gly1 5 10 15Lys Lys Ser Ser Lys Ser Leu Ile Val Lys Gly Arg Glu Arg Thr Val 20 25 30Asn Asp Lys Glu Thr Leu Val Ala Val Arg Ala Val Glu Ala Asp Val35 40 45Thr Ser Val Pro Pro Val Val Lys Pro Thr Ala Pro Thr Thr Thr Asn50 55 60Ile Thr Glu Arg Met Leu Glu Leu Glu Ser Arg Glu Thr Thr Glu Ser65 70 75 80Ser Arg Asp Gly Gly Ile Leu Ser Thr Gly Asn Gln Asp Ala Asn His 85 90 95Ser Gln Leu Tyr Thr Pro Asp Ala Pro Pro Ser Asp Ala Asp Lys Ile 100 105 110Arg Leu Asp Glu Ala Ala Thr Met Ala Gln Ala Ala Phe Arg Gly Tyr115 120 125Leu Ala Arg Arg Ala Phe Arg Ala Leu Lys Gly Ile Ile Arg Leu Gln130 135 140Ala Leu Ile Arg Gly His Leu Val Arg Arg Gln Ala Val Ala Thr Leu145 150 155 160Cys Cys Val Leu Gly Val Val Lys Leu Gln Ala Leu Ala Arg Gly Arg 165 170 175Met Val Arg Asn Ser Glu Ile Gly Tyr Glu Val His Lys Leu Cys Ser 180 185 190Gln Val Lys Leu Pro Glu Gly Lys Leu Ala Asp Ser Ser Gly Val Gly195 200 205Ile Gln Met Ala Lys Leu Ser Ser Asn Ala Phe Val Arg Lys Leu Leu210 215 220Ala Pro Ser Pro Ala Val Met Pro Leu Gln Leu Pro Tyr Asp Ser Met225 230 235 240Glu Pro Asn Ser Val Ala Asn Trp Leu Glu Cys Trp Ser Ala Ser Ser 245 250 255Phe Trp Lys Pro Val Pro Gln Pro Lys Lys Ile Thr Cys Ser Lys Thr 260 265 270Gln Arg Lys Gln Ser Asn Gly

Gln Ile Val Glu Ala Glu Thr Gly Arg275 280 285Pro Lys Arg Thr Val Arg Arg Val Pro Ala Ala Asn Val Asp Ser Thr290 295 300Ser Val Gln Ala Ala Ser Glu Phe Glu Lys Pro Lys Arg Asn Leu Arg305 310 315 320Lys Val Ser Ser His Pro Ala Asp Ser Ala Glu Asn Ser Gln Ile Glu 325 330 335Leu Glu Lys Val Lys Arg Ser Leu Arg Lys Val Asn Asn Pro Val Ile 340 345 350Glu Asn Ser Ala His Ser Glu Val Glu Asn Glu Lys Pro Lys Gln Gly355 360 365Leu Glu Lys Val Ser Gly Thr Ser Gly Asp Asn Val Leu Gly Trp Ser370 375 380Val Ser Asn Ser Ala Glu Lys Met Lys Lys Glu Ala Thr Leu Thr Thr385 390 395 400Ser Asn Val Pro Asp Val Val Lys Asn Asp Pro Asn Leu Met Ser Lys 405 410 415Leu Pro Asp Ala Glu Thr Ala Asp Glu Pro Val Glu Met Ile Lys Ala 420 425 430Leu Glu Ser Ser His Asp Asp Gln Ala Val Val Glu Ser Lys Ala Ser435 440 445Val Asp Thr Gly Gly Ile Val Glu Asn Met Gln Ile Asn Gly Lys Ser450 455 460Ile His Gln Asp Asp Pro Thr Ser Asn Glu Asn His Lys Thr Ala Lys465 470 475 480Lys Pro Ser Phe Thr Met Lys Pro Glu Arg Ala Glu Asn Gly Leu Gln 485 490 495Ser Ser Pro Thr Leu Pro Ser Tyr Met Ala Ala Thr Glu Ser Ala Lys 500 505 510Ala Lys Leu Arg Met Gln Gly Ser Pro Arg Phe Ser Glu Asp Arg Val515 520 525Glu Lys Asn Asn Ile Thr Arg Arg His Ser Leu Pro Ser Ser Thr Asn530 535 540Ser Lys Ile Ser Ser Glu Ser Pro Arg Thr Gln Arg Ala Val His Gly545 550 555 560Ser Gly Lys Gly Gly Asn Lys Ser Asp Lys Ser Leu Leu Ser Ser Arg 565 570 575Asp Gly Asn Ala Lys Gly Ala Gln Pro Glu Trp Lys Arg 580 58572059DNAGlycine maxmisc_featureCeres CLONE ID no.463594 7attgtttggt tctggttctc aggaatggta gatttgaggt gaagacgttc cacattggtc 60aggtcccgat ctcacgatgg ggaagtcacc aggaaaatgg atcaaaactg tactgttcgg 120gaaaaagtca tctaaatcaa atatttcaaa aggcagagag aagcttgtta atcaaaaagg 180agtagtagtt acctccaagg tgccagaaac tggtttggct ttagaaccaa cctccgatac 240tattgccaga catgaggaag atccagagct ggaaaataaa gaagcagaaa atgttttacc 300cgggaatcaa gaaatagaca cagtgggatc aattaatgaa gatgctgcac tagatccaga 360gaaaatgagg ctggaggaag cagctacaaa ggcacaagct gctttcaggg gttatttggc 420tcggagagca tttagggctc taaaaggaat aataaggttg caagcactca tccgtgggca 480cttggttagg agacaagctg ttgttacatt atgctcaatg tatggtattg tcaagtttca 540agcacttgtt cgtggaggaa tagttagaca gtctaatgtt ggatctgaaa tccatgagaa 600gtccaatata ttgaaccctc tggatggcaa gcttgtcaag ccaaatgcta tgttcacgaa 660aattaccaag ctgtctgcaa atgctttcat tcggaagctt cttacttcgt caactacaat 720aatggcgctg cggttgcaat atgttcccgg cgatccaaat tcagtcctaa gttggttgga 780gcgctggtca gcatctcact tttggaaacc agttccccaa cccaagaaaa ttcgagatac 840taagtctcag agaaagcatg gcaatatttc agttggagat actcatgtga gcaagtcaaa 900acgaatcaac aggaagcttc ctactgcaag ttttgactcg gtcccagtgc aagcaaatcc 960tgaatttgaa aaaccaaaac gaaacacaag gaaaatttca aaccaatcct cagatcctca 1020tgtgcaggaa aacccacaaa gtgagcttga aaagattaaa cgtaacttga gaaaggttta 1080taacccagtt gttgagaatg ctgttccgtc agaagttgaa tccgaaatgc caaaggatca 1140tttggaaaag gtaacagtta cctcatgcct tgctgtttca gagcaagagg tcattagttc 1200taatgagaag atcaagaagg aagcaatatt aactgtttcc agtgtgccag atatagaaac 1260tactccaaga ctttcagtta gtaaggaggt gtctgacaca ccaagcagtt atcaagtgac 1320tgtggaatca aaaccattga ctgagattac aactaaagat aaaaacattt ctgtttctga 1380cgaagtaaaa aatgagccca tagatttacc agagcctatt tgtaaagatg aaaattctca 1440cttaacaaat ggagatttga gtcacaagga agatcaaata ggcagtgaaa accagaaacc 1500aaaccaaaaa gcctcaattg tagcaaagca ggaacgtgca gagaatggta tacagaatag 1560tccaacatta ccgagttaca tggcagcaac tgaatctgca aaggcaaagt tgagggcaca 1620aggatcccca agatttggac aggatggaag tgaaagaaac aaccatactc ggcgacattc 1680tctgccatcc tcaactaaca gcaaaattaa ttcaccttca cctaggacac agagaccagt 1740tcaatcaggt ggcaaaggtg gccacagaag tgacagaact gtatcatctt ctagagatgg 1800gaatggaaag gtaattcaag cagagtggag gcggtaattt gaggaaggcc gatgttctgg 1860aggaacatga ggagggcgaa accgtgtgtg gtttatatgt atctttgatg agaattgttg 1920aatggatagg actataggtg tgcttgaatt caggttattt cttcatttgc tgcattttgg 1980gctttgaggg tgatttgtac attataggtt tctagttttg catgatgcaa ctataactaa 2040atttaattat gttttaagc 20598586PRTGlycine maxmisc_featureCeres CLONE ID no.463594 8Met Gly Lys Ser Pro Gly Lys Trp Ile Lys Thr Val Leu Phe Gly Lys1 5 10 15Lys Ser Ser Lys Ser Asn Ile Ser Lys Gly Arg Glu Lys Leu Val Asn 20 25 30Gln Lys Gly Val Val Val Thr Ser Lys Val Pro Glu Thr Gly Leu Ala35 40 45Leu Glu Pro Thr Ser Asp Thr Ile Ala Arg His Glu Glu Asp Pro Glu50 55 60Leu Glu Asn Lys Glu Ala Glu Asn Val Leu Pro Gly Asn Gln Glu Ile65 70 75 80Asp Thr Val Gly Ser Ile Asn Glu Asp Ala Ala Leu Asp Pro Glu Lys 85 90 95Met Arg Leu Glu Glu Ala Ala Thr Lys Ala Gln Ala Ala Phe Arg Gly 100 105 110Tyr Leu Ala Arg Arg Ala Phe Arg Ala Leu Lys Gly Ile Ile Arg Leu115 120 125Gln Ala Leu Ile Arg Gly His Leu Val Arg Arg Gln Ala Val Val Thr130 135 140Leu Cys Ser Met Tyr Gly Ile Val Lys Phe Gln Ala Leu Val Arg Gly145 150 155 160Gly Ile Val Arg Gln Ser Asn Val Gly Ser Glu Ile His Glu Lys Ser 165 170 175Asn Ile Leu Asn Pro Leu Asp Gly Lys Leu Val Lys Pro Asn Ala Met 180 185 190Phe Thr Lys Ile Thr Lys Leu Ser Ala Asn Ala Phe Ile Arg Lys Leu195 200 205Leu Thr Ser Ser Thr Thr Ile Met Ala Leu Arg Leu Gln Tyr Val Pro210 215 220Gly Asp Pro Asn Ser Val Leu Ser Trp Leu Glu Arg Trp Ser Ala Ser225 230 235 240His Phe Trp Lys Pro Val Pro Gln Pro Lys Lys Ile Arg Asp Thr Lys 245 250 255Ser Gln Arg Lys His Gly Asn Ile Ser Val Gly Asp Thr His Val Ser 260 265 270Lys Ser Lys Arg Ile Asn Arg Lys Leu Pro Thr Ala Ser Phe Asp Ser275 280 285Val Pro Val Gln Ala Asn Pro Glu Phe Glu Lys Pro Lys Arg Asn Thr290 295 300Arg Lys Ile Ser Asn Gln Ser Ser Asp Pro His Val Gln Glu Asn Pro305 310 315 320Gln Ser Glu Leu Glu Lys Ile Lys Arg Asn Leu Arg Lys Val Tyr Asn 325 330 335Pro Val Val Glu Asn Ala Val Pro Ser Glu Val Glu Ser Glu Met Pro 340 345 350Lys Asp His Leu Glu Lys Val Thr Val Thr Ser Cys Leu Ala Val Ser355 360 365Glu Gln Glu Val Ile Ser Ser Asn Glu Lys Ile Lys Lys Glu Ala Ile370 375 380Leu Thr Val Ser Ser Val Pro Asp Ile Glu Thr Thr Pro Arg Leu Ser385 390 395 400Val Ser Lys Glu Val Ser Asp Thr Pro Ser Ser Tyr Gln Val Thr Val 405 410 415Glu Ser Lys Pro Leu Thr Glu Ile Thr Thr Lys Asp Lys Asn Ile Ser 420 425 430Val Ser Asp Glu Val Lys Asn Glu Pro Ile Asp Leu Pro Glu Pro Ile435 440 445Cys Lys Asp Glu Asn Ser His Leu Thr Asn Gly Asp Leu Ser His Lys450 455 460Glu Asp Gln Ile Gly Ser Glu Asn Gln Lys Pro Asn Gln Lys Ala Ser465 470 475 480Ile Val Ala Lys Gln Glu Arg Ala Glu Asn Gly Ile Gln Asn Ser Pro 485 490 495Thr Leu Pro Ser Tyr Met Ala Ala Thr Glu Ser Ala Lys Ala Lys Leu 500 505 510Arg Ala Gln Gly Ser Pro Arg Phe Gly Gln Asp Gly Ser Glu Arg Asn515 520 525Asn His Thr Arg Arg His Ser Leu Pro Ser Ser Thr Asn Ser Lys Ile530 535 540Asn Ser Pro Ser Pro Arg Thr Gln Arg Pro Val Gln Ser Gly Gly Lys545 550 555 560Gly Gly His Arg Ser Asp Arg Thr Val Ser Ser Ser Arg Asp Gly Asn 565 570 575Gly Lys Val Ile Gln Ala Glu Trp Arg Arg 580 5859587PRTArabidopsis thalianamisc_featurePublic GI ID no.22330633 9Met Gly Lys Ser Thr Lys Trp Leu Lys Asn Val Leu Leu Gly Lys Lys1 5 10 15Thr Ser Lys Ser Ser Gly Ser Lys Asp Lys Glu Arg Val Val Ser Gly 20 25 30Lys Glu Val Leu Val Thr Ser Lys Val Glu Glu Ser Asp Val Val Ser35 40 45Asp Leu Pro Ser Phe Glu Val Ala Glu Thr Asn Thr Val Asp Arg Ser50 55 60Gly Gly Met Leu Glu Thr Gln Asn Val Gly Pro Glu Glu Ile Ser Asp65 70 75 80Asp Glu Ile Glu Leu Pro Glu Gly Lys Ser Thr Asp Ser Gln Asn Val 85 90 95Ala Pro Val Gln Asp His Ser Leu Ser Asp Ala Glu Arg Ile Gln Arg 100 105 110Glu Ile Ala Ala Thr Ser Val Gln Ala Ala Phe Arg Gly Tyr Leu Ala115 120 125Arg Arg Ala Phe Trp Ala Leu Lys Gly Ile Ile Arg Leu Gln Ala Leu130 135 140Ile Arg Gly His Leu Val Arg Arg Gln Ala Val Ala Thr Leu Phe Ser145 150 155 160Val Met Gly Ile Val Arg Leu Gln Ala Phe Ala Arg Gly Arg Glu Ile 165 170 175Arg Lys Ser Asp Ile Gly Val Gln Val Tyr Arg Lys Cys Arg Leu Gln 180 185 190Leu Leu Gln Gly Asn Lys Leu Ala Asn Pro Thr Asp Ala Tyr Leu Gly195 200 205Ile Lys Lys Leu Thr Ala Asn Ala Phe Ala Gln Lys Leu Leu Ala Ser210 215 220Ser Pro Lys Val Leu Pro Val His Ala Tyr Asp Thr Ser Asn Pro Asn225 230 235 240Ser Asn Leu Ile Trp Leu Glu Asn Trp Ser Ala Ser Cys Phe Trp Lys 245 250 255Pro Val Pro Gln Pro Lys Lys Thr Ile Ser Arg Lys Pro Gln Asn Arg 260 265 270Leu Leu Val Glu Ala Glu Ser Ala Lys Pro Lys Lys Ser Val Arg Lys275 280 285Val Pro Ala Ser Asn Phe Glu Ser Ser Ser Val Gln Thr Ser Phe Glu290 295 300Phe Glu Lys Pro Lys Arg Ser Phe Arg Lys Val Ser Ser Gln Ser Ile305 310 315 320Glu Pro Pro Ala Val Glu Asp Pro Gln Ile Glu Leu Glu Lys Val Lys 325 330 335Arg Ser Leu Arg Lys Val His Asn Pro Val Val Glu Ser Ser Ile Gln 340 345 350Pro Gln Arg Ser Pro Arg Lys Glu Val Glu Lys Pro Lys Leu Gly Val355 360 365Glu Lys Thr Arg Glu Ser Ser Tyr Pro Leu Val His Glu Thr Ala Glu370 375 380Glu Pro Val Asn Val Cys Asp Glu Lys Lys Lys Gln Glu Ile Ser Glu385 390 395 400Gln Pro Glu Glu Glu Val His Ala Leu Glu Met Glu Val His Thr Pro 405 410 415Gly Pro Leu Glu Thr Asn Glu Ala Leu Asp Ser Ser Leu Val Asn Gln 420 425 430Ile Asp Ser Asn Glu Lys Ala Met Val Glu Glu Lys Pro Ser Met Glu435 440 445Lys Asp Thr Lys Glu Glu Lys Thr Pro Lys Pro Asn Asn Lys Glu Asn450 455 460Ser Ala Gly Lys Glu Asn Gln Lys Ser Arg Lys Lys Gly Ser Ala Thr465 470 475 480Ser Lys Thr Glu Arg Glu Glu Ser Asn Gly His His Glu Thr Ser Pro 485 490 495Ser Ile Pro Ser Tyr Met Gln Ala Thr Lys Ser Ala Lys Ala Lys Leu 500 505 510Arg Leu Gln Gly Ser Pro Lys Ser Ala Glu Gln Asp Gly Thr Glu Lys515 520 525Ala Thr Val Pro Arg Arg His Ser Leu Pro Ser Pro Gly Asn Gly Arg530 535 540Ile Thr Ser His Ser Pro Arg Thr Thr Arg Leu Ala Asn Ser Gly Asp545 550 555 560Lys Thr Gly Asn Lys Lys Glu Lys Pro Leu Leu Ser Ser Arg Glu Gly 565 570 575Asn Ala Lys Thr Thr Pro Ala Glu Arg Lys Arg 580 585102049DNAZea maysmisc_featureCeres CLONE ID no.345954 10gtttttcgcc gagcagttcg cgtgctcccc tccacaggcc gacgcggcga cgccgctgtt 60tcaggttctg gaatttccag tgcgggtgca ttaggctgct atgggcaagt cgccggggaa 120gtggatcaaa tcggtgcttt tggggaagaa atctaccaag tcaggtccta ccaagtcgaa 180tgaatctaag gctgacaaca acagatactc gaccggggag gaccgcacat tgtctgagag 240ttctcctgtg atttctgagc cggtactagt taacatccac aagaacgtag ctatcaatgg 300gaaggctgca gatgccagtg atagggcacg gcaacaagat ccgcagagcc aaagcgttgt 360tgagtccaga tcatcggctc cagctgctca gctgggagaa gatcaagctg cagcgaaggc 420acaggcagcc tttcgtggtt acctggcacg aaggtcattc cgtgcattaa aaggtatcgt 480aagactccag gcgctgattc gagggtatct tgtaaggagg caggctgtat caacccttcg 540cgcaacatgg ttgattgtga agtttcaggc tctagttcgt ggaagaaatg ttagactctc 600tggcagtcgc atgcagctca atgtgaagtt tggtcagagt aactttgggg gtgttagatc 660gtctgatgca tggaaagaga agctatcttc aaatgcttat gttcggaagc ttctgtcttc 720accaattgtt ttagaacctc ttcacttcca gtatgacaag agggatccca attcaaccta 780taactggttt gagagatgga ccataggttg catctggaag cctgcttttc aacccaaaag 840agttgctgat gggaaaccac tggtaaagaa ggctagttat gcaatggaaa ctcaatcagc 900caagttaaaa cgcaacattc ggaagggttc tgctgctatc gctgggagtt tccatacatc 960tggtgaatct gataaagtaa aaaggaatcc aaagaatttc tctagcttcc ctgctgattc 1020agtaccagat agccagttat ctgaacttga aaaggttaaa aggaacctca ggaaggtaac 1080tgattcgatg gctgaagcct caaagatatc tagttccagg gttgattcct cgaaggtatg 1140taattctaca gctgaggttc caaaggaatc taatcctgtg gcagaaatct caaagatacg 1200tagtctcctg aatgggatct ctgaccatca ggatattcaa tgtgagaata cacgtgaatc 1260ttcatttcct cttggaactc aagaagactc tgacaatgat catctattgc gatattcaaa 1320tatggatagc ttggacttgg tacctggttt gaaaagtgat caggaaattc agctggattc 1380ggtttctata ggagaaaatg ttgatgatcc cactgttgtt gctccagcag ttgaagaaat 1440gtcaccgcaa aacattgata cggaagacaa tgttttatgc aagaaagagg aagcaaggtc 1500caaggaagag cacttgtcta atggaagcct tagaactagc aagaggaagt cttcattccc 1560caacaaatca gaatatgtag aaaatgggac tcacgctact cctgttcagc caacgcagcc 1620aagctatatg gctgcaacgg agtccgcaaa ggcgaaattg cgagcccaga attcacccag 1680tctggattct gattcagcgg cagaaaagaa tggtttcacc cgacgccact ctcttccttc 1740cagtacaaag agtagagcac ttaaagctga atggaagcgc tgaagaggca acccatcgtc 1800cacttgaatt gaattgtgca ctgctctgaa acttcgctgg atgaactcga ccggtcttgt 1860cccatgttct tgctgtattg aacaacccct tgtgaagttg cgattctggt tcagtttgtc 1920gtaggttcat gtgcaaccac tagtgccttg tgtcgtatat tgcatggttc ttgtcgaagg 1980aacaatgcct gcgaaagctg atgttaggac tgcattaact gaataacatc acccagttgc 2040ccaggtctt 204911560PRTZea maysmisc_featureCeres CLONE ID no.345954 11Met Gly Lys Ser Pro Gly Lys Trp Ile Lys Ser Val Leu Leu Gly Lys1 5 10 15Lys Ser Thr Lys Ser Gly Pro Thr Lys Ser Asn Glu Ser Lys Ala Asp 20 25 30Asn Asn Arg Tyr Ser Thr Gly Glu Asp Arg Thr Leu Ser Glu Ser Ser35 40 45Pro Val Ile Ser Glu Pro Val Leu Val Asn Ile His Lys Asn Val Ala50 55 60Ile Asn Gly Lys Ala Ala Asp Ala Ser Asp Arg Ala Arg Gln Gln Asp65 70 75 80Pro Gln Ser Gln Ser Val Val Glu Ser Arg Ser Ser Ala Pro Ala Ala 85 90 95Gln Leu Gly Glu Asp Gln Ala Ala Ala Lys Ala Gln Ala Ala Phe Arg 100 105 110Gly Tyr Leu Ala Arg Arg Ser Phe Arg Ala Leu Lys Gly Ile Val Arg115 120 125Leu Gln Ala Leu Ile Arg Gly Tyr Leu Val Arg Arg Gln Ala Val Ser130 135 140Thr Leu Arg Ala Thr Trp Leu Ile Val Lys Phe Gln Ala Leu Val Arg145 150 155 160Gly Arg Asn Val Arg Leu Ser Gly Ser Arg Met Gln Leu Asn Val Lys 165 170 175Phe Gly Gln Ser Asn Phe Gly Gly Val Arg Ser Ser Asp Ala Trp Lys 180 185 190Glu Lys Leu Ser Ser Asn Ala Tyr Val Arg Lys Leu Leu Ser Ser Pro195 200 205Ile Val Leu Glu Pro Leu His Phe Gln Tyr Asp Lys Arg Asp Pro Asn210 215 220Ser Thr Tyr Asn Trp Phe Glu Arg Trp Thr Ile Gly Cys Ile Trp Lys225 230 235 240Pro Ala Phe Gln Pro Lys Arg Val Ala Asp Gly Lys Pro Leu Val Lys 245 250 255Lys Ala Ser Tyr Ala Met Glu Thr Gln Ser Ala Lys Leu Lys Arg Asn 260 265 270Ile Arg Lys Gly Ser Ala Ala Ile Ala Gly Ser Phe His Thr Ser Gly275 280 285Glu Ser Asp Lys Val Lys Arg Asn Pro Lys Asn Phe Ser Ser Phe Pro290 295 300Ala Asp Ser Val Pro Asp Ser Gln Leu Ser Glu Leu Glu Lys Val Lys305 310 315 320Arg Asn Leu Arg Lys Val Thr Asp Ser Met Ala Glu Ala Ser Lys Ile 325 330 335Ser Ser Ser Arg Val Asp Ser Ser Lys

Val Cys Asn Ser Thr Ala Glu 340 345 350Val Pro Lys Glu Ser Asn Pro Val Ala Glu Ile Ser Lys Ile Arg Ser355 360 365Leu Leu Asn Gly Ile Ser Asp His Gln Asp Ile Gln Cys Glu Asn Thr370 375 380Arg Glu Ser Ser Phe Pro Leu Gly Thr Gln Glu Asp Ser Asp Asn Asp385 390 395 400His Leu Leu Arg Tyr Ser Asn Met Asp Ser Leu Asp Leu Val Pro Gly 405 410 415Leu Lys Ser Asp Gln Glu Ile Gln Leu Asp Ser Val Ser Ile Gly Glu 420 425 430Asn Val Asp Asp Pro Thr Val Val Ala Pro Ala Val Glu Glu Met Ser435 440 445Pro Gln Asn Ile Asp Thr Glu Asp Asn Val Leu Cys Lys Lys Glu Glu450 455 460Ala Arg Ser Lys Glu Glu His Leu Ser Asn Gly Ser Leu Arg Thr Ser465 470 475 480Lys Arg Lys Ser Ser Phe Pro Asn Lys Ser Glu Tyr Val Glu Asn Gly 485 490 495Thr His Ala Thr Pro Val Gln Pro Thr Gln Pro Ser Tyr Met Ala Ala 500 505 510Thr Glu Ser Ala Lys Ala Lys Leu Arg Ala Gln Asn Ser Pro Ser Leu515 520 525Asp Ser Asp Ser Ala Ala Glu Lys Asn Gly Phe Thr Arg Arg His Ser530 535 540Leu Pro Ser Ser Thr Lys Ser Arg Ala Leu Lys Ala Glu Trp Lys Arg545 550 555 560122049DNAZea maysmisc_featureCeres CLONE ID no.345954 12gtttttcgcc gagcagttcg cgtgctcccc tccacaggcc gacgcggcga cgccgctgtt 60tcaggttctg gaatttccag tgcgggtgca ttaggctgct atgggcaagt cgccggggaa 120gtggatcaaa tcggtgcttt tggggaagaa atctaccaag tcaggtccta ccaagtcgaa 180tgaatctaag gctgacaaca acagatactc gaccggggag gaccgcacat tgtctgagag 240ttctcctgtg atttctgagc cggtactagt taacatccac aagaacgtag ctatcaatgg 300gaaggctgca gatgccagtg atagggcacg gcaacaagat ccgcagagcc aaagcgttgt 360tgagtccaga tcatcggctc cagctgctca gctgggagaa gatcaagctg cagcgaaggc 420acaggcagcc tttcgtggtt acctggcacg aaggtcattc cgtgcattaa aaggtatcgt 480aagactccag gcgctgattc gagggtatct tgtaaggagg caggctgtat caacccttcg 540cgcaacatgg ttgattgtga agtttcaggc tctagttcgt ggaagaaatg ttagactctc 600tggcagtcgc atgcagctca atgtgaagtt tggtcagagt aactttgggg gtgttagatc 660gtctgatgca tggaaagaga agctatcttc aaatgcttat gttcggaagc ttctgtcttc 720accaattgtt ttagaacctc ttcacttcca gtatgacaag agggatccca attcaaccta 780taactggttt gagagatgga ccataggttg catctggaag cctgcttttc aacccaaaag 840agttgctgat gggaaaccac tggtaaagaa ggctagttat gcaatggaaa ctcaatcagc 900caagttaaaa cgcaacattc ggaagggttc tgctgctatc gctgggagtt tccatacatc 960tggtgaatct gataaagtaa aaaggaatcc aaagaatttc tctagcttcc ctgctgattc 1020agtaccagat agccagttat ctgaacttga aaaggttaaa aggaacctca ggaaggtaac 1080tgattcgatg gctgaagcct caaagatatc tagttccagg gttgattcct cgaaggtatg 1140taattctaca gctgaggttc caaaggaatc taatcctgtg gcagaaatct caaagatacg 1200tagtctcctg aatgggatct ctgaccatca ggatattcaa tgtgagaata cacgtgaatc 1260ttcatttcct cttggaactc aagaagactc tgacaatgat catctattgc gatattcaaa 1320tatggatagc ttggacttgg tacctggttt gaaaagtgat caggaaattc agctggattc 1380ggtttctata ggagaaaatg ttgatgatcc cactgttgtt gctccagcag ttgaagaaat 1440gtcaccgcaa aacattgata cggaagacaa tgttttatgc aagaaagagg aagcaaggtc 1500caaggaagag cacttgtcta atggaagcct tagaactagc aagaggaagt cttcattccc 1560caacaaatca gaatatgtag aaaatgggac tcacgctact cctgttcagc caacgcagcc 1620aagctatatg gctgcaacgg agtccgcaaa ggcgaaattg cgagcccaga attcacccag 1680tctggattct gattcagcgg cagaaaagaa tggtttcacc cgacgccact ctcttccttc 1740cagtacaaag agtagagcac ttaaagctga atggaagcgc tgaagaggca acccatcgtc 1800cacttgaatt gaattgtgca ctgctctgaa acttcgctgg atgaactcga ccggtcttgt 1860cccatgttct tgctgtattg aacaacccct tgtgaagttg cgattctggt tcagtttgtc 1920gtaggttcat gtgcaaccac tagtgccttg tgtcgtatat tgcatggttc ttgtcgaagg 1980aacaatgcct gcgaaagctg atgttaggac tgcattaact gaataacatc acccagttgc 2040ccaggtctt 204913574PRTZea maysmisc_featureCeres LOCUS ID no. Os01m05025_AP003288 13Met Gly Lys Ser Pro Ala Lys Trp Ile Lys Ser Val Leu Leu Gly Lys1 5 10 15Lys Ser Ala Lys Ser Asn Ser Thr Lys Ala Lys Asp Leu Ala Lys Ala 20 25 30Ala Asn Asn Lys Pro Val Leu Ser Glu Asp Pro Pro Val Ile Ser Glu35 40 45Pro Ala Leu Val Asn Ser His Asn Asp Gly Asn Ala Glu Asn Cys Lys50 55 60Leu Pro Asn Gly Val Ala Val Glu Ala Met Gly Gln Gly Val Glu Asn65 70 75 80Gln Asn Ile Val Gly Ser Lys Ala Pro Thr Ser Pro Glu Lys Leu Ser 85 90 95Glu Glu Leu Ala Ala Val Lys Ala Gln Ala Ala Phe Arg Gly Tyr Leu 100 105 110Ala Arg Arg Ala Phe Arg Ala Leu Lys Gly Ile Ile Arg Leu Gln Ala115 120 125Leu Ile Arg Gly His Leu Val Arg Arg Gln Ala Ala Ser Thr Leu Arg130 135 140Val Thr Trp Leu Ile Val Lys Leu Gln Ala Leu Val Arg Gly Arg Asn145 150 155 160Val Arg Leu Ser Gly Ala Ser Ile Gln Phe Val Val Lys Ser Gly Gln 165 170 175His Lys Phe Leu Ser Asp Lys Pro Ser Asp Ala Trp Lys Glu Lys Val 180 185 190Ser Ser Asn Ala Tyr Val Arg Lys Leu Leu Ser Ser Ser Ile Gly Leu195 200 205Glu Ala Leu His Leu Gln Tyr Asp Lys Arg Asp Pro Asn Ser Leu Tyr210 215 220Asn Trp Leu Glu Arg Trp Thr Ile Ser Gln Ile Trp Lys Ser Ser Ser225 230 235 240Gln Pro Lys Lys Val Ala Asp Gly Lys Pro Gln Val Arg Lys Ala Ser 245 250 255Tyr Ala Met Glu Thr Glu Ser Ala Lys Leu Lys Arg Asn Val Arg Lys 260 265 270Ser Ser Ala Val Thr Val Asp Ser Phe Gln Thr Asn Met Thr Val Glu275 280 285Pro Glu Lys Ile Lys Arg Asn Ser Arg Lys Phe Ser Ser Ser Ala Ala290 295 300Asp Ser Val Pro Asp Ser Gln Leu Ser Glu Leu Glu Lys Val Lys Arg305 310 315 320Asn Leu Arg Lys Val Thr Asn Ser Met Ala Glu Ala Ser Lys Ile Ser 325 330 335Ser Ser Arg Ala Asp Ala Ser Lys Val Ser Ser Ser Met Ala Asp Ala 340 345 350Ser Lys Val Ser Ser Ser Thr Ala Asp Ala Ser Lys Val Ser Asp Ser355 360 365Val Ala Gln Ile Pro Pro Ser Leu Val Asn Gly Ile Ser Asp His Gln370 375 380Asp Asn Gln Cys Glu Glu Ala Gln Gln Asn Ala Cys Val Ser Phe Pro385 390 395 400Pro Glu Thr Gln Glu Leu His Ser Gly Ile Leu Leu Glu Asp Asn Ser 405 410 415His Met Asn Leu Leu Glu Pro Asp Leu Ile Ser Asn Pro Glu Thr Pro 420 425 430Phe Thr Ser Ile Leu Thr Trp Glu Lys Phe Asn Asp Ser Thr Ala Asp435 440 445Ala Gln Glu Val Glu Val Leu Pro Leu Gln Asn Ile Asp Asn Glu Asp450 455 460Asn Phe Pro Glu Asn Gly Val Leu Gly Lys Lys Glu Lys Pro Arg Ser465 470 475 480Lys Glu Glu Pro Leu Ser Asn Gly Asn Leu Lys Thr Ser Lys Arg Arg 485 490 495Ser Ser Phe Ser Thr Lys Ser Asp Tyr Pro Glu Asn Gly Ala Gln Asn 500 505 510Thr Pro Val Pro Arg Arg Lys Pro Ser Tyr Met Ala Ala Thr Glu Ser515 520 525Ala Lys Ala Lys Leu Arg Gly Gln Asn Ser Pro Arg Leu Asp Ser Asp530 535 540Ser Pro Ala Asp Met Asn Gly Phe Thr Arg Arg Gln Ser Leu Pro Ser545 550 555 560Ser Thr Asn Asn Arg Ala Ile Arg Ala Glu Trp Arg Arg Trp 565 57014582PRTOryza sativa subsp. indicamisc_featurePublic GI ID no.125527495 14Met Gly Lys Ser Pro Ala Lys Trp Ile Lys Ser Val Leu Leu Gly Lys1 5 10 15Lys Ser Ala Lys Ser Asn Ser Thr Lys Ala Lys Asp Leu Ala Lys Ala 20 25 30Ala Asn Asn Lys Pro Val Leu Ser Glu Asp Pro Pro Val Ile Ser Glu35 40 45Pro Ala Leu Val Asn Ser His Asn Asp Gly Asn Ala Glu Asn Cys Lys50 55 60Leu Pro Asn Gly Val Ala Val Glu Ala Met Gly Gln Gly Val Glu Asn65 70 75 80Gln Asn Ile Val Gly Ser Lys Ala Pro Thr Ser Pro Glu Lys Leu Ser 85 90 95Glu Glu Leu Ala Ala Val Lys Ala Gln Ala Ala Phe Arg Gly Tyr Leu 100 105 110Ala Arg Arg Ala Phe Arg Ala Leu Lys Gly Ile Ile Arg Leu Gln Ala115 120 125Leu Ile Arg Gly His Leu Val Arg Arg Gln Ala Ala Ser Thr Leu Arg130 135 140Val Thr Trp Leu Ile Val Lys Leu Gln Ala Leu Val Arg Gly Arg Asn145 150 155 160Val Arg Leu Ser Gly Ala Ser Ile Gln Phe Val Val Lys Ser Gly Gln 165 170 175His Lys Phe Leu Ser Asp Lys Pro Ser Asp Ala Trp Lys Glu Lys Val 180 185 190Ser Ser Asn Ala Tyr Val Arg Lys Leu Leu Ser Ser Ser Ile Gly Leu195 200 205Glu Ala Leu His Leu Gln Tyr Asp Lys Arg Asp Pro Asn Ser Leu Tyr210 215 220Asn Trp Leu Glu Arg Trp Thr Ile Ser Gln Ile Trp Lys Ser Ser Ser225 230 235 240Gln Pro Lys Lys Val Ala Asp Gly Lys Pro Gln Val Arg Lys Ala Ser 245 250 255Tyr Ala Met Glu Thr Glu Ser Ala Lys Leu Lys Arg Asn Val Arg Lys 260 265 270Ser Ser Ala Val Thr Val Asp Ser Phe Gln Thr Asn Met Thr Val Glu275 280 285Pro Glu Lys Ile Lys Arg Asn Ser Arg Lys Phe Ser Ser Ser Ala Ala290 295 300Asp Ser Val Pro Asp Ser Gln Leu Ser Glu Leu Glu Lys Val Lys Arg305 310 315 320Asn Leu Arg Lys Val Thr Asn Ser Met Ala Glu Ala Ser Lys Ile Ser 325 330 335Ser Ser Arg Ala Asp Ala Ser Lys Val Ser Ser Ser Met Ala Asp Ala 340 345 350Ser Lys Val Ser Ser Ser Thr Ala Asp Ala Ser Lys Val Ser Asp Ser355 360 365Val Ala Gln Ile Pro Pro Ser Leu Val Asn Gly Ile Ser Asp His Gln370 375 380Asp Asn Gln Cys Glu Glu Ala Gln Gln Asn Ala Cys Val Ser Phe Pro385 390 395 400Pro Glu Thr Gln Glu Leu His Ser Gly Ile Leu Leu Glu Asp Asn Ser 405 410 415His Met Asn Leu Leu Glu Pro Asp Leu Ile Ser Asn Pro Glu Thr Pro 420 425 430Phe Thr Ser Ile Leu Thr Trp Glu Lys Phe Asn Asp Ser Thr Ala Asp435 440 445Ala Gln Glu Val Glu Val Leu Pro Leu Gln Asn Ile Asp Asn Glu Asp450 455 460Asn Phe Pro Glu Asn Gly Val Leu Gly Lys Lys Glu Lys Pro Arg Ser465 470 475 480Lys Glu Glu Pro Leu Ser Asn Gly Asn Leu Lys Thr Ser Lys Arg Arg 485 490 495Ser Ser Phe Ser Thr Lys Ser Asp Tyr Pro Glu Asn Gly Ala Gln Asn 500 505 510Thr Pro Val Pro Arg Arg Lys Pro Ser Tyr Met Ala Ala Thr Glu Ser515 520 525Ala Lys Ala Lys Leu Arg Gly Gln Asn Ser Pro Arg Leu Asp Ser Asp530 535 540Ser Pro Ala Asp Met Asn Gly Phe Thr Arg Arg Gln Ser Leu Pro Ser545 550 555 560Ser Thr Asn Ser Lys Leu Asn Pro His Ser Pro His Thr Gln Gly Pro 565 570 575Ile Tyr Phe Lys Phe Asp 58015580PRTOryza sativa subsp. indicamisc_featurePublic GI ID no.125553119 15Met Gly Lys Ser Pro Ala Lys Trp Ile Lys Ser Val Leu Phe Gly Lys1 5 10 15Lys Ser Ser Arg Ser Gly Ser Thr Lys Ala Lys Asp Leu Ser Lys Gly 20 25 30Ser Asn Asn Lys Gly Tyr Ala Ala Ala Gly Lys Asp Ala Gly Phe Glu35 40 45Ser Ser Pro Val Ile Ser Glu Pro Val Leu Val Thr Pro His Asn Asn50 55 60Glu Ala Val Gln Glu Val Gly Arg Gly Glu Asn Ser Ser Leu Gln Gly65 70 75 80Glu Val Val Val Arg Asp Val Ser Gln Asp Leu Glu Lys Gln Asn Thr 85 90 95Val Val Ser Asp Ala Ser Asn Asp Pro Glu Arg Leu Arg Glu Glu Gln 100 105 110Ala Ala Val Lys Ala Gln Ala Ala Phe Arg Gly Tyr Leu His Gly Ile115 120 125Gly Pro Gly Thr Ser Gly Ile Pro Cys Val Glu Arg Asn His Lys Thr130 135 140Pro Ser Pro Asp Ser Trp Ala Ser Arg Lys Glu Ala Ser Arg Cys Asn145 150 155 160Ser Ser Cys Asn Met Val Asp Cys Glu Val Ser Ser Ser Ser Pro Trp 165 170 175Leu Thr Arg Pro His Thr Arg Asn Met Cys Pro Asn Leu Leu Ala Leu 180 185 190Lys Pro His Lys Gln Pro Ile Met Leu Tyr Lys Ser Tyr Lys Ser Gly195 200 205Lys Arg Asp Ala Trp Lys Glu Lys Leu Ser Ser Asn Ala Phe Ala Arg210 215 220Lys Leu Leu Ala Ser Pro Ile Leu Val Glu Ala Leu His Phe Gln Tyr225 230 235 240Asp Glu Arg Asp Pro Asn Ser Ala Phe Asn Trp Leu Glu Arg Trp Thr 245 250 255Ile Gly Arg Val Trp Arg Pro Ile Ser His Pro Lys Arg Ala Ala Val 260 265 270Thr Asp Ala Lys Pro His Thr Arg Lys Ala Ser Tyr Ala Met Glu Thr275 280 285Glu Ser Gly Lys Leu Lys Arg Asn Ser Arg Arg Ser Ser Ala Ala Pro290 295 300Val Glu Ser Ser Gln Thr Asn Met Ala Met Glu Thr Glu Lys Ser Arg305 310 315 320Arg Asn Pro Arg Lys Phe Thr Ser Ser Thr Ala Asp Ser Val Pro Glu 325 330 335Ser Gln Leu Thr Glu Leu Glu Lys Val Lys Arg Asn Leu Arg Lys Val 340 345 350Thr Asn Ser Met Ala Glu Ala Ser Lys Val Ser Thr Pro Ala Thr Glu355 360 365Ile Pro Glu Arg Gln Glu Val Gln Cys Glu Lys Pro Gln Arg Thr Ala370 375 380Glu Glu Val Pro Asn Tyr Pro Glu Ile Gln Glu Pro Gln Asn Gly Asn385 390 395 400Leu Leu Glu Asn Ala Lys Thr Asp Ile Leu Val Pro Asp Leu Gln Pro 405 410 415Glu Pro Glu Val Pro Ser Tyr Gln Val Glu Thr Glu Glu Lys Val Ala 420 425 430Glu Leu Thr Val Ala Asp Pro Ala Val Glu Thr Met Pro Leu Gln Asp435 440 445Ile His Asn Glu Glu Asn Ala Leu Val Asn Asp Met Glu Gln Arg Ser450 455 460Lys Glu Glu Pro Leu Ser Thr Glu Ser Leu Lys Ser Ser Lys Arg Arg465 470 475 480Ser Ser Phe Ser Thr Lys Thr Glu Tyr Pro Glu Asn Gly Ser Lys Asn 485 490 495Ser Pro Ala Val Pro Ser Tyr Met Ala Ala Thr Gln Ser Ala Lys Ala 500 505 510Lys Leu Arg Gly Gln Asn Leu Pro Arg Leu Ser Ser Asp Ser Ala Glu515 520 525Lys Asn Gly Phe Thr Arg Arg His Ser Leu Pro Ser Ser Asn Gly Lys530 535 540Leu Asn Ser His Ser Pro Arg Thr Gln Arg Pro Thr His Ala Gly Gly545 550 555 560Lys Glu Gly Val Lys Ala Asp Lys Ser Met Leu Ser Ser Arg Asp Ala 565 570 575Ser Gly Lys Leu 580162368DNAZea maysmisc_featureCeres CLONE ID no.236431 16agctgattta ttttctctcg ctctcgcctt cgcggcgctg cctgcgcagt actacgagct 60agcaggctag cagcaccagg accaggagcc tcttcccaca cttccgctct tcctctctct 120ctttcctctc gagaatggtt gtgtaggcgg gcgcaggagg gaggagagag aggggagcta 180gctagggttt tgcgtcgccg ccttctgtta cccttaggct ctgaacccct ccggtccagt 240gcggcggcgg attaggctcc gatggggaag tctccggcga agtggatcaa gtccgtgctc 300ttcggtaaaa agtcgtcgtc gaggtccggc tccaccaagg ccaaggattt atcgaagggt 360accactaaca aagcggcggc tgctgctgct gccgggaagg agcctgcgtt ctctgagagc 420tctccggtca tctcggagcc tgtgcttgtt agcgcccaca acaatgagac cgcgcgggag 480gccgctaagg gtgagaattc cagcgtgcaa gaagtgccag tgactgatgt tagtcaagac 540ttggagaagc agggcactgt tgggtctgat acgtctaatg atgctgagag gttgagggaa 600gagcaagcgg ccgtgaaggc acaagctgcc ttccgtggtt atctggcacg ccgagcattc 660cgtgccctga aagggatcat aagactacag gcactgattc ggggacatct tgtaaggagg 720caagctgttt caactctccg tgctacatgg ttgattgtga agtttcaagc ccttgtccgt 780ggaaggaacg ttagactttc taaagtttcc attcaaccaa ctacggaact ttcccaacag 840aacttcgggg gttctaaacc tggttcctgg aaggagaagt tgtcttcaaa tgcatttgct 900cggaagcttc tctcttcacc aattgtggtt gaggctcttc atgtccagta tgatgagatg 960gaccctaatt cggccttcaa ttggttagag aggtggacag taagtcatgt ctggaagcct 1020atttcccaac caaagagagt tggtgctgat actaagcctc atacaaggaa ggccagttat 1080gcaatggaaa cagagtcagc gaaattaaag cgtaatgcac ggaagagccc tgcagtgcca 1140tttgagcctt ctcaaacaaa caccaccatt gaaaatgaga agacaagacg gaatccaagg 1200aaattaagta gcactcctgc tgagtcagtt cccgatggcc agttaacaga acttgagaag 1260gttaaacgta gccttaggaa ggttactagt tccatggttg aaacctcaaa ggtgcctagc 1320ccaacaactg agattcctga

ccgtcaagag gtacaatgtg agagaccact aagaagtgca 1380aagcaagctc caattcatgt tgagaatcaa gaacctcaga atgttaatct atcggacaat 1440gcaaagatgg atattctggt accagatatc cagcctgacg tggaagttgc ttcagatcta 1500gtcacaatca caaatgaaga aaaagttgat gagacaccgt ctgttgttgc tccagcgact 1560gaaattatgc cactgcaaga catcaacagc gaagaaaatg ctttggtgaa tgatgtggaa 1620gagagatcca aagaagaaca tccatctact gataacctga aaggcagcaa gaggaggtct 1680tcattctcag ttaagcctga atatccagaa aatggctcca aaaattctcc agctctgcca 1740agctacatgg ctgctacaca atctgcaaag gcgaaactgc gggggaattg ttcaccaaga 1800cttagctctg attcagcaga gaaaaacggg ttcactcgtc gtcactccct tccgtcccct 1860aacaatggta agataatttc acattctcca cgtacgcaaa ggccaaccca tgctggtggc 1920aaggacggag caaaaggcga caaggctatg ctgtcatcaa gagatgcgag cgagagacca 1980ctgaaagctg agtggagacg ctgaggtggc gaatcaaaac cccaaaccct ccatttggtt 2040agtgcaacta tttgggttgg tggatggcgt ctgcagtttg ctccgattgt tttgcttgtg 2100atgtaaaaaa gacgttatca tcatcatccg aggcgatgaa cgggttcagc tttgttgtga 2160tgaatctgct gggagtcaac ttatttacag ggttttgggt catgcctttt gtgatgtata 2220gctgaagtat tttcccggtt tgtttttgtt tcccagaccc ccagactccc ccctccccct 2280cctgcttgct gagagggctg ctgatgttag agagaacgag aacctgtatg gattgagttg 2340aacagaacaa tcttagtccc gtttggtc 236817580PRTZea maysmisc_featureCeres CLONE ID no.236431 17Met Gly Lys Ser Pro Ala Lys Trp Ile Lys Ser Val Leu Phe Gly Lys1 5 10 15Lys Ser Ser Ser Arg Ser Gly Ser Thr Lys Ala Lys Asp Leu Ser Lys 20 25 30Gly Thr Thr Asn Lys Ala Ala Ala Ala Ala Ala Ala Gly Lys Glu Pro35 40 45Ala Phe Ser Glu Ser Ser Pro Val Ile Ser Glu Pro Val Leu Val Ser50 55 60Ala His Asn Asn Glu Thr Ala Arg Glu Ala Ala Lys Gly Glu Asn Ser65 70 75 80Ser Val Gln Glu Val Pro Val Thr Asp Val Ser Gln Asp Leu Glu Lys 85 90 95Gln Gly Thr Val Gly Ser Asp Thr Ser Asn Asp Ala Glu Arg Leu Arg 100 105 110Glu Glu Gln Ala Ala Val Lys Ala Gln Ala Ala Phe Arg Gly Tyr Leu115 120 125Ala Arg Arg Ala Phe Arg Ala Leu Lys Gly Ile Ile Arg Leu Gln Ala130 135 140Leu Ile Arg Gly His Leu Val Arg Arg Gln Ala Val Ser Thr Leu Arg145 150 155 160Ala Thr Trp Leu Ile Val Lys Phe Gln Ala Leu Val Arg Gly Arg Asn 165 170 175Val Arg Leu Ser Lys Val Ser Ile Gln Pro Thr Thr Glu Leu Ser Gln 180 185 190Gln Asn Phe Gly Gly Ser Lys Pro Gly Ser Trp Lys Glu Lys Leu Ser195 200 205Ser Asn Ala Phe Ala Arg Lys Leu Leu Ser Ser Pro Ile Val Val Glu210 215 220Ala Leu His Val Gln Tyr Asp Glu Met Asp Pro Asn Ser Ala Phe Asn225 230 235 240Trp Leu Glu Arg Trp Thr Val Ser His Val Trp Lys Pro Ile Ser Gln 245 250 255Pro Lys Arg Val Gly Ala Asp Thr Lys Pro His Thr Arg Lys Ala Ser 260 265 270Tyr Ala Met Glu Thr Glu Ser Ala Lys Leu Lys Arg Asn Ala Arg Lys275 280 285Ser Pro Ala Val Pro Phe Glu Pro Ser Gln Thr Asn Thr Thr Ile Glu290 295 300Asn Glu Lys Thr Arg Arg Asn Pro Arg Lys Leu Ser Ser Thr Pro Ala305 310 315 320Glu Ser Val Pro Asp Gly Gln Leu Thr Glu Leu Glu Lys Val Lys Arg 325 330 335Ser Leu Arg Lys Val Thr Ser Ser Met Val Glu Thr Ser Lys Val Pro 340 345 350Ser Pro Thr Thr Glu Ile Pro Asp Arg Gln Glu Val Gln Cys Glu Arg355 360 365Pro Leu Arg Ser Ala Lys Gln Ala Pro Ile His Val Glu Asn Gln Glu370 375 380Pro Gln Asn Val Asn Leu Ser Asp Asn Ala Lys Met Asp Ile Leu Val385 390 395 400Pro Asp Ile Gln Pro Asp Val Glu Val Ala Ser Asp Leu Val Thr Ile 405 410 415Thr Asn Glu Glu Lys Val Asp Glu Thr Pro Ser Val Val Ala Pro Ala 420 425 430Thr Glu Ile Met Pro Leu Gln Asp Ile Asn Ser Glu Glu Asn Ala Leu435 440 445Val Asn Asp Val Glu Glu Arg Ser Lys Glu Glu His Pro Ser Thr Asp450 455 460Asn Leu Lys Gly Ser Lys Arg Arg Ser Ser Phe Ser Val Lys Pro Glu465 470 475 480Tyr Pro Glu Asn Gly Ser Lys Asn Ser Pro Ala Leu Pro Ser Tyr Met 485 490 495Ala Ala Thr Gln Ser Ala Lys Ala Lys Leu Arg Gly Asn Cys Ser Pro 500 505 510Arg Leu Ser Ser Asp Ser Ala Glu Lys Asn Gly Phe Thr Arg Arg His515 520 525Ser Leu Pro Ser Pro Asn Asn Gly Lys Ile Ile Ser His Ser Pro Arg530 535 540Thr Gln Arg Pro Thr His Ala Gly Gly Lys Asp Gly Ala Lys Gly Asp545 550 555 560Lys Ala Met Leu Ser Ser Arg Asp Ala Ser Glu Arg Pro Leu Lys Ala 565 570 575Glu Trp Arg Arg 580182129DNATriticum aestivummisc_featureCeres CLONE ID no.908518 18agaacctctc tctctcctct gctccacgcc acagaagaga acaaacagta ggaggagcgc 60tctccttcgg ccgcgagcgt ctgcgtcccg caatggaggc gtgatggttg gcgcggatag 120aggggtagcg ggacagggaa ggtgagcaat ctgccgggag agcgccgacg ccccgcccag 180tccagcccag gtccagaatt tccggtgttt gagcagtttt agtaggctgc tatggggaag 240tccccggcca agtggataaa gtccgtgctc ctcgggaaga aatcaacaaa atccaattct 300accaaggcaa aggatcttcc agcaaaggct gcaaacagca acggatgcac tgctgggaag 360gagcctgaat cctctgataa ttctcccctc atctcggagc cggtacttgt tagctcccac 420aatgtgtctg aaatttccaa cttgcccaat gggagggcaa tcgaaaacat ggttagagtt 480gggtccgaca cgcaaattag tccagagaaa ctgagagaag aactagcagc agtgaaggcg 540caagccgctt ttcgaggtta cctggcacgc agggccttcc gcgcattaaa aggtatcatc 600agacttcagg cactgattcg agggcatctt gtaaggaggc aggccgtttc aacccttcgt 660ggaacatggt tgattgtgaa gtttcaagct ctagttcgtg gaagaaatgt tagattttct 720agtgctgcca cgcaattagc tgtgaagttt ggtcaacata agtatggggg tgacaagtcg 780tcggatgcat ggaaggagaa gctatcttca catccatatg ttcgaaagct tctgtcttca 840ccaattttgg tacaagctct tcacgttcag tatgatgaga caaaccccaa ttcagccctc 900aactggctgg agagatggac aataagctgc atctggaagc ctgtttccaa accaaaaata 960gttactgacg ggaaaccaca agtaaggagg gccagttatg ccatggaaac tcactcagca 1020aagttaaagc gcaatgttcg gaagtcttct actgccactg ttgagactca ggcaaatacc 1080gttgaatctg aaaaatggaa aagaaaccca cggaaattga atggctcacc tgctgattca 1140gtaccagaca gccagttatc tgaacttgag aaggttaaaa ggaaccttaa gaaggcagct 1200aactccatgg ctgaagcctc taagatatct accaaggctg atgtgttgaa ggtacctaat 1260tccatagctg atgagctgaa gatacttggt tccatggctg aactatcaaa aaaatccagc 1320ataccaaacg gtatctctga ccatcaagac agcgaatgcg agaaagcact agagagtaca 1380cgtgaggctg tgtttcctct tggaactcaa gattctcaca gtggcaatct tttggaaaat 1440tcaaatataa gtaagttggt acctgacata aaatatgatc tagaagcatc attcttaggg 1500gacaaagtta atgaacccac tactgtcgct caagcagatg aagtcataca actgcagaac 1560cttgataacg gatatgatat tatagaaagg aaagaagaga ctaggtccaa ggaagaacct 1620ctgcctaatg gaagccttaa aaccaagaga aggtcttcgt tctctaattc agaataccct 1680gagagtggaa ccaagaacac tccagttcca tcaaggaagc caagctatat ggctccaaca 1740gaatcgttaa aggcgaaatt gcgaggacca cccagattag actctgatct accagtggac 1800aagaatgcct tcactcgccg tcagtctctt ccttctgctg caaacaatag agcaatcaaa 1860acagaatgga ggcggtgaag aggctatcaa gcttccaaca gaagggtgca ttattgtgga 1920agaaatttca agctgtataa attattgatt agtttatgaa gtttgctgat gtctacctgt 1980ctctgtcctt gttgttctgt ctacgttata aacatatgtt cttacgccct tttcgaacta 2040gcttgtggtg atatgtttgg tgctattttt tcctcgagtt atcttatagt tccttggtcc 2100gtgtattaaa tgtaaaaaaa aaaaaaaaa 212919548PRTTriticum aestivummisc_featureCeres CLONE ID no.908518 19Met Gly Lys Ser Pro Ala Lys Trp Ile Lys Ser Val Leu Leu Gly Lys1 5 10 15Lys Ser Thr Lys Ser Asn Ser Thr Lys Ala Lys Asp Leu Pro Ala Lys 20 25 30Ala Ala Asn Ser Asn Gly Cys Thr Ala Gly Lys Glu Pro Glu Ser Ser35 40 45Asp Asn Ser Pro Leu Ile Ser Glu Pro Val Leu Val Ser Ser His Asn50 55 60Val Ser Glu Ile Ser Asn Leu Pro Asn Gly Arg Ala Ile Glu Asn Met65 70 75 80Val Arg Val Gly Ser Asp Thr Gln Ile Ser Pro Glu Lys Leu Arg Glu 85 90 95Glu Leu Ala Ala Val Lys Ala Gln Ala Ala Phe Arg Gly Tyr Leu Ala 100 105 110Arg Arg Ala Phe Arg Ala Leu Lys Gly Ile Ile Arg Leu Gln Ala Leu115 120 125Ile Arg Gly His Leu Val Arg Arg Gln Ala Val Ser Thr Leu Arg Gly130 135 140Thr Trp Leu Ile Val Lys Phe Gln Ala Leu Val Arg Gly Arg Asn Val145 150 155 160Arg Phe Ser Ser Ala Ala Thr Gln Leu Ala Val Lys Phe Gly Gln His 165 170 175Lys Tyr Gly Gly Asp Lys Ser Ser Asp Ala Trp Lys Glu Lys Leu Ser 180 185 190Ser His Pro Tyr Val Arg Lys Leu Leu Ser Ser Pro Ile Leu Val Gln195 200 205Ala Leu His Val Gln Tyr Asp Glu Thr Asn Pro Asn Ser Ala Leu Asn210 215 220Trp Leu Glu Arg Trp Thr Ile Ser Cys Ile Trp Lys Pro Val Ser Lys225 230 235 240Pro Lys Ile Val Thr Asp Gly Lys Pro Gln Val Arg Arg Ala Ser Tyr 245 250 255Ala Met Glu Thr His Ser Ala Lys Leu Lys Arg Asn Val Arg Lys Ser 260 265 270Ser Thr Ala Thr Val Glu Thr Gln Ala Asn Thr Val Glu Ser Glu Lys275 280 285Trp Lys Arg Asn Pro Arg Lys Leu Asn Gly Ser Pro Ala Asp Ser Val290 295 300Pro Asp Ser Gln Leu Ser Glu Leu Glu Lys Val Lys Arg Asn Leu Lys305 310 315 320Lys Ala Ala Asn Ser Met Ala Glu Ala Ser Lys Ile Ser Thr Lys Ala 325 330 335Asp Val Leu Lys Val Pro Asn Ser Ile Ala Asp Glu Leu Lys Ile Leu 340 345 350Gly Ser Met Ala Glu Leu Ser Lys Lys Ser Ser Ile Pro Asn Gly Ile355 360 365Ser Asp His Gln Asp Ser Glu Cys Glu Lys Ala Leu Glu Ser Thr Arg370 375 380Glu Ala Val Phe Pro Leu Gly Thr Gln Asp Ser His Ser Gly Asn Leu385 390 395 400Leu Glu Asn Ser Asn Ile Ser Lys Leu Val Pro Asp Ile Lys Tyr Asp 405 410 415Leu Glu Ala Ser Phe Leu Gly Asp Lys Val Asn Glu Pro Thr Thr Val 420 425 430Ala Gln Ala Asp Glu Val Ile Gln Leu Gln Asn Leu Asp Asn Gly Tyr435 440 445Asp Ile Ile Glu Arg Lys Glu Glu Thr Arg Ser Lys Glu Glu Pro Leu450 455 460Pro Asn Gly Ser Leu Lys Thr Lys Arg Arg Ser Ser Phe Ser Asn Ser465 470 475 480Glu Tyr Pro Glu Ser Gly Thr Lys Asn Thr Pro Val Pro Ser Arg Lys 485 490 495Pro Ser Tyr Met Ala Pro Thr Glu Ser Leu Lys Ala Lys Leu Arg Gly 500 505 510Pro Pro Arg Leu Asp Ser Asp Leu Pro Val Asp Lys Asn Ala Phe Thr515 520 525Arg Arg Gln Ser Leu Pro Ser Ala Ala Asn Asn Arg Ala Ile Lys Thr530 535 540Glu Trp Arg Arg54520574PRTOryza sativa subsp. japonicamisc_featurePublic GI ID no.115465121 20Met Gly Lys Ser Pro Ala Lys Trp Ile Lys Ser Val Leu Phe Gly Lys1 5 10 15Lys Ser Ser Arg Ser Gly Ser Thr Lys Ala Lys Asp Leu Ser Lys Gly 20 25 30Ser Asn Asn Lys Gly Tyr Ala Ala Ala Gly Lys Asp Ala Gly Phe Glu35 40 45Ser Ser Pro Val Ile Ser Glu Pro Val Leu Val Thr Pro His Asn Asn50 55 60Glu Ala Val Gln Glu Val Gly Arg Gly Glu Asn Ser Ser Leu Gln Gly65 70 75 80Glu Val Val Val Arg Asp Val Ser Gln Asp Leu Glu Lys Gln Asn Thr 85 90 95Val Val Ser Asp Ala Ser Asn Asp Pro Glu Arg Leu Arg Glu Glu Gln 100 105 110Ala Ala Val Lys Ala Gln Ala Ala Phe Arg Gly Tyr Leu Ala Arg Arg115 120 125Ala Phe Arg Ala Leu Lys Gly Ile Ile Arg Leu Gln Ala Leu Ile Arg130 135 140Gly His Leu Val Arg Arg Gln Ala Val Ala Thr Leu Arg Ala Thr Trp145 150 155 160Leu Ile Val Lys Phe Gln Ala Leu Val Arg Gly Arg Asn Val Arg Leu 165 170 175Ser Thr Asn Thr Ile Gln Val Asn Trp Lys Leu Val Gln Gln Gln Ser 180 185 190Gly Ser Gly Lys Arg Asp Ala Trp Lys Glu Lys Leu Ser Ser Asn Ala195 200 205Phe Ala Arg Lys Leu Leu Ala Ser Pro Ile Leu Val Glu Ala Leu His210 215 220Phe Gln Tyr Asp Glu Arg Asp Pro Asn Ser Ala Phe Asn Trp Leu Glu225 230 235 240Arg Trp Thr Ile Gly Arg Val Trp Arg Pro Ile Ser His Pro Lys Arg 245 250 255Ala Ala Val Thr Asp Ala Lys Pro His Thr Arg Lys Ala Ser Tyr Ala 260 265 270Met Glu Thr Glu Ser Gly Lys Leu Lys Arg Asn Ser Arg Arg Ser Ser275 280 285Ala Ala Pro Val Glu Ser Ser Gln Thr Asn Ile Ala Met Glu Thr Glu290 295 300Lys Ser Arg Arg Asn Pro Arg Lys Phe Thr Ser Ser Thr Ala Asp Ser305 310 315 320Val Pro Glu Ser Gln Leu Thr Glu Leu Glu Lys Val Lys Arg Asn Leu 325 330 335Arg Lys Val Thr Asn Ser Met Ala Glu Ala Ser Lys Val Ser Thr Pro 340 345 350Ala Thr Glu Ile Pro Glu Arg Gln Glu Val Gln Cys Glu Lys Pro Gln355 360 365Arg Thr Ala Glu Glu Val Pro Asn Tyr Pro Glu Ile Gln Glu Pro Gln370 375 380Asn Gly Asn Leu Leu Glu Asn Ala Lys Thr Asp Ile Leu Val Pro Asp385 390 395 400Leu Gln Pro Glu Pro Glu Val Pro Ser Tyr Gln Val Glu Thr Glu Glu 405 410 415Lys Val Ala Glu Leu Thr Val Ala Asp Pro Thr Val Glu Thr Met Pro 420 425 430Leu Gln Asp Ile His Asn Glu Glu Asn Ala Leu Val Asn Asp Met Glu435 440 445Gln Arg Ser Lys Glu Glu Pro Leu Ser Thr Glu Ser Leu Lys Ser Ser450 455 460Lys Arg Arg Ser Ser Phe Ser Thr Lys Thr Glu Tyr Pro Glu Asn Gly465 470 475 480Ser Lys Asn Ser Pro Ala Val Pro Ser Tyr Met Ala Ala Thr Gln Ser 485 490 495Ala Lys Ala Lys Leu Arg Gly Gln Asn Ser Pro Arg Leu Ser Ser Asp 500 505 510Ser Ala Glu Lys Asn Gly Phe Thr Arg Arg His Ser Leu Pro Ser Ser515 520 525Asn Gly Lys Leu Asn Ser His Ser Pro Arg Thr Gln Arg Pro Thr His530 535 540Ala Gly Gly Lys Glu Gly Val Lys Ala Asp Lys Ser Met Leu Ser Ser545 550 555 560Arg Asp Ala Ser Glu Arg Pro Ala Lys Ala Glu Trp Lys Arg 565 570212529DNAPanicum virgatummisc_featureCeres CLONE ID no.1791910 21ggattggagg ttggaggcct gaagggggag gtgggtcgcc ggacagggac ggggagacgg 60cgagagggcg ttccgcagga gccgttcccg tgcttcctcc accgaccggg ccgacgcgcc 120gcgccgctgt ttcaggttcc cgcccctgca tttttctgct tgtgcttgcg ctagttgcga 180gggtaggttg cggcgttaga gattggttcg cggcttctgt gcggcgctgt gtttgtttgg 240ccagatccgc gtgtgtgctg ctgactcttc gtgatttcct cttctgtttg agctttcctt 300gctcggcttt gtgctgctgc ctgcctgctg cttctttttc tggccactgc atttgggttg 360tgtgccgcgc tacttatcct gctctgcttg tgtttaagat tacagctcgt gtttctttca 420acgatatttt cacctttgtt tcatcacttg ggaagctggt gccgtaaaag agtctgctaa 480accatgctaa ctttagcgaa attactgtta ctccagctgt ccagcatgtt ccttccttca 540tcttagtgaa aataaagtat gttgtggcat actggtatgg atctgtgcat tgctgagctc 600ctctgtttac aggttccaga atttcaagta ttggccgctt taggatacta tgggaaagtc 660cccggggaag tggatcaagt ctgtgctctt ggggaagaaa tcgactaaat ccggttctac 720caaggcaaat gagtcggcta caaataacaa tggacactca gctggggagg agcgtgcatt 780ttctgaaaat tctccagtga tctctgagcc ggtgcttgtt gaagcccaca aaaatggagc 840tgtttcagtt aatgggaagg ctgaagatgt caatttgcca agtgacaggg ctggccaaca 900agatctgcag aaccaaagta ttgttgagtc cgaaacatca gttcctgggc aattgggaga 960agaccaagct gcagtgaagg cacaggcagc atttcgcggt tacctagcac gaaggtcatt 1020ccgtgcattg aaaggtatca taagactcca ggcactgatt cgagggcatc ttgtaaggag 1080acaggctgtt tcaacccttc aaactacttg gttgattgtg aagtttcaat ctctagttcg 1140tggaagaaat gtcagactct ctggtgctga cattcaactc aatgtgaagc ttggccaaca 1200taaccttggt ggcactagat catctgatgc atggaaagag aagttatctt caaatgccta 1260tgttcggaag cttctgtctt caccaatagt gctagaacct cttcacttcc agtatgacaa 1320gagggatccc aattcaacct ataactggct agagagatgc accataggct gcatctggaa 1380gcctgttttt caaccaaaaa gagttcctga tgggaaactg ctggtaagga aggctagtta 1440tgcaatggaa actgaatcag ccaagttaaa gcgcaacatt aggaagggct ctgctgctac 1500agttgagagt ttccatacaa gagtgactgg tgaatctgag aaacttaaac gtaatccaaa 1560gaaattctca aacttccctg ctgactcagt accagatagc cagttatctg aacttgagaa 1620ggttaaaagg aacctgagga aggtaactga ttccatggct gaagcctcaa agatctctag

1680ttccagggtt gattcctcaa aggtatctga ttctacacct gatgctccaa aagtatctaa 1740tcctgtggcc gaaatctcaa agacatctag tctcctgaac gggatctctg accatcaaga 1800cagccaatgt gaaaaagcac tacagaatac acgtgaggct tcatttcctc ttgaaactca 1860agattactct ggcaatggtc agctattgga atattcagat atggataact tcgacttggt 1920acctggtttg aaaagtgatc tggaaactca gcttgattca gtttctatag gagaaaatgt 1980tgatgagccc actgttggtg cttcagcagc tgaaggtatg ccactgcaga acattgataa 2040gcccaatagt ttagggaaga aagaggaagc aaggtccaag gaagagcatc tgtctaatgg 2100aagccttaga actggcaaga gaaagtcttc atccccatac aaatcagaat atgtggaaaa 2160cgggactcac actactcctg ctcagccaag gaagccaagc tatatggctg caacggagtc 2220tgcgaaggcg aaattacgag cacagaattc acccagggtg gattctgatt catcagcaga 2280aaagaatggc ttcactcgac gccactctct tccttccggt acaaacagta gggcgatcaa 2340agctgaatgg aagcgctgag gaggcattgg cttgaattga atagtgcgat tgtctgaatc 2400tctgctgggt gaactctgcc gctgcttgct cctttttatt tatcctgcga tgtaaagaga 2460agacgttgtc cctgtattga acaatctttg tgatgagtgc gtctggttca aaaaaaaaaa 2520aaaaaaaaa 252922569PRTPanicum virgatummisc_featureCeres CLONE ID no.1791910 22Met Gly Lys Ser Pro Gly Lys Trp Ile Lys Ser Val Leu Leu Gly Lys1 5 10 15Lys Ser Thr Lys Ser Gly Ser Thr Lys Ala Asn Glu Ser Ala Thr Asn 20 25 30Asn Asn Gly His Ser Ala Gly Glu Glu Arg Ala Phe Ser Glu Asn Ser35 40 45Pro Val Ile Ser Glu Pro Val Leu Val Glu Ala His Lys Asn Gly Ala50 55 60Val Ser Val Asn Gly Lys Ala Glu Asp Val Asn Leu Pro Ser Asp Arg65 70 75 80Ala Gly Gln Gln Asp Leu Gln Asn Gln Ser Ile Val Glu Ser Glu Thr 85 90 95Ser Val Pro Gly Gln Leu Gly Glu Asp Gln Ala Ala Val Lys Ala Gln 100 105 110Ala Ala Phe Arg Gly Tyr Leu Ala Arg Arg Ser Phe Arg Ala Leu Lys115 120 125Gly Ile Ile Arg Leu Gln Ala Leu Ile Arg Gly His Leu Val Arg Arg130 135 140Gln Ala Val Ser Thr Leu Gln Thr Thr Trp Leu Ile Val Lys Phe Gln145 150 155 160Ser Leu Val Arg Gly Arg Asn Val Arg Leu Ser Gly Ala Asp Ile Gln 165 170 175Leu Asn Val Lys Leu Gly Gln His Asn Leu Gly Gly Thr Arg Ser Ser 180 185 190Asp Ala Trp Lys Glu Lys Leu Ser Ser Asn Ala Tyr Val Arg Lys Leu195 200 205Leu Ser Ser Pro Ile Val Leu Glu Pro Leu His Phe Gln Tyr Asp Lys210 215 220Arg Asp Pro Asn Ser Thr Tyr Asn Trp Leu Glu Arg Cys Thr Ile Gly225 230 235 240Cys Ile Trp Lys Pro Val Phe Gln Pro Lys Arg Val Pro Asp Gly Lys 245 250 255Leu Leu Val Arg Lys Ala Ser Tyr Ala Met Glu Thr Glu Ser Ala Lys 260 265 270Leu Lys Arg Asn Ile Arg Lys Gly Ser Ala Ala Thr Val Glu Ser Phe275 280 285His Thr Arg Val Thr Gly Glu Ser Glu Lys Leu Lys Arg Asn Pro Lys290 295 300Lys Phe Ser Asn Phe Pro Ala Asp Ser Val Pro Asp Ser Gln Leu Ser305 310 315 320Glu Leu Glu Lys Val Lys Arg Asn Leu Arg Lys Val Thr Asp Ser Met 325 330 335Ala Glu Ala Ser Lys Ile Ser Ser Ser Arg Val Asp Ser Ser Lys Val 340 345 350Ser Asp Ser Thr Pro Asp Ala Pro Lys Val Ser Asn Pro Val Ala Glu355 360 365Ile Ser Lys Thr Ser Ser Leu Leu Asn Gly Ile Ser Asp His Gln Asp370 375 380Ser Gln Cys Glu Lys Ala Leu Gln Asn Thr Arg Glu Ala Ser Phe Pro385 390 395 400Leu Glu Thr Gln Asp Tyr Ser Gly Asn Gly Gln Leu Leu Glu Tyr Ser 405 410 415Asp Met Asp Asn Phe Asp Leu Val Pro Gly Leu Lys Ser Asp Leu Glu 420 425 430Thr Gln Leu Asp Ser Val Ser Ile Gly Glu Asn Val Asp Glu Pro Thr435 440 445Val Gly Ala Ser Ala Ala Glu Gly Met Pro Leu Gln Asn Ile Asp Lys450 455 460Pro Asn Ser Leu Gly Lys Lys Glu Glu Ala Arg Ser Lys Glu Glu His465 470 475 480Leu Ser Asn Gly Ser Leu Arg Thr Gly Lys Arg Lys Ser Ser Ser Pro 485 490 495Tyr Lys Ser Glu Tyr Val Glu Asn Gly Thr His Thr Thr Pro Ala Gln 500 505 510Pro Arg Lys Pro Ser Tyr Met Ala Ala Thr Glu Ser Ala Lys Ala Lys515 520 525Leu Arg Ala Gln Asn Ser Pro Arg Val Asp Ser Asp Ser Ser Ala Glu530 535 540Lys Asn Gly Phe Thr Arg Arg His Ser Leu Pro Ser Gly Thr Asn Ser545 550 555 560Arg Ala Ile Lys Ala Glu Trp Lys Arg 56523567PRTOryza sativa subsp. japonicamisc_featurePublic GI ID no.125595019 23Met Gly Lys Ser Pro Ala Lys Trp Ile Lys Ser Val Leu Phe Gly Lys1 5 10 15Lys Ser Ser Arg Ser Gly Ser Thr Lys Ala Lys Asp Leu Ser Lys Gly 20 25 30Ser Asn Asn Lys Gly Tyr Ala Ala Ala Gly Lys Asp Ala Gly Phe Glu35 40 45Ser Ser Pro Val Ile Ser Glu Pro Val Leu Val Thr Pro His Asn Asn50 55 60Glu Ala Val Gln Glu Val Gly Arg Gly Glu Asn Ser Ser Leu Gln Gly65 70 75 80Glu Val Val Val Arg Asp Val Ser Gln Asp Leu Glu Lys Gln Asn Thr 85 90 95Val Val Ser Asp Ala Ser Asn Asp Pro Glu Arg Leu Arg Glu Glu Gln 100 105 110Ala Ala Val Lys Ala Gln Ala Ala Phe Arg Gly Tyr Leu Ala Arg Arg115 120 125Ala Phe Arg Ala Leu Lys Gly Ile Ile Arg Leu Gln Ala Leu Ile Arg130 135 140Gly His Leu Val Arg Arg Gln Ala Val Ala Thr Leu Arg Ala Thr Trp145 150 155 160Leu Ile Val Lys Phe Gln Ala Leu Val Arg Gly Arg Asn Val Arg Leu 165 170 175Ser Thr Asn Thr Ile Gln Val Asn Trp Lys Leu Val Gln Gln Gln Ser 180 185 190Gly Ser Gly Lys Arg Asp Ala Trp Lys Glu Lys Leu Ser Ser Asn Ala195 200 205Phe Ala Arg Lys Leu Leu Ala Ser Pro Ile Leu Val Glu Ala Leu His210 215 220Phe Gln Tyr Asp Glu Arg Asp Pro Asn Ser Ala Phe Asn Trp Leu Glu225 230 235 240Arg Trp Thr Ile Gly Arg Val Trp Arg Pro Ile Ser His Pro Lys Arg 245 250 255Ala Ala Val Thr Asp Ala Lys Pro His Thr Arg Lys Ala Ser Tyr Ala 260 265 270Met Glu Thr Glu Ser Gly Lys Leu Lys Arg Asn Ser Arg Arg Ser Ser275 280 285Ala Ala Pro Val Glu Ser Ser Gln Thr Asn Ile Ala Met Glu Thr Glu290 295 300Lys Ser Arg Arg Asn Pro Arg Lys Phe Thr Ser Ser Thr Ala Asp Ser305 310 315 320Val Pro Glu Ser Gln Leu Thr Glu Leu Glu Lys Val Lys Arg Asn Leu 325 330 335Arg Lys Val Thr Asn Ser Met Ala Glu Ala Ser Lys Val Ser Thr Pro 340 345 350Ala Thr Glu Ile Pro Glu Arg Gln Glu Val Gln Cys Glu Lys Pro Gln355 360 365Arg Thr Ala Glu Glu Val Pro Asn Tyr Pro Glu Ile Gln Glu Pro Gln370 375 380Asn Gly Asn Leu Leu Glu Asn Ala Lys Thr Asp Ile Leu Val Pro Asp385 390 395 400Leu Gln Pro Glu Pro Glu Val Pro Ser Tyr Gln Val Glu Thr Glu Glu 405 410 415Lys Val Ala Glu Leu Thr Val Ala Asp Pro Thr Val Glu Thr Met Pro 420 425 430Leu Gln Asp Ile His Asn Glu Glu Asn Ala Leu Val Asn Asp Met Glu435 440 445Gln Arg Ser Lys Glu Glu Pro Leu Ser Thr Glu Ser Leu Lys Ser Ser450 455 460Lys Arg Arg Ser Ser Phe Ser Thr Lys Thr Glu Tyr Pro Glu Asn Gly465 470 475 480Ser Lys Asn Ser Pro Ala Val Pro Ser Tyr Met Ala Ala Thr Gln Ser 485 490 495Ala Lys Ala Lys Leu Arg Gly Gln Asn Ser Pro Arg Leu Ser Ser Asp 500 505 510Ser Ala Glu Lys Asn Gly Phe Thr Arg Arg His Ser Leu Pro Ser Ser515 520 525Asn Gly Lys Leu Asn Ser His Ser Pro Arg Thr Gln Arg Pro Thr His530 535 540Ala Gly Gly Lys Glu Gly Val Lys Ala Asp Lys Ser Met Leu Ser Ser545 550 555 560Arg Asp Ala Ser Gly Lys Leu 56524636PRTArabidopsis thalianamisc_featurePublic GI ID no.42568886 24Met Gly Lys Thr Pro Ser Pro Gly Lys Trp Ile Lys Ser Leu Leu Gly1 5 10 15Lys Lys Ser Ser Lys Ser Ser Leu Glu Lys Gly Gly Glu Lys Leu Arg 20 25 30Ser Ala Lys Lys Glu Glu Leu Val Val Lys Val Lys Asp Asn Asn Val35 40 45Ser Lys Leu Pro Thr Glu Pro Pro Val Val Ser Ser Gln Glu Val Ala50 55 60Ala Thr Gln Thr Val Val Val Pro Asp Val Val Ile Ala Glu Lys Gln65 70 75 80Leu Ser Gly Asp Ile Glu Gly Asp Glu Ser Ser Asn Val Asn Leu Glu 85 90 95Ser Gly Asn Asp Ser Glu Glu Val Lys Leu Glu Glu Ala Ala Thr Lys 100 105 110Val Gln Ala Ala Leu Arg Ala Gln Gln Ala Arg Glu Glu Ser Gln Asn115 120 125Leu Lys Gly Ile Thr Arg Val Gln Ala Val Ile Arg Gly His Leu Val130 135 140Arg Arg Gln Ala Val Ala Thr Tyr Ser Cys Ile Trp Gly Ile Val Lys145 150 155 160Val Gln Ala Leu Val Arg Gly Lys Lys Ala Arg Ser Ser Glu Thr Val 165 170 175Ala Gln Leu Gln Lys Thr Asn Thr Glu Thr Glu Thr Ser Glu Thr Leu 180 185 190Gln Gly Ser Thr Tyr Ser Trp Met Glu Asn Pro Thr Lys Leu Ser Met195 200 205Ile Asp Lys Leu Leu Val Ser Ser Pro Thr Thr Leu Pro Leu Lys Ile210 215 220Gln Tyr Ser Pro Glu Asp Pro Asn Ser Ala Lys Val Trp Leu Gly Arg225 230 235 240Trp Thr Gln Leu Gln Val Trp Ala Pro Gly Pro Leu Val Val Lys Asn 245 250 255Leu Val Pro Lys Ser Gln Thr Lys Lys Arg Ser Phe Gln Ala Val Glu 260 265 270Ala Glu Lys Gly Lys Leu Lys Arg Gly Val Arg Lys Pro Thr Gly Val275 280 285Ser Thr Thr Ala Asn Ser Ser Thr Ser Arg Ser Thr Ala Asp Asn Glu290 295 300Lys Pro Lys Arg Thr Val Arg Lys Ala Ser Thr Leu Gly Lys Glu Leu305 310 315 320Ser Lys Ile Glu Asn Asp Lys Ser Lys Gln Ser Ser Arg Lys Ser Thr 325 330 335Ser Ala Ile Lys Glu Gly Ser Ser Val Glu Val Lys Asp Glu Lys Pro 340 345 350Arg Ile Ser His Lys Lys Ala Ser Leu Ser Asn Gly Ile Gly Lys Ala355 360 365Thr Arg Lys Ser Ala Glu Lys Lys Lys Glu Ile Ala Asp Ala Val Gln370 375 380Lys Glu Leu Pro Ile Glu Glu Val Ser Val Ser Leu Val Asp Ala Pro385 390 395 400Glu Asp Glu Lys Met Asn Leu Ile Pro Val Thr Ile Ser Lys Glu Ser 405 410 415Asp Leu Asp Lys Asp Glu Lys Ser Leu Val Leu Asp Lys Pro Glu Gln 420 425 430Asp Glu Leu Arg Thr Ala Glu Arg Asp Asp Lys Ala Glu Glu Glu Leu435 440 445Lys Thr Ala Glu Arg Asp Asp Ser Ala Glu Glu Lys Ile Gln Glu Pro450 455 460Asp Ala Gln Ile Ser Ser Glu Asn Gly Asn Val Ala Ser Glu Asn Thr465 470 475 480Lys Pro Ser Asp Arg Arg Ala Ser Leu Pro Ala Lys Ile Glu Asn His 485 490 495His Gln Asp Asp Gly Leu Thr Gln Ser Gly Arg Lys Ile Pro Ser Tyr 500 505 510Met Ala Pro Thr Ala Ser Ala Lys Ala Arg Ile Arg Gly Gln Gly Ser515 520 525Pro Arg Ile Ala Gln Glu Lys Pro Glu Lys Asn Gly Thr Thr Arg Arg530 535 540His Ser Leu Pro Pro Ala Ala Asn Gly Lys Leu Ser Thr Met Ser Pro545 550 555 560Arg Ala His Arg Leu Leu Ile Ala Ser Ala Lys Gly Ser Met Asn Ser 565 570 575Asp Arg Ser Phe Ser Ser Ser Lys Asp Ile Gly Gly Lys Arg Phe Lys 580 585 590Pro Ile Thr Ile His Lys Pro Phe Cys Gln Phe Leu Leu His Tyr Leu595 600 605His Pro Phe Asn Lys Phe Ser Ser Cys Leu Tyr Gln Thr Ser Arg Arg610 615 620Lys Leu Ser Gly Asn Gly Glu Ser Thr Lys Ala Glu625 630 63525650PRTArabidopsis thalianamisc_featurePublic GI ID no.2947062 25Met Gly Lys Thr Pro Ser Pro Gly Lys Trp Ile Lys Ser Leu Leu Gly1 5 10 15Lys Lys Ser Ser Lys Ser Ser Leu Glu Lys Gly Gly Glu Lys Leu Val 20 25 30Arg Arg Val Asn Arg Ser Ala Lys Lys Glu Glu Leu Val Val Lys Val35 40 45Lys Asp Asn Asn Val Ser Lys Leu Pro Thr Glu Pro Pro Val Val Ser50 55 60Ser Gln Glu Val Ala Ala Thr Gln Thr Val Val Val Pro Asp Val Val65 70 75 80Ile Ala Glu Lys Gln Leu Ser Gly Asp Ile Glu Gly Asp Glu Ser Ser 85 90 95Asn Val Asn Leu Glu Ser Gly Asn Asp Ser Glu Glu Val Lys Leu Glu 100 105 110Glu Ala Ala Thr Lys Val Gln Ala Ala Leu Arg Ala Gln Gln Val Asn115 120 125Val Tyr Ile Phe Asp Ile Leu Ala Arg Glu Glu Ser Gln Asn Leu Lys130 135 140Gly Ile Thr Arg Val Gln Ala Val Ile Arg Gly His Leu Val Arg Arg145 150 155 160Gln Ala Val Ala Thr Tyr Ser Cys Ile Trp Gly Ile Val Lys Val Gln 165 170 175Ala Leu Val Arg Gly Lys Lys Ala Arg Ser Ser Glu Thr Val Ala Gln 180 185 190Leu Gln Lys Thr Asn Thr Glu Thr Glu Thr Ser Glu Thr Leu Gln Gly195 200 205Ser Thr Tyr Ser Trp Met Glu Asn Pro Thr Lys Leu Ser Met Ile Asp210 215 220Lys Leu Leu Val Ser Ser Pro Thr Thr Leu Pro Leu Lys Ile Gln Tyr225 230 235 240Ser Pro Glu Asp Pro Asn Ser Ala Lys Val Trp Leu Gly Arg Trp Thr 245 250 255Gln Leu Gln Val Trp Ala Pro Gly Pro Leu Val Val Lys Asn Leu Val 260 265 270Pro Lys Ser Gln Thr Lys Lys Arg Ser Phe Gln Ala Val Glu Ala Glu275 280 285Lys Gly Lys Leu Lys Arg Gly Val Arg Lys Pro Thr Gly Val Ser Thr290 295 300Thr Ala Asn Ser Ser Thr Ser Arg Ser Thr Ala Asp Asn Glu Lys Pro305 310 315 320Lys Arg Thr Val Arg Lys Ala Ser Thr Leu Gly Lys Glu Leu Ser Lys 325 330 335Ile Glu Asn Asp Lys Ser Lys Gln Ser Ser Arg Lys Ser Thr Ser Ala 340 345 350Ile Lys Glu Gly Ser Ser Val Glu Val Lys Asp Glu Lys Pro Arg Ile355 360 365Ser His Lys Lys Ala Ser Leu Ser Asn Gly Ile Gly Lys Ala Thr Arg370 375 380Lys Ser Ala Glu Lys Lys Lys Glu Ile Ala Asp Ala Val Gln Lys Glu385 390 395 400Leu Pro Ile Glu Glu Val Ser Val Ser Leu Val Asp Ala Pro Glu Asp 405 410 415Glu Lys Met Asn Leu Ile Pro Val Thr Ile Ser Lys Glu Ser Asp Leu 420 425 430Asp Lys Asp Glu Lys Ser Leu Val Leu Asp Lys Pro Glu Gln Asp Glu435 440 445Leu Arg Thr Ala Glu Arg Asp Asp Lys Ala Glu Glu Glu Leu Lys Thr450 455 460Ala Glu Arg Asp Asp Ser Ala Glu Glu Lys Ile Gln Glu Pro Asp Ala465 470 475 480Gln Ile Ser Ser Glu Asn Gly Asn Val Ala Ser Glu Asn Thr Lys Pro 485 490 495Ser Asp Arg Arg Ala Ser Leu Pro Ala Lys Ile Glu Asn His His Gln 500 505 510Asp Asp Gly Leu Thr Gln Ser Gly Arg Lys Ile Pro Ser Tyr Met Ala515 520 525Pro Thr Ala Ser Ala Lys Ala Arg Ile Arg Gly Gln Gly Ser Pro Arg530 535 540Ile Ala Gln Glu Lys Pro Glu Lys Asn Gly Thr Thr Arg Arg His Ser545 550 555 560Leu Pro Pro Ala Ala Asn Gly Lys Leu Ser Thr Met Ser Pro Arg Ala 565 570 575His Arg Leu Leu Ile Ala Ser Ala Lys Gly Ser Met Asn Ser Asp Arg 580 585 590Ser Phe Ser Ser Ser Lys Asp Ile Gly Gly Lys Arg Phe Lys Pro Ile595 600 605Thr Ile His Lys Pro Phe Cys Gln Phe Leu Leu His Tyr Leu His Pro610 615 620Phe Asn Lys Phe Ser Ser Cys Leu Tyr Gln Thr Ser Arg Arg Lys Leu625

630 635 640Ser Gly Asn Gly Glu Ser Thr Lys Ala Glu 645 650261881DNAPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1468228 26atggggagaa aatcacctgc gaaatggata aagactgttt tgtttggaaa gaagtcttcc 60aaatctctta ttgtcaaagg aagggagaga actgtgaatg acaaagagac attggttgct 120gtcagagccg tggaagctga tgtgacctca gttcctccgg tggtcaagcc gacagccccc 180actaccacta atatcactga aaggatgtta gagctagaga gcagggaaac tacagaatca 240tcacgtgatg gaggtatatt gtcaactgga aatcaagatg caaatcattc tcaattatac 300actcctgatg ctcctccatc tgatgctgac aaaataaggc ttgatgaagc tgcgacaatg 360gcacaagccg catttagggg ttacttgata ggtgcactac tggggctgtt ttcatggacc 420ttgagggttc gactgacttg gtaccaggct cgccgagcat ttcgagctct taaaggcata 480ataaggcttc aggctcttat ccgtggacac ttggttagaa ggcaagctgt tgctactctc 540tgctgtgtgc tcggagttgt caagttacag gctcttgctc gaggaagaat ggttaggaat 600tcagagattg gctatgaggt tcataaatta tgcagccaag taaaactgcc ggagggcaag 660cttgcagatt ctagtggagt tggtatacaa atggccaagc tgtcatcaaa tgcttttgtt 720cgcaagcttc ttgctccatc acctgctgta atgcctttgc aactccccta tgattccatg 780gaaccaaact cagttgcaaa ctggttagag tgctggtcag cgtcctcttt ctggaaacca 840gttccccaac caaaaaaaat tacttgctca aaaactcaga gaaagcagag taatggtcaa 900atagtggaag ctgaaactgg taggccaaag cgcactgttc ggagggtccc tgctgcaaat 960gttgacagta cctcagtaca agcagcctct gaatttgaga aacccaagcg caatttgagg 1020aaagtttcaa gccatccagc tgattcagca gaaaattcac agattgagct tgaaaaggta 1080aagcgcagct taagaaaggt taataacccc gttatagaaa actctgctca ttcagaggtt 1140gaaaatgaaa agccaaagca aggtctagaa aaggtatctg gcacttcagg tgataatgtt 1200ttgggatgga gcgtaagtaa ttcagctgag aagatgaaga aagaagctac cttgacaaca 1260tccaatgtac ctgatgtggt gaagaatgat ccaaacttga tgtccaagtt gcctgatgca 1320gagacagctg atgaacctgt agaaatgatc aaggcattgg aatcatcaca tgacgatcaa 1380gctgtggtag aatctaaagc ttcagtagat actggtggta tagttgagaa tatgcaaata 1440aatgggaagt ccatacacca ggatgatcca acaagcaatg aaaatcacaa aactgccaag 1500aaaccttcat tcacaatgaa accagaacgt gccgagaatg ggctacagag cagtcccacc 1560ctccctagct acatggcagc aactgaatct gcaaaggcaa agctgagaat gcaaggctcc 1620ccaagattta gtgaagatcg agttgagaaa aataacatca cccgtcgtca ttctctgccc 1680tcttcaacta atagcaaaat cagctccgag tccccgagga cacaaagagc agttcatggt 1740agtggcaaag gggggaataa gagtgacaag tctttattgt cttcaagaga tggaaatgct 1800aagggagccc aaccagagtg gaagagatca tggtgtagca gtgaaacatg gtctatagcc 1860ggaagggagt atgtggatta a 188127626PRTPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1468228 27Met Gly Arg Lys Ser Pro Ala Lys Trp Ile Lys Thr Val Leu Phe Gly1 5 10 15Lys Lys Ser Ser Lys Ser Leu Ile Val Lys Gly Arg Glu Arg Thr Val 20 25 30Asn Asp Lys Glu Thr Leu Val Ala Val Arg Ala Val Glu Ala Asp Val35 40 45Thr Ser Val Pro Pro Val Val Lys Pro Thr Ala Pro Thr Thr Thr Asn50 55 60Ile Thr Glu Arg Met Leu Glu Leu Glu Ser Arg Glu Thr Thr Glu Ser65 70 75 80Ser Arg Asp Gly Gly Ile Leu Ser Thr Gly Asn Gln Asp Ala Asn His 85 90 95Ser Gln Leu Tyr Thr Pro Asp Ala Pro Pro Ser Asp Ala Asp Lys Ile 100 105 110Arg Leu Asp Glu Ala Ala Thr Met Ala Gln Ala Ala Phe Arg Gly Tyr115 120 125Leu Ile Gly Ala Leu Leu Gly Leu Phe Ser Trp Thr Leu Arg Val Arg130 135 140Leu Thr Trp Tyr Gln Ala Arg Arg Ala Phe Arg Ala Leu Lys Gly Ile145 150 155 160Ile Arg Leu Gln Ala Leu Ile Arg Gly His Leu Val Arg Arg Gln Ala 165 170 175Val Ala Thr Leu Cys Cys Val Leu Gly Val Val Lys Leu Gln Ala Leu 180 185 190Ala Arg Gly Arg Met Val Arg Asn Ser Glu Ile Gly Tyr Glu Val His195 200 205Lys Leu Cys Ser Gln Val Lys Leu Pro Glu Gly Lys Leu Ala Asp Ser210 215 220Ser Gly Val Gly Ile Gln Met Ala Lys Leu Ser Ser Asn Ala Phe Val225 230 235 240Arg Lys Leu Leu Ala Pro Ser Pro Ala Val Met Pro Leu Gln Leu Pro 245 250 255Tyr Asp Ser Met Glu Pro Asn Ser Val Ala Asn Trp Leu Glu Cys Trp 260 265 270Ser Ala Ser Ser Phe Trp Lys Pro Val Pro Gln Pro Lys Lys Ile Thr275 280 285Cys Ser Lys Thr Gln Arg Lys Gln Ser Asn Gly Gln Ile Val Glu Ala290 295 300Glu Thr Gly Arg Pro Lys Arg Thr Val Arg Arg Val Pro Ala Ala Asn305 310 315 320Val Asp Ser Thr Ser Val Gln Ala Ala Ser Glu Phe Glu Lys Pro Lys 325 330 335Arg Asn Leu Arg Lys Val Ser Ser His Pro Ala Asp Ser Ala Glu Asn 340 345 350Ser Gln Ile Glu Leu Glu Lys Val Lys Arg Ser Leu Arg Lys Val Asn355 360 365Asn Pro Val Ile Glu Asn Ser Ala His Ser Glu Val Glu Asn Glu Lys370 375 380Pro Lys Gln Gly Leu Glu Lys Val Ser Gly Thr Ser Gly Asp Asn Val385 390 395 400Leu Gly Trp Ser Val Ser Asn Ser Ala Glu Lys Met Lys Lys Glu Ala 405 410 415Thr Leu Thr Thr Ser Asn Val Pro Asp Val Val Lys Asn Asp Pro Asn 420 425 430Leu Met Ser Lys Leu Pro Asp Ala Glu Thr Ala Asp Glu Pro Val Glu435 440 445Met Ile Lys Ala Leu Glu Ser Ser His Asp Asp Gln Ala Val Val Glu450 455 460Ser Lys Ala Ser Val Asp Thr Gly Gly Ile Val Glu Asn Met Gln Ile465 470 475 480Asn Gly Lys Ser Ile His Gln Asp Asp Pro Thr Ser Asn Glu Asn His 485 490 495Lys Thr Ala Lys Lys Pro Ser Phe Thr Met Lys Pro Glu Arg Ala Glu 500 505 510Asn Gly Leu Gln Ser Ser Pro Thr Leu Pro Ser Tyr Met Ala Ala Thr515 520 525Glu Ser Ala Lys Ala Lys Leu Arg Met Gln Gly Ser Pro Arg Phe Ser530 535 540Glu Asp Arg Val Glu Lys Asn Asn Ile Thr Arg Arg His Ser Leu Pro545 550 555 560Ser Ser Thr Asn Ser Lys Ile Ser Ser Glu Ser Pro Arg Thr Gln Arg 565 570 575Ala Val His Gly Ser Gly Lys Gly Gly Asn Lys Ser Asp Lys Ser Leu 580 585 590Leu Ser Ser Arg Asp Gly Asn Ala Lys Gly Ala Gln Pro Glu Trp Lys595 600 605Arg Ser Trp Cys Ser Ser Glu Thr Trp Ser Ile Ala Gly Arg Glu Tyr610 615 620Val Asp625282050DNAGossypium hirsutummisc_featureCeres CLONE ID no.1942388 28atttagtttt aaattcacta aaaaaaagcc tgcacgagat tctcttgttc gaggaatcct 60tcacgatctc tgaatgctca cagttccggt aatggcagct tagtaccgaa caaggacttc 120atatttgata ctcttttcag atttccagat ttagaaactt gggattttaa ttatttttgg 180gtttaactga gatggggaaa tctccagcga aatggatcaa gaccttgctt cttgggaaga 240aatcttcaaa gtccagtttc tcaaaaggaa aagataagct gaattctgca aataaaggtg 300aggttttggt ttcttccaag gtaactgtgt ctgacctatc agcggattct ccatcgattt 360cagcacctat tctagtgagc cgtgctagga atgtgatgga ctctgagaag ggtatacctg 420cccaattgcc gattgatggg gaaaatattc catctctaaa agtggatgga aataatgcca 480caaccggtaa ttttggtaac ccagaaaatc ctgataggat taggcttgac ccagctgctg 540tgacagtaca ggctgctttc agaggttatc tggctcgccg ggaatttcga atcctcaagg 600gcattataag gctgcaggca gttattcgtg gtcacttggt tagaagacaa gctgttgcta 660ctttatgctg tacatgggga attgttaagt tgcaagcact agctcgtggt caaaaggtca 720gatgttcaga tattgccatg gaaatacagg aaaaacatct aagactgctt cagggtttga 780aaagctcaaa ttctgtagga gcgagcatat cttctacagt gaagaattta tcaagtaatg 840tgtttgttca gaagcttttg gcctcgtcac cttctgtatt gcctctacaa cttcagtatg 900ttccagagga gcctaactca tcctggcaat ggcttcaacg atggacaaga tcacaatttt 960gggaataccc ctcaaaacca attaggagtg gaaagacaaa gctaagtgtt cagaaactat 1020cctttgcaaa agctgttaat ggatctagtc attctacatt ggagtatgaa aaaaataaac 1080gaggtctgag gagaatttct gtcaactcag cagcagattc agttcgggag catccacaaa 1140atgagctcga gagggttaag cgcaatttaa gaaagctttc caactcttca aaggaggtta 1200ctgataagtc tgagtttgtt aatgagaaaa caaagaagac tctgaaaaaa tattctagtt 1260ctaatggccc tgatgtttta gaacaggaat ctgctgagaa gataagagat gtgactgcaa 1320cactatcaga actgtcaatt cttgaggcag atctgaaatt ttcctcagaa catgcttctc 1380ttggtgagcc tattgtctgt cctgcagttg attttccacc ggccaaaaac aatggtaaaa 1440ttgagcacat gccactaaca gaggagttaa actctaagga tgagcaggtc ggtgatgaga 1500gctcaaacac aaaccaaaga agagcttctt tcccagcaaa tattgataat caggcaaatc 1560ggttaaatca catgccaaaa gtgcccagtt atatggcacc aactgaatct gcgaaagcta 1620gacttagggg tcaagggtcc ccaaggttta tccccgaggc tgttgagaaa aatgggttaa 1680acaggcggta ttctttgcca acttcaacca atagtaatac aggttcacaa tccccacata 1740ctcaaagaca ggttcgagta gctggcaaag gtgctatcat cagtgacaaa tctcaatcat 1800cctctaaaga tgctaatgat aaggtggtca gagccgagtg gaggaggtaa ttcttgcaca 1860aggaattgtt tcgatgaagt ttccatgggt aaatatttgt agatgttaca gttgtttatt 1920tggttcgttt ttgtttggac gtaaaattct ttggatcccc tgttcactct tttctaccat 1980ttaatatcat aggaatagag tgtgcccatc tccatatctg gctttcgtag aaaaaaaaaa 2040aaaaaaaaaa 205029552PRTGossypium hirsutummisc_featureCeres CLONE ID no.1942388 29Met Gly Lys Ser Pro Ala Lys Trp Ile Lys Thr Leu Leu Leu Gly Lys1 5 10 15Lys Ser Ser Lys Ser Ser Phe Ser Lys Gly Lys Asp Lys Leu Asn Ser 20 25 30Ala Asn Lys Gly Glu Val Leu Val Ser Ser Lys Val Thr Val Ser Asp35 40 45Leu Ser Ala Asp Ser Pro Ser Ile Ser Ala Pro Ile Leu Val Ser Arg50 55 60Ala Arg Asn Val Met Asp Ser Glu Lys Gly Ile Pro Ala Gln Leu Pro65 70 75 80Ile Asp Gly Glu Asn Ile Pro Ser Leu Lys Val Asp Gly Asn Asn Ala 85 90 95Thr Thr Gly Asn Phe Gly Asn Pro Glu Asn Pro Asp Arg Ile Arg Leu 100 105 110Asp Pro Ala Ala Val Thr Val Gln Ala Ala Phe Arg Gly Tyr Leu Ala115 120 125Arg Arg Glu Phe Arg Ile Leu Lys Gly Ile Ile Arg Leu Gln Ala Val130 135 140Ile Arg Gly His Leu Val Arg Arg Gln Ala Val Ala Thr Leu Cys Cys145 150 155 160Thr Trp Gly Ile Val Lys Leu Gln Ala Leu Ala Arg Gly Gln Lys Val 165 170 175Arg Cys Ser Asp Ile Ala Met Glu Ile Gln Glu Lys His Leu Arg Leu 180 185 190Leu Gln Gly Leu Lys Ser Ser Asn Ser Val Gly Ala Ser Ile Ser Ser195 200 205Thr Val Lys Asn Leu Ser Ser Asn Val Phe Val Gln Lys Leu Leu Ala210 215 220Ser Ser Pro Ser Val Leu Pro Leu Gln Leu Gln Tyr Val Pro Glu Glu225 230 235 240Pro Asn Ser Ser Trp Gln Trp Leu Gln Arg Trp Thr Arg Ser Gln Phe 245 250 255Trp Glu Tyr Pro Ser Lys Pro Ile Arg Ser Gly Lys Thr Lys Leu Ser 260 265 270Val Gln Lys Leu Ser Phe Ala Lys Ala Val Asn Gly Ser Ser His Ser275 280 285Thr Leu Glu Tyr Glu Lys Asn Lys Arg Gly Leu Arg Arg Ile Ser Val290 295 300Asn Ser Ala Ala Asp Ser Val Arg Glu His Pro Gln Asn Glu Leu Glu305 310 315 320Arg Val Lys Arg Asn Leu Arg Lys Leu Ser Asn Ser Ser Lys Glu Val 325 330 335Thr Asp Lys Ser Glu Phe Val Asn Glu Lys Thr Lys Lys Thr Leu Lys 340 345 350Lys Tyr Ser Ser Ser Asn Gly Pro Asp Val Leu Glu Gln Glu Ser Ala355 360 365Glu Lys Ile Arg Asp Val Thr Ala Thr Leu Ser Glu Leu Ser Ile Leu370 375 380Glu Ala Asp Leu Lys Phe Ser Ser Glu His Ala Ser Leu Gly Glu Pro385 390 395 400Ile Val Cys Pro Ala Val Asp Phe Pro Pro Ala Lys Asn Asn Gly Lys 405 410 415Ile Glu His Met Pro Leu Thr Glu Glu Leu Asn Ser Lys Asp Glu Gln 420 425 430Val Gly Asp Glu Ser Ser Asn Thr Asn Gln Arg Arg Ala Ser Phe Pro435 440 445Ala Asn Ile Asp Asn Gln Ala Asn Arg Leu Asn His Met Pro Lys Val450 455 460Pro Ser Tyr Met Ala Pro Thr Glu Ser Ala Lys Ala Arg Leu Arg Gly465 470 475 480Gln Gly Ser Pro Arg Phe Ile Pro Glu Ala Val Glu Lys Asn Gly Leu 485 490 495Asn Arg Arg Tyr Ser Leu Pro Thr Ser Thr Asn Ser Asn Thr Gly Ser 500 505 510Gln Ser Pro His Thr Gln Arg Gln Val Arg Val Ala Gly Lys Gly Ala515 520 525Ile Ile Ser Asp Lys Ser Gln Ser Ser Ser Lys Asp Ala Asn Asp Lys530 535 540Val Val Arg Ala Glu Trp Arg Arg545 55030570PRTArabidopsis thalianamisc_featurePublic GI ID no.12324824 30Met Ile Val Phe Phe Phe Phe Phe Phe Cys Ser Asn Tyr Ser Tyr Asn1 5 10 15Asn Ala Gln Arg Val Val Ser Gly Lys Glu Val Leu Val Thr Ser Lys 20 25 30Val Glu Glu Ser Asp Val Val Ser Asp Leu Pro Ser Phe Glu Val Ala35 40 45Glu Thr Asn Thr Val Asp Arg Ser Gly Gly Met Leu Glu Thr Gln Asn50 55 60Val Gly Pro Glu Glu Ile Ser Asp Asp Glu Ile Glu Leu Pro Glu Gly65 70 75 80Lys Ser Thr Asp Ser Gln Asn Val Ala Pro Val Gln Asp His Ser Leu 85 90 95Ser Asp Ala Glu Arg Ile Gln Arg Glu Ile Ala Ala Thr Ser Val Gln 100 105 110Ala Ala Phe Arg Gly Tyr Leu Ala Arg Arg Ala Phe Trp Ala Leu Lys115 120 125Gly Ile Ile Arg Leu Gln Ala Leu Ile Arg Gly His Leu Val Arg Arg130 135 140Gln Ala Val Ala Thr Leu Phe Ser Val Met Gly Ile Val Arg Leu Gln145 150 155 160Ala Phe Ala Arg Gly Arg Glu Ile Arg Lys Ser Asp Ile Gly Val Gln 165 170 175Val Tyr Arg Lys Cys Arg Leu Gln Leu Leu Gln Gly Asn Lys Leu Ala 180 185 190Asn Pro Thr Asp Ala Tyr Leu Gly Ile Lys Lys Leu Thr Ala Asn Ala195 200 205Phe Ala Gln Lys Leu Leu Ala Ser Ser Pro Lys Val Leu Pro Val His210 215 220Ala Tyr Asp Thr Ser Asn Pro Asn Ser Asn Leu Ile Trp Leu Glu Asn225 230 235 240Trp Ser Ala Ser Cys Phe Trp Lys Pro Val Pro Gln Pro Lys Lys Thr 245 250 255Ile Ser Arg Lys Pro Gln Asn Arg Leu Leu Val Glu Ala Glu Ser Ala 260 265 270Lys Pro Lys Lys Ser Val Arg Lys Val Pro Ala Ser Asn Phe Glu Ser275 280 285Ser Ser Val Gln Thr Ser Phe Glu Phe Glu Lys Pro Lys Arg Ser Phe290 295 300Arg Lys Val Ser Ser Gln Ser Ile Glu Pro Pro Ala Val Glu Asp Pro305 310 315 320Gln Ile Glu Leu Glu Lys Val Lys Arg Ser Leu Arg Lys Val His Asn 325 330 335Pro Val Val Glu Ser Ser Ile Gln Pro Gln Arg Ser Pro Arg Lys Glu 340 345 350Val Glu Lys Pro Lys Leu Gly Val Glu Lys Thr Arg Glu Ser Ser Tyr355 360 365Pro Leu Val His Glu Thr Ala Glu Glu Pro Val Asn Val Cys Asp Glu370 375 380Lys Lys Lys Gln Glu Ile Ser Glu Gln Pro Glu Glu Glu Val His Ala385 390 395 400Leu Glu Met Glu Val His Thr Pro Gly Pro Leu Glu Thr Asn Glu Ala 405 410 415Leu Asp Ser Ser Leu Val Asn Gln Ile Asp Ser Asn Glu Lys Ala Met 420 425 430Val Glu Glu Lys Pro Ser Met Glu Lys Asp Thr Lys Glu Glu Lys Thr435 440 445Pro Lys Pro Asn Asn Lys Glu Asn Ser Ala Gly Lys Glu Asn Gln Lys450 455 460Ser Arg Lys Lys Gly Ser Ala Thr Ser Lys Thr Glu Arg Glu Glu Ser465 470 475 480Asn Gly His His Glu Thr Ser Pro Ser Ile Pro Ser Tyr Met Gln Ala 485 490 495Thr Lys Ser Ala Lys Ala Lys Leu Arg Leu Gln Gly Ser Pro Lys Ser 500 505 510Ala Glu Gln Asp Gly Thr Glu Lys Ala Thr Val Pro Arg Arg His Ser515 520 525Leu Pro Ser Pro Gly Asn Gly Arg Ile Thr Ser His Ser Pro Arg Thr530 535 540Thr Arg Leu Ala Asn Ser Gly Asp Lys Thr Gly Asn Lys Lys Glu Lys545 550 555 560Pro Leu Leu Ser Ser Arg Glu Gly Asn Gly 565 57031570PRTArabidopsis thalianamisc_featurePublic GI ID no.5882749 31Met Glu Met Leu Ala Tyr Phe Leu Ser Glu Phe Gln Ile Cys Tyr Asn1 5 10 15Asn Ala Gln Arg Val Val Ser Gly Lys Glu Val Leu Val Thr Ser Lys 20 25 30Val Glu Glu Ser Asp Val Val Ser Asp Leu Pro Ser Phe Glu Val Ala35 40 45Glu Thr Asn Thr Val Asp Arg Ser Gly Gly Met Leu Glu Thr Gln Asn50 55 60Val Gly Pro Glu Glu Ile Ser Asp Asp Glu Ile Glu Leu Pro Glu Gly65

70 75 80Lys Ser Thr Asp Ser Gln Asn Val Ala Pro Val Gln Asp His Ser Leu 85 90 95Ser Asp Ala Glu Arg Ile Gln Arg Glu Ile Ala Ala Thr Ser Val Gln 100 105 110Ala Ala Phe Arg Gly Tyr Leu Ala Arg Arg Ala Phe Trp Ala Leu Lys115 120 125Gly Ile Ile Arg Leu Gln Ala Leu Ile Arg Gly His Leu Val Arg Arg130 135 140Gln Ala Val Ala Thr Leu Phe Ser Val Met Gly Ile Val Arg Leu Gln145 150 155 160Ala Phe Ala Arg Gly Arg Glu Ile Arg Lys Ser Asp Ile Gly Val Gln 165 170 175Val Tyr Arg Lys Cys Arg Leu Gln Leu Leu Gln Gly Asn Lys Leu Ala 180 185 190Asn Pro Thr Asp Ala Tyr Leu Gly Ile Lys Lys Leu Thr Ala Asn Ala195 200 205Phe Ala Gln Lys Leu Leu Ala Ser Ser Pro Lys Val Leu Pro Val His210 215 220Ala Tyr Asp Thr Ser Asn Pro Asn Ser Asn Leu Ile Trp Leu Glu Asn225 230 235 240Trp Ser Ala Ser Cys Phe Trp Lys Pro Val Pro Gln Pro Lys Lys Thr 245 250 255Ile Ser Arg Lys Pro Gln Asn Arg Leu Leu Val Glu Ala Glu Ser Ala 260 265 270Lys Pro Lys Lys Ser Val Arg Lys Val Pro Ala Ser Asn Phe Glu Ser275 280 285Ser Ser Val Gln Thr Ser Phe Glu Phe Glu Lys Pro Lys Arg Ser Phe290 295 300Arg Lys Val Ser Ser Gln Ser Ile Glu Pro Pro Ala Val Glu Asp Pro305 310 315 320Gln Ile Glu Leu Glu Lys Val Lys Arg Ser Leu Arg Lys Val His Asn 325 330 335Pro Val Val Glu Ser Ser Ile Gln Pro Gln Arg Ser Pro Arg Lys Glu 340 345 350Val Glu Lys Pro Lys Leu Gly Val Glu Lys Thr Arg Glu Ser Ser Tyr355 360 365Pro Leu Val His Glu Thr Ala Glu Glu Pro Val Asn Val Cys Asp Glu370 375 380Lys Lys Lys Gln Glu Ile Ser Glu Gln Pro Glu Glu Glu Val His Ala385 390 395 400Leu Glu Met Glu Val His Thr Pro Gly Pro Leu Glu Thr Asn Glu Ala 405 410 415Leu Asp Ser Ser Leu Val Asn Gln Ile Asp Ser Asn Glu Lys Ala Met 420 425 430Val Glu Glu Lys Pro Ser Met Glu Lys Asp Thr Lys Glu Glu Lys Thr435 440 445Pro Lys Pro Asn Asn Lys Glu Asn Ser Ala Gly Lys Glu Asn Gln Lys450 455 460Ser Arg Lys Lys Gly Ser Ala Thr Ser Lys Thr Glu Arg Glu Glu Ser465 470 475 480Asn Gly His His Glu Thr Ser Pro Ser Ile Pro Ser Tyr Met Gln Ala 485 490 495Thr Lys Ser Ala Lys Ala Lys Leu Arg Leu Gln Gly Ser Pro Lys Ser 500 505 510Ala Glu Gln Asp Gly Thr Glu Lys Ala Thr Val Pro Arg Arg His Ser515 520 525Leu Pro Ser Pro Gly Asn Gly Arg Ile Thr Ser His Ser Pro Arg Thr530 535 540Thr Arg Leu Ala Asn Ser Gly Asp Lys Thr Gly Asn Lys Lys Glu Lys545 550 555 560Pro Leu Leu Ser Ser Arg Glu Gly Asn Gly 565 570321461DNAZea maysmisc_featureCeres CLONE ID no.325403 32aaatgcattt gctcgcaagc ttctatcttc atcaattgtg gttgaggctc ttcacttcca 60gtatgatgag atggacccta attcagcctt caattggtta gagaggtgga cgataagtca 120tgtctggaag cccacttccc agccaaggag agttagtgct gatgctaagc cacatacaag 180gaaggccagc tatgcaatgg aaacagagtc agtgaaatta aagcgtaatg cacggaggag 240ctctgcagtg ccatttgaac cttctcaaac aaacactgcc attgaaattg agaagacaag 300acggaatcca aggaaattaa gtagcactcc tgctgagtca gttcctgatg gccagttaac 360agaacttgag aaggttaaac gtagccttag gaaggttact aattctgtgg ctgaaacctc 420gaaggcacct agtccaaaaa ctgagattcc taaccatcaa gaggtccaat gtgagagacc 480actaagaaga gcaaaacagg ttccaattca tcttgagaat caagagcctg ataatgttaa 540tctgttggac aatgcaaaga tggatattct ggtacctgat atccagcctg atgtggaagt 600tgcttcagat ccagtcacca tcactaatga agaaaatgtt gatgaaccac catctgttgt 660tgctccagtg gccgaaatta tgcccctgca agacatcaac aacgatgaaa atgctttggt 720gaatgatgtg gaagagagat ccaaagaaga acatccttgt actgagagcc tgaaaggcag 780caagaggagg tcttcattct cagctaagcc tgaatatcca gaaaatggct ccaaaaattc 840tccagctctg ccaagctaca tggctgctac acaatcagca aaggcgaaac tgcggggaaa 900tagctcacca aaacttagct ctgattcagc agagaaaaac ggcttcactc gtcgtcactc 960ccttccatcc tctaacaacg gtaagatggt ttcacattct ccacgtacac aaaggccagc 1020taatgctggt tgcaaggatg gagcgaaagg tgacaaggct atgctgtcat caagagatgc 1080aagcgagaga ccactgaaag ctgagtggag acgttgaggc ggcgaatcaa atccaaatcc 1140tccatttgat tagcgtgacc gtttgggtgg atggatcgcc cttgcagttt gctcggattt 1200gttttgtttg tgatgtaaaa aaatgatgtc gtcatcgtcg gcgagatgaa tgaaccggct 1260ttgttgtgat gaatccgctg ggagtcaact tatttattat agggttttcc gtcatgcctt 1320ttgtgatgta tagctgaagt attttcccgg tttgttttgg ttcccagacc cccagacttc 1380ctcccttctt gttgagagct gctgatgtta gagagaatga gaacatgcat ggattgagtt 1440gaacaatctt acccatttgg t 146133371PRTZea maysmisc_featureCeres CLONE ID no.325403 33Asn Ala Phe Ala Arg Lys Leu Leu Ser Ser Ser Ile Val Val Glu Ala1 5 10 15Leu His Phe Gln Tyr Asp Glu Met Asp Pro Asn Ser Ala Phe Asn Trp 20 25 30Leu Glu Arg Trp Thr Ile Ser His Val Trp Lys Pro Thr Ser Gln Pro35 40 45Arg Arg Val Ser Ala Asp Ala Lys Pro His Thr Arg Lys Ala Ser Tyr50 55 60Ala Met Glu Thr Glu Ser Val Lys Leu Lys Arg Asn Ala Arg Arg Ser65 70 75 80Ser Ala Val Pro Phe Glu Pro Ser Gln Thr Asn Thr Ala Ile Glu Ile 85 90 95Glu Lys Thr Arg Arg Asn Pro Arg Lys Leu Ser Ser Thr Pro Ala Glu 100 105 110Ser Val Pro Asp Gly Gln Leu Thr Glu Leu Glu Lys Val Lys Arg Ser115 120 125Leu Arg Lys Val Thr Asn Ser Val Ala Glu Thr Ser Lys Ala Pro Ser130 135 140Pro Lys Thr Glu Ile Pro Asn His Gln Glu Val Gln Cys Glu Arg Pro145 150 155 160Leu Arg Arg Ala Lys Gln Val Pro Ile His Leu Glu Asn Gln Glu Pro 165 170 175Asp Asn Val Asn Leu Leu Asp Asn Ala Lys Met Asp Ile Leu Val Pro 180 185 190Asp Ile Gln Pro Asp Val Glu Val Ala Ser Asp Pro Val Thr Ile Thr195 200 205Asn Glu Glu Asn Val Asp Glu Pro Pro Ser Val Val Ala Pro Val Ala210 215 220Glu Ile Met Pro Leu Gln Asp Ile Asn Asn Asp Glu Asn Ala Leu Val225 230 235 240Asn Asp Val Glu Glu Arg Ser Lys Glu Glu His Pro Cys Thr Glu Ser 245 250 255Leu Lys Gly Ser Lys Arg Arg Ser Ser Phe Ser Ala Lys Pro Glu Tyr 260 265 270Pro Glu Asn Gly Ser Lys Asn Ser Pro Ala Leu Pro Ser Tyr Met Ala275 280 285Ala Thr Gln Ser Ala Lys Ala Lys Leu Arg Gly Asn Ser Ser Pro Lys290 295 300Leu Ser Ser Asp Ser Ala Glu Lys Asn Gly Phe Thr Arg Arg His Ser305 310 315 320Leu Pro Ser Ser Asn Asn Gly Lys Met Val Ser His Ser Pro Arg Thr 325 330 335Gln Arg Pro Ala Asn Ala Gly Cys Lys Asp Gly Ala Lys Gly Asp Lys 340 345 350Ala Met Leu Ser Ser Arg Asp Ala Ser Glu Arg Pro Leu Lys Ala Glu355 360 365Trp Arg Arg37034783DNAOryza sativa subsp. Japonicamisc_featureCeres GI ID no.56784328 34atgcggggtt tccccgttcc ggtgacgagt tggagctccg ccgcgctcct gggccgctcc 60atctcctcgg ccagggacgc ggccgaggcc tcctccccca tcaccgccgc ggagatggtc 120cgggtggcga aggaggtggc caacgccgcc gacgcctgcg gagtctccgg caagaagctg 180ctggaggctg cggaagcgct gtccaggtcc gacaccgacg cggagccgag gcggcgcgcc 240gccgagcgga ttttcgatgc ggcgtccatg gtggccaagg aggccgacgc gtcaggagcg 300tcgggtctct cagatgcggc ccaaaatctg acctgcgcga cctacgcgtt ctcggtagcc 360gcctcgggat gggggtcctt gccggagtcc agcacgagcg ggagggacgc cggcgacctc 420ctaaccgagc cccttcttgg gtcatgtcag gacaagaacg agaagatgac cggcgagggc 480aaggacttca gcgagatgag gaatagtgca gcggactctg atccacttca gcaatcggag 540attaaggagt cgtccctttt tggaaaatgc aaagaactcc tcaattatgg ttttcttgga 600ggtcctgccc tcctacccta tctaggctct ggactgagga aaacagtgtc accctgcagc 660ccgtctgtct tccactacat cttctcgtcg tggtggattt gcattgttgt cggatcacat 720gaacaaggag acttgaagat attacatatc gatagaatca cttctcatcc aaatgataag 780tag 78335260PRTOryza sativa subsp. Japonicamisc_featureCeres GI ID no.56784328 35Met Arg Gly Phe Pro Val Pro Val Thr Ser Trp Ser Ser Ala Ala Leu1 5 10 15Leu Gly Arg Ser Ile Ser Ser Ala Arg Asp Ala Ala Glu Ala Ser Ser 20 25 30Pro Ile Thr Ala Ala Glu Met Val Arg Val Ala Lys Glu Val Ala Asn35 40 45Ala Ala Asp Ala Cys Gly Val Ser Gly Lys Lys Leu Leu Glu Ala Ala50 55 60Glu Ala Leu Ser Arg Ser Asp Thr Asp Ala Glu Pro Arg Arg Arg Ala65 70 75 80Ala Glu Arg Ile Phe Asp Ala Ala Ser Met Val Ala Lys Glu Ala Asp 85 90 95Ala Ser Gly Ala Ser Gly Leu Ser Asp Ala Ala Gln Asn Leu Thr Cys 100 105 110Ala Thr Tyr Ala Phe Ser Val Ala Ala Ser Gly Trp Gly Ser Leu Pro115 120 125Glu Ser Ser Thr Ser Gly Arg Asp Ala Gly Asp Leu Leu Thr Glu Pro130 135 140Leu Leu Gly Ser Cys Gln Asp Lys Asn Glu Lys Met Thr Gly Glu Gly145 150 155 160Lys Asp Phe Ser Glu Met Arg Asn Ser Ala Ala Asp Ser Asp Pro Leu 165 170 175Gln Gln Ser Glu Ile Lys Glu Ser Ser Leu Phe Gly Lys Cys Lys Glu 180 185 190Leu Leu Asn Tyr Gly Phe Leu Gly Gly Pro Ala Leu Leu Pro Tyr Leu195 200 205Gly Ser Gly Leu Arg Lys Thr Val Ser Pro Cys Ser Pro Ser Val Phe210 215 220His Tyr Ile Phe Ser Ser Trp Trp Ile Cys Ile Val Val Gly Ser His225 230 235 240Glu Gln Gly Asp Leu Lys Ile Leu His Ile Asp Arg Ile Thr Ser His 245 250 255Pro Asn Asp Lys 26036311PRTOryza sativa subsp. Japonicamisc_featurePublic GI ID no.56784330 36Met Glu Ser Arg Leu Leu Arg Ser Ala Ala Leu Leu Ala Arg Ala Ala1 5 10 15Arg Leu Ala Arg Ala Ala Ala Thr Ser Thr Gly Arg Ala Val Thr Ala 20 25 30Glu His Leu Ala Glu Val Val Ala Ser Ala Ala Gly Asp Arg Gly Phe35 40 45Pro Ser Gly Ala Leu Arg Gln Ala Ala Leu Ala Leu Ala Arg Ser Ser50 55 60Ala Pro Glu Ala Arg Pro Arg Ala Thr Ala Glu Val Val Arg Ala Ala65 70 75 80Ala Met Val Phe Arg Ala Ala Gln Glu Ala Gly Ser Pro Gly Val Ala 85 90 95Glu Val Ala Gly Asp Leu Ala His Ala Ala His Asp Cys Val Arg Ala 100 105 110Leu Val Glu Ser Gly Pro Ala Ala Glu Arg Pro Arg Cys Leu Leu Arg115 120 125Leu Trp Arg Arg Lys Asn Arg His Asn Lys Asn Ala Ala Gly Glu Ala130 135 140Asp Leu Glu Ala Pro Leu Leu His Pro His Glu Arg Pro Ser Ser Ser145 150 155 160Ser Ser Pro Ile Gly Ala Ser Leu Ser Glu Ile Ile Glu Leu Ser Glu 165 170 175Ser Glu Arg Asp Phe Ile Asn Tyr Gly Met Phe Gly Ala Leu Ala Ile 180 185 190Phe Pro Tyr Leu Thr Arg Thr Gly Gly Leu Lys Ser Ala Tyr Ser Pro195 200 205Leu Ser Pro Ser Thr Phe His Ile Ile Phe Cys Thr Trp Trp Ile Cys210 215 220Val Gly Leu Asp Val Leu Cys Gly Asn Arg Gly Arg Ala Met Met Lys225 230 235 240Asn Ile Leu Ala Phe Ile Leu Ala Phe Tyr Ala Arg Ala Ser Ala Arg 245 250 255Leu Ala Ile Leu Gly Val Ser Leu Leu Val Ile Leu Tyr Ser His Leu 260 265 270Glu Leu Ala Pro Asn Glu Ile Tyr Thr Leu Tyr Ile Leu Leu Gly Ala275 280 285Ala Thr Cys Met His Leu Leu Val Trp Ala Met Asp Tyr Met Ser Arg290 295 300Ala Pro Gly Asp Ala Ala Asp305 31037311PRTOryza sativa subsp. indicamisc_featurePublic GI ID no.125528718 37Met Glu Ser Arg Leu Leu Arg Ser Ala Ala Leu Leu Ala Arg Ala Ala1 5 10 15Arg Leu Ala Arg Ala Ala Ala Thr Ser Thr Gly Arg Ala Val Thr Ala 20 25 30Glu His Leu Ala Glu Val Val Ala Ser Ala Ala Gly Asp Arg Gly Phe35 40 45Pro Ser Gly Ala Leu Arg Gln Ala Ala Leu Ala Leu Ala Arg Ser Ser50 55 60Ala Pro Glu Ala Ser Pro Arg Ala Ala Ala Glu Val Val His Ala Ala65 70 75 80Ala Met Val Phe Arg Ala Ala Gln Glu Ala Gly Ser Pro Gly Val Ala 85 90 95Glu Val Ala Gly Asp Leu Ala His Ala Ala His Asp Cys Val Arg Ala 100 105 110Leu Val Glu Ser Gly Pro Ala Ala Glu Arg Pro Arg Cys Leu Leu Arg115 120 125Leu Trp Arg Arg Lys Asn Arg His Asn Lys Asn Ala Ala Gly Glu Ala130 135 140Asp Leu Glu Ala Pro Leu Leu His Pro His Glu Arg Pro Ser Ser Ser145 150 155 160Ser Ser Pro Ile Gly Ala Ser Leu Ser Asp Ile Ile Glu Leu Ser Gln 165 170 175Ser Glu Arg Asp Phe Ile Asn Tyr Gly Met Phe Gly Ala Leu Ala Ile 180 185 190Phe Pro Tyr Leu Thr Arg Thr Gly Gly Leu Lys Ser Ala Tyr Ser Pro195 200 205Leu Ser Pro Ser Thr Phe His Ile Ile Phe Cys Thr Trp Trp Ile Cys210 215 220Val Gly Leu Asp Val Leu Cys Gly Asn Arg Gly Arg Ala Met Met Lys225 230 235 240Asn Ile Leu Ala Phe Ile Leu Ala Phe Tyr Ala Arg Ala Ser Ala Arg 245 250 255Leu Ala Ile Leu Gly Val Ser Leu Leu Val Ile Leu Tyr Ser His Leu 260 265 270Glu Leu Ala Pro Asn Glu Ile Tyr Thr Leu Tyr Ile Leu Leu Gly Ala275 280 285Ala Thr Cys Met His Leu Leu Val Trp Ala Met Asp Tyr Met Ser Arg290 295 300Ala Pro Gly Asp Ala Ala Asp305 31038250PRTOryza sativa subsp. japonicamisc_featurePublic GI ID no.125572975 38Met Arg Gly Phe Pro Val Pro Val Thr Ser Trp Ser Ser Ala Ala Leu1 5 10 15Leu Gly Arg Ser Ile Ser Ser Ala Arg Asp Ala Ala Glu Ala Ser Ser 20 25 30Pro Ile Thr Ala Ala Glu Met Val Arg Val Ala Lys Glu Val Ala Asn35 40 45Ala Ala Asp Ala Cys Gly Val Ser Gly Lys Lys Leu Leu Glu Ala Ala50 55 60Glu Ala Leu Ser Arg Ser Asp Thr Asp Ala Glu Pro Arg Arg Arg Ala65 70 75 80Ala Glu Arg Ile Phe Asp Ala Ala Ser Met Val Ala Lys Glu Ala Asp 85 90 95Ala Ser Gly Ala Ser Gly Leu Ser Asp Ala Ala Gln Asn Leu Thr Cys 100 105 110Ala Thr Tyr Ala Phe Ser Val Ala Ala Ser Gly Trp Gly Ser Leu Pro115 120 125Glu Ser Ser Thr Ser Gly Arg Asp Ala Gly Asp Leu Leu Thr Glu Pro130 135 140Leu Leu Gly Ser Cys Gln Asp Lys Asn Glu Lys Met Thr Gly Glu Gly145 150 155 160Lys Asp Phe Ser Glu Met Arg Asn Ser Ala Ala Asp Ser Asp Pro Leu 165 170 175Gln Gln Ser Glu Ile Lys Glu Ser Ser Leu Phe Gly Lys Cys Lys Glu 180 185 190Leu Leu Asn Tyr Gly Phe Leu Gly Gly Pro Ala Leu Leu Pro Tyr Leu195 200 205Gly Ser Gly Leu Arg Lys Thr Val Ser Pro Cys Ser Pro Ser Val Phe210 215 220His Tyr Ile Phe Ser Ser Trp Trp Ile Cys Ile Val Val Val Asp Glu225 230 235 240Leu Phe Val Arg Ile Ile Asp Cys Ser Gln 245 25039250PRTOryza sativa subsp. indicamisc_featurePublic GI ID no.125528716 39Met Arg Gly Phe Pro Val Pro Val Thr Ser Trp Ser Ser Ala Ala Leu1 5 10 15Leu Gly Arg Ala Ile Ser Ser Ala Arg Asp Ala Ala Glu Ala Ser Ser 20 25 30Pro Ile Thr Ala Ala Glu Met Val Arg Val Ala Lys Glu Val Ala Asn35 40 45Ala Ala Asp Ala Cys Gly Val Ser Asp Lys Lys Leu Leu Glu Ala Ala50 55 60Glu Ala Leu Ser Arg Ser Asp Thr Asp Ala Glu Pro Arg Arg Arg Ala65 70 75 80Ala Glu Arg Ile Phe Asp Ala Ala Ser Met Val Ala Lys Glu Ala Asp 85 90 95Ala Ser Gly Ala Ser Gly Leu Ser Asp Ala Ala Gln Asn Leu Thr Cys 100

105 110Ala Thr Tyr Ala Phe Ser Val Ala Ala Ser Gly Trp Gly Ser Leu Pro115 120 125Glu Ser Ser Thr Ser Gly Arg Asp Ala Gly Asp Leu Leu Thr Glu Pro130 135 140Leu Leu Gly Ser Cys Gln Asp Lys Asn Glu Lys Met Thr Gly Glu Gly145 150 155 160Lys Asp Phe Ser Glu Met Arg Asn Ser Ala Ala Asp Ser Asp Pro Leu 165 170 175Gln Gln Ser Glu Ile Lys Glu Ser Ser Leu Phe Gly Lys Cys Lys Glu 180 185 190Leu Leu Asn Tyr Gly Phe Leu Gly Gly Pro Ala Leu Leu Pro Tyr Leu195 200 205Gly Ser Gly Leu Arg Lys Thr Val Ser Pro Cys Ser Pro Ser Val Phe210 215 220His Tyr Ile Phe Ser Ser Trp Trp Ile Cys Ile Val Val Val Asp Glu225 230 235 240Leu Phe Val Arg Ile Ile Asp Cys Ser Gln 245 250401443DNAArabidopsis thalianamisc_featureCeres SEEDLINE ID no.ME06748 40aattgtctct tcttttcttt ttgtacttgt caaaaacaaa aagaacaaca aaaaaaatct 60caaccgtaga aaattccgac aagagttcag ttcatacaat gaactaagta tgggtttctt 120tggaagactg ttcggaagta agaagcaaga aaaggcaaca ccgaacagac gaagatggag 180cttcgctact agatcctcac atcccgagaa tgattcgtct tctcatccaa gcaagagacg 240tggggatgaa gatgtcttaa acgccgacaa gcatgcgata gccgtcgcgg ctgctacagc 300tgcagtggct gaagccgcac tcgctgctgc tcgtgcggcg gcggaagtcg tgagactcac 360caatggtggt agaaactcgt cggtaaaaca aatcagtcgg agtaatcgtc ggtggtctca 420agagtataaa gcagctatcc gcttttcgtg gctacttggc gaggagggcg ttgagagcac 480tgaaggcatt agtgaagctt caagcgttgg tgaagggaca catagtaagg aaacaaacgg 540ctgatatgct gcgtcgaatg caaacgctgg ttcggctcca agcacgagct agagcttcgc 600gttcttctca cgtttctgac tcttcccatc cgccaacact aatgattcca tcttccccac 660aatctttcca tgcacgatgc gtttcagagg ctgagtacag taaagtcatt gccatggatc 720accaccacaa caaccaccgt tcaccgatgg gttcaagccg gttattagac caatggagga 780cagaggaaag tctatggagc gcaccaaagt acaatgaaga tgatgacaaa atcctagaag 840tcgacacttg gaagcctcac ttcagagagt caccaaggaa aagaggatct ctagtggttc 900ctacaagtgt ggagaacagt ccacaattaa ggtctagaac aggaagcagc agtggtggtt 960caaggagaaa aactcccttc acgcctgcga gaagcgagta cgagtactac tctgggtatc 1020accctaacta catggctaac actgagtctt acaaagcaaa agtccgatca caaagcgcac 1080caagacagag actacaagat ttaccttcag agagtggtta caagaggtct atacagggac 1140agtattacta ctacacacct gctgcagagc gatcgtttga tcagcgttcg gataacggga 1200tcgcgggtta cagaggagtt tctgatgggt tagatcgaaa ccaaagtgac aaatcgaaga 1260tgtacacttc gtttttcagt tctaatcctc ttttctttca atagtcgaga aaggatgaaa 1320aaagtgagtg gaatgtgtaa aattagattt cgacacacga gtacagagac agccagtgat 1380caatctgtgt tttgtactat tttctaattg actgtatcca acaagggtcc attcttgtct 1440gac 144341252PRTArabidopsis thalianamisc_featureCeres SEEDLINE ID no.ME06748 41Met Leu Arg Arg Met Gln Thr Leu Val Arg Leu Gln Ala Arg Ala Arg1 5 10 15Ala Ser Arg Ser Ser His Val Ser Asp Ser Ser His Pro Pro Thr Leu 20 25 30Met Ile Pro Ser Ser Pro Gln Ser Phe His Ala Arg Cys Val Ser Glu35 40 45Ala Glu Tyr Ser Lys Val Ile Ala Met Asp His His His Asn Asn His50 55 60Arg Ser Pro Met Gly Ser Ser Arg Leu Leu Asp Gln Trp Arg Thr Glu65 70 75 80Glu Ser Leu Trp Ser Ala Pro Lys Tyr Asn Glu Asp Asp Asp Lys Ile 85 90 95Leu Glu Val Asp Thr Trp Lys Pro His Phe Arg Glu Ser Pro Arg Lys 100 105 110Arg Gly Ser Leu Val Val Pro Thr Ser Val Glu Asn Ser Pro Gln Leu115 120 125Arg Ser Arg Thr Gly Ser Ser Ser Gly Gly Ser Arg Arg Lys Thr Pro130 135 140Phe Thr Pro Ala Arg Ser Glu Tyr Glu Tyr Tyr Ser Gly Tyr His Pro145 150 155 160Asn Tyr Met Ala Asn Thr Glu Ser Tyr Lys Ala Lys Val Arg Ser Gln 165 170 175Ser Ala Pro Arg Gln Arg Leu Gln Asp Leu Pro Ser Glu Ser Gly Tyr 180 185 190Lys Arg Ser Ile Gln Gly Gln Tyr Tyr Tyr Tyr Thr Pro Ala Ala Glu195 200 205Arg Ser Phe Asp Gln Arg Ser Asp Asn Gly Ile Ala Gly Tyr Arg Gly210 215 220Val Ser Asp Gly Leu Asp Arg Asn Gln Ser Asp Lys Ser Lys Met Tyr225 230 235 240Thr Ser Phe Phe Ser Ser Asn Pro Leu Phe Phe Gln 245 25042517PRTArabidopsis thalianamisc_featureCeres SEEDLINE ID no.ME20711 42Met Gly Lys Lys Gly Ser Trp Phe Ser Ala Ile Lys Arg Val Phe Thr1 5 10 15Pro His Ser Lys Glu Lys Gln Leu Ser Asn Asn Asn Gln Glu Pro Glu 20 25 30Ile Lys Ser Glu Asn Lys Glu Lys Lys Lys Lys Gly Phe Gly Lys Lys35 40 45Leu Arg Asn Gly Glu Thr Asn Ser Phe Leu Pro Ile Phe Arg Gln Pro50 55 60Ser Ser Ile Glu Lys Ile Leu Ser Glu Ala Glu Arg Glu His Asn Leu65 70 75 80Val Phe Arg Pro Pro Thr Pro Thr Asp Arg Ala Asn Ser Ser Ser Thr 85 90 95Ser Val Ala Ser Pro Leu Val Arg Pro Ala Ser Pro Lys Val Pro Ser 100 105 110Gln Arg Tyr Val Ser Ser Pro Lys Pro Ile Ser Pro Arg Val Ala Tyr115 120 125Pro Gln Val His Tyr Pro Lys Pro Pro Ser Pro Lys Pro Pro Ser Pro130 135 140Arg Ala Val Ser Pro Arg Ile Val Gln Arg Arg Glu Phe Val His Arg145 150 155 160Pro Glu Pro Ser Leu Leu Val Lys Asn Ala Tyr Ala Ile Lys Ile Gln 165 170 175Ala Ala Phe Arg Gly Tyr Met Ala Arg Arg Ser Phe Arg Ala Leu Lys 180 185 190Gly Leu Val Arg Leu Gln Gly Val Val Arg Gly His Ser Val Lys Arg195 200 205Gln Thr Met Asn Ala Met Lys Tyr Met Gln Leu Leu Val Arg Val Gln210 215 220Thr Gln Val Gln Ser Arg Arg Ile Gln Met Leu Glu Asn Arg Ala Arg225 230 235 240Asn Asp Lys Asp Asp Thr Lys Leu Val Ser Ser Arg Met Ser Asp Asp 245 250 255Trp Asp Asp Ser Val Leu Thr Lys Glu Glu Lys Asp Val Arg Leu His 260 265 270Arg Lys Ile Asp Ala Met Ile Lys Arg Glu Arg Ser Met Ala Tyr Ala275 280 285Tyr Ser His Gln Leu Trp Lys Asn Ser Pro Lys Ser Ala Gln Asp Ile290 295 300Arg Thr Ser Gly Phe Pro Leu Trp Trp Asn Trp Val Asp Arg Gln Lys305 310 315 320Asn Gln Asn Gln Pro Phe Arg Leu Thr Pro Thr Arg Pro Ser Leu Ser 325 330 335Pro Gln Pro Gln Ser Ser Asn Gln Asn His Phe Arg Leu Asn Asn Ser 340 345 350Phe Asp Thr Ser Thr Pro Asn Ser Ser Lys Ser Thr Phe Val Thr Pro355 360 365Ser Arg Pro Ile His Thr Pro Gln Pro Tyr Ser Ser Ser Val Ser Arg370 375 380Tyr Ser Arg Gly Gly Gly Arg Ala Thr Gln Asp Ser Pro Phe Lys Asp385 390 395 400Asp Asp Ser Leu Thr Ser Cys Pro Pro Phe Ser Ala Pro Ser Tyr Met 405 410 415Ala Pro Thr Val Ser Ala Lys Ala Lys Leu Arg Ala Asn Ser Asn Pro 420 425 430Lys Glu Arg Met Asp Arg Thr Pro Val Ser Thr Asn Glu Lys Arg Arg435 440 445Ser Ser Phe Pro Leu Gly Ser Phe Lys Trp Asn Lys Gly Ser Leu Phe450 455 460Met Ser Asn Asn Ser Asn Asn Lys Gly Pro Gly Ser Ser Ser Ser Gly465 470 475 480Ala Val Val Leu Glu Lys His Lys Thr Leu Lys Ser Val Gly Asn Leu 485 490 495Ser Ile Asp Ser Thr Val Ser Met Pro Ala Thr Ile Gly Arg Arg Ala 500 505 510Phe Asn Arg Phe Ala51543383PRTArabidopsis thalianamisc_featureCeres SEEDLINE ID no.ME18973 43Met Gly Arg Ala Thr Arg Trp Phe Lys Gly Leu Phe Gly Ile Lys Pro1 5 10 15Ser Ser Cys Ser Gly Thr Asp Ser Gly Thr Ile Ser Asn Arg Leu Asp 20 25 30Arg Ser Leu Cys Asp Ser Tyr Glu Thr Ile Pro Pro Asn Ile Ser Glu35 40 45Lys Glu Ala Ala Trp Leu Arg Ser Phe Tyr Ala Ala Gly Glu Glu Glu50 55 60Lys Glu Arg Arg Thr His Ala Ile Ala Val Ala Ala Ala Thr Ala Ala65 70 75 80Ala Ala Asp Ala Ala Val Ala Ala Ala Lys Ala Ala Ala Ala Val Val 85 90 95Arg Leu Gln Gly Gln Gly Lys Ser Gly Pro Leu Gly Gly Gly Lys Ser 100 105 110Arg Glu His Arg Ala Ala Met Gln Ile Gln Cys Ala Phe Arg Gly Tyr115 120 125Leu Ala Arg Lys Ala Leu Arg Ala Leu Arg Gly Val Val Lys Ile Gln130 135 140Ala Leu Val Arg Gly Phe Leu Val Arg Asn Gln Ala Ala Ala Thr Leu145 150 155 160Arg Ser Met Glu Ala Leu Val Arg Ala Gln Lys Thr Val Lys Ile Gln 165 170 175Arg Ala Leu Arg Arg Asn Gly Asn Ala Ala Pro Ala Arg Lys Ser Thr 180 185 190Glu Arg Phe Ser Gly Ser Leu Glu Asn Arg Asn Asn Gly Glu Glu Thr195 200 205Ala Lys Ile Val Glu Val Asp Thr Gly Thr Arg Pro Gly Thr Tyr Arg210 215 220Ile Arg Ala Pro Val Leu Ser Gly Ser Asp Phe Leu Asp Asn Pro Phe225 230 235 240Arg Arg Thr Leu Ser Ser Pro Leu Ser Gly Arg Val Pro Pro Arg Leu 245 250 255Ser Met Pro Lys Pro Glu Trp Glu Glu Cys Ser Ser Lys Phe Pro Thr 260 265 270Ala Gln Ser Thr Pro Arg Phe Ser Gly Gly Ser Pro Ala Arg Ser Val275 280 285Cys Cys Ser Gly Gly Gly Val Glu Ala Glu Val Asp Thr Glu Ala Asp290 295 300Ala Asn Arg Phe Cys Phe Leu Ser Gly Glu Phe Asn Ser Gly Tyr Met305 310 315 320Ala Asp Thr Thr Ser Phe Arg Ala Lys Leu Arg Ser His Ser Ala Pro 325 330 335Arg Gln Arg Pro Glu Ser Asn Ala Ser Ala Gly Gly Trp Arg Arg Ser 340 345 350Ile Gly Gly Gly Gly Val Arg Met Gln Arg Gln Ser Cys Ser Gly Val355 360 365Arg Glu Ala Val Val Gly Asn Ile Glu Arg Arg Arg Met Arg Trp370 375 38044460PRTArabidopsis thalianamisc_featureCeres SEEDLINE ID no.ME08732 44Met Ala Lys Lys Lys Ser Trp Phe Ser Leu Val Lys Arg Leu Phe Ile1 5 10 15Trp Asp Thr His Ser Thr Gln Asp Lys Lys Glu Lys Arg Arg Lys Trp 20 25 30Ile Phe Gly Arg Leu Lys Ser Lys Arg Leu Pro Ser Ile Lys Ala Pro35 40 45Leu Pro Ser Lys Gly Thr Thr Leu Ser Glu Ala Glu Gln Glu Gln Ser50 55 60Lys His Ala Leu Thr Val Ala Ile Ala Ser Ala Ala Ala Ala Glu Ala65 70 75 80Ala Val Thr Ala Ala His Ala Ala Ala Glu Val Val Arg Leu Thr Gly 85 90 95Gln Arg Asn Glu Asn Ser Glu Glu Ser Gln Pro Val Lys Thr Arg Asn 100 105 110Gly Ala Pro Gln Ser Thr Tyr Gln Cys Gln Arg Glu Ile Lys Glu Ser115 120 125Ala Ala Ala Ile Lys Ile Gln Thr Ala Phe Arg Gly Tyr Leu Ala Arg130 135 140Lys Ala Leu Arg Ala Leu Lys Gly Ile Val Lys Leu Gln Ala Ile Ile145 150 155 160Arg Gly Arg Ala Val Arg Arg Gln Ala Met Ser Ser Leu Lys Cys Leu 165 170 175Gln Ser Ile Val Ser Ile Gln Ser Gln Val Cys Ala Arg Arg Leu Gln 180 185 190Met Val Glu Gly Arg Cys Asp Tyr Ser Glu Asn Glu Glu Met Gln Asp195 200 205Phe Lys Asp Lys Ile Ile Arg Met Asp Ser Asn Ser Glu Arg Lys Trp210 215 220Asp Glu Ser Thr Val Leu Lys Glu Glu Val Asp Thr Ser Cys Thr Ser225 230 235 240Lys Arg Glu Arg Thr Lys Glu Tyr Ser Phe Asn His Arg Arg Ser Ala 245 250 255Glu Ser Glu Arg Ser Lys Val Asn Gly Arg Trp Arg Tyr Trp Leu Glu 260 265 270Gln Trp Val Asp Thr Gln Leu Ser Lys Ser Lys Glu Leu Glu Asp Leu275 280 285Asp Ser Val Phe Ser Ser His Ser Arg Ala Gly Glu Glu Tyr Gly Gly290 295 300Arg Gln Leu Lys Leu Arg Ser Asn Ile Gln Arg Gln Asn Pro Val Glu305 310 315 320Gly Leu Asp Ser Pro Ile Leu Gly Ser Arg Arg Ser Phe Pro His Arg 325 330 335Arg Gln Cys Ser Val Gly Glu Asp His Ser Phe Leu Ser Ser Pro Ala 340 345 350Thr Pro Ala Tyr Met Ala Ala Thr Glu Ser Ala Lys Ala Lys Ala Arg355 360 365Ser Thr Ser Ser Pro Lys Ile Arg Thr Gly Gly Asn Val Asp Met Asn370 375 380Ser Asp Ser Tyr Ser Pro Cys Lys Lys Lys Leu Ser Ile Ala Ser Ser385 390 395 400Ile Asn Ser Glu Met Leu Ser Asn Gly Arg Val Gly Lys Leu Ser Val 405 410 415Asn Gln Gln Gln Arg Ser Pro Ser Phe Lys Gly Leu Ser Val Pro Ile 420 425 430Lys Ser Ser Arg Thr Thr Ile Lys Asp Leu Ser Ile Asn Ser Asp Cys435 440 445Ser Leu Pro Asn Trp Asp Arg Gln Ala Phe Phe Lys450 455 46045403PRTArabidopsis thalianamisc_featureCeres SEEDLINE ID no.ME19657 45Met Gly Phe Phe Gly Arg Leu Phe Gly Ser Lys Lys Lys Ser Asp Lys1 5 10 15Ala Ala Ser Ser Arg Asp Lys Arg Arg Trp Ser Phe Thr Thr Arg Ser 20 25 30Ser Asn Ser Ser Lys Arg Ala Pro Ala Val Thr Ser Ala Ser Val Val35 40 45Glu Gln Asn Gly Leu Asp Ala Asp Lys His Ala Ile Ala Val Ala Ala50 55 60Ala Thr Ala Ala Val Ala Glu Ala Ala Leu Thr Ala Ala His Ala Ala65 70 75 80Ala Glu Val Val Arg Leu Thr Ser Gly Asn Gly Gly Arg Asn Val Gly 85 90 95Gly Gly Gly Asn Ser Ser Val Phe Gln Ile Gly Arg Ser Asn Arg Arg 100 105 110Trp Ala Gln Glu Asn Ile Ala Ala Met Lys Ile Gln Ser Ala Phe Arg115 120 125Gly Tyr Leu Ala Arg Arg Ala Leu Arg Ala Leu Lys Ala Leu Val Lys130 135 140Leu Gln Ala Leu Val Arg Gly His Ile Val Arg Lys Gln Thr Ala Asp145 150 155 160Met Leu Arg Arg Met Gln Thr Leu Val Arg Leu Gln Ser Gln Ala Arg 165 170 175Ala Arg Ala Ser Arg Ser Ser His Ser Ser Ala Ser Phe His Ser Ser 180 185 190Thr Ala Leu Leu Phe Pro Ser Ser Ser Ser Ser Pro Arg Ser Leu His195 200 205Thr Arg Cys Val Ser Asn Ala Glu Val Ser Ser Leu Asp His Arg Gly210 215 220Gly Ser Lys Arg Leu Asp Trp Gln Ala Glu Glu Ser Glu Asn Gly Asp225 230 235 240Lys Ile Leu Glu Val Asp Thr Trp Lys Pro His Tyr His Pro Lys Pro 245 250 255Leu Arg Ser Glu Arg Asn Asn Glu Ser Pro Arg Lys Arg Gln Gln Ser 260 265 270Leu Leu Gly Pro Arg Ser Thr Glu Asn Ser Pro Gln Val Gly Ser Ser275 280 285Gly Ser Arg Arg Arg Thr Pro Phe Thr Pro Thr Ser Arg Ser Glu Tyr290 295 300Ser Trp Gly Cys Asn Asn Tyr Tyr Tyr Ser Gly Tyr His Pro Asn Tyr305 310 315 320Met Ala Asn Thr Glu Ser Tyr Lys Ala Lys Val Arg Ser Gln Ser Ala 325 330 335Pro Lys Gln Arg Val Glu Val Ser Asn Glu Thr Ser Gly Tyr Lys Arg 340 345 350Ser Val Gln Gly Gln Tyr Tyr Tyr Tyr Thr Ala Val Glu Glu Glu Ser355 360 365Leu Asp Val Gly Ser Ala Gly Tyr Tyr Gly Gly Gly Gly Gly Asp Ser370 375 380Asp Arg Leu Asn Arg Asn Gln Ser Ala Lys Ser Arg Met His Ser Ser385 390 395 400Phe Leu Val461711DNATriticum aestivummisc_featureCeres CLONE ID no.835818 46ccaaatccaa tgctctacat ttcttccttc tcgtgccctt tcttgatttg cgcatggaca 60gtgacttgcg ttgccagcaa agagccatcc tgctaggccc tttgccaaca tctccgtaga 120tcacattcca gagcagatag acagaagaat ggagaggaag aagaaggggt ggttcgagcg 180catcaagagg ctcttcatct ccgaacccaa gcagaaaccc aaaccagaca agaaggtgaa 240gagcaagaga tggctggtag ggaagctcaa gacccagcac tcgtttgccc tgccagctcc 300ggagccggag ccggcgacgg gtcagattca gataaggcag gcggaggagg agcagagcaa 360gcacgcagtg gcggtcgcgc tcgcctccgc agcggccgca gaggcagccg tcgcggccgc 420ccacgcggcc gcggaggtgg tccgcctcac aggaccgccc tcgccggcgc cggcgccggc 480gcgtgaggac gccgcgtctt ccggccacga actgttcgcc gccgtcgcga tccagtcagc 540ctaccgcgga tacctcgcgc ggagggcact gcgcgcgctc aagggcctgg tgaggctgca 600ggcggtgatc cgcgggcagg

cggtgcggcg gaagacggcg gcgacgctgc ggggcctcga 660gtcgctggtc aagatccagg cccggcagcg cgccagggcc gacgtcgacc acgagcacga 720cggcgacggc atggacgccc tgctgaggag aggccgggag ctgtacgccg ccgcgctgca 780agagcagcag cagagcagcc ggggggtggg acggcagcac cctctccaag gaagagatgg 840gcgccgtgat gaggagcagg gaggaagccg ccatcaagcg cgtgcgcgcg ctgcagtacg 900cctccatcca gaacgagaag atcggcatca ggaggcagcc catgtccagg gacgagatgg 960agacgctcaa ccagcgctgg agctggctgg aggagtgggt cggctcgcag cccttcgaca 1020aggacgtggc cgtcgacgtg gtcacccacc cccacccgcc gccgcctcgc tccagggact 1080ccctcgcctg cctcgaggac gacgacgacc atgatgacga cggctatggc aggcggctcg 1140gctactcgtc caggcggtcc ttcggccgcg ccaggcgcac gccagggagg gggagcgtcg 1200acgacgggct gcaggcctgc tcgccggcgg tggctttccc ggggtacatg gcgtccacgg 1260cgtccgccaa ggccaagttc cggtccatga gcacgcccaa ggagcgcttc gccgtgccat 1320ccgacgcata ctcggagcag tgcttcgccg accgcctcat gtcacccatc ccgtccatgt 1380cgccgatgcc gtccatcgcc agcgacatgg gttttgctcg ctccagcagg ccgccggttg 1440cgcagcggtc gccgcgtgtc aagggggggc cgatgacgcc gtcgaggatc cgctccagga 1500ggtcccccag ccgccacagc ttcggctctg aagccgcgct gcaccagatg cagatggagc 1560actacacccc tattcgctag acacaaacaa acttctttgt aatgtgacca atgctgcctt 1620gtttggcggg cttgctctct ctgggtctga ccatggaaac cttctcaaac tgaccgtgct 1680gtgcgaatgc aatatggatc tgcaaacttt c 171147476PRTTriticum aestivummisc_featureCeres CLONE ID no.835818 47Met Glu Arg Lys Lys Lys Gly Trp Phe Glu Arg Ile Lys Arg Leu Phe1 5 10 15Ile Ser Glu Pro Lys Gln Lys Pro Lys Pro Asp Lys Lys Val Lys Ser 20 25 30Lys Arg Trp Leu Val Gly Lys Leu Lys Thr Gln His Ser Phe Ala Leu35 40 45Pro Ala Pro Glu Pro Glu Pro Ala Thr Gly Gln Ile Gln Ile Arg Gln50 55 60Ala Glu Glu Glu Gln Ser Lys His Ala Val Ala Val Ala Leu Ala Ser65 70 75 80Ala Ala Ala Ala Glu Ala Ala Val Ala Ala Ala His Ala Ala Ala Glu 85 90 95Val Val Arg Leu Thr Gly Pro Pro Ser Pro Ala Pro Ala Pro Ala Arg 100 105 110Glu Asp Ala Ala Ser Ser Gly His Glu Leu Phe Ala Ala Val Ala Ile115 120 125Gln Ser Ala Tyr Arg Gly Tyr Leu Ala Arg Arg Ala Leu Arg Ala Leu130 135 140Lys Gly Leu Val Arg Leu Gln Ala Val Ile Arg Gly Gln Ala Val Arg145 150 155 160Arg Lys Thr Ala Ala Thr Leu Arg Gly Leu Glu Ser Leu Val Lys Ile 165 170 175Gln Ala Arg Gln Arg Ala Arg Ala Asp Val Asp His Glu His Asp Gly 180 185 190Asp Gly Met Asp Ala Leu Leu Arg Arg Gly Arg Glu Leu Tyr Ala Ala195 200 205Ala Leu Gln Glu Gln Gln Gln Ser Ser Arg Gly Trp Asp Gly Ser Thr210 215 220Leu Ser Lys Glu Glu Met Gly Ala Val Met Arg Ser Arg Glu Glu Ala225 230 235 240Ala Ile Lys Arg Val Arg Ala Leu Gln Tyr Ala Ser Ile Gln Asn Glu 245 250 255Lys Ile Gly Ile Arg Arg Gln Pro Met Ser Arg Asp Glu Met Glu Thr 260 265 270Leu Asn Gln Arg Trp Ser Trp Leu Glu Glu Trp Val Gly Ser Gln Pro275 280 285Phe Asp Lys Asp Val Ala Val Asp Val Val Thr His Pro His Pro Pro290 295 300Pro Pro Arg Ser Arg Asp Ser Leu Ala Cys Leu Glu Asp Asp Asp Asp305 310 315 320His Asp Asp Asp Gly Tyr Gly Arg Arg Leu Gly Tyr Ser Ser Arg Arg 325 330 335Ser Phe Gly Arg Ala Arg Arg Thr Pro Gly Arg Gly Ser Val Asp Asp 340 345 350Gly Leu Gln Ala Cys Ser Pro Ala Val Ala Phe Pro Gly Tyr Met Ala355 360 365Ser Thr Ala Ser Ala Lys Ala Lys Phe Arg Ser Met Ser Thr Pro Lys370 375 380Glu Arg Phe Ala Val Pro Ser Asp Ala Tyr Ser Glu Gln Cys Phe Ala385 390 395 400Asp Arg Leu Met Ser Pro Ile Pro Ser Met Ser Pro Met Pro Ser Ile 405 410 415Ala Ser Asp Met Gly Phe Ala Arg Ser Ser Arg Pro Pro Val Ala Gln 420 425 430Arg Ser Pro Arg Val Lys Gly Gly Pro Met Thr Pro Ser Arg Ile Arg435 440 445Ser Arg Arg Ser Pro Ser Arg His Ser Phe Gly Ser Glu Ala Ala Leu450 455 460His Gln Met Gln Met Glu His Tyr Thr Pro Ile Arg465 470 475481651DNAPanicum virgatummisc_featureCeres CLONE ID no.1796745 48gtagcactag ccactctcac tccccccggc ggcatggaga aggagaagag gcggaggagc 60tggttcgagc gcatcaggcg gctcttcacc tcctccgagc ccaaggagaa acccaaacct 120gacaagaagg cgaagagcaa gcggtggcta ccggggaagc tgaggacgca gcagtcgttc 180gctctgccgg cgccggcatc cgcggccgcg gacctgcaga tcaggcaggc ggaggacgag 240cagagcaagc acgccgtgac cgtcgctctc gccaccgcgg cggccgccga ggccgcggtc 300gccgccgcgc acgccgccgc cgaggtcgtc cgcctcaccg gccagcaggc cgcggccccg 360ccggccgggc gggagcggga gctggaggag gaggagcatg ccgccgtctt gatccaatcg 420gcgtaccgcg ggtacctggc tcggcgggcg ctgcgcgcgc tcaagggtct ggtgcggctg 480caggcgctga tccgggggca ggcggtgcgg caccagacgg cggccacgct gcgcggcctc 540gagtccctga tgaggatcca ggcccagcac cgctcccggg ccggcggccc cgaccacccg 600gcggcgctcg acggcaacga cgacgccttc ctgctccggc gcggccggga gctctacgcc 660gccgcggtcc accagcagca gcaggcgggc agcaaagggt gggacagcag catcctcgcc 720aaggaggaga tgcgcgccgt gatgcggagc cgggaggagg ccgccctcaa gcgcgtgcgc 780gcgctgcagt acgcgtccct gcagagcgag cggctgggcg tccggcggcc gccgctgccc 840agggacgagg aggcggacgc gctccaccgc cgctggagct ggctcgagga gtgggtcggc 900gcgcagccgc ccttcgacaa ggacgtcccc gtggcgcacc agtcgcccta cagcagggac 960gacgccgccg ccgccagggg ccgccagacg ccgggccggg ccgtcgaccc gctcgccggc 1020ctcggcggcg gcgacgccga ccggctcggt tgctcggcgc ggcggtcctt cgtgcggccg 1080aggcgcgcgc cggcgcgggc gggcgactac ttctacgagg acgccgcgcc gtgctcgccg 1140gcgacgttcc cggggtacat ggcgtccacg gcctccgcca aggccaagtt ccggtccatg 1200agcacgccca aggagcgctt cgccggagcc gacgccttct ccgagcactg cttcccgttc 1260gccgaccgca tgctctcgcc gatcccgtcc atgtcgccca tcccctccat cgccagcgac 1320atgggcttcg ccaggtccac caggccgccc gccgcgcaga gatcgccgcg ggtggcggcc 1380aagggcccca tgacgccggc gcggtcgcgc tcacggaggt cgccgagcca ccacagcttc 1440ggctccgagg ccgcgctgca ccaactgcag atggagcact acaccccagt ccggtgaaca 1500agactacaga gagtgccttg cttcgttaca ctcttttgtg aagatacaat tccctgctcc 1560cattcttttg tttgttcacc tttcttgaca gaagggttca actgttcaag tattcagtaa 1620tggaatgcaa caacgtaaaa aaaaaaaaaa a 165149487PRTPanicum virgatummisc_featureCeres CLONE ID no.1796745 49Met Glu Lys Glu Lys Arg Arg Arg Ser Trp Phe Glu Arg Ile Arg Arg1 5 10 15Leu Phe Thr Ser Ser Glu Pro Lys Glu Lys Pro Lys Pro Asp Lys Lys 20 25 30Ala Lys Ser Lys Arg Trp Leu Pro Gly Lys Leu Arg Thr Gln Gln Ser35 40 45Phe Ala Leu Pro Ala Pro Ala Ser Ala Ala Ala Asp Leu Gln Ile Arg50 55 60Gln Ala Glu Asp Glu Gln Ser Lys His Ala Val Thr Val Ala Leu Ala65 70 75 80Thr Ala Ala Ala Ala Glu Ala Ala Val Ala Ala Ala His Ala Ala Ala 85 90 95Glu Val Val Arg Leu Thr Gly Gln Gln Ala Ala Ala Pro Pro Ala Gly 100 105 110Arg Glu Arg Glu Leu Glu Glu Glu Glu His Ala Ala Val Leu Ile Gln115 120 125Ser Ala Tyr Arg Gly Tyr Leu Ala Arg Arg Ala Leu Arg Ala Leu Lys130 135 140Gly Leu Val Arg Leu Gln Ala Leu Ile Arg Gly Gln Ala Val Arg His145 150 155 160Gln Thr Ala Ala Thr Leu Arg Gly Leu Glu Ser Leu Met Arg Ile Gln 165 170 175Ala Gln His Arg Ser Arg Ala Gly Gly Pro Asp His Pro Ala Ala Leu 180 185 190Asp Gly Asn Asp Asp Ala Phe Leu Leu Arg Arg Gly Arg Glu Leu Tyr195 200 205Ala Ala Ala Val His Gln Gln Gln Gln Ala Gly Ser Lys Gly Trp Asp210 215 220Ser Ser Ile Leu Ala Lys Glu Glu Met Arg Ala Val Met Arg Ser Arg225 230 235 240Glu Glu Ala Ala Leu Lys Arg Val Arg Ala Leu Gln Tyr Ala Ser Leu 245 250 255Gln Ser Glu Arg Leu Gly Val Arg Arg Pro Pro Leu Pro Arg Asp Glu 260 265 270Glu Ala Asp Ala Leu His Arg Arg Trp Ser Trp Leu Glu Glu Trp Val275 280 285Gly Ala Gln Pro Pro Phe Asp Lys Asp Val Pro Val Ala His Gln Ser290 295 300Pro Tyr Ser Arg Asp Asp Ala Ala Ala Ala Arg Gly Arg Gln Thr Pro305 310 315 320Gly Arg Ala Val Asp Pro Leu Ala Gly Leu Gly Gly Gly Asp Ala Asp 325 330 335Arg Leu Gly Cys Ser Ala Arg Arg Ser Phe Val Arg Pro Arg Arg Ala 340 345 350Pro Ala Arg Ala Gly Asp Tyr Phe Tyr Glu Asp Ala Ala Pro Cys Ser355 360 365Pro Ala Thr Phe Pro Gly Tyr Met Ala Ser Thr Ala Ser Ala Lys Ala370 375 380Lys Phe Arg Ser Met Ser Thr Pro Lys Glu Arg Phe Ala Gly Ala Asp385 390 395 400Ala Phe Ser Glu His Cys Phe Pro Phe Ala Asp Arg Met Leu Ser Pro 405 410 415Ile Pro Ser Met Ser Pro Ile Pro Ser Ile Ala Ser Asp Met Gly Phe 420 425 430Ala Arg Ser Thr Arg Pro Pro Ala Ala Gln Arg Ser Pro Arg Val Ala435 440 445Ala Lys Gly Pro Met Thr Pro Ala Arg Ser Arg Ser Arg Arg Ser Pro450 455 460Ser His His Ser Phe Gly Ser Glu Ala Ala Leu His Gln Leu Gln Met465 470 475 480Glu His Tyr Thr Pro Val Arg 48550501PRTOryza sativa subsp. indicamisc_featurePublic GI ID no.125543896 50Met Glu Arg Lys Arg Arg Gly Trp Leu Glu Arg Ile Lys Arg Leu Phe1 5 10 15Val Ser Glu Pro Lys Gln Lys Pro Lys Pro Asp Lys Lys Val Lys Ser 20 25 30Lys Arg Trp Met Phe Ala Gly Lys Leu Lys Thr Gln His Ser Phe Ala35 40 45Leu Pro Ala Pro Ala Pro Ala Val Glu Glu Glu Gln Ile Arg Gln Ala50 55 60Glu Asp Glu Gln Ser Lys His Ala Met Ala Val Ala Leu Ala Thr Ala65 70 75 80Ala Ala Ala Glu Ala Ala Val Ala Ala Ala His Ala Ala Ala Glu Val 85 90 95Val Arg Leu Thr Gly Lys Thr Ala Ala Leu Ala Pro Ala Pro Ala Thr 100 105 110Thr Thr Thr Pro Thr Pro Tyr Gly His Glu His Ala Ala Leu Met Ile115 120 125Gln Ser Val Tyr Arg Gly Tyr Leu Ala Arg Arg Ala Leu Arg Ala Leu130 135 140Lys Gly Leu Val Arg Leu Gln Ala Leu Ile Arg Gly Gln Ala Val Arg145 150 155 160Arg Gln Thr Ala Ala Thr Leu Arg Gly Leu Glu Ser Leu Met Lys Ile 165 170 175Gln Ala Arg Gln Arg Ala Arg Ala Ser Ser Ala Ala Ala Ala Gly Gly 180 185 190Asp His Asn Ala Ala Asn Ser Pro Ala Pro Asp Gly Met Asp Ala Leu195 200 205Leu Arg Arg Gly Arg Glu Leu Tyr Tyr Ala Ala Ala Ala Ala Val His210 215 220Glu Gln Gln Leu Ser Lys Gly Trp Asp Ser Ser Thr Leu Ser Lys Glu225 230 235 240Glu Met Ser Ala Met Ser Arg Ser Arg Glu Glu Ala Ala Leu Lys Arg 245 250 255Val Arg Ala Leu Gln Tyr Ala Ser Leu His Gln Ser Glu Lys Val Arg 260 265 270Val Arg Arg Gln Pro Met Ser Arg Glu Glu Met Glu Thr Leu Asn Gln275 280 285Arg Trp Ser Trp Leu Glu Glu Trp Val Gly Ser Gln Pro Pro Phe Asp290 295 300Lys Asp Ile Pro Val Ala His Gln Ser Pro Ser Arg Asp Ala Ala Gly305 310 315 320Ala Ala Met Asn Asp Asp Glu Arg Pro Pro Pro Pro Pro Val Leu Arg 325 330 335Ser Arg Ser Arg Ala Asp Arg Leu Ala Cys Val Gly Gly Asp Asp Asp 340 345 350Asp Ala Asp Arg Gln Leu Gly Tyr Ser Ala Arg Arg Ser Phe Thr Arg355 360 365Ala Gly Arg Arg Thr Pro Ala Arg Asp Asp Asp Gly Gly Gly Ala Ala370 375 380Ala Phe Pro Gly Tyr Met Ala Ser Thr Ala Ser Ala Lys Ala Lys Phe385 390 395 400Arg Ser Met Ser Thr Pro Lys Glu Arg Ser Gly Ala Gly Ala Ala Asp 405 410 415Ala Tyr Ser Glu Gln Cys Phe Pro Phe Ala Asp Arg Leu Leu Ser Pro 420 425 430Ile Pro Ser Met Ser Pro Ile Pro Ser Ile Ala Ser Asp Ile Val Phe435 440 445Ala Arg Ser Ser Arg Pro Ala Ala Ala Gln Arg Ser Pro Arg Val Lys450 455 460Gly Pro Met Thr Pro Thr Arg Ser Arg Ser Arg Arg Ser Pro Gly Arg465 470 475 480His Ser Phe Ser Ser Glu Ala Ala Leu His Gln Leu Gln Met Glu Gln 485 490 495Tyr Thr Pro Ile Arg 500511494DNAPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1483984 51atgtcaggtc tatcagagtt gagaaatatg aaagttggaa aaaagatggg aggtcccatg 60agtcttgaga aggatgttta tatgagttgt ggtgcttcaa tggctaagaa gagaagctgg 120ttctatcgag tgagaaggtt atttacttct gacacacagt caagacaaga aaaggaaagg 180agaagaaaat ggatgttttt tggaaagttt aaggtcaaga atagattggc ctccattgca 240gctccatcat caccactaag agaagaagca gagaaggagc agagcaagca tgctctaagt 300gttgctcttg ccactgctgc tgctgctgag gcagctgttg tagctgctca ggctgcggcc 360gaggtggttt tgctcactgg tgttcctcat tctatcaatg aatatgagaa agaaaccgac 420catttagcct tcgaagttca aggtgatgcc cctcattcca ctcatcaaca tgcgaggggg 480atcaaagaac tggctgccat caaaattcaa gctaccttta ggggttacct tgcaaggaaa 540gctttgcggg cgctgaaggg gatagtgaag cttcaagcaa ttatccgagg gcggaacgtg 600agacgccaag ccatgactac tctaaaatgc ttgcaatcca ttgtaaatat ccagtcacaa 660gtctgtgcaa aaaggatcca aatggtggaa ggtgcttgga cctgtagtga aaataaacag 720ttagaaaatt tgagtgacaa gataataaag atggatatga atagtgaaag aagatgggat 780agcagccttc tgacaaagga agaggcagtt gcctcgtttc taagcaagaa agaggccgcg 840attaagagag aacggataag agaatactgg ttcaaccgcc ggaattcagc tgaatcggag 900cgaagcaagc caagtggaag gtggaggtac tggttagatc aatgggtgga tactcaactt 960gttaagagta aagagcttga agatttggac tcagttttaa cctcaaatcc aaagcctgga 1020gtggaatata gaggaaagca gattaaactg agaggtttgc agagactgta tcaccttgac 1080agtgtagatt ctcccatttc agctccaaga aaatccttcc atagaaagca atgctcgttg 1140ggagaagaca attccttttc tagatctcct gtggttccaa cttacatggc aacaactgaa 1200tctgccaagg caaaaacaag atcaatgagc tcaccaaagc taaggccagg gagttttgat 1260gcttactctg acagctattc tccatgtaag aataagcttt ctctgatatc atctacaact 1320actgaagtgc cgagcagtgc taggtacgga aggcctagtg cttatcagca aaggtctcca 1380agcttgaagg gccttccggg tccgataaaa tgtaaccggc caacgtcgaa agttcttagc 1440tttgattcag attgctcatt aaagacttgg gataaacaaa gttcctttag atga 149452464PRTPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1483984 52Met Ala Lys Lys Arg Ser Trp Phe Tyr Arg Val Arg Arg Leu Phe Thr1 5 10 15Ser Asp Thr Gln Ser Arg Gln Glu Lys Glu Arg Arg Arg Lys Trp Met 20 25 30Phe Phe Gly Lys Phe Lys Val Lys Asn Arg Leu Ala Ser Ile Ala Ala35 40 45Pro Ser Ser Pro Leu Arg Glu Glu Ala Glu Lys Glu Gln Ser Lys His50 55 60Ala Leu Ser Val Ala Leu Ala Thr Ala Ala Ala Ala Glu Ala Ala Val65 70 75 80Val Ala Ala Gln Ala Ala Ala Glu Val Val Leu Leu Thr Gly Val Pro 85 90 95His Ser Ile Asn Glu Tyr Glu Lys Glu Thr Asp His Leu Ala Phe Glu 100 105 110Val Gln Gly Asp Ala Pro His Ser Thr His Gln His Ala Arg Gly Ile115 120 125Lys Glu Leu Ala Ala Ile Lys Ile Gln Ala Thr Phe Arg Gly Tyr Leu130 135 140Ala Arg Lys Ala Leu Arg Ala Leu Lys Gly Ile Val Lys Leu Gln Ala145 150 155 160Ile Ile Arg Gly Arg Asn Val Arg Arg Gln Ala Met Thr Thr Leu Lys 165 170 175Cys Leu Gln Ser Ile Val Asn Ile Gln Ser Gln Val Cys Ala Lys Arg 180 185 190Ile Gln Met Val Glu Gly Ala Trp Thr Cys Ser Glu Asn Lys Gln Leu195 200 205Glu Asn Leu Ser Asp Lys Ile Ile Lys Met Asp Met Asn Ser Glu Arg210 215 220Arg Trp Asp Ser Ser Leu Leu Thr Lys Glu Glu Ala Val Ala Ser Phe225 230 235 240Leu Ser Lys Lys Glu Ala Ala Ile Lys Arg Glu Arg Ile Arg Glu Tyr 245 250 255Trp Phe Asn Arg Arg Asn Ser Ala Glu Ser Glu Arg Ser Lys Pro Ser 260 265 270Gly Arg Trp Arg Tyr Trp Leu Asp Gln Trp Val Asp Thr Gln Leu Val275 280 285Lys Ser Lys Glu Leu Glu Asp Leu Asp Ser Val Leu Thr Ser Asn Pro290 295 300Lys Pro Gly Val Glu Tyr Arg Gly Lys Gln Ile Lys Leu Arg Gly Leu305 310 315 320Gln Arg Leu Tyr

His Leu Asp Ser Val Asp Ser Pro Ile Ser Ala Pro 325 330 335Arg Lys Ser Phe His Arg Lys Gln Cys Ser Leu Gly Glu Asp Asn Ser 340 345 350Phe Ser Arg Ser Pro Val Val Pro Thr Tyr Met Ala Thr Thr Glu Ser355 360 365Ala Lys Ala Lys Thr Arg Ser Met Ser Ser Pro Lys Leu Arg Pro Gly370 375 380Ser Phe Asp Ala Tyr Ser Asp Ser Tyr Ser Pro Cys Lys Asn Lys Leu385 390 395 400Ser Leu Ile Ser Ser Thr Thr Thr Glu Val Pro Ser Ser Ala Arg Tyr 405 410 415Gly Arg Pro Ser Ala Tyr Gln Gln Arg Ser Pro Ser Leu Lys Gly Leu 420 425 430Pro Gly Pro Ile Lys Cys Asn Arg Pro Thr Ser Lys Val Leu Ser Phe435 440 445Asp Ser Asp Cys Ser Leu Lys Thr Trp Asp Lys Gln Ser Ser Phe Arg450 455 460531579DNAGossypium hirsutummisc_featureCeres CLONE ID no.1924654 53aaggaaaaaa aactatagct ttcttcgttt atgtaatgga attcctcgcc aattctctct 60caatctaagc tatccaagtt ccaaagacta aagctttttt gaagcggtga ttcctgtttg 120attctcccaa aatatttaag tattcagtgc accttttata cacaatccat atggaattta 180ccactatact atattatata agatgatgtt aggatgcaga aatgtaaaaa ttcagaatag 240tagtacctga agaagtgaga gttctttaat ggcgaagaag aagagctggt tcaatctagt 300gaagaggttc tttctctttg agacacttat aaatgcacaa aaggataaca gaaggaaatg 360gatgtttgga aggtttagga ccaaaaggtt agcatccatt aaagctccat caccaccaag 420agacagcata aaatatgaaa cagaggagga ccagaagaaa catgccttaa cagtggcaat 480tgccgcagtg gctgctgctg aagcagctgt tgcagctgct caggttgcag ccgaggttgt 540tcgcctcaca ggcaatgacg cccctaaagc taaagaagaa caaaccaatg atgttaaacc 600tgactgttct tcatctagtg agcttggcaa caagttccaa caacttgctg ctataaaaat 660ccaggcttct tttcggggtt accttgcaag gaaagctttg agagcattga aagggatagt 720gaagcttcaa gcaattattc gaggccgagt tgtgagacga caagcattga ctgctttaaa 780atgcttgcaa tcgattgtaa acattcagtc tcaagtttgt gcaaggagat tccaaattgt 840agaaggcact tggcaacaac atgatgagaa caaagagttg ataactttga aagataagat 900tcttaaggtg gataccaaca gtcaaacaag atgggacaat tgtaatggag gattgaagta 960ctggttagac caatgggtgg atactaaaag taaagatgtt gaagtcgaag acatagactc 1020ggtttggact tcgaaccgca agcctacgag gctcaagact ttttcgagac agtatcattg 1080tgatgcagaa ggggtagatt ctccggtacg ggttcaagga cgacgatcat ttcatggaaa 1140gcagagttct ttaggagaag atagttcttt tattacatct cctgtagttc caacttacat 1200ggcagcaaca caatctacta aagcaaaggt aaggtcaatg agttcaccaa agctaaggcc 1260aggaacttgt gatactcaat ccgaaagcta ttcaccatat aagaacaagt cgtgtctcct 1320atcttcagtt acaagcaagc ctaacgctta tgagcagaga tccccaacac taaagggtgt 1380aaagtcaaag aaaaccttga aggatcttag ctttaactct taatgttcat tgcctaattg 1440ggtgcaaaaa agcaccttca aatgactcga ccattgtgat gttttaggtc ccttggaagc 1500aagtctttgt tattgtgttt gtgtgagatt gctgatgctg ttttgtgctt aaacaattga 1560atgaatcaag ttttgtgtg 157954384PRTGossypium hirsutummisc_featureCeres CLONE ID no.1924654 54Met Ala Lys Lys Lys Ser Trp Phe Asn Leu Val Lys Arg Phe Phe Leu1 5 10 15Phe Glu Thr Leu Ile Asn Ala Gln Lys Asp Asn Arg Arg Lys Trp Met 20 25 30Phe Gly Arg Phe Arg Thr Lys Arg Leu Ala Ser Ile Lys Ala Pro Ser35 40 45Pro Pro Arg Asp Ser Ile Lys Tyr Glu Thr Glu Glu Asp Gln Lys Lys50 55 60His Ala Leu Thr Val Ala Ile Ala Ala Val Ala Ala Ala Glu Ala Ala65 70 75 80Val Ala Ala Ala Gln Val Ala Ala Glu Val Val Arg Leu Thr Gly Asn 85 90 95Asp Ala Pro Lys Ala Lys Glu Glu Gln Thr Asn Asp Val Lys Pro Asp 100 105 110Cys Ser Ser Ser Ser Glu Leu Gly Asn Lys Phe Gln Gln Leu Ala Ala115 120 125Ile Lys Ile Gln Ala Ser Phe Arg Gly Tyr Leu Ala Arg Lys Ala Leu130 135 140Arg Ala Leu Lys Gly Ile Val Lys Leu Gln Ala Ile Ile Arg Gly Arg145 150 155 160Val Val Arg Arg Gln Ala Leu Thr Ala Leu Lys Cys Leu Gln Ser Ile 165 170 175Val Asn Ile Gln Ser Gln Val Cys Ala Arg Arg Phe Gln Ile Val Glu 180 185 190Gly Thr Trp Gln Gln His Asp Glu Asn Lys Glu Leu Ile Thr Leu Lys195 200 205Asp Lys Ile Leu Lys Val Asp Thr Asn Ser Gln Thr Arg Trp Asp Asn210 215 220Cys Asn Gly Gly Leu Lys Tyr Trp Leu Asp Gln Trp Val Asp Thr Lys225 230 235 240Ser Lys Asp Val Glu Val Glu Asp Ile Asp Ser Val Trp Thr Ser Asn 245 250 255Arg Lys Pro Thr Arg Leu Lys Thr Phe Ser Arg Gln Tyr His Cys Asp 260 265 270Ala Glu Gly Val Asp Ser Pro Val Arg Val Gln Gly Arg Arg Ser Phe275 280 285His Gly Lys Gln Ser Ser Leu Gly Glu Asp Ser Ser Phe Ile Thr Ser290 295 300Pro Val Val Pro Thr Tyr Met Ala Ala Thr Gln Ser Thr Lys Ala Lys305 310 315 320Val Arg Ser Met Ser Ser Pro Lys Leu Arg Pro Gly Thr Cys Asp Thr 325 330 335Gln Ser Glu Ser Tyr Ser Pro Tyr Lys Asn Lys Ser Cys Leu Leu Ser 340 345 350Ser Val Thr Ser Lys Pro Asn Ala Tyr Glu Gln Arg Ser Pro Thr Leu355 360 365Lys Gly Val Lys Ser Lys Lys Thr Leu Lys Asp Leu Ser Phe Asn Ser370 375 380551032DNAPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1468861 55atgaaggcaa ggagagcact aagggcacta aaagctttgg tgaagcttca agccttagtg 60agaggccaca ttgtgagaaa gcaaacagca gacatgctta ggcgtatgca gacattagtg 120agactgcagg ctcgagcccg tgctagtcgc agttatgtgt cggactcatc gcacactact 180ggcaagtcct ctcattctcg ttatgctgtc cctgcaagtc cttcaaagga tcacctgttt 240cgtgtttcta gtaccaaatt tgatgggccc tcgattctca agagatgtgg ttcaaatgca 300aactttaggg agagcattga ctttgacaaa gtaaaatggg gttcgaactg gctagaccgt 360tggatggaag aaagtttttt gaatgaccat ggcagcaatc caccgagaag tcgaaatgct 420gatgatgaga agagtgacaa gattcttgaa gtggacactt ggaagcccca tgtgaaatcc 480caacaaagta atagaacatt tcagacttca cagcatgctt tggcttcaga tcataacaat 540cagagcttta tgacttttga ctctatgtca aaactatcaa aaaaagaacc gaatccaatg 600ccgagcatct cttcaggaga aattttgcag tctcttaaat tacctctagg aaatgatgaa 660gcagtttata ggaccgctga gaatagccct cgaatgttct ctgcaacatc tagacctgga 720agtagtggtc ggagaggagg cccttttaca ccaacaagga gtgagtgctc gtggggcttc 780tttaatggat actcgggtta ccccaactac atggctaaca ctgaatcatc tcgagccaag 840gtcaggtcac aaagtgcccc aaggcagagg ctagagtttg agaaatatgg ttcaagcaga 900agatctgttc aggggtattc tgattcagaa actcgttcag aaaggggttt tgctcaaaat 960actgaacttc aaaacaaagc ttacgtagca tctggctact tgaatagact agggacttcc 1020gacttgaggt ga 103256343PRTPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1468861 56Met Lys Ala Arg Arg Ala Leu Arg Ala Leu Lys Ala Leu Val Lys Leu1 5 10 15Gln Ala Leu Val Arg Gly His Ile Val Arg Lys Gln Thr Ala Asp Met 20 25 30Leu Arg Arg Met Gln Thr Leu Val Arg Leu Gln Ala Arg Ala Arg Ala35 40 45Ser Arg Ser Tyr Val Ser Asp Ser Ser His Thr Thr Gly Lys Ser Ser50 55 60His Ser Arg Tyr Ala Val Pro Ala Ser Pro Ser Lys Asp His Leu Phe65 70 75 80Arg Val Ser Ser Thr Lys Phe Asp Gly Pro Ser Ile Leu Lys Arg Cys 85 90 95Gly Ser Asn Ala Asn Phe Arg Glu Ser Ile Asp Phe Asp Lys Val Lys 100 105 110Trp Gly Ser Asn Trp Leu Asp Arg Trp Met Glu Glu Ser Phe Leu Asn115 120 125Asp His Gly Ser Asn Pro Pro Arg Ser Arg Asn Ala Asp Asp Glu Lys130 135 140Ser Asp Lys Ile Leu Glu Val Asp Thr Trp Lys Pro His Val Lys Ser145 150 155 160Gln Gln Ser Asn Arg Thr Phe Gln Thr Ser Gln His Ala Leu Ala Ser 165 170 175Asp His Asn Asn Gln Ser Phe Met Thr Phe Asp Ser Met Ser Lys Leu 180 185 190Ser Lys Lys Glu Pro Asn Pro Met Pro Ser Ile Ser Ser Gly Glu Ile195 200 205Leu Gln Ser Leu Lys Leu Pro Leu Gly Asn Asp Glu Ala Val Tyr Arg210 215 220Thr Ala Glu Asn Ser Pro Arg Met Phe Ser Ala Thr Ser Arg Pro Gly225 230 235 240Ser Ser Gly Arg Arg Gly Gly Pro Phe Thr Pro Thr Arg Ser Glu Cys 245 250 255Ser Trp Gly Phe Phe Asn Gly Tyr Ser Gly Tyr Pro Asn Tyr Met Ala 260 265 270Asn Thr Glu Ser Ser Arg Ala Lys Val Arg Ser Gln Ser Ala Pro Arg275 280 285Gln Arg Leu Glu Phe Glu Lys Tyr Gly Ser Ser Arg Arg Ser Val Gln290 295 300Gly Tyr Ser Asp Ser Glu Thr Arg Ser Glu Arg Gly Phe Ala Gln Asn305 310 315 320Thr Glu Leu Gln Asn Lys Ala Tyr Val Ala Ser Gly Tyr Leu Asn Arg 325 330 335Leu Gly Thr Ser Asp Leu Arg 340571646DNAGlycine maxmisc_featureCeres CLONE ID no.1641776 57ctctctctca aaacccaaaa ctattccctt gtgagaactg aggagacata ataatgggta 60aggcgtcgaa gtggtttcgc gggcttcttg gtctcaaaaa aacagagtat gccacctcac 120ccgccaagcc tcccaaagag aaacgccggt ggagcttcgt taaatcatca tacacagaaa 180aagacaacac cactgccgcc acgtgtccac cactaagaaa caacaacaac cacgcaatgg 240cagtagcagc agccaccgct gcggtggccg aagcggcggt ggctgccgcc gaagcagccg 300ccgtcgtggt gagactaact agtaacagcg gcaggtgcgc cgacggcgga cccacccgga 360ttcgccaaca ttgggctgct gttaagattc aagccgcttt tcgtggctgt ttggcaagga 420gagcactgcg agcattaaag ggattggtga agttgcaagc attggtgaga ggccacattg 480agagaaaacg gacggcagag tggctgaaaa gattgcaagc actcttacat gcacagaccc 540aagtttctgc agggttgacc ctgcatgcct caccttcgag ttcaaagtta tcaagccacc 600tccaaggtcc agaaacaccc gaaaaatttg aaagccccat tagatctaag agcatgaaac 660atgagcactc acctatactc aagagaaatg gctccaaatc ctgtgccctg atcaatggct 720atcaagagat atgtgggagt agatcagaga gtcaagggaa tgaacaatta tggaactcag 780gaagatcaat gaatagagca cacggctcca atgatgaaag aaatggcaag gttcttgaag 840ttgattctgg aaaaccgcac ttcacactaa agcgtcgaaa cctctcttac tccacaggct 900ctgatcttta tagtaagagt ttgaacagca caaaggaatc aacatctctt caatctgctc 960aaagtccatg ttgtgaggtt cagtctcaca gttacagctc gcaaaaagtg aacaatgagg 1020ttgaggagag tccattctgc actgctgaca atagtccaca atacttatct gcctcttcta 1080aagatgatgg cttcaaaaga agccctttta ctcctactag aagtgatggc tctagaagct 1140acattcgcgg ttaccctgat tatcctagtt acatggcatg cactgaatct tcaaaggcaa 1200aggccagatc tctgagtgca ccaaaacaaa ggcctcaaag tgagaggtct ggttcatcgg 1260atagatactc actcaatgga tttgatatgt caagattggc cactcaaagg gcaatgcaag 1320caagcttcac caacaaagca tatccaggtt ctggtcgttt ggacaagctt ggtatgcctg 1380tggggtacag attctgattg agttatgttt atggtaagag ggttattttg tatcttttat 1440ttttcatagt cttaaagtct taatatctga tcttgctaac caaccggctg tactttgagc 1500ttccattgcg attttgtgtc agcattagaa atctacaacc aaattaagtg catactgcta 1560agtctcaact ttcaagtcat tttattactt ggataaactg tgtaaaagaa ttattatctt 1620tgcctttcaa aaaaaaaaaa aaaaaa 164658447PRTGlycine maxmisc_featureCeres CLONE ID no.1641776 58Met Gly Lys Ala Ser Lys Trp Phe Arg Gly Leu Leu Gly Leu Lys Lys1 5 10 15Thr Glu Tyr Ala Thr Ser Pro Ala Lys Pro Pro Lys Glu Lys Arg Arg 20 25 30Trp Ser Phe Val Lys Ser Ser Tyr Thr Glu Lys Asp Asn Thr Thr Ala35 40 45Ala Thr Cys Pro Pro Leu Arg Asn Asn Asn Asn His Ala Met Ala Val50 55 60Ala Ala Ala Thr Ala Ala Val Ala Glu Ala Ala Val Ala Ala Ala Glu65 70 75 80Ala Ala Ala Val Val Val Arg Leu Thr Ser Asn Ser Gly Arg Cys Ala 85 90 95Asp Gly Gly Pro Thr Arg Ile Arg Gln His Trp Ala Ala Val Lys Ile 100 105 110Gln Ala Ala Phe Arg Gly Cys Leu Ala Arg Arg Ala Leu Arg Ala Leu115 120 125Lys Gly Leu Val Lys Leu Gln Ala Leu Val Arg Gly His Ile Glu Arg130 135 140Lys Arg Thr Ala Glu Trp Leu Lys Arg Leu Gln Ala Leu Leu His Ala145 150 155 160Gln Thr Gln Val Ser Ala Gly Leu Thr Leu His Ala Ser Pro Ser Ser 165 170 175Ser Lys Leu Ser Ser His Leu Gln Gly Pro Glu Thr Pro Glu Lys Phe 180 185 190Glu Ser Pro Ile Arg Ser Lys Ser Met Lys His Glu His Ser Pro Ile195 200 205Leu Lys Arg Asn Gly Ser Lys Ser Cys Ala Leu Ile Asn Gly Tyr Gln210 215 220Glu Ile Cys Gly Ser Arg Ser Glu Ser Gln Gly Asn Glu Gln Leu Trp225 230 235 240Asn Ser Gly Arg Ser Met Asn Arg Ala His Gly Ser Asn Asp Glu Arg 245 250 255Asn Gly Lys Val Leu Glu Val Asp Ser Gly Lys Pro His Phe Thr Leu 260 265 270Lys Arg Arg Asn Leu Ser Tyr Ser Thr Gly Ser Asp Leu Tyr Ser Lys275 280 285Ser Leu Asn Ser Thr Lys Glu Ser Thr Ser Leu Gln Ser Ala Gln Ser290 295 300Pro Cys Cys Glu Val Gln Ser His Ser Tyr Ser Ser Gln Lys Val Asn305 310 315 320Asn Glu Val Glu Glu Ser Pro Phe Cys Thr Ala Asp Asn Ser Pro Gln 325 330 335Tyr Leu Ser Ala Ser Ser Lys Asp Asp Gly Phe Lys Arg Ser Pro Phe 340 345 350Thr Pro Thr Arg Ser Asp Gly Ser Arg Ser Tyr Ile Arg Gly Tyr Pro355 360 365Asp Tyr Pro Ser Tyr Met Ala Cys Thr Glu Ser Ser Lys Ala Lys Ala370 375 380Arg Ser Leu Ser Ala Pro Lys Gln Arg Pro Gln Ser Glu Arg Ser Gly385 390 395 400Ser Ser Asp Arg Tyr Ser Leu Asn Gly Phe Asp Met Ser Arg Leu Ala 405 410 415Thr Gln Arg Ala Met Gln Ala Ser Phe Thr Asn Lys Ala Tyr Pro Gly 420 425 430Ser Gly Arg Leu Asp Lys Leu Gly Met Pro Val Gly Tyr Arg Phe435 440 445591434DNAPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1438750 59atgggcaaag cttccaaatg gttccgtgcc gttctcggat taaaaaaacc cgacccacca 60ctagaccacc cccaaaccac tcgttctaaa gacaaacgga gatggagttt tgttaagtcc 120cgccgtgaaa aagaccacga ccaccaacag cgacaacaag atattgaagc cagtaaaact 180ggtgttctgt acgggcagga gtttgaggag gaccccaaca agcatgcggt cgctgtggct 240gctgctaccg ctgcagtcgc ggaggctgct gttgcagcgg ctcaggcagc tgccgaggtt 300gtgagactta cgagtagtgg gaggtgtgtt aataacagtg tcgcgaacgt tagcgggagt 360cttggattac gtgaagacct cgctgctgtt aagattcaag ctgctttccg tggctacctg 420gctaggagag cattacgggc gttaaaggca ttggtgagac ttcaagctct ggtaagaggt 480cacattgaga ggaagcgaac tgcagagtgg cttcatcgaa tgcaagcttt gctgcgagcg 540cagtctcgag cacgttctgg acgtgcccaa atttctgaat cttctcattc aagtagcaag 600tcctctcgct ttcaacaccc tggtccgcca acccctgaaa aattcgagca tgccattcgt 660gccaggagtg gaaaatatga acaatcatca atacttaaga gaactgggtc aaaatgtaaa 720ggcagagcaa ttggtgatct agacgttgca cacttatcct taaattggtc agagcgtcgg 780atggatgatc aaacatggga tcaccaagtc cctttggcag gaactggcac tattgatgat 840gataagagtg acaagatcct tgagattgat actggaaaac cccacattac tcccaagcgt 900agaaatctct ttcactcttc tcacctttcc ctgtcagatc agtatagcca tagtttcaca 960actacaaaag actcgacagc ccatcaaact gttccaagtc cctcatcttg tgaagttcaa 1020tctttaagtc cattgaagtt ttctcatgtt gtcgaagaag cattatgcac tgctgaaaat 1080agcccacagt tctactctgc atcatcaagg ggtggtagta gtaagagaag tcccttcact 1140cccagtagga gtgatggctc aagaaacttc ctaatcggtt attatggcta cccaaattat 1200atgtgtaaca ctgaatcttc gagggctaag gcgagatctc ttagcgctcc aaaacaaaga 1260ccccaatatg agagatccag ttcaaccagg agatactcgg ttctcgggtg tggtgagcca 1320agatcgagta gtgcacagca tgcttctgcc ttgcgtgcaa gtttttcaag caaagcttac 1380cctggatctg gtcgcttgga caagctggga atgcctattg ggcagggata ctaa 143460477PRTPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1438750 60Met Gly Lys Ala Ser Lys Trp Phe Arg Ala Val Leu Gly Leu Lys Lys1 5 10 15Pro Asp Pro Pro Leu Asp His Pro Gln Thr Thr Arg Ser Lys Asp Lys 20 25 30Arg Arg Trp Ser Phe Val Lys Ser Arg Arg Glu Lys Asp His Asp His35 40 45Gln Gln Arg Gln Gln Asp Ile Glu Ala Ser Lys Thr Gly Val Leu Tyr50 55 60Gly Gln Glu Phe Glu Glu Asp Pro Asn Lys His Ala Val Ala Val Ala65 70 75 80Ala Ala Thr Ala Ala Val Ala Glu Ala Ala Val Ala Ala Ala Gln Ala 85 90 95Ala Ala Glu Val Val Arg Leu Thr Ser Ser Gly Arg Cys Val Asn Asn 100 105 110Ser Val Ala Asn Val Ser Gly Ser Leu Gly Leu Arg Glu Asp Leu Ala115 120 125Ala Val Lys Ile Gln Ala Ala Phe Arg Gly Tyr Leu Ala Arg Arg Ala130 135 140Leu Arg Ala Leu Lys Ala Leu Val Arg Leu Gln Ala Leu Val Arg Gly145 150 155 160His Ile Glu Arg Lys Arg Thr Ala Glu Trp Leu His Arg Met Gln Ala 165 170 175Leu Leu Arg Ala Gln Ser Arg Ala Arg Ser Gly Arg Ala Gln Ile Ser

180 185 190Glu Ser Ser His Ser Ser Ser Lys Ser Ser Arg Phe Gln His Pro Gly195 200 205Pro Pro Thr Pro Glu Lys Phe Glu His Ala Ile Arg Ala Arg Ser Gly210 215 220Lys Tyr Glu Gln Ser Ser Ile Leu Lys Arg Thr Gly Ser Lys Cys Lys225 230 235 240Gly Arg Ala Ile Gly Asp Leu Asp Val Ala His Leu Ser Leu Asn Trp 245 250 255Ser Glu Arg Arg Met Asp Asp Gln Thr Trp Asp His Gln Val Pro Leu 260 265 270Ala Gly Thr Gly Thr Ile Asp Asp Asp Lys Ser Asp Lys Ile Leu Glu275 280 285Ile Asp Thr Gly Lys Pro His Ile Thr Pro Lys Arg Arg Asn Leu Phe290 295 300His Ser Ser His Leu Ser Leu Ser Asp Gln Tyr Ser His Ser Phe Thr305 310 315 320Thr Thr Lys Asp Ser Thr Ala His Gln Thr Val Pro Ser Pro Ser Ser 325 330 335Cys Glu Val Gln Ser Leu Ser Pro Leu Lys Phe Ser His Val Val Glu 340 345 350Glu Ala Leu Cys Thr Ala Glu Asn Ser Pro Gln Phe Tyr Ser Ala Ser355 360 365Ser Arg Gly Gly Ser Ser Lys Arg Ser Pro Phe Thr Pro Ser Arg Ser370 375 380Asp Gly Ser Arg Asn Phe Leu Ile Gly Tyr Tyr Gly Tyr Pro Asn Tyr385 390 395 400Met Cys Asn Thr Glu Ser Ser Arg Ala Lys Ala Arg Ser Leu Ser Ala 405 410 415Pro Lys Gln Arg Pro Gln Tyr Glu Arg Ser Ser Ser Thr Arg Arg Tyr 420 425 430Ser Val Leu Gly Cys Gly Glu Pro Arg Ser Ser Ser Ala Gln His Ala435 440 445Ser Ala Leu Arg Ala Ser Phe Ser Ser Lys Ala Tyr Pro Gly Ser Gly450 455 460Arg Leu Asp Lys Leu Gly Met Pro Ile Gly Gln Gly Tyr465 470 475611431DNAPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1447395 61atgggtaaag cttccaaatg gttccgtgcc gttctcggcc tcaaaaaacc cgacccacca 60ccagaccgcc ccgttacaac tcgttctaaa gaaaaaagga gatggagttt tgtcaagtcc 120caccgtgaaa aagaccaaca ccatcaccaa cagcaacaac aagagacgga agccgttaaa 180gcaggcgttt tgtacgggca ggagtttgag gaggacccaa acaagcatgc gatcgctgtg 240gctgctgcta ctgctgcagt tgcggaggct gcagttgctg ccgcgcaggc agctgcagag 300gtggtgcggt taacaagcag tgggaggtgt gttgataaca gtgttgcgta cgttagcggg 360agtcctggct tacgtgaaga cttcgctgct gttaagatcg aagctgcttt tcgtggctac 420ctggcaagga gagcgttaag agcattaaaa gcgttggtga ggcttcaggc actggtaaga 480ggtcaccttg agaggaagcg aacagcagag tggcttcatc gaatgcaagc attgctgaga 540gcgcaggctc gagcacgtgc aggacgtgcc caaatttctg aatcctccca ctcaagcagc 600aagtcttctc gctatcacct ccctggtctg ccaacccatg aaaaatccga gcatgccatt 660cgtgctacga gtggaaaata tgaacaatca tcaatgctta agagaactgg gtcaaaaact 720aaaggcagag aaattgccga tcaagatgtt gcacacttat ccttcaattg gtcagaacat 780ggaatggata gtagaacatg ggatcatcaa gccccttcgc caggaactgg ccccattgat 840gatgacaaga tccttgagat tgattctgga aaaccacata ttactcctaa acgcagaaat 900ctctttcacc cttctcacct ttccttgtct gcggatcagt atagccatag tttcacaaca 960tcaaaaggct ccacagtccg tcaagcagtt ccaagcccct catctggcga agttcaatct 1020ttcagtccat tgaaattctc tcatgaggtt gaggaagcat tttgcaccgc tgataatagc 1080ccgcaattct gctctgcatc atcaaggggt ggcagtggta agagaagtcc cttcactccc 1140agtaggagtg gtggctctag aagcttcatg agtggatact ctgactaccc aaattatatg 1200tgtaacactg aatcttcaag ggctaaggtg agatctctaa gcgctccaaa acaaagaccc 1260cagtatgaga gatccagctc aaccaagaga tactcggttc tcggctttgg tgaacaaaga 1320tcgagtagtg cacagagtgc ttctgccttg cgtgcaagtt ttacaagtaa agcttaccct 1380ggatctggtc gtttggacag gctgggaatg cctgttgggc agaaatacta a 143162476PRTPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1447395 62Met Gly Lys Ala Ser Lys Trp Phe Arg Ala Val Leu Gly Leu Lys Lys1 5 10 15Pro Asp Pro Pro Pro Asp Arg Pro Val Thr Thr Arg Ser Lys Glu Lys 20 25 30Arg Arg Trp Ser Phe Val Lys Ser His Arg Glu Lys Asp Gln His His35 40 45His Gln Gln Gln Gln Gln Glu Thr Glu Ala Val Lys Ala Gly Val Leu50 55 60Tyr Gly Gln Glu Phe Glu Glu Asp Pro Asn Lys His Ala Ile Ala Val65 70 75 80Ala Ala Ala Thr Ala Ala Val Ala Glu Ala Ala Val Ala Ala Ala Gln 85 90 95Ala Ala Ala Glu Val Val Arg Leu Thr Ser Ser Gly Arg Cys Val Asp 100 105 110Asn Ser Val Ala Tyr Val Ser Gly Ser Pro Gly Leu Arg Glu Asp Phe115 120 125Ala Ala Val Lys Ile Glu Ala Ala Phe Arg Gly Tyr Leu Ala Arg Arg130 135 140Ala Leu Arg Ala Leu Lys Ala Leu Val Arg Leu Gln Ala Leu Val Arg145 150 155 160Gly His Leu Glu Arg Lys Arg Thr Ala Glu Trp Leu His Arg Met Gln 165 170 175Ala Leu Leu Arg Ala Gln Ala Arg Ala Arg Ala Gly Arg Ala Gln Ile 180 185 190Ser Glu Ser Ser His Ser Ser Ser Lys Ser Ser Arg Tyr His Leu Pro195 200 205Gly Leu Pro Thr His Glu Lys Ser Glu His Ala Ile Arg Ala Thr Ser210 215 220Gly Lys Tyr Glu Gln Ser Ser Met Leu Lys Arg Thr Gly Ser Lys Thr225 230 235 240Lys Gly Arg Glu Ile Ala Asp Gln Asp Val Ala His Leu Ser Phe Asn 245 250 255Trp Ser Glu His Gly Met Asp Ser Arg Thr Trp Asp His Gln Ala Pro 260 265 270Ser Pro Gly Thr Gly Pro Ile Asp Asp Asp Lys Ile Leu Glu Ile Asp275 280 285Ser Gly Lys Pro His Ile Thr Pro Lys Arg Arg Asn Leu Phe His Pro290 295 300Ser His Leu Ser Leu Ser Ala Asp Gln Tyr Ser His Ser Phe Thr Thr305 310 315 320Ser Lys Gly Ser Thr Val Arg Gln Ala Val Pro Ser Pro Ser Ser Gly 325 330 335Glu Val Gln Ser Phe Ser Pro Leu Lys Phe Ser His Glu Val Glu Glu 340 345 350Ala Phe Cys Thr Ala Asp Asn Ser Pro Gln Phe Cys Ser Ala Ser Ser355 360 365Arg Gly Gly Ser Gly Lys Arg Ser Pro Phe Thr Pro Ser Arg Ser Gly370 375 380Gly Ser Arg Ser Phe Met Ser Gly Tyr Ser Asp Tyr Pro Asn Tyr Met385 390 395 400Cys Asn Thr Glu Ser Ser Arg Ala Lys Val Arg Ser Leu Ser Ala Pro 405 410 415Lys Gln Arg Pro Gln Tyr Glu Arg Ser Ser Ser Thr Lys Arg Tyr Ser 420 425 430Val Leu Gly Phe Gly Glu Gln Arg Ser Ser Ser Ala Gln Ser Ala Ser435 440 445Ala Leu Arg Ala Ser Phe Thr Ser Lys Ala Tyr Pro Gly Ser Gly Arg450 455 460Leu Asp Arg Leu Gly Met Pro Val Gly Gln Lys Tyr465 470 47563484PRTArabidopsis thalianamisc_featurePublic GI ID no.79482785 63Met Gly Lys Ala Ser Arg Trp Phe Arg Ser Leu Phe Gly Val Lys Lys1 5 10 15Pro Asp Pro Gly Tyr Pro Asp Leu Ser Val Glu Thr Pro Ser Arg Ser 20 25 30Thr Ser Ser Asn Leu Lys Arg Arg Trp Ser Phe Val Lys Ser Lys Arg35 40 45Glu Lys Glu Ser Thr Pro Ile Asn Gln Val Pro His Thr Pro Ser Leu50 55 60Pro Asn Ser Thr Pro Pro Pro Pro Ser His His Gln Ser Ser Pro Arg65 70 75 80Arg Arg Arg Lys Gln Lys Pro Met Trp Glu Asp Glu Gly Ser Glu Asp 85 90 95Ser Asp Lys His Ala Ile Ala Val Ala Ala Ala Thr Ala Ala Val Ala 100 105 110Glu Ala Ala Val Ala Ala Ala Asn Ala Ala Ala Ala Val Val Arg Leu115 120 125Thr Ser Thr Ser Gly Arg Ser Thr Arg Ser Pro Val Lys Ala Arg Phe130 135 140Ser Asp Gly Phe Asp Asp Val Val Ala His Gly Ser Lys Phe Tyr Gly145 150 155 160His Gly Arg Asp Ser Cys Glu Leu Ala Val Ile Lys Ile Gln Ser Ile 165 170 175Phe Arg Gly Tyr Leu Ala Lys Arg Ala Leu Arg Ala Leu Lys Gly Leu 180 185 190Val Arg Leu Gln Ala Ile Val Arg Gly His Ile Glu Arg Lys Arg Met195 200 205Ser Val His Leu Arg Arg Met His Ala Leu Val Arg Ala Gln Ala Arg210 215 220Val Arg Ala Thr Arg Val Ile Val Thr Pro Glu Ser Ser Ser Ser Gln225 230 235 240Ser Asn Asn Thr Lys Ser Ser His Phe Gln Asn Pro Gly Pro Pro Thr 245 250 255Pro Glu Lys Leu Glu His Ser Ile Ser Ser Arg Ser Ser Lys Leu Ala 260 265 270His Ser His Leu Phe Lys Arg Asn Gly Ser Lys Ala Ser Asp Asn Asn275 280 285Arg Leu Tyr Pro Ala His Arg Glu Thr Phe Ser Ala Thr Asp Glu Glu290 295 300Glu Lys Ile Leu Gln Ile Asp Arg Lys His Ile Ser Ser Tyr Thr Arg305 310 315 320Arg Asn Arg Pro Asp Met Phe Tyr Ser Ser His Leu Ile Leu Asp Asn 325 330 335Ala Gly Leu Ser Glu Pro Val Phe Ala Thr Pro Phe Ser Pro Ser Ser 340 345 350Ser His Glu Glu Ile Thr Ser Gln Phe Cys Thr Ala Glu Asn Ser Pro355 360 365Gln Leu Tyr Ser Ala Thr Ser Arg Ser Lys Arg Ser Ala Phe Thr Ala370 375 380Ser Ser Ile Ala Pro Ser Asp Cys Thr Lys Ser Cys Cys Asp Gly Asp385 390 395 400His Pro Ser Tyr Met Ala Cys Thr Glu Ser Ser Arg Ala Lys Ala Arg 405 410 415Ser Ala Ser Ala Pro Lys Ser Arg Pro Gln Leu Phe Tyr Glu Arg Pro 420 425 430Ser Ser Lys Arg Phe Gly Phe Val Asp Leu Pro Tyr Cys Gly Asp Thr435 440 445Lys Ser Gly Pro Gln Lys Gly Ser Ala Leu His Thr Ser Phe Met Asn450 455 460Lys Ala Tyr Pro Gly Ser Gly Arg Leu Asp Arg Leu Gly Met Pro Ile465 470 475 480Gly Tyr Arg Tyr64543PRTArabidopsis thalianamisc_featurePublic GI ID no.3292832 64Met Gly Lys Ala Ser Arg Trp Phe Arg Ser Leu Phe Gly Val Lys Lys1 5 10 15Pro Asp Pro Gly Tyr Pro Asp Leu Ser Val Glu Thr Pro Ser Arg Ser 20 25 30Thr Ser Ser Asn Leu Lys Arg Arg Trp Ser Phe Val Lys Ser Lys Arg35 40 45Glu Lys Glu Ser Thr Pro Ile Asn Gln Val Pro His Thr Pro Ser Leu50 55 60Pro Asn Ser Thr Pro Pro Pro Pro Ser His His Gln Ser Ser Pro Arg65 70 75 80Arg Arg Arg Lys Gln Lys Pro Met Trp Glu Asp Glu Gly Ser Glu Asp 85 90 95Ser Asp Lys His Ala Ile Ala Val Ala Ala Ala Thr Ala Ala Val Ala 100 105 110Glu Ala Ala Val Ala Ala Ala Asn Ala Ala Ala Ala Val Val Arg Leu115 120 125Thr Ser Thr Ser Gly Arg Ser Thr Arg Ser Pro Val Lys Ala Arg Phe130 135 140Ser Asp Gly Phe Asp Asp Val Val Ala His Gly Ser Lys Phe Tyr Gly145 150 155 160His Gly Arg Asp Ser Cys Glu Leu Ala Val Ile Lys Ile Gln Ser Ile 165 170 175Phe Arg Gly Tyr Leu Ala Lys Arg Ala Leu Arg Ala Leu Lys Gly Leu 180 185 190Val Arg Leu Gln Ala Ile Val Arg Gly His Ile Glu Arg Lys Arg Met195 200 205Ser Val His Leu Arg Arg Met His Ala Leu Val Arg Ala Gln Ala Arg210 215 220Val Arg Ala Thr Arg Val Ile Val Thr Pro Glu Ser Ser Ser Ser Gln225 230 235 240Ser Asn Asn Thr Lys Ser Ser His Phe Gln Asn Pro Val Ser Leu Val 245 250 255Lys Phe Pro Met Ile Val Pro Phe Asn Leu Lys His Gly Pro Pro Thr 260 265 270Pro Glu Lys Leu Glu His Ser Ile Ser Ser Arg Ser Ser Lys Leu Ala275 280 285His Ser His Leu Phe Lys Val Leu His Phe Gln Leu Leu Phe Val Ser290 295 300Ser Val Phe Val Ala Cys Gly Pro Ile Ser Ser Lys Phe Gln Arg Leu305 310 315 320Tyr Lys Leu Leu Thr Leu Leu Tyr Val Gln Asn Lys Ser Asn Leu Lys 325 330 335Asn Trp Asn Gly Ser Lys Ala Ser Asp Asn Asn Arg Leu Tyr Pro Ala 340 345 350His Arg Glu Thr Phe Ser Ala Thr Asp Glu Glu Glu Lys Ile Leu Gln355 360 365Ile Asp Arg Lys His Ile Ser Ser Tyr Thr Arg Arg Asn Arg Pro Asp370 375 380Met Phe Tyr Ser Ser His Leu Ile Leu Asp Asn Ala Gly Leu Ser Glu385 390 395 400Pro Val Phe Ala Thr Pro Phe Ser Pro Ser Ser Ser His Glu Glu Ile 405 410 415Thr Ser Gln Phe Cys Thr Ala Glu Asn Ser Pro Gln Leu Tyr Ser Ala 420 425 430Thr Ser Arg Ser Lys Arg Ser Ala Phe Thr Ala Ser Ser Ile Ala Pro435 440 445Ser Asp Cys Thr Lys Ser Cys Cys Asp Gly Asp His Pro Ser Tyr Met450 455 460Ala Cys Thr Glu Ser Ser Arg Ala Lys Ala Arg Ser Ala Ser Ala Pro465 470 475 480Lys Ser Arg Pro Gln Leu Phe Tyr Glu Arg Pro Ser Ser Lys Arg Phe 485 490 495Gly Phe Val Asp Leu Pro Tyr Cys Gly Asp Thr Lys Ser Gly Pro Gln 500 505 510Lys Gly Ser Ala Leu His Thr Ser Phe Met Asn Lys Ala Tyr Pro Gly515 520 525Ser Gly Arg Leu Asp Arg Leu Gly Met Pro Ile Gly Tyr Arg Tyr530 535 540651799DNAZea maysmisc_featureCeres CLONE ID no.1559074 65aagactctcc cagtcccttc ctctcctgct gcctttctct cttctcggtg aagcgtgtgt 60tcatttcact gttttggttt catctcccgc tctttcttta ccccgtgctc cggccaagtg 120ctggaaccaa gaaagcctca tggggcggcc ggccgacggg cggtagagag gcggagatgg 180gctgggcgcc taggtggctg cgcgggctgc tcggcggcgg caggaaggcc gccgtgacga 240agccggcgaa ggagaagaag ctctggggat tcgggaagtc cttccgggaa aaggaccccg 300cgccagcgcc ggaacggcct cggacgcctt cggtgcagcc cacggcgacg cctcgccggg 360ggtttgcggc ggcgccggat gaggcggacg acgagcagag caagcgtgct atcgctgtgg 420ccgcggcgac ggcggcggtg gcagaggccg ccgtcgctgc tgcccaggcg gccgccgccg 480tggtgcggtt gacgagctcc ggccggtgcc caccgccggc cgccgcgaag cgggaggagt 540gggcggctgt tcggatccag gccgctttcc gtggctacct ggcgaggcgg gcgctgaagg 600cgttgagggg gctggtgaag ctgcaggcgc tggtccgggg caacattgtg cggcggcagg 660cggcggagac gctgcgatgc atgcacgcgc tcgtccgcgt ccaggcgcgc gcgcgcgcgt 720gtcgcgcaat tcgctcgcag catgtcgcgg ctcatccgga tccgccaacg ccggagaagt 780acgatcaggc gggtgccccc aggcacgccc gttccggctc tctgaaggca aactcttcca 840agacgccggg cggcgagagg ctgggtaggg agaggtcgga atcttgcggg aggaactggc 900tggaccgctg ggtggaggag aggtacacgg acgacgagaa gaacgccaag attctcgaag 960tggacaacgg caagccaggg cggcacggtt ccaagcggcg cggcggcaac catcaccagt 1020cgccgtgctc gacgatgacc tccgagcaga acagccggag ctacgcgacc atgccggagt 1080cgccgtccaa ggactcgacg accgcgcagc agtccgtgcc gagcccgtcg tccgtgggca 1140tggctgccga ggccctgagc ccgctgcgcg tgccagcgga catcgccgag ctctgcgaca 1200gcccccagtt cttctcggcg acgtcgcggc ccgggagctc caggaggggg ggcgcgttca 1260cgccggcggc caagagcgag tgctcgcgca gcctcttcgg cggctactcc gactgcccca 1320actacatggc gaacacggag tcgttccgcg ccaaggcgcg ttcccagagc gcgcccaagc 1380agaggccgca gcagcagtac gagaagtcgg gctccctccg cagggcgtcg gcgcacgccc 1440tcgcggcggg gccggcagcg gcacagaggt cggtggcctc gttgcacgcc atgaaggcgt 1500atccgggctc cggcagattg gaccgacttg gcatgccggt caggtactga tccggatcct 1560acctagctcg cttcaggata atgtggtgct gcgcctgaac tgattgatac ccagtgtctc 1620aactcaagcg atgaggatga agtgaattct actagtggtc gttattagat cttgttcctt 1680cggtggtgcc tattaccgtc aacagttttc tgtttgttgc tttgtgtagc gaagtgtaag 1740ttgctggtac gtagctggta atactatgcg tgcttaaccg cgaaaaaaaa aaaaaaaaa 179966457PRTZea maysmisc_featureCeres CLONE ID no.1559074 66Met Gly Trp Ala Pro Arg Trp Leu Arg Gly Leu Leu Gly Gly Gly Arg1 5 10 15Lys Ala Ala Val Thr Lys Pro Ala Lys Glu Lys Lys Leu Trp Gly Phe 20 25 30Gly Lys Ser Phe Arg Glu Lys Asp Pro Ala Pro Ala Pro Glu Arg Pro35 40 45Arg Thr Pro Ser Val Gln Pro Thr Ala Thr Pro Arg Arg Gly Phe Ala50 55 60Ala Ala Pro Asp Glu Ala Asp Asp Glu Gln Ser Lys Arg Ala Ile Ala65 70 75 80Val Ala Ala Ala Thr Ala Ala Val Ala Glu Ala Ala Val Ala Ala Ala 85 90 95Gln Ala Ala Ala Ala Val Val Arg Leu Thr Ser Ser Gly Arg Cys Pro 100 105 110Pro Pro Ala Ala Ala Lys Arg Glu Glu Trp Ala Ala Val Arg Ile Gln115 120 125Ala Ala Phe Arg Gly Tyr Leu Ala Arg Arg Ala Leu Lys Ala Leu Arg130 135 140Gly Leu Val Lys Leu Gln Ala Leu Val Arg Gly Asn Ile Val Arg Arg145 150 155 160Gln Ala Ala Glu Thr Leu Arg Cys Met His Ala Leu Val Arg Val Gln 165 170 175Ala Arg Ala Arg Ala Cys Arg Ala Ile Arg Ser Gln His Val Ala

Ala 180 185 190His Pro Asp Pro Pro Thr Pro Glu Lys Tyr Asp Gln Ala Gly Ala Pro195 200 205Arg His Ala Arg Ser Gly Ser Leu Lys Ala Asn Ser Ser Lys Thr Pro210 215 220Gly Gly Glu Arg Leu Gly Arg Glu Arg Ser Glu Ser Cys Gly Arg Asn225 230 235 240Trp Leu Asp Arg Trp Val Glu Glu Arg Tyr Thr Asp Asp Glu Lys Asn 245 250 255Ala Lys Ile Leu Glu Val Asp Asn Gly Lys Pro Gly Arg His Gly Ser 260 265 270Lys Arg Arg Gly Gly Asn His His Gln Ser Pro Cys Ser Thr Met Thr275 280 285Ser Glu Gln Asn Ser Arg Ser Tyr Ala Thr Met Pro Glu Ser Pro Ser290 295 300Lys Asp Ser Thr Thr Ala Gln Gln Ser Val Pro Ser Pro Ser Ser Val305 310 315 320Gly Met Ala Ala Glu Ala Leu Ser Pro Leu Arg Val Pro Ala Asp Ile 325 330 335Ala Glu Leu Cys Asp Ser Pro Gln Phe Phe Ser Ala Thr Ser Arg Pro 340 345 350Gly Ser Ser Arg Arg Gly Gly Ala Phe Thr Pro Ala Ala Lys Ser Glu355 360 365Cys Ser Arg Ser Leu Phe Gly Gly Tyr Ser Asp Cys Pro Asn Tyr Met370 375 380Ala Asn Thr Glu Ser Phe Arg Ala Lys Ala Arg Ser Gln Ser Ala Pro385 390 395 400Lys Gln Arg Pro Gln Gln Gln Tyr Glu Lys Ser Gly Ser Leu Arg Arg 405 410 415Ala Ser Ala His Ala Leu Ala Ala Gly Pro Ala Ala Ala Gln Arg Ser 420 425 430Val Ala Ser Leu His Ala Met Lys Ala Tyr Pro Gly Ser Gly Arg Leu435 440 445Asp Arg Leu Gly Met Pro Val Arg Tyr450 455671821DNAPanicum virgatummisc_featureCeres CLONE ID no.1726548 67gtctagaccc ttcctttctc tcctgctgtc ccttttgctc ttctcggtgt aagcgtgtgc 60gcgtttcact gctttggttt catctcccgc tctttctttc ctccccactg ctcctccggc 120caagtgctgg aacgaggaag cctcatgcgg ccgccggccg gggagcggta gagcgccgga 180gatgggctgg gcgcccaggt ggctgcgcgg gctgctcggc ggcggcaaca aggccgccga 240gacgaagccc gtgaaggaaa agaggcgctg ggggttcggg aagtccttca gggagaaggc 300gccggcgccg gtggcggcgc ggcctccgac gccgccggtg cagcccacgg cgacgcctcg 360ccggggctac gcgccggcgc cggacgaggc ggacgacgag cagagcaagc gcgccatcgc 420ggtggccgcg gccactgcgg cggttgcgga ggccgccgta gccgcggcgc aggcggccgc 480cgccgtggtg cggctgacga gcagcgggcg gtgcgcgccg gccgccgcca agcgggagga 540gtgggcggct gttcggatcc aggccgcttt ccgtggatac ctggcgaggc gggcgctcaa 600ggcgctgcgg gggctggtga agctgcaggc gctggttcgg ggcaacatcg tgcggcggca 660ggcggcggag acgctgcggt gcatgcacgc gctcgtccgc gtccaggcgc gcgcccgcgc 720ctgccgcgca attcgctcgc agcaggtccc ggctcaccca gatccgccga cgccggagaa 780gtacgatcag gcgggtgccc ccaggcacgg gcgttccggc tctctaaagg ggagctcgtc 840gaagacaccg ggcagcgaga ggctgggcag ggagaggtcg gaatcttgcg ggaggaactg 900gctggaccgg tgggtggagg agaggtacat ggacgacgag aagaacgcca agatcctgga 960ggtggacaac ggcaagccag ggcggtatgc ttccaagagg cgcggcggcg gcggcaacca 1020gcaccagtcg ccgtgctcga cgatgacgtc cgaccagaac agccggagct acgcgaccat 1080gccggagtcg acgaccgcgc agcggtccgt gccgagcccg ccgtcggtgg gcatgggcga 1140ggccctgagc ccgctccgcc tgcccgtgga cattgccgag ctctgcgaca gcccacagtt 1200cttctcggcg tcgtctcggc cggggagctc ccggcggggg cccttcaccc cgagcaagag 1260cgagtgctcc cgcagcctct tcgggggcta ctccgactac cccaactaca tggccaacac 1320ggagtcgttc cgcgccaagg cgcgctccca gagcgcgccc aagcagaggc cgcactacga 1380caagtccagc tccctccgca aggcgtcggc ggcgcaggcc tacttgacgg ggccgtgcgc 1440gccgacggcg cagcagaggt cggcggcctc gctgcacgcc aagttcacca acaaggcgta 1500cccgggctct ggcaggctgg atcgactcgg catgcccgtc aagtactgat cctgttatgt 1560tatcctacca aagttgcttt ctggagtggt gttgcttctt gagcgatcag tgtctcagct 1620ctcgagcaag gtcgatgaag taaaatctag tagtggtcgt taggcttttg tgtgccttcc 1680tggtgctgtt accctcgaca gttttctgtt tcttgctttt taatagcgaa gtgtaagttg 1740gtagtagctg cactgtaata ctatctgtgc tttaacagtt taactgctaa gtgctaactc 1800caaaaaaaaa aaaaaaaaaa a 182168455PRTPanicum virgatummisc_featureCeres CLONE ID no.1726548 68Met Gly Trp Ala Pro Arg Trp Leu Arg Gly Leu Leu Gly Gly Gly Asn1 5 10 15Lys Ala Ala Glu Thr Lys Pro Val Lys Glu Lys Arg Arg Trp Gly Phe 20 25 30Gly Lys Ser Phe Arg Glu Lys Ala Pro Ala Pro Val Ala Ala Arg Pro35 40 45Pro Thr Pro Pro Val Gln Pro Thr Ala Thr Pro Arg Arg Gly Tyr Ala50 55 60Pro Ala Pro Asp Glu Ala Asp Asp Glu Gln Ser Lys Arg Ala Ile Ala65 70 75 80Val Ala Ala Ala Thr Ala Ala Val Ala Glu Ala Ala Val Ala Ala Ala 85 90 95Gln Ala Ala Ala Ala Val Val Arg Leu Thr Ser Ser Gly Arg Cys Ala 100 105 110Pro Ala Ala Ala Lys Arg Glu Glu Trp Ala Ala Val Arg Ile Gln Ala115 120 125Ala Phe Arg Gly Tyr Leu Ala Arg Arg Ala Leu Lys Ala Leu Arg Gly130 135 140Leu Val Lys Leu Gln Ala Leu Val Arg Gly Asn Ile Val Arg Arg Gln145 150 155 160Ala Ala Glu Thr Leu Arg Cys Met His Ala Leu Val Arg Val Gln Ala 165 170 175Arg Ala Arg Ala Cys Arg Ala Ile Arg Ser Gln Gln Val Pro Ala His 180 185 190Pro Asp Pro Pro Thr Pro Glu Lys Tyr Asp Gln Ala Gly Ala Pro Arg195 200 205His Gly Arg Ser Gly Ser Leu Lys Gly Ser Ser Ser Lys Thr Pro Gly210 215 220Ser Glu Arg Leu Gly Arg Glu Arg Ser Glu Ser Cys Gly Arg Asn Trp225 230 235 240Leu Asp Arg Trp Val Glu Glu Arg Tyr Met Asp Asp Glu Lys Asn Ala 245 250 255Lys Ile Leu Glu Val Asp Asn Gly Lys Pro Gly Arg Tyr Ala Ser Lys 260 265 270Arg Arg Gly Gly Gly Gly Asn Gln His Gln Ser Pro Cys Ser Thr Met275 280 285Thr Ser Asp Gln Asn Ser Arg Ser Tyr Ala Thr Met Pro Glu Ser Thr290 295 300Thr Ala Gln Arg Ser Val Pro Ser Pro Pro Ser Val Gly Met Gly Glu305 310 315 320Ala Leu Ser Pro Leu Arg Leu Pro Val Asp Ile Ala Glu Leu Cys Asp 325 330 335Ser Pro Gln Phe Phe Ser Ala Ser Ser Arg Pro Gly Ser Ser Arg Arg 340 345 350Gly Pro Phe Thr Pro Ser Lys Ser Glu Cys Ser Arg Ser Leu Phe Gly355 360 365Gly Tyr Ser Asp Tyr Pro Asn Tyr Met Ala Asn Thr Glu Ser Phe Arg370 375 380Ala Lys Ala Arg Ser Gln Ser Ala Pro Lys Gln Arg Pro His Tyr Asp385 390 395 400Lys Ser Ser Ser Leu Arg Lys Ala Ser Ala Ala Gln Ala Tyr Leu Thr 405 410 415Gly Pro Cys Ala Pro Thr Ala Gln Gln Arg Ser Ala Ala Ser Leu His 420 425 430Ala Lys Phe Thr Asn Lys Ala Tyr Pro Gly Ser Gly Arg Leu Asp Arg435 440 445Leu Gly Met Pro Val Lys Tyr450 45569464PRTOryza sativa subsp. japonicamisc_featurePublic GI ID no.115459996 69Met Gly Trp Ala Ser Arg Trp Leu Arg Gly Leu Leu Gly Gly Gly Lys1 5 10 15Lys Pro Asn Ser Gly Ser Gly Asp Pro Lys Pro Ala Arg Glu Lys Lys 20 25 30Arg Trp Gly Phe Gly Lys Ser Phe Arg Glu Lys Ser Pro Ala His Pro35 40 45Pro Pro Pro Pro Pro Pro Ser Ala Ala Val Gln Arg Ala Val Thr Pro50 55 60Arg Arg Ala Tyr Thr Ala Ser Asp Glu Gly Asp Asp Glu Gln Ser Lys65 70 75 80Arg Ala Ile Ala Val Ala Ala Ala Thr Ala Ala Val Ala Glu Ala Ala 85 90 95Val Ala Ala Ala Gln Ala Ala Ala Ala Val Val Arg Leu Thr Ser Ser 100 105 110Gly Arg Cys Ala Pro Ala Ala Ala Lys Arg Glu Glu Tyr Ala Ala Val115 120 125Arg Ile Gln Ala Ala Phe Arg Gly Tyr Leu Ala Arg Arg Ala Leu Lys130 135 140Ala Leu Arg Gly Leu Val Lys Leu Gln Ala Leu Val Arg Gly Asn Ile145 150 155 160Val Arg Arg Gln Ala Ala Glu Thr Leu Arg Cys Met His Ala Leu Val 165 170 175Arg Val Gln Arg Arg Ala Arg Ala Cys Arg Ala Ile Arg Ser Gln His 180 185 190Val Ser Ala His Pro Gly Pro Pro Thr Pro Glu Lys Tyr Asp Gln Ala195 200 205Thr His Glu Gly Val Pro Lys His Gly Arg Ser Gly Ser Leu Lys Gly210 215 220Ser Ser Ser Lys Thr Pro Gly Ser Glu Arg Leu Thr Arg Glu Arg Ser225 230 235 240Glu Ser Cys Gly Arg Asn Trp Leu Asp Lys Trp Val Glu Glu Arg Tyr 245 250 255Leu Asp Asp Glu Lys Asn Ala Lys Ile Leu Glu Val Asp Thr Gly Lys 260 265 270Pro Gly Arg His Ala Ser Arg Arg Arg Ser Gly Ser His His His His275 280 285Ser Ser Cys Ser Ser Met Thr Ser Glu Gln Lys Ser Arg Ser Tyr Ala290 295 300Thr Met Pro Glu Ser Pro Ser Lys Asp Ser Thr Thr Ala Gln Gln Ser305 310 315 320Val Pro Ser Pro Pro Ser Val Gly Met Ala Glu Ala Leu Ser Pro Leu 325 330 335Leu Met Ala Val Asp Ile Ala Glu Leu Cys Asp Ser Pro Gln Phe Phe 340 345 350Ser Ala Thr Ser Arg Pro Gly Ser Ser Arg Ser Arg Ala Phe Thr Pro355 360 365Thr Lys Ser Glu Cys Ser Arg Ser Leu Phe Gly Gly Tyr Ser Asp Tyr370 375 380Pro Asn Tyr Met Ala Asn Thr Glu Ser Phe Arg Ala Lys Ala Arg Ser385 390 395 400Gln Ser Ala Pro Lys Gln Arg Pro Gln Tyr Glu Lys Ser Ser Ser Leu 405 410 415Arg Lys Ala Ser Ala His Ala Phe Gly Pro Gly Ser Cys Ala Pro Val 420 425 430Ala Gln Arg Thr Thr Ala Ser Leu His Ser Lys Phe Thr Asn Lys Ala435 440 445Tyr Pro Gly Ser Gly Arg Leu Asp Arg Leu Gly Met Pro Val Lys Tyr450 455 460701736DNATriticum aestivummisc_featureCeres CLONE ID no.697034 70gcctagactc ttcgtctccg tcctgcacct ttttcttctc tggcaagcct gtgcctgtgc 60gcgtcgcgcc gttttgggtt tcatctcccg ctctttcttc ctcctccctg ctccggccaa 120gtgctggaac caagagaagg cgatgggggc ggcggcggag gagcagtagc cggagggagg 180ggatggggtg ggcttcaagg tggctccgcg ggctgcttgg cggcggcaag aaggccggtc 240ccgcctccgg cgagcacaag ccggagaggg agaagaagcg ctggggcttc ggcaagtcct 300tccgggagaa ggacccggtg cgtccaccga cgcctcctgt gcagcgggcg gcgacgcccc 360gccgcaccta cgcgacgtcg gatgacggcg gcgacgagca gaacaaacgc gctatcgccg 420tggcggcggc gacggcggct gtggccgagg ccgccgttgc cgcggcgcag gcggccgccg 480ccgtggtgcg gctgacgagc agcgggcggt gcccgccggc cggggcgaag catgaggagt 540gggcggccgt ccggatccag gccgctttcc gtggctacct ggcgaggcgc gcactgaagg 600cgctccgcgg gctggtgaag ctgcaggcgc tggtccgcgg caacatcgtc cggcggcagg 660cggccgagac gctccggtgc atgcaggcgc tcgtcagcgt gcagtcccgc gcgcgcgcca 720gccgcgcaac ccgatcccgc caggccgcgg cacacccggg cgcgacgacg ccggagaagt 780acgagcaggc ggcatacgat ggcgcgctca ggcacggccg ttcaggctca ctcaagggag 840gctcgtcaaa gacaccgggc agcgagagga tgagcaggga gaggtcagaa tcttgcggga 900ggaactggct ggatcggtgg gtggaggaga ggtacatgga tgacgagaag aacgccaaga 960ttctcgaggt ggaccccggc aagcccggcc ggcacgcttc caagaggcga agcagcggcg 1020gcggccacca ccagtcgtcg tgctcaacca ggacatcaga gcagaacagc cggagctacg 1080cgacgatgcc ggactcgccg tccagggact cgacgacggc gcagcagtcc gtgcccagcc 1140cgtcgtcggt gggcatgggc gcgggcgagg ccctcagccc gctgcacatg ccggcagacc 1200tcgcggcgga gctgtacgag agcccgcagt tcttctcggc gacgtcgcgg ccggggagct 1260cgaagcgggg cgccttcttc acgccgacca agagcgagtg cgcgcgcagc ctcttcggcg 1320gctactccga ctaccccaac tacatgtcca acacggagtc gttccgggcc aaggcgcggt 1380cgcagagcgc gcccaagcag cggccgctgt acgagaagtc cgggtccctc cggaaggcgt 1440cggcacacgc cttcgcgccg gggcagaggt cgtcggcgtc ggcgtccctg cacgccaggt 1500tcaccaataa ggcgtaccct ggctccggca ggctggaccg gctgggcatg cctgtcaagt 1560actgaaccct gccgccatgt gaccagtgtt aggtttgagc ttttgtgatg ctattaccgt 1620cagaaagtac tttcctgtta ttgactgtga cttgttaagt gtaagttgct actgtactgg 1680tgttcccgca aaaaaaagtg taagttgcta gtaatcaccc aaaaaaaaaa aaaaaa 173671460PRTTriticum aestivummisc_featureCeres CLONE ID no.697034 71Met Gly Trp Ala Ser Arg Trp Leu Arg Gly Leu Leu Gly Gly Gly Lys1 5 10 15Lys Ala Gly Pro Ala Ser Gly Glu His Lys Pro Glu Arg Glu Lys Lys 20 25 30Arg Trp Gly Phe Gly Lys Ser Phe Arg Glu Lys Asp Pro Val Arg Pro35 40 45Pro Thr Pro Pro Val Gln Arg Ala Ala Thr Pro Arg Arg Thr Tyr Ala50 55 60Thr Ser Asp Asp Gly Gly Asp Glu Gln Asn Lys Arg Ala Ile Ala Val65 70 75 80Ala Ala Ala Thr Ala Ala Val Ala Glu Ala Ala Val Ala Ala Ala Gln 85 90 95Ala Ala Ala Ala Val Val Arg Leu Thr Ser Ser Gly Arg Cys Pro Pro 100 105 110Ala Gly Ala Lys His Glu Glu Trp Ala Ala Val Arg Ile Gln Ala Ala115 120 125Phe Arg Gly Tyr Leu Ala Arg Arg Ala Leu Lys Ala Leu Arg Gly Leu130 135 140Val Lys Leu Gln Ala Leu Val Arg Gly Asn Ile Val Arg Arg Gln Ala145 150 155 160Ala Glu Thr Leu Arg Cys Met Gln Ala Leu Val Ser Val Gln Ser Arg 165 170 175Ala Arg Ala Ser Arg Ala Thr Arg Ser Arg Gln Ala Ala Ala His Pro 180 185 190Gly Ala Thr Thr Pro Glu Lys Tyr Glu Gln Ala Ala Tyr Asp Gly Ala195 200 205Leu Arg His Gly Arg Ser Gly Ser Leu Lys Gly Gly Ser Ser Lys Thr210 215 220Pro Gly Ser Glu Arg Met Ser Arg Glu Arg Ser Glu Ser Cys Gly Arg225 230 235 240Asn Trp Leu Asp Arg Trp Val Glu Glu Arg Tyr Met Asp Asp Glu Lys 245 250 255Asn Ala Lys Ile Leu Glu Val Asp Pro Gly Lys Pro Gly Arg His Ala 260 265 270Ser Lys Arg Arg Ser Ser Gly Gly Gly His His Gln Ser Ser Cys Ser275 280 285Thr Arg Thr Ser Glu Gln Asn Ser Arg Ser Tyr Ala Thr Met Pro Asp290 295 300Ser Pro Ser Arg Asp Ser Thr Thr Ala Gln Gln Ser Val Pro Ser Pro305 310 315 320Ser Ser Val Gly Met Gly Ala Gly Glu Ala Leu Ser Pro Leu His Met 325 330 335Pro Ala Asp Leu Ala Ala Glu Leu Tyr Glu Ser Pro Gln Phe Phe Ser 340 345 350Ala Thr Ser Arg Pro Gly Ser Ser Lys Arg Gly Ala Phe Phe Thr Pro355 360 365Thr Lys Ser Glu Cys Ala Arg Ser Leu Phe Gly Gly Tyr Ser Asp Tyr370 375 380Pro Asn Tyr Met Ser Asn Thr Glu Ser Phe Arg Ala Lys Ala Arg Ser385 390 395 400Gln Ser Ala Pro Lys Gln Arg Pro Leu Tyr Glu Lys Ser Gly Ser Leu 405 410 415Arg Lys Ala Ser Ala His Ala Phe Ala Pro Gly Gln Arg Ser Ser Ala 420 425 430Ser Ala Ser Leu His Ala Arg Phe Thr Asn Lys Ala Tyr Pro Gly Ser435 440 445Gly Arg Leu Asp Arg Leu Gly Met Pro Val Lys Tyr450 455 460721433DNAZea maysmisc_featureCeres CLONE ID no.353438 72atgatgtgta acctacgagc tgctctggta accgcttccc ctccagcaag gagaacgcca 60ccttgtggcg tcagctctgc cgtcgtcttt actgcctgcg ccttccaggc ttcttcgttt 120caggaagcaa ggcgaggcgg gcgctgaagg cgttgcgggg gctggtgaag ctgcaggcgc 180tggtccgggg caacatcgtg cggcggcagg cggcggagac gctgcgatgc atgcacgcgc 240tcgtccgcgt ccaggcgcgc gcgcgcgcct gccgcgcaat tcgctcgcag catgtcacgg 300cgcatccgga cccgccgacg ccggagaagt acgagcaggc gggtgcggcc aggcacggcc 360gttccggctc tctgaaggcg aactcttcga ggacaccggg cggcgagagg ctgggcaggg 420agaggtcgga atcctgcggg aggaactggc tggaccgctg ggtggaggag aggtacatgg 480acgacgagaa gaacgccaag attctcgagg tggacaacgg caagccaggg cgccggtatg 540cttccaagag gcgcggcggc ggcggcgtcg gcggaaacca ccaccaccag caccaccagt 600cgccgtgctc gacgacgatg ggctccgagc agaacagccg gagctacgcg accatgccgg 660agtcgccgtc caaggactcg acgaccgcgc agcagtcggt gccgagcccg ccgtcggtgg 720gcatggccga ggaggaggcc ctgagcccgc tgcgcgtgcc cgtgcccgcg gacgtggccg 780agctctgcga cagcccccag ttcttctcgg ccacgtcgtc gcggcccggg agctcgaggc 840ggggcccgtt cacgccgacg gccaagagcg agtgctcgcg cagcctcttc ggcggctact 900ccgactaccc gaactacatg gccaacacgg agtcgttccg cgccaaggcg cggtcgcaga 960gcgcgccgaa gcagaggccg cagtacgagc ggtccagctc cctacgcagg gcgtcggcgg 1020cgcagaggtc ggcggcggcg gcggcctcct ccctgcacgc caagttcacc aacaaggcgt 1080acccgggctc tggcaggctg gatcggcttg gcttgccggc caggtactga tactgagcct 1140gcctaattcg cgtcaggatg atgtgctgcc gctgtgtctc gagcgaggag gacgacgacg 1200aagaagtgca atcgactagt ggtagttagg ttccgccgtg ccttggttgt gctattacca 1260tcaacagttt tttctgtttc ttgctttgtg tagctagcca tgtctaaagt tgctggtagc 1320tgtaatgatg ctataatgcg tgcttaactg ctgacgaacc tttttcctct acatttccgt 1380ggtatatata tatgtgccgt caaatcatgc atgggaattg aatgtgttgt tgc 143373299PRTZea maysmisc_featureCeres CLONE ID no.353438 73Met His Ala Leu Val Arg Val Gln Ala Arg Ala Arg Ala Cys Arg Ala1

5 10 15Ile Arg Ser Gln His Val Thr Ala His Pro Asp Pro Pro Thr Pro Glu 20 25 30Lys Tyr Glu Gln Ala Gly Ala Ala Arg His Gly Arg Ser Gly Ser Leu35 40 45Lys Ala Asn Ser Ser Arg Thr Pro Gly Gly Glu Arg Leu Gly Arg Glu50 55 60Arg Ser Glu Ser Cys Gly Arg Asn Trp Leu Asp Arg Trp Val Glu Glu65 70 75 80Arg Tyr Met Asp Asp Glu Lys Asn Ala Lys Ile Leu Glu Val Asp Asn 85 90 95Gly Lys Pro Gly Arg Arg Tyr Ala Ser Lys Arg Arg Gly Gly Gly Gly 100 105 110Val Gly Gly Asn His His His Gln His His Gln Ser Pro Cys Ser Thr115 120 125Thr Met Gly Ser Glu Gln Asn Ser Arg Ser Tyr Ala Thr Met Pro Glu130 135 140Ser Pro Ser Lys Asp Ser Thr Thr Ala Gln Gln Ser Val Pro Ser Pro145 150 155 160Pro Ser Val Gly Met Ala Glu Glu Glu Ala Leu Ser Pro Leu Arg Val 165 170 175Pro Val Pro Ala Asp Val Ala Glu Leu Cys Asp Ser Pro Gln Phe Phe 180 185 190Ser Ala Thr Ser Ser Arg Pro Gly Ser Ser Arg Arg Gly Pro Phe Thr195 200 205Pro Thr Ala Lys Ser Glu Cys Ser Arg Ser Leu Phe Gly Gly Tyr Ser210 215 220Asp Tyr Pro Asn Tyr Met Ala Asn Thr Glu Ser Phe Arg Ala Lys Ala225 230 235 240Arg Ser Gln Ser Ala Pro Lys Gln Arg Pro Gln Tyr Glu Arg Ser Ser 245 250 255Ser Leu Arg Arg Ala Ser Ala Ala Gln Arg Ser Ala Ala Ala Ala Ala 260 265 270Ser Ser Leu His Ala Lys Phe Thr Asn Lys Ala Tyr Pro Gly Ser Gly275 280 285Arg Leu Asp Arg Leu Gly Leu Pro Ala Arg Tyr290 29574499PRTOryza sativa subsp. japonicamisc_featurePublic GI ID no.125593074 74Met Gly Lys Ala Ala Arg Trp Phe Arg Asn Met Trp Gly Gly Gly Arg1 5 10 15Lys Glu Gln Lys Gly Glu Ala Pro Ala Ser Gly Gly Lys Arg Trp Ser 20 25 30Phe Gly Lys Ser Ser Arg Asp Ser Ala Glu Ala Ala Ala Ala Ala Ala35 40 45Ala Ala Ala Ala Glu Ala Ser Gly Gly Asn Ala Ala Ile Ala Arg Ala50 55 60Ala Glu Ala Ala Trp Leu Arg Ser Val Tyr Ala Asp Thr Glu Arg Glu65 70 75 80Gln Ser Lys His Ala Ile Ala Val Ala Ala Ala Thr Ala Ala Ala Ala 85 90 95Asp Ala Ala Val Ala Ala Ala Gln Ala Ala Val Ala Val Val Arg Leu 100 105 110Thr Ser Lys Gly Arg Ser Ala Pro Val Leu Ala Ala Thr Val Ala Gly115 120 125Asp Thr Arg Ser Leu Ala Ala Ala Ala Val Arg Ile Gln Thr Ala Phe130 135 140Arg Gly Phe Leu Ala Lys Lys Ala Leu Arg Ala Leu Lys Ala Leu Val145 150 155 160Lys Leu Gln Ala Leu Val Arg Gly Tyr Leu Val Arg Arg Gln Ala Ala 165 170 175Ala Thr Leu Gln Ser Met Gln Ala Leu Val Arg Ala Gln Ala Thr Val 180 185 190Arg Ala His Arg Ser Gly Ala Gly Ala Ala Ala Asn Leu Pro His Leu195 200 205His His Ala Pro Phe Trp Pro Arg Arg Ser Leu Val Arg Arg Trp Leu210 215 220Asn Leu Ala Asp Asp Ile Ala Met Tyr Met Phe Asp Val Asp Val Val225 230 235 240Cys Trp Arg Trp Met Gln Gln Glu Arg Cys Ala Gly Asp Asp Thr Arg 245 250 255Ser Glu His Gly Val Ala Ala Tyr Ser Arg Arg Leu Ser Ala Ser Ile 260 265 270Glu Ser Ser Ser Tyr Gly Tyr Asp Arg Arg Pro Gln Asp Arg Gly Gly275 280 285Gly His Arg Gly Gly Pro Ser Arg Gly Arg Arg Arg Arg Gly Gly Arg290 295 300Ala Pro Pro Leu Leu Leu Asp Ala Arg Trp Val Arg Glu Arg Arg Arg305 310 315 320Gly Leu Val Arg Gln Leu His Val Val Ala Ala Pro Val Leu Pro Pro 325 330 335Arg Arg Arg Ala Ala Ala Pro His Arg Arg Pro Asp Val Ala Pro Leu 340 345 350Pro Arg Leu Arg Leu Val Arg Ala Gly Glu Gly Pro Ala Gly Asp Gly355 360 365Ala Glu His Ala Ala Val Arg Ala Arg Ala Ala Asp Ala Asp Gln Glu370 375 380Arg Val Arg Arg Arg Arg Arg Arg Arg His Pro Leu Val Ala Ala Gln385 390 395 400Leu Pro Glu Leu His Val Gln His Ala Val Val Arg Gly Arg Arg Cys 405 410 415Arg Ser Gln Ser Ala Pro Lys Gln Arg Pro Glu Thr Gly Gly Ala Gly 420 425 430Ala Gly Gly Gly Arg Lys Arg Val Pro Leu Ser Glu Val Val Val Val435 440 445Glu Ser Arg Ala Ser Leu Ser Gly Val Gly Met Gln Arg Ser Cys Asn450 455 460Arg Val Gln Glu Ala Phe Asn Phe Lys Thr Ala Val Val Gly Arg Leu465 470 475 480Asp Arg Ser Ser Glu Ser Gly Glu Asn Asp Arg His Ala Phe Leu Gln 485 490 495Arg Arg Trp751807DNAGossypium hirsutummisc_featureCeres CLONE ID no.1920115 75ctcctttcct cagtaagctt acgaaacttc ttcttcgctt cttctctgca aatgaatccc 60gagaaacctc ccaaaccctt atcttattac cctttttcac cttcttctcc atcaccaaac 120taacgtttcc gtacacaacg aacaaaatca aagcaatggg taaagcttcc aagtggttcc 180gcagcatcct cggcttcaaa aatccgaccc ccataaccaa ccttctcctt cttcttcaaa 240accaacttcc cataaagaca aacggcgttg gagtttcgtc aaatcgtacc gtgaaaaaga 300ctcctccacg aacaatagta atgcgaagtt gccgtcgtct tcgcagcaac agaaagactc 360tgtttccttc gttgaaagga aaggtgacaa tgaagtaacg gatcctagca agcacgccat 420cgctgttgct gccgctactg ccgccgttgc cgaagcagcc gttgcggctg ctcaagctgc 480cgctgcggtg gttaggctca ctagtaacag tggtaggtgc gcgcgtgaat cggcagcggt 540ttacgtttgc aacaacaata gctatatagc acacgatgag tcatccgcca ttaagataca 600atctgcattt cgtggatacc tggcaagaag agcattgcga gcactaaaag gattagtgag 660actccaagca ttggttagag gtcatataga aaggaagaga actgcagaat ggttaagaag 720gatgcaagca ttattgagag cacaagcacg tgctcgtgct ggccgggccc aaatttccga 780gtcttcccaa tcaagctgca aatcgtctca cttccatcat ccggatccag caacccctga 840aaaatttgaa catgttattc gatccaaggg tacaaaatat gaacaatcat caatgttgaa 900gagaaatgga tcaaagtcaa gtggaaggac tgttgataat caagagaaat tacactcagg 960ttggtatcgc cgtgttgatg agcaaacatg ggagcattca acaagaattg gtcctaatga 1020tgatgaaaag aatgacaaaa tccttgaagt tgacactggg aaaccaaatt tcatctctaa 1080acggagaaac ctctttcatt caacacatct ttctctgaat tctgatttat atagctgtag 1140tttcactaat tcgagagact cacaccaaac agctcctagt ccttcatctg gtgaagttca 1200gtctttaact ccattgatgc tgtctcactc tgaagcaata caggaaagcc ctttctgcgg 1260tgctgttgat gataatagtc cacaattcta ttctgcatca tcaaaaggag ctagttccaa 1320gagaagcccc ttcactcctg ctaagagtga tggcactaga agctacctaa gtggttactc 1380agaccatcca aattacatgt cttacactga atcgtcaaaa gctaaggtaa ggtctttcag 1440tgctccaaaa caaaggcctc attatgaaag atctagttca acaaagaggt actccattca 1500tggttttggt gaattgaaat caactacaca aaggtctgcc atgcatgcaa acttcgccag 1560caaagcttac cccggttcgg gtaggttgga caggctagga atgccccttg ggtatagata 1620ctaaataatg gttttaccat ttggctaagg aatgttatgt agtttatgtt tagatgttaa 1680cgatgatgac tctcacctac cctaatgtat ccatccttta atgttttagt gcatgtgagt 1740tcccaagtta aaaagaatag tagctgcttt acaagaagtt aaattagaaa aaaaaaaaaa 1800aaaaaaa 180776300PRTGossypium hirsutummisc_featureCeres CLONE ID no.1920115 76Met Gln Ala Leu Leu Arg Ala Gln Ala Arg Ala Arg Ala Gly Arg Ala1 5 10 15Gln Ile Ser Glu Ser Ser Gln Ser Ser Cys Lys Ser Ser His Phe His 20 25 30His Pro Asp Pro Ala Thr Pro Glu Lys Phe Glu His Val Ile Arg Ser35 40 45Lys Gly Thr Lys Tyr Glu Gln Ser Ser Met Leu Lys Arg Asn Gly Ser50 55 60Lys Ser Ser Gly Arg Thr Val Asp Asn Gln Glu Lys Leu His Ser Gly65 70 75 80Trp Tyr Arg Arg Val Asp Glu Gln Thr Trp Glu His Ser Thr Arg Ile 85 90 95Gly Pro Asn Asp Asp Glu Lys Asn Asp Lys Ile Leu Glu Val Asp Thr 100 105 110Gly Lys Pro Asn Phe Ile Ser Lys Arg Arg Asn Leu Phe His Ser Thr115 120 125His Leu Ser Leu Asn Ser Asp Leu Tyr Ser Cys Ser Phe Thr Asn Ser130 135 140Arg Asp Ser His Gln Thr Ala Pro Ser Pro Ser Ser Gly Glu Val Gln145 150 155 160Ser Leu Thr Pro Leu Met Leu Ser His Ser Glu Ala Ile Gln Glu Ser 165 170 175Pro Phe Cys Gly Ala Val Asp Asp Asn Ser Pro Gln Phe Tyr Ser Ala 180 185 190Ser Ser Lys Gly Ala Ser Ser Lys Arg Ser Pro Phe Thr Pro Ala Lys195 200 205Ser Asp Gly Thr Arg Ser Tyr Leu Ser Gly Tyr Ser Asp His Pro Asn210 215 220Tyr Met Ser Tyr Thr Glu Ser Ser Lys Ala Lys Val Arg Ser Phe Ser225 230 235 240Ala Pro Lys Gln Arg Pro His Tyr Glu Arg Ser Ser Ser Thr Lys Arg 245 250 255Tyr Ser Ile His Gly Phe Gly Glu Leu Lys Ser Thr Thr Gln Arg Ser 260 265 270Ala Met His Ala Asn Phe Ala Ser Lys Ala Tyr Pro Gly Ser Gly Arg275 280 285Leu Asp Arg Leu Gly Met Pro Leu Gly Tyr Arg Tyr290 295 300771614DNAArabidopsis thalianamisc_featureCeres CLONE ID no.21821 77ataatttgat gaacagtctt cttctctgat gcagaaaccc tctccctgaa tcttgattct 60ctcacaatca agatttgaag caaacgtttt gagaaaaatc ttttgacacc atcaaatttg 120gttggcggat tgtgggagga attccagagc aatatagcag gtgatggttg tacaacaatg 180gctaagaaga agggcttgtt cactgtattg aaaaggattt ttatttcaga agttaattca 240gaaaagaaag agaagagaag aaaatggaca ttttggaagc ttaggattaa gaaaagatta 300ccttccatta cagcacctcc agagcacagg acaagtcatg aatcgcatga ggaacagaag 360gaggaaattg tgtcagatgt gggtgagatc agccaagtgt cttgtagtcg acagttagat 420tccatagaag agtcaaaagg ttcaacatca ccagaaactg ctgatctggt agtccagtat 480caaatgtttc ttaatagaca ggaagaagtt cttgctgcta ctcgcattca gaccgccttt 540cggggtcatc ttgcaaggaa agctctacgt gccttgaagg gaatagtgaa gctccaagca 600tatatcagag gtcgtgctgt gagacgccaa gcaatgacta cactaaaatg cctgcaatct 660gttgtgaaca ttcagtcaca agtctgtggt aagagaacac agattcccgg aggtgttcac 720agagattatg aagagagcaa tatattcaat gataacattc tcaaggtgga cacaaacggt 780caaaagagat gggacgatag tcttttaaca aaggaagaaa aggaagcagt ggtaatgagc 840aagaaagaag cttcactaag aagagaaagg ataaaggaat atgcagtcac ccaccggaaa 900tctgcggagt cataccagaa acgaagtaac actaaatgga agtactggtt agacgaatgg 960gtagatacac aactaaccaa gagcaaggag ctcgaagatc tcgacttctc ttcgaaaaca 1020aaaccgaaag acgaaacttt gaacgagaag cagcttaaaa ctccaaggaa ctcatcacca 1080agaagattag tgaataatca tagaagacaa gtttcaatag gtgaagatga acaaagccct 1140gccgcggtca ctatcactac accaacttat atggttgcaa cagagtcagc aaaggcaaag 1200tcaagatcat taagctcccc aaggataaga ccgagaagtt ttgacacaca gtcagagagt 1260tactcgccat ataagaacaa gctatgcctg acgacatcaa tgatgagtga agcaccaagc 1320aaagtaagga ttgccaacaa tggcagtaac actagaccaa gtgcatacca gcaacggtct 1380ccagggttaa ggggatttaa cataggccct ttgaaatcat gcaataataa taatactcta 1440ttgaacgatc tcagcattaa ttcagaaaga tctctaccta gctggaacaa gcagagcagc 1500ttgagatgag tggatattga accctgtata tatacatact acatacgttc caatgtttct 1560tttgactttt gagggtcaca ctcacatatg tgtatcatca aatattgttt cgtt 161478443PRTArabidopsis thalianamisc_featureCeres CLONE ID no.21821 78Met Ala Lys Lys Lys Gly Leu Phe Thr Val Leu Lys Arg Ile Phe Ile1 5 10 15Ser Glu Val Asn Ser Glu Lys Lys Glu Lys Arg Arg Lys Trp Thr Phe 20 25 30Trp Lys Leu Arg Ile Lys Lys Arg Leu Pro Ser Ile Thr Ala Pro Pro35 40 45Glu His Arg Thr Ser His Glu Ser His Glu Glu Gln Lys Glu Glu Ile50 55 60Val Ser Asp Val Gly Glu Ile Ser Gln Val Ser Cys Ser Arg Gln Leu65 70 75 80Asp Ser Ile Glu Glu Ser Lys Gly Ser Thr Ser Pro Glu Thr Ala Asp 85 90 95Leu Val Val Gln Tyr Gln Met Phe Leu Asn Arg Gln Glu Glu Val Leu 100 105 110Ala Ala Thr Arg Ile Gln Thr Ala Phe Arg Gly His Leu Ala Arg Lys115 120 125Ala Leu Arg Ala Leu Lys Gly Ile Val Lys Leu Gln Ala Tyr Ile Arg130 135 140Gly Arg Ala Val Arg Arg Gln Ala Met Thr Thr Leu Lys Cys Leu Gln145 150 155 160Ser Val Val Asn Ile Gln Ser Gln Val Cys Gly Lys Arg Thr Gln Ile 165 170 175Pro Gly Gly Val His Arg Asp Tyr Glu Glu Ser Asn Ile Phe Asn Asp 180 185 190Asn Ile Leu Lys Val Asp Thr Asn Gly Gln Lys Arg Trp Asp Asp Ser195 200 205Leu Leu Thr Lys Glu Glu Lys Glu Ala Val Val Met Ser Lys Lys Glu210 215 220Ala Ser Leu Arg Arg Glu Arg Ile Lys Glu Tyr Ala Val Thr His Arg225 230 235 240Lys Ser Ala Glu Ser Tyr Gln Lys Arg Ser Asn Thr Lys Trp Lys Tyr 245 250 255Trp Leu Asp Glu Trp Val Asp Thr Gln Leu Thr Lys Ser Lys Glu Leu 260 265 270Glu Asp Leu Asp Phe Ser Ser Lys Thr Lys Pro Lys Asp Glu Thr Leu275 280 285Asn Glu Lys Gln Leu Lys Thr Pro Arg Asn Ser Ser Pro Arg Arg Leu290 295 300Val Asn Asn His Arg Arg Gln Val Ser Ile Gly Glu Asp Glu Gln Ser305 310 315 320Pro Ala Ala Val Thr Ile Thr Thr Pro Thr Tyr Met Val Ala Thr Glu 325 330 335Ser Ala Lys Ala Lys Ser Arg Ser Leu Ser Ser Pro Arg Ile Arg Pro 340 345 350Arg Ser Phe Asp Thr Gln Ser Glu Ser Tyr Ser Pro Tyr Lys Asn Lys355 360 365Leu Cys Leu Thr Thr Ser Met Met Ser Glu Ala Pro Ser Lys Val Arg370 375 380Ile Ala Asn Asn Gly Ser Asn Thr Arg Pro Ser Ala Tyr Gln Gln Arg385 390 395 400Ser Pro Gly Leu Arg Gly Phe Asn Ile Gly Pro Leu Lys Ser Cys Asn 405 410 415Asn Asn Asn Thr Leu Leu Asn Asp Leu Ser Ile Asn Ser Glu Arg Ser 420 425 430Leu Pro Ser Trp Asn Lys Gln Ser Ser Leu Arg435 440791689DNAGlycine maxmisc_featureCeres CLONE ID no.560066 79ttttttatgg gatttgaaaa aatggatcac agacattgaa gttgacctat gtgttgatat 60tcttaaatgg ccaaaaagaa gagctggttt agtctggtga agaggctctt tatatgggac 120acacattcca cacaagataa gaaggagaaa agaaggaaat ggatatttgg aaggctaaag 180agcaagagat tgccttcaat taaagctcca ctaccctcaa aaggaacaac actaagtgag 240gcagagcaag aacagagcaa gcatgcttta acagtggcca ttgcctcagc agcagctgct 300gaagctgctg ttactgctgc tcatgctgct gctgaggttg ttcgcctcac tgggcaacgc 360aacgaaaact cagaagaatc tcaacctgtt aaaactagga atggtgctcc acaatccaca 420taccagtgcc agagggagat taaagaatct gctgcagcca tcaaaattca aactgcattt 480cggggttacc tggcaaggaa ggctttgagg gcgttgaagg gaatagtgaa gcttcaagct 540atcattcgtg gcagagccgt aagacgccaa gctatgagta gtcttaagtg cttacagtcc 600attgtgagca tccagtcaca ggtctgtgca aggaggctcc aaatggttga agggagatgt 660gattactctg aaaatgaaga gatgcaagat tttaaagaca aaataattag gatggactca 720aacagtgaaa gaaagtggga tgaaagcact gtattgaagg aagaggtaga cacctcttgc 780acaagcaaga gagaaagaac aaaagaatac tcatttaacc acagaaggtc agcagagtca 840gaaagaagta aagtaaatgg aagatggagg tactggctag agcagtgggt agatacacaa 900ctttcaaaga gtaaagagct tgaagattta gactcagttt ttagctcaca ttctagagct 960ggggaggaat atggaggaag gcaacttaag ctgagaagta atattcagag acaaaatcca 1020gttgaaggat tggattctcc aatacttggt tcaagaagat cttttcctca taggaggcag 1080tgttcagtgg gagaggacca ctcattttta agctctcctg caactccagc atacatggct 1140gcaacagaat cagcaaaagc aaaagcaaga tcaacaagct ccccaaaaat aaggactggg 1200gggaatgtgg acatgaactc tgatagctat tcaccatgca agaaaaagct atccattgca 1260tcttctatta acagtgaaat gcttagtaat ggtagggtgg gcaagctcag tgttaaccag 1320cagcaaagat caccaagctt taagggactt tcagtgccta taaaatcaag ccgaacaact 1380atcaaggatc tcagtattaa ttcagattgc tcactcccta attgggatcg acaggctttc 1440ttcaaatgaa tctatgaatg ctgatgttac tctttcttgc attaacacaa ttccttgtat 1500catgtgaagg cttggaaaca ataactgttt ataaatatgt atgatatact atatgctatt 1560ggatgttatt ttggttggga attgaacatt aatgtgacag aaaatagtta ttctggagat 1620ataagatgaa ttgtatgatt aagaaagaag agatataaga tggattgtat gattaagaaa 1680gaaggaaag 168980460PRTGlycine maxmisc_featureCeres CLONE ID no.560066 80Met Ala Lys Lys Lys Ser Trp Phe Ser Leu Val Lys Arg Leu Phe Ile1 5 10 15Trp Asp Thr His Ser Thr Gln Asp Lys Lys Glu Lys Arg Arg Lys Trp 20 25 30Ile Phe Gly Arg Leu Lys Ser Lys Arg Leu Pro Ser Ile Lys Ala Pro35 40 45Leu Pro Ser Lys Gly Thr Thr Leu Ser Glu Ala Glu Gln Glu Gln Ser50 55 60Lys His Ala Leu Thr Val Ala Ile Ala Ser Ala Ala Ala Ala Glu Ala65 70 75 80Ala Val Thr Ala Ala His Ala Ala Ala Glu Val Val Arg Leu Thr Gly 85 90

95Gln Arg Asn Glu Asn Ser Glu Glu Ser Gln Pro Val Lys Thr Arg Asn 100 105 110Gly Ala Pro Gln Ser Thr Tyr Gln Cys Gln Arg Glu Ile Lys Glu Ser115 120 125Ala Ala Ala Ile Lys Ile Gln Thr Ala Phe Arg Gly Tyr Leu Ala Arg130 135 140Lys Ala Leu Arg Ala Leu Lys Gly Ile Val Lys Leu Gln Ala Ile Ile145 150 155 160Arg Gly Arg Ala Val Arg Arg Gln Ala Met Ser Ser Leu Lys Cys Leu 165 170 175Gln Ser Ile Val Ser Ile Gln Ser Gln Val Cys Ala Arg Arg Leu Gln 180 185 190Met Val Glu Gly Arg Cys Asp Tyr Ser Glu Asn Glu Glu Met Gln Asp195 200 205Phe Lys Asp Lys Ile Ile Arg Met Asp Ser Asn Ser Glu Arg Lys Trp210 215 220Asp Glu Ser Thr Val Leu Lys Glu Glu Val Asp Thr Ser Cys Thr Ser225 230 235 240Lys Arg Glu Arg Thr Lys Glu Tyr Ser Phe Asn His Arg Arg Ser Ala 245 250 255Glu Ser Glu Arg Ser Lys Val Asn Gly Arg Trp Arg Tyr Trp Leu Glu 260 265 270Gln Trp Val Asp Thr Gln Leu Ser Lys Ser Lys Glu Leu Glu Asp Leu275 280 285Asp Ser Val Phe Ser Ser His Ser Arg Ala Gly Glu Glu Tyr Gly Gly290 295 300Arg Gln Leu Lys Leu Arg Ser Asn Ile Gln Arg Gln Asn Pro Val Glu305 310 315 320Gly Leu Asp Ser Pro Ile Leu Gly Ser Arg Arg Ser Phe Pro His Arg 325 330 335Arg Gln Cys Ser Val Gly Glu Asp His Ser Phe Leu Ser Ser Pro Ala 340 345 350Thr Pro Ala Tyr Met Ala Ala Thr Glu Ser Ala Lys Ala Lys Ala Arg355 360 365Ser Thr Ser Ser Pro Lys Ile Arg Thr Gly Gly Asn Val Asp Met Asn370 375 380Ser Asp Ser Tyr Ser Pro Cys Lys Lys Lys Leu Ser Ile Ala Ser Ser385 390 395 400Ile Asn Ser Glu Met Leu Ser Asn Gly Arg Val Gly Lys Leu Ser Val 405 410 415Asn Gln Gln Gln Arg Ser Pro Ser Phe Lys Gly Leu Ser Val Pro Ile 420 425 430Lys Ser Ser Arg Thr Thr Ile Lys Asp Leu Ser Ile Asn Ser Asp Cys435 440 445Ser Leu Pro Asn Trp Asp Arg Gln Ala Phe Phe Lys450 455 46081501PRTOryza sativa subsp. japonicamisc_featurePublic GI ID no.115453071 81Met Glu Arg Lys Arg Arg Gly Trp Leu Glu Arg Ile Lys Arg Leu Phe1 5 10 15Val Ser Glu Pro Lys Gln Lys Pro Lys Pro Asp Lys Lys Val Lys Ser 20 25 30Lys Arg Trp Met Phe Ala Gly Lys Leu Lys Thr Gln His Ser Phe Ala35 40 45Leu Pro Ala Pro Ala Pro Ala Val Glu Glu Glu Gln Ile Arg Gln Ala50 55 60Glu Asp Glu Gln Ser Lys His Ala Met Ala Val Ala Leu Ala Thr Ala65 70 75 80Ala Ala Ala Glu Ala Ala Val Ala Ala Ala His Ala Ala Ala Glu Val 85 90 95Val Arg Leu Thr Gly Lys Thr Ala Ala Leu Ala Pro Ala Pro Ala Thr 100 105 110Thr Thr Thr Pro Thr Pro Tyr Gly His Glu His Ala Ala Leu Met Ile115 120 125Gln Ser Val Tyr Arg Gly Tyr Leu Ala Arg Arg Ala Leu Arg Ala Leu130 135 140Lys Gly Leu Val Arg Leu Gln Ala Leu Ile Arg Gly Gln Ala Val Arg145 150 155 160Arg Gln Thr Ala Ala Thr Leu Arg Gly Leu Glu Ser Leu Met Lys Ile 165 170 175Gln Ala Arg Gln Arg Ala Arg Ala Ser Ser Ala Ala Ala Ala Gly Gly 180 185 190Asp His Asn Ala Ala Asn Ser Pro Ala Pro Asp Gly Met Asp Ala Leu195 200 205Leu Arg Arg Gly Arg Glu Leu Tyr Tyr Ala Ala Ala Ala Ala Val His210 215 220Glu Gln Gln Leu Ser Lys Gly Trp Asp Ser Ser Thr Leu Ser Lys Glu225 230 235 240Glu Met Ser Ala Met Ser Arg Ser Arg Glu Glu Ala Ala Leu Lys Arg 245 250 255Val Arg Ala Leu Gln Tyr Ala Ser Leu His Gln Ser Glu Lys Val Gly 260 265 270Val Arg Arg Gln Pro Met Ser Arg Glu Glu Met Glu Thr Leu Asn Gln275 280 285Arg Trp Ser Trp Leu Glu Glu Trp Val Gly Ser Gln Pro Pro Phe Asp290 295 300Lys Asp Ile Pro Val Ala His Gln Ser Pro Ser Arg Asp Ala Ala Gly305 310 315 320Ala Ala Met Asn Asp Asp Glu Arg Pro Pro Pro Pro Pro Val Leu Arg 325 330 335Ser Arg Ser Arg Ala Asp Arg Leu Ala Cys Val Gly Gly Asp Asp Asp 340 345 350Asp Ala Asp Arg Gln Leu Gly Tyr Ser Ala Arg Arg Ser Phe Thr Arg355 360 365Ala Gly Arg Arg Thr Pro Ala Arg Asp Asp Asp Gly Gly Gly Ala Ala370 375 380Ala Phe Pro Gly Tyr Met Ala Ser Thr Ala Ser Ala Lys Ala Lys Phe385 390 395 400Arg Ser Met Ser Thr Pro Lys Glu Arg Ser Gly Ala Gly Ala Ala Asp 405 410 415Ala Tyr Ser Glu Gln Cys Phe Pro Phe Ala Asp Arg Leu Leu Ser Pro 420 425 430Ile Pro Ser Met Ser Pro Ile Pro Ser Ile Ala Ser Asp Ile Val Phe435 440 445Ala Arg Ser Ser Arg Pro Ala Ala Ala Gln Arg Ser Pro Arg Val Lys450 455 460Gly Pro Met Thr Pro Thr Arg Ser Arg Ser Arg Arg Ser Pro Gly Arg465 470 475 480His Ser Phe Gly Ser Glu Ala Ala Leu His Gln Leu Gln Met Glu Gln 485 490 495Tyr Thr Pro Ile Arg 500821814DNAGossypium hirsutummisc_featureCeres CLONE ID no.1968211 82aatttccccc ttcctctctc cctcctttcc tcagtaagct tacgaaactt cttcttcgct 60tcttctctgc aaatgaatcc cgagaaacct cccaaaccct tatcttttta ccctttttca 120ccttcttctc catcaccaaa ctaacgtttc cgtacacaac gaacaaaatc aaagcaatgg 180gtaaagcttc caagtggttc cgcagcatcc tcggcttcaa aaaatccgac ccccataacc 240aaccttctcc ttcttcttca aaaccaactt cccataaaga caaacggcgt tggagtttcg 300tcaaatcgta ccgtgaaaaa gactcctcca cgaacaatag taatgcgaag ttgccgtcgt 360cttcgcagca acagaaagac tctgtttcct tcgttgaaag gaaaggtgac aatgaagtaa 420cggatcctag caagcacgcc atcgctgttg ctgccgctac tgccgccgtt gccgaagcag 480ccgttgcggc tgctcaagct gccgctgcgg tggttaggct cactagtaac agtggtaggt 540gcgcgcgtga atcggcagcg gtttacgttt gcaacaacaa tagctatata gcacacgatg 600agtcatccgc cattaagata caatctgcat ttcgtggata cctggcaaga agagcattgc 660gagcactaaa aggattagtg agactccaag cattggttag aggtcatata gaaaggaaga 720gaactgcaga atggttaaga aggatgcaag cattattgag agcacaagca cgtgctcgtg 780ctggccgggc ccaaatttcc gagtcttccc aatcaagctg caaatcgtct cacttccatc 840atccggatcc agcaacccct gaaaaatttg aacatgttat tcgatccaag ggtacaaaat 900atgaacaatc atcaatgttg aagagaaatg gatcaaagtc aagtggaagg actgttgata 960atcaagagaa attacactca ggttggtatc gccgtgttga tgagcaaaca tgggagcatt 1020caacaagaat tggtcctaat gatgatgaaa agaatgacaa aatccttgaa gttgacactg 1080ggaaaccaaa tttcatctct aaacggagaa acctctttca ttcaacacat ctttctctga 1140attctgattt atatagctgt agtttcacta attcgagaga ctcacaccaa acagctccta 1200gtccttcatc tggtgaagtt cagtctttaa ctccattgat gctgtctcac tctgaagcaa 1260tacaggaaag ccctttctgc ggtgctgttg atgataatag tccacaattc tattctgcat 1320catcaaaagg agctagttcc aagagaagcc ccttcactcc tgctaagagt gatggcacta 1380gaagctacct aagtggttac tcagaccatc caaattacat gtcttacact gaatcgtcaa 1440aagctaaggt aaggtctttc agtgctccaa aacaaaggcc tcattatgaa agatctagtt 1500caacaaagag gtactccatt catggttttg gtgaattgaa atcaactaca caaaggtctg 1560ccatgcatgc aaacttcgcc agcaaagctt accccggttc gggtaggttg gacaggctag 1620gaatgcccct tgggtataga tactaaataa tggttttacc atttggctaa ggaatgttat 1680gtagtttatg tttagatgtt aacgatgatg actctcacct accctaatgt atccatcctt 1740taatgtttta gtgcatgtga gttcccaagt taaaaagaat agtagctgct ttacaaaaaa 1800aaaaaaaaaa aaaa 181483489PRTGossypium hirsutummisc_featureCeres CLONE ID no.1968211 83Met Gly Lys Ala Ser Lys Trp Phe Arg Ser Ile Leu Gly Phe Lys Lys1 5 10 15Ser Asp Pro His Asn Gln Pro Ser Pro Ser Ser Ser Lys Pro Thr Ser 20 25 30His Lys Asp Lys Arg Arg Trp Ser Phe Val Lys Ser Tyr Arg Glu Lys35 40 45Asp Ser Ser Thr Asn Asn Ser Asn Ala Lys Leu Pro Ser Ser Ser Gln50 55 60Gln Gln Lys Asp Ser Val Ser Phe Val Glu Arg Lys Gly Asp Asn Glu65 70 75 80Val Thr Asp Pro Ser Lys His Ala Ile Ala Val Ala Ala Ala Thr Ala 85 90 95Ala Val Ala Glu Ala Ala Val Ala Ala Ala Gln Ala Ala Ala Ala Val 100 105 110Val Arg Leu Thr Ser Asn Ser Gly Arg Cys Ala Arg Glu Ser Ala Ala115 120 125Val Tyr Val Cys Asn Asn Asn Ser Tyr Ile Ala His Asp Glu Ser Ser130 135 140Ala Ile Lys Ile Gln Ser Ala Phe Arg Gly Tyr Leu Ala Arg Arg Ala145 150 155 160Leu Arg Ala Leu Lys Gly Leu Val Arg Leu Gln Ala Leu Val Arg Gly 165 170 175His Ile Glu Arg Lys Arg Thr Ala Glu Trp Leu Arg Arg Met Gln Ala 180 185 190Leu Leu Arg Ala Gln Ala Arg Ala Arg Ala Gly Arg Ala Gln Ile Ser195 200 205Glu Ser Ser Gln Ser Ser Cys Lys Ser Ser His Phe His His Pro Asp210 215 220Pro Ala Thr Pro Glu Lys Phe Glu His Val Ile Arg Ser Lys Gly Thr225 230 235 240Lys Tyr Glu Gln Ser Ser Met Leu Lys Arg Asn Gly Ser Lys Ser Ser 245 250 255Gly Arg Thr Val Asp Asn Gln Glu Lys Leu His Ser Gly Trp Tyr Arg 260 265 270Arg Val Asp Glu Gln Thr Trp Glu His Ser Thr Arg Ile Gly Pro Asn275 280 285Asp Asp Glu Lys Asn Asp Lys Ile Leu Glu Val Asp Thr Gly Lys Pro290 295 300Asn Phe Ile Ser Lys Arg Arg Asn Leu Phe His Ser Thr His Leu Ser305 310 315 320Leu Asn Ser Asp Leu Tyr Ser Cys Ser Phe Thr Asn Ser Arg Asp Ser 325 330 335His Gln Thr Ala Pro Ser Pro Ser Ser Gly Glu Val Gln Ser Leu Thr 340 345 350Pro Leu Met Leu Ser His Ser Glu Ala Ile Gln Glu Ser Pro Phe Cys355 360 365Gly Ala Val Asp Asp Asn Ser Pro Gln Phe Tyr Ser Ala Ser Ser Lys370 375 380Gly Ala Ser Ser Lys Arg Ser Pro Phe Thr Pro Ala Lys Ser Asp Gly385 390 395 400Thr Arg Ser Tyr Leu Ser Gly Tyr Ser Asp His Pro Asn Tyr Met Ser 405 410 415Tyr Thr Glu Ser Ser Lys Ala Lys Val Arg Ser Phe Ser Ala Pro Lys 420 425 430Gln Arg Pro His Tyr Glu Arg Ser Ser Ser Thr Lys Arg Tyr Ser Ile435 440 445His Gly Phe Gly Glu Leu Lys Ser Thr Thr Gln Arg Ser Ala Met His450 455 460Ala Asn Phe Ala Ser Lys Ala Tyr Pro Gly Ser Gly Arg Leu Asp Arg465 470 475 480Leu Gly Met Pro Leu Gly Tyr Arg Tyr 48584464PRTOryza sativa subsp. indicamisc_featurePublic GI ID no.116310011 84Met Gly Trp Ala Ser Arg Trp Leu Arg Gly Leu Leu Gly Gly Gly Lys1 5 10 15Lys Pro Asn Ser Gly Ser Gly Asp Pro Lys Pro Ala Arg Glu Lys Lys 20 25 30Arg Trp Gly Phe Gly Lys Ser Phe Arg Glu Lys Ser Pro Ala His Pro35 40 45Pro Pro Pro Pro Pro Pro Ser Ala Ala Val Gln Arg Ala Val Thr Pro50 55 60Arg Arg Ala Tyr Thr Ala Ser Asp Glu Gly Asp Asp Glu Gln Ser Lys65 70 75 80Arg Ala Ile Ala Val Ala Ala Ala Thr Ala Ala Val Ala Glu Ala Ala 85 90 95Val Ala Ala Ala Gln Ala Ala Ala Ala Val Val Arg Leu Thr Ser Ser 100 105 110Gly Arg Cys Ala Pro Ala Ala Ala Lys Arg Glu Glu Tyr Ala Ala Val115 120 125Arg Ile Gln Ala Ala Phe Arg Gly Tyr Leu Ala Arg Arg Ala Leu Lys130 135 140Ala Leu Arg Gly Leu Val Lys Leu Gln Ala Leu Val Arg Gly Asn Ile145 150 155 160Val Arg Arg Gln Ala Ala Glu Thr Leu Arg Cys Met His Ala Leu Val 165 170 175Arg Val Gln Arg Arg Ala Arg Ala Cys Arg Ala Ile Arg Ser Gln His 180 185 190Val Ser Ala His Pro Gly Pro Pro Thr Pro Glu Lys Tyr Asp Gln Ala195 200 205Thr His Glu Gly Val Pro Lys His Gly Arg Ser Gly Ser Leu Lys Gly210 215 220Ser Ser Ser Lys Thr Pro Gly Ser Glu Arg Leu Thr Arg Glu Arg Ser225 230 235 240Glu Ser Cys Gly Arg Asn Trp Leu Asp Lys Trp Val Glu Glu Arg Tyr 245 250 255Leu Asp Asp Glu Lys Asn Ala Lys Ile Leu Glu Val Asp Thr Gly Lys 260 265 270Pro Gly Arg His Ala Ser Arg Arg Arg Ser Gly Ser His His His His275 280 285Ser Ser Cys Ser Ser Met Thr Ser Glu Gln Lys Ser Arg Ser Tyr Ala290 295 300Thr Met Pro Glu Ser Pro Ser Lys Asp Ser Thr Thr Ala Gln Gln Ser305 310 315 320Val Pro Ser Pro Pro Ser Val Gly Met Ala Glu Ala Leu Ser Pro Leu 325 330 335Arg Met Ala Val Asp Ile Ala Glu Leu Cys Asp Ser Pro Gln Phe Phe 340 345 350Ser Ala Thr Ser Arg Pro Gly Ser Ser Arg Ser Arg Ala Phe Thr Pro355 360 365Thr Lys Ser Glu Cys Ser Arg Ser Leu Phe Gly Gly Tyr Ser Asp Tyr370 375 380Pro Asn Tyr Met Ala Asn Thr Glu Ser Phe Arg Ala Lys Ala Arg Ser385 390 395 400Gln Ser Ala Pro Lys Gln Arg Pro Gln Tyr Glu Lys Ser Ser Ser Leu 405 410 415Arg Lys Ala Ser Ala His Ala Phe Gly Pro Gly Ser Cys Ala Pro Val 420 425 430Ala Gln Arg Thr Thr Ala Ser Leu His Ser Lys Phe Thr Asn Lys Ala435 440 445Tyr Pro Gly Ser Gly Arg Leu Asp Arg Leu Gly Met Pro Val Lys Tyr450 455 460851019DNAArabidopsis thalianamisc_featureCeres SEEDLINE ID no.ME08768 85gttactaatc tcacgcacat tctttctctc tctaaattct gcaccacaat ccgcaaaatg 60accaaatact tcttgctgtg aatgtcgaaa atgcctgcag gcacaacatg tgaagtgatg 120caaaacggca acacttgttt caccagatcc tttcgtcatt gatggggaag aaaggaggca 180gctggttctc atctgtgaag aaagttttca agtcatcttc taaagattcg ccccagcctg 240agaagaagaa ggacaacaca cagaaattac agcatgaagt ggcagaggtg gtgtcctttg 300agcattttcc tgcagagagt tctccagata atgtgagcaa tgcagagatg agtacgacat 360caacgccagt gaccaacgaa gatagaagcc atgcgattgc cgttgcagca gcaactgccg 420cagctgcaga agctgctgtg gtggctgctc aagcagctgc aagagttgta agattggcag 480gaagttacgg gcggcagtcc aaggaagaaa gagcagcaac actcattcaa tcatactata 540gaggctacct ggctcgacgt gcactacgag cattgaaggg attagtgagg ctgcaagcac 600tggtgagggg acacaatgtg cggaagcaag cgcagatgac gatgcggtgc atgcaagcac 660tggtgagggt gcaggcacga gtacgggctc gccgattcca attgagtcac gcggatcagg 720aaagagagaa gaaagaagag cccaagccca tacccgtgcc cgtgcccatg agccccctga 780gaagaataga cgacattaat gactgggaca ataggcgtca aagtagctac aaaattaagg 840aaaacgattt gcggaaacat gaagctgtaa tgaagagaga gagagctctt gcatacgctt 900tcaactatca acaggttagt taatttgtca tgattaaatg ggaatatagt ggataaaata 960gcttagtcta atattctttc aaaacggtac gtgcaattta atttatctat atcttcttt 101986253PRTArabidopsis thalianamisc_featureCeres SEEDLINE ID no.ME08768 86Met Gly Lys Lys Gly Gly Ser Trp Phe Ser Ser Val Lys Lys Val Phe1 5 10 15Lys Ser Ser Ser Lys Asp Ser Pro Gln Pro Glu Lys Lys Lys Asp Asn 20 25 30Thr Gln Lys Leu Gln His Glu Val Ala Glu Val Val Ser Phe Glu His35 40 45Phe Pro Ala Glu Ser Ser Pro Asp Asn Val Ser Asn Ala Glu Met Ser50 55 60Thr Thr Ser Thr Pro Val Thr Asn Glu Asp Arg Ser His Ala Ile Ala65 70 75 80Val Ala Ala Ala Thr Ala Ala Ala Ala Glu Ala Ala Val Val Ala Ala 85 90 95Gln Ala Ala Ala Arg Val Val Arg Leu Ala Gly Ser Tyr Gly Arg Gln 100 105 110Ser Lys Glu Glu Arg Ala Ala Thr Leu Ile Gln Ser Tyr Tyr Arg Gly115 120 125Tyr Leu Ala Arg Arg Ala Leu Arg Ala Leu Lys Gly Leu Val Arg Leu130 135 140Gln Ala Leu Val Arg Gly His Asn Val Arg Lys Gln Ala Gln Met Thr145 150 155 160Met Arg Cys Met Gln Ala Leu Val Arg Val Gln Ala Arg Val Arg Ala 165 170 175Arg Arg Phe Gln Leu Ser His Ala Asp Gln Glu Arg Glu Lys Lys Glu 180 185 190Glu Pro Lys Pro Ile Pro Val Pro Val Pro Met Ser Pro Leu Arg Arg195 200 205Ile Asp Asp Ile Asn Asp Trp Asp Asn Arg Arg Gln Ser Ser Tyr Lys210

215 220Ile Lys Glu Asn Asp Leu Arg Lys His Glu Ala Val Met Lys Arg Glu225 230 235 240Arg Ala Leu Ala Tyr Ala Phe Asn Tyr Gln Gln Val Ser 245 250871906DNAGossypium hirsutummisc_featureCeres CLONE ID no.1943807 87atctttttta tcttcacagt gttggtgtct tggctccttc ttcaaagctt cttttagctg 60taaatgtagc ttggtttaac cctatccttt tgaatgggga tgaaaggagg gacttcatgg 120ttgactgctg tgaaaagggc ttttagatct cctactaaag atacccatga agatgaaaag 180gtaagtgttt caatctattt taatggctgt ttatgaatct aaaaagaaaa ccctttgatt 240tttttttata tagaagagag ataaacggag gtggatcttt aggaaacaaa atacaagtcc 300tgtgaagagt gtaggtaata atggtggtgg tggtgcaagt acggcagcag cggagcaaag 360acatgctatt gctgtggcgg tggctaaagc agctgaagct gaagctgcgg tggcgacggc 420acaagcagct ttacaagctg ctcggttgac taaacctagt tatggcagga aacatcactt 480tgctgctatt gttattcaga cagcttttag aggctacctg gccaggagag ctctacgtgc 540gttaaaaggg ctagtgaagt tacaagcttt agtgagaggt cacaacgtga gaaagcaagc 600caagatgacg cttcgttgca tgcaagcact ggttaaagtt cagtctcgtg ttttagacca 660aagaatgagg ctctcgcacg atggttgcag ccggaaatca gcatttagcg acaccaacag 720tgtatgggaa tcacggtatc ttcaagatat atcggataga agatcattat cgagagaagg 780aagtagcata gcagatgatt gggacgaaag gccacacaca gttgaagaag tgaaagctat 840gttacaacat aggaaagaag ctgctttgaa acgtgaaaag agcttgtcac aagcactgtc 900acaacagatg aggagagctc gaaggagtcc atcaatgggg ggacaagatg agtggcttga 960tcgttggatg cctgctaaac catgggataa cagaggaaga gcttcaatgg atcaaagaga 1020taatgtcaaa actgttgaaa tggacacttc acagccttat tcatatttag caccaaatta 1080tagaagaaca aattcaaacc attatcacca aaggcctagt tcacctctcc atagggctca 1140acacaatgca caacctttcc acccttctcc aattacaccc tctccatcga aaacacgtcc 1200ggttcaagta cggtccgcga gccctcgttg cgttagggaa gaccgaacat cgttttcatc 1260atcacaaaca ccaagtttaa ggtccaatta ttattacaca ggaagggtta gtactcaagc 1320tagtactagc ataaacaatg ctactacatt gcctaattac atggcagcaa cagagtctgc 1380aaaggctagg attaggtctc aaagtgcacc aagacagagg ccatcgacac cagagaggga 1440ccgaatcggt tcagcaagga aaaggctatc gtttcccgtc ccggaaccat atggtatcgg 1500gatggggtac ggaggttatg gtcatagctt gaggagcccg agttttaaaa gtgtaagcgg 1560gtcgcaattc ggattggaac gacagtctaa ctattcatct tgttgtactg agagccttgg 1620tggtgaaatg tcaccatctt caactagtga tctaagaagg tggttgaggt gatcccatca 1680atgtagctgt tggtttttac tagttttata gtgtgtttcc attgttgatt ttaccaattc 1740ttggttgaaa ttcaagcttt ataagtgagg caactgcgat gaacccttcc ttactgggat 1800ctttcatgag attcataacc aaattgagtg tgtaatacta taaagtaact ctgtaattct 1860gttttgtcat aactttttaa tatattaaag cttatcatct tttccg 190688355PRTGossypium hirsutummisc_featureCeres CLONE ID no.1943807 88Met Thr Leu Arg Cys Met Gln Ala Leu Val Lys Val Gln Ser Arg Val1 5 10 15Leu Asp Gln Arg Met Arg Leu Ser His Asp Gly Cys Ser Arg Lys Ser 20 25 30Ala Phe Ser Asp Thr Asn Ser Val Trp Glu Ser Arg Tyr Leu Gln Asp35 40 45Ile Ser Asp Arg Arg Ser Leu Ser Arg Glu Gly Ser Ser Ile Ala Asp50 55 60Asp Trp Asp Glu Arg Pro His Thr Val Glu Glu Val Lys Ala Met Leu65 70 75 80Gln His Arg Lys Glu Ala Ala Leu Lys Arg Glu Lys Ser Leu Ser Gln 85 90 95Ala Leu Ser Gln Gln Met Arg Arg Ala Arg Arg Ser Pro Ser Met Gly 100 105 110Gly Gln Asp Glu Trp Leu Asp Arg Trp Met Pro Ala Lys Pro Trp Asp115 120 125Asn Arg Gly Arg Ala Ser Met Asp Gln Arg Asp Asn Val Lys Thr Val130 135 140Glu Met Asp Thr Ser Gln Pro Tyr Ser Tyr Leu Ala Pro Asn Tyr Arg145 150 155 160Arg Thr Asn Ser Asn His Tyr His Gln Arg Pro Ser Ser Pro Leu His 165 170 175Arg Ala Gln His Asn Ala Gln Pro Phe His Pro Ser Pro Ile Thr Pro 180 185 190Ser Pro Ser Lys Thr Arg Pro Val Gln Val Arg Ser Ala Ser Pro Arg195 200 205Cys Val Arg Glu Asp Arg Thr Ser Phe Ser Ser Ser Gln Thr Pro Ser210 215 220Leu Arg Ser Asn Tyr Tyr Tyr Thr Gly Arg Val Ser Thr Gln Ala Ser225 230 235 240Thr Ser Ile Asn Asn Ala Thr Thr Leu Pro Asn Tyr Met Ala Ala Thr 245 250 255Glu Ser Ala Lys Ala Arg Ile Arg Ser Gln Ser Ala Pro Arg Gln Arg 260 265 270Pro Ser Thr Pro Glu Arg Asp Arg Ile Gly Ser Ala Arg Lys Arg Leu275 280 285Ser Phe Pro Val Pro Glu Pro Tyr Gly Ile Gly Met Gly Tyr Gly Gly290 295 300Tyr Gly His Ser Leu Arg Ser Pro Ser Phe Lys Ser Val Ser Gly Ser305 310 315 320Gln Phe Gly Leu Glu Arg Gln Ser Asn Tyr Ser Ser Cys Cys Thr Glu 325 330 335Ser Leu Gly Gly Glu Met Ser Pro Ser Ser Thr Ser Asp Leu Arg Arg 340 345 350Trp Leu Arg355891677DNAPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1471392 89atggggaaga agggaggtag ctcatggttg accgttgtga aaagggcttt tagatctcct 60aataaagaaa atgacaagag aactgctggg actacaggcc atgaccaaga agaagatgaa 120gaaaagaaga gagagaagag gaggtggctg tttaggaaac ctacgaatca agaaacagtg 180acacaacaga tcctatcaaa ggcaggaaat gtcaaggcct ccacgggtgg tggtggaggt 240gcaccgacag accatgtgtc ggcagctgca gcagctgagc aaaggcatgc aattgctgta 300gctgttgcca ctgcagctgc agctgaaact gcattagcca ctgcccaggc ggccgtggag 360gtggctaggc tcactaggcc ttcttatcac cctagagaac gttccgctgc cattgtcatt 420caaaccgctt ttagaggata cctggcaagg cgggctcttc gcgcgcttaa agggctagtg 480aagttgcaag ctttagtgag gggacacaat gtgagaaagc aggccaagat gaccctgaga 540tgcatgcaag ctctggttcg agtgcaggct cgagtacttg accaacgcat gaggctttca 600catgaaggca gcagggaatc tgcattcagt gacaccaata gcgtgtttga atcgcgatat 660cttcaagaaa tttcagaaag aaagtcgatg tcaagagacg gcagcagcat tgcagatgat 720tgggatgatc ggccacgcac aattgaggaa gtcaaggcca tgttgcaacg caggaaagaa 780gttgcattca agcgtgagaa ggccttatct caaggtttct ctcaacagat atggagaaac 840cgtaggagcc catcaatggg caatgaaggt gagctccaag aaagatcaca atggcttgat 900cattggatgc ctgcaaagcc gtgggacaat agcagcagag cacgagcctc aactgatcaa 960agaaacccca tcaaaactgt agaaattgaa acctcccaac cttgctcata tttagctcct 1020aattttggaa gaacgaacca aaaccaatat caccaacacc agagatccaa ttcaataaac 1080aatggtgtta catgctcggc tcctcctcca ctccatagag ctcatcaaaa tgcttctctc 1140cgcaactctc ctattacacc ctccccgtca agaactaggc ctcttcaggt tcgttcagcg 1200agtccccgat gtgctagaga agatagaagc tgtaattcct ctcgaacacc gagtttaagg 1260tccaattacc tctataatgg caatctgaaa caacatggaa tcaggggtgg tgctgctagt 1320gttagtggaa atgctaatgc tacattgcca aattacatgg ctacaactga gtccgccaag 1380gctagattga gatcacagag tgcgccaagg caaagaccat caacaccaga gcgagacagg 1440gttgggtctg caagaaaacg gcttttgtat cctgtccccg acccttacgg tgtcgggatg 1500ggttatggtg gtgttggtta cgggcatggt ttcaggagtc ccagctttaa aagtgtaagt 1560ggttcacatt ttggtggatt agaacaacaa tctaactatt cttcttgctg cactgatacc 1620ttcggtgctg agatttcccc ttcttcaacg agcgaccaga gaaggtggtt gagataa 167790382PRTPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1471392 90Met Thr Leu Arg Cys Met Gln Ala Leu Val Arg Val Gln Ala Arg Val1 5 10 15Leu Asp Gln Arg Met Arg Leu Ser His Glu Gly Ser Arg Glu Ser Ala 20 25 30Phe Ser Asp Thr Asn Ser Val Phe Glu Ser Arg Tyr Leu Gln Glu Ile35 40 45Ser Glu Arg Lys Ser Met Ser Arg Asp Gly Ser Ser Ile Ala Asp Asp50 55 60Trp Asp Asp Arg Pro Arg Thr Ile Glu Glu Val Lys Ala Met Leu Gln65 70 75 80Arg Arg Lys Glu Val Ala Phe Lys Arg Glu Lys Ala Leu Ser Gln Gly 85 90 95Phe Ser Gln Gln Ile Trp Arg Asn Arg Arg Ser Pro Ser Met Gly Asn 100 105 110Glu Gly Glu Leu Gln Glu Arg Ser Gln Trp Leu Asp His Trp Met Pro115 120 125Ala Lys Pro Trp Asp Asn Ser Ser Arg Ala Arg Ala Ser Thr Asp Gln130 135 140Arg Asn Pro Ile Lys Thr Val Glu Ile Glu Thr Ser Gln Pro Cys Ser145 150 155 160Tyr Leu Ala Pro Asn Phe Gly Arg Thr Asn Gln Asn Gln Tyr His Gln 165 170 175His Gln Arg Ser Asn Ser Ile Asn Asn Gly Val Thr Cys Ser Ala Pro 180 185 190Pro Pro Leu His Arg Ala His Gln Asn Ala Ser Leu Arg Asn Ser Pro195 200 205Ile Thr Pro Ser Pro Ser Arg Thr Arg Pro Leu Gln Val Arg Ser Ala210 215 220Ser Pro Arg Cys Ala Arg Glu Asp Arg Ser Cys Asn Ser Ser Arg Thr225 230 235 240Pro Ser Leu Arg Ser Asn Tyr Leu Tyr Asn Gly Asn Leu Lys Gln His 245 250 255Gly Ile Arg Gly Gly Ala Ala Ser Val Ser Gly Asn Ala Asn Ala Thr 260 265 270Leu Pro Asn Tyr Met Ala Thr Thr Glu Ser Ala Lys Ala Arg Leu Arg275 280 285Ser Gln Ser Ala Pro Arg Gln Arg Pro Ser Thr Pro Glu Arg Asp Arg290 295 300Val Gly Ser Ala Arg Lys Arg Leu Leu Tyr Pro Val Pro Asp Pro Tyr305 310 315 320Gly Val Gly Met Gly Tyr Gly Gly Val Gly Tyr Gly His Gly Phe Arg 325 330 335Ser Pro Ser Phe Lys Ser Val Ser Gly Ser His Phe Gly Gly Leu Glu 340 345 350Gln Gln Ser Asn Tyr Ser Ser Cys Cys Thr Asp Thr Phe Gly Ala Glu355 360 365Ile Ser Pro Ser Ser Thr Ser Asp Gln Arg Arg Trp Leu Arg370 375 38091527PRTArabidopsis thalianamisc_featurePublic GI ID no.6715635 91Met Gly Lys Lys Asn Gly Ser Ser Ser Trp Leu Thr Ala Val Lys Arg1 5 10 15Ala Phe Arg Ser Pro Thr Lys Lys Asp His Ser Asn Asp Val Glu Glu 20 25 30Asp Glu Glu Lys Lys Arg Glu Lys Arg Arg Trp Phe Arg Lys Pro Ala35 40 45Thr Gln Glu Ser Pro Val Lys Ser Ser Gly Ile Ser Pro Pro Ala Pro50 55 60Gln Glu Asp Ser Leu Asn Val Asn Ser Lys Pro Ser Pro Glu Thr Ala65 70 75 80Pro Ser Tyr Ala Thr Thr Thr Pro Pro Ser Asn Ala Gly Lys Pro Pro 85 90 95Ser Ala Val Val Pro Ile Ala Thr Ser Ala Ser Lys Thr Leu Ala Pro 100 105 110Arg Arg Ile Tyr Tyr Ala Arg Glu Asn Tyr Ala Ala Val Val Ile Gln115 120 125Thr Ser Phe Arg Gly Tyr Leu Ala Arg Arg Ala Leu Arg Ala Leu Lys130 135 140Gly Leu Val Lys Leu Gln Ala Leu Val Arg Gly His Asn Val Arg Lys145 150 155 160Gln Ala Lys Met Thr Leu Arg Cys Met Gln Ala Leu Val Arg Val Gln 165 170 175Ser Arg Val Leu Asp Gln Arg Lys Arg Leu Ser His Asp Gly Ser Arg 180 185 190Lys Ser Ala Phe Ser Asp Ser His Ala Val Phe Glu Ser Arg Tyr Leu195 200 205Gln Asp Leu Ser Asp Arg Gln Ser Met Ser Arg Glu Gly Ser Ser Ala210 215 220Ala Glu Asp Trp Asp Asp Arg Pro His Thr Ile Asp Ala Val Lys Val225 230 235 240Met Leu Gln Arg Arg Arg Asp Thr Ala Leu Arg His Asp Lys Thr Asn 245 250 255Leu Ser Gln Ala Phe Ser Gln Lys Met Trp Arg Thr Val Gly Asn Gln 260 265 270Ser Thr Glu Gly His His Glu Val Glu Leu Glu Glu Glu Arg Pro Lys275 280 285Trp Leu Asp Arg Trp Met Ala Thr Arg Pro Trp Asp Lys Arg Ala Ser290 295 300Ser Arg Ala Ser Val Asp Gln Arg Val Ser Val Lys Thr Val Glu Ile305 310 315 320Asp Thr Ser Gln Pro Tyr Ser Arg Thr Gly Ala Gly Ser Pro Ser Arg 325 330 335Gly Gln Arg Pro Ser Ser Pro Ser Arg Thr Ser His His Tyr Gln Ser 340 345 350Arg Asn Asn Phe Ser Ala Thr Pro Ser Pro Ala Lys Ser Arg Pro Ile355 360 365Leu Ile Arg Ser Ala Ser Pro Arg Cys Gln Arg Asp Pro Arg Glu Asp370 375 380Arg Asp Arg Ala Ala Tyr Ser Tyr Thr Ser Asn Thr Pro Ser Leu Arg385 390 395 400Ser Asn Tyr Ser Phe Thr Ala Arg Ser Gly Cys Ser Ile Ser Thr Thr 405 410 415Met Val Asn Asn Ala Ser Leu Leu Pro Asn Tyr Met Ala Ser Thr Glu 420 425 430Ser Ala Lys Ala Arg Ile Arg Ser His Ser Ala Pro Arg Gln Arg Pro435 440 445Ser Thr Pro Glu Arg Asp Arg Ala Gly Leu Val Lys Lys Arg Leu Ser450 455 460Tyr Pro Val Pro Pro Pro Ala Glu Tyr Glu Asp Asn Asn Ser Leu Arg465 470 475 480Ser Pro Ser Phe Lys Ser Val Ala Gly Ser His Phe Gly Gly Met Leu 485 490 495Glu Gln Gln Ser Asn Tyr Ser Ser Cys Cys Thr Glu Ser Asn Gly Val 500 505 510Glu Ile Ser Pro Ala Ser Thr Ser Asp Phe Arg Asn Trp Leu Arg515 520 525921946DNATriticum aestivummisc_featureCeres CLONE ID no.910109 92atcaaacccc ccactgcccg cgccagccag ccgcggcaat aataataact ccgccgcctc 60ctgccatgcc gcacgctagt agtagcacgc taggatcgag tagctcgtag cgtagccgtg 120cgagggaggg aggtgggtcg atgcccgcgg ccgtgcaacc acagcaaccg cgagccggtg 180gtgttggcca tggggaataa gaagggcggg tcgtcgtggc tcaccgccgt caagcgggcc 240ttccgctcgc cgtccaagga ggacagcccc aagaagtctg cacgcctccg cgaggaccct 300gacgccgacg aggacaagac caagagggag aggaggagat ggctcttcag gagatcctcg 360tccccgtctc cgtctccggc gtctgccccc gcgccgccgg agcagcagca gtcggcgtcg 420aggtcggcac ctgcacccgc tgtgacggac gagcagcgtc acgccatcgc gctggccgtg 480gcgaccgcgg cgacggccga ggctgccgtg gccacggcgc aggcggcggc cgaggtcgtc 540cgcctgaccc gcccctcctc cagcttcgtg cgggagcact acgctgccat cgtcgtacag 600accgccttcc gaggctacct ggcgaggcgt gctctgcgcg cgctcaaggg gctggtgaag 660ctgcaagcgc tagtgcgcgg gcacaacgtg cggaagcagg ccaacatgac gctgcggtgc 720atgcaggcgc tggtgcgcgt ccaggcgcgg gtgcgcgacc agcggctgcg actctcccag 780gagtccttgt ccgccgccgg tgcggctgcg tgcggcagca gcaaatcctc gtacagcgtt 840gacacctccg ctttctggga ctccaagtac acccaagaat acgccgaacg ccgctctgtg 900gagcggtcgc gagacggcag cagcttcgcc gccgaagact gggacgaccg gccgcggacg 960atagaggaga ttcaggcgat gctgcagacg aggaaagacg ctgctctcaa gcgtgagaga 1020gcgctctcat acgccttttc tcaccaaatt tggaggaacg ccgctccgtc agtcgaggag 1080gagatgaacg tcgacgggca gccgcgctgg gcggagaagt ggatggcgtc gcgcgcgtcg 1140tttgatacaa acaggagcag cgcccgaact gccgcggcgg cggctgctgc ggcaccaggg 1200cgcgcgtcca cggaccaccg cgaccaggtc aagacgttgg agatcgacac cgcacggcca 1260ttctcctact ccacgcctcg ccggcatgcc ccaccgtcgc agcacgggaa cggctcgccg 1320atgcaccgtg cgcaccacca ggcttcggtc acgccgtcac cggggaaggc gaggccaccg 1380attcaggtgc gctccgcgag cccgcgagtg gagcgcggca caagtggtgg aggaggaagc 1440tacacaccga gcttgcactc ccagcgccac gcgtcctccg gctcggcggt gccgaactac 1500atggcggcca cggaatctgc aaaggcacgt atccgctccc agagcgcgcc acggcaacgc 1560cctgcaaccc cggagcgcga ccggccacag accgcctata accccgccgg agggagcgcc 1620aagaagcggc tgtcgttccc cgtcccgcag gacccgtacg gcgttgggta cgcgcagagc 1680ctgcggagcc cgagcttcaa gagcgcgacg gggcggttca cctccgagca gcgttcgacc 1740gtctcgtctc tgtcgtgcgc agagagcgtc ggcggggaac cagtctcccc gtcgtccacc 1800actgacctcc gccgctggct ccgttgagtt gagcccccgg cgaggtgttc gttgtaatac 1860ctgcgttgct aattttctcg taatctcctc ggagaaaaat gaccttctcg taatctattt 1920ttttgctgct aaaaaaaaaa aaaaaa 194693543PRTTriticum aestivummisc_featureCeres CLONE ID no.910109 93Met Gly Lys Lys Ala Gly Thr Thr Ser Ser Trp Leu Thr Ala Val Lys1 5 10 15Arg Ala Phe Arg Ser Pro Ser Lys Asp Asp Ser Pro Asn Lys Ala Ala 20 25 30Arg Leu Arg Asp Asp Thr Asp Asp Asp Lys Gly Lys Arg Glu Arg Arg35 40 45Arg Trp Leu Phe Arg Lys Ser Ser Ser Pro Ser Pro Ala Pro Pro Thr50 55 60Pro Pro Pro Pro Gln Gln Gln Gln Gln Gln Ser Arg Ala Ala Ala Val65 70 75 80Thr Glu Glu Gln Arg His Ala Ile Ala Leu Ala Val Ala Thr Ala Ala 85 90 95Thr Ala Glu Ala Ala Val Ala Thr Ala Gln Ala Ala Ala Glu Val Val 100 105 110Arg Leu Thr Arg Pro Ser Ser Ser Phe Val Arg Glu His Tyr Ala Ala115 120 125Ile Val Val Gln Thr Ala Phe Arg Gly Tyr Leu Ala Arg Arg Ala Leu130 135 140Arg Ala Leu Lys Gly Leu Val Lys Leu Gln Ala Leu Val Arg Gly His145 150 155 160Asn Val Arg Lys Gln Ala Asn Met Thr Leu Arg Cys Met Gln Ala Leu 165 170 175Val Arg Val Gln Ala Arg Val Arg Asp Gln Arg Met Arg Leu Ser Gln 180 185 190Asp Ser Ile Ser Leu Ser Ala Ala Ala Ala Ser Ala Ala Pro Cys Gly195 200 205Ser Ser Lys Ser Ser Tyr Ser Val Asp Thr Ser Thr Phe Trp Asp Ser210 215 220Lys Tyr Thr His Asp Phe Ala Ala Ala Asp Arg Arg Ser Ile Glu Arg225 230 235 240Ser Arg Asp Gly Ser Ser Phe Ala Ala Gly Asp Asp Trp Asp Asp Arg 245 250 255Pro Arg Thr Ile

Glu Glu Ile Gln Ala Met Leu Gln Thr Arg Lys Asp 260 265 270Ala Ala Leu Lys Arg Glu Arg Ala Leu Ser Tyr Ala Phe Ser His Gln275 280 285Ile Trp Arg Asn Pro Ala Pro Ser Val Glu Glu Met Asp Val Asp Gly290 295 300Gln Pro Arg Trp Ala Glu Arg Trp Met Ala Ser Arg Ala Ser Phe Asp305 310 315 320Thr Ser Arg Ser Thr Val Arg Ala Ser Ala Ala Ala Ala Pro Gly Arg 325 330 335Ala Ser Thr Asp His Arg Asp Gln Val Lys Thr Leu Glu Ile Asp Thr 340 345 350Ala Arg Pro Phe Ser Tyr Ser Thr Pro Arg Arg His Gly Asn Ala Ser355 360 365Tyr His Ala Ser Ser Ser Pro Met His Arg Ala His His His Ser Pro370 375 380Val Thr Pro Ser Pro Ser Lys Ala Arg Pro Pro Ile Gln Val Arg Ser385 390 395 400Ala Ser Pro Arg Val Glu Arg Gly Gly Gly Gly Gly Gly Ser Tyr Thr 405 410 415Pro Ser Leu His Ser His Arg His His Ala Ser Ser Gly Gly Ala Ala 420 425 430Ala Val Pro Asn Tyr Met Ala Ala Thr Glu Ser Ala Lys Ala Arg Val435 440 445Arg Ser Gln Ser Ala Pro Arg Gln Arg Pro Ala Thr Pro Glu Arg Asp450 455 460Arg Met Ser Phe Gly Gly Gly Gly Gly Gly Gly Gly Ala Lys Lys Arg465 470 475 480Leu Ser Phe Pro Val Pro Ile Asp Pro Tyr Gly Ala Tyr Ala Gln Ser 485 490 495Leu Arg Ser Pro Ser Phe Lys Ser Ala Ala Gly Arg Phe Ser Ser Glu 500 505 510Gln Arg Ser Asn Val Ser Ser Ser Cys Ala Glu Ser Leu Gly Gly Asp515 520 525Val Val Ser Pro Ser Ser Thr Thr Asp Leu Arg Arg Trp Leu Arg530 535 54094543PRTOryza sativa subsp. japonicamisc_featurePublic GI ID no.115474509 94Met Gly Lys Lys Ala Gly Thr Thr Ser Ser Trp Leu Thr Ala Val Lys1 5 10 15Arg Ala Phe Arg Ser Pro Ser Lys Asp Asp Ser Pro Asn Lys Ala Ala 20 25 30Arg Leu Arg Asp Asp Thr Asp Asp Asp Lys Gly Lys Arg Glu Arg Arg35 40 45Arg Trp Leu Phe Arg Lys Ser Ser Ser Pro Ser Pro Ala Pro Pro Thr50 55 60Pro Pro Pro Pro Gln Gln Gln Gln Gln Gln Ser Arg Ala Ala Ala Val65 70 75 80Thr Glu Glu Gln Arg His Ala Ile Ala Leu Ala Val Ala Thr Ala Ala 85 90 95Thr Ala Glu Ala Ala Val Ala Thr Ala Gln Ala Ala Ala Glu Val Val 100 105 110Arg Leu Thr Arg Pro Ser Ser Ser Phe Val Arg Glu His Tyr Ala Ala115 120 125Ile Val Val Gln Thr Ala Phe Arg Gly Tyr Leu Ala Arg Arg Ala Leu130 135 140Arg Ala Leu Lys Gly Leu Val Lys Leu Gln Ala Leu Val Arg Gly His145 150 155 160Asn Val Arg Lys Gln Ala Asn Met Thr Leu Arg Cys Met Gln Ala Leu 165 170 175Val Arg Val Gln Ala Arg Val Arg Asp Gln Arg Met Arg Leu Ser Gln 180 185 190Asp Ser Ile Ser Leu Ser Ala Ala Ala Ala Ser Ala Ala Pro Cys Gly195 200 205Ser Ser Lys Ser Ser Tyr Ser Val Asp Thr Ser Thr Phe Trp Asp Ser210 215 220Lys Tyr Thr His Asp Phe Ala Ala Ala Asp Arg Arg Ser Ile Glu Arg225 230 235 240Ser Arg Asp Gly Ser Ser Phe Ala Ala Gly Asp Asp Trp Asp Asp Arg 245 250 255Pro Arg Thr Ile Glu Glu Ile Gln Ala Met Leu Gln Thr Arg Lys Asp 260 265 270Ala Ala Leu Lys Arg Glu Arg Ala Leu Ser Tyr Ala Phe Ser His Gln275 280 285Ile Trp Arg Asn Pro Ala Pro Ser Val Glu Glu Met Asp Val Asp Gly290 295 300Gln Pro Arg Trp Ala Glu Arg Trp Met Ala Ser Arg Ala Ser Phe Asp305 310 315 320Thr Ser Arg Ser Thr Val Arg Ala Ser Ala Ala Ala Ala Pro Gly Arg 325 330 335Ala Ser Thr Asp His Arg Asp Gln Val Lys Thr Leu Glu Ile Asp Thr 340 345 350Ala Arg Pro Phe Ser Tyr Ser Thr Pro Arg Arg His Gly Asn Ala Ser355 360 365Tyr His Ala Ser Ser Ser Pro Met His Arg Ala His His His Ser Pro370 375 380Val Thr Pro Ser Pro Ser Lys Ala Arg Pro Pro Ile Gln Val Arg Ser385 390 395 400Ala Ser Pro Arg Val Glu Arg Gly Gly Gly Gly Gly Gly Ser Tyr Thr 405 410 415Pro Ser Leu His Ser His Arg His His Ala Ser Ser Gly Gly Ala Ala 420 425 430Ala Val Pro Asn Tyr Met Ala Ala Thr Glu Ser Ala Lys Ala Arg Val435 440 445Arg Ser Gln Ser Ala Pro Arg Gln Arg Pro Ala Thr Pro Glu Arg Asp450 455 460Arg Met Ser Phe Gly Gly Gly Gly Gly Gly Gly Gly Ala Lys Lys Arg465 470 475 480Leu Ser Phe Pro Val Pro Ile Asp Pro Tyr Gly Ala Tyr Ala Gln Ser 485 490 495Leu Arg Ser Pro Ser Phe Lys Ser Ala Ala Gly Arg Phe Ser Ser Glu 500 505 510Gln Arg Ser Asn Val Ser Ser Ser Cys Ala Glu Ser Leu Gly Gly Asp515 520 525Val Val Ser Pro Ser Ser Thr Thr Asp Leu Arg Arg Trp Leu Arg530 535 540951812DNAPanicum virgatummisc_featureCeres CLONE ID no.1780908 95gtgaccagcc agccatggag cgcggccaac gccccccgcg ccagcaataa tacaaccccc 60ccaccacccg ggccgcgcct gcccgtcgcc ggacatgggc aagaagggcg gcgccacgtc 120ctgactcacc gccgtcaagc gggccttccg ctcgccctcc aaggacgacg ccgcctcgcc 180cgcaaggaag gcctcgcgcc tccgcgaccg cgacgacgcc cccgccgacg ccgaccaaga 240caagcagggg aagcgggagc agcgccggcg atggctgttc cggaggtcct cctccccgtc 300cccgtcccct gcccccgccg cgccggagca cccggccgtc acggaggagc agcgccacgc 360catcgcgctg gcgctggcga ccgccgccac ggccgaggcc gccgtggcca cggcgcaggc 420ggcggcggag gtggtccgcc tcaccctccc cggcggcctc gccgcccgcg agcactacgc 480cgccgtcctc atccagaccg ccttccgggg ctacctggcg cgccgcgcgc tgcgggcgct 540caggggcctc gtcaagctgc aaacgctcgt gcgcggccac aacgtccgca agcaggccaa 600catgacgctc cgctgcatgc aggcgctggt gcgcgtccag gcgcgcgtcc gggaccagcg 660gatgcgcctc tcccaggact ccatgtccct gtccatgccg ctgtccgccg ccggcgccgc 720cgcggcgccg tgcggcagca gcaagtcgtc gtacagcgtc gacacatcca cgttctggga 780ctccaagtac acccacgact acgccgaccg ccgctccgtc gagcggtcgc gcgacggcag 840cagcttcgcc gccgacgact gggacgaccg gccgcggacg atagaggaga tccaggccat 900gctgcagacg aggaaggacg cggcgctcaa gcgtgagagg gcgctgtcct acgccttctc 960gcatcaactt tggaggaacc cggcgccggc ggcggatgag atggacgtgg acggcggcgg 1020gcagcagccg cggtggatga cgtcgcgcgc gtccttcgac acgaaccgga gcagcagcat 1080ccgcggcgcg gcggtgcccg ggcgcgcgtc catggaccac cgcgagcccg tgaagacgct 1140ggggatggac acggcgcggc ccttctcgta ctcgacgccg cggcagcagg cgccgtcgtc 1200ctcgccgatg caccaccgcg ggcactcgcc ggtgacgccg tcgccgggga aggcgcggcc 1260cccgatccag gtccggtcgg cgagcccgcg cgtggaccgc ggcgcgggcg gcgggagcta 1320cacgccgagc ctgctgcact cccagcggca ccaccaccac caggcggggg cggcggtgcc 1380caactacatg gcggcgacgg agtcggccaa ggcccgggtg cggtcccaga gcgcgccgcg 1440gcagcggccc gcgacgcccg agcgcgaccg gctctccggc ggcggcggga gcgcgaagaa 1500gcggctgtcg ttcccggcgg cggcagaggc gtacgcgcag tccctgcgga gcccgagctt 1560caagagcgcg gcggggcggt tctcgtcgga gcagcggtcg acggtgtcgt cgtcgtgcgc 1620ggagagcctc ggcggagagc cggcgtcgcc gtcgtccacc accgacctcc gccgctggct 1680ccgctgaggg ccggccggcc gtccgttctc cgttgtagca gtaacgccgc cttttggctc 1740ggcagacacg accacgtgcc cctgtagcat catcttctct ctcggtgtaa ttcatggcag 1800cttttttcga gc 181296361PRTPanicum virgatummisc_featureCeres CLONE ID no.1780908 96Met Thr Leu Arg Cys Met Gln Ala Leu Val Arg Val Gln Ala Arg Val1 5 10 15Arg Asp Gln Arg Met Arg Leu Ser Gln Asp Ser Met Ser Leu Ser Met 20 25 30Pro Leu Ser Ala Ala Gly Ala Ala Ala Ala Pro Cys Gly Ser Ser Lys35 40 45Ser Ser Tyr Ser Val Asp Thr Ser Thr Phe Trp Asp Ser Lys Tyr Thr50 55 60His Asp Tyr Ala Asp Arg Arg Ser Val Glu Arg Ser Arg Asp Gly Ser65 70 75 80Ser Phe Ala Ala Asp Asp Trp Asp Asp Arg Pro Arg Thr Ile Glu Glu 85 90 95Ile Gln Ala Met Leu Gln Thr Arg Lys Asp Ala Ala Leu Lys Arg Glu 100 105 110Arg Ala Leu Ser Tyr Ala Phe Ser His Gln Leu Trp Arg Asn Pro Ala115 120 125Pro Ala Ala Asp Glu Met Asp Val Asp Gly Gly Gly Gln Gln Pro Arg130 135 140Trp Met Thr Ser Arg Ala Ser Phe Asp Thr Asn Arg Ser Ser Ser Ile145 150 155 160Arg Gly Ala Ala Val Pro Gly Arg Ala Ser Met Asp His Arg Glu Pro 165 170 175Val Lys Thr Leu Gly Met Asp Thr Ala Arg Pro Phe Ser Tyr Ser Thr 180 185 190Pro Arg Gln Gln Ala Pro Ser Ser Ser Pro Met His His Arg Gly His195 200 205Ser Pro Val Thr Pro Ser Pro Gly Lys Ala Arg Pro Pro Ile Gln Val210 215 220Arg Ser Ala Ser Pro Arg Val Asp Arg Gly Ala Gly Gly Gly Ser Tyr225 230 235 240Thr Pro Ser Leu Leu His Ser Gln Arg His His His His Gln Ala Gly 245 250 255Ala Ala Val Pro Asn Tyr Met Ala Ala Thr Glu Ser Ala Lys Ala Arg 260 265 270Val Arg Ser Gln Ser Ala Pro Arg Gln Arg Pro Ala Thr Pro Glu Arg275 280 285Asp Arg Leu Ser Gly Gly Gly Gly Ser Ala Lys Lys Arg Leu Ser Phe290 295 300Pro Ala Ala Ala Glu Ala Tyr Ala Gln Ser Leu Arg Ser Pro Ser Phe305 310 315 320Lys Ser Ala Ala Gly Arg Phe Ser Ser Glu Gln Arg Ser Thr Val Ser 325 330 335Ser Ser Cys Ala Glu Ser Leu Gly Gly Glu Pro Ala Ser Pro Ser Ser 340 345 350Thr Thr Asp Leu Arg Arg Trp Leu Arg355 360971398DNAPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1520883 97atggggaaga aaggaaaagg atggtttaca tctgtgaaga gagtgttcaa atcatcatct 60cctaaggaat taccagtagg gaaaaagaaa gacaacgcag agaaatggca acatgaggct 120ccagaagttg tgtcattaga gcattttcct actggaagtt ctcctgatgt tacaaatgat 180gagagcaatg tatcaactcc agtaactgaa gatagaaatc atgccattgc tgtggcagta 240gcgactgctg ccgcagcaga agctgcggtt gcagctgctc aagcggcggc taaagttgtt 300cgcttagctg gttatggacg acaatcaaag gaagaaagag ctgccatcct catacaatca 360ttctataggg gctaccttgc tcggcgtgcc ttacgcgcat tgaagggatt ggtgaggctc 420caagcattag tgagaggcca caatgtaaga aagcaagcac aaatgacaat gagaagcatg 480caagctcttg ttcgtgtgca agcaagagta agagcaagaa gacttgaatt agctcacgag 540aagcttcaaa ggaagacaga ggaagaagat gaacgaagac taccagtgga cgaagacttt 600atgaatccaa agaatccatt gaagagttat aaatgggata ggaggaatca aagttcagat 660aatttcaaag aaaatgcttc aaagaagcat gatgctgtca tgaaaagaga gagagccctt 720gcttatgctt atgccttcca gcagcagcag cagcaacaat tactctcaca aaatagtcct 780aatggtaaag aaacaggaca ttttgtgaac gaacacgaga agatgcaatg gggatggaat 840tggcttgaga gatggatgtc agcacaatca tataacgtgc gtcaatcggg tccaaatgaa 900gggtcttacg tgacagtaaa cacaactaca accacgacca ccacagagga catgtccgag 960aagacagtag agatggacat ggtgacccca acaggcacta gcaatcccaa catgggcatg 1020ctagacacca atccatattc gaatcgaccc caatggcaat caagttcaag caatgtacgt 1080agctacatgg ctccgaccca gtccgcaaag gcgaaagtgc gttctcaaag tttgatcaag 1140caacgtgccc cagcgacacc tctgtggaat ccatccacca agaaagattc aagcattgtt 1200ggtccaggtt gtgattcttc cagttcaggt ggtggaacaa caacttatca cgctccaaga 1260agtcctagcc ccaaacataa cgggatgcgc ctgcattcga gaagacatgc tggtggatat 1320agccctgatt tcaatggcgg tgatgattgg aggttgcctc ctcttgatgg tcatggatgg 1380aggaatgatt ttggttga 139898309PRTPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1520883 98Met Arg Ser Met Gln Ala Leu Val Arg Val Gln Ala Arg Val Arg Ala1 5 10 15Arg Arg Leu Glu Leu Ala His Glu Lys Leu Gln Arg Lys Thr Glu Glu 20 25 30Glu Asp Glu Arg Arg Leu Pro Val Asp Glu Asp Phe Met Asn Pro Lys35 40 45Asn Pro Leu Lys Ser Tyr Lys Trp Asp Arg Arg Asn Gln Ser Ser Asp50 55 60Asn Phe Lys Glu Asn Ala Ser Lys Lys His Asp Ala Val Met Lys Arg65 70 75 80Glu Arg Ala Leu Ala Tyr Ala Tyr Ala Phe Gln Gln Gln Gln Gln Gln 85 90 95Gln Leu Leu Ser Gln Asn Ser Pro Asn Gly Lys Glu Thr Gly His Phe 100 105 110Val Asn Glu His Glu Lys Met Gln Trp Gly Trp Asn Trp Leu Glu Arg115 120 125Trp Met Ser Ala Gln Ser Tyr Asn Val Arg Gln Ser Gly Pro Asn Glu130 135 140Gly Ser Tyr Val Thr Val Asn Thr Thr Thr Thr Thr Thr Thr Thr Glu145 150 155 160Asp Met Ser Glu Lys Thr Val Glu Met Asp Met Val Thr Pro Thr Gly 165 170 175Thr Ser Asn Pro Asn Met Gly Met Leu Asp Thr Asn Pro Tyr Ser Asn 180 185 190Arg Pro Gln Trp Gln Ser Ser Ser Ser Asn Val Arg Ser Tyr Met Ala195 200 205Pro Thr Gln Ser Ala Lys Ala Lys Val Arg Ser Gln Ser Leu Ile Lys210 215 220Gln Arg Ala Pro Ala Thr Pro Leu Trp Asn Pro Ser Thr Lys Lys Asp225 230 235 240Ser Ser Ile Val Gly Pro Gly Cys Asp Ser Ser Ser Ser Gly Gly Gly 245 250 255Thr Thr Thr Tyr His Ala Pro Arg Ser Pro Ser Pro Lys His Asn Gly 260 265 270Met Arg Leu His Ser Arg Arg His Ala Gly Gly Tyr Ser Pro Asp Phe275 280 285Asn Gly Gly Asp Asp Trp Arg Leu Pro Pro Leu Asp Gly His Gly Trp290 295 300Arg Asn Asp Phe Gly305991445DNAArabidopsis thalianamisc_featureCeres CLONE ID no.148018 99attgggattt catttagata attttttttt gggtcttgat ctaagttttg ttctttctaa 60tttggtaagg caagaagagc attaagagca ttaaaagggt tagtgaagct acaagcattg 120gtgaggggac ataatgtgag aaagcaagct aaaatgacat taaggtgtat gcaagctctg 180gttcgagtcc agtctcgtgt gcttgaccaa cgcaaacgct tgtctcatga cggtagtcgc 240aaatccgcgt tcagtgactc tcacgctgtt tttgaatctc gctatcttca agatttgtca 300gatcgacaat ccatgtcaag agaaggaagc agcgccgcgg aagattggga tgaccgacca 360cacacgatag acgcagtgaa agtgatgcta caacggagac gggacacagc attgagacat 420gacaagacta atttgtcaca agctttctct caaaagatgt ggaggacggt tggtaaccaa 480tccacggaag gacaccacga ggtagaactt gaagaggaaa ggccaaaatg gcttgaccgg 540tggatggcta ctagaccgtg ggataaacga gctagtagta gagcttcggt tgaccaaagg 600gtttcagtta aaaccgttga aatcgacact tctcagcctt actcaagaac aggagcagga 660agcccgagtc gtggccaaag acctagttcc ccatcaagaa ctagccacca ttaccaatcc 720cgcaataatt tctcagccac tccatctccg gctaagtcta gaccaatact tattcggtca 780gctagtccac ggtgccagag agacccgagg gaagaccgtg accgagcagc ttatagttat 840acatcaaaca caccaagctt gagatccaat tatagtttca cagctaggag tggatgtaca 900ttagtaccac aatggttaat aatgcatcat tgttgcctaa ttacatggcg agtacagagt 960cagctaaagc gaggatccgg tctcatagtg caccgaggca acggccctca actcccgaga 1020gggaccgtgc ggstttrgct acaagaaacg rytctsgtat ccggtaccac cgccagcgga 1080gtatgaggac aataatagct taaggagtcc aagctttaag agtgtggctg gttcacattt 1140tggtggaatg ttagagcagc aatcgaatta ctcttcatgt tgcactgagt ctaacggtgt 1200tgagatctct ccagcttcta ctagtgactt taggaattgg cttagatgat tggtggtgat 1260gccaaatcaa ctgtcaagat ctttcatcat cctccaggaa aagaacgttt taaaatttta 1320tattccagaa gaaaacaaac acttttatat tgtgtcgttg aggttgattt gtgtttggaa 1380gataagttta ttgacctatt gatctgtaac ttcataagat tttgaaacgt tagaagattc 1440aaaag 1445100310PRTArabidopsis thalianamisc_featureCeres CLONE ID no.148018 100Met Thr Leu Arg Cys Met Gln Ala Leu Val Arg Val Gln Ser Arg Val1 5 10 15Leu Asp Gln Arg Lys Arg Leu Ser His Asp Gly Ser Arg Lys Ser Ala 20 25 30Phe Ser Asp Ser His Ala Val Phe Glu Ser Arg Tyr Leu Gln Asp Leu35 40 45Ser Asp Arg Gln Ser Met Ser Arg Glu Gly Ser Ser Ala Ala Glu Asp50 55 60Trp Asp Asp Arg Pro His Thr Ile Asp Ala Val Lys Val Met Leu Gln65 70 75 80Arg Arg Arg Asp Thr Ala Leu Arg His Asp Lys Thr Asn Leu Ser Gln 85 90 95Ala Phe Ser Gln Lys Met Trp Arg Thr Val Gly Asn Gln Ser Thr Glu 100 105 110Gly His His Glu Val Glu Leu Glu Glu Glu Arg Pro Lys Trp Leu Asp115 120 125Arg Trp Met Ala Thr Arg Pro Trp Asp Lys Arg Ala Ser Ser Arg Ala130 135 140Ser Val Asp Gln Arg Val Ser Val Lys Thr Val Glu Ile Asp Thr Ser145 150 155 160Gln Pro Tyr Ser Arg Thr Gly Ala Gly Ser Pro Ser Arg Gly Gln Arg 165 170 175Pro Ser Ser Pro Ser Arg Thr Ser His His Tyr Gln Ser Arg Asn Asn 180 185 190Phe Ser Ala Thr Pro Ser Pro Ala Lys Ser Arg Pro

Ile Leu Ile Arg195 200 205Ser Ala Ser Pro Arg Cys Gln Arg Asp Pro Arg Glu Asp Arg Asp Arg210 215 220Ala Ala Tyr Ser Tyr Thr Ser Asn Thr Pro Ser Leu Arg Ser Asn Tyr225 230 235 240Ser Phe Thr Ala Arg Ser Gly Cys Thr Leu Val Pro Gln Trp Leu Ile 245 250 255Met His His Cys Cys Leu Ile Thr Trp Arg Val Gln Ser Gln Leu Lys 260 265 270Arg Gly Ser Gly Leu Ile Val His Arg Gly Asn Gly Pro Gln Leu Pro275 280 285Arg Gly Thr Val Arg Xaa Xaa Leu Gln Glu Thr Xaa Xaa Val Ser Gly290 295 300Thr Thr Ala Ser Gly Val305 310101364PRTArabidopsis thalianamisc_featurePublic GI ID no.18378797 101Met Thr Leu Arg Cys Met Gln Ala Leu Val Arg Val Gln Ser Arg Val1 5 10 15Leu Asp Gln Arg Lys Arg Leu Ser His Asp Gly Ser Arg Lys Ser Ala 20 25 30Phe Ser Asp Ser His Ala Val Phe Glu Ser Arg Tyr Leu Gln Asp Leu35 40 45Ser Asp Arg Gln Ser Met Ser Arg Glu Gly Ser Ser Ala Ala Glu Asp50 55 60Trp Asp Asp Arg Pro His Thr Ile Asp Ala Val Lys Val Met Leu Gln65 70 75 80Arg Arg Arg Asp Thr Ala Leu Arg His Asp Lys Thr Asn Leu Ser Gln 85 90 95Ala Phe Ser Gln Lys Met Trp Arg Thr Val Gly Asn Gln Ser Thr Glu 100 105 110Gly His His Glu Val Glu Leu Glu Glu Glu Arg Pro Lys Trp Leu Asp115 120 125Arg Trp Met Ala Thr Arg Pro Trp Asp Lys Arg Ala Ser Ser Arg Ala130 135 140Ser Val Asp Gln Arg Val Ser Val Lys Thr Val Glu Ile Asp Thr Ser145 150 155 160Gln Pro Tyr Ser Arg Thr Gly Ala Gly Ser Pro Ser Arg Gly Gln Arg 165 170 175Pro Ser Ser Pro Ser Arg Thr Ser His His Tyr Gln Ser Arg Asn Asn 180 185 190Phe Ser Ala Thr Pro Ser Pro Ala Lys Ser Arg Pro Ile Leu Ile Arg195 200 205Ser Ala Ser Pro Arg Cys Gln Arg Asp Pro Arg Glu Asp Arg Asp Arg210 215 220Ala Ala Tyr Ser Tyr Thr Ser Asn Thr Pro Ser Leu Arg Ser Asn Tyr225 230 235 240Ser Phe Thr Ala Arg Ser Gly Cys Ser Ile Ser Thr Thr Met Val Asn 245 250 255Asn Ala Ser Leu Leu Pro Asn Tyr Met Ala Ser Thr Glu Ser Ala Lys 260 265 270Ala Arg Ile Arg Ser His Ser Ala Pro Arg Gln Arg Pro Ser Thr Pro275 280 285Glu Arg Asp Arg Ala Gly Leu Val Lys Lys Arg Leu Ser Tyr Pro Val290 295 300Pro Pro Pro Ala Glu Tyr Glu Asp Asn Asn Ser Leu Arg Ser Pro Ser305 310 315 320Phe Lys Ser Val Ala Gly Ser His Phe Gly Gly Met Leu Glu Gln Gln 325 330 335Ser Asn Tyr Ser Ser Cys Cys Thr Glu Ser Asn Gly Val Glu Ile Ser 340 345 350Pro Ala Ser Thr Ser Asp Phe Arg Asn Trp Leu Arg355 360102364PRTArabidopsis thalianamisc_featurePublic GI ID no.21553500 102Met Thr Leu Arg Cys Met Gln Ala Leu Val Arg Val Gln Ser Arg Val1 5 10 15Leu Asp Gln Arg Lys Arg Leu Ser His Asp Gly Ser Arg Lys Ser Ala 20 25 30Phe Ser Asp Ser His Ala Val Phe Glu Ser Arg Tyr Leu Gln Asp Leu35 40 45Ser Asp Arg Gln Ser Met Ser Arg Glu Gly Ser Ser Ala Ala Glu Asp50 55 60Trp Asp Asp Arg Pro His Thr Ile Asp Ala Val Lys Val Met Leu Gln65 70 75 80Arg Arg Arg Asp Thr Ala Leu Arg His Asp Lys Thr Asn Leu Ser Gln 85 90 95Ala Phe Ser Gln Lys Met Trp Arg Thr Val Gly Asn Gln Ser Thr Glu 100 105 110Gly His His Glu Val Glu Leu Glu Glu Glu Arg Pro Lys Trp Leu Asp115 120 125Arg Trp Met Ala Thr Arg Pro Trp Asp Lys Arg Ala Ser Ser Arg Ala130 135 140Ser Val Asp Gln Arg Val Ser Val Lys Thr Val Glu Ile Asp Thr Ser145 150 155 160Gln Pro Tyr Ser Arg Thr Gly Ala Gly Ser Pro Ser Arg Gly Gln Arg 165 170 175Pro Ser Ser Pro Ser Arg Thr Ser His His Tyr Gln Ser Arg Asn Asn 180 185 190Phe Ser Ala Thr Pro Ser Pro Ala Lys Ser Arg Pro Ile Leu Ile Arg195 200 205Ser Ala Ser Pro Arg Cys Gln Arg Asp Pro Arg Glu Asp Arg Asp Arg210 215 220Ala Ala Tyr Ser Tyr Thr Ser Asn Thr Pro Ser Leu Arg Ser Asn Tyr225 230 235 240Ser Phe Thr Ala Arg Ser Gly Cys Ser Ile Ser Thr Thr Met Val Asn 245 250 255Asn Ala Ser Leu Leu Pro Asn Tyr Met Ala Ser Thr Glu Ser Ala Lys 260 265 270Ala Arg Ile Arg Ser His Ser Ala Pro Arg Gln Arg Pro Ser Thr Xaa275 280 285Glu Arg Asp Arg Ala Xaa Leu Xaa Lys Lys Arg Xaa Xaa Tyr Pro Val290 295 300Pro Pro Pro Ala Glu Tyr Glu Asp Asn Asn Ser Leu Arg Ser Pro Ser305 310 315 320Phe Lys Ser Val Ala Gly Ser His Phe Gly Gly Met Leu Glu Gln Gln 325 330 335Ser Asn Tyr Ser Ser Cys Cys Thr Glu Ser Asn Gly Val Glu Ile Ser 340 345 350Pro Ala Ser Thr Ser Asp Phe Arg Asn Trp Leu Arg355 3601031713DNAPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1444522 103atggggaaga agggaggtag ctcatggttg actgctgtga aaagggcgtt tagatctcca 60actaaagaaa gtgacaagag ggctactggg gttggccatg accaagaaga agatgaagaa 120aagaagagag ggaagagaag atggttattt aggaaaccta caaatcaaga aacggcgaca 180caacagaacc tgtcaaaggc aggaaatgtt aaggcatccc caggtggtgg tggaggtgct 240ccagcagacc atgtgtcggc agctgcagca gctgagcaaa ggcatgcaat tgcagtagca 300gttgctactg cagctgcagc tgaagctgct gtagccactg cccaggcggc ggcggaggtt 360gctcggctca ctaggccttc atatcatcct agagaacatt atgctgccat tgtcattcaa 420acagctttta gaggatactt ggcaaggcgg gctcttcgtg cacttaaagg gctagtgaag 480ttgcaagctt tagtaagggg acacaatgtg agaaaacagg ccaagatgac cctgcgatgc 540atgcaagctc tggctcgagt gcaggctcga gtgcttgatc aacgcgtgag actttcacat 600gaaggcagca ggaaatctgc atttagtgac accaatagcg tgcttgaatc gcgatatctt 660caagacattt cagatagaaa atccatgtca agagaaagca gtagcattgc agatgattgg 720gatgatcggc cacactccat tgaggaagtc aaggccatgt tgcaacgcag gaaagaagct 780gcgttcaagc gtgaaaagac cttatctcaa gctttctctc agcagctcat ggctaattgg 840ttcaattttt tcaaacccat gtccaagata tggagaaatg gcagaagccc atcaaatggc 900aatgaagatg agctccaaga aagaccacaa tggcttgatc aatggatgcc tgcaaagcca 960tgggacaata gcagcagagc aagagcttca actgatcaaa gagaccccat caaaactgta 1020gaaattgaca cctcccaacc ttattcatat ttagttccta attttagaag aacaaaccaa 1080aaccaacatc accaacacca gagatccaat tcatcaaaca atggtgtggc acactctgct 1140ccttctccac tccatagagc tcatcaaact gctccactcc accactctcc tatcacaccc 1200tccccatcaa aaactaggcc tcttcaggtt cgttcagcta gtccacgatg tgcaagagaa 1260gatagaagtt gtaattcctc tcaaacacca agtttaaggt ccaattattt ttacaatgga 1320agtttgaatc aacatggaat caggggtggt gctagtgtta gtagtaatgg taatgctaca 1380ttgccaaatt acatggctgc aaccgagtct gccaaggcta gattgagatc acagagtgca 1440ccaaggcaaa gaccatcaac accagaacga gaccggattg ggtctgcaag aaaacggctt 1500tcgtatccag cccccgaccc ttgtgatgtc ggtatagttt atggcggtgc tggttacggc 1560catggtttaa ggagtccaag ctttaagagc gtgagcggtt cacgtttggg tggactagaa 1620caacagtcta actattcttc ttgctgtacg gatagctttg gtggtgagct ttccccttct 1680tcaactaacg atcttaggag gtggttgaga tga 1713104395PRTPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1444522 104Met Thr Leu Arg Cys Met Gln Ala Leu Ala Arg Val Gln Ala Arg Val1 5 10 15Leu Asp Gln Arg Val Arg Leu Ser His Glu Gly Ser Arg Lys Ser Ala 20 25 30Phe Ser Asp Thr Asn Ser Val Leu Glu Ser Arg Tyr Leu Gln Asp Ile35 40 45Ser Asp Arg Lys Ser Met Ser Arg Glu Ser Ser Ser Ile Ala Asp Asp50 55 60Trp Asp Asp Arg Pro His Ser Ile Glu Glu Val Lys Ala Met Leu Gln65 70 75 80Arg Arg Lys Glu Ala Ala Phe Lys Arg Glu Lys Thr Leu Ser Gln Ala 85 90 95Phe Ser Gln Gln Leu Met Ala Asn Trp Phe Asn Phe Phe Lys Pro Met 100 105 110Ser Lys Ile Trp Arg Asn Gly Arg Ser Pro Ser Asn Gly Asn Glu Asp115 120 125Glu Leu Gln Glu Arg Pro Gln Trp Leu Asp Gln Trp Met Pro Ala Lys130 135 140Pro Trp Asp Asn Ser Ser Arg Ala Arg Ala Ser Thr Asp Gln Arg Asp145 150 155 160Pro Ile Lys Thr Val Glu Ile Asp Thr Ser Gln Pro Tyr Ser Tyr Leu 165 170 175Val Pro Asn Phe Arg Arg Thr Asn Gln Asn Gln His His Gln His Gln 180 185 190Arg Ser Asn Ser Ser Asn Asn Gly Val Ala His Ser Ala Pro Ser Pro195 200 205Leu His Arg Ala His Gln Thr Ala Pro Leu His His Ser Pro Ile Thr210 215 220Pro Ser Pro Ser Lys Thr Arg Pro Leu Gln Val Arg Ser Ala Ser Pro225 230 235 240Arg Cys Ala Arg Glu Asp Arg Ser Cys Asn Ser Ser Gln Thr Pro Ser 245 250 255Leu Arg Ser Asn Tyr Phe Tyr Asn Gly Ser Leu Asn Gln His Gly Ile 260 265 270Arg Gly Gly Ala Ser Val Ser Ser Asn Gly Asn Ala Thr Leu Pro Asn275 280 285Tyr Met Ala Ala Thr Glu Ser Ala Lys Ala Arg Leu Arg Ser Gln Ser290 295 300Ala Pro Arg Gln Arg Pro Ser Thr Pro Glu Arg Asp Arg Ile Gly Ser305 310 315 320Ala Arg Lys Arg Leu Ser Tyr Pro Ala Pro Asp Pro Cys Asp Val Gly 325 330 335Ile Val Tyr Gly Gly Ala Gly Tyr Gly His Gly Leu Arg Ser Pro Ser 340 345 350Phe Lys Ser Val Ser Gly Ser Arg Leu Gly Gly Leu Glu Gln Gln Ser355 360 365Asn Tyr Ser Ser Cys Cys Thr Asp Ser Phe Gly Gly Glu Leu Ser Pro370 375 380Ser Ser Thr Asn Asp Leu Arg Arg Trp Leu Arg385 390 3951051443DNAPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1467519 105atggggaaga aaggaaaagg atggtttaca tctgtgaaga gagtgttcaa atcatcatct 60cctaaggaat taccagtagg gaaaaagaaa gacaacgcag agaaatggca acatgaggct 120ccagaagttg tgtcattaga gcattttcct actggaagtt ctcctgatgt tacaaatgat 180gagagcaatg tatcaactcc agtaactgaa gatagaaatc atgccattgc tgtggcagta 240gcgactgctg ccgcagcaga agctgcggtt gcagctgctc aagcggcggc taaagttgtt 300cgcttagctg gttatggacg acaatcaaag gaagaaagag ctgccatcct catacaatca 360ttctataggg gctaccttgt aatccctttc ttcatttcac tttattttga tcaatataat 420ctggctcggc gtgccttacg cgcattgaag ggattggtga ggctccaagc attagtgaga 480ggccacaatg taagaaagca agcacaaatg acaatgagaa gcatgcaagc tcttgttcgt 540gtgcaagcaa gagtaagagc aagaagactt gaattagctc acgagaagct tcaaaggaag 600acagaggaag aagatgaacg aagactacca gtggacgaag actttatgaa tccaaagaat 660ccattgaaga gttataaatg ggataggagg aatcaaagtt cagataattt caaagaaaat 720gcttcaaaga agcatgatgc tgtcatgaaa agagagagag cccttgctta tgcttatgcc 780ttccagcagc agcagcagca acaattactc tcacaaaata gtcctaatgg taaagaaaca 840ggacattttg tgaacgaaca cgagaagatg caatggggat ggaattggct tgagagatgg 900atgtcagcac aatcatataa cgtgcgtcaa tcgggtccaa atgaagggtc ttacgtgaca 960gtaaacacaa ctacaaccac gaccaccaca gaggacatgt ccgagaagac agtagagatg 1020gacatggtga ccccaacagg cactagcaat cccaacatgg gcatgctaga caccaatcca 1080tattcgaatc gaccccaatg gcaatcaagt tcaagcaatg tacgtagcta catggctccg 1140acccagtccg caaaggcgaa agtgcgttct caaagtttga tcaagcaacg tgccccagcg 1200acacctctgt ggaatccatc caccaagaaa gattcaagca ttgttggtcc aggttgtgat 1260tcttccagtt caggtggtgg aacaacaact tatcacgctc caagaagtcc tagccccaaa 1320cataacggga tgcgcctgca ttcgagaaga catgctggtg gatatagccc tgatttcaat 1380ggcggtgatg attggaggtt gcctcctctt gatggtcatg gatggaggaa tgattttggt 1440tga 1443106309PRTPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1467519 106Met Arg Ser Met Gln Ala Leu Val Arg Val Gln Ala Arg Val Arg Ala1 5 10 15Arg Arg Leu Glu Leu Ala His Glu Lys Leu Gln Arg Lys Thr Glu Glu 20 25 30Glu Asp Glu Arg Arg Leu Pro Val Asp Glu Asp Phe Met Asn Pro Lys35 40 45Asn Pro Leu Lys Ser Tyr Lys Trp Asp Arg Arg Asn Gln Ser Ser Asp50 55 60Asn Phe Lys Glu Asn Ala Ser Lys Lys His Asp Ala Val Met Lys Arg65 70 75 80Glu Arg Ala Leu Ala Tyr Ala Tyr Ala Phe Gln Gln Gln Gln Gln Gln 85 90 95Gln Leu Leu Ser Gln Asn Ser Pro Asn Gly Lys Glu Thr Gly His Phe 100 105 110Val Asn Glu His Glu Lys Met Gln Trp Gly Trp Asn Trp Leu Glu Arg115 120 125Trp Met Ser Ala Gln Ser Tyr Asn Val Arg Gln Ser Gly Pro Asn Glu130 135 140Gly Ser Tyr Val Thr Val Asn Thr Thr Thr Thr Thr Thr Thr Thr Glu145 150 155 160Asp Met Ser Glu Lys Thr Val Glu Met Asp Met Val Thr Pro Thr Gly 165 170 175Thr Ser Asn Pro Asn Met Gly Met Leu Asp Thr Asn Pro Tyr Ser Asn 180 185 190Arg Pro Gln Trp Gln Ser Ser Ser Ser Asn Val Arg Ser Tyr Met Ala195 200 205Pro Thr Gln Ser Ala Lys Ala Lys Val Arg Ser Gln Ser Leu Ile Lys210 215 220Gln Arg Ala Pro Ala Thr Pro Leu Trp Asn Pro Ser Thr Lys Lys Asp225 230 235 240Ser Ser Ile Val Gly Pro Gly Cys Asp Ser Ser Ser Ser Gly Gly Gly 245 250 255Thr Thr Thr Tyr His Ala Pro Arg Ser Pro Ser Pro Lys His Asn Gly 260 265 270Met Arg Leu His Ser Arg Arg His Ala Gly Gly Tyr Ser Pro Asp Phe275 280 285Asn Gly Gly Asp Asp Trp Arg Leu Pro Pro Leu Asp Gly His Gly Trp290 295 300Arg Asn Asp Phe Gly305107291PRTOryza sativa subsp. indicamisc_featurePublic GI ID no.125559938 107Met Gln Arg Leu Gln Glu Arg Ser Arg Asp Gly Ser Ser Phe Ala Ala1 5 10 15Gly Asp Asp Trp Asp Asp Arg Pro Arg Thr Ile Glu Glu Ile Gln Ala 20 25 30Met Leu Gln Thr Arg Lys Asp Ala Ala Leu Lys Arg Glu Arg Ala Leu35 40 45Ser Tyr Ala Phe Ser His Gln Ile Trp Arg Asn Pro Ala Pro Ser Val50 55 60Glu Glu Met Asp Val Asp Gly Gln Pro Arg Trp Ala Glu Arg Trp Met65 70 75 80Ala Ser Arg Ala Ser Phe Asp Thr Ser Arg Ser Thr Val Arg Ala Ser 85 90 95Ala Ala Ala Ala Pro Gly Arg Ala Ser Thr Asp His Arg Asp Gln Val 100 105 110Lys Thr Leu Glu Ile Asp Thr Ala Arg Pro Phe Ser Tyr Ser Thr Pro115 120 125Arg Arg His Gly Asn Ala Ser Tyr His Ala Ser Ser Ser Pro Met His130 135 140Arg Ala His His His Ser Pro Val Thr Pro Ser Pro Ser Lys Ala Arg145 150 155 160Pro Pro Ile Gln Val Arg Ser Ala Ser Pro Arg Val Glu Arg Gly Gly 165 170 175Gly Gly Gly Gly Ser Tyr Thr Pro Ser Leu His Ser His Arg His His 180 185 190Ala Ser Ser Gly Gly Ala Ala Ala Val Pro Asn Tyr Met Ala Ala Thr195 200 205Glu Ser Ala Lys Ala Arg Asp Val Ile Arg Gly Ala Ala Arg Arg Gly210 215 220Ala Lys Lys Arg Leu Ser Phe Pro Val Pro Ile Asp Pro Tyr Gly Ala225 230 235 240Tyr Ala Gln Ser Leu Arg Ser Pro Ser Phe Lys Ser Ala Ala Gly Arg 245 250 255Phe Ser Ser Glu Gln Arg Ser Asn Val Ser Ser Ser Cys Ala Glu Ser 260 265 270Leu Gly Gly Asp Val Val Ser Pro Ser Ser Thr Thr Asp Leu Arg Arg275 280 285Trp Leu Arg2901081509DNAArabidopsis thalianamisc_featureCeres SEEDLINE ID no.ME19173 108acattctccg atattctctc tctctctatc aatctctcac tctcaaactt tctacatacc 60tgaagaaaaa aataatctac gaattcgagc caaaaagatc gaaacttttt aatctatggg 120tgcttcaggg aaatgggtca agtccattat cggtctcaag aagctagaga aggatgaaat 180cgaaaagggt aatgggaaaa acaagaaatg gaagctatgg aggactactt cagtagattc 240atggaagggt tttcgaggaa aacatcggtc tgattcagac ggtgttgatt cttctactgt 300ttactctgct gctgttgcta ctgttcttag agctcctcct aaagatttca aagctgttag 360agaagaatgg gctgctatta gaatccaaac cgcttttcgt ggattcttgg cgagaagagc 420gttgagggca ttgaaaggga tagtgaggtt acaagcttta gtgagaggaa gacaagttag 480gaaacaagca gctgttacat tgagatgcat gcaagctttg gtgagagtac aagctcgtgt 540tagagctcgt cgtgtgagga tgactgttga aggacaagct gttcaaaagc ttttagatga 600acatagaacc aaatctgatc tcttgaaaga agtcgaggaa gggtggtgtg ataggaaagg 660tactgtggat gatattaagt

caaagttgca gcagagacaa gaaggtgctt ttaagaggga 720acgtgctttg gcttatgctc ttgctcaaaa gcaatggagg tcaactacta gctcaaacct 780taagacgaat agttcgattt cgtatcttaa aagtcaagag tttgataaga atagttgggg 840atggagttgg ttggagcgtt ggatggctgc taggccatgg gagactagac ttatggacac 900tgttgatacc gctgccacgc ctcctcctct gcctcataaa catttgaaat caccggaaac 960tgcggatgtt gttcaagtta gaagaaacaa tgtgaccact agagtatctg caaaacctcc 1020tcctcatatg ctgtcttcaa gtcctggtta tgagtttaac gagagctcag gttcatcctc 1080gatttgtact tcaactacgc ctgtttctgg aaaaactgga cttgtttcag ataactctag 1140cagtcaagca aaaaagcaca agccaagtta catgagcttg actgaatcga caaaggctaa 1200gcgaagaact aaccgcggtc tcaggcaatc tatggatgag tttcagttta tgaagaactc 1260tggaatgttt acaggggaat tgaagactag tccttcctca gatccttttg ttagtttctc 1320caaaccactc ggtgttccta ctcgattcga gaagccgaga ggttaaatgt gaccttgtta 1380gattggagtt tcaacagctt gttgttgtct tgtgtgttgt gagatatctg tgtatgttgt 1440taattgttct ttttcctttg gaactacatt ggagttttga atttaaatat aaatttcagt 1500cttgctttt 1509109416PRTArabidopsis thalianamisc_featureCeres SEEDLINE ID no.ME19173 109Met Gly Ala Ser Gly Lys Trp Val Lys Ser Ile Ile Gly Leu Lys Lys1 5 10 15Leu Glu Lys Asp Glu Ile Glu Lys Gly Asn Gly Lys Asn Lys Lys Trp 20 25 30Lys Leu Trp Arg Thr Thr Ser Val Asp Ser Trp Lys Gly Phe Arg Gly35 40 45Lys His Arg Ser Asp Ser Asp Gly Val Asp Ser Ser Thr Val Tyr Ser50 55 60Ala Ala Val Ala Thr Val Leu Arg Ala Pro Pro Lys Asp Phe Lys Ala65 70 75 80Val Arg Glu Glu Trp Ala Ala Ile Arg Ile Gln Thr Ala Phe Arg Gly 85 90 95Phe Leu Ala Arg Arg Ala Leu Arg Ala Leu Lys Gly Ile Val Arg Leu 100 105 110Gln Ala Leu Val Arg Gly Arg Gln Val Arg Lys Gln Ala Ala Val Thr115 120 125Leu Arg Cys Met Gln Ala Leu Val Arg Val Gln Ala Arg Val Arg Ala130 135 140Arg Arg Val Arg Met Thr Val Glu Gly Gln Ala Val Gln Lys Leu Leu145 150 155 160Asp Glu His Arg Thr Lys Ser Asp Leu Leu Lys Glu Val Glu Glu Gly 165 170 175Trp Cys Asp Arg Lys Gly Thr Val Asp Asp Ile Lys Ser Lys Leu Gln 180 185 190Gln Arg Gln Glu Gly Ala Phe Lys Arg Glu Arg Ala Leu Ala Tyr Ala195 200 205Leu Ala Gln Lys Gln Trp Arg Ser Thr Thr Ser Ser Asn Leu Lys Thr210 215 220Asn Ser Ser Ile Ser Tyr Leu Lys Ser Gln Glu Phe Asp Lys Asn Ser225 230 235 240Trp Gly Trp Ser Trp Leu Glu Arg Trp Met Ala Ala Arg Pro Trp Glu 245 250 255Thr Arg Leu Met Asp Thr Val Asp Thr Ala Ala Thr Pro Pro Pro Leu 260 265 270Pro His Lys His Leu Lys Ser Pro Glu Thr Ala Asp Val Val Gln Val275 280 285Arg Arg Asn Asn Val Thr Thr Arg Val Ser Ala Lys Pro Pro Pro His290 295 300Met Leu Ser Ser Ser Pro Gly Tyr Glu Phe Asn Glu Ser Ser Gly Ser305 310 315 320Ser Ser Ile Cys Thr Ser Thr Thr Pro Val Ser Gly Lys Thr Gly Leu 325 330 335Val Ser Asp Asn Ser Ser Ser Gln Ala Lys Lys His Lys Pro Ser Tyr 340 345 350Met Ser Leu Thr Glu Ser Thr Lys Ala Lys Arg Arg Thr Asn Arg Gly355 360 365Leu Arg Gln Ser Met Asp Glu Phe Gln Phe Met Lys Asn Ser Gly Met370 375 380Phe Thr Gly Glu Leu Lys Thr Ser Pro Ser Ser Asp Pro Phe Val Ser385 390 395 400Phe Ser Lys Pro Leu Gly Val Pro Thr Arg Phe Glu Lys Pro Arg Gly 405 410 415110442PRTOryza sativa subsp. japonicamisc_featurePublic GI ID no.115435054 110Met Gly Gly Ser Gly Lys Trp Val Lys Ser Leu Ile Gly Leu Lys Lys1 5 10 15Pro Asp Arg Glu Asp Cys Lys Glu Lys Leu Gln Val Pro Ser Val Asn 20 25 30Gly Arg Gly Gly Gly Lys Gly Arg Lys Trp Lys Leu Trp Arg Ser Ser35 40 45Ser Gly Asp His Gly Ser Leu Trp Arg Gly Ser Arg Gly Gly Gly Gly50 55 60Gly Gly Gly His His Arg Ser Ala Ser Ser Asp Ala Ser Asp Asp Ala65 70 75 80Ser Ser Ala Ala Ala Asp Pro Phe Thr Ala Ala Val Ala Thr Val Ala 85 90 95Arg Ala Pro Ala Lys Asp Phe Met Ala Val Arg Gln Glu Trp Ala Ala 100 105 110Ile Arg Val Gln Thr Ala Phe Arg Gly Phe Leu Ala Arg Arg Ala Leu115 120 125Arg Ala Leu Lys Gly Leu Val Arg Leu Gln Ala Ile Val Arg Gly Arg130 135 140Gln Val Arg Lys Gln Ala Ala Val Thr Leu Arg Cys Met Gln Ala Leu145 150 155 160Val Arg Val Gln Ala Arg Ile Arg Ala Arg Arg Val Arg Met Ser Thr 165 170 175Glu Gly Gln Ala Val Gln Lys Leu Leu Glu Ala Arg Arg Thr Lys Leu 180 185 190Asp Ile Leu Arg Glu Ala Glu Glu Gly Trp Cys Asp Ser Gln Gly Thr195 200 205Leu Glu Asp Val Arg Val Lys Leu Gln Lys Arg Gln Glu Gly Ala Ile210 215 220Lys Arg Glu Arg Ala Ile Ala Tyr Ala Tyr Ser Gln Gln Ile Glu Gly225 230 235 240Ala Thr Lys Cys Asn Gln Gln Pro Lys Pro Thr Ser Tyr Gly Arg Leu 245 250 255Asn Gln Ser Gly Met Leu Leu Lys His Gln His Phe Asp Lys Ser Asn 260 265 270Gly Asn Trp Ser Trp Leu Glu Arg Trp Met Ala Ala Arg Pro Trp Glu275 280 285Asn Arg Leu Met Glu Glu His Asn Gln Thr Asn Ser Ser Ser Pro Asp290 295 300Leu Leu Ser Ser Lys Asn Cys Glu Asp Ser Phe Gly Ile Leu Gly Asp305 310 315 320Phe Ser Glu Pro Asn Ser Val Lys Val Arg Lys Asn Asn Val Ser Lys 325 330 335Arg Val Cys Ala Lys Pro Pro Val Val Ser His His Gln Arg Ile Lys 340 345 350Ala Gln Ser Ile Ser Ser Leu Ser Thr Glu Leu His Asn Asp Glu Ser355 360 365Ser Ala Ser Ser Ser Ser Cys Phe Ala Ser Thr Pro Ile Ser Phe Ser370 375 380Thr Phe Val Thr Thr Glu Lys Thr Glu Asp Ser Ile Arg Ala Arg Pro385 390 395 400Asn Tyr Met Asn Met Thr Glu Ser Ile Lys Ala Lys Arg Lys Ala Cys 405 410 415Asn Ala Gln Arg Thr Thr Ala Gly Lys Leu Met Glu Asp Arg Lys Ala 420 425 430Ser Gly Val Glu Leu Lys Val Ala Gln Val435 4401111661DNAGossypium hirsutummisc_featureCeres CLONE ID no.1847857 111attttttttc tctttgagtc ttgttgaaga cttgaggttc tctccccccc ccccaccttt 60ttttggtgca aaaagatttc ctttttgtca ctcatactct gttatcaatt gtttccatcg 120tagcccattt cctttttctt ttcttaaata acagttgttt gtatctctga gaaaaatata 180tactttgaaa ctaccatggg tgcttcagcg aaatgggtga aatctcttat tggtctcaag 240aaaactgtaa aagatgacca agaaaagatg ggtggcaaga gcaagaaatg gaagctatgg 300aggagttctt caggggatgg aataggttcc tcatggaagg gttttaaagg aaagtttaaa 360gcagattacg aaggatctga ttcttcacca aggtctgaag ctttctctgc tgccatggct 420gctgtggttc gagctcctcc taaagatttc agggttgtaa ggcaagaatg ggctgctatc 480cgcattcaaa ctgctttccg aggcttcttg gcaagaaggg ctttaagggc tttaaaggga 540gtcgttagga tccaagcctt tgttcgcggt cgacaggtga ggaaacaggc tgctgtgaca 600ctccggtgca tgcaagctct cgttcgtgtc caagctcgtg ttagagctcg tcgtgtccga 660atgtccatcg agggccaggc agttcaaaag atactcgatg aacaccgcag caaggccgaa 720ctcttgaaac aagccgagga gggctggtgt gatagtaaag gaacattgga tgatgttaca 780ataaagctac aactgagaca agaaggtgct ttcaagagag aacgagcact tgcttattct 840cttgcacaaa agcaatggag attgaacatg gattcaaata ctcgaacaaa tagttcggtt 900tcagttccat atctcaaaaa ccaagtgttt gataagaata gttggggatg gagttggctt 960gaacgttgga tggcagcccg gccgtgggaa actcgattga tggagcaatc acaggcagac 1020ccttccgaac caactccacc atcgaaaact tgttcagagt ctagaaagat tactagaccg 1080accgaaccat gttcagtgaa ggtacgaaag aacaatgtca caactaggat ttcagcaaag 1140cctccccata ttggtcaagg tactagatca tcatcgagtc caagttccga attccggttc 1200gaagagagct ccgcatcatc atcgatatgc acatctacaa cacgggtctc gtggaataca 1260atgccgactt cagagagaac ggagaagacg gggaatagta ggccaaacta tatgaacttg 1320acagagtcta ccaaggccaa acaaagagct gcaaatcatg ccttacgaag aatccaaatg 1380cagtccatgg atgagttcca gttaaagaaa acagctggtt tgtatgatgg ggattcaaag 1440agtagtgtgg ggtcggatcc tacggtccat atgtctcggc cactgtatcc accaacaaga 1500ttaggttaaa agtggttgtg tctgtgatta agtagatcgt cagttttatt atgttttcca 1560acatcttgtt tagttttagt gtgatgtagc aaacaagttg ttgagtgttt ttgtatctaa 1620ttcgacggca attcattctg caaaaaaaaa aaaaaaaaaa a 1661112437PRTGossypium hirsutummisc_featureCeres CLONE ID no.1847857 112Met Gly Ala Ser Ala Lys Trp Val Lys Ser Leu Ile Gly Leu Lys Lys1 5 10 15Thr Val Lys Asp Asp Gln Glu Lys Met Gly Gly Lys Ser Lys Lys Trp 20 25 30Lys Leu Trp Arg Ser Ser Ser Gly Asp Gly Ile Gly Ser Ser Trp Lys35 40 45Gly Phe Lys Gly Lys Phe Lys Ala Asp Tyr Glu Gly Ser Asp Ser Ser50 55 60Pro Arg Ser Glu Ala Phe Ser Ala Ala Met Ala Ala Val Val Arg Ala65 70 75 80Pro Pro Lys Asp Phe Arg Val Val Arg Gln Glu Trp Ala Ala Ile Arg 85 90 95Ile Gln Thr Ala Phe Arg Gly Phe Leu Ala Arg Arg Ala Leu Arg Ala 100 105 110Leu Lys Gly Val Val Arg Ile Gln Ala Phe Val Arg Gly Arg Gln Val115 120 125Arg Lys Gln Ala Ala Val Thr Leu Arg Cys Met Gln Ala Leu Val Arg130 135 140Val Gln Ala Arg Val Arg Ala Arg Arg Val Arg Met Ser Ile Glu Gly145 150 155 160Gln Ala Val Gln Lys Ile Leu Asp Glu His Arg Ser Lys Ala Glu Leu 165 170 175Leu Lys Gln Ala Glu Glu Gly Trp Cys Asp Ser Lys Gly Thr Leu Asp 180 185 190Asp Val Thr Ile Lys Leu Gln Leu Arg Gln Glu Gly Ala Phe Lys Arg195 200 205Glu Arg Ala Leu Ala Tyr Ser Leu Ala Gln Lys Gln Trp Arg Leu Asn210 215 220Met Asp Ser Asn Thr Arg Thr Asn Ser Ser Val Ser Val Pro Tyr Leu225 230 235 240Lys Asn Gln Val Phe Asp Lys Asn Ser Trp Gly Trp Ser Trp Leu Glu 245 250 255Arg Trp Met Ala Ala Arg Pro Trp Glu Thr Arg Leu Met Glu Gln Ser 260 265 270Gln Ala Asp Pro Ser Glu Pro Thr Pro Pro Ser Lys Thr Cys Ser Glu275 280 285Ser Arg Lys Ile Thr Arg Pro Thr Glu Pro Cys Ser Val Lys Val Arg290 295 300Lys Asn Asn Val Thr Thr Arg Ile Ser Ala Lys Pro Pro His Ile Gly305 310 315 320Gln Gly Thr Arg Ser Ser Ser Ser Pro Ser Ser Glu Phe Arg Phe Glu 325 330 335Glu Ser Ser Ala Ser Ser Ser Ile Cys Thr Ser Thr Thr Arg Val Ser 340 345 350Trp Asn Thr Met Pro Thr Ser Glu Arg Thr Glu Lys Thr Gly Asn Ser355 360 365Arg Pro Asn Tyr Met Asn Leu Thr Glu Ser Thr Lys Ala Lys Gln Arg370 375 380Ala Ala Asn His Ala Leu Arg Arg Ile Gln Met Gln Ser Met Asp Glu385 390 395 400Phe Gln Leu Lys Lys Thr Ala Gly Leu Tyr Asp Gly Asp Ser Lys Ser 405 410 415Ser Val Gly Ser Asp Pro Thr Val His Met Ser Arg Pro Leu Tyr Pro 420 425 430Pro Thr Arg Leu Gly4351131353DNAPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1455219 113atgggtgcat caggaaaatg ggtgaaatcc attataggtc taaaaaagtc tgataaagat 60caagaccaat atgagaaggt gagtggaaag agcaagaaat ggaagctatg gaggagttca 120tcaggagatt tggggtcttc atggaagggt ttcaaaggga accacagagc agcatcagag 180gcatcgggtt cttcaccact ggctgatcca tttactgctg caatggctac tgtggttaga 240gctcctccta aggatttcag ggttgtcagg caagaatggg ctgctatcag gattcaaact 300gcttttcgtg gattcttggc aagaagggct ctgagggcct tgaaaggagt ggtgagactc 360caagctctag ttcgaggtcg acaagtgagg aagcaggctg cagtgacact taagtgcatg 420caagctcttg ttcgtgttca agctcatgtt agggctcgtc gtgtgcgaat gtccttagaa 480gggcaggcag tgcagaatat gctgaatgag cgacgtagca aggctgacct cttgaaacat 540gctgaggaag ggtggtgtga tagaaagggg acattagaag acgtgaagtc aaaactgcaa 600atgaggcaag aaggagcctt caagagagaa agagctattg cttactccct tgctcaaaaa 660caatggagat caaaccccag ctcaaacact cgacccaata actcggtata ttctttcaag 720aatgaggagt ttgataagaa tagctgggga tggagttggc ttgaacgttg gatggcagcc 780aagccatggg agactagatt gatggaacaa acccatactg atccctcagt gactccacca 840cccaagtcct gtgtagatgc aagcacacat tcgaaatcct ttgaacaaag ttcagtgaaa 900gtgagaaaga acaatgtaac cactagaatt tcagcgagac ctccaatcgg gcatgttact 960cgctcatctt caagtccaag ttctgaagtc cgctttgatg agagctcagc ttcttcatca 1020atttgtactt ctacaacacc aatatcagga aacactggct tggcctcaga taaaacagag 1080gagagtggta acagcaggcc aaactacatg aacctgaccg agtcaaccaa ggcaaagcaa 1140aacacatcca gtcatttatt tcataggatt caaaggcagt ccatggatga gtttcagttt 1200ttcaaaaagt cagcggcgtt ctcaaatgga gattcaaaaa gcagtgctgg ttctgatcct 1260tcagttaatt tatccaagcc actttgcttg ccgacaagat ttgataagaa ctcgatgaaa 1320caaataagag gaacggatca tttgtatgcc tag 1353114450PRTPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1455219 114Met Gly Ala Ser Gly Lys Trp Val Lys Ser Ile Ile Gly Leu Lys Lys1 5 10 15Ser Asp Lys Asp Gln Asp Gln Tyr Glu Lys Val Ser Gly Lys Ser Lys 20 25 30Lys Trp Lys Leu Trp Arg Ser Ser Ser Gly Asp Leu Gly Ser Ser Trp35 40 45Lys Gly Phe Lys Gly Asn His Arg Ala Ala Ser Glu Ala Ser Gly Ser50 55 60Ser Pro Leu Ala Asp Pro Phe Thr Ala Ala Met Ala Thr Val Val Arg65 70 75 80Ala Pro Pro Lys Asp Phe Arg Val Val Arg Gln Glu Trp Ala Ala Ile 85 90 95Arg Ile Gln Thr Ala Phe Arg Gly Phe Leu Ala Arg Arg Ala Leu Arg 100 105 110Ala Leu Lys Gly Val Val Arg Leu Gln Ala Leu Val Arg Gly Arg Gln115 120 125Val Arg Lys Gln Ala Ala Val Thr Leu Lys Cys Met Gln Ala Leu Val130 135 140Arg Val Gln Ala His Val Arg Ala Arg Arg Val Arg Met Ser Leu Glu145 150 155 160Gly Gln Ala Val Gln Asn Met Leu Asn Glu Arg Arg Ser Lys Ala Asp 165 170 175Leu Leu Lys His Ala Glu Glu Gly Trp Cys Asp Arg Lys Gly Thr Leu 180 185 190Glu Asp Val Lys Ser Lys Leu Gln Met Arg Gln Glu Gly Ala Phe Lys195 200 205Arg Glu Arg Ala Ile Ala Tyr Ser Leu Ala Gln Lys Gln Trp Arg Ser210 215 220Asn Pro Ser Ser Asn Thr Arg Pro Asn Asn Ser Val Tyr Ser Phe Lys225 230 235 240Asn Glu Glu Phe Asp Lys Asn Ser Trp Gly Trp Ser Trp Leu Glu Arg 245 250 255Trp Met Ala Ala Lys Pro Trp Glu Thr Arg Leu Met Glu Gln Thr His 260 265 270Thr Asp Pro Ser Val Thr Pro Pro Pro Lys Ser Cys Val Asp Ala Ser275 280 285Thr His Ser Lys Ser Phe Glu Gln Ser Ser Val Lys Val Arg Lys Asn290 295 300Asn Val Thr Thr Arg Ile Ser Ala Arg Pro Pro Ile Gly His Val Thr305 310 315 320Arg Ser Ser Ser Ser Pro Ser Ser Glu Val Arg Phe Asp Glu Ser Ser 325 330 335Ala Ser Ser Ser Ile Cys Thr Ser Thr Thr Pro Ile Ser Gly Asn Thr 340 345 350Gly Leu Ala Ser Asp Lys Thr Glu Glu Ser Gly Asn Ser Arg Pro Asn355 360 365Tyr Met Asn Leu Thr Glu Ser Thr Lys Ala Lys Gln Asn Thr Ser Ser370 375 380His Leu Phe His Arg Ile Gln Arg Gln Ser Met Asp Glu Phe Gln Phe385 390 395 400Phe Lys Lys Ser Ala Ala Phe Ser Asn Gly Asp Ser Lys Ser Ser Ala 405 410 415Gly Ser Asp Pro Ser Val Asn Leu Ser Lys Pro Leu Cys Leu Pro Thr 420 425 430Arg Phe Asp Lys Asn Ser Met Lys Gln Ile Arg Gly Thr Asp His Leu435 440 445Tyr Ala4501151433DNAZea maysmisc_featureCeres CLONE ID no.352452 115cccacacggc agcaggcagg gcgccatctc ctagcagctc ctcccatggc gtcctctgcc 60cttcttctcc tccatggccg ccgaagcccc tcccatggcc gacgctctct gctccagccc 120ctccagcagc tatggcgtcc cccctcctcc ccttcttctt cctcaagcca gcaggcacct 180ccctctactc cctgcgcgca gcagcagcca tggcgctgcc tctcttctcc atggcgagta 240gcagctcatt cacctctctc tcccatggcg tgctgctcca gtcggcctcc cttctccccc 300tcggctcctt cctccaggcc gggccgtgca gaagctgctc gaggcgcgcc gcacccagat 360ggatatcctc agggaagccg aggaaggatg gtgtgacagc cagggaacac ttgaacaagt 420gagggtcaag ctgcagaagc ggcaggaggg cgcaatcaag cgtgagcggg ctatcgccta 480tgcatattcg cagcaggccg acggtgctgc caaatgcaat

ccaccgaagc ttacttccaa 540tggactggtg aaccactccg gcatgctgct caagcaccag aacttagaca agggcaacgg 600caactggagc tggctggaga ggtggatggc agcgcggcca tgggagaaca ggctgatgga 660ggagcacaac tccagctccc cggacttccg gtcctccaag aactgcgagg actcctttgg 720tgtgctcggc gacttctctg aaccgaactc agtgaaggtg cgcaagaaca atgtcagcaa 780gcgggtctgc gcaaaacctc cagggccaac acacgcccac ggacatcatc agcgcctcaa 840ggcccagtcg atctcgtctc tgagcactga gctgcacaac gacgagagct ccgcgtcctc 900ctcgtcttgc tttgcgtcta cccctatatc attcacactt gtggcttcgg agaagaccga 960ggacagcgtc aggacgagac ccaactacat gagcatgacg gagtcgatca aggctaagca 1020gaaggcatgc agcgcccaga ggacggtggc gctgaagcaa tgtgatgata ggaaagccat 1080gagcgccgag ttgaaggtcg ctcaggtgtg actgtttcgt ggaactccat gcagagatgg 1140agccgacttc gacatcctct ctatgcccta ggatgtgttg cttggtgtct tgccacattc 1200ttgagtggct cggtgctgca ttcctgagtt gtcctcctgt tgctgggtgt ctgattattc 1260aacttcttgt tgtcagattg catctttgtt cagtcattgt ggctgcatct ttgttcagcc 1320gttgtggctt tgtcagtggt agagtctctg taagatagtt ctttgagtag acagcattgt 1380ggatttcttt cctgggtgtt gatttcaggt caaaaaagac aggataattt act 1433116250PRTZea maysmisc_featureCeres CLONE ID no.352452 116Met Asp Ile Leu Arg Glu Ala Glu Glu Gly Trp Cys Asp Ser Gln Gly1 5 10 15Thr Leu Glu Gln Val Arg Val Lys Leu Gln Lys Arg Gln Glu Gly Ala 20 25 30Ile Lys Arg Glu Arg Ala Ile Ala Tyr Ala Tyr Ser Gln Gln Ala Asp35 40 45Gly Ala Ala Lys Cys Asn Pro Pro Lys Leu Thr Ser Asn Gly Leu Val50 55 60Asn His Ser Gly Met Leu Leu Lys His Gln Asn Leu Asp Lys Gly Asn65 70 75 80Gly Asn Trp Ser Trp Leu Glu Arg Trp Met Ala Ala Arg Pro Trp Glu 85 90 95Asn Arg Leu Met Glu Glu His Asn Ser Ser Ser Pro Asp Phe Arg Ser 100 105 110Ser Lys Asn Cys Glu Asp Ser Phe Gly Val Leu Gly Asp Phe Ser Glu115 120 125Pro Asn Ser Val Lys Val Arg Lys Asn Asn Val Ser Lys Arg Val Cys130 135 140Ala Lys Pro Pro Gly Pro Thr His Ala His Gly His His Gln Arg Leu145 150 155 160Lys Ala Gln Ser Ile Ser Ser Leu Ser Thr Glu Leu His Asn Asp Glu 165 170 175Ser Ser Ala Ser Ser Ser Ser Cys Phe Ala Ser Thr Pro Ile Ser Phe 180 185 190Thr Leu Val Ala Ser Glu Lys Thr Glu Asp Ser Val Arg Thr Arg Pro195 200 205Asn Tyr Met Ser Met Thr Glu Ser Ile Lys Ala Lys Gln Lys Ala Cys210 215 220Ser Ala Gln Arg Thr Val Ala Leu Lys Gln Cys Asp Asp Arg Lys Ala225 230 235 240Met Ser Ala Glu Leu Lys Val Ala Gln Val 245 2501171949DNATriticum aestivummisc_featureCeres CLONE ID no.787908 117acacaggcag gcagccgagc cgagcgagca ataattcgca ccggcacaca ggagcggcag 60taatggccgc gtggtgccgg tgccagtagc aggcaggcag gcaggggagt agcgccactg 120cactgggcac tgctgacgct tcgagcccac gctcttccct ccacccttgc ccctccctcc 180cgaaactccc tccctccctt ggcctcctca ggcctcccaa tctcgcagag cggcggccgt 240cattggccgg cggcggtgcg cggccccggt tgtttcctcc ggcgtcaggt gcccgtgatc 300tggttgttgc agaggcggcg aggtgaggtg acgcggcggc gcgatgaggt ggctcaagtc 360gttggttggg ctgaggaagg tggagaggca gcagcagcgc cgcaaggagg atggcgacgc 420cggcccaaca aaaacagatg ccgtcgatca gttccacttc caggatcagc actcccagga 480tcacgctagc cttgtcggac cagaagagtt ccctgatgaa aatggtccgt cagaagatga 540gtgcgataca ccttcatgct caggacctgg tttcagtatg cttagtgtgc cactgcctca 600aacagaagag gagctcaaag agatctgggc tgccacaatt attcagactg catatagagc 660cctactggct aggagagccc gccgagcttt aaaaggactg gttaggcttc aagcccttgt 720aaggggtcat atagtgagaa agcaagctgc tataacactt cggtgtatgc aagctttggt 780cagggtacaa gcccgtgtta gagcaaggcg ggttcgtgtg gccttggaaa atcagatgga 840tgagcaacaa aataatgtag aagagcaaac ggacgaggca catgttcgag aagttgagga 900tgggtggtgc gatagtatag ggtctgtgga agacatccaa gcaaaattgt tgaagaggca 960ggaagcagca gccaagcgtg agagagccat ggcctatgcc ctttctcacc agtggcaagc 1020aggttcaagg caacaggcag ccattacagc ttctgaacta gacaggaaca gctggagctg 1080gaattggctg gagagatgga tggccgtccg cccgtgggag agtcggttcc ttggcatgta 1140cgcagcagat ggaattgcca ttgataccgg agcgcacaat gctgagggaa atgcaaccaa 1200ggctccatac aggaaacctg tgaaaaagca ggtttcagct cttcattcaa gtgtgttgat 1260ccagaaggcc cgcccctcga actcggaggg tggtggctcc ttgtcgaacc cgtctgccgg 1320ttcggcgtca gctaaaccga aacggaagct gccaccaaag gaaggttctg atgaagtctc 1380gtctcgtctt tcgggacttg gtgcccggag cagtagtaat cctaaggaga ggcctgggca 1440gttacaacct cgggccaaca agaggttctc cttgcctggc actggcacag aagttggcaa 1500acggcaagtg aataaacctg cggtgaaccg atcccccaag gctaccgaag actccccagc 1560gctggaaggg aagcatcgcc gtgccggttc cgttggtctg ctgctcaaga gagttgagct 1620gcaggcttga caagccatct gaagccccat ctaccgtcgt caaggttcga agtcagcatg 1680ctgcgctctg atacatgggc ggccttagat tctggaaggt ccattggagc aatgtgcatt 1740tatttcttag ccatattata ggtatgcagt caaaatgctc atctcaggag atgagatcta 1800gctagtgctt ggatatgtat gtgctggtca gctggtgcct ctagtcctgg aggttaccat 1860agcttgtact gttgtatttg tagctaagag caagtatggg ctcacatttt ctggaactat 1920tttttgtaca atgaaaaaaa aaaaaaaaa 1949118428PRTTriticum aestivummisc_featureCeres CLONE ID no.787908 118Met Arg Trp Leu Lys Ser Leu Val Gly Leu Arg Lys Val Glu Arg Gln1 5 10 15Gln Gln Arg Arg Lys Glu Asp Gly Asp Ala Gly Pro Thr Lys Thr Asp 20 25 30Ala Val Asp Gln Phe His Phe Gln Asp Gln His Ser Gln Asp His Ala35 40 45Ser Leu Val Gly Pro Glu Glu Phe Pro Asp Glu Asn Gly Pro Ser Glu50 55 60Asp Glu Cys Asp Thr Pro Ser Cys Ser Gly Pro Gly Phe Ser Met Leu65 70 75 80Ser Val Pro Leu Pro Gln Thr Glu Glu Glu Leu Lys Glu Ile Trp Ala 85 90 95Ala Thr Ile Ile Gln Thr Ala Tyr Arg Ala Leu Leu Ala Arg Arg Ala 100 105 110Arg Arg Ala Leu Lys Gly Leu Val Arg Leu Gln Ala Leu Val Arg Gly115 120 125His Ile Val Arg Lys Gln Ala Ala Ile Thr Leu Arg Cys Met Gln Ala130 135 140Leu Val Arg Val Gln Ala Arg Val Arg Ala Arg Arg Val Arg Val Ala145 150 155 160Leu Glu Asn Gln Met Asp Glu Gln Gln Asn Asn Val Glu Glu Gln Thr 165 170 175Asp Glu Ala His Val Arg Glu Val Glu Asp Gly Trp Cys Asp Ser Ile 180 185 190Gly Ser Val Glu Asp Ile Gln Ala Lys Leu Leu Lys Arg Gln Glu Ala195 200 205Ala Ala Lys Arg Glu Arg Ala Met Ala Tyr Ala Leu Ser His Gln Trp210 215 220Gln Ala Gly Ser Arg Gln Gln Ala Ala Ile Thr Ala Ser Glu Leu Asp225 230 235 240Arg Asn Ser Trp Ser Trp Asn Trp Leu Glu Arg Trp Met Ala Val Arg 245 250 255Pro Trp Glu Ser Arg Phe Leu Gly Met Tyr Ala Ala Asp Gly Ile Ala 260 265 270Ile Asp Thr Gly Ala His Asn Ala Glu Gly Asn Ala Thr Lys Ala Pro275 280 285Tyr Arg Lys Pro Val Lys Lys Gln Val Ser Ala Leu His Ser Ser Val290 295 300Leu Ile Gln Lys Ala Arg Pro Ser Asn Ser Glu Gly Gly Gly Ser Leu305 310 315 320Ser Asn Pro Ser Ala Gly Ser Ala Ser Ala Lys Pro Lys Arg Lys Leu 325 330 335Pro Pro Lys Glu Gly Ser Asp Glu Val Ser Ser Arg Leu Ser Gly Leu 340 345 350Gly Ala Arg Ser Ser Ser Asn Pro Lys Glu Arg Pro Gly Gln Leu Gln355 360 365Pro Arg Ala Asn Lys Arg Phe Ser Leu Pro Gly Thr Gly Thr Glu Val370 375 380Gly Lys Arg Gln Val Asn Lys Pro Ala Val Asn Arg Ser Pro Lys Ala385 390 395 400Thr Glu Asp Ser Pro Ala Leu Glu Gly Lys His Arg Arg Ala Gly Ser 405 410 415Val Gly Leu Leu Leu Lys Arg Val Glu Leu Gln Ala 420 425119442PRTmisc_featureCeres LOCUS ID no. Os01m00929_AP002743 119Met Gly Gly Ser Gly Lys Trp Val Lys Ser Leu Ile Gly Leu Lys Lys1 5 10 15Pro Asp Arg Glu Asp Cys Lys Glu Lys Leu Gln Val Pro Ser Val Asn 20 25 30Gly Arg Gly Gly Gly Lys Gly Arg Lys Trp Lys Leu Trp Arg Ser Ser35 40 45Ser Gly Asp His Gly Ser Leu Trp Arg Gly Ser Arg Gly Gly Gly Gly50 55 60Gly Gly Gly His His Arg Ser Ala Ser Ser Asp Ala Ser Asp Asp Ala65 70 75 80Ser Ser Ala Ala Ala Asp Pro Phe Thr Ala Ala Val Ala Thr Val Ala 85 90 95Arg Ala Pro Ala Lys Asp Phe Met Ala Val Arg Gln Glu Trp Ala Ala 100 105 110Ile Arg Val Gln Thr Ala Phe Arg Gly Phe Leu Ala Arg Arg Ala Leu115 120 125Arg Ala Leu Lys Gly Leu Val Arg Leu Gln Ala Ile Val Arg Gly Arg130 135 140Gln Val Arg Lys Gln Ala Ala Val Thr Leu Arg Cys Met Gln Ala Leu145 150 155 160Val Arg Val Gln Ala Arg Ile Arg Ala Arg Arg Val Arg Met Ser Thr 165 170 175Glu Gly Gln Ala Val Gln Lys Leu Leu Glu Ala Arg Arg Thr Lys Leu 180 185 190Asp Ile Leu Arg Glu Ala Glu Glu Gly Trp Cys Asp Ser Gln Gly Thr195 200 205Leu Glu Asp Val Arg Val Lys Leu Gln Lys Arg Gln Glu Gly Ala Ile210 215 220Lys Arg Glu Arg Ala Ile Ala Tyr Ala Tyr Ser Gln Gln Ile Glu Gly225 230 235 240Ala Thr Lys Cys Asn Gln Gln Pro Lys Pro Thr Ser Tyr Gly Arg Leu 245 250 255Asn Gln Ser Gly Met Leu Leu Lys His Gln His Phe Asp Lys Ser Asn 260 265 270Gly Asn Trp Ser Trp Leu Glu Arg Trp Met Ala Ala Arg Pro Trp Glu275 280 285Asn Arg Leu Met Glu Glu His Asn Gln Thr Asn Ser Ser Ser Pro Asp290 295 300Leu Leu Ser Ser Lys Asn Cys Glu Asp Ser Phe Gly Ile Leu Gly Asp305 310 315 320Phe Ser Glu Pro Asn Ser Val Lys Val Arg Lys Asn Asn Val Ser Lys 325 330 335Arg Val Cys Ala Lys Pro Pro Val Val Ser His His Gln Arg Ile Lys 340 345 350Ala Gln Ser Ile Ser Ser Leu Ser Thr Glu Leu His Asn Asp Glu Ser355 360 365Ser Ala Ser Ser Ser Ser Cys Phe Ala Ser Thr Pro Ile Ser Phe Ser370 375 380Thr Phe Val Thr Thr Glu Lys Thr Glu Asp Ser Ile Arg Ala Arg Pro385 390 395 400Asn Tyr Met Asn Met Thr Glu Ser Ile Lys Ala Lys Arg Lys Ala Cys 405 410 415Asn Ala Gln Arg Thr Thr Ala Gly Lys Leu Met Glu Asp Arg Lys Ala 420 425 430Ser Gly Val Glu Leu Lys Val Ala Gln Val435 4401201801DNAZea maysmisc_featureCeres CLONE ID no.246398 120gtctcgtctc tacgcccgct ctccactctt cctcccaaag cctgccgccg cgtggggggt 60tgcttgctgg ctgcccgctc ctctccctgc tcctcctgtg tctgccgccc accgcttccg 120ggaacaagtc cggttgccgc cgccgccgtc gctgctctgt ccgagaggag ggaggaacag 180agcgggatgg gagggtccgg gaagtgggtc aagtcgctga tagggctcaa gaagcagccc 240gagaaggaag actgcaagga caagctgcag ctcccatcag tccacggcgg aggattgcga 300ggcaagggcc gcaggtggaa gctgtggcgg acctcctccg gcgaccaggg ctccatgtgg 360cgcggctcca gaggcggcag ccagcgctcg gcggcgtcgg aggcctcgga cgacgcgtcc 420tcggtggccg ccgtccccgc cgacccgttc acggccgccg tcgccaccgt cgcccgcgcc 480ccggccaggg acttcatggc cgtccgccag gagtgggccg ccatccgcgt ccagaccgcg 540ttccgcgggt tcttggctcg gcgggcgctc cgggcgctca aggggctggt gcggctccag 600gcgatcgtgc gcgggcggca ggtgcggaag caggcggccg tgacgctgcg gtgcatgcag 660gcgctggtgc gggtgcaggc gcgcatccgg gcgcgccgcg tgcgcatgtc caccgagggc 720caggccgtgc agaagctgct cgaggcgcgc cgcacccaga tggatatcct cagggaagcc 780gaggaaggat ggtgtgacag ccagggaaca cttgaacaag tgagggtcaa gctgcagaag 840cggcaggagg gcgcaatcaa gcgtgagcgg ggctatcgcc tatgcatatt cgcagcaggc 900cgacggtgct gccaaatgca atccaccgaa gcttacttcc aatggactgg tgaaccactc 960cggcatgctg ctcaagcacc agaacttaga caagggcaac ggcaactgga gctggctgga 1020gaggtggatg gcagcgcggc catgggagaa caggctgatg gaggagcaca actccagctc 1080cccggacttc cggtcctcca agaactgcga ggactccttt ggtgtgctcg gcgacttctc 1140tgaaccgaac tcagtgaaga tgcgcaagaa caatgtcagc aagcgggtct gcgcaaaacc 1200tccagggcca acacacgccc acggacatca tcagcgcctc aaggcccagt cgatctcgtc 1260tctgagcact gagctgcaca acgacgagag ctccgcgtcc tcctcgtctt gctttgcgtc 1320tacccctata tcattcacac ttgtggcttc ggagaagacc gaggacagcg tcaggacgag 1380acccaactac atgagcatga cggagtcgat caaggctaag cagaaggcat gcagcgccca 1440gaggacggtg gcgctgargc aatgtgatga taggaaagcc atgagcgccg agttgaaggt 1500cgctcaggtg tgactgtttc gtggaactcc atgcagagat ggagccgact tcgacatcct 1560ctctatgccc taggatgtgt tgcttggtgt cttgccacat tcttgagtgg ctcggtgctg 1620cattcctgag ttgtcctcct gttgctgggt gtctgattat tcaacttctt gttgtcagat 1680tgcatctttg ttcagtcatt gtggctgcat ctttgttcag ccgttgtggc tttgtcagtg 1740gtagagtctc tgtaagatag ttctttgagt akryagtwtt gkggatktct ktcctrkgtk 1800t 1801121318PRTZea maysmisc_featureCeres CLONE ID no.246398 121Met Gly Gly Ser Gly Lys Trp Val Lys Ser Leu Ile Gly Leu Lys Lys1 5 10 15Gln Pro Glu Lys Glu Asp Cys Lys Asp Lys Leu Gln Leu Pro Ser Val 20 25 30His Gly Gly Gly Leu Arg Gly Lys Gly Arg Arg Trp Lys Leu Trp Arg35 40 45Thr Ser Ser Gly Asp Gln Gly Ser Met Trp Arg Gly Ser Arg Gly Gly50 55 60Ser Gln Arg Ser Ala Ala Ser Glu Ala Ser Asp Asp Ala Ser Ser Val65 70 75 80Ala Ala Val Pro Ala Asp Pro Phe Thr Ala Ala Val Ala Thr Val Ala 85 90 95Arg Ala Pro Ala Arg Asp Phe Met Ala Val Arg Gln Glu Trp Ala Ala 100 105 110Ile Arg Val Gln Thr Ala Phe Arg Gly Phe Leu Ala Arg Arg Ala Leu115 120 125Arg Ala Leu Lys Gly Leu Val Arg Leu Gln Ala Ile Val Arg Gly Arg130 135 140Gln Val Arg Lys Gln Ala Ala Val Thr Leu Arg Cys Met Gln Ala Leu145 150 155 160Val Arg Val Gln Ala Arg Ile Arg Ala Arg Arg Val Arg Met Ser Thr 165 170 175Glu Gly Gln Ala Val Gln Lys Leu Leu Glu Ala Arg Arg Thr Gln Met 180 185 190Asp Ile Leu Arg Glu Ala Glu Glu Gly Trp Cys Asp Ser Gln Gly Thr195 200 205Leu Glu Gln Val Arg Val Lys Leu Gln Lys Arg Gln Glu Gly Ala Ile210 215 220Lys Arg Glu Arg Gly Tyr Arg Leu Cys Ile Phe Ala Ala Gly Arg Arg225 230 235 240Cys Cys Gln Met Gln Ser Thr Glu Ala Tyr Phe Gln Trp Thr Gly Glu 245 250 255Pro Leu Arg His Ala Ala Gln Ala Pro Glu Leu Arg Gln Gly Gln Arg 260 265 270Gln Leu Glu Leu Ala Gly Glu Val Asp Gly Ser Ala Ala Met Gly Glu275 280 285Gln Ala Asp Gly Gly Ala Gln Leu Gln Leu Pro Gly Leu Pro Val Leu290 295 300Gln Glu Leu Arg Gly Leu Leu Trp Cys Ala Arg Arg Leu Leu305 310 315122440PRTOryza sativa subsp. indicamisc_featurePublic GI ID no.125527441 122Met Gly Ala Ser Gly Lys Trp Ile Arg Thr Leu Val Gly Leu Arg Pro1 5 10 15Ala Ala Glu Arg Glu Lys Glu Arg Gly Gly Gly Gly Gly Lys Gly Arg 20 25 30Lys Trp Ser Arg Leu Trp Arg Ser Ser Ser Ser Gln Arg Gly Gly Gly35 40 45Asn Ala Ser Ala Ser Glu Val Tyr Ser Glu Thr Ser Ser Ser Ala Asp50 55 60Ala Leu Ser Ser Val Val Ala Ala Val Val Arg Ala Pro Pro Arg Asp65 70 75 80Phe Arg Leu Ile Arg Gln Glu Trp Ala Ala Val Arg Ile Gln Thr Ala 85 90 95Phe Arg Ala Phe Leu Ala Arg Arg Ala Leu Arg Ala Leu Arg Gly Ile 100 105 110Val Arg Leu Gln Ala Leu Val Arg Gly Arg Arg Val Arg Lys Gln Leu115 120 125Ala Val Thr Leu Lys Cys Met Gln Ala Leu Val Arg Val Gln Ala Arg130 135 140Ala Arg Asp Arg Arg Ala Arg Ile Ser Ala Asp Gly Leu Asp Ser Gln145 150 155 160Asp Met Leu Asp Glu Arg Gly Gly Arg Val Asp Pro Val Lys Glu Ala 165 170 175Glu Ala Gly Trp Cys Asp Ser Gln Gly Thr Ala Asp Asp Val Arg Ser 180 185 190Lys Ile His Met Arg His Glu Gly Ala Ile Lys Arg Glu Arg Ala Leu195 200 205Thr Tyr Ala Gln Ser His Gln Arg Cys Ser Asn His Gly Gly Arg Pro210 215 220Ser Ser Pro Ala Val Ser Leu Lys His His Gly Asn Gly Ala Thr Arg225 230 235 240Ser Asn His Ser Trp Ser Tyr Leu Glu Gly Trp Met Ala Thr Lys Pro 245 250 255Trp Glu Ser Arg Leu Met Glu Gln Thr His Thr Glu Asn Ser Thr Asn 260 265

270Ser Arg Cys Ser Glu Ser Val Glu Glu Val Ser Val Gly Gly Pro Lys275 280 285Leu Ser Asp Ala Ser Ser Val Lys Ile Arg Arg Asn Asn Val Thr Lys290 295 300Arg Val Ala Ala Lys Pro Pro Ser Met Ile Ser Ala Thr Ser Ser Asp305 310 315 320Phe Val Cys Asp Glu Ser Ser Pro Ser Thr Ser Ser Val Thr Pro Leu 325 330 335Ser Ala Asn Asn Ser Leu Ala Thr Glu Arg Arg Ser Asp Cys Gly Gln 340 345 350Val Gly Gly Pro Ser Tyr Met Ser Leu Thr Lys Ser Ala Lys Ala Arg355 360 365Leu Ser Gly Tyr Gly Ser His Lys Pro Pro Leu Gln Arg Gln Arg Ser370 375 380Gly Asp Leu Leu His His Asn Arg Met Ala Phe Ser Ser Ile Asp Val385 390 395 400Gln Ser Thr Ala Gly Ser Glu Val Ser Val Thr Ser Lys Arg Leu Asn 405 410 415Ser Leu Ala Leu Lys Gly Arg Ala Thr Arg Ser Leu Asp Lys Glu Asn 420 425 430Glu Arg Arg Pro Ser Ser Leu Leu435 440123420PRTOryza sativa subsp. japonicamisc_featurePublic GI ID no.125595056 123Met Gly Ala Ser Gly Lys Trp Ile Lys Ser Leu Val Ser Leu Lys Ala1 5 10 15Ala Pro Glu Gly Thr Thr Lys Gly Arg Arg Trp Thr Arg Leu Trp Arg 20 25 30Ser Ser Ser Ser Ala Ser Ala Ser Ala Ser Thr Ala Gly Asp Ala Ser35 40 45Glu Ser Ala Ser Ser Glu Ala Asp Ala Phe Ser Ser Val Val Ala Ala50 55 60Val Val Arg Ala Pro Pro Arg Asp Phe Arg Val Ile Arg Gln Glu Trp65 70 75 80Ala Ala Val Arg Val Gln Ala Ala Phe Arg Ala Phe Leu Ala Arg Arg 85 90 95Ala Leu Lys Ala Leu Arg Gly Ile Val Arg Leu Gln Ala Leu Val Arg 100 105 110Gly Arg Leu Val Arg Arg Gln Leu Ala Val Thr Leu Lys Cys Met Asn115 120 125Ala Leu Leu Arg Val Gln Glu Arg Ala Arg Glu Arg Arg Ala Arg Cys130 135 140Ser Ala Asp Gly Arg Asp Ser Gln Asp Ala Val Gly Glu Arg Asp Gly145 150 155 160Arg Ala Asp Pro Ile Lys Gln Ala Glu Ala Leu Ile Leu Gln Leu Leu 165 170 175Pro Pro Phe His Asn Glu Gln Trp Cys Asp Ser Gln Gly Ser Val Ser 180 185 190Glu Val Arg Ser Lys Ile His Met Arg His Asp Ala Val Ala Lys Arg195 200 205Glu Arg Ala Ile Ala Tyr Ala Leu Ser His Gln Pro Arg Ser Ser Lys210 215 220Gln Ser Ala Arg Pro Ser Ser Pro Ala Arg Ser Leu Arg Asn His Glu225 230 235 240Ser Asn Arg Cys Asn His Asp Trp Ser Tyr Ile Glu Gly Trp Met Ala 245 250 255Thr Lys Pro Trp Glu Ser Arg Leu Met Glu Gln Ser His Ala Glu Leu 260 265 270Lys Cys Ser Lys Asn Ser Gly Glu Leu Asn Leu Ala Gly Ala Gln Leu275 280 285Ser Asn Ala Ser Ser Val Lys Met Arg Gly Asn Arg Val Ala Ala Lys290 295 300Pro Pro Ser Val Leu Ser Ala Ser Ser Ser Asp Phe Pro Cys Asp Val305 310 315 320Ser Ser Ala Ser Thr Ser Ser Ala Thr Pro Ala Arg Ser Asp Gly Gly 325 330 335His Gly Glu Gly Pro Ser Tyr Met Ser Leu Thr Lys Ser Ala Lys Ala 340 345 350Arg Gln Ser Cys Asn Ser Pro Phe Gln Ile Gln Arg Gln Arg Ser Gly355 360 365Gly Met Ser Ser Tyr Lys Arg Val Ala Leu Ser Pro Leu Asp Val Gln370 375 380Ser Asn Ala Cys Ser Glu Phe Ser Val Thr Ser Arg Lys Leu Asn Ser385 390 395 400Leu Ser Leu Lys Gly Arg Ser Met Thr Arg Ser Leu Asp Lys Glu Asn 405 410 415Asp Asn Leu Phe 4201241682DNAZea maysmisc_featureCeres CLONE ID no.236071 124acatcccagt gccgagtgtc cccacacaac caagcggaag cttcggtcga acagagggag 60taagcagttg cgtttcgcat tgcgcggcgc cgatgggggc gtcggggaag tggatcaagt 120cgctggtggc cctgaaggcg cccgagaagg cggcggggca caagggcggt cgcaaatggc 180gtctctggcg gagctcgtcg gccacgtcca gggccagcgc cggcgagggc agtgcgctgg 240cgtccgagtc ttcttcggcg tcggccgact cgttcaactc ggtcctcgcc gccgtggtcc 300gcgcgccgcc cagggatttc ctgctcatca ggcaggaatg ggccgccgtc cgcatccata 360ccgccttccg cggattcttg gcgagacggg cgttgaaggc gctgaggggc atcgtccggc 420tgcaggcgct ggtgcgcggc cggcgcgtgc gcaagcaact ggccgtcacg ctcaagtgca 480tgcacgcact gctgcgggtg caggaacgcg cccgggagcg ccgggcgcgc tcctccgctg 540atggccacgg ctcacagggc caggacgcgc tcaacggctg tgccagttct accaaagacg 600ctatggaaca atggtgtgac cgccacggat ctgttgctga agtaagatca aatttacaca 660tgaagcatga aggtgcagca aagagagaaa gggcaattgc ctatgctgtg tctcaccagc 720ctcggggttc aagacagaag gggagaccaa gctctcctgc taactgcgtt agaagccatg 780atcctaatgg gtgcgatcag gacttcagtt acttagacgg atggatggca acgaagccat 840gggagaccag atctacggag cgaaaccata gcgactcgca gctcgcgaag cacgaggagc 900tgaacttgcc cgcctccaag ctttccgatg ccagctcagt taagatcaga agaaacaatg 960tcacaactag ggtatctgca gcaaagcgtc ctcctccatc ttcagtgctg tcagctgctt 1020cttccgactc cgcgtgcggc ggcgagagct ctcggtcgag accatcggtg accctgacgt 1080ctgctaccac caacactgtc ttagcgtcag aagcaagatc agacagtggc gacaccggag 1140gcccgaacta catgagcttg accaagtctg ccaaggcgag gctgagtgga tgcagcggca 1200gcagccatca caggtcgttc cagcgaccac ggtccgggga catgtcgagg gtgacactgt 1260cttcgatcga cacccagagc aacgcgggct cggagatttc agtcacctcg aagagactga 1320acagcatgtc cctgaacctg aaaggccgga gcttggacaa ggagaacgag gaggattgat 1380ccatccacca acggacaaag cagctgtcgt aggtctggtg cagtactacc acgcgttcaa 1440agcagcatct ctgtatttac ggaatttacg gaggaagacg cggtttatct ctttcataaa 1500ctccacacat gtcacatgtg agagagctct ggcactaggt caccgcttct atcatcatta 1560tcatccttag tttagtttag tgcgtaagtt ttgtacacat ccaatcgatg tccagttcct 1620aatttccttg tctctagttt gtacccataa attagtaata taagtactta tatcagcacg 1680cg 1682125428PRTZea maysmisc_featureCeres CLONE ID no.236071 125Met Gly Ala Ser Gly Lys Trp Ile Lys Ser Leu Val Ala Leu Lys Ala1 5 10 15Pro Glu Lys Ala Ala Gly His Lys Gly Gly Arg Lys Trp Arg Leu Trp 20 25 30Arg Ser Ser Ser Ala Thr Ser Arg Ala Ser Ala Gly Glu Gly Ser Ala35 40 45Leu Ala Ser Glu Ser Ser Ser Ala Ser Ala Asp Ser Phe Asn Ser Val50 55 60Leu Ala Ala Val Val Arg Ala Pro Pro Arg Asp Phe Leu Leu Ile Arg65 70 75 80Gln Glu Trp Ala Ala Val Arg Ile His Thr Ala Phe Arg Gly Phe Leu 85 90 95Ala Arg Arg Ala Leu Lys Ala Leu Arg Gly Ile Val Arg Leu Gln Ala 100 105 110Leu Val Arg Gly Arg Arg Val Arg Lys Gln Leu Ala Val Thr Leu Lys115 120 125Cys Met His Ala Leu Leu Arg Val Gln Glu Arg Ala Arg Glu Arg Arg130 135 140Ala Arg Ser Ser Ala Asp Gly His Gly Ser Gln Gly Gln Asp Ala Leu145 150 155 160Asn Gly Cys Ala Ser Ser Thr Lys Asp Ala Met Glu Gln Trp Cys Asp 165 170 175Arg His Gly Ser Val Ala Glu Val Arg Ser Asn Leu His Met Lys His 180 185 190Glu Gly Ala Ala Lys Arg Glu Arg Ala Ile Ala Tyr Ala Val Ser His195 200 205Gln Pro Arg Gly Ser Arg Gln Lys Gly Arg Pro Ser Ser Pro Ala Asn210 215 220Cys Val Arg Ser His Asp Pro Asn Gly Cys Asp Gln Asp Phe Ser Tyr225 230 235 240Leu Asp Gly Trp Met Ala Thr Lys Pro Trp Glu Thr Arg Ser Thr Glu 245 250 255Arg Asn His Ser Asp Ser Gln Leu Ala Lys His Glu Glu Leu Asn Leu 260 265 270Pro Ala Ser Lys Leu Ser Asp Ala Ser Ser Val Lys Ile Arg Arg Asn275 280 285Asn Val Thr Thr Arg Val Ser Ala Ala Lys Arg Pro Pro Pro Ser Ser290 295 300Val Leu Ser Ala Ala Ser Ser Asp Ser Ala Cys Gly Gly Glu Ser Ser305 310 315 320Arg Ser Arg Pro Ser Val Thr Leu Thr Ser Ala Thr Thr Asn Thr Val 325 330 335Leu Ala Ser Glu Ala Arg Ser Asp Ser Gly Asp Thr Gly Gly Pro Asn 340 345 350Tyr Met Ser Leu Thr Lys Ser Ala Lys Ala Arg Leu Ser Gly Cys Ser355 360 365Gly Ser Ser His His Arg Ser Phe Gln Arg Pro Arg Ser Gly Asp Met370 375 380Ser Arg Val Thr Leu Ser Ser Ile Asp Thr Gln Ser Asn Ala Gly Ser385 390 395 400Glu Ile Ser Val Thr Ser Lys Arg Leu Asn Ser Met Ser Leu Asn Leu 405 410 415Lys Gly Arg Ser Leu Asp Lys Glu Asn Glu Glu Asp 420 425126455PRTOryza sativa subsp. indicamisc_featurePublic GI ID no.125524760 126Met Gly Gly Ser Gly Lys Trp Val Lys Ser Leu Ile Gly Leu Lys Lys1 5 10 15Pro Asp Arg Glu Asp Cys Lys Glu Lys Leu Gln Val Pro Ser Val Asn 20 25 30Gly Gly Gly Gly Gly Lys Gly Arg Lys Trp Lys Leu Trp Arg Ser Ser35 40 45Ser Gly Asp His Gly Ser Leu Trp Arg Gly Ser Arg Gly Gly Gly Gly50 55 60Gly Gly Gly His His Arg Ser Ala Ser Ser Asp Ala Ser Asp Asp Ala65 70 75 80Ser Ser Ala Ala Gly Asp Pro Phe Thr Ala Ala Val Ala Thr Val Ala 85 90 95Arg Ala Pro Ala Lys Asp Phe Met Ala Val Arg Gln Glu Trp Ala Ala 100 105 110Ile Arg Val Gln Thr Ala Phe Arg Gly Phe Leu Ala Arg Arg Ala Leu115 120 125Arg Ala Leu Lys Gly Leu Val Arg Leu Gln Ala Ile Val Arg Gly Arg130 135 140Gln Val Arg Lys Gln Ala Ala Val Thr Leu Arg Cys Met Gln Ala Leu145 150 155 160Val Arg Val Gln Ala Arg Ile Arg Ala Arg Arg Val Arg Met Ser Thr 165 170 175Glu Gly Gln Ala Val Gln Lys Leu Leu Glu Ala Arg Arg Thr Lys Leu 180 185 190Asp Ile Leu Arg Glu Ala Glu Glu Gly Trp Cys Asp Ser Gln Gly Thr195 200 205Leu Glu Asp Val Arg Val Lys Leu Gln Lys Arg Gln Glu Gly Ala Ile210 215 220Lys Arg Glu Arg Ala Ile Ala Tyr Ala Tyr Ser Gln Gln Ile Glu Gly225 230 235 240Ala Thr Lys Cys Asn Phe Trp Thr Lys Cys Val Ile Phe Leu Val Phe 245 250 255Ala Gln Gln Gln Pro Lys Pro Thr Ser Tyr Gly Arg Leu Asn Gln Ser 260 265 270Gly Met Leu Leu Lys His Gln His Phe Asp Lys Ser Asn Gly Asn Trp275 280 285Ser Trp Leu Glu Arg Trp Met Ala Ala Arg Pro Trp Glu Asn Arg Leu290 295 300Met Glu Glu His Asn Gln Thr Asn Ser Ser Ser Pro Asp Leu Leu Ser305 310 315 320Ser Lys Asn Cys Glu Asp Ser Phe Gly Ile Leu Gly Asp Phe Ser Glu 325 330 335Pro Asn Ser Val Lys Val Arg Lys Asn Asn Val Ser Lys Arg Val Cys 340 345 350Ala Lys Pro Pro Val Val Ser His His Gln Arg Ile Lys Ala Gln Ser355 360 365Ile Ser Ser Leu Ser Thr Glu Leu His Asn Asp Glu Ser Ser Ala Ser370 375 380Ser Ser Ser Cys Phe Ala Ser Thr Pro Ile Ser Phe Ser Thr Phe Val385 390 395 400Thr Thr Glu Lys Thr Glu Asp Ser Ile Arg Ala Arg Pro Asn Tyr Met 405 410 415Asn Met Thr Glu Ser Ile Lys Ala Lys Arg Lys Ala Cys Asn Ala Gln 420 425 430Arg Thr Thr Ala Gly Lys Leu Met Glu Asp Arg Lys Ala Ser Gly Val435 440 445Glu Leu Lys Val Ala Gln Val450 455127455PRTOryza sativa subsp. japonicamisc_featurePublic GI ID no.125569365 127Met Gly Gly Ser Gly Lys Trp Val Lys Ser Leu Ile Gly Leu Lys Lys1 5 10 15Pro Asp Arg Glu Asp Cys Lys Glu Lys Leu Gln Val Pro Ser Val Asn 20 25 30Gly Arg Gly Gly Gly Lys Gly Arg Lys Trp Lys Leu Trp Arg Ser Ser35 40 45Ser Gly Asp His Gly Ser Leu Trp Arg Gly Ser Arg Gly Gly Gly Cys50 55 60Cys Gly Gly His His Arg Ser Ala Ser Ser Asp Ala Ser Asp Asp Ala65 70 75 80Ser Ser Ala Ala Ala Asp Pro Phe Thr Ala Ala Val Ala Thr Val Ala 85 90 95Arg Ala Pro Ala Lys Asp Phe Met Ala Val Arg Gln Glu Trp Ala Ala 100 105 110Ile Arg Val Gln Thr Ala Phe Arg Gly Phe Leu Ala Arg Arg Ala Leu115 120 125Arg Ala Leu Lys Gly Leu Val Arg Leu Gln Ala Ile Val Arg Gly Arg130 135 140Gln Val Arg Lys Gln Ala Ala Val Thr Leu Arg Cys Met Gln Ala Leu145 150 155 160Val Arg Val Gln Ala Arg Ile Arg Ala Arg Arg Val Arg Met Ser Thr 165 170 175Glu Gly Gln Ala Val Gln Lys Leu Leu Glu Ala Arg Arg Thr Lys Leu 180 185 190Asp Ile Leu Arg Glu Ala Glu Glu Gly Trp Cys Asp Ser Gln Gly Thr195 200 205Leu Glu Asp Val Arg Val Lys Leu Gln Lys Arg Gln Glu Gly Ala Ile210 215 220Lys Arg Glu Arg Ala Ile Ala Tyr Ala Tyr Ser Gln Gln Ile Glu Gly225 230 235 240Ala Thr Lys Cys Asn Phe Trp Thr Glu Cys Val Ile Phe Leu Val Phe 245 250 255Ala Gln Gln Gln Pro Lys Pro Thr Ser Tyr Gly Arg Leu Asn Gln Ser 260 265 270Gly Met Leu Leu Lys His Gln His Phe Asp Lys Ser Asn Gly Asn Trp275 280 285Ser Trp Leu Glu Arg Trp Met Ala Ala Arg Pro Trp Glu Asn Arg Leu290 295 300Met Glu Glu His Asn Gln Thr Asn Ser Ser Ser Pro Asp Leu Leu Ser305 310 315 320Ser Lys Asn Cys Glu Asp Ser Phe Gly Ile Leu Gly Asp Phe Ser Glu 325 330 335Pro Asn Ser Val Lys Val Arg Lys Asn Asn Val Ser Lys Arg Val Cys 340 345 350Ala Lys Pro Pro Val Val Ser His His Gln Arg Ile Lys Ala Gln Ser355 360 365Ile Ser Ser Leu Ser Thr Glu Leu His Asn Asp Glu Ser Ser Ala Ser370 375 380Ser Ser Ser Cys Phe Ala Ser Thr Pro Ile Ser Phe Ser Thr Phe Val385 390 395 400Thr Thr Glu Lys Thr Glu Asp Ser Ile Arg Ala Arg Pro Asn Tyr Met 405 410 415Asn Met Thr Glu Ser Ile Lys Ala Lys Arg Lys Ala Cys Asn Ala Gln 420 425 430Arg Thr Thr Ala Gly Lys Leu Met Glu Asp Arg Lys Ala Ser Gly Val435 440 445Glu Leu Lys Val Ala Gln Val450 455128441PRTOryza sativa subsp. japonicamisc_featurePublic GI ID no.115439499 128Met Gly Ala Ser Gly Lys Trp Ile Arg Thr Leu Val Gly Leu Arg Pro1 5 10 15Ala Ala Glu Arg Glu Lys Glu Arg Gly Gly Gly Gly Gly Lys Gly Arg 20 25 30Lys Trp Ser Arg Leu Trp Arg Ser Ser Ser Ser Gln Arg Gly Gly Gly35 40 45Asn Ala Ser Ala Ser Glu Val Tyr Ser Glu Thr Ser Ser Ser Ala Asp50 55 60Ala Leu Ser Ser Val Val Ala Ala Val Val Arg Ala Pro Pro Arg Asp65 70 75 80Phe Arg Leu Ile Arg Gln Glu Trp Ala Ala Val Arg Ile Gln Thr Ala 85 90 95Phe Arg Ala Phe Leu Ala Arg Arg Ala Leu Arg Ala Leu Arg Gly Ile 100 105 110Val Arg Leu Gln Ala Leu Val Arg Gly Arg Arg Val Arg Lys Gln Leu115 120 125Ala Val Thr Leu Lys Cys Met Gln Ala Leu Val Arg Val Gln Ala Arg130 135 140Ala Arg Asp Arg Arg Ala Arg Ile Ser Ala Asp Gly Leu Asp Ser Gln145 150 155 160Asp Met Leu Asp Glu Arg Gly Gly Arg Val Asp His Val Lys Glu Ala 165 170 175Glu Ala Gly Trp Cys Asp Ser Gln Gly Thr Ala Asp Asp Val Arg Ser 180 185 190Lys Ile His Met Arg His Glu Gly Ala Ile Lys Arg Glu Arg Ala Arg195 200 205Thr Tyr Ala Gln Ser His Gln Arg Cys Ser Asn His Gly Gly Arg Pro210 215 220Ser Ser Pro Ala Val Ser Leu Lys His His Gly Asn Gly Ala Thr Arg225 230 235 240Ser Asn His Ser Trp Ser Tyr Leu Glu Gly Trp Met Ala Thr Lys Pro 245 250 255Trp Glu Ser Arg Leu Met Glu Gln Thr His Thr Glu Asn Ser Thr Asn 260 265 270Ser Arg Cys Ser Glu Ser Val Glu Glu Val Ser Val Gly Gly Pro Lys275 280 285Leu Ser Asp Ala Ser Ser Val Lys Ile Arg Arg Asn Asn Val Thr Thr290 295 300Arg Val Ala Ala Lys Pro Pro Ser Met

Ile Ser Ala Thr Ser Ser Asp305 310 315 320Phe Val Cys Asp Glu Ser Ser Pro Ser Thr Ser Ser Val Thr Pro Leu 325 330 335Ser Ala Asn Asn Ser Leu Ala Thr Glu Arg Arg Ser Asp Cys Gly Gln 340 345 350Val Gly Gly Pro Ser Tyr Met Ser Leu Thr Lys Ser Ala Lys Ala Arg355 360 365Leu Ser Gly Tyr Gly Ser His Lys Pro Pro Leu Gln Arg Gln Arg Ser370 375 380Gly Asp Leu Leu His His Asn Asn Arg Met Ala Phe Ser Ser Ile Asp385 390 395 400Val Gln Ser Thr Ala Gly Ser Glu Val Ser Val Thr Ser Lys Arg Leu 405 410 415Asn Ser Leu Ala Leu Lys Gly Arg Ala Thr Arg Ser Leu Asp Lys Glu 420 425 430Asn Glu Arg Arg Pro Ser Ser Leu Leu435 440129416PRTArabidopsis thalianamisc_featurePublic GI ID no.15225258 129Met Gly Ala Ser Gly Lys Trp Val Lys Ser Ile Ile Gly Leu Lys Lys1 5 10 15Leu Glu Lys Asp Glu Ile Glu Lys Gly Asn Gly Lys Asn Lys Lys Trp 20 25 30Lys Leu Trp Arg Thr Thr Ser Val Asp Ser Trp Lys Gly Phe Arg Gly35 40 45Lys His Arg Ser Asp Ser Asp Gly Val Asp Ser Ser Thr Val Tyr Ser50 55 60Ala Ala Val Ala Thr Val Leu Arg Ala Pro Pro Lys Asp Phe Lys Ala65 70 75 80Val Arg Glu Glu Trp Ala Ala Ile Arg Ile Gln Thr Ala Phe Arg Gly 85 90 95Phe Leu Ala Arg Arg Ala Leu Arg Ala Leu Lys Gly Ile Val Arg Leu 100 105 110Gln Ala Leu Val Arg Gly Arg Gln Val Arg Lys Gln Ala Ala Val Thr115 120 125Leu Arg Cys Met Gln Ala Leu Val Arg Val Gln Ala Arg Val Arg Ala130 135 140Arg Arg Val Arg Met Thr Val Glu Gly Gln Ala Val Gln Lys Leu Leu145 150 155 160Asp Glu His Arg Thr Lys Ser Asp Leu Leu Lys Glu Val Glu Glu Gly 165 170 175Trp Cys Asp Arg Lys Gly Thr Val Asp Asp Ile Lys Ser Lys Leu Gln 180 185 190Gln Arg Gln Glu Gly Ala Phe Lys Arg Glu Arg Ala Leu Ala Tyr Ala195 200 205Leu Ala Gln Lys Gln Trp Arg Ser Thr Thr Ser Ser Asn Leu Lys Thr210 215 220Asn Ser Ser Ile Ser Tyr Leu Lys Ser Gln Glu Phe Asp Lys Asn Ser225 230 235 240Trp Gly Trp Ser Trp Leu Glu Arg Trp Met Ala Ala Arg Pro Trp Glu 245 250 255Thr Arg Leu Met Asp Thr Val Asp Thr Ala Ala Thr Pro Pro Pro Leu 260 265 270Pro His Lys His Leu Lys Ser Pro Glu Thr Ala Asp Val Val Gln Val275 280 285Arg Arg Asn Asn Val Thr Thr Arg Val Ser Ala Lys Pro Pro Pro His290 295 300Met Leu Ser Ser Ser Pro Gly Tyr Glu Phe Asn Glu Ser Ser Gly Ser305 310 315 320Ser Ser Ile Cys Thr Ser Thr Thr Pro Val Ser Gly Lys Thr Gly Leu 325 330 335Val Ser Asp Asn Ser Ser Ser Gln Ala Lys Lys His Lys Pro Ser Tyr 340 345 350Met Ser Leu Thr Glu Ser Thr Lys Ala Lys Arg Arg Thr Asn Arg Gly355 360 365Leu Arg Gln Ser Met Asp Glu Phe Gln Phe Met Lys Asn Ser Gly Met370 375 380Phe Thr Gly Glu Leu Lys Thr Ser Pro Ser Ser Asp Pro Phe Val Ser385 390 395 400Phe Ser Lys Pro Leu Gly Val Pro Thr Arg Phe Glu Lys Pro Arg Gly 405 410 415130408PRTOryza sativa subsp. japonicamisc_featurePublic GI ID no.115465173 130Met Gly Ala Ser Gly Lys Trp Ile Lys Ser Leu Val Ser Leu Lys Ala1 5 10 15Ala Pro Glu Gly Thr Thr Lys Gly Arg Arg Trp Thr Arg Leu Trp Arg 20 25 30Ser Ser Ser Ser Ala Ser Ala Ser Ala Ser Thr Ala Gly Asp Ala Ser35 40 45Glu Ser Ala Ser Ser Glu Ala Asp Ala Phe Ser Ser Val Val Ala Ala50 55 60Val Val Arg Ala Pro Pro Arg Asp Phe Arg Val Ile Arg Gln Glu Trp65 70 75 80Ala Ala Val Arg Val Gln Ala Ala Phe Arg Ala Phe Leu Ala Arg Arg 85 90 95Ala Leu Lys Ala Leu Arg Gly Ile Val Arg Leu Gln Ala Leu Val Arg 100 105 110Gly Arg Leu Val Arg Arg Gln Leu Ala Val Thr Leu Lys Cys Met Asn115 120 125Ala Leu Leu Arg Val Gln Glu Arg Ala Arg Glu Arg Arg Ala Arg Cys130 135 140Ser Ala Asp Gly Arg Asp Ser Gln Asp Ala Val Gly Glu Arg Asp Gly145 150 155 160Arg Ala Asp Pro Ile Lys Gln Ala Glu Glu Gln Trp Cys Asp Ser Gln 165 170 175Gly Ser Val Ser Glu Val Arg Ser Lys Ile His Met Arg His Asp Ala 180 185 190Val Ala Lys Arg Glu Arg Ala Ile Ala Tyr Ala Leu Ser His Gln Pro195 200 205Arg Ser Ser Lys Gln Ser Ala Arg Pro Ser Ser Pro Ala Arg Ser Leu210 215 220Arg Asn His Glu Ser Asn Arg Cys Asn His Asp Trp Ser Tyr Ile Glu225 230 235 240Gly Trp Met Ala Thr Lys Pro Trp Glu Ser Arg Leu Met Glu Gln Ser 245 250 255His Ala Glu Leu Lys Cys Ser Lys Asn Ser Gly Glu Leu Asn Leu Ala 260 265 270Gly Ala Gln Leu Ser Asn Ala Ser Ser Val Lys Met Arg Gly Asn Arg275 280 285Val Ala Ala Lys Pro Pro Ser Val Leu Ser Ala Ser Ser Ser Asp Phe290 295 300Pro Cys Asp Val Ser Ser Ala Ser Thr Ser Ser Ala Thr Pro Ala Arg305 310 315 320Ser Asp Gly Gly His Gly Glu Gly Pro Ser Tyr Met Ser Leu Thr Lys 325 330 335Ser Ala Lys Ala Arg Gln Ser Cys Asn Ser Pro Phe Gln Ile Gln Arg 340 345 350Gln Arg Ser Gly Gly Met Ser Ser Tyr Lys Arg Val Ala Leu Ser Pro355 360 365Leu Asp Val Gln Ser Asn Ala Cys Ser Glu Phe Ser Val Thr Ser Arg370 375 380Lys Leu Asn Ser Leu Ser Leu Lys Gly Arg Ser Met Thr Arg Ser Leu385 390 395 400Asp Lys Glu Asn Asp Asn Leu Phe 4051311164DNAPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1477059 131atgggtgcat caggaaaatg ggtgaaatcc cttataggtt ttaaaaagtc tgataaagat 60caagaccatg taaatggcaa gagcaagaaa tggaagctat ggaggagctc atctggtgac 120ttggggtctt catggaagga ttttaaaggg aaacatagaa cagcgtcaga ggcatcgggt 180tcttcaccat taactgatcc atttactacc gcaatggcta ctgtggttag agctcctcct 240aagggtttta gggttgtcag gcaagagtgg gctgctatca ggattcaaac tgctttccgt 300ggattcttgg caagaagggc tctgagggct ttgaaagcag tggtgagact ccaagctata 360gttcgaggtc gacaagtgag aaagcaggct gctgtgatgc tttggtgtat gcaggctctt 420gttcgagttc aagctcgagt cagggctcat cctgtgcgaa tgtccataga agggcaggca 480gtgcagaata tgctaaatga gcgacatagc aaggctgatc tcttgaaaca tgctgaggaa 540gggtggtgcg atggcaaggg gacattggaa gatgtgaagt caaaactgca aatgaggcaa 600gaaggagcct tcaagagaga aagagcaatt gcatactccc ttgctcagaa acaatggaga 660tcaaacccca gctcaaatac tcgaaccaat agctcagtat actcattcaa gaatcaggag 720tttgataaga atagctgggg atggactagg cctccaattg ggcatattac tcgctcatct 780tccagtccaa gttctgaatt ccgctttgat gagagttcag cttcttcatc aatttgtaca 840tctacaacac caatatcagg aaacactggc ttggcctctg ataaaacaga ggagagtggt 900aacagtaggc caaattacat gaacctgacc gagtcaacca aggcaaagca aaaaacatcc 960ggtcatttat ctcataggat ccaaaggcag tctatggatg agtttcagtt tctcaaaaag 1020tcaggagcat tctcaaatgg agattcgaaa aacagtactg gttctgatcc gtcagttaat 1080ttatctaagc cactttgctt gccaacaaga tttgataaga actcgacgaa acaactaaga 1140ggaatggatc atttgtatga ttag 1164132387PRTPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1477059 132Met Gly Ala Ser Gly Lys Trp Val Lys Ser Leu Ile Gly Phe Lys Lys1 5 10 15Ser Asp Lys Asp Gln Asp His Val Asn Gly Lys Ser Lys Lys Trp Lys 20 25 30Leu Trp Arg Ser Ser Ser Gly Asp Leu Gly Ser Ser Trp Lys Asp Phe35 40 45Lys Gly Lys His Arg Thr Ala Ser Glu Ala Ser Gly Ser Ser Pro Leu50 55 60Thr Asp Pro Phe Thr Thr Ala Met Ala Thr Val Val Arg Ala Pro Pro65 70 75 80Lys Gly Phe Arg Val Val Arg Gln Glu Trp Ala Ala Ile Arg Ile Gln 85 90 95Thr Ala Phe Arg Gly Phe Leu Ala Arg Arg Ala Leu Arg Ala Leu Lys 100 105 110Ala Val Val Arg Leu Gln Ala Ile Val Arg Gly Arg Gln Val Arg Lys115 120 125Gln Ala Ala Val Met Leu Trp Cys Met Gln Ala Leu Val Arg Val Gln130 135 140Ala Arg Val Arg Ala His Pro Val Arg Met Ser Ile Glu Gly Gln Ala145 150 155 160Val Gln Asn Met Leu Asn Glu Arg His Ser Lys Ala Asp Leu Leu Lys 165 170 175His Ala Glu Glu Gly Trp Cys Asp Gly Lys Gly Thr Leu Glu Asp Val 180 185 190Lys Ser Lys Leu Gln Met Arg Gln Glu Gly Ala Phe Lys Arg Glu Arg195 200 205Ala Ile Ala Tyr Ser Leu Ala Gln Lys Gln Trp Arg Ser Asn Pro Ser210 215 220Ser Asn Thr Arg Thr Asn Ser Ser Val Tyr Ser Phe Lys Asn Gln Glu225 230 235 240Phe Asp Lys Asn Ser Trp Gly Trp Thr Arg Pro Pro Ile Gly His Ile 245 250 255Thr Arg Ser Ser Ser Ser Pro Ser Ser Glu Phe Arg Phe Asp Glu Ser 260 265 270Ser Ala Ser Ser Ser Ile Cys Thr Ser Thr Thr Pro Ile Ser Gly Asn275 280 285Thr Gly Leu Ala Ser Asp Lys Thr Glu Glu Ser Gly Asn Ser Arg Pro290 295 300Asn Tyr Met Asn Leu Thr Glu Ser Thr Lys Ala Lys Gln Lys Thr Ser305 310 315 320Gly His Leu Ser His Arg Ile Gln Arg Gln Ser Met Asp Glu Phe Gln 325 330 335Phe Leu Lys Lys Ser Gly Ala Phe Ser Asn Gly Asp Ser Lys Asn Ser 340 345 350Thr Gly Ser Asp Pro Ser Val Asn Leu Ser Lys Pro Leu Cys Leu Pro355 360 365Thr Arg Phe Asp Lys Asn Ser Thr Lys Gln Leu Arg Gly Met Asp His370 375 380Leu Tyr Asp3851331059DNAPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1530547 133atgggtgcat caggaaaatg ggtgaaatcc cttataggtt ttaaaaagtc tgataaagat 60caagaccatg taaatggcaa gagcaagaaa tggaagctat ggaggagctc atctggtgac 120ttggggtctt catggaagga ttttaaaggg aaacatagaa cagcgtcaga ggcatcgggt 180tcttcaccat taactgatcc atttactacc gcaatggcta ctgtggttag agctcctcct 240aagggtttta gggttgtcag gcaagagtgg gctgctatca ggattcaaac tgctttccgt 300ggattcttgg ctcttgttcg agttcaagct cgagtcaggg ctcatcctgt gcgaatgtcc 360atagaagggc aggcagtgca gaatatgcta aatgagcgac atagcaaggc tgatctcttg 420aaacatgctg aggaagggtg gtgcgatggc aaggggacat tggaagatgt gaagtcaaaa 480ctgcaaatga ggcaagaagg agccttcaag agagaaagag caattgcata ctcccttgct 540cagaaacaat ggagatcaaa ccccagctca aatactcgaa ccaatagctc agtatactca 600ttcaagaatc aggagtttga taagaatagc tggggatgga ctaggcctcc aattgggcat 660attactcgct catcttccag tccaagttct gaattccgct ttgatgagag ttcagcttct 720tcatcaattt gtacatctac aacaccaata tcaggaaaca ctggcttggc ctctgataaa 780acagaggaga gtggtaacag taggccaaat tacatgaacc tgaccgagtc aaccaaggca 840aagcaaaaaa catccggtca tttatctcat aggatccaaa ggcagtctat ggatgagttt 900cagtttctca aaaagtcagg agcattctca aatggagatt cgaaaaacag tactggttct 960gatccgtcag ttaatttatc taagccactt tgcttgccaa caagatttga taagaactcg 1020acgaaacaac taagaggaat ggatcatttg tatgattag 1059134352PRTPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1530547 134Met Gly Ala Ser Gly Lys Trp Val Lys Ser Leu Ile Gly Phe Lys Lys1 5 10 15Ser Asp Lys Asp Gln Asp His Val Asn Gly Lys Ser Lys Lys Trp Lys 20 25 30Leu Trp Arg Ser Ser Ser Gly Asp Leu Gly Ser Ser Trp Lys Asp Phe35 40 45Lys Gly Lys His Arg Thr Ala Ser Glu Ala Ser Gly Ser Ser Pro Leu50 55 60Thr Asp Pro Phe Thr Thr Ala Met Ala Thr Val Val Arg Ala Pro Pro65 70 75 80Lys Gly Phe Arg Val Val Arg Gln Glu Trp Ala Ala Ile Arg Ile Gln 85 90 95Thr Ala Phe Arg Gly Phe Leu Ala Leu Val Arg Val Gln Ala Arg Val 100 105 110Arg Ala His Pro Val Arg Met Ser Ile Glu Gly Gln Ala Val Gln Asn115 120 125Met Leu Asn Glu Arg His Ser Lys Ala Asp Leu Leu Lys His Ala Glu130 135 140Glu Gly Trp Cys Asp Gly Lys Gly Thr Leu Glu Asp Val Lys Ser Lys145 150 155 160Leu Gln Met Arg Gln Glu Gly Ala Phe Lys Arg Glu Arg Ala Ile Ala 165 170 175Tyr Ser Leu Ala Gln Lys Gln Trp Arg Ser Asn Pro Ser Ser Asn Thr 180 185 190Arg Thr Asn Ser Ser Val Tyr Ser Phe Lys Asn Gln Glu Phe Asp Lys195 200 205Asn Ser Trp Gly Trp Thr Arg Pro Pro Ile Gly His Ile Thr Arg Ser210 215 220Ser Ser Ser Pro Ser Ser Glu Phe Arg Phe Asp Glu Ser Ser Ala Ser225 230 235 240Ser Ser Ile Cys Thr Ser Thr Thr Pro Ile Ser Gly Asn Thr Gly Leu 245 250 255Ala Ser Asp Lys Thr Glu Glu Ser Gly Asn Ser Arg Pro Asn Tyr Met 260 265 270Asn Leu Thr Glu Ser Thr Lys Ala Lys Gln Lys Thr Ser Gly His Leu275 280 285Ser His Arg Ile Gln Arg Gln Ser Met Asp Glu Phe Gln Phe Leu Lys290 295 300Lys Ser Gly Ala Phe Ser Asn Gly Asp Ser Lys Asn Ser Thr Gly Ser305 310 315 320Asp Pro Ser Val Asn Leu Ser Lys Pro Leu Cys Leu Pro Thr Arg Phe 325 330 335Asp Lys Asn Ser Thr Lys Gln Leu Arg Gly Met Asp His Leu Tyr Asp 340 345 3501351923DNAArabidopsis thalianamisc_featureCeres SEEDLINE ID no.ME24091 135acaaatactc ttcttcacac agctttgaat ccatctgtct tctcctctct ctctcttctc 60catttgcaat tacgataatg tgaaagcaat aagaagagga aaagttatct tcgcacctca 120gcaaagatcc aatcgattcg attcttaagc tttttcgtct tctccgataa ggtcactact 180tagaagccgc gttgtggttt agttgactcc tccaggtttt atcttcaagc tttttcgtct 240atcagatctg gtgtcactgt cttctcatag gattacatag agatggggaa aaaagctaaa 300tggttttcaa gtgttaagaa agcattcagc ccagattcaa agaagtcgaa gcaaaaattg 360gctgagggac aaaatggtgt tatctctaat cctcctgttg tggataatgt tagacaatct 420tcttcttctc ctcctcctgc tcttgctcct cgtgaagtga gagtagctga agtgattgtt 480gaacggaaca gggatctttc acctccttct acagcagatg ctgtgaatgt tacagctact 540gatgtycctg tagttccatc ttcatctgct cctggtgttg ttcgtcgcgc tacacctact 600cgatttgctg gaaagtcaaa cgaagaagcc gctgctatct tgatccagac tatatttaga 660ggttatttgg caaggagagc gttgcgggca atgaggggtt tggtcagact taagttattg 720atggaaggat ctgttgttaa gcggcaagct gcaaatactc taaaatgtat gcagactctc 780tctcgtgtac agtcgcagat ccgagctagg agaatcaggr tgtcagaaga gaatcaggct 840cgccagaaac aactccttca gaaacatgct aaagagctag ctggcttgaa gaacggggat 900aactggaatg atagcattca atcaaaggag aaagttgaag cgaatttgct aagcaagtac 960gaggcaacaa tgagaaggga aagggcattg gcttattcat actctcatca scaaaactgg 1020aagaacaact ctaaatctgg aaacccgatg ttcatggatc caagcaaccc gacatggggt 1080tggagctggt tggagagatg gatggctggt aggccactag agagttccga gaaagaacaa 1140agcaacagca acaatgacaa tgctgcctcg gtcaagggct ctattaaccg caacgaagct 1200gcaaaatctc taacccgcaa tggctcaact caaccaaaca caccatcatc cgcaagaggg 1260accccaagaa acaaaaacag tttcttctca cctccaactc cctcaaggct aaaccaatcc 1320tcgaggaaat ccaatgacga cgactccaaa agcacaatct cggtcctgtc cgagaggaac 1380cgcagacaca scattgctgg ttcatcagtc asagacgatg agagcctcgc tggctcacca 1440gctctcccga gctacatggt tccaactaaa tcagctcgag ccaggctcaa gccccaaagc 1500ccattaggtg gtaccacaca ggaaaacgaa gggttcacag acaaggcatc agctaagaaa 1560cggctctcgt atccaacttc gcctgcattg cctaaaccac ggcggttctc agctccccct 1620aaggtggaga gtggcggcgt taccgtgacc aacggagcag gcagctgagg tattttattt 1680aatataatta ttttcccact tatgaatgtg tccgagattg ttgtctctta tgtgttccct 1740tcatttcgta attcatttgt gcagtgtaag cgccagtcat ttattttttt actataataa 1800attttataac cttttaaaat tcatgttctt ttgtttcttt gaatatttaa gttattttta 1860ttaatgttgg atgaattgga atatgatgat gttatttgta ttgtaatgca gatcctttaa 1920agc 1923136461PRTArabidopsis thalianamisc_featureCeres SEEDLINE ID no.ME24091 136Met Gly Lys Lys Ala Lys Trp Phe Ser Ser Val Lys Lys Ala Phe Ser1 5 10 15Pro Asp Ser Lys Lys Ser Lys Gln Lys Leu Ala Glu Gly Gln Asn Gly 20 25 30Val Ile Ser Asn Pro Pro Val Val Asp Asn Val Arg Gln Ser Ser Ser35 40 45Ser Pro Pro Pro Ala Leu Ala Pro Arg Glu Val Arg Val Ala Glu Val50 55

60Ile Val Glu Arg Asn Arg Asp Leu Ser Pro Pro Ser Thr Ala Asp Ala65 70 75 80Val Asn Val Thr Ala Thr Asp Xaa Pro Val Val Pro Ser Ser Ser Ala 85 90 95Pro Gly Val Val Arg Arg Ala Thr Pro Thr Arg Phe Ala Gly Lys Ser 100 105 110Asn Glu Glu Ala Ala Ala Ile Leu Ile Gln Thr Ile Phe Arg Gly Tyr115 120 125Leu Ala Arg Arg Ala Leu Arg Ala Met Arg Gly Leu Val Arg Leu Lys130 135 140Leu Leu Met Glu Gly Ser Val Val Lys Arg Gln Ala Ala Asn Thr Leu145 150 155 160Lys Cys Met Gln Thr Leu Ser Arg Val Gln Ser Gln Ile Arg Ala Arg 165 170 175Arg Ile Arg Xaa Ser Glu Glu Asn Gln Ala Arg Gln Lys Gln Leu Leu 180 185 190Gln Lys His Ala Lys Glu Leu Ala Gly Leu Lys Asn Gly Asp Asn Trp195 200 205Asn Asp Ser Ile Gln Ser Lys Glu Lys Val Glu Ala Asn Leu Leu Ser210 215 220Lys Tyr Glu Ala Thr Met Arg Arg Glu Arg Ala Leu Ala Tyr Ser Tyr225 230 235 240Ser His Xaa Gln Asn Trp Lys Asn Asn Ser Lys Ser Gly Asn Pro Met 245 250 255Phe Met Asp Pro Ser Asn Pro Thr Trp Gly Trp Ser Trp Leu Glu Arg 260 265 270Trp Met Ala Gly Arg Pro Leu Glu Ser Ser Glu Lys Glu Gln Ser Asn275 280 285Ser Asn Asn Asp Asn Ala Ala Ser Val Lys Gly Ser Ile Asn Arg Asn290 295 300Glu Ala Ala Lys Ser Leu Thr Arg Asn Gly Ser Thr Gln Pro Asn Thr305 310 315 320Pro Ser Ser Ala Arg Gly Thr Pro Arg Asn Lys Asn Ser Phe Phe Ser 325 330 335Pro Pro Thr Pro Ser Arg Leu Asn Gln Ser Ser Arg Lys Ser Asn Asp 340 345 350Asp Asp Ser Lys Ser Thr Ile Ser Val Leu Ser Glu Arg Asn Arg Arg355 360 365His Xaa Ile Ala Gly Ser Ser Val Xaa Asp Asp Glu Ser Leu Ala Gly370 375 380Ser Pro Ala Leu Pro Ser Tyr Met Val Pro Thr Lys Ser Ala Arg Ala385 390 395 400Arg Leu Lys Pro Gln Ser Pro Leu Gly Gly Thr Thr Gln Glu Asn Glu 405 410 415Gly Phe Thr Asp Lys Ala Ser Ala Lys Lys Arg Leu Ser Tyr Pro Thr 420 425 430Ser Pro Ala Leu Pro Lys Pro Arg Arg Phe Ser Ala Pro Pro Lys Val435 440 445Glu Ser Gly Gly Val Thr Val Thr Asn Gly Ala Gly Ser450 455 4601371930DNAZea maysmisc_featureCeres CLONE ID no.375578 137aattcgagtg agcttattgg agactgacat cctaatcgaa aacccggttt attttttctt 60cgtcctggat gcgtcggtcg cgtgtttgat ctgactaagc cgcggaggag ggtgctagat 120gtccgtgcgg tgggcggtgg ctcccgaggg cgaccggagt taggtccttg ccgccttcag 180tgcggtgggg aagcgagaca ttgaaggcgc agaacccaaa gaatgggtaa gagaggaaag 240tggtttagtg cggtgaagaa agtcttcagc tcctccgatc cagatggaaa ggaagccaag 300gcccagaagg cagacaaatc gaaatccaag aggagatggc catttggaaa gtccaagcac 360tcggagcctt ccatatcgac ggtgccaggc actgctccag cagtagctcc gttgccatca 420ccaccagcaa ctcagcccca ctctctggag atcaaagatg tcaatccagt tgaaacagac 480agtgagcaga acaagcatgc ctactccgtt gcgcttgcgt ctgctgtcgc tgctgaagct 540gcagcagttg ctgcccaggc tgctgcggaa gttgtccgcc tcacagcagt taccacggct 600gcaccaaaga tgcctgttag ttcgagggaa gaacttgccg ccaccaagat tcagactgcc 660ttcaggggtt atctggcaag gagagcattg cgtgcactaa gagggctagt tagattgaag 720tcgcttgttg atggaaatgc tgtcaaacgc caaaccgctc acaccttgca atgcacacaa 780gcaatgacaa gagttcaaac tcaaatctac tctagaaggg tgaagttgga ggaggagaaa 840caggctcttc aaagacaact ccaattgaaa catcaaaggg aacttgagaa aatgaagatt 900gatgaagatt gggatcacag ccatcaatcc aaagagcaaa ttgaggccaa cctaatgatg 960aaacaggaag ctgcactgag gcgagagaga gcacttgcat atgcattttc tcaccagtgg 1020aggaattctg gtcgaactat aacccctact tttacggaac ctgggaaccc caactggggc 1080tggagctgga tggagcgctg gatgacagca agaccatggg agagtcggtt ggcggcggca 1140tcggacaagg accctaaaga acgtgctgtg acaaagaatg cgagcaccag tgctgttcga 1200gtacctgtat cccgtgccat ctcgattcag agaccagcaa caccaaacaa gtcgagccgc 1260ccaccaagcc ggcagtcact ttcaaccccg ccatcgaaga ccccgtcagc ctcaggaaag 1320gccaggccgg caagtccaag gaacagttgg ctgtacaagg aggatgacct gaggagcatc 1380acgagcatcc gctccgagcg cccaaggagg cagagcacgg gtggaggctc ggtccgggac 1440gataccagcc tgaccagcac accacctctc cccagctaca tgcagtcgac cgagtctgca 1500cgggccaagt ctcggtaccg cagtctacta ctgactgaga agcttgaggt tcctgagaga 1560gcgcctctgg cccactccgt tgtcaagaag cgcctgtcgt tccccgtcgt cgagaagcca 1620agcgttgtgc cgacagagaa gcccagggaa agagtgaggc gccattccga ccctccgaag 1680gtcgatcctg cgacgctcaa ggatgcccct gctgcctgac cagtgaccag gccttatgtg 1740attgttaggt ttcgtgctct tttaacaccg tgatgtatta tctgagttag gttgctttgt 1800tcgtgtcatc gtatgatctg tccgggttga ttttgagaca gttctaactg tgtttacaga 1860caatgcgtga tgctaaatgt atgtgtggtt ggttggcttt aaatgtactg atatgatagt 1920atttgatttc 1930138311PRTZea maysmisc_featureCeres CLONE ID no.375578 138Met Thr Arg Val Gln Thr Gln Ile Tyr Ser Arg Arg Val Lys Leu Glu1 5 10 15Glu Glu Lys Gln Ala Leu Gln Arg Gln Leu Gln Leu Lys His Gln Arg 20 25 30Glu Leu Glu Lys Met Lys Ile Asp Glu Asp Trp Asp His Ser His Gln35 40 45Ser Lys Glu Gln Ile Glu Ala Asn Leu Met Met Lys Gln Glu Ala Ala50 55 60Leu Arg Arg Glu Arg Ala Leu Ala Tyr Ala Phe Ser His Gln Trp Arg65 70 75 80Asn Ser Gly Arg Thr Ile Thr Pro Thr Phe Thr Glu Pro Gly Asn Pro 85 90 95Asn Trp Gly Trp Ser Trp Met Glu Arg Trp Met Thr Ala Arg Pro Trp 100 105 110Glu Ser Arg Leu Ala Ala Ala Ser Asp Lys Asp Pro Lys Glu Arg Ala115 120 125Val Thr Lys Asn Ala Ser Thr Ser Ala Val Arg Val Pro Val Ser Arg130 135 140Ala Ile Ser Ile Gln Arg Pro Ala Thr Pro Asn Lys Ser Ser Arg Pro145 150 155 160Pro Ser Arg Gln Ser Leu Ser Thr Pro Pro Ser Lys Thr Pro Ser Ala 165 170 175Ser Gly Lys Ala Arg Pro Ala Ser Pro Arg Asn Ser Trp Leu Tyr Lys 180 185 190Glu Asp Asp Leu Arg Ser Ile Thr Ser Ile Arg Ser Glu Arg Pro Arg195 200 205Arg Gln Ser Thr Gly Gly Gly Ser Val Arg Asp Asp Thr Ser Leu Thr210 215 220Ser Thr Pro Pro Leu Pro Ser Tyr Met Gln Ser Thr Glu Ser Ala Arg225 230 235 240Ala Lys Ser Arg Tyr Arg Ser Leu Leu Leu Thr Glu Lys Leu Glu Val 245 250 255Pro Glu Arg Ala Pro Leu Ala His Ser Val Val Lys Lys Arg Leu Ser 260 265 270Phe Pro Val Val Glu Lys Pro Ser Val Val Pro Thr Glu Lys Pro Arg275 280 285Glu Arg Val Arg Arg His Ser Asp Pro Pro Lys Val Asp Pro Ala Thr290 295 300Leu Lys Asp Ala Pro Ala Ala305 3101391930DNAZea maysmisc_featureCeres CLONE ID no.375578 139aattcgagtg agcttattgg agactgacat cctaatcgaa aacccggttt attttttctt 60cgtcctggat gcgtcggtcg cgtgtttgat ctgactaagc cgcggaggag ggtgctagat 120gtccgtgcgg tgggcggtgg ctcccgaggg cgaccggagt taggtccttg ccgccttcag 180tgcggtgggg aagcgagaca ttgaaggcgc agaacccaaa gaatgggtaa gagaggaaag 240tggtttagtg cggtgaagaa agtcttcagc tcctccgatc cagatggaaa ggaagccaag 300gcccagaagg cagacaaatc gaaatccaag aggagatggc catttggaaa gtccaagcac 360tcggagcctt ccatatcgac ggtgccaggc actgctccag cagtagctcc gttgccatca 420ccaccagcaa ctcagcccca ctctctggag atcaaagatg tcaatccagt tgaaacagac 480agtgagcaga acaagcatgc ctactccgtt gcgcttgcgt ctgctgtcgc tgctgaagct 540gcagcagttg ctgcccaggc tgctgcggaa gttgtccgcc tcacagcagt taccacggct 600gcaccaaaga tgcctgttag ttcgagggaa taacttgccg ccaccaagat tcagactgcc 660ttcaggggtt atctggcaag gagagcattg cgtgcactaa gagggctagt tagattgaag 720tcgcttgttg atggaaatgc tgtcaaacgc caaaccgctc acaccttgca atgcacacaa 780gcaatgacaa gagttcaaac tcaaatctac tctagaaggg tgaagttgga ggaggagaaa 840caggctcttc aaagacaact ccaattgaaa catcaaaggg aacttgagaa aatgaagatt 900gatgaagatt gggatcacag ccatcaatcc aaagagcaaa ttgaggccaa cctaatgatg 960aaacaggaag ctgcactgag gcgagagaga gcacttgcat atgcattttc tcaccagtgg 1020aggaattctg gtcgaactat aacccctact tttacggaac ctgggaaccc caactggggc 1080tggagctgga tggagcgctg gatgacagca agaccatggg agagtcggtt ggcggcggca 1140tcggacaagg accctaaaga acgtgctgtg acaaagaatg cgagcaccag tgctgttcga 1200gtacctgtat cccgtgccat ctcgattcag agaccagcaa caccaaacaa gtcgagccgc 1260ccaccaagcc ggcagtcact ttcaaccccg ccatcgaaga ccccgtcagc ctcaggaaag 1320gccaggccgg caagtccaag gaacagttgg ctgtacaagg aggatgacct gaggagcatc 1380acgagcatcc gctccgagcg cccaaggagg cagagcacgg gtggaggctc ggtccgggac 1440gataccagcc tgaccagcac accacctctc cccagctaca tgcagtcgac cgagtctgca 1500cgggccaagt ctcggtaccg cagtctacta ctgactgaga agcttgaggt tcctgagaga 1560gcgcctctgg cccactccgt tgtcaagaag cgcctgtcgt tccccgtcgt cgagaagcca 1620agcgttgtgc cgacagagaa gcccagggaa agagtgaggc gccattccga ccctccgaag 1680gtcgatcctg cgacgctcaa ggatgcccct gctgcctgac cagtgaccag gccttatgtg 1740attgttaggt ttcgtgctct tttaacaccg tgatgtatta tctgagttag gttgctttgt 1800tcgtgtcatc gtatgatctg tccgggttga ttttgagaca gttctaactg tgtttacaga 1860caatgcgtga tgctaaatgt atgtgtggtt ggttggcttt aaatgtactg atatgatagt 1920atttgatttc 1930140498PRTZea maysmisc_featureCeres CLONE ID no.375578 140Met Gly Lys Arg Gly Lys Trp Phe Ser Ala Val Lys Lys Val Phe Ser1 5 10 15Ser Ser Asp Pro Asp Gly Lys Glu Ala Lys Ala Gln Lys Ala Asp Lys 20 25 30Ser Lys Ser Lys Arg Arg Trp Pro Phe Gly Lys Ser Lys His Ser Glu35 40 45Pro Ser Ile Ser Thr Val Pro Gly Thr Ala Pro Ala Val Ala Pro Leu50 55 60Pro Ser Pro Pro Ala Thr Gln Pro His Ser Leu Glu Ile Lys Asp Val65 70 75 80Asn Pro Val Glu Thr Asp Ser Glu Gln Asn Lys His Ala Tyr Ser Val 85 90 95Ala Leu Ala Ser Ala Val Ala Ala Glu Ala Ala Ala Val Ala Ala Gln 100 105 110Ala Ala Ala Glu Val Val Arg Leu Thr Ala Val Thr Thr Ala Ala Pro115 120 125Lys Met Pro Val Ser Ser Arg Glu Glu Leu Ala Ala Thr Lys Ile Gln130 135 140Thr Ala Phe Arg Gly Tyr Leu Ala Arg Arg Ala Leu Arg Ala Leu Arg145 150 155 160Gly Leu Val Arg Leu Lys Ser Leu Val Asp Gly Asn Ala Val Lys Arg 165 170 175Gln Thr Ala His Thr Leu Gln Cys Thr Gln Ala Met Thr Arg Val Gln 180 185 190Thr Gln Ile Tyr Ser Arg Arg Val Lys Leu Glu Glu Glu Lys Gln Ala195 200 205Leu Gln Arg Gln Leu Gln Leu Lys His Gln Arg Glu Leu Glu Lys Met210 215 220Lys Ile Asp Glu Asp Trp Asp His Ser His Gln Ser Lys Glu Gln Ile225 230 235 240Glu Ala Asn Leu Met Met Lys Gln Glu Ala Ala Leu Arg Arg Glu Arg 245 250 255Ala Leu Ala Tyr Ala Phe Ser His Gln Trp Arg Asn Ser Gly Arg Thr 260 265 270Ile Thr Pro Thr Phe Thr Glu Pro Gly Asn Pro Asn Trp Gly Trp Ser275 280 285Trp Met Glu Arg Trp Met Thr Ala Arg Pro Trp Glu Ser Arg Leu Ala290 295 300Ala Ala Ser Asp Lys Asp Pro Lys Glu Arg Ala Val Thr Lys Asn Ala305 310 315 320Ser Thr Ser Ala Val Arg Val Pro Val Ser Arg Ala Ile Ser Ile Gln 325 330 335Arg Pro Ala Thr Pro Asn Lys Ser Ser Arg Pro Pro Ser Arg Gln Ser 340 345 350Leu Ser Thr Pro Pro Ser Lys Thr Pro Ser Ala Ser Gly Lys Ala Arg355 360 365Pro Ala Ser Pro Arg Asn Ser Trp Leu Tyr Lys Glu Asp Asp Leu Arg370 375 380Ser Ile Thr Ser Ile Arg Ser Glu Arg Pro Arg Arg Gln Ser Thr Gly385 390 395 400Gly Gly Ser Val Arg Asp Asp Thr Ser Leu Thr Ser Thr Pro Pro Leu 405 410 415Pro Ser Tyr Met Gln Ser Thr Glu Ser Ala Arg Ala Lys Ser Arg Tyr 420 425 430Arg Ser Leu Leu Leu Thr Glu Lys Leu Glu Val Pro Glu Arg Ala Pro435 440 445Leu Ala His Ser Val Val Lys Lys Arg Leu Ser Phe Pro Val Val Glu450 455 460Lys Pro Ser Val Val Pro Thr Glu Lys Pro Arg Glu Arg Val Arg Arg465 470 475 480His Ser Asp Pro Pro Lys Val Asp Pro Ala Thr Leu Lys Asp Ala Pro 485 490 495Ala Ala141217PRTArabidopsis thalianamisc_featureCeres SEEDLINE ID no.ME10681 141Met Gly Lys Lys Gly Lys Trp Phe Gly Ala Val Lys Lys Val Phe Ser1 5 10 15Pro Glu Ser Lys Glu Lys Lys Glu Glu Ser Asn Ile Asp Arg Gly Ser 20 25 30Val Lys Ser Met Ser Leu Asn Leu Gly Glu Gly Glu Ile Thr Lys Ala35 40 45Phe Asn Arg Arg Asp Ser Lys Leu Glu Lys Pro Ser Pro Pro Thr Pro50 55 60Arg Pro Ala Arg Pro Thr Ser Arg His Ser Pro Leu Thr Pro Ser Ala65 70 75 80Arg Val Ala Pro Ile Pro Ala Arg Arg Lys Ser Val Thr Pro Lys Asn 85 90 95Gly Leu Ser Gln Val Asp Asp Asp Ala Arg Ser Val Leu Ser Val Gln 100 105 110Ser Glu Arg Pro Arg Arg His Ser Ile Ala Thr Ser Thr Val Arg Asp115 120 125Asp Glu Ser Leu Thr Ser Ser Pro Ser Leu Pro Ser Tyr Met Val Pro130 135 140Thr Glu Ser Ala Arg Ala Lys Ser Arg Leu Gln Gly Ser Ala Met Ala145 150 155 160Asn Gly Ala Glu Thr Pro Glu Lys Gly Gly Ser Thr Gly Pro Ala Lys 165 170 175Lys Arg Leu Ser Phe Gln Gly Gly Thr Ala Ala Ala Ser Pro Met Arg 180 185 190Arg His Ser Gly Pro Pro Lys Val Glu Ile Ala Pro Pro Gln Pro Glu195 200 205Ala Leu Val Val Asn Gly Gly Ser Lys210 215142311PRTArabidopsis thalianamisc_featureCeres SEEDLINE ID no.ME03140 142Met Thr Arg Val Gln Thr Gln Ile Tyr Ser Arg Arg Val Lys Leu Glu1 5 10 15Glu Glu Lys Gln Ala Leu Gln Arg Gln Leu Gln Leu Lys His Gln Arg 20 25 30Glu Leu Glu Lys Met Lys Ile Asp Glu Asp Trp Asp His Ser His Gln35 40 45Ser Lys Glu Gln Ile Glu Ala Asn Leu Met Met Lys Gln Glu Ala Ala50 55 60Leu Arg Arg Glu Arg Ala Leu Ala Tyr Ala Phe Ser His Gln Trp Arg65 70 75 80Asn Ser Gly Arg Thr Ile Thr Pro Thr Phe Thr Glu Pro Gly Asn Pro 85 90 95Asn Trp Gly Trp Ser Trp Met Glu Arg Trp Met Thr Ala Arg Pro Trp 100 105 110Glu Ser Arg Leu Ala Ala Ala Ser Asp Lys Asp Pro Lys Glu Arg Ala115 120 125Val Thr Lys Asn Ala Ser Thr Ser Ala Val Arg Val Pro Val Ser Arg130 135 140Ala Ile Ser Ile Gln Arg Pro Ala Thr Pro Asn Lys Ser Ser Arg Pro145 150 155 160Pro Ser Arg Gln Ser Leu Ser Thr Pro Pro Ser Lys Thr Pro Ser Ala 165 170 175Ser Gly Lys Ala Arg Pro Ala Ser Pro Arg Asn Ser Trp Leu Tyr Lys 180 185 190Glu Asp Asp Leu Arg Ser Ile Thr Ser Ile Arg Ser Glu Arg Pro Arg195 200 205Arg Gln Ser Thr Gly Gly Gly Ser Val Arg Asp Asp Thr Ser Leu Thr210 215 220Ser Thr Pro Pro Leu Pro Ser Tyr Met Gln Ser Thr Glu Ser Ala Arg225 230 235 240Ala Lys Ser Arg Tyr Arg Ser Leu Leu Leu Thr Glu Lys Leu Glu Val 245 250 255Pro Glu Arg Ala Pro Leu Ala His Ser Val Val Lys Lys Arg Leu Ser 260 265 270Phe Pro Val Val Glu Lys Pro Ser Val Val Pro Thr Glu Lys Pro Arg275 280 285Glu Arg Val Arg Arg His Ser Asp Pro Pro Lys Val Asp Pro Ala Thr290 295 300Leu Lys Asp Ala Pro Ala Ala305 310143421PRTArabidopsis thalianamisc_featureCeres SEEDLINE ID no.ME24076 143Leu Glu Val Asn Leu Ser Val Pro Pro Pro Pro Ala Pro Pro Pro Val1 5 10 15Leu His Gln Ala Glu Glu Val Gly Val Pro Glu Ala Glu Gln Glu Gln 20 25 30Ser Lys His Val Ala Val Glu Glu Ala Pro Ala Ala Ala Pro Ala Gln35 40 45Ala Ser Val Leu Pro Pro Ala Val Pro Thr Gln Glu Leu Ala Ala Val50 55 60Lys Ile Gln Thr Ala Phe Arg Gly Tyr Leu Ala Arg Arg Ala Leu Arg65 70 75 80Ala Leu Arg Gly Leu Val Arg Leu Lys Ser Leu Val Glu Gly Asn Ser 85 90 95Val Lys Arg Gln Ser Ala Ser Thr Leu Arg

Cys Met Gln Thr Leu Ser 100 105 110Arg Val Gln Ser Gln Ile Ser Ser Arg Arg Ala Lys Met Ser Glu Glu115 120 125Asn Gln Ala Leu Gln Arg Gln Leu Leu Leu Lys Gln Glu Leu Glu Asn130 135 140Phe Arg Met Gly Glu Asn Trp Asp Asp Ser Thr Gln Ser Lys Glu Gln145 150 155 160Ile Glu Ala Ser Leu Ile Ser Arg Gln Glu Ala Ala Ile Arg Arg Glu 165 170 175Arg Ala Leu Ala Tyr Ala Phe Ser His Gln Trp Lys Ser Thr Ser Arg 180 185 190Ser Val Asn Pro Met Phe Val Asp Pro Asn Asn Leu Gln Trp Gly Trp195 200 205Ser Trp Leu Glu Arg Trp Met Ala Ala Lys Pro Trp Glu Gly Arg Asn210 215 220Gly Ala Asp Lys Glu Ser Asn Ile Asp Arg Gly Ser Val Lys Ser Met225 230 235 240Ser Leu Asn Leu Gly Glu Gly Glu Ile Thr Lys Ala Phe Asn Arg Arg 245 250 255Asp Ser Lys Leu Glu Lys Pro Ser Pro Pro Thr Pro Arg Pro Ala Arg 260 265 270Pro Thr Ser Arg His Ser Pro Leu Thr Pro Ser Ala Arg Val Ala Pro275 280 285Ile Pro Ala Arg Arg Lys Ser Val Thr Pro Lys Asn Gly Leu Ser Gln290 295 300Val Asp Asp Asp Ala Arg Ser Val Leu Ser Val Gln Ser Glu Arg Pro305 310 315 320Arg Arg His Ser Ile Ala Thr Ser Thr Val Arg Asp Asp Glu Ser Leu 325 330 335Thr Ser Ser Pro Ser Leu Pro Ser Tyr Met Val Pro Thr Glu Ser Ala 340 345 350Arg Ala Lys Ser Arg Leu Gln Gly Ser Ala Met Ala Asn Gly Ala Glu355 360 365Thr Pro Glu Lys Gly Gly Ser Thr Gly Pro Ala Lys Lys Arg Leu Ser370 375 380Phe Gln Gly Gly Thr Ala Ala Ala Ser Pro Met Arg Arg His Ser Gly385 390 395 400Pro Pro Lys Val Glu Ile Ala Pro Pro Gln Pro Glu Ala Leu Val Val 405 410 415Asn Gly Gly Ser Lys 420144311PRTOryza sativa subsp. japonicamisc_featureCeres SEEDLINE ID no.ME24217 144Met Thr Arg Val Gln Thr Gln Ile Tyr Ser Arg Arg Val Lys Leu Glu1 5 10 15Glu Glu Lys Gln Ala Leu Gln Arg Gln Leu Gln Leu Lys His Gln Arg 20 25 30Glu Leu Glu Lys Met Lys Ile Asp Glu Asp Trp Asp His Ser His Gln35 40 45Ser Lys Glu Gln Ile Glu Ala Asn Leu Met Met Lys Gln Glu Ala Ala50 55 60Leu Arg Arg Glu Arg Ala Leu Ala Tyr Ala Phe Ser His Gln Trp Arg65 70 75 80Asn Ser Gly Arg Thr Ile Thr Pro Thr Phe Thr Glu Pro Gly Asn Pro 85 90 95Asn Trp Gly Trp Ser Trp Met Glu Arg Trp Met Thr Ala Arg Pro Trp 100 105 110Glu Ser Arg Leu Ala Ala Ala Ser Asp Lys Asp Pro Lys Glu Arg Ala115 120 125Val Thr Lys Asn Ala Ser Thr Ser Ala Val Arg Val Pro Val Ser Arg130 135 140Ala Ile Ser Ile Gln Arg Pro Ala Thr Pro Asn Lys Ser Ser Arg Pro145 150 155 160Pro Ser Arg Gln Ser Leu Ser Thr Pro Pro Ser Lys Thr Pro Ser Ala 165 170 175Ser Gly Lys Ala Arg Pro Ala Ser Pro Arg Asn Ser Trp Leu Tyr Lys 180 185 190Glu Asp Asp Leu Arg Ser Ile Thr Ser Ile Arg Ser Glu Arg Pro Arg195 200 205Arg Gln Ser Thr Gly Gly Gly Ser Val Arg Asp Asp Thr Ser Leu Thr210 215 220Ser Thr Pro Pro Leu Pro Ser Tyr Met Gln Ser Thr Glu Ser Ala Arg225 230 235 240Ala Lys Ser Arg Tyr Arg Ser Leu Leu Leu Thr Glu Lys Leu Glu Val 245 250 255Pro Glu Arg Ala Pro Leu Ala His Ser Val Val Lys Lys Arg Leu Ser 260 265 270Phe Pro Val Val Glu Lys Pro Ser Val Val Pro Thr Glu Lys Pro Arg275 280 285Glu Arg Val Arg Arg His Ser Asp Pro Pro Lys Val Asp Pro Ala Thr290 295 300Leu Lys Asp Ala Pro Ala Ala305 310145500PRTOryza sativa subsp. japonicamisc_featurePublic GI ID no.115440873 145Met Gly Lys Lys Gly Asn Trp Phe Ser Ala Val Lys Lys Val Phe Ser1 5 10 15Ser Ser Asp Pro Asp Gly Arg Glu Ala Lys Ile Glu Lys Ala Asp Lys 20 25 30Ser Arg Ser Arg Arg Lys Trp Pro Phe Gly Lys Ser Lys Lys Ser Asp35 40 45Pro Trp Thr Ser Thr Val Ala Val Pro Thr Ser Thr Ala Pro Pro Pro50 55 60Gln Pro Pro Pro Pro Pro Pro Thr His Pro Ile Gln Pro Gln Pro Glu65 70 75 80Glu Ile Lys Asp Val Lys Ala Val Glu Thr Asp Ser Glu Gln Asn Lys 85 90 95His Ala Tyr Ser Val Ala Leu Ala Ser Ala Val Ala Ala Glu Ala Ala 100 105 110Ala Val Ala Ala Gln Ala Ala Ala Glu Val Val Arg Leu Thr Thr Ala115 120 125Thr Thr Ala Val Pro Lys Ser Pro Val Ser Ser Lys Asp Glu Leu Ala130 135 140Ala Ile Lys Ile Gln Thr Ala Phe Arg Gly Tyr Leu Ala Arg Arg Ala145 150 155 160Leu Arg Ala Leu Arg Gly Leu Val Arg Leu Lys Ser Leu Val Asp Gly 165 170 175Asn Ala Val Lys Arg Gln Thr Ala His Thr Leu His Cys Thr Gln Thr 180 185 190Met Thr Arg Val Gln Thr Gln Ile Tyr Ser Arg Arg Val Lys Met Glu195 200 205Glu Glu Lys Gln Ala Leu Gln Arg Gln Leu Gln Leu Lys His Gln Arg210 215 220Glu Leu Glu Lys Met Lys Ile Asp Glu Asp Trp Asp His Ser His Gln225 230 235 240Ser Lys Glu Gln Val Glu Thr Ser Leu Met Met Lys Gln Glu Ala Ala 245 250 255Leu Arg Arg Glu Arg Ala Leu Ala Tyr Ala Phe Ser His Gln Trp Lys 260 265 270Asn Ser Gly Arg Thr Ile Thr Pro Thr Phe Thr Asp Gln Gly Asn Pro275 280 285Asn Trp Gly Trp Ser Trp Met Glu Arg Trp Met Thr Ser Arg Pro Trp290 295 300Glu Ser Arg Val Ile Ser Asp Lys Asp Pro Lys Asp His Tyr Ser Thr305 310 315 320Lys Asn Pro Ser Thr Ser Ala Ser Arg Thr Tyr Val Pro Arg Ala Ile 325 330 335Ser Ile Gln Arg Pro Ala Thr Pro Asn Lys Ser Ser Arg Pro Pro Ser 340 345 350Arg Gln Ser Pro Ser Thr Pro Pro Ser Arg Val Pro Ser Val Thr Gly355 360 365Lys Ile Arg Pro Ala Ser Pro Arg Asp Ser Trp Leu Tyr Lys Glu Asp370 375 380Asp Leu Arg Ser Ile Thr Ser Ile Arg Ser Glu Arg Pro Arg Arg Gln385 390 395 400Ser Thr Gly Gly Ala Ser Val Arg Asp Asp Ala Ser Leu Thr Ser Thr 405 410 415Pro Ala Leu Pro Ser Tyr Met Gln Ser Thr Glu Ser Ala Arg Ala Lys 420 425 430Ser Arg Tyr Arg Ser Leu Leu Thr Asp Arg Phe Glu Val Pro Glu Arg435 440 445Val Pro Leu Val His Ser Ser Ile Lys Lys Arg Leu Ser Phe Pro Val450 455 460Ala Asp Lys Pro Asn Gly Glu His Ala Asp Lys Leu Met Glu Arg Gly465 470 475 480Arg Arg His Ser Asp Pro Pro Lys Val Asp Pro Ala Ser Leu Lys Asp 485 490 495Val Pro Val Ser 5001461695DNATriticum aestivummisc_featureCeres CLONE ID no.826796 146ataggacttc acagacagac tgactcaatc ctaacccaat ccctcccatg cttccatcta 60ctctagcaga aattgcagag gaggttggcc gccgccggct ccagcgcagg cgcagcctac 120ccgcgggatc tgacgccctc cgcctcctac ctcgaggcac gcgcctcagg ctcagctccc 180ccgcccgccc tcccccgcta ccccgacgac ttccaagagg aggagcatga aattgagcat 240gtcgccgccg cgccagcgcc agcgccagcc acggatgcgc cgctacctgc ccctcctgcc 300gccgcaccac cacaggttca ggctgccatt gcgccggctt cttcctcttg tgtcatgtcc 360agggagctcg ccgccaccaa gatccagacc gccttccgag gtcacctggc aagaagggcg 420ctgcgggcat tgaaaggcct ggtcagactc aagtcgctgg tccaaggcca ctccgtcaag 480cgccaggcca ccagcacgct tcgctgcatg cagactctgt cccgggtcca gtccaagata 540cggacgagga ggatcaagat ggccgaggag aaccaggccc ttcagcgcca gctcttgttg 600aaccaggaac tagagactct caggatggga gatcagtgga ataccagcct gcagtccaag 660gagcaaatcg aggcgagcct cgtgagcagg caagaggccg cggctagaag agaacgggct 720ctcgcatacg cattctccca ccagtggaag agcacctcaa ggtctgccaa cccgatgttc 780gtggacccga gtaacccgca ctggggctgg agctggctgg agcggtggat ggcgtcgagg 840ccgttcgacg gccgcaacgg ggcgtccgag aaggagggca gcagcgtcga ccgcacgtcg 900gtgcacagca ccagcctgag catgaacctc ggagaaggtg agacggtcac aaaggcggac 960aaccaggtgg tggactcttt gaagccgaat gatgataagc cgccgccgct ttcgactccg 1020aagccgtccg gccctgcccc caggcagtcc ccgtcgacgc cctcgccggc gctggcgagg 1080aagaagagcg cgacgcccaa gagtggagac tgcgacggcg acgacgcgag gagcgtggtc 1140agcactgtcc ggtccgagcg gccccggagg cacagcatcg gcgcgtccag cgtgcgtgac 1200gacgcgggct cttccccgtc ggtgccgagc tacatggcgg ccaccaagtc ggcgtcggcc 1260agggccaagt cgcgtgtgca gagcccgacg ctgaccgagg gtgctgctca agctgagacg 1320ctggagaaag gatggtcttc tgtgggttca gcgaagaagc ggctgtcctt tccggctggg 1380acgccaccgc cggtgccggc ggcggcggcg aggcggcact ccgggcctcc caaggtgcgg 1440caggcgggcg tggaaggtgg tacggaggaa cgggactcgt cccttgcgtg acatcatggg 1500aagcagatta tggtgtggag cagagcagag cggaatttgt tgcatttgtt gagtgaaagg 1560aacgcagaat gtgtgttgtg tggatccatt ggatttgatt tgatttgtat gatggcagta 1620ttcctatttg attattcatt gaataatata agtatctgta atgaagataa aaggagggga 1680cacgaacatt atttc 1695147378PRTTriticum aestivummisc_featureCeres CLONE ID no.826796 147Met Ser Arg Glu Leu Ala Ala Thr Lys Ile Gln Thr Ala Phe Arg Gly1 5 10 15His Leu Ala Arg Arg Ala Leu Arg Ala Leu Lys Gly Leu Val Arg Leu 20 25 30Lys Ser Leu Val Gln Gly His Ser Val Lys Arg Gln Ala Thr Ser Thr35 40 45Leu Arg Cys Met Gln Thr Leu Ser Arg Val Gln Ser Lys Ile Arg Thr50 55 60Arg Arg Ile Lys Met Ala Glu Glu Asn Gln Ala Leu Gln Arg Gln Leu65 70 75 80Leu Leu Asn Gln Glu Leu Glu Thr Leu Arg Met Gly Asp Gln Trp Asn 85 90 95Thr Ser Leu Gln Ser Lys Glu Gln Ile Glu Ala Ser Leu Val Ser Arg 100 105 110Gln Glu Ala Ala Ala Arg Arg Glu Arg Ala Leu Ala Tyr Ala Phe Ser115 120 125His Gln Trp Lys Ser Thr Ser Arg Ser Ala Asn Pro Met Phe Val Asp130 135 140Pro Ser Asn Pro His Trp Gly Trp Ser Trp Leu Glu Arg Trp Met Ala145 150 155 160Ser Arg Pro Phe Asp Gly Arg Asn Gly Ala Ser Glu Lys Glu Gly Ser 165 170 175Ser Val Asp Arg Thr Ser Val His Ser Thr Ser Leu Ser Met Asn Leu 180 185 190Gly Glu Gly Glu Thr Val Thr Lys Ala Asp Asn Gln Val Val Asp Ser195 200 205Leu Lys Pro Asn Asp Asp Lys Pro Pro Pro Leu Ser Thr Pro Lys Pro210 215 220Ser Gly Pro Ala Pro Arg Gln Ser Pro Ser Thr Pro Ser Pro Ala Leu225 230 235 240Ala Arg Lys Lys Ser Ala Thr Pro Lys Ser Gly Asp Cys Asp Gly Asp 245 250 255Asp Ala Arg Ser Val Val Ser Thr Val Arg Ser Glu Arg Pro Arg Arg 260 265 270His Ser Ile Gly Ala Ser Ser Val Arg Asp Asp Ala Gly Ser Ser Pro275 280 285Ser Val Pro Ser Tyr Met Ala Ala Thr Lys Ser Ala Ser Ala Arg Ala290 295 300Lys Ser Arg Val Gln Ser Pro Thr Leu Thr Glu Gly Ala Ala Gln Ala305 310 315 320Glu Thr Leu Glu Lys Gly Trp Ser Ser Val Gly Ser Ala Lys Lys Arg 325 330 335Leu Ser Phe Pro Ala Gly Thr Pro Pro Pro Val Pro Ala Ala Ala Ala 340 345 350Arg Arg His Ser Gly Pro Pro Lys Val Arg Gln Ala Gly Val Glu Gly355 360 365Gly Thr Glu Glu Arg Asp Ser Ser Leu Ala370 3751481470DNAPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1465047 148atggggaaaa gagggagttg gttctctgct ttgaagaaag ccctcggttc ctctaagaaa 60tccaaatcaa agaagaaatg gtcagaaaaa gagaagaacc gggatctagg tgtttcttca 120catgaagaaa ccgttgcacc ctctctttct cctcctcgta caccacctcc tcctacagca 180gaagatgtga aattaactga agctgagaac gagcagagca agcatgctta ttccgtggcg 240cttgccactg ctgtggcagc tgaggcagct gttgcagccg cccaggctgc cgctgaggtt 300gttcggctta ctacagtggc acattactct ggaaaatcga aggaggaaat agctgcaatc 360aggattcaaa cagcatttag aggatacctg gcgaggaggg cattacgtgc tttgagaggg 420ctggtgagat tgaagtcatt gatacaaggg caatctgtca aacggcaagc aactgccaca 480ttacgagcca tgcagactct tgctcgtgtg cagtctcaga ttcgtgcaag aaggatcaga 540atgtccgagg aaaatgaggc cctccaacgg cagctccagc agaaacatga caaagaactt 600gagaagttga gaacttctat tggagaacaa tgggatgata gcccacaatc aaaggaagaa 660gttgaagcca gcctactaca aaagcaagaa gctgccatga gaagagaaag ggcactggct 720tatgcatact cgcatcagca aatgtggaag caatcttcaa aatcagcaaa tgctacattc 780atggatccaa acaatcctcg ttggggatgg agttggttag agaggtggat ggcagcccga 840ccttgggaga gccgaagcac aatagataac aatgatcggg cctctgttaa gagtacaaca 900agccgtacca tgtctcttgg agaaatcagc agagcttatt ctcgtcgtga tcttaaccat 960gacaataaag cttctcctgg tgcgcaaaaa tcaagtcggc ctcccagtcg gcaatcacct 1020tctactcccc cctctaaggc accatctaca tcttcagtaa cagggaaagc aaagccacca 1080agccctagag ggagtgcttg gggaggagac gaggactcca ggagcacatt cagtgtccag 1140tctgagcgct atcggagaca tagcatagca gggtcatcaa taagagatga tgagagtctt 1200gcaagttcgc cttcagttcc aagttacatg gcacccacac ggtcacagtc agcaaaggca 1260aaatcccgct tgtcaagccc gttaggcata gataataatg ggacaccaga taaggcatca 1320gtgggttatg taaagaagcg gctttccttc tctgcttcac cagctggagc aaggagacac 1380tctggtcctc ctagggtgga tgccagtgct gttaaagaca ttcaaatgca cagagaagag 1440aaaatgagca atggagcaag cagcaagtag 1470149326PRTPopulus balsamifera subsp. trichocarpamisc_featureCeres ANNOT ID no.1465047 149Met Gln Thr Leu Ala Arg Val Gln Ser Gln Ile Arg Ala Arg Arg Ile1 5 10 15Arg Met Ser Glu Glu Asn Glu Ala Leu Gln Arg Gln Leu Gln Gln Lys 20 25 30His Asp Lys Glu Leu Glu Lys Leu Arg Thr Ser Ile Gly Glu Gln Trp35 40 45Asp Asp Ser Pro Gln Ser Lys Glu Glu Val Glu Ala Ser Leu Leu Gln50 55 60Lys Gln Glu Ala Ala Met Arg Arg Glu Arg Ala Leu Ala Tyr Ala Tyr65 70 75 80Ser His Gln Gln Met Trp Lys Gln Ser Ser Lys Ser Ala Asn Ala Thr 85 90 95Phe Met Asp Pro Asn Asn Pro Arg Trp Gly Trp Ser Trp Leu Glu Arg 100 105 110Trp Met Ala Ala Arg Pro Trp Glu Ser Arg Ser Thr Ile Asp Asn Asn115 120 125Asp Arg Ala Ser Val Lys Ser Thr Thr Ser Arg Thr Met Ser Leu Gly130 135 140Glu Ile Ser Arg Ala Tyr Ser Arg Arg Asp Leu Asn His Asp Asn Lys145 150 155 160Ala Ser Pro Gly Ala Gln Lys Ser Ser Arg Pro Pro Ser Arg Gln Ser 165 170 175Pro Ser Thr Pro Pro Ser Lys Ala Pro Ser Thr Ser Ser Val Thr Gly 180 185 190Lys Ala Lys Pro Pro Ser Pro Arg Gly Ser Ala Trp Gly Gly Asp Glu195 200 205Asp Ser Arg Ser Thr Phe Ser Val Gln Ser Glu Arg Tyr Arg Arg His210 215 220Ser Ile Ala Gly Ser Ser Ile Arg Asp Asp Glu Ser Leu Ala Ser Ser225 230 235 240Pro Ser Val Pro Ser Tyr Met Ala Pro Thr Arg Ser Gln Ser Ala Lys 245 250 255Ala Lys Ser Arg Leu Ser Ser Pro Leu Gly Ile Asp Asn Asn Gly Thr 260 265 270Pro Asp Lys Ala Ser Val Gly Tyr Val Lys Lys Arg Leu Ser Phe Ser275 280 285Ala Ser Pro Ala Gly Ala Arg Arg His Ser Gly Pro Pro Arg Val Asp290 295 300Ala Ser Ala Val Lys Asp Ile Gln Met His Arg Glu Glu Lys Met Ser305 310 315 320Asn Gly Ala Ser Ser Lys 3251501901DNAGossypium hirsutummisc_featureCeres CLONE ID no.1919901 150aacttttctt agttatcctc tgcaaatgcc aacctgttct tttattatta ttttccgcca 60tttttgctct ctttcaagca tttttttttt gcctagatcc acttctctct ctttgatttt 120taattactgc atttttgttt taatacacaa taagaacaac taagagatag aatgtgactt 180atcaatcttt taactgagat ctgtgagaat ttttctatgt accaaggaat tatttacaga 240tgggaaaaaa aggtggctgg ctttctattg tgaagaaagc tttgagccct gaatccaaga 300aatctcagca ccaaactcca aagccaaaga aaaaatggtt cggaaaaagc aaaaatttga 360gccctgtgtc tgtgcctgaa gaaactgaag tgataactga agatgcaaag ctaaaagaag 420ctgaaaacga acaaagcaaa catgcctact ctgtggctct tgccaccgct gtggcggccg 480aggcagcggt ggcagctgct caggcggctg ctgaagttgt ccgtctcact tctcagccgc 540gccatctggg gaagtcaaag gaggaaatag ctgctatcag gattcaaaca gcatttcgtg 600gatatttggc taggagggca ctgcgagctt tgagagggtt ggtaaggttg aaatcgttga 660tcagagggca atccgtcaaa cgccaagcaa ctacaacgtt aagatgcatg cagactctag 720ctcgtctgca gtctgagatt

tctgcaagga ggattagaat gtcagaagag aaccaggctc 780ttcagcgcca gcttcaacag aaatgccaga aagagctcga gaagttgaga gctcccatga 840gagaagactg gaacgatagt acacagtcga aggagcagat cgaagcaaga caacaaaata 900agcaaggagc tactatgaaa agggaaagag cattggctta tgcatactgt caccagcgat 960cgtggaagaa ctgttctaga tcagtgaatc aaacatttat ggatccgagt aattcacact 1020ggggttggag ttggttagag cgatggatgg cagcccgacc atgggaagtc caaagcacaa 1080ctgataacaa tgaccgtggc tcagtcaaga gtatgggtgc ttgttcgata tctataagtg 1140aaatcagcag agcttattct cgaagagatc ttaacaatga taacaaacca tctccaacac 1200ctcagaagtc aagtcgagtt cctagccgcc agtctccatc gactccacct tcaaaggcac 1260cttcgatttc atcggtttct ggtaaaacaa gactgccaag tccgagagga agtcaatggg 1320gagggtatga agactcaagg agcatactca gtacccggtc tgatcgttat aggagacata 1380gcattgcagg gtcctcaatg agagacgatg agagccttac aagctcacct gcagttccaa 1440gttatatggc accaacacag tccacaaagg ccaggtccca cataccaagc cccttaggaa 1500gtggcacacc agataggaga gtggcagggt ctgcaaagaa acggcttttg ttcccagcat 1560ccccagccag tagtaggaga cattcagagc ctcctaaagt ggacataagt gaggctagaa 1620agaatcagca tgcaccaagc aatggaaggc aagtggcttg gtgaagagtg caacaaaagt 1680tagattgaat aaacatggaa gggttatttc aacttgaagt tcttgtagtg tggttgtgat 1740tatctttttc ttcctaggtt ttatgattat taattataaa agggttactt ttttctgggt 1800gagatttagt ttattgtttg tggttgacaa acattcttaa aaatcttcaa gtttagtttc 1860aattcatgaa atttgtaatt aaaaaaaaaa aaaaaaaaaa a 1901151474PRTGossypium hirsutummisc_featureCeres CLONE ID no.1919901 151Met Gly Lys Lys Gly Gly Trp Leu Ser Ile Val Lys Lys Ala Leu Ser1 5 10 15Pro Glu Ser Lys Lys Ser Gln His Gln Thr Pro Lys Pro Lys Lys Lys 20 25 30Trp Phe Gly Lys Ser Lys Asn Leu Ser Pro Val Ser Val Pro Glu Glu35 40 45Thr Glu Val Ile Thr Glu Asp Ala Lys Leu Lys Glu Ala Glu Asn Glu50 55 60Gln Ser Lys His Ala Tyr Ser Val Ala Leu Ala Thr Ala Val Ala Ala65 70 75 80Glu Ala Ala Val Ala Ala Ala Gln Ala Ala Ala Glu Val Val Arg Leu 85 90 95Thr Ser Gln Pro Arg His Leu Gly Lys Ser Lys Glu Glu Ile Ala Ala 100 105 110Ile Arg Ile Gln Thr Ala Phe Arg Gly Tyr Leu Ala Arg Arg Ala Leu115 120 125Arg Ala Leu Arg Gly Leu Val Arg Leu Lys Ser Leu Ile Arg Gly Gln130 135 140Ser Val Lys Arg Gln Ala Thr Thr Thr Leu Arg Cys Met Gln Thr Leu145 150 155 160Ala Arg Leu Gln Ser Glu Ile Ser Ala Arg Arg Ile Arg Met Ser Glu 165 170 175Glu Asn Gln Ala Leu Gln Arg Gln Leu Gln Gln Lys Cys Gln Lys Glu 180 185 190Leu Glu Lys Leu Arg Ala Pro Met Arg Glu Asp Trp Asn Asp Ser Thr195 200 205Gln Ser Lys Glu Gln Ile Glu Ala Arg Gln Gln Asn Lys Gln Gly Ala210 215 220Thr Met Lys Arg Glu Arg Ala Leu Ala Tyr Ala Tyr Cys His Gln Arg225 230 235 240Ser Trp Lys Asn Cys Ser Arg Ser Val Asn Gln Thr Phe Met Asp Pro 245 250 255Ser Asn Ser His Trp Gly Trp Ser Trp Leu Glu Arg Trp Met Ala Ala 260 265 270Arg Pro Trp Glu Val Gln Ser Thr Thr Asp Asn Asn Asp Arg Gly Ser275 280 285Val Lys Ser Met Gly Ala Cys Ser Ile Ser Ile Ser Glu Ile Ser Arg290 295 300Ala Tyr Ser Arg Arg Asp Leu Asn Asn Asp Asn Lys Pro Ser Pro Thr305 310 315 320Pro Gln Lys Ser Ser Arg Val Pro Ser Arg Gln Ser Pro Ser Thr Pro 325 330 335Pro Ser Lys Ala Pro Ser Ile Ser Ser Val Ser Gly Lys Thr Arg Leu 340 345 350Pro Ser Pro Arg Gly Ser Gln Trp Gly Gly Tyr Glu Asp Ser Arg Ser355 360 365Ile Leu Ser Thr Arg Ser Asp Arg Tyr Arg Arg His Ser Ile Ala Gly370 375 380Ser Ser Met Arg Asp Asp Glu Ser Leu Thr Ser Ser Pro Ala Val Pro385 390 395 400Ser Tyr Met Ala Pro Thr Gln Ser Thr Lys Ala Arg Ser His Ile Pro 405 410 415Ser Pro Leu Gly Ser Gly Thr Pro Asp Arg Arg Val Ala Gly Ser Ala 420 425 430Lys Lys Arg Leu Leu Phe Pro Ala Ser Pro Ala Ser Ser Arg Arg His435 440 445Ser Glu Pro Pro Lys Val Asp Ile Ser Glu Ala Arg Lys Asn Gln His450 455 460Ala Pro Ser Asn Gly Arg Gln Val Ala Trp465 4701521362DNAGlycine maxmisc_featureCeres CLONE ID no.520008 152atgcattcac tcatcaggtt tttttaaaaa aaaaaaattc tcatcaattt acacatgcga 60gaaaatgggt gaaaaattta atacgaactg aaaaatcttt caaaaatatc gcatattata 120aacactaaaa tgagaaatca agcatcctta ttatactata tggatatact cttcactgtt 180tctttatctc ttgaatctgt tatactttcc aactgagact taggcctgat tcctgataag 240tgcacgagtc ctttcctatc ttgtcactat cttcagagcc atatcctctg cactctcctt 300tctcactgcc acgatgatct tttgcataat ccaatgatat gctaatgctt tgttaagtaa 360gttgcagcgt aaattcttcc tcaattttgt caatggaagt attttgttac tgaaataaag 420tggcatgcta tattatgtaa catattttga atgaatagca ttctgcctat gatatgattt 480tcaatcataa gtgtaagttc cttgatgctg tcaacaaatt cagtgtttga tatttggggg 540caaaaaatat ttggcagcaa aactggaaga actcgtctag atctgtaaat ccaatgttta 600tggatccaac taatccgagc tggggttgga gctggttgga acgatggatg gcagcccgac 660cttgggagag ccgtagccat atggataaag agttgaatga ccactcctcc ataagaagct 720caagccgcag cattaccggt ggagaaatca gcaagtcatt tgctcgtttc cagctcaatt 780cggaaaagca ctctccaaca gccagccaga atcctggctc ccctagcttt cagtccactc 840cttccaagcc agcttcatca tctgctaaga aaccaaagaa ggtaagtcca agcccaaggg 900gcagctgggt tatggacgag gactccaaaa gcttggtcag tgtacactct gaccggttcc 960ggaggcactc cattgccggt tcatcggtga gagatgacga gagccttgct agctctccag 1020cagttccaag ctacatggtg ccaactcaat ctgcaaaagc caagtccagg acacaaagtc 1080cattagcctc agaaaatgca aaagcagaga aaggttcctt tgggagtgca aagaagcggc 1140tttctttccc agcttcacct gccaggccaa ggcgccattc aggtccacca aaggttgaaa 1200gcagcagctt aaatgcagag ttagctgtgg acaagggtgt ggacagttga tcatacaagt 1260aaaaggatgg aaaagcatta aagtaggatt gaaaatatat cactgaagaa ataaaacaaa 1320aagagtttat ttaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa 1362153218PRTGlycine maxmisc_featureCeres CLONE ID no.520008 153Met Phe Met Asp Pro Thr Asn Pro Ser Trp Gly Trp Ser Trp Leu Glu1 5 10 15Arg Trp Met Ala Ala Arg Pro Trp Glu Ser Arg Ser His Met Asp Lys 20 25 30Glu Leu Asn Asp His Ser Ser Ile Arg Ser Ser Ser Arg Ser Ile Thr35 40 45Gly Gly Glu Ile Ser Lys Ser Phe Ala Arg Phe Gln Leu Asn Ser Glu50 55 60Lys His Ser Pro Thr Ala Ser Gln Asn Pro Gly Ser Pro Ser Phe Gln65 70 75 80Ser Thr Pro Ser Lys Pro Ala Ser Ser Ser Ala Lys Lys Pro Lys Lys 85 90 95Val Ser Pro Ser Pro Arg Gly Ser Trp Val Met Asp Glu Asp Ser Lys 100 105 110Ser Leu Val Ser Val His Ser Asp Arg Phe Arg Arg His Ser Ile Ala115 120 125Gly Ser Ser Val Arg Asp Asp Glu Ser Leu Ala Ser Ser Pro Ala Val130 135 140Pro Ser Tyr Met Val Pro Thr Gln Ser Ala Lys Ala Lys Ser Arg Thr145 150 155 160Gln Ser Pro Leu Ala Ser Glu Asn Ala Lys Ala Glu Lys Gly Ser Phe 165 170 175Gly Ser Ala Lys Lys Arg Leu Ser Phe Pro Ala Ser Pro Ala Arg Pro 180 185 190Arg Arg His Ser Gly Pro Pro Lys Val Glu Ser Ser Ser Leu Asn Ala195 200 205Glu Leu Ala Val Asp Lys Gly Val Asp Ser210 215154445PRTArabidopsis thalianamisc_featurePublic GI ID no.7413581 154Met Gly Lys Lys Ala Lys Trp Phe Ser Ser Val Lys Lys Ala Phe Ser1 5 10 15Pro Asp Ser Lys Ser Lys Gln Lys Leu Ala Glu Gly Gln Asn Gly Val 20 25 30Ile Ser Asn Pro Pro Val Val Asp Asn Val Arg Gln Ser Ser Ser Ser35 40 45Pro Pro Pro Ala Leu Ala Pro Arg Glu Val Arg Val Ala Glu Val Ile50 55 60Val Glu Arg Asn Arg Asp Leu Ser Pro Pro Ser Thr Ala Asp Ala Val65 70 75 80Asn Val Thr Ala Thr Asp Val Pro Val Val Pro Ser Ser Ser Ala Pro 85 90 95Gly Val Val Arg Arg Ala Thr Pro Thr Arg Phe Ala Gly Lys Ser Asn 100 105 110Glu Glu Ala Ala Ala Ile Leu Ile Gln Thr Ile Phe Arg Gly Tyr Leu115 120 125Ala Arg Arg Ala Leu Arg Ala Met Arg Gly Leu Val Arg Leu Lys Leu130 135 140Leu Met Glu Gly Ser Val Val Lys Arg Gln Ala Ala Asn Thr Leu Lys145 150 155 160Cys Met Gln Thr Leu Ser Arg Val Gln Ser Gln Ile Arg Ala Arg Arg 165 170 175Ile Arg Met Ser Glu Glu Asn Gln Ala Arg Gln Lys Gln Leu Leu Gln 180 185 190Lys His Ala Lys Glu Leu Ala Gly Leu Lys Asn Gly Asp Asn Trp Asn195 200 205Asp Ser Ile Gln Ser Lys Glu Lys Val Glu Ala Asn Leu Leu Ser Lys210 215 220Tyr Glu Ala Thr Met Arg Arg Glu Arg Ala Leu Ala Tyr Ser Tyr Ser225 230 235 240His Gln Gln Asn Trp Lys Asn Asn Ser Lys Ser Gly Asn Pro Met Phe 245 250 255Met Asp Pro Ser Asn Pro Thr Trp Val Pro Arg Lys Asn Lys Ser Asn 260 265 270Ser Asn Asn Asp Asn Ala Ala Ser Val Lys Gly Ser Ile Asn Arg Asn275 280 285Glu Ala Ala Lys Ser Leu Thr Arg Asn Gly Ser Thr Gln Pro Asn Thr290 295 300Pro Ser Ser Ala Arg Gly Thr Pro Arg Asn Lys Asn Ser Phe Phe Ser305 310 315 320Pro Pro Thr Pro Ser Arg Leu Asn Gln Ser Ser Arg Lys Ser Asn Asp 325 330 335Asp Asp Ser Lys Ser Thr Ile Ser Val Leu Ser Glu Arg Asn Arg Arg 340 345 350His Ser Ile Ala Gly Ser Ser Val Arg Asp Asp Glu Ser Leu Ala Gly355 360 365Ser Pro Ala Leu Pro Ser Tyr Met Val Pro Thr Lys Ser Ala Arg Ala370 375 380Arg Leu Lys Pro Gln Ser Pro Leu Gly Gly Thr Thr Gln Glu Asn Glu385 390 395 400Gly Phe Thr Asp Lys Ala Ser Ala Lys Lys Arg Leu Ser Tyr Pro Thr 405 410 415Ser Pro Ala Leu Pro Lys Pro Arg Arg Phe Ser Ala Pro Pro Lys Val 420 425 430Glu Ser Gly Gly Val Thr Val Thr Asn Gly Ala Gly Ser435 440 4451551806DNAZea maysmisc_featureCeres CLONE ID no.228069 155gagccgcgga ggagcagcgg cgcatcgcaa cactaaccaa agtcctcctc tccaggtgcc 60gagccagggt gactgttccg aggagcgtgg cgtggaccca tggggaagaa gggcaagtgg 120ttcggtgccg tcaagaaggt cttcagcccc gaatccaagg agaagaaaga ggagaggcta 180aggaggaaat cagcagctag caacccagca ccggtagatc tgaccccatc tacctccctg 240gaagtcaatg tttcggtgcc accccctccg gctcctcctc cagttcctcg ccagaccgac 300gaggtcaggg tccccgaagc cgagcaggag cagagcaagc atgtcaccct ggaggaggcc 360cctgctgctg ctgctgcccc agcacaggcg tcggtgctgc cacctggtgc gccaaccgaa 420gagctcgccg caatcaagat ccagaccgcc ttccgaggtt acctggcaag gagggcacta 480agagcactac gaggccttgt acgattgaag tcattggttg agggtaattc agttaagcgt 540caatctgcaa gcactctgcg ctgtatgcaa actctatcgc gggtgcagtc acaaatacga 600tctaggagag caaagatgtc cgaggagaac caggccctcc aacgccagct cctacttaaa 660caggaactgg agaatttcag aatgggtgag aactgggacg acagcactca atccaaggag 720caaatcgagg caagcctaat aagcaggcaa gaggcagcga taagaagaga aagagctctt 780gcatatgcat tttcacatca gtggaagagc acatcaagat ctgcgaaccc aatgtttgta 840gacccaaata acttgcagtg gggctggagc tggttggagc gctggatggc agcaaaacct 900tgggagggac gcaatgggac cgacaaggag agcaacattg atcgcggctc cgtcaagaat 960atgagcttga accttggagt tggagagggt gagatcacaa aagctttcaa ccgccgggac 1020tcaaagccag agaagccatc accaccgact ccaaaaccgg cccgtccagc ttccaggcaa 1080tccccttcga cgccctctgc tagagtggcc ccaatacctg cgaggaggaa atccagcacg 1140ccaaagaatg ggctttcaca ggtggacgat gacgtgagga gcgtgctcag tgtgcagtct 1200gagcgaccaa ggaggcacag catagccacg acgtcgacca tgcgggacga tgagagcctc 1260gcgagctccc cgtcgctccc gagctacatg gttcccacag aatctgcgag ggccaaatct 1320cgcacagcaa cggccaatgg cgcagagacg cctgagaaag gaggctctgc tggaccagtc 1380aagaagaggt tgtctttcca aggtggagct gcggctgcct caccgatgcg acggcattct 1440ggccctccca aggtggagag cgctgtgaag gacattgctg cgccaccaca gcctgaggcc 1500ttggtagcca atggtggtgg aagcaagtga cttgtattga caagttccag gatgggggag 1560cgggttatgg tcttatggag ggacatgttt catccgtgaa cagaagttaa gagtggtgcc 1620ggatctacga atggtttgaa ttgttttccc gttacaacca cattgtttgc tgtataagat 1680tcactgtacc tgccagttgg ttccatttgt tgttttctgt aaaacaaaca tcaatttgtc 1740actagaatct gtgatgcttg tatgtaaaca ggtcctctat ttatgtgagc catatatttc 1800attttc 1806156476PRTZea maysmisc_featureCeres CLONE ID no.228069 156Met Gly Lys Lys Gly Lys Trp Phe Gly Ala Val Lys Lys Val Phe Ser1 5 10 15Pro Glu Ser Lys Glu Lys Lys Glu Glu Arg Leu Arg Arg Lys Ser Ala 20 25 30Ala Ser Asn Pro Ala Pro Val Asp Leu Thr Pro Ser Thr Ser Leu Glu35 40 45Val Asn Val Ser Val Pro Pro Pro Pro Ala Pro Pro Pro Val Pro Arg50 55 60Gln Thr Asp Glu Val Arg Val Pro Glu Ala Glu Gln Glu Gln Ser Lys65 70 75 80His Val Thr Leu Glu Glu Ala Pro Ala Ala Ala Ala Ala Pro Ala Gln 85 90 95Ala Ser Val Leu Pro Pro Gly Ala Pro Thr Glu Glu Leu Ala Ala Ile 100 105 110Lys Ile Gln Thr Ala Phe Arg Gly Tyr Leu Ala Arg Arg Ala Leu Arg115 120 125Ala Leu Arg Gly Leu Val Arg Leu Lys Ser Leu Val Glu Gly Asn Ser130 135 140Val Lys Arg Gln Ser Ala Ser Thr Leu Arg Cys Met Gln Thr Leu Ser145 150 155 160Arg Val Gln Ser Gln Ile Arg Ser Arg Arg Ala Lys Met Ser Glu Glu 165 170 175Asn Gln Ala Leu Gln Arg Gln Leu Leu Leu Lys Gln Glu Leu Glu Asn 180 185 190Phe Arg Met Gly Glu Asn Trp Asp Asp Ser Thr Gln Ser Lys Glu Gln195 200 205Ile Glu Ala Ser Leu Ile Ser Arg Gln Glu Ala Ala Ile Arg Arg Glu210 215 220Arg Ala Leu Ala Tyr Ala Phe Ser His Gln Trp Lys Ser Thr Ser Arg225 230 235 240Ser Ala Asn Pro Met Phe Val Asp Pro Asn Asn Leu Gln Trp Gly Trp 245 250 255Ser Trp Leu Glu Arg Trp Met Ala Ala Lys Pro Trp Glu Gly Arg Asn 260 265 270Gly Thr Asp Lys Glu Ser Asn Ile Asp Arg Gly Ser Val Lys Asn Met275 280 285Ser Leu Asn Leu Gly Val Gly Glu Gly Glu Ile Thr Lys Ala Phe Asn290 295 300Arg Arg Asp Ser Lys Pro Glu Lys Pro Ser Pro Pro Thr Pro Lys Pro305 310 315 320Ala Arg Pro Ala Ser Arg Gln Ser Pro Ser Thr Pro Ser Ala Arg Val 325 330 335Ala Pro Ile Pro Ala Arg Arg Lys Ser Ser Thr Pro Lys Asn Gly Leu 340 345 350Ser Gln Val Asp Asp Asp Val Arg Ser Val Leu Ser Val Gln Ser Glu355 360 365Arg Pro Arg Arg His Ser Ile Ala Thr Thr Ser Thr Met Arg Asp Asp370 375 380Glu Ser Leu Ala Ser Ser Pro Ser Leu Pro Ser Tyr Met Val Pro Thr385 390 395 400Glu Ser Ala Arg Ala Lys Ser Arg Thr Ala Thr Ala Asn Gly Ala Glu 405 410 415Thr Pro Glu Lys Gly Gly Ser Ala Gly Pro Val Lys Lys Arg Leu Ser 420 425 430Phe Gln Gly Gly Ala Ala Ala Ala Ser Pro Met Arg Arg His Ser Gly435 440 445Pro Pro Lys Val Glu Ser Ala Val Lys Asp Ile Ala Ala Pro Pro Gln450 455 460Pro Glu Ala Leu Val Ala Asn Gly Gly Gly Ser Lys465 470 4751571703DNAGlycine maxmisc_featureCeres CLONE ID no.467508 157aaaccatcct ctcttagcat ttggcaagat ctgatttccc tcttcacaag gagagaaata 60gaaaggcata tgatcttctt caagttgcaa tctttttaga gagagagggt tagaagaaca 120acatacttga gatctgtcac tttgtttgag ttcagatctt caaagtttcc ttccttgttc 180ttttggtgca aaggatcaaa ttaaggaatg ccaaatgggg aggaagggga attggttttc 240cagtgtgatg aaagctctca gtcctgactc aaaggagaag aaagaacaga aatcaagtaa 300atctaagaag aaatggtttg ggaagcaaaa attggagact tcagtctcat actcagaagc 360tcataaagca ccaccaccac cgcgacctat tcctccacca gaagcgatta aattaactga 420tattgaaaat gaaatcagtc atgatcacga ctatgttgtt gaagttgcaa ctgccatgga 480tgccgaggaa cctgttcctt ctgttcagat agaacctgtt agggttgaag ctgccccaat 540tgctcattat gctggtaaac caaaggatga agtggcagct atcaaaattc aaacagcttt 600tcgtggatac ttggcaagaa gagcattgcg ggctttaagg gggctggtca ggttgaaatt 660attgatggaa gggccagttg ttaaacgcca agccacaagt accctccact ctatgcagac 720attatctcgc ttgcagtctc agattcgttc aaggaggatc agaatgttag aggagaatca 780ggctctgcag agacagctct tacagaagca tgcaagagag cttgagagct tgcggatggg 840agaggaatgg gatgacagcc tacaatcaaa agaacaaatc gaagccaagt tacttagcaa 900gtatgaagct actacgagaa

gagaaagagc gctggcttat gcattcactc atcagcaaaa 960ttggaagaac tcatctagat ctgtaaatcc aatgttcatg gatccaacca atccaagctg 1020gggttggagc tggttggaac gatggatggc agcccgacct tgggagagcc gtagccatat 1080ggataaagag ttgaatgacc actcatccgt aagaagctca agccgcagta ttaccggtgg 1140agaaatcagc aagtcatttg ctcgtttcca gctcaatttg gaaaagcact ctccaacagc 1200ctgccagaat cctggctcac ctagctttca gtccactcct tccaagccag cttcaatatc 1260tgctaagaaa ccaaagaagg taagtccaag cccaaggggc agctgggtta cagacgagga 1320ctccaaaagc ttggtcagtg tacagtcaga ccggttccgg aggcactcca ttgccggttc 1380attggtgaga gatgatgaga gccttgctag ctctccagca gttccaagct acatggtgcc 1440aactcaatct gcaaaagcca agtccaggac acaaagtcca ttagccccag aaaatggaaa 1500agcagagaaa ggttcctttg ggagtgcgaa gaagcggctt tctttcccag cttcacctgc 1560caggccaagg cgccattcag gtccaccaaa ggtagaaagc agcagcttaa atgcagagtt 1620agctgtggac aagggtgtgg acagttgatc atacaagtaa aaggatggaa aaacattaaa 1680gtaggattga aaatatatca ctg 1703158477PRTGlycine maxmisc_featureCeres CLONE ID no.467508 158Met Gly Arg Lys Gly Asn Trp Phe Ser Ser Val Met Lys Ala Leu Ser1 5 10 15Pro Asp Ser Lys Glu Lys Lys Glu Gln Lys Ser Ser Lys Ser Lys Lys 20 25 30Lys Trp Phe Gly Lys Gln Lys Leu Glu Thr Ser Val Ser Tyr Ser Glu35 40 45Ala His Lys Ala Pro Pro Pro Pro Arg Pro Ile Pro Pro Pro Glu Ala50 55 60Ile Lys Leu Thr Asp Ile Glu Asn Glu Ile Ser His Asp His Asp Tyr65 70 75 80Val Val Glu Val Ala Thr Ala Met Asp Ala Glu Glu Pro Val Pro Ser 85 90 95Val Gln Ile Glu Pro Val Arg Val Glu Ala Ala Pro Ile Ala His Tyr 100 105 110Ala Gly Lys Pro Lys Asp Glu Val Ala Ala Ile Lys Ile Gln Thr Ala115 120 125Phe Arg Gly Tyr Leu Ala Arg Arg Ala Leu Arg Ala Leu Arg Gly Leu130 135 140Val Arg Leu Lys Leu Leu Met Glu Gly Pro Val Val Lys Arg Gln Ala145 150 155 160Thr Ser Thr Leu His Ser Met Gln Thr Leu Ser Arg Leu Gln Ser Gln 165 170 175Ile Arg Ser Arg Arg Ile Arg Met Leu Glu Glu Asn Gln Ala Leu Gln 180 185 190Arg Gln Leu Leu Gln Lys His Ala Arg Glu Leu Glu Ser Leu Arg Met195 200 205Gly Glu Glu Trp Asp Asp Ser Leu Gln Ser Lys Glu Gln Ile Glu Ala210 215 220Lys Leu Leu Ser Lys Tyr Glu Ala Thr Thr Arg Arg Glu Arg Ala Leu225 230 235 240Ala Tyr Ala Phe Thr His Gln Gln Asn Trp Lys Asn Ser Ser Arg Ser 245 250 255Val Asn Pro Met Phe Met Asp Pro Thr Asn Pro Ser Trp Gly Trp Ser 260 265 270Trp Leu Glu Arg Trp Met Ala Ala Arg Pro Trp Glu Ser Arg Ser His275 280 285Met Asp Lys Glu Leu Asn Asp His Ser Ser Val Arg Ser Ser Ser Arg290 295 300Ser Ile Thr Gly Gly Glu Ile Ser Lys Ser Phe Ala Arg Phe Gln Leu305 310 315 320Asn Leu Glu Lys His Ser Pro Thr Ala Cys Gln Asn Pro Gly Ser Pro 325 330 335Ser Phe Gln Ser Thr Pro Ser Lys Pro Ala Ser Ile Ser Ala Lys Lys 340 345 350Pro Lys Lys Val Ser Pro Ser Pro Arg Gly Ser Trp Val Thr Asp Glu355 360 365Asp Ser Lys Ser Leu Val Ser Val Gln Ser Asp Arg Phe Arg Arg His370 375 380Ser Ile Ala Gly Ser Leu Val Arg Asp Asp Glu Ser Leu Ala Ser Ser385 390 395 400Pro Ala Val Pro Ser Tyr Met Val Pro Thr Gln Ser Ala Lys Ala Lys 405 410 415Ser Arg Thr Gln Ser Pro Leu Ala Pro Glu Asn Gly Lys Ala Glu Lys 420 425 430Gly Ser Phe Gly Ser Ala Lys Lys Arg Leu Ser Phe Pro Ala Ser Pro435 440 445Ala Arg Pro Arg Arg His Ser Gly Pro Pro Lys Val Glu Ser Ser Ser450 455 460Leu Asn Ala Glu Leu Ala Val Asp Lys Gly Val Asp Ser465 470 4751591495DNAGossypium hirsutummisc_featureCeres CLONE ID no.1829581 159attattttca atgcaattta agagttttat ttattttatg ttataaattt tttaacctct 60aaatatgatt tgaaatgtta attccattgg ttgtttttgg ttttgaagga gaatttattg 120aggaatgggc aaaaaaggaa gctggtttac tgctgtgaag aaagttctaa gccttgaacc 180caacaaagaa gagaagattc aaaaatccaa gaaaaatggg gttaaattac ctgagaagat 240caaaggaagc aaacgtgaca actggttcgc tccggccacc accatggtga ccggcgcgtt 300ggttcgcctt actttgtcgc cacactactt gggaaaatca atggaggaaa tagctactgt 360taagattcaa actgtgtttc gaggatacct ggcgaggaag gcattgcgag atttgagagg 420gttagagagg ttgaaatcat tgatacaagg gcaatccatg aaacgacaag ccactattac 480gttacgatgc atgcggacac ttgctcgagt gcagtcccaa actcgaacaa ggcaactcag 540agtgtctgaa caaaaccgag cacttcaaaa gcatcttcaa actaaatacg aaaaacagtt 600gcaaaattcc aaatcttaca tgggagaaga ttggaatgta agtactaagt ctaaagagca 660aatgcaagca aaacaacaat atagacaagt agcagccatg cgaagggaga gagctttagc 720ttactcattt actcatcagc gatcctggaa ggtcacttgt agatcgatga atcacacatc 780tatggatcca tttaatccta aatggagctg gagttggtta gagcgatgga tgtcaactcg 840accatgggag attcaaaatg caccggataa caatgatcat ggcccaagta agagtgttgg 900tgctgagata accaaagcta agtctcaaag tgatgttaac aatgatcaca ataaacaatc 960ttcaacaccg gcaaaaccga ttcgacctcc gaaccgtagg tcctcttcga ctccaccgtc 1020taaaacgcat tctatttcta gcaagaaggg attggaaagc cccagtccga cacgaattca 1080gttgcctgat tgttacaaga ggcatagcat cggaggctta tcattggaga gagacgatga 1140ggtctttgca aactcaccac ctaataataa aataccggca cgttcgtcat caaaggaccg 1200gtctcgacca ccgagcatta atagaaatcc agttaatact aggagacatt ctggtcctcc 1260gaaagttgat attttttcca actaaggaag aaatgccaaa caatgacaaa ggcaggtagt 1320ttatgaagca tagacacttt agtcgcgagt gccggccaca tgtttaatat tgaaatggct 1380ccgacacaat caaatgtgtg ttggttatat gacgatatat tttttcaaaa aatcaaatac 1440tatcagaaaa aaatataaag aaagattaat tggataaaaa aaaaaaaaaa aaaaa 1495160386PRTGossypium hirsutummisc_featureCeres CLONE ID no.1829581 160Met Gly Lys Lys Gly Ser Trp Phe Thr Ala Val Lys Lys Val Leu Ser1 5 10 15Leu Glu Pro Asn Lys Glu Glu Lys Ile Gln Lys Ser Lys Lys Asn Gly 20 25 30Val Lys Leu Pro Glu Lys Ile Lys Gly Ser Lys Arg Asp Asn Trp Phe35 40 45Ala Pro Ala Thr Thr Met Val Thr Gly Ala Leu Val Arg Leu Thr Leu50 55 60Ser Pro His Tyr Leu Gly Lys Ser Met Glu Glu Ile Ala Thr Val Lys65 70 75 80Ile Gln Thr Val Phe Arg Gly Tyr Leu Ala Arg Lys Ala Leu Arg Asp 85 90 95Leu Arg Gly Leu Glu Arg Leu Lys Ser Leu Ile Gln Gly Gln Ser Met 100 105 110Lys Arg Gln Ala Thr Ile Thr Leu Arg Cys Met Arg Thr Leu Ala Arg115 120 125Val Gln Ser Gln Thr Arg Thr Arg Gln Leu Arg Val Ser Glu Gln Asn130 135 140Arg Ala Leu Gln Lys His Leu Gln Thr Lys Tyr Glu Lys Gln Leu Gln145 150 155 160Asn Ser Lys Ser Tyr Met Gly Glu Asp Trp Asn Val Ser Thr Lys Ser 165 170 175Lys Glu Gln Met Gln Ala Lys Gln Gln Tyr Arg Gln Val Ala Ala Met 180 185 190Arg Arg Glu Arg Ala Leu Ala Tyr Ser Phe Thr His Gln Arg Ser Trp195 200 205Lys Val Thr Cys Arg Ser Met Asn His Thr Ser Met Asp Pro Phe Asn210 215 220Pro Lys Trp Ser Trp Ser Trp Leu Glu Arg Trp Met Ser Thr Arg Pro225 230 235 240Trp Glu Ile Gln Asn Ala Pro Asp Asn Asn Asp His Gly Pro Ser Lys 245 250 255Ser Val Gly Ala Glu Ile Thr Lys Ala Lys Ser Gln Ser Asp Val Asn 260 265 270Asn Asp His Asn Lys Gln Ser Ser Thr Pro Ala Lys Pro Ile Arg Pro275 280 285Pro Asn Arg Arg Ser Ser Ser Thr Pro Pro Ser Lys Thr His Ser Ile290 295 300Ser Ser Lys Lys Gly Leu Glu Ser Pro Ser Pro Thr Arg Ile Gln Leu305 310 315 320Pro Asp Cys Tyr Lys Arg His Ser Ile Gly Gly Leu Ser Leu Glu Arg 325 330 335Asp Asp Glu Val Phe Ala Asn Ser Pro Pro Asn Asn Lys Ile Pro Ala 340 345 350Arg Ser Ser Ser Lys Asp Arg Ser Arg Pro Pro Ser Ile Asn Arg Asn355 360 365Pro Val Asn Thr Arg Arg His Ser Gly Pro Pro Lys Val Asp Ile Phe370 375 380Ser Asn3851611543DNAZea maysmisc_featureCeres CLONE ID no.229668 161cttggaagtc aatctttcgg tgccaccgcc tccagctcct cccccagttc ttcaccaggc 60cgaggaggtt ggggtccctg aagccgagca ggagcagagc aagcatgtcg ccgtggagga 120ggcccctgct gccgccccag cgcaggcgtc ggtgctgcca cctgctgtgc caacccaaga 180gctcgccgca gtcaagatcc agaccgcctt ccgaggttac ctggcaagga gggcactacg 240agcactgcga ggccttgttc gattgaagtc attggttgag ggtaattcag taaagcgtca 300atctgcaagc actctgcgct gcatgcaaac tctatcacgg gtgcagtcac agatatcttc 360caggagagca aagatgtccg aggagaacca ggctctccaa cgccagctcc tacttaaaca 420ggaactggag aatttcagaa tgggtgagaa ctgggatgac agcacccaat ccaaggagca 480aatcgaggca agcctgataa gcaggcaaga ggcggcgata agaagagaaa gagcgcttgc 540atatgcattt tcacaccagt ggaagagtac atcgagatct gtcaacccaa tgtttgtaga 600cccaaacaac ctgcagtggg gctggagctg gctggagcgc tggatggcag caaaaccatg 660ggaaggccgc aatggggctg acaaggagag caacattgac cggggatccg ttaagagcat 720gagcttgaac cttggagagg gtgagatcac aaaagctttc aaccgccggg actcaaagct 780agaaaagcca tcgccgccaa ctccaagacc ggcccgtcca acttccaggc attccccttt 840gacgccctct gctagagtgg caccgatacc tgcgaggaga aaatctgtca cgcccaagaa 900cgggctttca caggtggacg atgacgcgag gagcgtgctc agtgtgcagt ctgagcggcc 960aaggaggcac agtatagcca cctcgactgt gcgggacgac gagagcctca cgagctcccc 1020gtcgctccca agctacatgg ttcccacaga atctgcaagg gccaaatctc gcctccaggg 1080ttcagcaatg gccaatggcg cagagacacc tgagaaagga ggctcaactg gaccagccaa 1140gaagaggtta tccttccagg gtggaactgc ggctgcctcg ccaatgcgac gacattctgg 1200tcctcccaag gtggagatcg cgccaccaca accagaggcc ttggtagtca atggtggaag 1260caagtgacac atatgtgatg agtaccagga tgagaaacgg attatgaaga tattagtttc 1320attttcatcc atgaatagaa gttaaaagtg gtatcatatc tatgaatggt ttcaattgtt 1380tttctgttac aaccacatta tttgctatat acgattcaca gtacctgcca gttgattcca 1440ttggttgttt ctgtaaaaca aatatcaatt tgtcactaga atctgtgatg tttgtatgta 1500aacagatcct ctatttatgt gagacatata tttcttttct ttc 1543162421PRTZea maysmisc_featureCeres CLONE ID no.229668 162Leu Glu Val Asn Leu Ser Val Pro Pro Pro Pro Ala Pro Pro Pro Val1 5 10 15Leu His Gln Ala Glu Glu Val Gly Val Pro Glu Ala Glu Gln Glu Gln 20 25 30Ser Lys His Val Ala Val Glu Glu Ala Pro Ala Ala Ala Pro Ala Gln35 40 45Ala Ser Val Leu Pro Pro Ala Val Pro Thr Gln Glu Leu Ala Ala Val50 55 60Lys Ile Gln Thr Ala Phe Arg Gly Tyr Leu Ala Arg Arg Ala Leu Arg65 70 75 80Ala Leu Arg Gly Leu Val Arg Leu Lys Ser Leu Val Glu Gly Asn Ser 85 90 95Val Lys Arg Gln Ser Ala Ser Thr Leu Arg Cys Met Gln Thr Leu Ser 100 105 110Arg Val Gln Ser Gln Ile Ser Ser Arg Arg Ala Lys Met Ser Glu Glu115 120 125Asn Gln Ala Leu Gln Arg Gln Leu Leu Leu Lys Gln Glu Leu Glu Asn130 135 140Phe Arg Met Gly Glu Asn Trp Asp Asp Ser Thr Gln Ser Lys Glu Gln145 150 155 160Ile Glu Ala Ser Leu Ile Ser Arg Gln Glu Ala Ala Ile Arg Arg Glu 165 170 175Arg Ala Leu Ala Tyr Ala Phe Ser His Gln Trp Lys Ser Thr Ser Arg 180 185 190Ser Val Asn Pro Met Phe Val Asp Pro Asn Asn Leu Gln Trp Gly Trp195 200 205Ser Trp Leu Glu Arg Trp Met Ala Ala Lys Pro Trp Glu Gly Arg Asn210 215 220Gly Ala Asp Lys Glu Ser Asn Ile Asp Arg Gly Ser Val Lys Ser Met225 230 235 240Ser Leu Asn Leu Gly Glu Gly Glu Ile Thr Lys Ala Phe Asn Arg Arg 245 250 255Asp Ser Lys Leu Glu Lys Pro Ser Pro Pro Thr Pro Arg Pro Ala Arg 260 265 270Pro Thr Ser Arg His Ser Pro Leu Thr Pro Ser Ala Arg Val Ala Pro275 280 285Ile Pro Ala Arg Arg Lys Ser Val Thr Pro Lys Asn Gly Leu Ser Gln290 295 300Val Asp Asp Asp Ala Arg Ser Val Leu Ser Val Gln Ser Glu Arg Pro305 310 315 320Arg Arg His Ser Ile Ala Thr Ser Thr Val Arg Asp Asp Glu Ser Leu 325 330 335Thr Ser Ser Pro Ser Leu Pro Ser Tyr Met Val Pro Thr Glu Ser Ala 340 345 350Arg Ala Lys Ser Arg Leu Gln Gly Ser Ala Met Ala Asn Gly Ala Glu355 360 365Thr Pro Glu Lys Gly Gly Ser Thr Gly Pro Ala Lys Lys Arg Leu Ser370 375 380Phe Gln Gly Gly Thr Ala Ala Ala Ser Pro Met Arg Arg His Ser Gly385 390 395 400Pro Pro Lys Val Glu Ile Ala Pro Pro Gln Pro Glu Ala Leu Val Val 405 410 415Asn Gly Gly Ser Lys 420163500PRTOryza sativa subsp. indicamisc_featurePublic GI ID no.125550655 163Met Gly Lys Lys Gly Lys Trp Phe Gly Ala Val Lys Lys Val Phe Ser1 5 10 15Pro Glu Ser Lys Glu Lys Lys Glu Glu Arg Leu Arg Arg Lys Leu Ala 20 25 30Ala Ser Asn Pro Asn Pro Pro Asp Leu Thr Pro Ser Ala Ser Leu Glu35 40 45Val Asn Val Ser Val Pro Pro Pro Pro Pro Pro Pro Pro Val Gln Gln50 55 60Ile Glu Glu Val Lys Val Pro Glu Val Glu Gln Glu Gln Ser Lys His65 70 75 80Val Thr Val Glu Ala Val Pro Glu Ala Val Pro Val Pro Ala Gln Thr 85 90 95Ser Ser Leu Pro Pro Gly Val Ser Arg Glu Glu Gln Ala Ala Ile Lys 100 105 110Ile Gln Thr Ala Phe Arg Gly Tyr Leu Leu Ser Glu Asn Ser Ser Trp115 120 125Leu Phe Ile Ser Ser Ala Ala Phe Ile Tyr His Cys Val Gly Ala Asn130 135 140Ile Thr Lys Ala Arg Arg Ala Leu Arg Ala Leu Arg Gly Leu Val Arg145 150 155 160Leu Lys Ser Leu Val Glu Gly Asn Ser Val Lys Arg Gln Ala Ala Ser 165 170 175Thr Leu Arg Cys Met Gln Thr Leu Ala Arg Val Gln Ser Gln Ile Arg 180 185 190Ser Arg Arg Leu Lys Met Ser Glu Glu Asn Gln Ala Leu Gln Arg Gln195 200 205Leu Leu Leu Lys Gln Glu Leu Glu Ser Leu Arg Met Gly Glu Gln Trp210 215 220Asp Asp Ser Thr Gln Ser Lys Glu Gln Ile Glu Ala Ser Leu Ile Ser225 230 235 240Arg Gln Glu Ala Ala Val Arg Arg Glu Arg Ala Leu Ala Tyr Ala Phe 245 250 255Ser His Gln Trp Lys Ser Thr Ser Arg Ser Val Asn Pro Met Phe Val 260 265 270Asp Pro Asn Asn Pro Gln Trp Gly Trp Ser Trp Leu Glu Arg Trp Met275 280 285Ala Ala Lys Pro Trp Glu Gly Arg Ala Gly Thr Asp Lys Glu Ser Asn290 295 300Leu Asp Arg Ala Ser Ala Lys Ser Ala Ser Leu Asn Leu Gly Glu Gly305 310 315 320Glu Ile Thr Lys Ala Phe Asn Arg Arg Gly Ser Lys Pro Asp Lys Ser 325 330 335Ser Pro Thr Thr Pro Lys Leu Thr Arg Pro Ala Ser Arg Gln Ser Pro 340 345 350Ser Thr Pro Ser Ala Lys Val Ser Pro Ile Phe Ala Lys Lys Lys Ser355 360 365Ala Thr Pro Lys Asn Gly Leu Ser Gln Val Asp Asp Asp Ala Lys Ser370 375 380Val Phe Ser Val Gln Ser Glu Arg Pro Arg Arg His Ser Ile Ala Thr385 390 395 400Ser Thr Val Arg Asp Asp Glu Ser Leu Ala Ser Ser Pro Ser Val Pro 405 410 415Ser Tyr Met Ala Pro Thr Lys Ser Ala Arg Ala Lys Leu Arg Leu Gln 420 425 430Gly Ser Ala Val Thr Asp Gly Ala Glu Thr Pro Pro Glu Lys Val Ala435 440 445Ser Val Gly Ser Val Lys Lys Lys Leu Ser Phe Gln Ala Gly Met Val450 455 460Pro Pro Ser Pro Met Arg Arg His Ser Gly Pro Pro Lys Val Glu Val465 470 475 480Val Lys Asp Ile Ala Glu Pro Pro Gln Pro Glu Ala Leu Val Ile Asn 485 490 495Gly Gly Ser Lys 5001641923DNAArabidopsis thalianamisc_featureCeres CLONE ID no.106263 164acaaatactc ttcttcacac agctttgaat ccatctgtct tctcctctct ctctcttctc 60catttgcaat tacgataatg tgaaagcaat aagaagagga aaagttatct tcgcacctca 120gcaaagatcc aatcgattcg attcttaagc tttttcgtct tctccgataa ggtcactact 180tagaagccgc gttgtggttt agttgactcc tccaggtttt atcttcaagc tttttcgtct 240atcagatctg gtgtcactgt cttctcatag gattacatag agatggggaa aaaagctaaa 300tggttttcaa gtgttaagaa agcattcagc ccagattcaa agaagtcgaa gcaaaaattg 360gctgagggac aaaatggtgt tatctctaat cctcctgttg tggataatgt tagacaatct 420tcttcttctc ctcctcctgc

tcttgctcct cgtgaagtga gagtagctga agtgattgtt 480gaacggaaca gggatctttc acctccttct acagcagatg ctgtgaatgt tacagctact 540gatgtycctg tagttccatc ttcatctgct cctggtgttg ttcgtcgcgc tacacctact 600cgatttgctg gaaagtcaaa cgaagaagcc gctgctatct tgatccagac tatatttaga 660ggttatttgg caaggagagc gttgcgggca atgaggggtt tggtcagact taagttattg 720atggaaggat ctgttgttaa gcggcaagct gcaaatactc taaaatgtat gcagactctc 780tctcgtgtac agtcgcagat ccgagctagg agaatcaggr tgtcagaaga gaatcaggct 840cgccagaaac aactccttca gaaacatgct aaagagctag ctggcttgaa gaacggggat 900aactggaatg atagcattca atcaaaggag aaagttgaag cgaatttgct aagcaagtac 960gaggcaacaa tgagaaggga aagggcattg gcttattcat actctcatca scaaaactgg 1020aagaacaact ctaaatctgg aaacccgatg ttcatggatc caagcaaccc gacatggggt 1080tggagctggt tggagagatg gatggctggt aggccactag agagttccga gaaagaacaa 1140agcaacagca acaatgacaa tgctgcctcg gtcaagggct ctattaaccg caacgaagct 1200gcaaaatctc taacccgcaa tggctcaact caaccaaaca caccatcatc cgcaagaggg 1260accccaagaa acaaaaacag tttcttctca cctccaactc cctcaaggct aaaccaatcc 1320tcgaggaaat ccaatgacga cgactccaaa agcacaatct cggtcctgtc cgagaggaac 1380cgcagacaca scattgctgg ttcatcagtc asagacgatg agagcctcgc tggctcacca 1440gctctcccga gctacatggt tccaactaaa tcagctcgag ccaggctcaa gccccaaagc 1500ccattaggtg gtaccacaca ggaaaacgaa gggttcacag acaaggcatc agctaagaaa 1560cggctctcgt atccaacttc gcctgcattg cctaaaccac ggcggttctc agctccccct 1620aaggtggaga gtggcggcgt taccgtgacc aacggagcag gcagctgagg tattttattt 1680aatataatta ttttcccact tatgaatgtg tccgagattg ttgtctctta tgtgttccct 1740tcatttcgta attcatttgt gcagtgtaag cgccagtcat ttattttttt actataataa 1800attttataac cttttaaaat tcatgttctt ttgtttcttt gaatatttaa gttattttta 1860ttaatgttgg atgaattgga atatgatgat gttatttgta ttgtaatgca gatcctttaa 1920agc 1923165461PRTArabidopsis thalianamisc_featureCeres CLONE ID no.106263 165Met Gly Lys Lys Ala Lys Trp Phe Ser Ser Val Lys Lys Ala Phe Ser1 5 10 15Pro Asp Ser Lys Lys Ser Lys Gln Lys Leu Ala Glu Gly Gln Asn Gly 20 25 30Val Ile Ser Asn Pro Pro Val Val Asp Asn Val Arg Gln Ser Ser Ser35 40 45Ser Pro Pro Pro Ala Leu Ala Pro Arg Glu Val Arg Val Ala Glu Val50 55 60Ile Val Glu Arg Asn Arg Asp Leu Ser Pro Pro Ser Thr Ala Asp Ala65 70 75 80Val Asn Val Thr Ala Thr Asp Xaa Pro Val Val Pro Ser Ser Ser Ala 85 90 95Pro Gly Val Val Arg Arg Ala Thr Pro Thr Arg Phe Ala Gly Lys Ser 100 105 110Asn Glu Glu Ala Ala Ala Ile Leu Ile Gln Thr Ile Phe Arg Gly Tyr115 120 125Leu Ala Arg Arg Ala Leu Arg Ala Met Arg Gly Leu Val Arg Leu Lys130 135 140Leu Leu Met Glu Gly Ser Val Val Lys Arg Gln Ala Ala Asn Thr Leu145 150 155 160Lys Cys Met Gln Thr Leu Ser Arg Val Gln Ser Gln Ile Arg Ala Arg 165 170 175Arg Ile Arg Xaa Ser Glu Glu Asn Gln Ala Arg Gln Lys Gln Leu Leu 180 185 190Gln Lys His Ala Lys Glu Leu Ala Gly Leu Lys Asn Gly Asp Asn Trp195 200 205Asn Asp Ser Ile Gln Ser Lys Glu Lys Val Glu Ala Asn Leu Leu Ser210 215 220Lys Tyr Glu Ala Thr Met Arg Arg Glu Arg Ala Leu Ala Tyr Ser Tyr225 230 235 240Ser His Xaa Gln Asn Trp Lys Asn Asn Ser Lys Ser Gly Asn Pro Met 245 250 255Phe Met Asp Pro Ser Asn Pro Thr Trp Gly Trp Ser Trp Leu Glu Arg 260 265 270Trp Met Ala Gly Arg Pro Leu Glu Ser Ser Glu Lys Glu Gln Ser Asn275 280 285Ser Asn Asn Asp Asn Ala Ala Ser Val Lys Gly Ser Ile Asn Arg Asn290 295 300Glu Ala Ala Lys Ser Leu Thr Arg Asn Gly Ser Thr Gln Pro Asn Thr305 310 315 320Pro Ser Ser Ala Arg Gly Thr Pro Arg Asn Lys Asn Ser Phe Phe Ser 325 330 335Pro Pro Thr Pro Ser Arg Leu Asn Gln Ser Ser Arg Lys Ser Asn Asp 340 345 350Asp Asp Ser Lys Ser Thr Ile Ser Val Leu Ser Glu Arg Asn Arg Arg355 360 365His Xaa Ile Ala Gly Ser Ser Val Xaa Asp Asp Glu Ser Leu Ala Gly370 375 380Ser Pro Ala Leu Pro Ser Tyr Met Val Pro Thr Lys Ser Ala Arg Ala385 390 395 400Arg Leu Lys Pro Gln Ser Pro Leu Gly Gly Thr Thr Gln Glu Asn Glu 405 410 415Gly Phe Thr Asp Lys Ala Ser Ala Lys Lys Arg Leu Ser Tyr Pro Thr 420 425 430Ser Pro Ala Leu Pro Lys Pro Arg Arg Phe Ser Ala Pro Pro Lys Val435 440 445Glu Ser Gly Gly Val Thr Val Thr Asn Gly Ala Gly Ser450 455 460166430PRTArabidopsis thalianamisc_featurePublic GI ID no.15231175 166Met Gly Lys Ser Trp Phe Ser Ala Val Lys Lys Ala Leu Ser Pro Glu1 5 10 15Pro Lys Gln Lys Lys Glu Gln Lys Pro His Lys Ser Lys Lys Trp Phe 20 25 30Gly Lys Ser Lys Lys Leu Asp Val Thr Asn Ser Gly Ala Ala Tyr Ser35 40 45Pro Arg Thr Val Lys Asp Ala Lys Leu Lys Glu Ile Glu Glu Gln Gln50 55 60Ser Arg His Ala Tyr Ser Val Ala Ile Ala Thr Ala Ala Ala Ala Glu65 70 75 80Ala Ala Val Ala Ala Ala Gln Ala Ala Ala Glu Val Val Arg Leu Ser 85 90 95Ala Leu Ser Arg Phe Pro Gly Lys Ser Met Glu Glu Ile Ala Ala Ile 100 105 110Lys Ile Gln Thr Ala Phe Arg Gly Tyr Met Ala Arg Arg Ala Leu Arg115 120 125Ala Leu Arg Gly Leu Val Arg Leu Lys Ser Leu Val Gln Gly Lys Cys130 135 140Val Arg Arg Gln Ala Thr Ser Thr Leu Gln Ser Met Gln Thr Leu Ala145 150 155 160Arg Val Gln Tyr Gln Ile Arg Glu Arg Arg Leu Arg Leu Ser Glu Asp 165 170 175Lys Gln Ala Leu Thr Arg Gln Leu Gln Gln Lys His Asn Lys Asp Phe 180 185 190Asp Lys Thr Gly Glu Asn Trp Asn Asp Ser Thr Leu Ser Arg Glu Lys195 200 205Val Glu Ala Asn Met Leu Asn Lys Gln Val Ala Thr Met Arg Arg Glu210 215 220Lys Ala Leu Ala Tyr Ala Phe Ser His Gln Asn Thr Trp Lys Asn Ser225 230 235 240Thr Lys Met Gly Ser Gln Thr Phe Met Asp Pro Asn Asn Pro His Trp 245 250 255Gly Trp Ser Trp Leu Glu Arg Trp Met Ala Ala Arg Pro Asn Glu Asn 260 265 270His Ser Leu Thr Pro Asp Asn Ala Glu Lys Asp Ser Ser Ala Arg Ser275 280 285Val Ala Ser Arg Ala Met Ser Glu Met Ile Pro Arg Gly Lys Asn Leu290 295 300Ser Pro Arg Gly Lys Thr Pro Asn Ser Arg Arg Gly Ser Ser Pro Arg305 310 315 320Val Arg Gln Val Pro Ser Glu Asp Ser Asn Ser Ile Val Ser Phe Gln 325 330 335Ser Glu Gln Pro Cys Asn Arg Arg His Ser Thr Cys Gly Ser Ile Pro 340 345 350Ser Thr Arg Asp Asp Glu Ser Phe Thr Ser Ser Phe Ser Gln Ser Val355 360 365Pro Gly Tyr Met Ala Pro Thr Gln Ala Ala Lys Ala Arg Ala Arg Phe370 375 380Ser Asn Leu Ser Pro Leu Ser Ser Glu Lys Thr Ala Lys Lys Arg Leu385 390 395 400Ser Phe Ser Gly Ser Pro Lys Thr Val Arg Arg Phe Ser Gly Pro Pro 405 410 415Lys Leu Glu Ser Asn Val Thr Lys Lys Asp Thr Asn Leu Ala 420 425 430167461PRTArabidopsis thalianamisc_featurePublic GI ID no.145357576 167Met Gly Lys Lys Ala Lys Trp Phe Ser Ser Val Lys Lys Ala Phe Ser1 5 10 15Pro Asp Ser Lys Lys Ser Lys Gln Lys Leu Ala Glu Gly Gln Asn Gly 20 25 30Val Ile Ser Asn Pro Pro Val Val Asp Asn Val Arg Gln Ser Ser Ser35 40 45Ser Pro Pro Pro Ala Leu Ala Pro Arg Glu Val Arg Val Ala Glu Val50 55 60Ile Val Glu Arg Asn Arg Asp Leu Ser Pro Pro Ser Thr Ala Asp Ala65 70 75 80Val Asn Val Thr Ala Thr Asp Val Pro Val Val Pro Ser Ser Ser Ala 85 90 95Pro Gly Val Val Arg Arg Ala Thr Pro Thr Arg Phe Ala Gly Lys Ser 100 105 110Asn Glu Glu Ala Ala Ala Ile Leu Ile Gln Thr Ile Phe Arg Gly Tyr115 120 125Leu Ala Arg Arg Ala Leu Arg Ala Met Arg Gly Leu Val Arg Leu Lys130 135 140Leu Leu Met Glu Gly Ser Val Val Lys Arg Gln Ala Ala Asn Thr Leu145 150 155 160Lys Cys Met Gln Thr Leu Ser Arg Val Gln Ser Gln Ile Arg Ala Arg 165 170 175Arg Ile Arg Met Ser Glu Glu Asn Gln Ala Arg Gln Lys Gln Leu Leu 180 185 190Gln Lys His Ala Lys Glu Leu Ala Gly Leu Lys Asn Gly Asp Asn Trp195 200 205Asn Asp Ser Ile Gln Ser Lys Glu Lys Val Glu Ala Asn Leu Leu Ser210 215 220Lys Tyr Glu Ala Thr Met Arg Arg Glu Arg Ala Leu Ala Tyr Ser Tyr225 230 235 240Ser His Gln Gln Asn Trp Lys Asn Asn Ser Lys Ser Gly Asn Pro Met 245 250 255Phe Met Asp Pro Ser Asn Pro Thr Trp Gly Trp Ser Trp Leu Glu Arg 260 265 270Trp Met Ala Gly Arg Pro Leu Glu Ser Ser Glu Lys Glu Gln Ser Asn275 280 285Ser Asn Asn Asp Asn Ala Ala Ser Val Lys Gly Ser Ile Asn Arg Asn290 295 300Glu Ala Ala Lys Ser Leu Thr Arg Asn Gly Ser Thr Gln Pro Asn Thr305 310 315 320Pro Ser Ser Ala Arg Gly Thr Pro Arg Asn Lys Asn Ser Phe Phe Ser 325 330 335Pro Pro Thr Pro Ser Arg Leu Asn Gln Ser Ser Arg Lys Ser Asn Asp 340 345 350Asp Asp Ser Lys Ser Thr Ile Ser Val Leu Ser Glu Arg Asn Arg Arg355 360 365His Ser Ile Ala Gly Ser Ser Val Arg Asp Asp Glu Ser Leu Ala Gly370 375 380Ser Pro Ala Leu Pro Ser Tyr Met Val Pro Thr Lys Ser Ala Arg Ala385 390 395 400Arg Leu Lys Pro Gln Ser Pro Leu Gly Gly Thr Thr Gln Glu Asn Glu 405 410 415Gly Phe Thr Asp Lys Ala Ser Ala Lys Lys Arg Leu Ser Tyr Pro Thr 420 425 430Ser Pro Ala Leu Pro Lys Pro Arg Arg Phe Ser Ala Pro Pro Lys Val435 440 445Glu Ser Gly Gly Val Thr Val Thr Asn Gly Ala Gly Ser450 455 460168474PRTOryza sativa subsp. indicamisc_featurePublic GI ID no.125528277 168Met Gly Lys Lys Gly Asn Trp Phe Ser Ala Val Lys Lys Val Phe Ser1 5 10 15Ser Ser Asp Pro Asp Gly Arg Glu Ala Lys Ile Glu Lys Ala Asp Lys 20 25 30Ser Arg Ser Arg Arg Lys Trp Pro Phe Gly Lys Ser Lys Lys Ser Asp35 40 45Pro Trp Thr Ser Thr Val Ala Val Pro Thr Ser Thr Ala Pro Pro Pro50 55 60Gln Pro Pro Pro Pro Pro Pro Thr His Pro Ile Gln Pro Gln Pro Glu65 70 75 80Glu Ile Lys Asp Val Lys Ala Val Glu Thr Asp Ser Glu Gln Asn Lys 85 90 95His Ala Tyr Ser Val Ala Leu Ala Ser Ala Val Ala Ala Glu Ala Ala 100 105 110Ala Val Ala Ala Gln Ala Ala Ala Glu Val Val Arg Leu Thr Thr Ala115 120 125Thr Thr Ala Val Pro Lys Ser Pro Val Ser Ser Lys Asp Glu Leu Ala130 135 140Ala Ile Lys Ile Gln Thr Ala Phe Arg Gly Tyr Leu Ala Arg Arg Ala145 150 155 160Leu Arg Ala Leu Arg Gly Leu Val Arg Leu Lys Ser Leu Val Asp Gly 165 170 175Asn Ala Val Lys Arg Gln Thr Ala His Thr Leu His Cys Thr Gln Thr 180 185 190Met Thr Arg Val Gln Thr Gln Ile Tyr Ser Arg Arg Val Lys Met Glu195 200 205Glu Glu Lys Gln Ala Leu Gln Arg Gln Leu Gln Leu Lys His Gln Arg210 215 220Glu Leu Glu Lys Met Lys Ile Asp Glu Asp Trp Asp His Ser His Gln225 230 235 240Ser Lys Glu Gln Trp Lys Asn Ser Gly Arg Thr Ile Thr Pro Thr Phe 245 250 255Thr Asp Gln Gly Asn Pro Asn Trp Gly Trp Ser Trp Met Glu Arg Trp 260 265 270Met Thr Ser Arg Pro Trp Glu Ser Arg Val Ile Ser Asp Lys Asp Pro275 280 285Lys Asp His Tyr Ser Thr Lys Asn Pro Ser Thr Ser Ala Ser Arg Thr290 295 300Tyr Val Pro Arg Ala Ile Ser Ile Gln Arg Pro Ala Thr Pro Asn Lys305 310 315 320Ser Ser Arg Pro Pro Ser Arg Gln Ser Pro Ser Thr Pro Pro Ser Arg 325 330 335Val Pro Ser Val Thr Gly Lys Ile Arg Pro Ala Ser Pro Arg Asp Ser 340 345 350Trp Leu Tyr Lys Glu Asp Asp Leu Arg Ser Ile Thr Ser Ile Arg Ser355 360 365Glu Arg Pro Arg Arg Gln Ser Thr Gly Gly Ala Ser Val Arg Asp Asp370 375 380Ala Ser Leu Thr Ser Thr Pro Ala Leu Pro Ser Tyr Met Gln Ser Thr385 390 395 400Glu Ser Ala Arg Ala Lys Ser Arg Tyr Arg Ser Leu Leu Thr Asp Arg 405 410 415Phe Glu Val Pro Glu Arg Val Pro Leu Val His Ser Ser Ile Lys Lys 420 425 430Arg Leu Ser Phe Pro Val Ala Asp Lys Pro Asn Gly Glu His Ala Asp435 440 445Lys Leu Met Glu Arg Gly Arg Arg His Ser Asp Pro Pro Lys Val Asp450 455 460Pro Ala Ser Leu Lys Asp Val Pro Val Ser465 470

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed