Assays for TERT promoter modulatory agents

Andrews; William H. ;   et al.

Patent Application Summary

U.S. patent application number 11/717572 was filed with the patent office on 2008-07-10 for assays for tert promoter modulatory agents. Invention is credited to William H. Andrews, Laura A. Briggs, Lancer K. Brown, Christopher A. Foster, Mieczyslaw A. Piatyszek.

Application Number20080166711 11/717572
Document ID /
Family ID36653703
Filed Date2008-07-10

United States Patent Application 20080166711
Kind Code A1
Andrews; William H. ;   et al. July 10, 2008

Assays for TERT promoter modulatory agents

Abstract

Methods and compositions for assaying an agent for TERT promoter modulatory activity are provided. In the subject methods, an agent is contacted with a cell comprising a mutant telomerase structural RNA component (TR) that results in a detectable phenotype in the presence of telomerase reverse transcriptase (TERT). Also provided are compositions, systems and kits thereof, as well as devices, that find use in practicing the subject methods. The subject invention finds use in assaying agents for TERT promoter modulatory activity, such as in a high throughput format.


Inventors: Andrews; William H.; (Reno, NV) ; Briggs; Laura A.; (Reno, NV) ; Foster; Christopher A.; (Carmichael, CA) ; Piatyszek; Mieczyslaw A.; (Morgan Hill, CA) ; Brown; Lancer K.; (Sparks, NV)
Correspondence Address:
    BOZICEVIC, FIELD & FRANCIS LLP
    1900 UNIVERSITY AVENUE, SUITE 200
    EAST PALO ALTO
    CA
    94303
    US
Family ID: 36653703
Appl. No.: 11/717572
Filed: March 12, 2007

Related U.S. Patent Documents

Application Number Filing Date Patent Number
11085872 Mar 21, 2005 7226744
11717572
60643649 Jan 12, 2005

Current U.S. Class: 435/6.18
Current CPC Class: C12Q 1/6897 20130101
Class at Publication: 435/6
International Class: C12Q 1/68 20060101 C12Q001/68

Claims



1. A method of determining whether an agent modulates transcription control activity of a TERT promoter, said method comprising: (a) contacting said agent with a cell comprising a mutant telomerase structural RNA component (TR) that results in a detectable phenotype in the presence of telomerase reverse transcriptase (TERT); and (b) evaluating said cell for said detectable phenotype to determine whether said agent modulates transcription control activity of said TERT promoter nucleic acid.

2. The method according to claim 1, wherein said TERT promoter nucleic acid is a human TERT promoter nucleic acid.

3. The method according to claim 1, wherein said cell comprises an expression cassette that expresses said mutant telomerase structural RNA component (TR).

4. The method according to claim 3, wherein said expression cassette is episomally maintained in said cell.

5. The method according to claim 3, wherein said expression cassette is chromosomally integrated in said cell.

6. The method according to claim 5, wherein said expression cassette is not chromosomally integrated into a chromosome of said cell that includes a TERT coding sequence.

7. The method according to claim 6, wherein said cell is a human cell and said expression cassette is not integrated into chromosome 5.

8. The method according to claim 1, wherein said detectable phenotype is cell death.

9. The method according to claim 1, wherein said cell is a mutant cell that expresses telomerase and said method is a method for determining whether said agent inhibits expression controlled by a TERT promoter nucleic acid.

10. The method according to claim 1, wherein said cell is a normal cell and said method is a method of determining whether said agent enhances expression controlled by a TERT promoter nucleic acid.

11. The method according to claim 1, wherein said method comprises determining the modulatory activity of at least two different agents.

12. The method according to claim 11, wherein said method is a high-throughput method.

13. The method according to claim 1, wherein said agent is a small molecule.

14. A method of determining whether a small molecule agent can derepress transcription repression activity of a TERT promoter, said method comprising: (a) contacting said agent with a cell comprising a mutant telomerase structural RNA component (TR) that results in a detectable phenotype in the presence of telomerase reverse transcriptase (TERT); and (b) evaluating said cell for said detectable phenotype to determine whether said agent derepresses transcription repression activity of said TERT promoter nucleic acid.

15. The method according to claim 14, wherein said cell is a human cell.

16. The method according to claim 15, wherein said TERT promoter nucleic acid is a human TERT promoter nucleic acid.

17. The method according to claim 14, wherein said cell comprises an expression cassette that expresses said mutant telomerase structural RNA component (TR).

18. The method according to claim 17, wherein said expression cassette is episomally maintained in said cell.

19. The method according to claim 17, wherein said expression cassette is chromosomally integrated in said cell.

20. The method according to claim 19, wherein said expression cassette is not integrated into chromosome 5.

21. The method according to claim 14, wherein said detectable phenotype is cell death.

22. The method according to claim 14, wherein said method comprises determining the activity of at least two different agents.

23. The method according to claim 22, wherein said method is a high-throughput method.

24. The method according to claim 14, wherein said agent is a small molecule.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] Pursuant to 35 U.S.C. .sctn. 119 (e), this application claims priority to the filing date of U.S. Provisional Patent Application Ser. No. 60/643,649 filed Jan. 12, 2005; the disclosure of which application is herein incorporated by reference.

INTRODUCTION

Background of the Invention

[0002] Telomeres, which define the ends of chromosomes, consist of short, tandemly repeated DNA sequences loosely conserved in eukaryotes. For example, human telomeres consist of many kilobases of (TTAGGG)n together with various associated proteins. Small amounts of these terminal sequences or telomeric DNA are lost from the tips of the chromosomes during S phase because of incomplete DNA replication. Many human cells progressively lose terminal sequence with cell division, a loss that correlates with the apparent absence of telomerase in these cells. The resulting telomeric shortening has' been demonstrated to limit cellular lifespan.

[0003] Telomerase is a ribonucleoprotein that synthesizes telomeric DNA. In general, telomerase is made up of two components: (1) an essential structural RNA (TR or TER) (where the human component is referred to in the art as hTR or hTER); and (2) a catalytic protein (telomerase reverse transcriptase or TERT) (where the human component is referred to in the art as hTERT). Telomerase works by recognizing the 3' end of DNA, e.g., telomeres, and adding multiple telomeric repeats to its 3' end with the catalytic protein component, e.g., hTERT, which has polymerase activity, and hTR which serves as the template for nucleotide incorporation. Both the catalytic protein component and the RNA template component are activity-limiting components.

[0004] Because of its role in cellular senescence and immortalization, there is much interest in the development of protocols and compositions for regulating telomerase activity. Of particular interest is the development of assays that detect agents that directly regulate the endogenous TERT, and specifically hTERT, promoter, e.g., in a high-throughput format.

Literature of Interest

[0005] U.S. Pat. Nos. 5,972,605; 6,610,839 and 6,664,046 and published United States Application 2004/0072787; as well as WO 02/070668; WO 03/016474; WO 03/000916; WO 02/101010; WO 02/090571; WO 02/090570; WO 02/072787; WO 02/070668; WO 02/16658; WO 02/16657; and the references cited therein. Also of interest is Li et al., Rapid Inhibition of Cancer Cell Growth Induced by Lentiviral Delivery and Expression of Mutant-Template Telomerase RNA and Anti-Telomerase Short-Interfering RNA," Cancer Res. (Jul. 15, 2004) 64:4833-4840.

SUMMARY OF THE INVENTION

[0006] Methods and compositions for assaying an agent for TERT promoter modulatory activity are provided. In the subject methods, an agent is contacted with a cell comprising a mutant telomerase structural RNA component (TR) that results in a detectable phenotype in the presence of telomerase reverse transcriptase (TERT). Also provided are compositions, systems and kits thereof, as well as devices, that find use in practicing the subject methods. The subject invention finds use in assaying agents for TERT promoter modulatory activity, such as in a high throughput format.

[0007] Aspects of the invention include methods of determining whether an agent modulates transcription control activity of a TERT promoter, where the method includes:

[0008] (a) contacting the agent with a cell that includes a mutant telomerase structural RNA component (TR) that results in a detectable phenotype in the presence of telomerase reverse transcriptase (TERT); and

[0009] (b) evaluating the cell for the detectable phenotype to determine whether the agent modulates transcription control activity of the TERT promoter nucleic acid. In certain embodiments, TERT promoter nucleic acid is a human TERT promoter nucleic acid. In certain embodiments, the cell comprises an expression cassette that expresses the mutant telomerase structural RNA component (TR). In certain embodiments, the expression cassette is episomally maintained in the cell. In certain embodiments, the expression cassette is chromosomally integrated in the cell. In certain embodiments, the expression cassette is not chromosomally integrated into a chromosome of the cell that includes a TERT coding sequence. In certain embodiments, the cell is a human cell and the expression cassette is not integrated into chromosome 5. In certain embodiments, the detectable phenotype is cell death. In certain embodiments, the cell is a mutant cell that expresses telomerase and the method is a method for determining whether the agent inhibits expression controlled by a TERT promoter nucleic acid. In certain embodiments, the cell is a normal cell and the method is a method of determining whether the agent enhances expression controlled by a TERT promoter nucleic acid. In certain embodiments, the method includes determining the modulatory activity of at least two different agents. In certain embodiments, the method is a high-throughput method. In certain embodiments, the agent is a small molecule.

[0010] Additional aspects of the invention include methods of determining whether a small molecule agent can de-repress transcription repression activity of a TERT promoter. In these embodiments, the method includes:

[0011] (a) contacting an agent with a cell that includes a mutant telomerase structural RNA component (TR) that results in a detectable phenotype in the presence of telomerase reverse transcriptase (TERT); and

[0012] (b) evaluating the cell for said detectable phenotype to determine whether said agent de-represses transcription repression activity of said TERT promoter nucleic acid. Variations of this embodiment include those summarized above.

[0013] Also provided are systems for determining whether an agent modulates transcription control activity of a TERT promoter, where the systems include:

[0014] (a) a cell comprising a mutant telomerase structural RNA component (TR) that results in a detectable phenotype in the presence of telomerase reverse transcriptase (TERT); and

[0015] (b) said agent.

[0016] Also provided are high throughput assay devices that include a cell comprising a mutant telomerase structural RNA component (TR) that results in a detectable phenotype in the presence of telomerase reverse transcriptase (TERT).

DEFINITIONS

[0017] As used herein, the term "TERT promoter" includes any TERT genomic sequences capable of driving transcription in a telomerase activity positive cell. Thus, TERT promoters of the invention include without limitation cis-acting transcriptional control elements and regulatory sequences that are involved in regulating or modulating the timing and/or rate of transcription of a TERT gene. For example, the TERT promoter of the invention comprises cis-acting transcriptional control elements, including enhancers, promoters, transcription terminators, origins of replication, chromosomal integration sequences, 5' and 3' untranslated regions, exons and introns, which are involved in transcriptional regulation. These cis-acting sequences typically interact with proteins or other biomolecules to carry out (turn on/off, regulate, modulate, etc.) transcription.

[0018] As used herein, the terms "allele" or "allelic sequence" refer to an alternative form of a nucleic acid sequence (i.e., a nucleic acid corresponding to a TERT promoter, particularly, an hTERT promoter). Alleles result from mutations (i.e., changes in the nucleic acid sequence), and can produce differently regulated mRNAs. Common mutational changes that give rise to alleles are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, in combination with the others, or one or more times within a given gene, chromosome or other cellular nucleic acid. Thus, the term "TERT promoter" includes allelic forms of TERT promoter sequences, i.e., TERT cis-acting transcriptional control elements, including, e.g., the exemplary human and mouse sequences described herein. In alternative embodiments, the TERT promoter sequence comprises TERT sequences 5' (upstream) of the translational start site (ATG). For example, in one embodiment, the hTERT promoter comprises residues 44 to 13545 of SEQ ID NO:01. Other embodiments include sequences starting within about one to 5 nucleotides of a translation start codon (for example in SEQ ID NO:01) and ending at about 50, 100, 150, 200, 250, 500, 1000, 2500 or 13500 nucleotides upstream of the translation start codon. Such embodiments can optionally include other regulatory sequences, such as, exon and/or intron sequences hTERT promoters of the invention also include sequences substantially identical (as defined herein) to an exemplary hTERT promoter sequence of the invention, having the sequence set forth by SEQ ID NO:01. Similarly, mTERT promoters of the invention also include sequences substantially identical to an exemplary mTERT promoter sequence of the invention, having the sequence set forth by SEQ ID NO:02.

[0019] The term "heterologous" when used with reference to portions of a nucleic acid, indicates that the nucleic acid comprises two or more subsequences which are not found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences from unrelated genes arranged in a manner not found in nature; e.g., a promoter sequence of the invention operably linked to a polypeptide coding sequence that,. when operably linked, does not reform the naturally occurring TERT gene. For example, the invention provides recombinant constructs (expression cassettes, vectors, viruses, and the like) comprising various combinations of promoters of the invention, or subsequences thereof, and heterologous coding sequences, many examples of which are described in detail below.

[0020] As used herein, "isolated," when referring to a molecule or composition, such as, e.g., an hTERT promoter sequence, means that the molecule or composition is separated from at least one other compound, such as a protein, DNA, RNA, or other contaminants with which it is associated in vivo or in its naturally occurring state. Thus, a nucleic acid sequence is considered isolated when it has been isolated from any other component with which it is naturally associated. An isolated composition can, however, also be substantially pure. An isolated composition can be in a homogeneous state. It can be in a dry or an aqueous solution. Purity and homogeneity can be determined, e.g., using analytical chemistry techniques such as, e.g., polyacrylamide gel electrophoresis (PAGE), agarose gel electrophoresis or high pressure liquid chromatography (HPLC).

[0021] As used herein, the terms "nucleic acid" and "polynucleotide" are used interchangeably, and include oligonucleotides (i.e., short polynucleotides). They also refer to synthetic and/or non-naturally occurring nucleic acids (i.e., comprising nucleic acid analogues or modified backbone residues or linkages). The terms also refer to deoxyribonucleotide or ribonucleotide oligonucleotides in either single- or double-stranded form. The terms encompass nucleic acids containing known analogues of natural nucleotides. The term also encompasses nucleic acid-like structures with synthetic backbones. DNA backbone analogues provided by the invention include phosphodiester, phosphorothioate, phosphorodithioate, methyl-phosphonate, phosphoramidate, alkyl phosphotriester, sulfamate, 3'-thioacetal, methylene (methylimino), 3'-N-carbamate, morpholino carbamate, and peptide nucleic acids (PNAs); see Oligonucleotides and Arialogues, a Practical Approach, edited by F. Eckstein, IRL Press at Oxford University Press (1991); Antisense Strategies, Annals of the New York Academy of Sciences, Volume 600, Eds. Baserga and Denhardt (NTYAS 1992); Milligan (1993) J. Med. Chem. 36:1923-1937; Antisense Research and Applications (1993, CRC Press). PNAs contain non-ionic backbones, such as N-(2-aminoethyl) glycine units. Phosphorothioate linkages are described in WO 97/03211; WO 96/39154; Mata (1997) Toxicol. Appl. Pharmacol. 144:189-197. Other synthetic backbones encompassed by the term include methyl-phosphonate linkages or alternating methylphosphonate and phosphodiester linkages (Strauss-Soukup (1997) Biochemistry 36:8692-8698), and benzyl-phosphonate linkages (Samstag (1996) Antisense Nucleic Acid Drug Dev 6:153-156).

[0022] As used herein, the term "operably linked" refers to a functional relationship between two or more nucleic acid (e.g., DNA) segments. Typically, it refers to the functional relationship of a transcriptional regulatory sequence to a transcribed sequence. For example, a promoter sequence is operably linked to a coding sequence if it stimulates or modulates the transcription of the coding sequence in an appropriate host cell or other expression system. Generally, promoter transcriptional regulatory sequences that are operably linked to a transcribed sequence are physically contiguous to the transcribed sequence, i.e., they are cis-acting. However, some transcriptional regulatory sequences, such as enhancers, need not be physically contiguous or located in close proximity to the coding sequences whose transcription they enhance.

[0023] As used herein, "recombinant" refers to a polynucleotide synthesized or otherwise manipulated in vitro (e.g., "recombinant polynucleotide"), to methods of using recombinant polynucleotides to produce gene products in cells or other biological systems, or to a polypeptide ("recombinant protein") encoded by a recombinant polynucleotide. "Recombinant means" also encompass the ligation of nucleic acids having coding or promoter sequences from different sources into an expression cassette or vector for expression of, e.g., a fusion protein; or, inducible, constitutive expression of a protein (i.e., a TERT promoter of the invention operably linked to a heterologous nucleotide, such as a polypeptide coding sequence).

[0024] As used herein, the "sequence" of a gene (unless specifically stated otherwise) or nucleic acid refers to the order of nucleotides in the polynucleotide, including either or both strands of a double-stranded DNA molecule, e.g., the sequence of both the coding strand and its complement, or of a single-stranded nucleic acid molecule. For example, in alternative embodiments, the TERT promoter of the invention comprises untranscribed, untranslated, and intronic TERT sequences, e.g., as set forth in the exemplary SEQ ID NO:01 and SEQ ID NO:02.

[0025] As used herein, the term "transcribable sequence" refers to any sequence which, when operably linked to a cis-acting transcriptional control element, e.g., a promoter, and when placed in the appropriate conditions, is capable of being transcribed to generate RNA, e.g., messenger RNA (mRNA).

[0026] The term "assessing" includes any form of measurement, and includes determining if an element is present or not. The terms "determining", "measuring", "evaluating", "assessing" and "assaying" are used interchangeably and include quantitative and qualitative determinations. Assessing may be relative or absolute. "Assessing the presence of" includes determining the amount of something present, and/or determining whether it is present or absent. As used herein, the terms "determining," "measuring," and "assessing," and "assaying" are used interchangeably and include both quantitative and qualitative determinations.

[0027] The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of nucleotides (or amino acid residues) that are the same, when compared and aligned for maximum correspondence over a comparison window, as measured using one of the following sequence comparison algorithms or by manual alignment and visual inspection. This definition also refers to the complement of a sequence. For example, in alternative embodiments, nucleic acids within the scope of the invention include those with a nucleotide sequence identity that is at least about 60%, at least about 75-80%, about 90%, and about 95% of the exemplary TERT promoter sequence set forth in SEQ ID NO:01 (including residues 44 to 13544 of SEQ ID NO:01) or SEQ ID NO:02. Two sequences with these levels of identity are "substantially identical." Thus, if a sequence has the requisite sequence identity to a TERT promoter sequence or subsequence of the invention, it also is a TERT promoter sequence within the scope of the invention. Preferably, the percent identity exists over a region of the sequence that is at least about 25 nucleotides in length, more preferably over a region that is at least about 50-100 nucleotides in length.

[0028] For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithms test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated or default program parameters. A "comparison window", as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 25 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Natl. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by manual alignment and visual inspection (see, e.g., Ausubel et al., supra).

[0029] One example of a useful algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments to show relationship and percent sequence identity. It also plots a tree or dendrogram showing the clustering relationships used to create the alignment. PILEUP uses a simplification of the progressive alignment method of Feng & Doolittle, J. Mol. Evol. 35:351-360 (1987). The method used is similar to the method described by Higgins & Sharp, CABIOS 5:151-153 (1989). The program can align up to 300 sequences, each of a maximum length of 5,000 nucleotides or amino acids. The multiple alignment procedure begins with the pairwise alignment of the two most similar sequences, producing a cluster of two aligned sequences. This cluster is then aligned to the next most related sequence or cluster of aligned sequences. Two clusters of sequences are aligned by a simple extension of the pairwise alignment of two individual sequences. The final alignment is achieved by a series of progressive, pairwise alignments. The program is run by designating specific sequences and their amino acid or nucleotide coordinates for regions of sequence comparison and by 5 designating the program parameters. Using PILEUP, a reference sequence (e.g., a TERT promoter sequence of the invention as set forth by. e.g., SEQ ID NO:01 or SEQ ID NO:02) is compared to another sequence to determine the percent sequence identity relationship (i.e., that the second sequence is substantially identical and within the scope of the invention) using the following parameters: default gap weight (3.00), default gap length weight (0.10), and weighted end gaps. PILEUP can be obtained from the GCG sequence analysis software package, e.g., version 7.0 (Devereaux (1984) Nuc. Acids Res. 12:387-395).

[0030] Another example of algorithm that is suitable for determining percent sequence identity (i.e., substantial similarity or identity) is the BLAST algorithm, which is described in Altschul (1990) J. Mol. Biol. 215:403-410. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul (1990) supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues, always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. In one embodiment, to determine if a nucleic acid sequence is within the scope of the invention, the BLASTN program (for nucleotide sequences) is used incorporating as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as default parameters a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see, e.g., Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915).

[0031] The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin (1993) Proc. Nat'l. Acad. Sci. USA 90:5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

[0032] Methods and compositions for assaying an agent for TERT promoter modulatory activity are provided. In the subject methods, an agent is contacted with a cell comprising a mutant telomerase structural RNA component (TR) that results in a detectable phenotype in the presence of telomerase reverse transcriptase (TERT). Also provided are compositions, systems and kits thereof, as well as devices, that find use in practicing the subject methods. The subject invention finds use in assaying agents for TERT promoter modulatory activity, such as in a high throughput format.

[0033] Before the present invention is further described, it is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.

[0034] Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.

[0035] Methods recited herein may be carried out in any order of the recited events which is logically possible, as well as the recited order of events.

[0036] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, the preferred methods and materials are now described.

[0037] All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.

[0038] It must be noted that as used herein and in the appended claims, the singular forms "a", "an", and "the" include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as "solely," "only" and the like in connection with the recitation of claim elements, or use of a "negative" limitation.

[0039] The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.

[0040] In further describing the invention, the subject methods are described first in greater detail, followed by a review of representative applications in which the subject methods find use, as well as a discussion of representative systems and kits that find use in practicing the subject methods.

Methods

[0041] As summarized above, the subject invention provides methods of determining whether an agent has TERT promoter modulatory activity. An agent is considered to have TERT promoter modulatory activity if its interaction with a TERT promoter causes a change in transcription activity, e.g., level (for example, in terms of transcribed copies of a coding sequence for a given period of time) of a nucleic acid sequence (e.g., a transcribable sequence, such as the coding sequence for TERT) operably linked to the promoter, e.g., as compared to a control (e.g., the transcription activity of an analogous TERT promoter/reporter nucleic acid construct not contacted with the agent of interest). The change that is observed may be an increase or decrease of transcription of the operably linked nucleic acid, e.g., TERT coding sequence. In other words, the agent may enhance or inhibit transcription of the nucleic acid sequence operably linked to the TERT promoter. By enhance is meant that the expression level of the operably linked reporter nucleic acid sequence is increased by at least about 2 fold, usually by at least about 5 fold and sometimes by at least 25, 50, 100 fold and in particular about 300 fold or higher, as compared to a control, i.e., expression from an analogous or identical expression system that is not contacted with the agent in question. Alternatively, in cases where expression of the operably linked nucleic acid is so low that it is undetectable, expression of the operably linked nucleic acid is considered to be enhanced if expression is increased to a level that is easily detectable. By inhibit is meant that the expression level of the operably linked nucleic acid sequence is decreased by at least about 2 fold, usually by at least about 5 fold and sometimes by at least 25, 50, 100 fold and in particular about 300 fold or higher, as compared to a control, i.e., expression from an analogous or identical expression system that is not contacted with the agent in question. Alternatively, in cases where expression of the operably linked nucleic acid is detectable, expression of the operably linked nucleic acid is considered to be inhibited if expression is decreased to a level that is not detectable.

[0042] In practicing the subject methods, an agent to be tested or assayed for TERT promoter modulatory activity (sometimes referred to herein as a candidate agent) is contacted with a cell that includes a mutant (i.e., modified) telomerase structural RNA component (TR) that results in a detectable phenotype in the presence of telomerase reverse transcriptase (TERT).

[0043] Depending on the particular assay, the cell (also referred to herein as the target cell or test cell) with which the agent is contacted during practice of the subject methods may be a normal cell that provides wild type conditions, e.g., a cell that normally lacks telomerase activity, e.g., an MRC5 cell, etc.; or the cell may be mutant cell in which telomerase activity is present, e.g., a cancerous cell. In representative embodiments, the cell is a mammalian cell, where mammalian cells, of interest include, but are not limited to: murine, porcine, ovine, equine, rat, ungulates, dog, cat, monkey, and human cells, and the like. In many embodiments, the cell will be a human cell.

[0044] A feature of the cells employed in the subject methods is that they include a modified telomerase RNA (TR) component, i.e., a modified TR component. By "modified" is meant that the RNA component differs by at least one base as compared to the corresponding wild-type RNA component present in the cells of the organism from which the test cell was originally obtained. As such, the modified TR component is also properly referred to as a mutant TR component. For example, where the test cell is a mouse cell, the cell includes a modified TR component as compared to the wild-type mouse TR (i.e., mTR) component. Likewise, where the test cell is a human cell, the cell includes a modified TR component as compared to the wild type human TR (i.e., hTR) component. Wild type sequences of TR components as well as the sequences of DNAs encoding the same are known for multiple species, including but not limited to: human, mouse, rat, hamster, cow, etc. See e.g., U.S. Pat. Nos. 6,013,468 and 5,876,979, the disclosures of which are herein incorporated by reference. As indicated above, the sequence of the modified TR component present in the test cells employed in the subject invention differs from the corresponding wild type TR component of the test cell by at least one base, where the number of bases that differ may vary. As such, sequence identity between the modified and corresponding TR component will be less than 100% (as determined using an alignment program, such as an alignment program specified above), where the sequence identity may be less than about 98%, less than about 95%, less than about 90%, less than about 85% etc in certain embodiments.

[0045] In certain representative embodiments, the modified TR component is a modified hTR component. In certain of these representative embodiments, the modified hTR component differs from the sequence of the wild type hTR component, as described above. The sequence of the wild-type hTR component for this embodiment is deposited with Genbank and has been assigned an accession no. of NR.sub.--001566.

[0046] A feature of the modified TR component present in the test cells employed in the subject methods is that the modified TR component imparts a detectable phenotype to the cell in the presence of telomerase reverse transcriptase (TERT). In other words, when TERT is present in the cell along with the modified TR component, the cell has a detectable phenotype that is attributable to the presence of these two components. The detectable phenotype may vary, where representative phenotypes include, but are not limited to: cell death; cell growth/proliferation; cell morphology; the production of new telomere sequences; changes in levels of telomere binding proteins; the presence or absence of binding proteins, e.g., transcriptions factors, that recognize new telomere sequences; changes in gene expression factors (e.g., resulting from presence of new telomere sequences and use of transcription factors as a result thereof, which modulates expression of other gene products); presence of restriction sites in new telomere sequences; changes in fluorescence polarization of the TR component (e.g., when bound to TERT); presence of a reporter gene; presence of a reporter sequence (e.g., directly or indirectly detectable) in a newly synthesized telomere sequence; detection of a TR/TERT complex, either directly or indirectly; and the like.

[0047] In representative embodiments, the modified TR component is one that causes cell death (e.g., via apoptosis) in the presence of telomerase. A number of different such modified TR components have been reported in the literature, including, but not limited to, those reported in: Feng et al, Science (1995) 269(5228):1236-41, Kim et al., Proc. Nat'l Acad. Sci. USA (2001) 98: 7982-7; Marusic et al., Mol. Cell Biol. (1997) 17:6394-401; and Li et al., Cancer Res. (2004) 64: 4833-4840.

[0048] As the test cell employed in the subject assays comprises a modified TR component. In certain embodiments, an expression cassette that includes a coding sequence for the modified TR component operably linked to suitable promoter is present in the cell.

[0049] In certain embodiments, the expression cassette is present on a vector that is episomally (i.e., extrachomosomally) maintained in the host cell. Expression vectors of interest generally contain a promoter that is recognized by the host organism and is operably linked to the coding sequence for the modified TR component. Promoters are untranslated sequences located upstream (5') to the start codon of a structural gene (generally within about 100 to 1000 bp) that control the transcription and translation of particular nucleic acid sequence to which they are operably linked. Such promoters typically fall into two classes, inducible and constitutive. Inducible promoters are promoters that initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, e.g., the presence or absence of a nutrient or a change in temperature. A large number of promoters recognized by a variety of potential host cells are well known. Both a native promoter sequence, e.g., the promoter sequence operably linked to the wild type TR coding sequence, and many heterologous promoters may be used to direct expression of the coding sequence for the modified TR component.

[0050] Transcription from vectors in mammalian cells may be controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter, PGK (phosphoglycerate kinase), or an immunoglobulin promoter, from heat-shock promoters, provided such promoters are compatible with the host cell systems. The early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment that also contains the SV40 viral origin of replication. The immediate early promoter of the human cytomegalovirus is conveniently obtained as a HindIII E restriction fragment. Also of interest are promoters for snRNAs, e.g. U1 and U6.

[0051] Transcription by higher eukaryotes is often increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, which act on a promoter to increase its transcription. Enhancers are relatively orientation and position independent, having been found 5' and 3' to the transcription unit, within an intron, as well as within the coding sequence itself. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, a-fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin, the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. The enhancer may be spliced into the expression vector at a position 5' or 3' to the coding sequence, but is preferably located at a site 5' from the promoter.

[0052] Expression vectors used in eukaryotic host cells may also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of eukaryotic or viral DNAs or cDNAs.

[0053] In certain embodiments, the expression cassette may be genomically integrated in the target cell, i.e., integrated onto a chromosome of the target cell. A variety of integrating vectors and methodologies for using the same are known in the art. For such embodiments, the expression cassette maybe placed into a vector that is suitable for use in integrating the expression cassette into the target cell genome, where representative vectors include, but are not limited to: plasmid DNA vectors, retroviral vectors; adeno-associated vectors, adenoviral vectors, double stranded DNA vectors, etc. For example, viral vector delivery vehicles may be employed to integrate an expression cassette into a target cell genome. A variety of viral vector delivery vehicles are known to those of skill in the art and include, but are not limited to: adenovirus, herpesvirus, lentivirus, vaccinia virus and adeno-associated virus (AAV).

[0054] In representative embodiments where the expression cassette encoding the modified TR component is chromosomally integrated and a stable clone of a cell containing this integration is isolated, clones containing integrations into the same chromosome that includes the TERT coding sequence are excluded. For example, where the target cell is a human cell, since the TERT coding sequence is present on Chromosome 5, the modified TR expression cassette is integrated into a chromosome other than Chromosome 5. In cases where the modified TR is chromosomally integrated and used as a pool (i.e., no clonal isolation), then it is not possible to exclude integrations into chromosome 5.

[0055] For vector construction, any convenient method may be employed. Construction of suitable vectors containing one or more of the above-listed components may employ standard ligation techniques. Isolated plasmids or DNA fragments are cleaved, tailored, and re-ligated in the form desired to generate the plasmids required. For analysis to confirm correct sequences in plasmids constructed, the ligation mixtures are used to transform host cells, and successful transformants selected by ampicillin or tetracycline resistance where appropriate. Plasmids from the transformants are prepared, analyzed by restriction endonuclease digestion, and/or sequenced.

[0056] Yet another feature of certain embodiments of the subject invention is that the target cell is one in which the native TERT gene is present, where by TERT gene is meant the TERT coding sequences as well as transcription control sequences, e.g., promoters, etc. In certain embodiments where the cell is a human cell, the cell includes the native hTERT gene. Yet another feature of certain embodiments of the invention is that the test cell lacks a functional gene for wild type TR, such that wild-type TR is not present in the test cell. In certain embodiments, wild-type TR is present.

[0057] In practicing the subject methods, the target cell, as described above, is contacted with the candidate agent whose activity is to be tested. Contact of the candidate agent is achieved using any convenient protocol, such as introducing the agent into cell culture medium in which the target cell is present, etc.

[0058] The conditions under which the cell and the candidate agent are contacted may vary depending on the nature of the assay and the nature of the candidate agent modulatory activity to be determined. For example, where the assay is employed to screen candidate agents for TERT promoter de-repression activity, i.e., activation activity, the conditions under which the expression system and the agent are contacted are generally wild type conditions, where the conditions may be described as an environment in which, in the absence of the candidate agent, TERT expression is repressed.

[0059] Alternatively, where the assay is employed to screen candidate agents for TERT promoter repression activity, i.e., inhibition activity, the conditions under which the cell and the agent are contacted are generally mutant conditions, where the conditions may be described as an environment in which, in the absence of the candidate agent, TERT expression occurs. Such conditions may be found in target cells that constitutively express TERT, e.g., cancerous cells.

[0060] Following contact of the candidate agent and the target cell, the phenotype of cell is evaluated or assessed to determine the promoter modulatory activity of the candidate agent. This step of assessing or evaluating the phenotype of the cell will necessarily vary depending on the nature of the phenotype that is induced by the presence of both TERT and the modified TR component in the cell. This step of the subject methods may include either a qualitative or quantitative evaluation of the phenotype, and may or may not include use of one or more reference or controls, as may be desired.

[0061] In certain embodiments, the cell is assayed for cell-death or apoptosis. Any convenient apoptosis assay may be employed, including but not limited to, those described in: (Note: Feng at all describes altered telomeres but no apoptosis assay) Kim et al., Proc. Nat'l Acad. Sci. USA (2001) 98: 7982-7; Marusic et al., Mol. Cell Biol. (1997) 17:6394-401; and Li et al., Cancer Res. (2004) 64: 4833-4840.

[0062] Where the phenotype to be evaluated is cell death, any convenient assay for such a phenotype may be employed, where a number of different such assays are known to those of skill in the art. Specific representative assays of interest are reviewed in greater detail below.

[0063] In certain embodiments, the assay can be one the employs a mixed population of test and non-test cells, where the assay looks at changes in the proportion of each type of cell in the population as an indication of the presence of cell death in the test cell. For example, a first population of test cells may be produced by transfecting the mutant TR expression construct into normal cells along with reporter construct, e.g., a gene expressing the Green Fluorescent Protein, where the reporter construct may be on the same vector as, or a different vector from, the mutant hTR expression construct, e.g., on the plasmid or on a separate plasmid. A second population of control cells may be transfected with a second reporter construct distinct from the first, e.g., a reporter construct that expresses a non-Green Fluorescent Protein, such as Red, Yellow, Blue, etc. In certain embodiments, the second reporter construct may be on the same vector as a wild type hTR expression construct, e.g., on the plasmid. As a result, two different populations of cells, e.g., cell lines, are produced, where the cell lines are identical except that the first test cell line expresses mutant hTR and a first reporter molecule, e.g., GFP, while the second control cell line expresses wild type hTR and a second reporter molecule, e.g., RFP. Following production of the test and control cell populations, a mixed population is produced in which the test and control cells are mixed together in known amounts, e.g., in equal amounts, such that a mixture of cells is produced in which the proportion of test and control cells is known. Application of a test compound to such a mixed population provides for a ready determination of whether the compound has a modulatory effect on TERT promoter activity. For example, if a compound has no effect on the cells (e.g., it does not activate telomerase expression) then both test and control cells should grow normally and the ratio of signal from the first and second reporter construct, e.g., ratio of GFP to RFP should remain constant, e.g. 1 where the population includes equal amounts of cells. Alternatively, if a compound activates hTERT expression and incorporation of the mutant hTR negatively effects the health of the cells, then the ratio of GFP to RFP should decrease relative to the starting ratio, e.g., to less than 1, such as to less then 0.1. In these representative embodiments, if a compound is toxic to all cells, then the ratio of GFP to RFP should remain 1, but the total fluorescent signal should be significantly less since neither cell grew.

[0064] Other assays for dead or live cells that can be included in at least some of the assays described above include: Caspase assays for the presence of apoptosis (such as Caspase 3 and 7 activity measurement: Caspase-Glo 3/7 Assay, cat. # G8092 (Promega); Caspase 8 activity measurement: Caspase-Glo 8 Assay, cat. # G8202 (Promega); Caspase 9 activity measurement: Caspase-Glo 9 Assay, cat. # G8212 (Promega); etc.); viability and proliferation assays, such as ATPlite, cell viability homogenous assay cat. # 6016947 (PerkinElmer), etc.; cell death detection assays, such as Cell Death Detection ELISAPLUS cat. # 1 920 685 (Roche Applied Science); Propidium Iodide assay (MTG, Inc. Product number M0795); etc.

[0065] In yet other embodiments, the assay employed may include molecular probing for new telomere sequences. Such embodiments include those situations where the presence of new telomere sequences is used as the indication of TERT promoter activity. The presence of new telomere sequences may be detected using any of a number of different protocols, e.g., by hybridization, PCR, FRET, or antibody, etc. In yet other embodiments, the evaluation step may include probing for lack of telomere binding proteins. In yet other embodiments, the evaluation step may include probing for binding proteins (e.g., transcription factors) that recognize new telomere sequences. In yet other embodiments, the evaluation step may include assaying for altered regulation of genes whose transcription factors are recruited by the new telomere sequences, if present, where such recruitments results in a modulation of the expression pattern of one or more additional genes. In certain embodiments, the evaluation step includes a step of probing for reporter sequences that are present in a newly synthesized telomere sequence, where representative reporter sequences of interest include restriction sites. In certain embodiments, cells are evaluated for an alteration of fluorescence polarization of the TR component, e.g., mutant hTR (or hTER), when bound to telomerase, e.g., (hTERT). In certain embodiments, cells are assayed for the presence of a reporter gene (e.g., where the template region of hTR is altered to express a reporter gene, such as luciferase (or adenovirus VA RNA sequence), where the new telomere sequence would contain repeats of the luciferase gene and synthesis of new telomeres would be detected by luciferase activity. In certain embodiments, evaluation includes a FISH assay. In certain embodiments, evaluating includes assaying for virus integration into an integration site within a new telomere sequence. In certain embodiments, evaluating includes assaying for site-specific recombination of a reporter gene (e.g., Luciferase) into a recombination site within a new telomere sequence. In certain embodiments, evaluating includes detection of a reporter sequence in a new telomere sequence, e.g., via an engineered Zinc Finger Protein. In certain embodiments, evaluating includes assaying directly for complex formation of the TR and TERT components, e.g., via FRET using antibody to hTERT and oligo to mutant template of hTR. The above assays are merely representative.

[0066] In certain embodiments, the subject methods are performed in a high throughput (HT) format. In the subject HT embodiments of the subject invention, a plurality of different compounds are simultaneously tested. By simultaneously tested is meant that each of the compounds in the plurality are tested at substantially the same time. Thus, at least some, if not all, of the compounds in the plurality are assayed for their effects in parallel. The number of compounds in the plurality that are simultaneously tested is typically at least about 10, where in certain embodiments the number may be at least about 100 or at least about 1000, where the number of compounds tested may be higher. In general, the number of compounds that are tested simultaneously in the subject HT methods ranges from about 10 to 10,000, usually from about 100 to 10,000 and in certain embodiments from about 1000 to 5000. A variety of high throughput screening assays for determining the activity of candidate agent are known in the art and are readily adapted to the present invention, including those described in e.g., Schultz (1998) Bioorg Med Chem Lett 8:2409-2414; Weller (1997) Mol Divers. 3:61-70; Fernandes (1998) Curr Opin Chem Biol 2:597-603; Sittampalam (1997) Curr Opin Chem Biol 1:384-91; as well as those described in published United States application 20040072787 and issued U.S. Pat. No. 6,127,133; the disclosures of which are herein incorporated by reference.

[0067] Testing of a candidate agent according to the invention as described above readily determines whether or not an agent has TERT promoter modulatory activity. As mentioned above, an agent is considered to have TERT promoter modulatory activity if its interaction with TERT promoter causes a change in transcription activity, e.g., level (for example, in terms of transcribed copies for a given period of time), of a nucleic acid sequence (i.e., transcribable sequence) operably linked to the promoter, e.g., as compared to a control (e.g., the transcription activity of an analogous TERT promoter/reporter nucleic acid construct not contacted with the agent of interest). The change that is observed may be an increase or decrease of TERT transcription. In other words, the agent may enhance or inhibit transcription of TERT. By enhance is meant that the expression level of TERT is increased by at least about 2 fold, usually by at least about 5 fold and sometimes by at least 25, 50, 100 fold and in particular about 300 fold or higher, as compared to a control, i.e., expression from an analogous or identical expression system that is not contacted with the agent in question. Alternatively, in cases where expression of TERT is so low that it is undetectable, expression of TERT is considered to be enhanced if expression is increased to a level that is easily detectable. By inhibit is meant that the expression level of the TERT is decreased by at least about 2 fold, usually by at least about 5 fold and sometimes by at least 25, 50, 100 fold and in particular about 300 fold or higher, as compared to a control, i.e., expression from an analogous or identical expression system that is not contacted with the agent in question.

Utility

[0068] A variety of different candidate agents may be screened by the above methods. Candidate agents encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 50 and less than about 2,500 daltons. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof.

[0069] Candidate agents are obtained from a wide variety of sources including libraries of synthetic or natural compounds. For example, numerous means are available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides and oligopeptides. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily produced. Additionally, natural or synthetically produced libraries and compounds are readily modified through conventional chemical, physical and biochemical means, and may be used to produce combinatorial libraries. Known pharmacological agents may be subjected to directed or random chemical modifications, such as acylation, alkylation, esterification, amidification, etc. to produce structural analogs.

[0070] The subject assays find use in any application where it is desired to determine whether a candidate agent has TERT promoter modulatory activity. Specifically, the subject assays find use in applications where one wishes to determine whether an agent has TERT promoter repressor activity and in applications where one wishes to determine whether an agent has TERT promoter activator or enhancer activity. In representative embodiments, the methods provide for identification of agents which have human TERT promoter modulatory activity.

[0071] Agents identified in the above screening assays that inhibit repression of TERT transcription find use in the methods of enhancement of TERT expression, e.g., in the treatment of disease conditions, in research applications, etc., where representative specific applications include those described in United States Published Applications: 20030211965; 20030171326; 20030104420; 20030050264; and 20020193289; the disclosures of which are herein incorporated by reference. Alternatively, agents identified in the above screening assays that enhance repression find use in applications where inhibition of TERT expression is desired, e.g., in the treatment of disease conditions characterized by the presence of unwanted TERT expression, such as cancer and other diseases characterized by the presence of unwanted cellular proliferation, where such methods are described in, for example, U.S. Pat. Nos. 5,645,986; 5,656,638; 5,703,116; 5,760,062; 5,767,278; 5,770,613; and 5,863,936; the disclosures of which are herein incorporated by reference.

Kits

[0072] Also provided are kits that find use in practicing the subject methods, as described above. For example, in some embodiments, kits for practicing the subject methods include at least a test cell as described above, or elements for constructing the same, e.g., expression vectors, etc. Furthermore, additional reagents that are required or desired in the protocol to be practiced with the kit components may be present, which additional reagents include, but are not limited to: aqueous mediums, culture mediums, and the like. The kits may also include reference or control elements, e.g., that provide calibration signals or values for use in assessing the observed signal generated by an assay performed with the kit components. The kit components may be present in separate containers, or one or more of the components may be present in the same container, where the containers may be storage containers and/or containers that are employed during the assay for which the kit is designed.

[0073] In addition to the above components, the subject kits may further include instructions for practicing the subject methods. These instructions may be present in the subject kits in a variety of forms, one or more of which may be present in the kit. One form in which these instructions may be present is as printed information on a suitable medium or substrate, e.g., a piece or pieces of paper on which the information is printed, in the packaging of the kit, in a package insert, etc. Yet another means would be a computer readable medium, e.g., diskette, CD, etc., on which the information has been recorded. Yet another means that may be present is a website address which may be used via the internet to access the information at a removed site. Any convenient means may be present in the kits.

Systems

[0074] Also provided are systems that find use in practicing the subject methods, as described above. For example, in some embodiments, systems for practicing the subject methods include at least a test cell as described above. Furthermore, additional reagents that are required or desired in the protocol to be practiced with the system components may be present, which additional reagents include, but are not limited to: aqueous mediums, culture mediums, and the like. The systems may also include reference or control elements, e.g., that provide calibration signals or values for use in assessing the observed signal generated by an assay performed with the system components. The systems generally also include one or more candidate agents.

Devices

[0075] Also provided are high throughput (HT) devices that find use in practicing the subject methods, particularly HT embodiments thereof. The high throughput devices may have any convenient configuration, and generally include a plurality of two or more fluid containment elements in which assays can take place, agent administration elements and signal detection elements. For example, representative HT devices of the subject invention include a plate or substrate having a plurality of fluid-containing wells, reagent-adding equipment responsive to a computer for adding reagent, e.g., candidate agent, to the wells, measurement equipment for measuring at least one attribute of the sample or cells contained by the wells (e.g., for phenotype evaluation) and moving equipment which is responsive to the computer for aligning one of the wells first with the reagent-adding component, then with the measurement device, as further described in U.S. Pat. No. 6,127,133, the disclosure of which is herein incorporated by reference. Also of interest are the devices described in U.S. Pat. Nos. 6,468,736 and 5,989,835; as well as U.S. Provisional Application Ser. No. 60/618,484; the disclosures of which are herein incorporated by reference. A feature of the HT devices of the present invention is that they include in at least one fluid containment element containing a target cell as described above.

[0076] It is evident from the above results and discussion that the subject invention provides for greatly improved assays for determining the TERT promoter modulatory activity of a candidate agent. A particularly important advantage provided by certain embodiments of the subject invention is that the modulatory activity of the candidate agent is assessed on a native TERT gene present in a cell. Accordingly, the subject invention represents a significant contribution to the art.

[0077] The preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.

Sequence CWU 1

1

2115418DNAhuman 1gcggccgcga gctctaatac gactcactat agggcgtcga ctcgatcaat ggaagatgag 60gcattgccga agaaaagatt aatggatttg aacacacagc aacagaaact acatgaagtg 120aaacacagga aaaaaaagat aaagaaacga aaagaaaagg gcatcagtga gcttcagcag 180aagttccatc ggccttacat atgtgtaagc agaggccctg taggagcaga ggcaggggga 240aaatacttta agaaataatg tctaaaagtt tttcaaatat gaggaaaaac ataaaaccac 300agatccaaga agctcaacaa aacaaagcac aagaaacagg aagaaattaa aagttatatc 360acagtcaaat tgctgaaaac cagcaacaaa gagaatatct taagagtatc agaggaaaag 420agattaatga caggccaaga aacaatgaaa acaatacaga tttcttgtag gaaacacaag 480acaaaagaca ttttttaaaa ccaaaaggaa aaaaaatgct acattaaaat gttttttacc 540cactgaaagt atatttcaaa acatatttta ggccaggctt ggtggctcac acctgtaatc 600ccagcacttt gggaggccaa ggtgggtgga tcgcttaagg tcaggagttc gagaccagcc 660tggccaatat agcgaaaccc catctgtact aaaaacacaa aaattagctg ggtgtggtga 720cacatgcctg taatcccagg tactcaggag gctaaggcag gagaattgct tgaactggga 780ggcagaggtg gtgagccaag attgcaccag tgcactccag ccttggtgac agagtgaaac 840tccatctcaa aaacaaacaa acaaaataca tatacataaa tatatatgca catatatata 900catatataaa tatatataca catatataaa tctatataca tatatacata tatacacata 960tataaatcta tatacatata tatacatata taatatattt acatatataa atatatacat 1020atataaatat acatatataa atacatatat aaatatacat atataaatat acatatataa 1080atatacatat ataaatatat acatatataa atatacatat ataaatatat atacatatat 1140aaatatataa atatacaagt atatacaaat atatacatat ataaatgtat atacgtatat 1200acatatatat ataaatatat aaaaaaactt ttggctgggc acctttccaa atctcatggc 1260acatataagt ctcatggtaa cctcaaataa aaaaacatat aacagataca ccaaaaataa 1320aaaccaataa attaaatcat gccaccagaa gaaattacct tcactaaaag gaacacagga 1380aggaaagaaa gaaggaagag aagaccatga aacaaccaga aaacaaacaa caaaacagca 1440ggagtaattc ctgacttatc aataataatg ctgggtgtaa atggactaaa ctctccaatc 1500aaaagacata gagtggctga atggacgaaa aaaacaagac tcaataatct gttgcctaca 1560agaatatact tcacctataa agggacacat agactgaaaa taaaaggaag gaaaaatatt 1620ctatgcaaat ggaaaccaaa aaaagaacag aactagctac acttatatca gacaaaatag 1680atttcaagac aaaaagtaca aaaagagaca aagtaattat ataataataa agcaaaaaga 1740tataacaatt gtgaatttat atgcgcccaa cactgggaca cccagatata tacagcaaat 1800attattagaa ctaaggagag agagagatcc ccatacaata atagctggag acttcacccc 1860gcttttagca ttggacagat catccagaca gaaaatcaac caaaaaattg gacttaatct 1920ataatataga acaaatgtac ctaattgatg tttacaagac atttcatcca gtagttgcag 1980aatatgcatt ttttcctcag catatggatc attctcaagg atagaccata tattaggcca 2040cagaacaagc cattaaaaat tcaaaaaaat tgagccaggc atgatggctt atgcttgtaa 2100ttacagcact ttggggaggg tgaggtggga ggatgtcttg agtacaggag tttgagacca 2160gcctgggcaa aatagtgaga ccctgtctct acaaactttt ttttttaatt agccaggcat 2220agtggtgtgt gcctgtagtc ccagctactt aggaggctga agtgggagga tcacttgagc 2280ccaagagttc aaggctacgg tgagccatga ttgcaacacc acacaccagc cttggtgaca 2340gaatgagacc ctgtctcaaa aaaaaaaaaa aaaattgaaa taatataaag catcttctct 2400ggccacagtg gaacaaaacc agaaatcaac aacaagagga attttgaaaa ctatacaaac 2460acatgaaaat taaacaatat acttctgaat aaccagtgag tcaatgaaga aattaaaaag 2520gaaattgaaa aatttattta agcaaatgat aacggaaaca taacctctca aaacccacgg 2580tatacagcaa aagcagtgct aagaaggaag tttatagcta taagcagcta catcaaaaaa 2640gtagaaaagc caggcgcagt ggctcatgcc tgtaatccca gcactttggg aggccaaggc 2700gggcagatcg cctgaggtca ggagttcgag accagcctga ccaacacaga gaaaccttgt 2760cgctactaaa aatacaaaat tagctgggca tggtggcaca tgcctgtaat cccagctact 2820cgggaggctg aggcaggata accgcttgaa cccaggaggt ggaggttgcg gtgagccggg 2880attgcgccat tggactccag cctgggtaac aagagtgaaa ccctgtctca agaaaaaaaa 2940aaaagtagaa aaacttaaaa atacaaccta atgatgcacc ttaaagaact agaaaagcaa 3000gagcaaacta aacctaaaat tggtaaaaga aaagaaataa taaagatcag agcagaaata 3060aatgaaactg aaagataaca atacaaaaga tcaacaaaat taaaagttgg ttttttgaaa 3120agataaacaa aattgacaaa cctttgccca gactaagaaa aaaggaaaga agacctaaat 3180aaataaagtc agagatgaaa aaagagacat tacaactgat accacagaaa ttcaaaggat 3240cactagaggc tactatgagc aactgtacac taataaattg aaaaacctag aaaaaataga 3300taaattccta gatgcataca acctaccaag attgaaccat gaagaaatcc aaagcccaaa 3360cagaccaata acaataatgg gattaaagcc ataataaaaa gtctcctagc aaagagaagc 3420ccaggaccca atggcttccc tgctggattt taccaatcat ttaaagaaga atgaattcca 3480atcctactca aactattctg aaaaatagag gaaagaatac ttccaaactc attctacatg 3540gccagtatta ccctgattcc aaaaccagac aaaaacacat caaaaacaaa caaacaaaaa 3600aacagaaaga aagaaaacta caggccaata tccctgatga atactgatac aaaaatcctc 3660aacaaaacac tagcaaacca aattaaacaa caccttcgaa agatcattca ttgtgatcaa 3720gtgggattta ttccagggat ggaaggatgg ttcaacatat gcaaatcaat caatgtgata 3780catcatccca acaaaatgaa gtacaaaaac tatatgatta tttcacttta tgcagaaaaa 3840gcatttgata aaattctgca cccttcatga taaaaaccct caaaaaacca ggtatacaag 3900aaacatacag gccaggcaca gtggctcaca cctgcgatcc cagcactctg ggaggccaag 3960gtgggatgat tgcttgggcc caggagtttg agactagcct gggcaacaaa atgagacctg 4020gtctacaaaa aactttttta aaaaattagc caggcatgat ggcatatgcc tgtagtccca 4080gctagtctgg aggctgaggt gggagaatca cttaagccta ggaggtcgag gctgcagtga 4140gccatgaaca tgtcactgta ctccagccta gacaacagaa caagacccca ctgaataaga 4200agaaggagaa ggagaaggga gaaaggaggg agaagggagg aggaggagaa ggaggaggtg 4260gaggagaagt ggaaggggaa ggggaaggga aagaggaaga agaagaaaca tatttcaaca 4320taataaaagc cctatatgac agaccgaggt agtattatga ggaaaaactg aaagcctttc 4380ctctaagatc tggaaaatga caagggccca ctttcaccac tgtgattcaa catagtacta 4440gaagtcctag ctagagcaat cagataagag aaagaaataa aaggcatcca aactggaaag 4500gaagaagtca aattatcctg tttgcagatg atatgatctt atatctggaa aagacttaag 4560acaccactaa aaaactatta gagctgaaat ttggtacagc aggatacaaa atcaatgtac 4620aaaaatcagt agtatttcta tattccaaca gcaaacaatc tgaaaaagaa accaaaaaag 4680cagctacaaa taaaattaaa cagctaggaa ttaaccaaag aagtgaaaga tctctacaat 4740gaaaactata aaatattgat aaaagaaatt gaagagggca caaaaaaaga aaagatattc 4800catgttcata gattggaaga ataaatactg ttaaaatgtc catactaccc aaagcaattt 4860acaaattcaa tgcaatccct attaaaatac taatgacgtt cttcacagaa atagaagaaa 4920caattctaag atttgtacag aaccacaaaa gacccagaat agccaaagct atcctgacca 4980aaaagaacaa aactggaagc atcacattac ctgacttcaa attatactac aaagctatag 5040taacccaaac tacatggtac tggcataaaa acagatgaga catggaccag aggaacagaa 5100tagagaatcc agaaacaaat ccatgcatct acagtgaact catttttgac aaaggtgcca 5160agaacatact ttggggaaaa gataatctct tcaataaatg gtgctggagg aactggatat 5220ccatatgcaa aataacaata ctagaactct gtctctcacc atatacaaaa gcaaatcaaa 5280atggatgaaa ggcttaaatc taaaacctca aactttgcaa ctactaaaag aaaacaccgg 5340agaaactctc caggacattg gagtgggcaa agacttcttg agtaattccc tgcaggcaca 5400ggcaaccaaa gcaaaaacag acaaatggga tcatatcaag ttaaaaagct tctgcccagc 5460aaaggaaaca atcaacaaag agaagagaca acccacagaa tgggagaata tatttgcaaa 5520ctattcatct aacaaggaat taataaccag tatatataag gagctcaaac tactctataa 5580gaaaaacacc taataagctg attttcaaaa ataagcaaaa gatctgggta gacatttctc 5640aaaataagtc atacaaatgg caaacaggca tctgaaaatg tgctcaacac cactgatcat 5700cagagaaatg caaatcaaaa ctactatgag agatcatctc accccagtta aaatggcttt 5760tattcaaaag acaggcaata acaaatgcca gtgaggatgt ggataaaagg aaacccttgg 5820acactgttgg tgggaatgga aattgctacc actatggaga acagtttgaa agttcctcaa 5880aaaactaaaa ataaagctac catacagcaa tcccattgct aggtatatac tccaaaaaag 5940ggaatcagtg tatcaacaag ctatctccac tcccacattt actgcagcac tgttcatagc 6000agccaaggtt tggaagcaac ctcagtgtcc atcaacagac gaatggaaaa agaaaatgtg 6060gtgcacatac acaatggagt actacgcagc cataaaaaag aatgagatcc tgtcagttgc 6120aacagcatgg ggggcactgg tcagtatgtt aagtgaaata agccaggcac agaaagacaa 6180acttttcatg ttctccctta cttgtgggag caaaaattaa aacaattgac atagaaatag 6240aggagaatgg tggttctaga ggggtggggg acagggtgac tagagtcaac aataatttat 6300tgtatgtttt aaaataacta aaagagtata attgggttgt ttgtaacaca aagaaaggat 6360aaatgcttga aggtgacaga taccccattt accctgatgt gattattaca cattgtatgc 6420ctgtatcaaa atatctcatg tatgctatag atataaaccc tactatatta aaaattaaaa 6480ttttaatggc caggcacggt ggctcatgtc cataatccca gcactttggg aggccgaggc 6540ggtggatcac ctgaggtcag gagtttgaaa ccagtctggc caccatgatg aaaccctgtc 6600tctactaaag atacaaaaat tagccaggcg tggtggcaca tacctgtagt cccaactact 6660caggaggctg agacaggaga attgcttgaa cctgggaggc ggaggttgca gtgagccgag 6720atcatgccac tgcactgcag cctgggtgac agagcaagac tccatctcaa aacaaaaaca 6780aaaaaaagaa gattaaaatt gtaattttta tgtaccgtat aaatatatac tctactatat 6840tagaagttaa aaattaaaac aattataaaa ggtaattaac cacttaatct aaaataagaa 6900caatgtatgt ggggtttcta gcttctgaag aagtaaaagt tatggccacg atggcagaaa 6960tgtgaggagg gaacagtgga agttactgtt gttagacgct catactctct gtaagtgact 7020taattttaac caaagacagg ctgggagaag ttaaagaggc attctataag ccctaaaaca 7080actgctaata atggtgaaag gtaatctcta ttaattacca ataattacag atatctctaa 7140aatcgagctg cagaattggc acgtctgatc acaccgtcct ctcattcacg gtgctttttt 7200tcttgtgtgc ttggagattt tcgattgtgt gttcgtgttt ggttaaactt aatctgtatg 7260aatcctgaaa cgaaaaatgg tggtgatttc ctccagaaga attagagtac ctggcaggaa 7320gcaggtggct ctgtggacct gagccacttc aatcttcaag ggtctctggc caagacccag 7380gtgcaaggca gaggcctgat gacccgagga caggaaagct cggatgggaa ggggcgatga 7440gaagcctgcc tcgttggtga gcagcgcatg aagtgccctt atttacgctt tgcaaagatt 7500gctctggata ccatctggaa aaggcggcca gcgggaatgc aaggagtcag aagcctcctg 7560ctcaaaccca ggccagcagc tatggcgccc acccgggcgt gtgccagagg gagaggagtc 7620aaggcacctc gaagtatggc ttaaatcttt ttttcacctg aagcagtgac caaggtgtat 7680tctgagggaa gcttgagtta ggtgccttct ttaaaacaga aagtcatgga agcacccttc 7740tcaagggaaa accagacgcc cgctctgcgg tcatttacct ctttcctctc tccctctctt 7800gccctcgcgg tttctgatcg ggacagagtg acccccgtgg agcttctccg agcccgtgct 7860gaggaccctc ttgcaaaggg ctccacagac ccccgccctg gagagaggag tctgagcctg 7920gcttaataac aaactgggat gtggctgggg gcggacagcg acggcgggat tcaaagactt 7980aattccatga gtaaattcaa cctttccaca tccgaatgga tttggatttt atcttaatat 8040tttcttaaat ttcatcaaat aacattcagg agtgcagaaa tccaaaggcg taaaacagga 8100actgagctat gtttgccaag gtccaaggac ttaataacca tgttcagagg gatttttcgc 8160cctaagtact ttttattggt tttcataagg tggcttaggg tgcaagggaa agtacacgag 8220gagaggactg ggcggcaggg ctatgagcac ggcaaggcca ccggggagag agtccccggc 8280ctgggaggct gacagcagga ccactgaccg tcctccctgg gagctgccac attgggcaac 8340gcgaaggcgg ccacgctgcg tgtgactcag gaccccatac cggcttcctg ggcccaccca 8400cactaaccca ggaagtcacg gagctctgaa cccgtggaaa cgaacatgac ccttgcctgc 8460ctgcttccct gggtgggtca agggtaatga agtggtgtgc aggaaatggc catgtaaatt 8520acacgactct gctgatgggg accgttcctt ccatcattat tcatcttcac ccccaaggac 8580tgaatgattc cagcaacttc ttcgggtgtg acaagccatg acaacactca gtacaaacac 8640cactctttta ctaggcccac agagcacggc ccacacccct gatatattaa gagtccagga 8700gagatgaggc tgctttcagc caccaggctg gggtgacaac agcggctgaa cagtctgttc 8760ctctagacta gtagaccctg gcaggcactc ccccagattc tagggcctgg ttgctgcttc 8820ccgagggcgc catctgccct ggagactcag cctggggtgc cacactgagg ccagccctgt 8880ctccacaccc tccgcctcca ggcctcagct tctccagcag cttcctaaac cctgggtggg 8940ccgtgttcca gcgctactgt ctcacctgtc ccactgtgtc ttgtctcagc gacgtagctc 9000gcacggttcc tcctcacatg gggtgtctgt ctccttcccc aacactcaca tgcgttgaag 9060ggaggagatt ctgcgcctcc cagactggct cctctgagcc tgaacctggc tcgtggcccc 9120cgatgcaggt tcctggcgtc cggctgcacg ctgacctcca tttccaggcg ctccccgtct 9180cctgtcatct gccggggcct gccggtgtgt tcttctgttt ctgtgctcct ttccacgtcc 9240agctgcgtgt gtctctgtcc gctagggtct cggggttttt ataggcatag gacgggggcg 9300tggtgggcca gggcgctctt gggaaatgca acatttgggt gtgaaagtag gagtgcctgt 9360cctcacctag gtccacgggc acaggcctgg ggatggagcc cccgccaggg acccgccctt 9420ctctgcccag cacttttctg cccccctccc tctggaacac agagtggcag tttccacaag 9480cactaagcat cctcttccca aaagacccag cattggcacc cctggacatt tgccccacag 9540ccctgggaat tcacgtgact acgcacatca tgtacacact cccgtccacg accgaccccc 9600gctgttttat tttaatagct acaaagcagg gaaatccctg ctaaaatgtc ctttaacaaa 9660ctggttaaac aaacgggtcc atccgcacgg tggacagttc ctcacagtga agaggaacat 9720gccgtttata aagcctgcag gcatctcaag ggaattacgc tgagtcaaaa ctgccacctc 9780catgggatac gtacgcaaca tgctcaaaaa gaaagaattt caccccatgg caggggagtg 9840gttggggggt taaggacggt gggggcagca gctgggggct actgcacgca ccttttacta 9900aagccagttt cctggttctg atggtattgg ctcagttatg ggagactaac cataggggag 9960tggggatggg ggaacccgga ggctgtgcca tctttgccat gcccgagtgt cctgggcagg 10020ataatgctct agagatgccc acgtcctgat tcccccaaac ctgtggacag aacccgcccg 10080gccccagggc ctttgcaggt gtgatctccg tgaggaccct gaggtctggg atccttcggg 10140actacctgca ggcccgaaaa gtaatccagg ggttctggga agaggcgggc aggagggtca 10200gaggggggca gcctcaggac gatggaggca gtcagtctga ggctgaaaag ggagggaggg 10260cctcgagccc aggcctgcaa gcgcctccag aagctggaaa aagcggggaa gggaccctcc 10320acggagcctg cagcaggaag gcacggctgg cccttagccc accagggccc atcgtggacc 10380tccggcctcc gtgccatagg agggcactcg cgctgccctt ctagcatgaa gtgtgtgggg 10440atttgcagaa gcaacaggaa acccatgcac tgtgaatcta ggattatttc aaaacaaagg 10500tttacagaaa catccaagga cagggctgaa gtgcctccgg gcaagggcag ggcaggcacg 10560agtgatttta tttagctatt ttattttatt tacttacttt ctgagacaga gttatgctct 10620tgttgcccag gctggagtgc agcggcatga tcttggctca ctgcaacctc cgtctcctgg 10680gttcaagcaa ttctcgtgcc tcagcctccc aagtagctgg gatttcaggc gtgcaccacc 10740acacccggct aattttgtat ttttagtaga gatgggcttt caccatgttg gtcaggctga 10800tctcaaaatc ctgacctcag gtgatccgcc cacctcagcc tcccaaagtg ctgggattac 10860aggcatgagc cactgcacct ggcctattta accattttaa aacttccctg ggctcaagtc 10920acacccactg gtaaggagtt catggagttc aatttcccct ttactcagga gttaccctcc 10980tttgatattt tctgtaattc ttcgtagact ggggatacac cgtctcttga catattcaca 11040gtttctgtga ccacctgtta tcccatggga cccactgcag gggcagctgg gaggctgcag 11100gcttcaggtc ccagtggggt tgccatctgc cagtagaaac ctgatgtaga atcagggcgc 11160gagtgtggac actgtcctga atctcaatgt ctcagtgtgt gctgaaacat gtagaaatta 11220aagtccatcc ctcctactct actgggattg agccccttcc ctatcccccc ccaggggcag 11280aggagttcct ctcactcctg tggaggaagg aatgatactt tgttattttt cactgctggt 11340actgaatcca ctgtttcatt tgttggtttg tttgttttgt tttgagaggc ggtttcactc 11400ttgttgctca ggctggaggg agtgcaatgg cgcgatcttg gcttactgca gcctctgcct 11460cccaggttca agtgattctc ctgcttccgc ctcccatttg gctgggatta caggcacccg 11520ccaccatgcc cagctaattt tttgtatttt tagtagagac gggggtgggg gtggggttca 11580ccatgttggc caggctggtc tcgaacttct gacctcagat gatccacctg cctctgcctc 11640ctaaagtgct gggattacag gtgtgagcca ccatgcccag ctcagaattt actctgttta 11700gaaacatctg ggtctgaggt aggaagctca ccccactcaa gtgttgtggt gttttaagcc 11760aatgatagaa tttttttatt gttgttagaa cactcttgat gttttacact gtgatgacta 11820agacatcatc agcttttcaa agacacacta actgcaccca taatactggg gtgtcttctg 11880ggtatcagcg atcttcattg aatgccggga ggcgtttcct cgccatgcac atggtgttaa 11940ttactccagc ataatcttct gcttccattt cttctcttcc ctcttttaaa attgtgtttt 12000ctatgttggc ttctctgcag agaaccagtg taagctacaa cttaactttt gttggaacaa 12060attttccaaa ccgccccttt gccctagtgg cagagacaat tcacaaacac agccctttaa 12120aaaggcttag ggatcactaa ggggatttct agaagagcga cccgtaatcc taagtattta 12180caagacgagg ctaacctcca gcgagcgtga cagcccaggg agggtgcgag gcctgttcaa 12240atgctagctc cataaataaa gcaatttcct ccggcagttt ctgaaagtag gaaaggttac 12300atttaaggtt gcgtttgtta gcatttcagt gtttgccgac ctcagctaca gcatccctgc 12360aaggcctcgg gagacccaga agtttctcgc cccttagatc caaacttgag caacccggag 12420tctggattcc tgggaagtcc tcagctgtcc tgcggttgtg ccggggcccc aggtctggag 12480gggaccagtg gccgtgtggc ttctactgct gggctggaag tcgggcctcc tagctctgca 12540gtccgaggct tggagccagg tgcctggacc ccgaggctgc cctccaccct gtgcgggcgg 12600gatgtgacca gatgttggcc tcatctgcca gacagagtgc cggggcccag ggtcaaggcc 12660gttgtggctg gtgtgaggcg cccggtgcgc ggccagcagg agcgcctggc tccatttccc 12720accctttctc gacgggaccg ccccggtggg tgattaacag atttggggtg gtttgctcat 12780ggtggggacc cctcgccgcc tgagaacctg caaagagaaa tgacgggcct gtgtcaagga 12840gcccaagtcg cggggaagtg ttgcagggag gcactccggg aggtcccgcg tgcccgtcca 12900gggagcaatg cgtcctcggg ttcgtcccca gccgcgtcta cgcgcctccg tcctcccctt 12960cacgtccggc attcgtggtg cccggagccc gacgccccgc gtccggacct ggaggcagcc 13020ctgggtctcc ggatcaggcc agcggccaaa gggtcgccgc acgcacctgt tcccagggcc 13080tccacatcat ggcccctccc tcgggttacc ccacagccta ggccgattcg acctctctcc 13140gctggggccc tcgctggcgt ccctgcaccc tgggagcgcg agcggcgcgc gggcggggaa 13200gcgcggccca gacccccggg tccgcccgga gcagctgcgc tgtcggggcc aggccgggct 13260cccagtggat tcgcgggcac agacgcccag gaccgcgctt cccacgtggc ggagggactg 13320gggacccggg cacccgtcct gccccttcac cttccagctc cgcctcctcc gcgcggaccc 13380cgccccgtcc cgacccctcc cgggtccccg gcccagcccc ctccgggccc tcccagcccc 13440tccccttcct ttccgcggcc ccgccctctc ctcgcggcgc gagtttcagg cagcgctgcg 13500tcctgctgcg cacgtgggaa gccctggccc cggccacccc cgcgatgccg cgcgctcccc 13560gctgccgagc cgtgcgctcc ctgctgcgca gccactaccg cgaggtgctg ccgctggcca 13620cgttcgtgcg gcgcctgggg ccccagggct ggcggctggt gcagcgcggg gacccggcgg 13680ctttccgcgc gctggtggcc cagtgcctgg tgtgcgtgcc ctgggacgca cggccgcccc 13740ccgccgcccc ctccttccgc caggtgggcc tccccggggt cggcgtccgg ctggggttga 13800gggcggccgg ggggaaccag cgacatgcgg agagcagcgc aggcgactca gggcgcttcc 13860cccgcaggtg tcctgcctga aggagctggt ggcccgagtg ctgcagaggc tgtgcgagcg 13920cggcgcgaag aacgtgctgg ccttcggctt cgcgctgctg gacggggccc gcgggggccc 13980ccccgaggcc ttcaccacca gcgtgcgcag ctacctgccc aacacggtga ccgacgcact 14040gcgggggagc ggggcgtggg ggctgctgct gcgccgcgtg ggcgacgacg tgctggttca 14100cctgctggca cgctgcgcgc tctttgtgct ggtggctccc agctgcgcct accaggtgtg 14160cgggccgccg ctgtaccagc tcggcgctgc cactcaggcc cggcccccgc cacacgctag 14220tggaccccga aggcgtctgg gatgcgaacg ggcctggaac catagcgtca gggaggccgg 14280ggtccccctg ggcctgccag ccccgggtgc gaggaggcgc gggggcagtg ccagccgaag 14340tctgccgttg cccaagaggc ccaggcgtgg cgctgcccct gagccggagc ggacgcccgt 14400tgggcagggg tcctgggccc acccgggcag gacgcgtgga ccgagtgacc gtggtttctg 14460tgtggtgtca cctgccagac ccgccgaaga agccacctct ttggagggtg cgctctctgg 14520cacgcgccac tcccacccat ccgtgggccg ccagcaccac gcgggccccc catccacatc 14580gcggccacca cgtccctggg acacgccttg tcccccggtg tacgccgaga ccaagcactt 14640cctctactcc tcaggcgaca aggagcagct gcggccctcc ttcctactca gctctctgag 14700gcccagcctg actggcgctc ggaggctcgt ggagaccatc tttctgggtt ccaggccctg 14760gatgccaggg actccccgca ggttgccccg cctgccccag cgctactggc aaatgcggcc 14820cctgtttctg gagctgcttg ggaaccacgc gcagtgcccc tacggggtgc tcctcaagac 14880gcactgcccg ctgcgagctg cggtcacccc agcagccggt gtctgtgccc gggagaagcc 14940ccagggctct gtggcggccc ccgaggagga ggacacagac ccccgtcgcc tggtgcagct 15000gctccgccag cacagcagcc cctggcaggt gtacggcttc gtgcgggcct

gcctgcgccg 15060gctggtgccc ccaggcctct ggggctccag gcacaacgaa cgccgcttcc tcaggaacac 15120caagaagttc atctccctgg ggaagcatgc caagctctcg ctgcaggagc tgacgtggaa 15180gatgagcgtg cgggactgcg cttggctgcg caggagccca ggtgaggagg tggtggccgt 15240cgagggccca ggccccagag ctgaatgcag taggggctca gaaaaggggg caggcagagc 15300cctggtcctc ctgtctccat cgtcacgtgg gcacacgtgg cttttcgctc aggacgtcga 15360gtggacacgg tgatcgagtc gactcccttt agtgagggtt aattgagctc gcggccgc 1541827498DNAmouse 2aagcttccag caaaccagtt agagctgagt tgatgctctg aagaagagaa aatgtagaga 60cggtactgaa caaataatgt ctgggcaaac ctcagacatg aaaatggaag acgtggaaat 120ccagagaact ctgagggaaa ataaaacaca actccaggtc atcacgggac tcatcaaact 180gctgaggtgc agccacagag aaaaatctta aaatagccta gaacgatgca tgacacataa 240agcacagaga agacgaagct gagtctgtct tgtaggaaca acttgagaag acctaaacca 300ctgcaatgag tgcattctgc taacttagaa tttgctaccc agttcagatc caaaaagggt 360ttcacaaagt tcaacacaaa acagtagcag gagtggctaa gggggacaca ctgataggaa 420ttcagagaag tagggaatgc tcatatgggg acattacaaa atgtactttc atgttgctta 480aatcatttta attgtcaacc acatcaagct aaataatgct ttgaggttca taacatttgg 540agattatgtc tacactagca gagaaggcac caataacatc ccaattgcta gattctcata 600gaatcatgag tcacaatggc agagacaggt tctgagagtg tgtccttgtt gtaaacagta 660tgctctacaa actaagttgg ctgcaatatc actaggcagt gttgtcccat aagacaacta 720tcacatatgt ggtccagtga tgaccaaagc atcttttagc attttgcaaa tgaagctcaa 780atcgaatatg actaagctca tgcagtacaa atcaaaggta cactgggata gtttaaaaga 840tacatacttg tactggttag ttttgtgtca gcttgacaca gctggagtta tcacagagaa 900aagagcttca gttgaggaaa ttcctccatg agatccagct atagggcatt ttctcaatta 960gtgatcaagg ggggaaggcc ccttgtgggt gggaccatct ctgggctggt agtcttggtt 1020ctataagaga gcaggctgag caagccagga gaagcaagcc agtaaagaac atccctccat 1080ggcttctgca tcagctcctg ctccctgacc tgcttgagtt ccagttctaa cttctttcag 1140tgatgaacag caatgtggaa atgaaagctg aataaaccct ttcctcccca ttttgcttct 1200tggtcatgat gtttgtgcag gaatagaaac cctgactaag acaatactat aaaccctaaa 1260agttgtaaac caaacacatg tgtttccatt aagccatcgt agaacaataa gtactcaacc 1320ccaagtcaca taactataat cccagccttt gaaaaccggg atcaggaatt caaggctagc 1380ctcatctata tgtaagatta aagcctgttt gggctgcatg agactttgtt tcaaaaaaaa 1440aaaaaaaaaa gcaaacaggc aaaaacaaac acaagacaag acagatgtaa aatgaaggag 1500gggtagatgg gtcaagtaga aaatagcata ggaaacgagt caagtataga agaggtggta 1560gtaaccagat catgcagaag gactcaaggc catctcctca cagtggctta ggtaggcctt 1620cctctgctct tgagcagggg cagagttgcc gctttaagga ggggatcagt cacctttaag 1680aactgaaaag ctgaacagtc ttctcaagtc agaagccagt ggcttcatct tacacctctc 1740ttccttccct tgctactcat attggatctg atgatttgcc caacttggaa gaaacatctc 1800ttctgaaggg tttcacagac accccatctt tccgagaaag gaccgcatag gctggccatc 1860cctgtgctta caaaaggaat aattaagaaa cttaattcca taagcaaata caacctttcc 1920aagccccaag tggatgattt tatcttactg tttttttata tctcatcaaa taacttccaa 1980gggctcaaaa atccaaagat gtaaaaaagg aactgagctc tgtttgccaa gccatgagga 2040ttaaataatg acattcaaag agatttttgt gccctaagta ctttttattg gttttcatag 2100atggtttaat gtgcaagatg aagcaaacag agatgggagt ggtatcagca tggattaagg 2160tggcagttgt gagggagggg tactgagaga acaggacaag gtaacctatc taaggagagg 2220ccaagttggc aagtgccagg gacttctaag cccagaacta gtacacattc cttaggtgct 2280gtttgggaag tcagggagtc accagccttg ggatctataa aagtgcatgg tggcattcac 2340tcacatactt cctgagctgt tcgatgttga tgaagtcgtg ggtatgagac tgttgtgtca 2400gtgacaaact atgtaaatga gaatgattgt ttccatcttg accactaaga cgtaaaccgg 2460ttccagtgat ctccaaacat ggcaagctac agcagagcag cagccccatc cagagccttg 2520ccctggttct gaatggggga gaatccagtg ggagtcggtt gctgccagca tgttggggta 2580gaaggctgga gcatgacagg tccccgagga tttcctgctt cctatatggg tagggatact 2640tgaggtcctc tcttctacct ccttccctgc agggtttata acctctacca ctgtctgtct 2700ctgggatagc tcctagggtg cagcccctcc ccaaaaaggc ctctccctgg cctcatgtct 2760ctaagaacag ctttctaaag caggcctgtt acacaaaggc tcccttttcc tggcttcatc 2820gttgctggta gacaacttcc actcgttttc cacttcagtt tcttctactc tgttgttatt 2880tgattctgat gcttgaaccc agggttgtgt agtcagcaag tgctaccccc tccctcctct 2940tctttgtttt tttgaggcag ggtctcattt tgcccaagtg gacctaaatt tcagcatgta 3000gctggcctgg ttttgaatgc cttctcatcc tgcctctact tcccaagagt agcttacaag 3060tgtgcaccac catgccccgc gatattctta tttttgagac tgttttctat gctggtttct 3120ttggggaact acactaaggt agcttacaag tgtgcaccac catgccccgc gatattctta 3180tttttgagac tgttttctat gctggtttct ttggggaact acactaaggt agcttcattg 3240ttggcataaa tttctcagtt caggcccata tctcctaagt agcagaacta agcaaatctc 3300aaacaaaccc ctcaaaaaga ctgatgtcca ctaaacggac ttctaaaata gctcctgtaa 3360tcctgagcat ttacaaggcg gcagacctcc tataagggag taaatatgaa aacgcgcctg 3420ttcaaatgct aggtcggtgg atagaagcaa tttcctcaga aagctgaagg caccaaaggt 3480tatatttgtt agcatttcag tgtttgccaa actcagctac agtagagatc acagattccc 3540tatttcccag agattcaaaa ttcagcagcc cctctctaac tatggctcag agtcgtgtca 3600ttacatatgc cccaacaaca acccccaccc ctatcctacc cccgcctcac acgtgcaagt 3660actatcacag ttgccaacct agcagagctg ccatcctaag gtcgaggtcg ccgctttggc 3720tgtgtgcaca ggcaagcgcc ctcacccaat ggccctggcc ttgctatggg tgcgtgagtt 3780gagatgatgc tctggactct gaggtgaagg ccactggaac agtgaaaaaa gctaacgcag 3840ggcttttacc tagtcccctt cctttggtgg tgggtgttta cggaacatat ttgggatctg 3900agtgtatggt cgcaccacaa taaagcctta acctatatag tagaatttca gctgtaatca 3960ttaagaactg agattgccac cacccacctc actgtctgtg tcaaccacag caggctggag 4020cagtcagctc aggaacaggc aaaaccttag gtccctccgc ctacctaacc ttcaatacat 4080caaggatagg cttctttgct tgcccaaacc tcgccccagt ctagaccacc tggggattcc 4140cagctcaggg cgaaaaggaa gcccgagaag cattctgtag agggaaatcc tgcatgagtg 4200cgcccccttt cgttactcca acacatccag caaccactga acttggccgg ggaacacacc 4260tggtcctcat gcaccagcat tgtgaccatc aacggaaaag tactattgct gcgaccccgc 4320cccttccgct acaacgcttg gtccgcctga atcccgcccc ttcctccgtt cccagcctca 4380tctttttcgt cgtggactct cagtggcctg ggtcctggct gttttctaag cacacccttg 4440catcttggtt cccgcacgtg ggaggcccat cccggccttg agcacaatga cccgcgctcc 4500tcgttgcccc gcggtgcgct ctctgctgcg cagccgatac cgggaggtgt ggccgctggc 4560aacctttgtg cggcgcctgg ggcccgaggg caggcggctt gtgcaacccg gggacccgaa 4620gatctaccgc actttggttg cccaatgcct agtgtgcatg cactggggct cacagcctcc 4680acctgccgac ctttccttcc accaggtggg cctccaggcg ggatccccat gggtcagggg 4740cggaaagccg ggaggacgtg ggatagtgcg tctagctcat gtgtcaagac cctcttctcc 4800ttaccaggtg tcatccctga aagagctggt ggccagggtt gtgcagagac tctgcgagcg 4860caacgagaga aacgtgctgg cttttggctt tgagctgctt aacgaggcca gaggcgggcc 4920tcccatggcc ttcactagta gcgtgcgtag ctacttgccc aacactgtta ttgagaccct 4980gcgtgtcagt ggtgcatgga tgctactgtt gagccgagtg ggcgacgacc tgctggtcta 5040cctgctggca cactgtgctc tttatcttct ggtgcccccc agctgtgcct accaggtgtg 5100tgggtctccc ctgtaccaaa tttgtgccac cacggatatc tggccctctg tgtccgctag 5160ttacaggccc acccgacccg tgggcaggaa tttcactaac cttaggttct tacaacagat 5220caagagcagt agtcgccagg aagcaccgaa acccctggcc ttgccatctc gaggtacaaa 5280gaggcatctg agtctcacca gtacaagtgt gccttcagct aagaaggcca gatgctatcc 5340tgtcccgaga gtggaggagg gaccccacag gcaggtgcta ccaaccccat caggcaaatc 5400atgggtgcca agtcctgctc ggtcccccga ggtgcctact gcagagaaag atttgtcttc 5460taaaggaaag gtgtctgacc tgagtctctc tgggtcggtg tgctgtaaac acaagcccag 5520ctccacatct ctgctgtcac caccccgcca aaatgccttt cagctcaggc catttattga 5580gaccagacat ttcctttact ccaggggaga tggccaagag cgtctaaacc cctcattcct 5640actcagcaac ctccagccta acttgactgg ggccaggaga ctggtggaga tcatctttct 5700gggctcaagg cctaggacat caggaccact ctgcaggaca caccgtctat cgcgtcgata 5760ctggcagatg cggcccctgt tccaacagct gctggtgaac catgcagagt gccaatatgt 5820cagactcctc aggtcacatt gcaggtttcg aacagcaaac caacaggtga cagatgcctt 5880gaacaccagc ccaccgcacc tcatggattt gctccgcctg cacagcagtc cctggcaggt 5940atatggtttt cttcgggcct gtctctgcaa ggtggtgtct gctagtctct ggggtaccag 6000gcacaatgag cgccgcttct ttaagaactt aaagaagttc atctcgttgg ggaaatacgg 6060caagctatca ctgcaggaac tgatgtggaa gatgaaagta gaggattgcc actggctccg 6120cagcagcccg ggtgagcatg gctggtctcc agctgaatgc attaggggcc cagaaaaggg 6180agacaatggg tggcagtaac ccaggtcccc agtggtgtgg tggctttatg cagtccgtgg 6240ttggatgagt tccatcttat ggtctctgac tccaagctcc ctccagctcg ccttgcacaa 6300actaagattc ttgtccaagc cctgggcagg ttctcagggc tggggacatt gtggtgaaca 6360gataagcaga cggggagcat ggtggatagg agttctggca cagtgcacca gagagagtct 6420ggaagcgcta gtgagagcta atgtaagggc ccgtggttcg ccaaagaatg ataaccccgg 6480actcaaatag tatgccaaag caaggagcat ttcattctgc agaaatcaag catgcaggtg 6540gggggggggg gttgctctca ttccaagatg gagagacaac caagtataga ttttaagggg 6600atcgggggcc tttatcttac tccatctcta ggggcattcc attactgggg catggggttg 6660gaggttggaa actgttaatg gggaggtctg gaaacttgct gccccattgt ccttgcttca 6720ggctaggtag ctgagtagct tctaatggca ggatagtttc tgactagctg tctaaagtct 6780ggggtgtttg tttttttgtt ttttctagta acttacttgc ctgaacttgc tcagttttta 6840ggcctggtct cctggactgc caatttgaag cctattaagg agtcagcctg tctcactact 6900ccaggttatc tataatcccc ctgtagaacg gtacctcact gataacaatg acagaccaac 6960ataggaaccc actatccttg tggtgcatga gtttcaaagg ttcttctggt cctcccagtg 7020tgcagatcca tgcttaagct atggtcctcc cagtgtgcag atccgtgctt aagctatggt 7080cttgcagctg ctcgatctac aaagggtagg gtgaacgaag gaaagataaa tgaaaaaaaa 7140aaaactgttt cctacagtga agatcgctgc cccatcttag ctatgagaag ggactgggga 7200gtggagcctg gtgcataaaa gaggattgtg ttacttggaa ggctgcagag cctggactcc 7260tgtgccctcc ttgcctggtt ttctgggttt aatgttgagg ttggccctct gtagtcacta 7320cctgacccct tccctttcag ccaaccctcc ggttacaccc tgtgcatgta tggaaggggc 7380caaacgccct atcctgctct cccttcccca aaattcttag gatattaaca acttatgggg 7440aaaagatggt agagctatgt ttacccacca tgtacttggg aagctccgaa gtaagctt 7498

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed