Process For Manufacturing A Semiconductor Device, A Semiconductor Device And A High-frequency Circuit

Bromberger; Christoph

Patent Application Summary

U.S. patent application number 12/021292 was filed with the patent office on 2008-06-12 for process for manufacturing a semiconductor device, a semiconductor device and a high-frequency circuit. Invention is credited to Christoph Bromberger.

Application Number20080135850 12/021292
Document ID /
Family ID36062199
Filed Date2008-06-12

United States Patent Application 20080135850
Kind Code A1
Bromberger; Christoph June 12, 2008

PROCESS FOR MANUFACTURING A SEMICONDUCTOR DEVICE, A SEMICONDUCTOR DEVICE AND A HIGH-FREQUENCY CIRCUIT

Abstract

A process for manufacturing a semiconductor device, provides that a silicide layer is formed, an amorphous semiconductor layer is applied both to the silicide layer and to an open monocrystalline semiconductor region, adjacent to the silicide layer, and during a subsequent temperature treatment, the amorphous semiconductor layer is crystallized proceeding from the open, monocrystalline semiconductor region, acting as a crystallization nucleus, so that the silicide layer is covered at least partially by a crystallized, monocrystalline semiconductor layer.


Inventors: Bromberger; Christoph; (Heilbronn, DE)
Correspondence Address:
    Muncy, Geissler, Olds & Lowe, PLLC
    P.O. BOX 1364
    FAIRFAX
    VA
    22038-1364
    US
Family ID: 36062199
Appl. No.: 12/021292
Filed: January 28, 2008

Related U.S. Patent Documents

Application Number Filing Date Patent Number
11242792 Oct 5, 2005 7348221
12021292

Current U.S. Class: 257/66 ; 257/75; 257/E21.09; 257/E21.133; 257/E21.165; 257/E21.375; 257/E29.003; 257/E29.043; 438/486
Current CPC Class: H01L 29/66272 20130101; H01L 21/02667 20130101; H01L 21/02598 20130101; H01L 21/2022 20130101; H01L 21/28518 20130101
Class at Publication: 257/66 ; 257/75; 438/486; 257/E29.003; 257/E29.043; 257/E21.09
International Class: H01L 29/10 20060101 H01L029/10; H01L 29/04 20060101 H01L029/04; H01L 21/20 20060101 H01L021/20

Foreign Application Data

Date Code Application Number
Oct 5, 2004 DE 102004048332.9-33

Claims



1. A semiconductor device comprising: a monocrystalline semiconductor layer; and at least one suicide layer, the silicide layer being at least partially covered by the monocrystalline semiconductor layer, which is crystallized from an amorphous semiconductor material applied to the silicide layer proceeding from a monocrystalline semiconductor region as a crystallization nucleus.

2. The semiconductor device according to claim 1, wherein the monocrystalline semiconductor region forms a substantially flat surface with the silicide layer, at least in a region of crystallization.

3. The semiconductor device according to claim 1, wherein a dielectric at least partially covers the silicide layer, and is adjacent to the crystallized monocrystalline semiconductor layer.

4. The semiconductor device according to claim 1, further comprising a trench structure that is provided in an area along which the silicide layer is applied to the monocrystalline semiconductor region.

5. The semiconductor device according to claim 4, wherein the trench structure is at least partially filled with the dielectric.

6. The semiconductor device according to claim 5, wherein the dielectric is planarized.

7. The semiconductor device according to claim 1, wherein the monocrystalline semiconductor layer is doped by dopants, which diffuse out of the silicide layer, which functions as a dopant source.

8. The semiconductor device according to claim 1, wherein the semiconductor device is formed by the steps comprising: forming the silicide layer; applying the amorphous semiconductor layer to the silicide layer and to the monocrystalline semiconductor region that is adjacent to the silicide layer; and crystallizing, during a subsequent temperature treatment, the amorphous semiconductor layer proceeding from the open monocrystalline semiconductor region, which functions as a crystallization nucleus, so that the silicide layer is at least partially covered by a crystallized, monocrystalline semiconductor layer.

9. A high-frequency circuit having a semiconductor device with at least one silicide layer, which connects electrically a buried, doped semiconductor layer of an active high-frequency component, whereby the silicide layer is covered at least partially with a monocrystalline semiconductor layer crystallized from an amorphous semiconductor material.

10. The high-frequency circuit according to claim 9, wherein a dielectric, which fills the trench structure, is placed between a base connection and the silicide layer.

11. The high-frequency circuit according to claim 9, wherein the semiconductor device is formed by the steps comprising: forming the silicide layer; applying the amorphous semiconductor layer to the silicide layer and to the monocrystalline semiconductor region that is adjacent to the silicide layer; and crystallizing, during a subsequent temperature treatment, the amorphous semiconductor layer proceeding from the open monocrystalline semiconductor region, which functions as a crystallization nucleus, so that the silicide layer is at least partially covered by a crystallized, monocrystalline semiconductor layer.
Description



[0001] This application is a divisional of U.S. application Ser. No. 11/242,792, which was filed on Oct. 5, 2005, and which claims priority under 35 U.S.C. .sctn. 119(a) to German Patent Application No. DE 102004048332.9, which was filed in Germany on Oct. 5, 2004, and which is herein incorporated by reference.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The present invention relates to a process for manufacturing a semiconductor device, a semiconductor device, and a high-frequency circuit.

[0004] 2. Description of the Background Art

[0005] Various manufacturing variants for semiconductor components by partial overgrowth of oxide layers with monocrystalline silicon by solid phase epitaxy are described in the Journal of the Electrochemical Society, 138 (1991), No. 12, pp. 3771-3777; Journal of Crystal Growth 98 (1989), pp. 519-530; Applied Physics Letters, 49(7), 1996, pp. 397-399; Applied Physics Letters, 60(1), 1992, pp. 80-81; Applied Physics Letters, 52(20), 1988, pp. 1681-1683; Applied Physics Letters, 43(11), 1983, pp. 1028-1030; Applied Physics Letters, 52(21), 1988, pp. 1788-1790; Applied Physics Letters, 56(6), 1990, pp. 560-562; Applied Physics Letters, 48(12), 1986, pp. 773-775; Applied Physics Letters, 53(26), 1988, pp. 2626-2628; Applied Physics Letters, 49(20), 1986, pp. 1363-1365; Journal of Applied Physics, 64(6), 1988, pp. 3018-3023; Japanese Journal of Applied Physics, 35, 1996, pp. 1605-1610; and the Japanese Journal of Applied Physics, 31, 1992, pp. 1695-1701. Here, an oxide layer is first applied to a silicon wafer. Seed windows where the monocrystalline lattice of the wafer is exposed are opened in the oxide layer. An amorphous silicon layer is then applied and crystallized outwardly from the seed openings.

[0006] It is known from U.S. Pat. No. 5,534,716 to crystallize a film layer of silicon in a predetermined direction. In this regard, selective metal atoms are added that have a catalytic action for the crystallization of amorphous silicon. This is used for manufacturing a TFT (Thin Film Transistor) with a high critical frequency or a TFT with a low leak current on the same substrate. It is specified that transition metal impurities lower the nucleation temperature on the silicon below the growth temperature for nuclei.

SUMMARY OF THE INVENTION

[0007] It is therefore an object of the present invention to provide a process for manufacturing a semiconductor device, a semiconductor device and a high-frequency circuit, monocrystalline semiconductor material being produced over a silicide layer to improve the electrical properties as much as possible.

[0008] A feature of the invention is a manufacturing process step in which during a temperature treatment, an amorphous semiconductor layer is crystallized proceeding from an open, monocrystalline semiconductor region, acting as a crystallization nucleus, so that a silicide layer is covered at least partially by a crystallized, monocrystalline semiconductor layer. To this end, the silicide layer is formed beforehand and preferably the amorphous semiconductor layer is applied afterwards both to the silicide layer and to the open, monocrystalline semiconductor region adjacent to the silicide layer.

[0009] Tests by the applicant have shown that, contrary to the prevalent bias, it is possible to apply monocrystalline semiconductor regions to silicide layers according to the process of the invention without costly processes, such as a process for growing monocrystalline silicon layers on certain silicon lattice-adapted silicides such as ErSi.sub.2 or Co--Si.sub.2, by molecular beam epitaxy; or a process for growing layers, which includes a matrix continuing the crystal lattice of the substrate epitactically, in which non-lattice-adapted silicide crystallites are embedded in a thin layer, the crystallites joining together into a continuous silicide layer by subsequent annealing.

[0010] In an embodiment of the invention, the silicide layer is made of titanium as a transition metal and silicon as the semiconductor material.

[0011] In fact, a crystallization direction, exclusively vertical relative to the wafer surface, is basically possible; the amorphous semiconductor layer is also crystallized substantially laterally in a preferred embodiment of the invention. This can naturally be combined advantageously with a vertical crystallization direction.

[0012] A further embodiment of the invention provides that the crystallization occurs within a temperature range between, for example, 400.degree. C. and 600.degree. C. In so doing, the temperature during the process depends on the employed silicide. The temperature in this embodiment can be selected in such a way that metal ions of the silicide layer do not significantly contaminate the adjacent monocrystalline semiconductor layer for the critical functioning of the semiconductor layer.

[0013] Advantageously, the amorphous silicon layer is applied with a layer thickness of at least 300 nm, preferably at least one region of the amorphous semiconductor layer being doped with at least one dopant, particularly with germanium, phosphorus, boron, and/or arsenic, to control the crystal growth and the nucleation rate during the manufacturing process.

[0014] In a further embodiment, the dopant can be introduced in a preferably 250 nm-thick surface region of the amorphous silicon layer, in particular by implantation. To again remove this high-doped region, which interferes with functioning, regions, doped with the dopant, of the crystallized monocrystalline semiconductor layer, are selectively etched, particularly wet chemically, in that the regions doped with the dopant have a higher etching rate than a less doped region of the crystallized, monocrystalline semiconductor layer.

[0015] After the etching of the doped regions of the crystallized, monocrystalline semiconductor layer, the crystallized, monocrystalline semiconductor layer can be oxidized at the surface. The oxide can be subsequently removed, preferably by a wet chemical process.

[0016] A further embodiment includes the selective removal of non-monocrystalline regions of the semiconductor layer after the crystallization. Preferably, the monocrystalline semiconductor layer is subsequently planarized to the level of the surface of the dielectric.

[0017] A first example embodiment of the invention enables a selective removal of the non-monocrystalline regions of the semiconductor layer by a poly-etching. A second possible example embodiment provides an alternative of a selective removal of the non-monocrystalline regions of the semiconductor layer by a masked dry etching.

[0018] In order to produce additional active regions of a component, after the removal of the non-monocrystalline regions of the semiconductor layer, the monocrystalline layer can be thickened by epitaxy, preferably by selective vertical epitaxy.

[0019] Several different semiconductor layers, made of different semiconductor materials, such as Si or SiGe, may be applied by epitaxial thickening. Moreover, semiconductor regions with different conduction types, n-conducting or p-conducting, are provided to form pn junctions of a bipolar transistor or a diode.

[0020] Dislocation of the surface between the silicide layer and the seed opening is also possible. The silicide layer can be formed in such a way that the monocrystalline semiconductor region forms a substantially flat surface with the silicide layer at least in the region of crystallization.

[0021] Another aspect of the invention is a process for manufacturing a semiconductor device, which can be combined with the previously disclosed process steps. To this end, at least one trench structure is introduced in a region of the substrate of a wafer with monocrystalline semiconductor material. The trench structure may be introduced, for example, by isotropic or anisotropic etching and, for example, form a V-shaped trench along the <111> orientation of the semiconductor lattice of the substrate.

[0022] Furthermore, a silicide layer, for example, a titanium silicide layer, can be formed at least in subregions of the trench structure. The trench structure is filled with a dielectric at least above the silicide layer. That dielectric can be made of silicon dioxide.

[0023] The silicide layer can be formed by applying a layer of a transition metal to the device of a semiconductor substrate with an introduced trench structure and an overlying mask. In this regard, the transition metal is capable of reacting with the semiconductor substrate to form a conductive semiconductor-transition metal bond as the silicide layer. A reaction between the transition metal and the semiconductor substrate is carried out, the unreacted remainder of the transition metal being removed afterwards.

[0024] A mask can be applied to the surface regions of the semiconductor substrate, which is not patterned by the trench structure. The mask can be formed of a silicon dioxide layer and a silicon nitride layer, which is thicker than the silicon dioxide layer, the silicon dioxide layer being applied by thermal oxidation and the silicon nitride layer being deposited afterwards.

[0025] In order to have a surface as flat as possible available for the subsequent process steps, the dielectric is planarized down to the height of the upper edge of the mask in an advantageous development of the invention. Here, the silicon nitride layer of the mask advantageously serves as a planarization stop. Preferably, in so doing, the planarization occurs by means of chemical-mechanical polishing.

[0026] The mask is removed after the planarization. Therefore, outside the trench structure, the monocrystalline silicon substrate and the edge of the silicide layer is open at the surface. Preferably, after the mask is removed, the amorphous semiconductor layer is applied, which therefore covers the monocrystalline silicon substrate and preferably also the dielectric at least partially.

[0027] The described process steps make possible the manufacture of semiconductor components with additional process steps, such as the application of metallizing layers. An essential aspect of the invention is an application of said manufacturing process for manufacturing a permeable base transistor, a resonance tunnel transistor, and/or a resonance tunnel diode, which may be realized also together on a semiconductor substrate.

[0028] Another aspect of the invention is a semiconductor device with at least one silicide layer, the silicide layer being covered at least partially with a monocrystalline semiconductor layer. The monocrystalline semiconductor layer is crystallized from an amorphous semiconductor material applied to the silicide layer. In this regard, the crystallization occurs proceeding from a monocrystalline semiconductor region as a crystallization nucleus.

[0029] Preferably, the monocrystalline semiconductor region forms a substantially flat surface with the silicide layer at least in the region of crystallization. Above this surface, the monocrystalline semiconductor layer is applied, which preferably serves as an active semiconductor region of a component preferably with additional semiconductor layers.

[0030] Further, a dielectric, which covers the silicide layer at least partially, can be adjacent to the crystallized, monocrystalline semiconductor layer. It is preferred, in this regard, to separate the silicide layer and other active regions of the same or an adjacent component by the dielectric.

[0031] The silicide layer can be applied to the monocrystalline semiconductor region at least partially along a trench structure. It is preferable for the trench structure to be filled at least partially, preferably completely, with the dielectric. This makes it possible to distance the silicide layer from the metallization, contacts, and other active regions of a semiconductor component placed on the dielectric. The filled dielectric can be planarized, in order to be able to apply complex metallization.

[0032] The monocrystalline semiconductor layer can be doped by dopants at the border to the silicide layer, which diffuse out of the buried silicide layer acting as a dopant source.

[0033] In a further embodiment, a high-frequency circuit is provided with a semiconductor device having at least one silicide layer, which connects electrically a buried, doped semiconductor layer of an active high-frequency component, whereby the silicide layer can be covered at least partially with a monocrystalline semiconductor layer crystallized from an amorphous semiconductor material. A dielectric, which fills a trench structure, can be placed between a base connection and the silicide layer.

[0034] Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0035] The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limitive of the present invention, and wherein:

[0036] FIG. 1a is a schematic drawing, after several first manufacturing steps, of a manufacturing process according to an embodiment of the present invention;

[0037] FIG. 1b is a schematic drawing, after several additional manufacturing steps, of the manufacturing process;

[0038] FIG. 2a is a schematic drawing, after several first manufacturing steps, of a manufacturing process according to a second embodiment of the present invention;

[0039] FIG. 2b is a schematic drawing, after several additional manufacturing steps, of the manufacturing process of the second embodiment;

[0040] FIG. 2c is a schematic drawing, after several additional manufacturing steps, of the manufacturing process of the second embodiment; and

[0041] FIG. 2d is a schematic drawing of a section of a high-frequency bipolar transistor.

DETAILED DESCRIPTION

[0042] During the crystallization of amorphous substances, two temperature-dependent variables, the nucleation rate and the crystal growth rate, influence the quality and properties of the crystallized layer. If polycrystalline grains have already formed on an oxide, a lateral solid phase epitaxy, progressing from the crystallization nuclei, at the grain boundaries stops. With undoped amorphous Si, in this way, approximately 4-.mu.m oxide can be overgrown laterally, in a monocrystalline manner, and with a good crystal quality. It is possible in this regard that the lateral expansion of the monocrystalline region is about 10 times the layer thickness. With high phosphorus-, boron-, or germanium-doped amorphous silicon, in contrast, between 20 .mu.m and 40 .mu.m may be overgrown. Selective etching of a high-doped layer, moreover, can also form thinner layers of crystallized amorphous silicon.

[0043] Transition metal impurities, for example, nickel, increase the crystal formation rate at low temperatures. The doping with transition metals may be used, for example, for manufacturing thin-layer transistors. If thereby free metal ions diffuse from a silicide layer into the overyling amorphous silicon in notable amounts, overgrowing of silicide layers with lateral solid phase epitaxy of silicon appears impossible.

[0044] However, it is indicated in the following exemplary embodiments depicted as drawings that there is a temperature range for many suicides in which the lateral solid phase epitaxy, proceeding from a seed opening designated as a crystallization nucleus, leads to a crystal growth rate, whereas at the same time the outward diffusion of transition metal ions from the silicide layer into the overlying silicon layer is so low that the crystallization rate is not increased to a prohibitively great extent.

[0045] FIG. 1a shows a schematic drawing after several first manufacturing steps in the manufacturing process of an initial embodiment of a semiconductor device. Shown is the state after application of a silicide layer 2 to a monocrystalline silicon semiconductor substrate 1. A mask 5, for example, of photoresist, is applied to the silicide layer 2 and a seed window 3 is etched in the silicide layer 2.

[0046] FIG. 1b shows the manufacturing state after additional manufacturing process steps. Here, an amorphous silicon layer is applied, which is not shown in FIG. 1b and has a thickness of 300 nm. The top 250 nm, with respect to the surface, of the amorphous silicon layer are doped with high doses of a dopant arsenic by implanting the arsenic dopants in the amorphous silicon layer. Other suitable foreign substances are, for example, also boron, phosphorus, or germanium. These dopants require the subsequent lateral solid phase epitaxy, whereby FIG. 1b schematically shows the manufacturing state after a completed solid phase epitaxy.

[0047] The lateral solid phase epitaxy occurs in this case within a temperature range between 400.degree. C. and 600.degree. C., which is selected in keeping with a low rate of diffusion of transition metals from the silicide layer 2 into a crystallized, monocrystalline semiconductor layer 41, which is, for example, Si or SiGe. The crystallized, monocrystalline semiconductor layer 41, obtained by solid phase epitaxy, thereby covers the filled seed window 3' and also adjacent regions of the silicide layer 2. The crystallized, monocrystalline semiconductor layer 41, however, ends at polycrystalline regions, which arise by spontaneous crystal formation from the amorphous silicon layer at a distance from the seed window 3.

[0048] In the following steps, not shown in the drawing, the regions, doped by the foreign substances, of the crystallized, monocrystallized semiconductor layer 41 are chemically removed, whereby these foreign substances in sufficiently high concentration makes sections of the silicon in the crystallized, monocrystalline semiconductor layer 41 susceptible to chemical removal, and whereby monocrystalline undoped or low-doped silicon resists etching. In this exemplary embodiment, a phosphorus doping of 7e18 cm-3 and etching in HF:HNO3 CH3OOOH=1:3:8 are planned.

[0049] FIG. 2a shows a schematic drawing after several first manufacturing steps in the manufacturing process of a second embodiment of a semiconductor device for a high-frequency bipolar transistor.

[0050] In this regard, the manufacturing process comprises the following process steps. First, a semiconductor substrate 1 is provided including a first monocrystalline semiconductor material, in this exemplary embodiment, silicon. A patterned mask is then applied, which in this exemplary embodiment is a thin silicon dioxide layer 51 and a thicker silicon nitride layer 52. At trench structure 4 is patterned by etching at the sites not protected by the mask 51, 52.

[0051] A silicide layer is then formed by applying a tungsten layer 61 and a cobalt layer 62. This manufacturing state after application of the tungsten layer 61 and the cobalt layer 62 is shown in FIG. 2a. The transition metals, tungsten and cobalt, are capable of reacting with the silicon substrate to form a semiconductor-transition metal bond.

[0052] After the reaction, unreacted remainders of the transition metals are removed. The reaction causes a cobalt silicide layer 21 and a tungsten silicide layer 22 adjacent to the cobalt layer, to form within the trench structure 4. The trench structure 4 is filled with a dielectric 9, for example, silicon dioxide. Planarization by chemical-mechanical polishing then occurs down to the height of the mask layer 52 of the silicon nitride. This process state is shown in FIG. 2b.

[0053] Next, after removal of the solid mask of oxide 51 and nitride 52, used for the trench etching, a layer of amorphous silicon is applied, which is converted by a lateral solid phase epitaxy, as described for FIGS. 1a and 1b, at least in subregions into a crystallized, monocrystalline semiconductor layer. This state is shown in FIG. 2c. In contrast to FIGS. 1a and 1b, the silicide layers 21 and 22 form a flat surface with the monocrystalline semiconductor substrate 1 within the seed opening bounded by the dielectric 9. The region of the crystallized, monocrystalline semiconductor layer 41, in so doing, extends beyond the height of the seed opening to regions covered at least partially by the dielectric 9. The monocrystalline crystal growth is in turn bounded by a polycrystalline layer 42 forming spontaneously from the amorphous silicon layer.

[0054] In the next steps, the polycrystalline regions 42 are removed by appropriate masking and subsequent dry etching. Next, the monocrystalline silicon layer 41 is planarized by chemical-mechanical polishing down to the height of the dielectric 9.

[0055] FIG. 2d shows a partial view of the final state of the manufacturing processes, which in this exemplary embodiment shows a high-frequency bipolar transistor. A high-doped region 1' is created in addition in the substrate; it borders the silicide layer 21 and with it enables a low-resistance connection of a collector semiconductor region 41 of low-doped monocrystalline silicon. An internal base semiconductor region 81, which is connected via an external base semiconductor region 81' with the metal connection 181 of the base, is applied to the collector semiconductor region by vertical solid phase epitaxy.

[0056] A monocrystalline emitter semiconductor region 82, which is connected to the metal connection 182 for electrical contacting, is applied in turn, for example, by subsequent solid phase epitaxy via the internal base semiconductor region 81. For reduced connection resistance, additional silicide layers can be provided (not shown in FIG. 2d) between the metal contacts 181 and 182 and the semiconductor regions 81' and 82. The dielectric 9 separates the base connection 181 from the silicide layers 21 and 22 for the low-resistance contacting of the collector semiconductor region 41. By this means, a low parasitic base collector capacity is achieved and the high-frequency properties of this bipolar transistor is significantly improved. Furthermore, the high-frequency properties of this bipolar transistor are improved by connecting the collector in a low-resistance manner by means of the silicide layers 21 and 22. The silicide layer is connected via a collector metal contact 141 on the trench structure 9 side opposite the collector semiconductor region 41.

[0057] The manufacturing process is not limited to the manufacture of high-frequency bipolar transistors. Thus, for example, tunnel diodes or permeable base transistors may also be manufactured by the manufacturing process.

[0058] The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are to be included within the scope of the following claims.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed