Transgenic crop plants with improved stress tolerance

Nelson; Donald ;   et al.

Patent Application Summary

U.S. patent application number 11/821176 was filed with the patent office on 2008-02-21 for transgenic crop plants with improved stress tolerance. Invention is credited to Shoba Cherian, Santanu Dasgupta, Karen Gabbert, Jacqueline Heard, Targolli Jayaprakash, Donald Nelson, Wei Wu.

Application Number20080040973 11/821176
Document ID /
Family ID38846208
Filed Date2008-02-21

United States Patent Application 20080040973
Kind Code A1
Nelson; Donald ;   et al. February 21, 2008

Transgenic crop plants with improved stress tolerance

Abstract

Disclosed herein are novel compositions of NF-YB proteins and recombinant DNA for expressing NF-YB proteins that are used to produce transgenic plants with enhanced yield and/or enhanced water deficit stress tolerance.


Inventors: Nelson; Donald; (Stonington, CT) ; Heard; Jacqueline; (Stonington, CT) ; Cherian; Shoba; (Bangalore, IN) ; Jayaprakash; Targolli; (Bangalore, IN) ; Dasgupta; Santanu; (St. Louis, MO) ; Wu; Wei; (St. Louis, MO) ; Gabbert; Karen; (St. Louis, MO)
Correspondence Address:
    MONSANTO COMPANY
    800 N. LINDBERGH BLVD.
    ATTENTION: GAIL P. WUELLNER, IP PARALEGAL, (E2NA)
    ST. LOUIS
    MO
    63167
    US
Family ID: 38846208
Appl. No.: 11/821176
Filed: June 23, 2007

Related U.S. Patent Documents

Application Number Filing Date Patent Number
60816086 Jun 23, 2006

Current U.S. Class: 47/58.1R ; 435/419; 536/23.1; 800/278; 800/298; 800/312; 800/320.1; 800/320.2; 800/320.3
Current CPC Class: C12N 15/8273 20130101; C12N 15/8261 20130101; Y02A 40/146 20180101; C07K 14/415 20130101
Class at Publication: 047/058.10R ; 435/419; 536/023.1; 800/278; 800/298; 800/312; 800/320.1; 800/320.2; 800/320.3
International Class: A01G 1/00 20060101 A01G001/00; A01H 1/00 20060101 A01H001/00; A01H 5/00 20060101 A01H005/00; C07H 21/02 20060101 C07H021/02; C12N 5/04 20060101 C12N005/04

Claims



1. A plant chromosomal DNA segment comprising a recombinant polynucleotide flanked by native plant DNA, wherein said polynucleotide provides for expression of at least an NF-YB protein and a marker protein, and wherein said NF-YB protein is produced in leaf cells of said plant at a level up to 40 picograms per microgram of total protein in said plant leaf tissue cells.

2. A plant chromosomal DNA segment comprising a recombinant polynucleotide flanked by native plant DNA, wherein said polynucleotide provides for expression of a single protein, wherein said protein is an NF-YB protein, and wherein said NF-YB protein is produced in leaf cells of said plant at a level up to 40 picograms per microgram of total protein in said plant leaf tissue cells.

3. A plant chromosomal DNA segment comprising a recombinant DNA construct for expressing an NF-YB protein comprising contiguous amino acids from SEQ ID NO:28, wherein said amino acids include: (a) amino acids at position 49 thorough 122 of SEQ ID NO:28 and wherein one or more amino acids at position number 49, 73, 76, 83, 89, 102, 103, 109, 115, 118 or 122 are different; or (b) amino acids at position 49 thorough 122 of SEQ ID NO: 28 and wherein one or more amino acids at position number 49, 73, 76, 83, 89, 102, 103, 109, 115, 118 or 122 are different and one or more of amino acids at position 55 through 61 are missing; (c) amino acids of SEQ ID NO: 28 at position 29 through 134 and one or more of amino acids at position 2 through 28 are missing; or (d) amino acids of SEQ ID NO: 28 at position 68 through 134 and one or more of amino acids at position 2 through 67 are missing.

4. A plant chromosomal DNA segment of any of claims 1-3 wherein said recombinant polynucleotide comprises a promoter is selected from the group consisting of a rice alpha tubulin promoter, a rice actin promoter, a PPDK mesophyl tissue enhanced promoter, and a rubisco activase bundle sheath enhanced promoter.

5. A plant chromosomal DNA segment of any of claims 1-3 and wherein said NF-YB protein is produced in leaf cells of said plant at a level between 0.1 and 11 picograms per microgram of total protein in said plant leaf tissue cells.

6. A transgenic plant cell comprising a plant chromosomal DNA segment of any of claims 1-3.

7. A transgenic crop of water deficit stress tolerant plants comprising cells of claim 6 wherein the harvested yield of said crop is comparable to or enhanced over the yield of a crop of control plants not having said plant chromosomal DNA segment when said crops are grown in water sufficient conditions.

8. A transgenic crop of claim 7 wherein said water deficit stress tolerant plants are corn, cotton, soybean, sugarcane, switchgrass, rice, wheat, alfalfa, or canola plants.

9. A transgenic corn plant seed comprising a plant chromosomal DNA segment of any of claims 1-3 wherein said NF-YB protein is a native corn protein.

10. A method of improving water stress tolerance and yield in a crop plant line comprising providing in the genome of said crop plant line a plant chromosomal DNA segment of any of claims 1-3.

11. A transgenic pollen grain comprising a haploid derivative of a plant cell containing a a plant chromosomal DNA segment of any of claims 1-3.

12. A method for manufacturing non-natural, transgenic seed that can be used to produce a crop of transgenic plants with enhanced water deficit stress tolerance resulting from expression of an NF-YB protein from a plant chromosomal DNA segment of any of claims 1-3, wherein said method comprises: (a) screening a population of plants having said plant chromosomal DNA segment and control plants for said enhanced yield when grown under deficit stress or enhanced or comparable yield as compared to the yield for control plants when grown under sufficient water conditions, (b) selecting from said population one or more plants that exhibit enhanced yield as compared to the yield for control plants under water deficit stressed or enhanced or comparable yield as compared to the yield for control plants when grown under water sufficient conditions, (c) verifying that said plant chromosomal DNA segment is stably integrated in said selected plants, (d) analyzing leaf tissue of a selected plant to determine the production of transgenic NF-YB protein at a level up to 40 picograms of NF-YB protein per microgram of total protein in said leaf tissue; and (e) collecting seed or a regenerative propagule from a selected plant.

13. A method of claim 12 wherein said seed is corn, cotton, soybean, sugarcane, switchgrass, rice, wheat, alfalfa, or canola seed.

14. A method of producing inbred corn seed comprising: (a) acquiring hybrid corn seed from a herbicide tolerant corn plant which also has stably-integrated, chromosomal DNA segment of any of claims 1-3; (b) introgressing the chromosomal DNA segment from said acquired hybrid corn seed into a second corn line by allowing pollen grains comprising a haploid derivative with said chromosomal DNA segment to pollinate said second corn line to produce crossed seeds, (c) producing a population of plants from crossed seeds wherein a fraction of the seeds produced from said pollination is homozygous for said chromosomal DNA segment, a fraction of the plants produced from said hybrid corn seed is hemizygous for said chromosomal DNA segment, and a fraction of the plants produced from said hybrid corn seed does not have said chromosomal DNA segment; (d) selecting corn plants which are homozygous and hemizygous for said chromosomal DNA segment by treating with an herbicide; (e) collecting seed from herbicide-treated-surviving corn plants and planting said seed to produce further progeny corn plants; (f) backcrossing plants grown from said progeny seeds with said second corn line to produce an inbred corn line.

15. The method of claim 14 further comprising crossing said inbred corn line with a third corn line to produce hybrid seed.

16. Anti-counterfeit milled seed having, as an indication of origin, a plant cell with said chromosomal DNA segment of any of claims 1-3.

17. A method of growing a corn, cotton, soybean, sugarcane, switchgrass, rice, wheat, alfalfa, or canola crop without irrigation water comprising planting seed having plant cells with a plant chromosomal DNA segment of any of claims 1-3 which are selected for enhanced water deficit tolerance.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims benefit of priority under 35USC .sctn.119(e) of U.S. Provisional Application Ser. No. 60/816,086 filed Jun. 23, 2006, which is herein incorporated by reference in its entirety.

INCORPORATION OF SEQUENCE LISTINGS

[0002] A Computer Readable Form of the Sequence Listing (on CD-ROM containing the file named "54485B.ST25.txt" which is 70 KB as measured in MS-WINDOWS operating system and was created on Jun. 22, 2007) is incorporated herein by reference.

FIELD OF THE INVENTION

[0003] Disclosed herein are transgenic plant cells in seeds and plants with improved stress tolerance and methods of making and using such cells, seeds and plants.

BACKGROUND OF THE INVENTION

[0004] Crop plant yield is reduced by any of a number of biotic or abiotic stresses on such plants. Growers have used a variety of strategies to minimize adverse effects from stress. For instance, stress from weeds can be reduced by application of herbicides, stress from insects can be reduced by application of pesticides, stress from water deficit can be reduced by irrigation, stress from cold can be reduced by delaying planting time, and stress from nutrient deficiency can be reduced by treating with fertilizer.

[0005] The yield from a plant is influenced by environmental factors including water availability, exposure to cold or heat, availability of nutrients such as phosphorus and nitrogen, plant density, and the like. A plant's response to such environmental stress can be influenced by internal genetic mechanisms. An object of plant genetic engineering is to produce novel plants with agronomically, horticulturally, or economically important traits including increased tolerance to any of a variety of environmental stresses.

[0006] Considering the complexity of water use in land plants, especially during conditions that produce water deficit, relatively few genes specifically associated with this aspect of physiology have been identified. The use of recombinant DNA expressing certain Hap3 CAAT box DNA binding transcription factors for improving water deficit tolerance is disclosed in US 2005/0022266 A1. Hap3 transcription factors are also known as NF-YB proteins which form complexes with NF-YA and NF-YC proteins in plants. These proteins are collectively referred to as NFY proteins. The amino acid sequence of a corn NF-YB protein is SEQ ID NO:28.

SUMMARY OF THE INVENTION

[0007] This invention provides novel plant chromosomal DNA comprising a recombinant polynucleotide that provides for expression of an NF-Y protein that provides protection against water deficit stress conditions. Such plant chromosomal DNA is flanked by native plant DNA. To accommodate the vagaries of nature, embodiments of the plant chromosomal DNA can provide plants with improved yield as compared to control crop plants when the plants are grown in water deficit stress conditions, as well as comparable or improved yield as compared to control crop plants when grown in water sufficient conditions. This invention also provides transgenic plant cells, plants, seeds and crops having the novel plant chromosomal DNA of this invention.

[0008] A characteristic of the plant chromosomal DNA segments used in this invention is the presence of a recombinant polynucleotide that encodes for low expression, e.g. constitutive expression at a level close to background expression of a native NF-Y protein, i.e. where NF-Y protein is produced in leaf cells at a level up to 40 picograms per microgram of total protein in plant leaf tissue cells or less, e.g. up to about 30 or 20 picograms per microgram of total protein in plant leaf tissue cells. In other embodiments the NF-Y protein expressed from the recombinant polynucleotide is in the range of 0.1 to 11 picograms per microgram of total protein in plant leaf tissue cells.

[0009] In some embodiments of the invention the recombinant polynucleotide provides for expression of at least one NF-Y protein and a marker protein. In another embodiment the recombinant polynucleotide provides for expression of a single NF-Y protein.

[0010] In some embodiments the NF-Y protein expressed by the recombinant polynucleotide is a native NF-YA, NF-YB or NF-YC protein. In other embodiments the NF-Y protein expressed by the recombinant polynucleotide is an exogenous NF-YA, NF-YB or NF-YC protein, e.g. an NF-YB protein from Arabidopsis thaliana. In yet, other embodiments the NF-Y protein expressed by the recombinant polynucleotide is a variant of a native NF-YA, NF-YB or NF-YC, e.g. in corn plant chromosomal DNA the recombinant polynucleotide expresses an variant NF-YB protein comprising contiguous amino acids from native corn DNA sequence.

[0011] The plant chromosomal DNA segments of this invention are provided by employing any number of low level constitutive promoters for expression of the NF-Y protein. Such promoters are readily identified and isolated by those skilled in the art and can include a promoter selected from the group consisting of a rice alpha tubulin promoter, a rice actin promoter, a PPDK mesophyll tissue-enhanced promoter, and a rubisco activase bundle sheath tissue-enhanced promoter.

[0012] Such plant chromosomal DNA of this invention is useful in transgenic plant cells of plants that are desired to exhibit water deficit stress tolerance. Such plant chromosomal DNA is useful in providing a transgenic crop of water deficit stress tolerant plants. e.g. where the harvested yield of said crop is enhanced over the yield of a crop of control plants not having said plant chromosomal DNA segment. Because of the unpredictability of rainfall and/or availability of irrigation water, plants of this invention may be grown in a wide range of water sufficiency conditions, ranging from water sufficient conditions over the lifetime of the plant to various levels of water deficit stress conditions over the lifetime of the plant. To accommodate such variation in water sufficiency, certain embodiments of this invention provide transgenic crops that exhibit increased harvested yield as compared to control crop plants when the plants are grown in water deficit stress conditions, as well as comparable or increased yield as compared to control crop plants when grown in water sufficient conditions. Such crops in include water deficit-tolerant plants of corn, cotton, soybean, sugarcane, switchgrass, rice, wheat, alfalfa, or canola plants. In one aspect of the invention the plant chromosomal DNA is in a transgenic corn plant and comprises recombinant polynucleotides for expressing an NF-YB protein which is a native corn protein or a variant thereof.

[0013] Another aspect of this invention provides transgenic pollen grains comprising a haptoid derivative of a plant cell containing a plant chromosomal DNA segment of this invention. Another aspect of this invention is anti-counterfeit milled seed having, as an indication of origin, a plant cell with said chromosomal DNA segment of this invention.

[0014] Still other aspects of this invention provide methods of improving water deficit stress tolerance and yield in a crop plant line comprising providing in the genome of a crop plant line a plant chromosomal DNA segment of this invention.

[0015] Another method of this invention provides for the manufacture of non-natural, transgenic seed or propagules that can be used to produce a crop of transgenic plants with enhanced water deficit tolerance resulting from expression of an NF-YB protein from a plant chromosomal DNA segment of this invention. Such a method comprises screening a population of plants having such plant chromosomal DNA segment and control plants for said enhanced yield when grown under water-deficit stressed and enhanced or comparable yield when grown under water sufficient conditions, selecting from said population one or more plants that exhibit enhanced yield as compared to the yield for control plants under water-deficit stressed or enhanced or comparable yield as compared to the yield for control plants when grown under water sufficient conditions, verifying that said plant chromosomal DNA segment is stably integrated in said selected plants, analyzing leaf tissue of a selected plant to determine the production of transgenic NF-YB protein at a level up to 40 picograms of NF-YB protein per microgram of total protein in said leaf tissue, and collecting seed or a regenerative propagule from a selected plant.

[0016] Another method provides for the production of inbred corn seed comprising acquiring hybrid corn seed from a herbicide tolerant corn plant which also has stably-integrated, chromosomal DNA segment of this invention, introgressing the chromosomal DNA segment from said acquired hybrid corn seed into a second corn line by allowing pollen grains comprising a haploid derivative with said chromosomal DNA segment to pollinate said second corn line to produce crossed seeds, producing a population of plants from crossed seeds (where a fraction of the seeds produced from said pollination is homozygous for the chromosomal DNA segment, a fraction is hemizygous, and a fraction does not have the chromosomal DNA segment), selecting corn plants which are homozygous and hemizygous for said chromosomal DNA segment by treating with an herbicide, collecting seed from herbicide-treated-surviving corn plants and planting said seed to produce further progeny corn plants, and backcrossing plants grown from said progeny seeds with said second corn line to produce an inbred corn line. The method can be further employed by crossing the inbred corn line with a third corn line to produce hybrid seed.

[0017] Yet another aspect of this invention provides a method of growing a corn, cotton, soybean, sugarcane, switchgrass, rice, wheat, alfalfa, or canola crop without irrigation water comprising planting seed having plant cells with a plant chromosomal DNA segment of this invention, where the seeds are produced from plants that are selected for enhanced water deficit stress tolerance.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] FIG. 1 is a plasmid map for plant transformation vector pMON82754.

[0019] FIG. 2 is a plasmid map for plant transformation vector pMON63796.

[0020] FIG. 3 illustrates the yield performance of plants under water deficit stress conditions where different promoters are used in recombinant polynucleotides for expressing an NF-Y protein.

[0021] FIG. 4 illustrates the yield performance of plants under water sufficient conditions where different promoters are used in recombinant polynucleotides for expressing an NF-Y protein.

DETAILED DESCRIPTION OF THE INVENTION

[0022] Unless specifically defined, all technical and scientific terms used herein have the same meaning as commonly understood by persons of ordinary skill in the art. The procedures for preparing and screening transgenic plants described below are well known and commonly employed by persons of ordinary skill in the art.

[0023] As used herein "water deficit" means a period when water available to a plant is not replenished at the rate at which it is consumed by the plant. A long period of water deficit is colloquially called drought. Lack of rain or irrigation may not produce immediate water stress if there is an available reservoir of ground water for the growth rate of plants. Plants grown in soil with ample groundwater can survive days without rain or irrigation without adverse affects on yield. Plants grown in dry soil are likely to suffer adverse affects with minimal periods of water deficit. Severe water deficit stress can cause wilt and plant death; moderate drought can cause reduced yield, stunted growth or retarded development. Plants can recover from some periods of water deficit stress without significantly affecting yield. However, water deficit stress at the time of pollination can have an irreversible effect in lowering yield. Thus, a useful period in the life cycle of corn for observing water deficit stress tolerance is the late vegetative stage of growth before tasseling. Water deficit stress tolerance is determined by comparison to control plants. For instance, plants of this invention can survive water deficit stress with a higher yield than control plants. In the laboratory and in field trials drought can be simulated by giving plants of this invention and control plants less water than is given to sufficiently-watered control plants and measuring differences in traits.

[0024] A suitable control plant may be a non-transgenic plant of the parental line used to generate a transgenic plant herein. A control plant may in some cases be a transgenic plant line that includes an empty vector or marker gene, but does not contain the recombinant polynucleotide of the present invention that is expressed in the transgenic plant being evaluated. A control plant in other cases is a transgenic plant expressing the gene with a constitutive promoter. In general, a control plant is a plant of the same line or variety as the transgenic plant being tested, lacking the specific trait-conferring, recombinant DNA that characterizes the transgenic plant. Such a progenitor plant that lacks that specific trait-conferring recombinant DNA can be a natural, wild-type plant, an elite, non-transgenic plant, or a transgenic plant without the specific trait-conferring, recombinant DNA that characterizes the transgenic plant. The progenitor plant lacking the specific, trait-conferring recombinant DNA can be a sibling of a transgenic plant having the specific, trait-conferring recombinant DNA. Such a progenitor sibling plant may include other recombinant DNA.

[0025] As used herein "yield" of a crop plant means the production of a crop, e.g., shelled corn kernels or soybean or cotton fiber, per unit of production area, e.g., in bushels per acre or metric tons per hectare, often reported on a moisture adjusted basis, e.g., corn is typically reported at 15.5% moisture. Moreover a bushel of corn is defined by law in the State of Iowa as 56 pounds by weight, a useful conversion factor for corn yield is: 100 bushels per acre is equivalent to 6.272 metric tons per hectare. Other measurements for yield are in common practice.

[0026] A transgenic "plant cell" means a plant cell that is transformed with stably-integrated, non-natural, recombinant polynucleotides, e.g. by Agrobacterium-mediated transformation or by bombardment using microparticles coated with recombinant polynucleotides. A plant cell of this invention can be an originally-transformed plant cell that exists as a microorganism or as a progeny plant cell that is regenerated into differentiated tissue, e.g. into a transgenic plant with stably-integrated, non-natural recombinant polynucleotides in its chromosomal DNA, or seed or pollen derived from a progeny transgenic plant.

[0027] A "transgenic" plant or seed means one whose genome has been altered by the stable incorporation of recombinant polynucleotides in its chromosomal DNA, e.g. by transformation, by regeneration from a transformed plant from seed or propagule or by breeding with a transformed plant. Thus, transgenic plants include progeny plants of an original plant derived from a transformation process including progeny of breeding transgenic plants with wild type plants or other transgenic plants. The enhancement of a desired trait can be measured by comparing the trait property in a transgenic plant which has recombinant DNA conferring the trait to the trait level in a progenitor plant. Although many varieties of plants can be advantageously transformed with recombinant DNA for expressing an NF-YB protein to provide water stress tolerance and/or enhanced yield, especially useful transgenic plants with water stress tolerance include corn (maize), soybean, cotton, canola (rape), wheat, rice, alfalfa, sorghum, grasses such as switchgrass, vegetables and fruits.

[0028] "Expressing a protein" means the function of a cell to transcribe recombinant DNA to mRNA and translate the mRNA to a protein. For expression the recombinant DNA usually includes regulatory elements including 5' regulatory elements such as promoters, enhancers, and introns; other elements can include polyadenylation sites, transit peptide DNA, markers and other elements commonly used by those skilled in the art. Promoters can be modulated by proteins such as transcription factors and by intron or enhancer elements linked to the promoter. Promoters in recombinant polynucleotides can also be modulated by nearby promoters. For example, the activity of a low constitutive promoter as used in this invention can be significantly increased to undesirably high levels by the activity of a second highly expressing promoter in the recombinant polynucleotide. For instance, there is disclosed in US 2005/0022266 A1 a recombinant polynucleotide construct a transcription unit comprising a low level-expressing rice actin promoter operably linked to DNA coding for an NF-YB protein followed by a transcription unit comprising a CaMV 35S promoter operably linked to DNA coding for the nptII marker. Although the plants having such recombinant polynucleotides in the chromosomal DNA exhibited water deficit stress tolerance, the CaMV 35S promoter is able to enhance the otherwise low expression of the nearby rice actin promoter to such high levels as to cause a reduction in yield in plants grown under water sufficient conditions. An aspect of this invention involves the use of recombinant polynucleotides having promoters for expressing NF-Y proteins at low levels to avoid reduction in yield when plants are grown under water sufficient conditions.

[0029] "Recombinant polynucleotide" means a DNA construct that is made by combination of two otherwise separated segments of DNA, e.g., by chemical synthesis or by the manipulation of isolated segments of nucleic acids by genetic engineering techniques. Recombinant DNA can include exogenous DNA or simply a manipulated native DNA. Recombinant DNA for expressing a protein in a plant is typically provided as an expression cassette which has a promoter that is active in plant cells operably linked to DNA encoding a protein, e.g. an NF-YB protein, linked to a 3' DNA element for providing a polyadenylation site and signal. Useful recombinant DNA also includes expression cassettes for expressing one or more proteins conferring herbicide tolerance and/or insect resistance. With reference to the sequence listing the DNA of various promoters are identified in Table 1 and the DNA encoding various embodiments of NF-YB proteins are identified in Table 2. Certain genes encoding native NF-YB subunits are identified using "Gnnnn" nomenclature, e.g. the Arabidopsis thaliana G481 gene. A set of useful promoters is disclosed in Table 1 with reference to DNA in the sequence listing for the promoter element including enhancer, leader and intron elements used in various illustrative embodiments. These and numerous other promoters that function in plant cells are known to those skilled in the art and available for use in alternative embodiments of this invention to provide for expression of NF-Y proteins in transgenic plant cells. TABLE-US-00001 TABLE 1 Promoter Expression (species of origin) SEQ ID Ubiquitous - high in leaf but lower in reproductive 1 and 2 tissue (CaMV35S-enhanced) Ubiquitous - high in leaf but lower in reproductive 3 tissue (CaMV35S) Epidermis, stomatal guard cells enhanced (rice) 4 Silk enhanced (corn) 5 Silk enhanced (sorghum) 6 Constitutive - low level (corn) 7 Bundle sheath enhanced (corn RUA) 8 Drought inducible (corn) 9 Mesophyll enhanced (corn) 10 Drought inducible (corn) 11 Root enhanced (pea) 12 Ubiquitous (rice alpha tubulin) 13 Ubiquitous (rice actin1) 14 Ubiquitous (rice actin1) 15 Root enhanced (corn NAS2) 16 Embryo (barley) 17 Ubiquitous (Arabidopsis) 18 Drought inducible (Arabidopsis) 19 Green tissue enhanced (Arabidopsis) 20 Drought inducible (Arabidopsis) 21 Drought inducible (Arabidopsis) 22 Drought inducible (Arabidopsis) 23 Green tissue enhanced (Arabidopsis) 24 Root enhanced (Arabidopsis) 25 Vascular tissue enhanced (Arabidopsis) 26 Chimeric bundle sheath/mesophyll enhanced (corn) 27 Ubiquitous (Arabidopsis EF-1 alpha) 60 Seed (Glycine max) 61

[0030] TABLE-US-00002 TABLE 2 SEQ Arbitrary DNA Name ID Protein Features Corn NF-YB2-S83A 29 In SEQ ID NO: 28 Serine at position 83 is changed to Alanine Corn NF-YB2-123C 30 Methionine and amino acids 29-134 of SEQ ID NO: 28 representing domains 1, 2, 3 and C of the protein Corn NF-YB2-23C 31 Methionine and amino acids 68-134 of SEQ ID NO: 28 representing domains 2, 3 and C of the protein Corn NF-YB2-C73:89S 32 In SEQ ID NO: 28 Cysteines at positions 73 and 89 are changed to Serine Corn NF-YB2-C73R:C89S 33 In SEQ ID NO: 28 Cysteine at position 73 changed to Arginine, and Cysteine at position 89 is changed to Serine Corn NF-YB2- 34 In SEQ ID NO: 28 Cysteine at position 73 is C73S:C89S:L102R changed to Serine, Cysteine at position 89 is changed to Serine, and Leucine at 102 is changed to Arginine Corn NF-YB2-E76R:S83R 35 In SEQ ID NO: 28 Glutamate at position 76 is changed to Arginine and Serine at position 83 is changed to Arginine Corn NF-YB2-I115A 36 In SEQ ID NO: 28 Isoleucine at position 115 is changed to Alanine Corn NF-YB2- 37 In SEQ ID NO: 28 Isoleucine at position 49 is I49R:C73R:C89S:L102R changed to Arginine, Cysteine at position 73 is changed to Arginine, Cysteine at position 89 is changed to Serine, and Leucine at position 102 is changed to Arginine Corn NF-YB2- 38 In SEQ ID NO: 28 Isoleucine at position 49 is I49R:C73S:C89S changed to Arginine, Cysteine at position 73 is changed to Serine, and Cysteine at position 89 is changed to Serine Corn NF-YB2-L102A 39 In SEQ ID NO: 28 Leucine at position 102 is changed to Alanine Corn NF-YB2-L103A 40 In SEQ ID NO: 28 Leucine at position 103 is changed to Alanine Corn NF-YB2-L109A 41 In SEQ ID NO: 28 Leucine at 109 is changed to Alanine Corn NF-YB2-L118A 42 In SEQ ID NO: 28 Leucine at 118 is changed to Alanine Corn NF-YB2-L122A 43 In SEQ ID NO: 28 Leucine at 122 is changed to Alanine Corn NF-YB2 (PHE0000004) 44 NF-YB protein of SEQ ID NO: 28 Corn NF-YB2a (PHE0008666) 45 Amino acids TPIANGK at 55-61 of SEQ ID NO: 28 are deleted Corn.NFB2-1:4:9 46 Corn NF-YB2 protein (PHE0008660) soybean G482-like 3 47 Soybean NF-YB protein (PHE0001202) Soybean NF-YB (G481 like) 48 Soybean NF-YB protein (G3472) Gm.G481-1:1:1 (PHE0010412) 49 Soybean NF-YB protein soy G481-like 3 (PHE0003740) 50 Soybean NF-YB protein soybean G482-like 1 51 Soybean NF-YB protein (PHE00001201) Soy G1820 like (PHE0003227) 52 Soybean NF-YB protein Arabidopsis G481 53 Arabidopsis NF-YB protein (PHE0000002) Arabidopsis G1364 54 Arabidopsis NF-YB protein (PHE0003728) Arabidopsis G485 55 Arabidopsis NF-YB protein (PHE0010350) GhG481-1:1:1 (PHE0010352) 56 Cotton NF-YB protein Gh.NFB2-1:1:1 (PHE0010354) 57 Cotton NF-YB protein CR-Gm.G481-6-1:1:1 58 Soybean NF-YB protein (PHE0003701) Os.NFYB2 (PHE0004246) 59 Rice NF-YB protein

[0031] Recombinant DNA constructs generally include a 3' element that typically contains a polyadenylation signal and site. Well-known 3' elements include those from Agrobacterium tumefaciens genes such as nos 3', tml 3', tmr 3', tms 3', ocs 3', tr7 3', e.g., disclosed in U.S. Pat. No. 6,090,627. 3' elements from plant genes such as wheat (Triticum aestivum) heat shock protein 17 (Hsp17 3'), a wheat ubiquitin gene, a wheat fructose-1,6-biphosphatase gene, a rice glutelin gene, a rice lactate dehydrogenase gene and a rice beta-tubulin gene are disclosed in U.S. published patent application 2002/0192813 A1.

[0032] Constructs and vectors may also include a transit peptide for targeting of a gene target to a plant organelle, particularly to a chloroplast, leucoplast or other plastid organelle. The use of chloroplast transit peptides is disclosed in U.S. Pat. Nos. 5,188,642 and 5,728,925.

[0033] The plants of this invention can be further enhanced with stacked traits, e.g., a crop having an enhanced agronomic trait resulting from expression of DNA disclosed herein, in combination with herbicide and/or pest resistance traits. For example, genes of the current invention can be stacked with other traits of agronomic interest, such as a trait providing herbicide resistance, or insect resistance, such as using a gene from Bacillus thuringiensis to provide resistance against lepidopteran, coleopteran, homopteran, hemiopteran, and other insects. Herbicides for which resistance is useful in a plant include glyphosate herbicides, dicamba herbicides, phosphinothricin herbicides, oxynil herbicides, imidazolinone herbicides, dinitroaniline herbicides, pyridine herbicides, sulfonylurea herbicides, bialaphos herbicides, sulfonamide herbicides and glufosinate herbicides. Persons of ordinary skill in the art are enabled in providing stacked traits by reference to U.S. 2003/0106096A1 and 2002/0112260A1 and U.S. Pat. Nos. 5,034,322; 5,776,760; 6,107,549 and 6,376,754 and to insect/nematode/virus resistance by reference to U.S. Pat. Nos. 5,250,515; 5,880,275; 6,506,599; 5,986,175 and U.S. 2003/0150017 A1.

Plant Cell Transformation Methods

[0034] Numerous methods for transforming plant cells with recombinant DNA are known in the art and may be used in the present invention. Two commonly used methods for plant transformation are Agrobacterium-mediated transformation and microprojectile bombardment. Microprojectile bombardment methods are illustrated in U.S. Pat. No. 5,015,580 (soybean); U.S. Pat. No. 5,550,318 (corn); U.S. Pat. No. 5,538,880 (corn); U.S. Pat. No. 5,914,451 (soybean); U.S. Pat. No. 6,160,208 (corn); U.S. Pat. No. 6,399,861 (corn) and U.S. Pat. No. 6,153,812 (wheat) and Agrobacterium-mediated transformation is described in U.S. Pat. No. 5,159,135 (cotton); U.S. Pat. No. 5,824,877 (soybean); U.S. Pat. No. 5,591,616 (corn); and U.S. Pat. No. 6,384,301 (soybean), all of which are incorporated herein by reference. For Agrobacterium tumefaciens based plant transformation system, additional elements present on transformation constructs will include T-DNA left and right border sequences to facilitate incorporation of the recombinant polynucleotide into the plant genome.

[0035] In general it is useful to introduce recombinant DNA randomly, i.e. at a non-specific location, in the genome of a target plant line. In special cases it may be useful to target recombinant DNA insertion in order to achieve site-specific integration, for example to replace an existing gene in the genome, to use an existing promoter in the plant genome, or to insert a recombinant polynucleotide at a predetermined site known to be active for gene expression. Several site specific recombination systems exist which are known to function implants include cre-lox as disclosed in U.S. Pat. No. 4,959,317 and FLP-FRT as disclosed in U.S. Pat. No. 5,527,695.

[0036] Transformation methods of this invention are preferably practiced in tissue culture on media and in a controlled environment. "Media" refers to the numerous nutrient mixtures that are used to grow cells in vitro, that is, outside of the intact living organism. Recipient cell targets include, but are not limited to, meristem cells, callus, immature embryos and gametic cells such as microspores, pollen, sperm and egg cells. It is contemplated that any cell from which a fertile plant may be regenerated is useful as a recipient cell. Callus may be initiated from tissue sources including, but not limited to, immature embryos, seedling apical meristems, microspores and the like. Cells capable of proliferating as callus are also recipient cells for genetic transformation. Practical transformation methods and materials for making transgenic plants of this invention, for example various media and recipient target cells, transformation of immature embryo cells and subsequent regeneration of fertile transgenic plants are disclosed in U.S. Pat. Nos. 6,194,636 and 6,232,526, which are incorporated herein by reference.

[0037] The seeds of transgenic plants can be harvested from fertile transgenic plants and be used to grow progeny generations of transformed plants of this invention including hybrid plants line for selection of plants having an enhanced trait. In addition to direct transformation of a plant with a recombinant DNA, transgenic plants can be prepared by crossing a first plant having a recombinant DNA with a second plant lacking the DNA. For example, recombinant DNA can be introduced into first plant line that is amenable to transformation to produce a transgenic plant which can be crossed with a second plant line to introgress the recombinant DNA into the second plant line. A transgenic plant with recombinant DNA providing an enhanced trait, e.g. enhanced yield, can be crossed with transgenic plant line having other recombinant DNA that confers another trait, for example herbicide resistance or pest resistance, to produce progeny plants having recombinant DNA that confers both traits. Typically, in such breeding for combining traits the transgenic plant donating the additional trait is a male line and the transgenic plant carrying the base traits is the female line. The progeny of this cross will segregate such that some of the plants will carry the DNA for both parental traits and some will carry DNA for one parental trait; such plants can be identified by markers associated with parental recombinant DNA, e.g. marker identification by analysis for recombinant DNA or, in the case where a selectable marker is linked to the recombinant, by application of the selecting agent such as a herbicide for use with a herbicide tolerance marker, or by selection for the enhanced trait. Progeny plants carrying DNA for both parental traits can be crossed back into the female parent line multiple times, for example usually 6 to 8 generations, to produce a progeny plant with substantially the same genotype as one original transgenic parental line but for the recombinant DNA of the other transgenic parental line.

[0038] In the practice of transformation DNA is typically introduced into only a small percentage of target plant cells in any one transformation experiment. Marker genes are used to provide an efficient system for identification of those cells that are stably transformed by receiving and integrating a transgenic DNA construct into their genomes. Preferred marker genes provide selective markers which confer resistance to a selective agent, such as an antibiotic or herbicide. Any of the herbicides to which plants of this invention may be resistant are useful agents for selective markers. Potentially transformed cells are exposed to the selective agent. In the population of surviving cells will be those cells where, generally, the resistance-conferring gene is integrated and expressed at sufficient levels to permit cell survival. Cells may be tested further to confirm stable integration of the exogenous DNA. Commonly used selective marker genes include those conferring resistance to antibiotics such as kanamycin and paromomycin (nptII), hygromycin B (aph IV) and gentamycin (aac3 and aacC4) or resistance to herbicides such as glufosinate (bar or pat) and glyphosate (aroA or EPSPS). Examples of such selectable are illustrated in U.S. Pat. Nos. 5,550,318; 5,633,435; 5,780,708 and 6,118,047. Selectable markers which provide an ability to visually identify transformants can also be employed, for example, a gene expressing a colored or fluorescent protein such as a luciferase or green fluorescent protein (GFP) or a gene expressing a beta-glucuronidase or uidA gene (GUS) for which various chromogenic substrates are known.

[0039] Plant cells that survive exposure to the selective agent, or plant cells that have been scored positive in a screening assay, may be cultured in regeneration media and allowed to mature into plants. Developing plantlets regenerated from transformed plant cells can be transferred to plant growth mix, and hardened off, for example, in an environmentally controlled chamber at about 85% relative humidity, 600 ppm CO.sub.2, and 25-250 microeinsteins m.sup.-2 s.sup.-1 of light, prior to transfer to a greenhouse or growth chamber for maturation. Plants are regenerated from about 6 weeks to 10 months after a transformant is identified, depending on the initial tissue. Plants may be pollinated using conventional plant breeding methods known to those of skill in the art and seed produced, for example self-pollination is commonly used with transgenic corn. The regenerated transformed plant or its progeny seed or plants can be tested for expression of the recombinant DNA and selected for the presence of enhanced agronomic trait.

Transgenic Plants and Seeds

[0040] Transgenic plants derived from the plant cells of this invention are grown to generate transgenic plants having an enhanced trait as compared to a control plant and produce transgenic seed and haploid pollen of this invention. Such plants with enhanced traits are identified by selection of transformed plants or progeny seed for the enhanced trait. For efficiency a selection method is designed to evaluate multiple transgenic plants (events) including the recombinant DNA, for example multiple plants from 2 to 20 or more transgenic events. Transgenic plants grown from transgenic seed provided herein demonstrate improved agronomic traits that contribute to increased yield or enhanced water deficit tolerance or both.

[0041] Not all transgenic events will be in transgenic plant cells that provide plants and seeds with an enhanced or desired trait depending on factors, such as location and integrity of the recombinant DNA, copy number, unintended insertion of other DNA, etc. As a result transgenic plant cells of this invention are identified by screening transformed progeny plants for enhanced water deficit stress tolerance and yield. For efficiency a screening program is designed to evaluate multiple transgenic plants preferably with a single copy of the recombinant DNA from 2 or more transgenic events.

[0042] The following examples are included to demonstrate embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples that follow represent techniques discovered by the inventors to function well in the practice of the invention. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention, therefore all matter set forth or shown in the accompanying drawings and examples is to be interpreted as illustrative and not in a limiting sense.

EXAMPLE 1

[0043] This example describes construction of plant expression vectors used for transforming plant cells useful in the various aspects of the invention. Plasmid maps of such DNA constructs are illustrated in FIGS. 1 and 2, where the plasmid of FIG. 1 is used for transforming monocot plants such as corn and the plasmid of FIG. 2 is used for transforming dicot plants such as soybean. Each plasmid contains a NF-YB expression cassette and a glyphosate herbicide resistance expression cassette within Agrobacterium tumefaciens T-DNA borders identified as LB and RB respectively. Each plasmid also contains origins of replication and repressor elements for replication in cells (oriV, rop and oriColE) and a spectinomycin/streptomycin bactericidal selectable marker (SPC/STR).

[0044] With particular reference to FIG. 1 plasmid pMON82754 contains between left and right Agrobacterium T-DNA borders (LB and RB) recombinant DNA constructs comprising an NF-YB protein expression cassette and a glyphosate resistance expression cassette. The NF-YB expression cassette has a promoter element (SEQ ID NO:8) which comprises a corn bundle sheath enhanced promoter and a transcription enhancing intron from a corn heat shock protein 70 gene followed by the DNA encoding a corn NF-YB protein (SEQ ID NO:44) and a 3' element from Agrobacterium tumefaciens transcript 7. The glyphosate resistance expression cassette comprises a rice actin 1 promoter, leader and intron operably linked to a DNA encoding a chloroplast transit peptide from an Arabidopsis thaliana EPSPS gene and DNA encoding an EPSPS from an A. tumefaciens gene (CP4) and a 3' element from an A. tumefaciens nopaline synthase gene. Other plasmids are prepared in which the promoter element and DNA encoding the NF-YB element are replaced with each of the promoter elements identified in Table 1 and each of the DNA encoding NF-YB protein elements identified in Table 2. Thus, separate plasmids for transforming monocot plant cells have recombinant DNA constructs for expressing an NF-YB protein where each promoter identified in Table 1 is operably linked to each of the DNAs encoding an NF-YB protein identified in Table 2. Monocot plant cells from corn, switchgrass, rice, and sugarcane are transformed with each of the plasmids producing multiple transgenic events of each recombinant DNA construct; and transgenic plants are regenerated and grown to produce transgenic seed or propagule (in the case of sugarcane) for each of the transgenic events.

[0045] With reference to FIG. 2, plasmid pMON63796 contains a recombinant DNA construct for expressing NF-YB protein with an enhanced CaMV35S promoter (SEQ ID NO:1) operably linked to DNA encoding the native Arabidopsis thaliana NF-YB protein identified as G481 (SEQ ID NO:53). The plasmid is used to produce transgenic dicot cells in which the Arabidopsis NF-YB protein is ubiquitously expressed by the promoter. Other plasmids are prepared in which the promoter element is replaced with each of the promoter elements identified in Table 1 and the DNA encoding the NF-YB element is replaced with each of the DNA encoding NF-YB protein elements identified in Table 2. Thus, separate plasmids for transforming dicot plant cells have recombinant DNA constructs for expressing an NF-YB protein where each promoter identified in Table 1 is operably linked to each DNA encoding NF-YB protein identified in Table 2. Canola, alfalfa, cotton and soybean plant cells are transformed with each of the plasmids producing multiple transgenic events of each recombinant DNA construct; and transgenic plants are regenerated and grown to produce transgenic seed for each of the transgenic events.

[0046] Many transgenic events which survive to fertile transgenic plants that produce seeds and progeny plants will not exhibit the traits of water deficit stress tolerance and enhanced yield. Screening of progeny transgenic plants is necessary to identify a transgenic plant cell of this invention. Transgenic plants having enhanced water deficit tolerance are identified from populations of plants transformed as described herein by evaluating the trait in a variety of water deficit assays. More specifically, after transformation transgenic plants are propagated to produce seed or propagules and homozygous progeny plants are identified and screened for water deficit tolerance (e.g. using methods described below) to identify plants that produce seed of this invention.

[0047] The plants of this invention are screened for water deficit tolerance as compared to control plants (tested as inbreds or hybrids) by a high-throughput method of greenhouse screening following water withholding, called "drought treatment". For example, the greenhouse screen for transgenic corn plants for water use efficiency measures changes in plant growth rate, e.g., at least a 10% improvement, in height and biomass during a vegetative drought treatment, as compared to control plants. The hydration status of the shoot tissues following the drought is also measured. Shoot Initial Height (SIH) is plant height after 3 weeks of growth under optimum conditions. Shoot Wilt Height (SWH) is plant height at the end of a 6 day drought. Time course experiments have shown that at about 3 days of drought treatment, wild type corn plants basically stop growing and begin to wilt. Thus a transgenic corn plant with improved water use efficiency will continue to grow (possibly to a lesser extent than with water) and thereby end up as a significantly taller plant at the end of a drought experiment. Shoot Wilt Mass (SWM) is the amount of wet and dry matter in the shoot (plant separated from root ball at the soil line) at the end of the drought; SDM is measure after 2 to 3 weeks in a drying chamber. Shoot Turgid mass (STM) is the SWM plus the mass of the water that is transported into plant tissues in 3 days of soaking in 40 degree Celsius water in the dark. Experiments have shown that most of the water is pulled up in 24 hours but it takes 2 more days before additional increase becomes insignificant. STM-SWM is indicative of water use efficiency in plants where recovery from stress is more important than stress tolerance per se. Relative water content (RWC) is a measurement of how much (%) of the plant is water at harvest. RWC=(SWM-SDM)/(STM-SDM)*100. Fully watered corn plants are about 98% RWC. Typically, in a wilt screen the plants are about 60% RWC. Plants with higher RWC at the end of a drought are considered to be healthier plants and more fit for post-drought recovery and growth. Relative Growth Rate (RGR) is calculated for each shoot using the formula RGR=(SWH-SIH)/((SWH+SIH)/2)*100. Similar screening following a drought treatment is done for transgenic canola, cotton and soybean plants.

[0048] Events of transgenic corn plants expressing a modified NF-YB protein from DNA of SEQ ID NO:29-43 show improved water deficit stress tolerance as compared to wild type control plants and transgenic control plants expressing a natural NF-YB protein.

[0049] Events of transgenic corn plants expressing a native NF-YB protein from DNA of SEQ ID NO: 44 or 45 operably linked to a promoter selected from SEQ ID NO: 1-27 show improved water deficit stress tolerance as compared to wild type control plants.

EXAMPLE 2

[0050] This example describes yield analysis results for transgenic plants disclosed in US 2005/0022266 A1. The disclosed plants comprise a recombinant transcription unit comprising a low level-expressing rice actin promoter operably linked to DNA coding for an NF-YB (SEQ ID NO:28) protein followed by a transcription unit comprising a CaMV 35S promoter operably linked to DNA coding for the nptII marker (pMON73605).

[0051] Table 3A demonstrates that these plants exhibit enhanced yield (bu/acre) under water deficit stress, as evidenced by two consecutive years of testing. TABLE-US-00003 TABLE 3A Improved Yield Under Water Deficit Stress pMON73605 - rice actin 1 promoter: NF-YB2 (expression enhanced by cis elements) Year 1 Water Water Year 2 Deficit Deficit Water Deficit Stress Stress Stress Water Deficit Event Yield Delta p-value Yield Delta Stress p-value ZM_M23837 13.7 .012 16.6 0.13 ZM_M25520 31.2 0.00 15.9 0.13 ZM_M24207 54.8 <.001 16.9 0.11

[0052] Table 3B presents yield results (bu/acre) under sufficient water conditions and demonstrates that the yield of pMON73605 transgenic plants under sufficient water conditions is significantly decreased. TABLE-US-00004 TABLE 3B Reduced Yield Under Sufficient Water Conditions Year 1 Year 2 Sufficient Sufficient Sufficient Water Sufficient Water Water Event Yield Delta Water p-value Yield Delta p-value ZM_M23837 -54.9 <.001 -23 <.001 ZM_M25520 -40.3 <.001 -28 <.001 ZM_M24207 -51.3 <.001 -35 <.001

[0053] NFY B protein levels determined for these transgenic events are provided in Table 3C below. TABLE-US-00005 TABLE 3C NF-YB2 protein levels V12 to VT leaf protein pg NF-YB2/microgram total Event protein ZM_M23837 61.4 ZM_M25520 51.8 ZM_M24207 61.0

[0054] The CaMV 35S promoter in this construct is able to enhance the otherwise low expression of the nearby rice actin promoter resulting in the production of greater than 40 picograms of NF-YB2 protein per microgram of total protein in the plant leaf tissue. The high level of protein in the transgenic plants results in a reduction in yield when the plants are grown under water sufficient conditions. In contrast, enhancerless rice actin/NFYB expression constructs (pMON82452 and pMON82453) are described below which produce less than 20 pg NF-YB2/microgram total leaf protein and transgenic plants having enhanced yield under both water deficit stress conditions and sufficient water conditions are described.

EXAMPLE 3

[0055] Transgenic corn plants prepared as described in Example 1 comprising DNA constructs stably inserted in the chromosome and expressing an NF-YB protein under the control of promoters shown in Table 4 were evaluated for yield under water deficit stress and sufficient conditions. TABLE-US-00006 TABLE 4 Promoter::NF-YB Constructs in Transgenic Corn Plants Promoter Promoter SEQ ID Protein Vector Enhanced CaMV 35S SEQ ID NO: 2 NFB2 PMON84654 Rubisco activase SEQ ID NO: 8 NFB2 PMON82754 Rice tubulin SEQ ID NO: 13 NFB2a pMON82753 Rice tubulin SEQ ID NO: 13 NFB2 pMON82752 rab17 SEQ ID NO: 9 NFB2 PMON82454 Enhancerless rice actin SEQ ID NO: 15 NFB2a PMON82453 Enhancerless rice actin SEQ ID NO: 14 NFB2 PMON82452 p326 SEQ ID NO: 18 NFB2 PMON78305 FDA/PPDK SEQ ID NO: 27 NFB2 PMON78304 PPDK SEQ ID NO: 10 NFB2 PMON78303 CaMV 35S SEQ ID NO: 3 NFB2 PMON73611 NAS SEQ ID NO: 16 NFB2 PMON73610

[0056] These transgenic corn plants were analyzed for yield under water-deficit stress conditions, for yield under water sufficiency conditions and for amounts of NF-YB protein expressed in leaf tissue.

[0057] Homozygous inbred corn plants with recombinant DNA as described in Example 1 were crossed with compatible tester lines to produce hybrid seed. The resulting seed was advanced to replicated yield trials in geographical regions where corn is conventionally grown, e.g. in the states of Iowa, Illinois, Kansas and California. In some trials, field water content was controlled by irrigation, while other trials relied on natural rainfall. Transgenic events advanced to this study were pre-selected to be single copy for the selectable marker associated with the transgene. Control and transgenic events were planted at the same plant density and replication. Field management of plant pest, weeds, tillage and fertilization was consistent with geography specific practices.

[0058] In irrigated fields, the transgenic and control plants were irrigated to be within field water-holding capacity until V10 corn leaf stage. Irrigation water was delivered via drip irrigation or overhead linear irrigation. To provide water deficit stress conditions, once the corn plants reached the V10 leaf stage, water was allowed to be limiting until plants demonstrated significant AM leaf rolling for 2 consecutive days. The duration of this water regime spanned the V10 leaf through the R2 reproductive stage. Once the crop reached the R2 developmental stage, watering was resumed to full recovery through the remaining growing season.

[0059] Once the corn crop reached physiological maturity, i.e. 10-25% grain moisture, plots were harvested. Resulting grain yield was normalized to 15.5% moisture and expressed in terms of bushels/acre.

[0060] Yield data analysis was performed for water deficit stress and sufficient water conditions. The yields were analyzed in several ways. One approach involved the use of statistical cluster analysis to select groups of locations having similar environmental characteristics pertaining to drought. The three variables used to form clusters of similar locations were: the average daily high temperature during the thirty days before and thirty days after flowering; the average difference between cumulative precipitation and applied water versus evapotranspiration during the same sixty-day period, weighted by the proximity to flowering using the standard normal distribution to define weights; and the average yield of a control pedigree at the location. Another analysis of variance model was then used to analyze yields, with fixed effects for clusters and random effects for the locations nested within their corresponding clusters.

[0061] The yield data analysis compared the yields of all events from a single construct as compared to corresponding control plots. Events were also compared to a corresponding control for event level analysis. Results of the yield analysis (Yield Deltas shown as bu/ac) are reported in Tables 5A to 5M. TABLE-US-00007 TABLE 5A pMON82753 - rice alpha tubulin promoter SEQ ID NO 13: NF-YB2a Water Sufficient Water Deficit Deficit Water Sufficient Stress Stress Event Yield Delta Water p-value Yield Delta p-value ZM_M86067 4.5106 0.266 16.0421 0.011 ZM_M83476 -6.6879 0.116 11.763 0.08 ZM_M84797 -3.6472 0.38 11.7199 0.064 ZM_M83475 2.8742 0.478 5.4529 0.364 ZM_M84738 2.1377 0.624 1.7943 0.789 ZM_M83470 -2.3375 0.862 1.088 0.871 ZM_M84105 -15.0532 <.001 0.4693 0.944 ZM_M84086 1.4321 0.736 -2.1618 0.78 ZM_M83465 0.3697 0.927 -4.4721 0.456 ZM_M86087 -11.0371 0.006 -5.8471 0.33 ZM_M84741 -11.3175 0.006 -7.9079 0.211 ZM_M83478 -5.2598 0.195 -8.0171 0.182 ZM_M86065 -8.7812 0.355 -8.8923 0.215

[0062] TABLE-US-00008 TABLE 5B pMON82454 - rab17 promoter SEQ ID NO 9: NF-YB2 Water Sufficient Water Deficit Deficit Water Sufficient Stress Stress Event Yield Delta Water p-value Yield Delta p-value ZM_S112714 0.3879 0.924 -12.0102 0.036 ZM_S112682 0.7015 0.863 -5.8292 0.357 ZM_S110587 -3.2144 0.428 -4.6313 0.441 ZM_S112667 -7.003 0.084 -3.7511 0.512 ZM_S111896 -3.5696 0.401 -1.992 0.728 ZM_S112713 10.2417 0.445 0.09028 0.989 ZM_S110594 -4.3189 0.287 0.4137 0.945 ZM_S112696 -6.3222 0.128 0.4887 0.935 ZM_S112654 -8.3365 0.045 0.867 0.88 ZM_S112701 -5.4576 0.178 0.9761 0.865 ZM_S112657 -0.4083 0.976 1.0792 0.865

[0063] TABLE-US-00009 TABLE 5C pMON82754 - corn bundle sheath promoter SEQ ID NO 8: NF-YB2 Water Sufficient Water Deficit Deficit Water Sufficient Stress Stress Event Yield Delta Water p-value Yield Delta p-value ZM_S110144 -6.9826 0.085 13.5813 0.024 ZM_S110890 -4.9583 0.522 10.6975 0.111 ZM_S110843 -2.2576 0.578 4.5413 0.449 ZM_S110837 -3.3767 0.427 3.8793 0.54 ZM_S110106 -12.4485 0.002 1.0213 0.865 ZM_S110893 -7.8212 0.054 0.2913 0.961 ZM_S111476 -3.6553 0.367 -0.2487 0.967 ZM_S110134 -10.1762 0.014 -3.3787 0.574 ZM_S110873 -0.419 0.92 -6.0041 0.343 ZM_S110119 -6.1598 0.129 -14.7387 0.014

[0064] TABLE-US-00010 TABLE 5D pMON84654 - enhancedCaMV35S promoter SEQ ID NO2: NF-YB2 Water Sufficient Water Deficit Deficit Water Sufficient Stress Stress Event Yield Delta Water p-value Yield Delta p-value ZM_S119096 -46.7705 <.001 -0.09792 0.988 ZM_S117108 -43.9468 <.001 -11.8074 0.062 ZM_S119061 -37.014 <.001 -11.8317 0.049 ZM_S119030 -44.4451 <.001 -12.8967 0.032 ZM_S119088 -48.1538 <.001 -13.1315 0.038 ZM_S119034 -48.0195 <.001 -13.5567 0.024 ZM_S119047 -52.5443 <.001 -13.8889 0.028 ZM_S117101 -41.4371 <.001 -14.4537 0.022 ZM_S117341 -55.5489 <.001 -15.3574 0.015 ZM_S119099 -43.7741 <.001 -15.7417 0.009 ZM_S119033 -45.9945 <.001 -18.9417 0.002 ZM_S119077 -31.7358 <.001 -20.6117 <.001 ZM_S117346 -15.6325 0.099

[0065] TABLE-US-00011 TABLE 5E pMON82752 - rice alpha tubulin promoter SEQ ID NO13: NF-YB2 Water Sufficient Sufficient Deficit Water Water Stress Water Deficit Event Yield Delta p-value Yield Delta Stress p-value ZM_M83933 -8.83 0.033 14.363 0.017 ZM_M82773 0.4403 0.916 10.4845 0.067 ZM_M84408 -0.8068 0.853 7.0527 0.218 ZM_M82770 -14.2708 0.193 5.5578 0.438 ZM_M82769 -2.0203 0.763 5.2828 0.461 ZM_M84389 -1.4877 0.714 3.9209 0.494 ZM_M82855 -35.2312 0.009 3.4116 0.59 ZM_M83306 -1.217 0.832 0.9614 0.893 ZM_M84393 0.8677 0.834 -5.182 0.388 ZM_M83321 3.2487 0.423 -5.7246 0.317 ZM_M82772 -0.8763 0.829 -5.952 0.322 ZM_M85712 -10.5414 0.022 -6.5328 0.302

[0066] TABLE-US-00012 TABLE 5F pMON82453 - rice actin1 promoter SEQ ID NO15: NF-YB2a Water Sufficient Sufficient Deficit Water Water Stress Water Deficit Event Yield Delta p-value Yield Delta Stress p-value ZM_M87052 -3.9922 0.401 -7.594 0.258 ZM_M88601 6.2671 0.131 -4.0602 0.499 ZM_M87033 1.4629 0.718 -0.9602 0.873 ZM_M88602 5.8765 0.147 -0.8908 0.894 ZM_M88129 0.3765 0.926 0.01482 0.998 ZM_M87027 2.2129 0.585 0.3398 0.955 ZM_M87051 -4.2189 0.298 0.6598 0.912 ZM_M87036 -1.8401 0.657 4.072 0.52 ZM_M87378 0.797 0.844 5.772 0.362 ZM_M88595 6.2552 0.132 6.5848 0.273 ZM_M87049 4.1652 0.304 7.6698 0.201 ZM_M87335 0.4311 0.915 9.5915 0.13

[0067] TABLE-US-00013 TABLE 5G pMON82452 - rice actin1 promoter SEQ ID NO 14: NF-YB2 Water Sufficient Sufficient Deficit Water Water Stress Water Deficit Event Yield Delta p-value Yield Delta Stress p-value ZM_M87949 5.1553 0.215 6.5758 0.299 ZM_M85725 -9.5685 0.021 1.1316 0.851 ZM_M87438 -9.3518 0.021 0.7814 0.902 ZM_M87019 0.5323 0.896 -0.7982 0.9 ZM_M87010 0.6017 0.885 -1.5234 0.8 ZM_M87952 -2.5268 0.533 -2.5019 0.693 ZM_M85731 -1.7604 0.759 -3.2605 0.627 ZM_M87441 1.9918 0.64 -4.7293 0.481 ZM_M85734 -3.2154 0.428 -4.8284 0.421 ZM_M87937 0.03685 0.993 -6.8934 0.251 ZM_M87427 1.0596 0.794 -7.5684 0.208 ZM_M87000 -0.4518 0.911 -8.2884 0.168 ZM_M87936 -6.7261 0.202 -8.3605 0.213

[0068] TABLE-US-00014 TABLE 5H pMON78305 - P326 promoter SEQ ID 18: NF-YB2 Water Sufficient Sufficient Deficit Water Water Stress Water Deficit Event Yield Delta p-value Yield Delta Stress p-value ZM_S121122 0.8762 0.833 4.1907 0.508 ZM_S121068 -0.7 0.863 4.0241 0.525 ZM_S121130 -0.05682 0.989 3.7963 0.549 ZM_S121124 2.6568 0.512 2.0417 0.734 ZM_S121091 5 0.218 -3.5593 0.574 ZM_S121092 -0.1214 0.977 -5.4083 0.368 ZM_S121070 -2.819 0.497 -5.75 0.364 ZM_S121096 2.6024 0.531 -7.7981 0.218 ZM_S121064 3.5205 0.385 -11.0033 0.067 ZM_S121123 4.4341 0.274 -11.7033 0.051

[0069] TABLE-US-00015 TABLE 5I pMON78304 - FDA/PPDK promoter SEQ ID NO 27: NF-YB2 Water Sufficient Sufficient Deficit Water Water Stress Water Deficit Event Yield Delta p-value Yield Delta Stress p-value ZM_S120150 -15.8444 <.001 -0.53 0.93 ZM_S120028 -14.4106 <.001 -0.9697 0.866 ZM_S119399 -8.5762 0.039 -6.0833 0.288 ZM_S119395 -9.2742 0.022 -7.9389 0.21 ZM_S120146 -15.7765 <.001 -9.3407 0.14 ZM_S120046 -16.665 <.001 -12.3067 0.04

[0070] TABLE-US-00016 TABLE 5J pMON78303 - PPDK promoter SEQ ID 10: NF-YB2 Water Sufficient Sufficient Deficit Water Water Stress Water Deficit Event Yield Delta p-value Yield Delta Stress p-value ZM_S114670 -5.0583 0.212 9.3727 0.139 ZM_S114672 -8.8856 0.028 5.9254 0.324 ZM_S116983 -18.1152 <.001 5.8404 0.331 ZM_S115592 -12.9152 0.001 5.4604 0.363 ZM_S115605 5.2875 0.693 ZM_S115597 -10.8538 0.007 5.1095 0.372 ZM_S115611 -11.1083 0.006 4.1304 0.492 ZM_S115590 -14.397 <.001 -0.8846 0.883 ZM_S117062 -13.6379 <.001 -5.3746 0.371 ZM_S114676 -9.1311 0.024 -6.0133 0.294 ZM_S114678 -14.2968 <.001 -6.8546 0.254 ZM_S117016 -7.45 0.496 -14.662 0.029

[0071] TABLE-US-00017 TABLE 5K pMON73611 - CaMV35S promoter SEQ ID NO 3: NF-YB2 Water Sufficient Sufficient Deficit Water Water Stress Water Deficit Event Yield Delta p-value Yield Delta Stress p-value ZM_S115348 -12.6042 0.25 -0.1982 0.978 ZM_S114565 -23.2198 <.001 -0.6462 0.923 ZM_S114577 -16.5312 <.001 -2.6359 0.645 ZM_S114556 -17.9972 <.001 -4.072 0.498 ZM_S115373 -20.5903 <.001 -4.7313 0.409 ZM_S115260 -26.2934 <.001 -4.7775 0.476 ZM_S114535 -19.7153 <.001 -6.122 0.308 ZM_S114591 -25.0631 <.001 -8.4177 0.142 ZM_S115266 -14.0919 <.001 -12.0466 0.057 ZM_S115340 -17.9381 <.001 -15.3295 0.011 ZM_S115350 -21.8187 0.104 -15.4681 0.021 ZM_S115261 -21.3938 0.111 -20.2605 0.001

[0072] TABLE-US-00018 TABLE 5L pMON73610 - corn root promoter SEQ ID NO 16: NF-YB2 Water Sufficient Sufficient Deficit Water Water Stress Water Deficit Event Yield Delta p-value Yield Delta Stress p-value ZM_S115519 3.9933 0.349 8.0867 0.297 ZM_S115721 1.7023 0.675 7.19 0.283 ZM_S114691 6.5114 0.108 5.4689 0.388 ZM_S115769 8.8727 0.029 5.242 0.383 ZM_S114480 4.2227 0.299 4.172 0.487 ZM_S115567 -2.3 0.716 4.091 0.569 ZM_S117076 1.7811 0.717 2.6267 0.714 ZM_S115703 -2.05 0.613 -0.6922 0.913

[0073] TABLE-US-00019 TABLE 5M pMON73605 - rice actin 1 promoter: NF-YB2 (expression enhanced by cis elements) Water Sufficient Sufficient Deficit Water Water Water Stress Deficit Stress Event Yield Delta p-value Yield Delta p-value ZM_M23837 -23.1583 <.001 -20.7881 <.001 ZM_M24207 -21.8297 <.001 -12.3592 0.057 ZM_M25520 -25.9283 <.001 -15.8775 0.023 ZM_M26961 -23.7417 <.001 -10.1582 0.106 ZM_M26962 -24.8995 <.001 -12.6188 0.052

[0074] To correlate expression of NF-YB protein with water-deficit tolerance and yield under water deficit and optimal water conditions, NF-YB2 protein was measured in the transgenic plants by standard ELISA techniques using polyclonal antibodies raised in rabbit. NF-YB2 protein level is reported as "picograms of NF-YB2 protein per microgram of total protein" and includes both native and exogenous NF-YB2 protein. Total protein was measured using the Bradford protein assay (Bio-Rad, Hercules, Calif.). Background levels of NF-YB2 protein (pg NF-YB2/.mu.g total protein) in each of the tissues measured are as follows: TABLE-US-00020 V3 leaf 3.5 V12 leaf 6 Root 2.5 Silk 5 Tassel 3.2 Kernel 9.1 Immature cob 22.6

[0075] Results of analysis of protein levels in various tissues and at various stages of development are reported in Tables 6A and 6B as the average of multiple events for each construct. TABLE-US-00021 TABLE 6A pg NF-YB2/.mu.g total protein Promoter Yield Leaf Leaf Leaf Leaf aver- Construct sequence table (V3) (V12) (V15) (VT-R1) age PMON84654 2 5D 107.0 121.9 195.3 136.4 144.4 PMON78303 10 5J 71.6 83.1 141.5 112.1 106.9 PMON73611 3 5K 66.0 67.8 127.1 79.6 88.8 PMON78304 27 5I 49.1 56.2 108.7 73.4 75.1 PMON73605 15 5M 39.5 57.7 79.6 54.2 62.2 PMON82754 8 5C 36.5 35.4 64.5 32.6 43.3 PMON78305 18 5H 7.8 5.1 5.3 4.7 5.2 PMON82752 13 5E 6.6 4.9 6.5 5.5 5.6 PMON82452 14 5G 6.0 7.8 10.5 8.7 8.8 PMON73610 16 5L 5.2 3.9 4.5 3.5 4.0 PMON82454 9 5B 1.1 9.2 11.4 5.5 8.5

[0076] TABLE-US-00022 TABLE 6B pg NF-YB2/.mu.g total protein Im- Promoter yield Ker- mature Construct sequence table Root Silk Tassel nel Cob PMON84654 2 5D 4.6 9.6 33.6 33.2 149.6 PMON78303 10 5J 4.9 7.0 12.3 18.4 26.8 PMON73611 3 5K 1.8 18.4 42.9 32.4 59.4 PMON78304 27 5I 3.3 2.9 50.7 21.4 28.3 PMON73605 15 5M 15.6 38.0 20.8 22.2 60.7 PMON82754 8 5C 3.2 6.9 11.5 19.3 44.4 PMON78305 18 5H 1.7 5.4 10.3 15.8 40.1 PMON82752 13 5E 4.5 4.3 9.8 28.0 106.2 PMON82452 14 5G 3.1 3.5 66.8 31.6 38.8 PMON73610 16 5L 3.5 21.6 7.9 33.5 36.7 PMON82454 9 5B 3.9 2.8 4.7 19.6 32.0

[0077] Results of the analysis of data for yield under water-deficit stress conditions, yield under water sufficiency conditions and amounts of NF-YB protein expressed in leaf tissue (corrected to substract background level of NF-YB protein produced from the native DNA) for individual events is presented in Table 7 (as compared to the aggregated construct level data presented in Table 6A and 6B). The data demonstrate an inverse correlation between the level of NF-YB protein expressed and enhanced yield under both water-deficit stress conditions and sufficient water conditions. When yield (bu/acre) is plotted against NF-YB levels, events that show enhanced yield under water-deficit stress conditions, also contained low levels of NF-YB (up to 40 picograms of NF-YB2 protein per microgram of total protein in the plant leaf tissue) (FIG. 3). Similarly, events that show enhanced yield (Yield Deltas shown as bu/acre) under water sufficient conditions also contained low levels of NF-YB (up to 40 picograms of NF-YB2 protein per microgram of total protein in the plant leaf tissue) (FIG. 4). An especially useful embodiment for enhanced yield in corn under a wide range of available water conditions provides 0.1 to 11 pg NFB2/ug total protein. Particular examples are ZM_M87949 (8.0 pg NFB2/ug total protein; +6.6 bu/acre yield increase under water-deficit stress; +5.2 bu/acre yield increase under water sufficiency) and ZM_M88595 (7.5 pg NFB2/ug total protein; +6.6 bu/acre yield increase under water-deficit stress; +6.3 bu/acre yield increase under water sufficiency). TABLE-US-00023 TABLE 7 Yield and Protein Data from Corn Containing Promoter::NF-YB Constructs Water Sufficient Deficit pg NF-YB2/ Water Stress .mu.g total Yield Yield Promoter Vector Event protein Delta Delta Enhanced PMON84654 ZM_S117101 181.5 -41.4 -14.5 CaMV 35S Enhanced PMON84654 ZM_S117341 177.3 -55.5 -15.4 CaMV 35S Enhanced PMON84654 ZM_S119096 170.7 -46.8 -0.1 CaMV 35S Enhanced PMON84654 ZM_S119034 168.1 -48.0 -13.6 CaMV 35S Enhanced PMON84654 ZM_S119033 165.6 -46.0 -18.9 CaMV 35S Enhanced PMON84654 ZM_S119061 164.8 -37.0 -11.8 CaMV 35S Enhanced PMON84654 ZM_S117108 158.7 -43.9 -11.8 CaMV 35S Enhanced PMON84654 ZM_S119088 157.2 -48.2 -13.1 CaMV 35S Enhanced PMON84654 ZM_S119099 143.7 -43.8 -15.7 CaMV 35S Enhanced PMON84654 ZM_S119030 139.3 -44.4 -12.9 CaMV 35S Enhanced PMON84654 ZM_S119047 136.0 -52.5 -13.9 CaMV 35S PPDK PMON78303 ZM_S115590 123.8 -14.4 -0.9 PPDK PMON78303 ZM_S114678 121.0 -14.3 -6.9 CaMV 35S PMON73611 ZM_S114565 117.1 -23.2 -0.6 PPDK PMON78303 ZM_S115592 110.8 -12.9 5.5 Enhanced PMON84654 ZM_S119077 110.4 -31.7 -20.6 CaMV 35S PPDK PMON78303 ZM_S115597 107.4 -10.9 5.1 PPDK PMON78303 ZM_S115611 107.1 -11.1 4.1 PPDK PMON78303 ZM_S114670 106.4 -5.1 9.4 PPDK PMON78303 ZM_S114672 105.4 -8.9 5.9 CaMV 35S PMON73611 ZM_S114591 104.7 -25.1 -8.4 PPDK PMON78303 ZM_S116983 104.6 -18.1 5.8 Enhanced PMON84654 ZM_S117346 104.3 -15.6 Not CaMV 35S determined PPDK PMON78303 ZM_S117062 102.3 -13.6 -5.4 CaMV 35S PMON73611 ZM_S115340 102.1 -17.9 -15.3 CaMV 35S PMON73611 ZM_S115260 100.9 -26.3 -4.8 PPDK PMON78303 ZM_S115605 100.8 Not 5.3 determined CaMV 35S PMON73611 ZM_S115373 97.2 -20.6 -4.7 CaMV 35S PMON73611 ZM_S114535 92.8 -19.7 -6.1 Rubisco PMON82754 ZM_S110893 86.9 -7.8 0.3 activase CaMV 35S PMON73611 ZM_S114577 86.8 -16.5 -2.6 PPDK PMON78303 ZM_S114676 83.0 -9.1 -6.0 FDA/PPDK PMON78304 ZM_S120046 76.7 -16.7 -12.3 FDA/PPDK PMON78304 ZM_S120146 75.8 -15.8 -9.3 FDA/PPDK PMON78304 ZM_S120028 75.1 -14.4 -1.0 CaMV 35S PMON73611 ZM_S115261 74.7 -21.4 -20.3 PPDK PMON78303 ZM_S117016 74.4 -7.5 -14.7 FDA/PPDK PMON78304 ZM_S119395 72.2 -9.3 -7.9 CaMV 35S PMON73611 ZM_S115266 72.1 -14.1 -12.0 CaMV 35S PMON73611 ZM_S115350 71.7 -21.8 -15.5 FDA/PPDK PMON78304 ZM_S120150 70.8 -15.8 -0.5 CaMV 35S PMON73611 ZM_S115348 69.6 -12.6 -0.2 FDA/PPDK PMON78304 ZM_S119399 64.9 -8.6 -6.1 CaMV 35S PMON73611 ZM_S114556 61.3 -18.0 -4.1 Rubisco PMON82754 ZM_S110843 53.8 -2.3 4.5 activase Rubisco PMON82754 ZM_S110119 48.7 -6.2 -14.7 activase Rubisco PMON82754 ZM_S110134 46.6 -10.2 -3.4 activase Rubisco PMON82754 ZM_S110106 44.5 -12.4 1.0 activase Rubisco PMON82754 ZM_S110144 43.4 -7.0 13.6 activase Rubisco PMON82754 ZM_S110890 42.0 -5.0 10.7 activase Rubisco PMON82754 ZM_S110837 37.0 -3.4 3.9 activase Rubisco PMON82754 ZM_S111476 37.0 -3.7 -0.2 activase Enhancerless PMON82453 ZM_M87051 16.1 -4.2 0.7 rice actin rab17 PMON82454 ZM_S112701 15.7 -5.5 1.0 Enhancerless PMON82452 ZM_M87438 14.8 -9.4 0.8 rice actin Enhancerless PMON82452 ZM_M87010 14.3 0.6 -1.5 rice actin rab17 PMON82454 ZM_S112696 11.1 -6.3 0.5 rab17 PMON82454 ZM_S111896 10.9 -3.6 -2.0 Enhancerless PMON82453 ZM_M88601 10.8 6.3 -4.1 rice actin Enhancerless PMON82452 ZM_M87952 10.5 -2.5 -2.5 rice actin rab17 PMON82454 ZM_S112667 10.3 -7.0 -3.8 rab17 PMON82454 ZM_S110587 10.2 -3.2 -4.6 rab17 PMON82454 ZM_S110594 10.1 -4.3 0.4 Enhancerless PMON82453 ZM_M87033 9.9 1.5 -1.0 rice actin rab17 PMON82454 ZM_S112682 9.7 0.7 -5.8 Enhancerless PMON82453 ZM_M88129 9.5 0.4 0.0 rice actin Enhancerless PMON82452 ZM_M87937 9.5 0.0 -6.9 rice actin rab17 PMON82454 ZM_S112657 9.2 -0.4 1.1 Enhancerless PMON82452 ZM_M87441 9.2 2.0 -4.7 rice actin rab17 PMON82454 ZM_S112654 9.1 -8.3 0.9 Rice tubulin pMON82752 ZM_M82769 9.0 -2.0 5.3 Enhancerless PMON82452 ZM_M87000 8.9 -0.5 -8.3 rice actin Enhancerless PMON82452 ZM_M87019 8.8 0.5 -0.8 rice actin Enhancerless PMON82452 ZM_M85731 8.8 -1.8 -3.3 rice actin Enhancerless PMON82453 ZM_M87036 8.7 -1.8 4.1 rice actin Enhancerless PMON82453 ZM_M87027 8.4 2.2 0.3 rice actin Enhancerless PMON82452 ZM_M85725 8.4 -9.6 1.1 rice actin rab17 PMON82454 ZM_S112713 8.3 10.2 0.1 Enhancerless PMON82453 ZM_M87049 8.1 4.2 7.7 rice actin Enhancerless PMON82453 ZM_M87378 8.0 0.8 5.8 rice actin Enhancerless PMON82452 ZM_M87949 8.0 5.2 6.6 rice actin Enhancerless PMON82452 ZM_M85734 8.0 -3.2 -4.8 rice actin Rice tubulin pMON82753 ZM_M86065 7.8 -8.8 -8.9 Rice tubulin pMON82752 ZM_M84408 7.6 -0.8 7.1 Enhancerless PMON82453 ZM_M88602 7.6 5.9 -0.9 rice actin Rice tubulin pMON82752 ZM_M82855 7.5 -35.2 3.4 Rice tubulin pMON82752 ZM_M85712 7.5 -10.5 -6.5 Enhancerless PMON82453 ZM_M88595 7.5 6.3 6.6 rice actin Rice tubulin pMON82753 ZM_M83475 7.4 2.9 5.5 Enhancerless PMON82453 ZM_M87335 7.4 0.4 9.6 rice actin Rice tubulin pMON82753 ZM_M84105 7.2 -15.1 0.5 Rice tubulin pMON82753 ZM_M84738 7.0 2.1 1.8 Rice tubulin pMON82753 ZM_M84086 7.0 1.4 -2.2 rab17 PMON82454 ZM_S112714 7.0 0.4 -12.0 Enhancerless PMON82452 ZM_M87427 7.0 1.1 -7.6 rice actin Rice tubulin pMON82753 ZM_M84741 6.9 -11.3 -7.9 Enhancerless PMON82453 ZM_M87052 6.9 -4.0 -7.6 rice actin Enhancerless PMON82452 ZM_M87936 6.8 -6.7 -8.4 rice actin Rice tubulin pMON82753 ZM_M86087 6.7 -11.0 -5.8 Rice tubulin pMON82752 ZM_M83321 6.5 3.2 -5.7 Rice tubulin pMON82753 ZM_M83478 6.4 -5.3 -8.0 Rice tubulin pMON82752 ZM_M82773 6.4 0.4 10.5 Rice tubulin pMON82752 ZM_M83306 6.4 -1.2 1.0 Rice tubulin pMON82752 ZM_M84389 6.2 -1.5 3.9 Rice tubulin pMON82752 ZM_M84393 6.1 0.9 -5.2 p326 PMON78305 ZM_S121096 6.1 2.6 -7.8 Rice tubulin pMON82753 ZM_M86067 5.9 4.5 16.0 Rice tubulin pMON82753 ZM_M83476 5.9 -6.7 11.8 Rubisco PMON82754 ZM_S110873 5.8 -0.4 -6.0 activase Rice tubulin pMON82753 ZM_M83470 5.8 -2.3 1.1 p326 PMON78305 ZM_S121092 5.8 -0.1 -5.4 NAS PMON73610 ZM_S115519 5.8 4.0 8.1 Rice tubulin pMON82752 ZM_M83933 5.7 -8.8 14.4 p326 PMON78305 ZM_S121064 5.7 3.5 -11.0 Rice tubulin pMON82753 ZM_M84797 5.6 -3.6 11.7 Rice tubulin pMON82752 ZM_M82772 5.5 -0.9 -6.0 p326 PMON78305 ZM_S121124 5.5 2.7 2.0 p326 PMON78305 ZM_S121122 5.4 0.9 4.2 p326 PMON78305 ZM_S121123 5.4 4.4 -11.7 p326 PMON78305 ZM_S121068 5.3 -0.7 4.0 NAS PMON73610 ZM_S114691 5.3 6.5 5.5 Rice tubulin pMON82753 ZM_M83465 5.1 0.4 -4.5 p326 PMON78305 ZM_S121130 5.0 -0.1 3.8 Rice tubulin pMON82752 ZM_M82770 4.7 -14.3 5.6 NAS PMON73610 ZM_S115769 4.6 8.9 5.2 NAS PMON73610 ZM_S114480 4.4 4.2 4.2 NAS PMON73610 ZM_S117076 4.4 1.8 2.6 NAS PMON73610 ZM_S115703 4.4 -2.1 -0.7 NAS PMON73610 ZM_S115567 4.0 -2.3 4.1 p326 PMON78305 ZM_S121070 3.9 -2.8 -5.8 NAS PMON73610 ZM_S115721 3.9 1.7 7.2 p326 PMON78305 ZM_S121091 3.6 5.0 -3.6

EXAMPLE 4

[0078] Transgenic cotton plants prepared as described in Example 1 comprising DNA constructs stably inserted in the chromosome and expressing an NF-YB protein under the control of promoters shown in Table 8 are evaluated for yield under water deficit stress and sufficient conditions. TABLE-US-00024 TABLE 8 Promoter::NF-YB Constructs in Transgenic Cotton Plants Promoter Promoter SEQ ID Protein Vector Enhanced CaMV 35S SEQ ID NO: 2 Arabidopsis pMON83103 G481 rd29a SEQ ID NO: 19 Arabidopsis pMON95538 G481 Tsfl SEQ ID NO: 60 Arabidopsis pMON95559 G481

[0079] Events of transgenic cotton plants comprising the above constructs and expressing the Arabidopsis NF-YB protein are grown under water deficit stress and sufficient water conditions and events are identified that have low leaf protein levels which impart improved yield (lbs/acre) as compared to wild type control plants when grown under water deficit stress conditions and comparable or improved yield as compared to wild type control plants when grown under sufficient water conditions.

EXAMPLE 5

[0080] Transgenic soybean plants prepared as described in Example 1 comprising DNA constructs stably inserted in the chromosome and expressing an NF-YB protein under the control of promoters shown in Table 9 are evaluated for yield under water deficit stress and sufficient conditions. TABLE-US-00025 TABLE 9 Promoter::NF-YB Constructs in Transgenic Soybean Plants Promoter Promoter SEQ ID Protein Vector Soybean phaseolin SEQ ID NO: 61 Arabidopsis pMON106646 G481 Enhanced CaMV 35S SEQ ID NO: 2 Soybean pMON83057 G481-6 Enhanced CaMV 35S SEQ ID NO: 2 Arabidopsis pMON63796 G481

[0081] Events of transgenic soybean plants comprising the above constructs and expressing the Arabidopsis or soybean G481 NF-YB proteins are grown under water deficit stress and sufficient water conditions and events are identified that have low leaf protein levels which impart improved yield yield (bu/acre) as compared to wild type control plants when grown under water deficit stress conditions and comparable or improved yield as compared to wild type control plants when grown under sufficient water conditions.

EXAMPLE 6

[0082] Transgenic alfalfa, canola, switchgrass, sugarcane and rice plants prepared as described in Example 1 comprising DNA constructs stably inserted in the chromosome and expressing an NF-YB protein under the control of promoters shown in Table 1 are evaluated for yield under water deficit stress and sufficient water conditions. Events of these transgenic plants are grown under water deficit stress and sufficient water conditions and events are identified that have low leaf protein levels which impart improved yields compared to wild type control plants when grown under water deficit stress conditions and comparable or improved yield as compared to wild type control plants when grown under sufficient water conditions.

[0083] All of the materials and methods disclosed and claimed herein can be made and used without undue experimentation as instructed by the above disclosure. Although the materials and methods of this invention have been described in terms of preferred embodiments and illustrative examples, it will be apparent to those of skill in the art that variations may be applied to the materials and methods described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

Sequence CWU 1

1

61 1 613 DNA Cauliflower mosaic virus 1 ggtccgatgt gagacttttc aacaaagggt aatatccgga aacctcctcg gattccattg 60 cccagctatc tgtcacttta ttgtgaagat agtggaaaag gaaggtggct cctacaaatg 120 ccatcattgc gataaaggaa aggccatcgt tgaagatgcc tctgccgaca gtggtcccaa 180 agatggaccc ccacccacga ggagcatcgt ggaaaaagaa gacgttccaa ccacgtcttc 240 aaagcaagtg gattgatgtg atggtccgat tgagactttt caacaaaggg taatatccgg 300 aaacctcctc ggattccatt gcccagctat ctgtcacttt attgtgaaga tagtggaaaa 360 ggaaggtggc tcctacaaat gccatcattg cgataaagga aaggccatcg ttgaagatgc 420 ctctgccgac agtggtccca aagatggacc cccacccacg aggagcatcg tggaaaaaga 480 agacgttcca accacgtctt caaagcaagt ggattgatgt gatatctcca ctgacgtaag 540 ggatgacgca caatcccact atccttcgca agacccttcc tctatataag gaagttcatt 600 tcatttggag agg 613 2 612 DNA Cauliflower mosaic virus 2 ggtccgattg agacttttca acaaagggta atatccggaa acctcctcgg attccattgc 60 ccagctatct gtcactttat tgtgaagata gtggaaaagg aaggtggctc ctacaaatgc 120 catcattgcg ataaaggaaa ggccatcgtt gaagatgcct ctgccgacag tggtcccaaa 180 gatggacccc cacccacgag gagcatcgtg gaaaaagaag acgttccaac cacgtcttca 240 aagcaagtgg attgatgtga tggtccgatt gagacttttc aacaaagggt aatatccgga 300 aacctcctcg gattccattg cccagctatc tgtcacttta ttgtgaagat agtggaaaag 360 gaaggtggct cctacaaatg ccatcattgc gataaaggaa aggccatcgt tgaagatgcc 420 tctgccgaca gtggtcccaa agatggaccc ccacccacga ggagcatcgt ggaaaaagaa 480 gacgttccaa ccacgtcttc aaagcaagtg gattgatgtg atatctccac tgacgtaagg 540 gatgacgcac aatcccacta tccttcgcaa gacccttcct ctatataagg aagttcattt 600 catttggaga gg 612 3 293 DNA Cauliflower mosaic virus 3 ccgatcctac ctgtcacttc atcaaaagga cagtagaaaa ggaaggtggc atctacaaat 60 gccatcattg cgataaagga aaggctatca ttcaagattc ctctgccgac agtggtccca 120 aagatggacc cccacccact aggagcatcg tggaaaaaga agacgttcca accacgtctt 180 caaagcaagt ggattgatgt gatacttcca ctgacgtaag ggatgacgca caatcccact 240 atccttcgca agacccttcc tctatataag gaagttcatt tcatttggag agg 293 4 1696 DNA Oryza sativa 4 tattctgtca tcagctatca ctgctctgcc tgaacttgtc tgagctatta ctactgtagt 60 atatgaattt atgaagtgga gtctcgtaac aaaaatacga gtatactccg tactgtacta 120 cccttatcag gattcaagga tactaggagt atagcattac cagatcaggc acttagatgt 180 ggccatccaa agagtaatgg taatagccta ataggagtac catctactat tgatctttca 240 aaaaaaaaag tactagtata gaagtagtat ccagctagag ctgcttaaca gggtcagaat 300 ttgtccaaac agagcttgta atgcacactg acgaagtcga tccgatcgaa tcagagtcaa 360 catttaaaga gtactatttc gaagtaaaac tgttcagttc ttacaagatt acatgtgaat 420 ttgcaagact tggacatgag tgttcatctc gtagtttaat gatgggtacc caacctgcaa 480 caacagtgct ttaaattgta caagcagagg gtaccaacag agtaatttgc acatgcagtc 540 ctgaacctga tgccattgcg aaacacacaa ccctatacgg tgcagatgca agggagccca 600 attcagtccc agccattatc tgtattgccg tacttccgca gggaaagtta ccctctcatc 660 tgatctacca ttgcatacat ctcaaaagga agtgagtaaa aaagaaaaca ggaccaatct 720 tcagagataa gtttttgaaa cctatcttca gagataagtt cactcggcga taggagagga 780 cctgatttgg actcaaatca ggtgttgacg aatagagtag caagagtttt ttcgacgggt 840 caagacctca agggtcttaa cagttgaact aactcggtta tgatttggac acttggtgat 900 taactactga taatagtact acttattgtt attggcttgt tacatcattc ggtgctcaaa 960 aatcagatgc aaatttagat gggacagaca gcagctacta gcaacataag agaattatgt 1020 tcagtgtatc atgcatgact aaactctgaa cgtactcacc tggatccaga tgcgagcagt 1080 acagtacctg tgcacattgc ttgtgtatta ctccacttaa ttacgaactc tattattttc 1140 ctccgataat gcccgcagaa caaggttgtc actgaaaaat ggtcctctcc agagtccagg 1200 agctatagga ggagtatgat actccttagc aatcatatac tcatatgaca tatccaaatt 1260 gacaccgggg ttaagccgtt aaccgtcact acgagttgca cttgtataaa caaaaaacaa 1320 gggagaaaac cttgtgtccc ccccatgatg cagaaatcta ataagagcag cccaacgctt 1380 ccggttggtg gcggtagacc ggcctcttta aactacccca tccgccccag atttatcaat 1440 tactcctcgt catctcgtct cgtctccgcc accgtgcgcg cgtcccctat attagacccc 1500 ccaaccgggc accggacaca ccatcaccaa cacaccactg caaacccatc cgcctccgca 1560 ccgcatcgca cctacaaatt gtgcacgctg caccgctcaa aaaaaagaag aaactaaagt 1620 cgtacgtagg acgcggcgtg cgagcgttgg tgcggtgcgc ggcggcgcgc ggggaagtag 1680 tgagagcatc gatcat 1696 5 1406 DNA Zea mays 5 gattggtaga atccgacggg ttgatacccc tgcaatcgta gcgtgatgag ggtgtgaatg 60 ttgccgatgt gtggacttcg aggaaatgat agcccctgga tgccgagata gccgaagtcg 120 aggtggtcgt ggtcgggaga cacgcagcag tagcctattc tttggtaggg gtcgatgttc 180 aagcgtcaac gatcggctgg gcgacataaa aattagcacc agggtgacct tcttgcttct 240 tcgatcgtct ggacgtcgag gagccccgcg gcagcgcacg cgtctgcacc gttatggtgg 300 ccgcgctcgc gatggaatag aaggggtaat gatggatccg gccaggaagg ccacgacatc 360 gacggatcca accggcaaga cggcgatccg gttaaataga cgacggatct agctgggaag 420 gtagactcta tattaaatga ggttgtacat gccctaataa ctttataaat ctaatttatt 480 cagaggcaag gtagtagtat tatctttccc aacggatagt tatctgatct gccgttcagc 540 ttgatcgata actttataaa tctaatttat tcagaggccg gcggcagcgc acacgtctgc 600 accagtaatg ttagccgcgc ctgtggcgta atagaagggg taacgatgga tccgaccaga 660 aaggcctcga catcgacgga tccagacggc gatccggtca aagagacgac gaatctagcc 720 gagaaggtag atctctcgag agagttcata ttaaatgatg ttgtacatgc cataataact 780 ctataaatct aatttattca taggcgaagg tagtagtatt atctttccca gcggatcgtt 840 atctgatctg ccgttcagct tgatcgatcc acgtcgtttg atctcggcga gcagcacatg 900 gcggctcttc ttgtgtacag gtctcactct ctgctacttc agtgcaaggc ggagtgaacg 960 cacacaataa cgtgagtatt gtgggaacta ccttgtagat gcaaacgatg taaatccacc 1020 tgctccacca agtgcccgcc cggctctatc cattccattc gtcaacatgc aggttcaaga 1080 ctggcccgtg ctggaccagt gagcggtgcc ggtggacccc aatgcaagcg aagcgagtga 1140 ccatcgggga agcctcccgt gctgccccca catggcttgc ctgaatgcct ctctctcgcc 1200 gcagtgccct ctctctctcc tcctcctctc cgtcgaaggg cgtcacgaga gcccagaggg 1260 catccgaggc ccccacccca ccccttcctc ccgtgtatat aagcagtggc agggtgagcg 1320 tctctcctca gaccaccact gcgccatggc cagctagagc caaccagaag agcttgcagt 1380 tactgagagt gtgtgagaga gagagg 1406 6 763 DNA Sorghum sp. 6 ccggccgcca tggcggccgc gggaaattcg attccacgga gttctagatt tggtttttgc 60 ggtgaactaa acaaggccat atattagtgt gctgtgtttc cccctacgaa gcattgtgga 120 gtcgtgcttg atccacgtcg tttgatctgg gcgaggtgca caaacgtcac atggctcttc 180 ttgctacttc agtgcaaagg gagtgtatgc atgcacacaa taatgcggcc tgcgtctgtg 240 tacggtagaa aaatacttta tacaggatat gcaacgacgt gaatgctgca cctgccccct 300 gcccctgccc ctgcccgccc tagtagctat tcacggctct atccattcca ttgccgtgcg 360 tcaacaggtc cagactggcc cgggtccaag cgagtgacca acgcgggaag cctcccgtcc 420 ctccctcccc cacatgggac atggctgcct gatgaatgcc tctcgccgca ctgcccctgc 480 ccctgcccct gcccctgccc tcactccatc ggagggcggc ggcttcacga gagccgagca 540 ggacccagac ccagcgggca tccgaggccc ccacccccac ccccacccct tcctccgtgt 600 ataaaagcgg tgccagggtg agcgtctctc ctcacactga ctgcaccaga acaagagctt 660 gagagtgaga gtgaggctgc agggaagtgt aatcactagt gaattcgcgg ccgcctgcag 720 gtcgaccata tgggagagct cccaacgcgt tggatgaagc tgg 763 7 1031 DNA Zea mays 7 gatcgtgatt taaccgcaag tcacatttag cacttaaatc cttccaccac cagctcaata 60 atctttataa aaaaacccct aacaaatcat ggttgtatct gtggttggat cgtaatctaa 120 tgaatcaaat agtttgcttg cacgcttaca cagaaacact gcttgcatag cagtcgttgc 180 ctatgtctta catgcaaatt tcatgagtca tgggctcata accaatgcca ctggtacact 240 gttataagga atattcgtcc tagcgtaaag aacttaagta tattaatata atttacctta 300 cacatctaaa gaagcacaaa tccattgaaa atgataaatt tcagttctta ccttgtcctc 360 gatctcatct gttttgattg ctggtaaata cattcgatcc tttttttaaa aaaaaactga 420 agatattttt gccacttcaa tctattttga cgtgatcata cggaccgcca ggcatttttt 480 ttcgcctttc tttaacctca tctcatcggc aattaaagac cagggaaata gtaattgcga 540 caggcttctc tggtcctatt ggcgatcagg acaacccacc taaaacacat gccaaaaagg 600 gctttctctc cctgctgaac accaactacc ctgcgccggg tccagggtgc gccgggttct 660 ccctctcgct cccacgcggc aaaccccacg acgtgctata aatattccac gaacggcccg 720 gatacctcca gccccgcatc gcaccctccc tggccgcctt ctcttctcca gcgtccgatc 780 tctcccactc gccttcctca ccgcagctct cccggctcgg tcgcttcgcc acctccgtcc 840 tccccccgcg ctcggtcgct cgccacctgc tctcccctcc ctccacgttg ctcgcgcccg 900 cgcttatata aggtacgccg cctcgactct ccaaacccct ccgcgtggac ctaaggtccg 960 gcgcgccgag atggagctga tggatctagg gtttcggttg cggcggcggt cctgtagtgc 1020 aggaggagct c 1031 8 1603 DNA Zea mays 8 ctgcgtgtac aactaatata attgtccaaa caatttctgt ggcacgtact taagtttgag 60 ccaggataca aactttggcc gctaatggtt gctgtcgccg gtcaagaggg cgttggctac 120 ttgagttaga ttttggttgt gtttcatccc cacgtacgtc cagcaaagaa aaattgaagc 180 tagtgcatgc atggttcgtc atcaaatgca tggccggccg gatacaaatt tgaactgtag 240 ctatcgacgt acgcatgtat taatttatat cagagaagac aaggaacaca gatacataca 300 tgtcgaaaca atcattttct atggcacttg agctagctag catacaattt tgttttaaat 360 gaaatgaaac tgaagacgat cgatcgaatt gaaggttgtg gttcgtgagc aatgcaatgc 420 agtttcacag aacgttgcca atgcaacaag ccaccaagaa aagagaagtc tactcgatct 480 tgcaatgatt aggcttggat gatgcgtggg gccacgtacg tatggacatc gaagaacccc 540 atcctcagcg tgtggcctga gggtgatggc aaagctgatc cacacattgc ggcccccttt 600 cccccctcag agaccctgac ctcccgagca cagccagcca ccgcgcaacg ccggccacca 660 ccaccaccac catacctgct agcgctagct ctctttattt aacgccgccg tgtgcgtgcc 720 tcgacgacct cactactttg agctgcaagg tccgaactaa aaagcacaag aaagatctac 780 cgtcttcggt acgcgctcac tccgccctct gcctttgtta ctgccacgtt tctctgaatg 840 ctctcttgtg tggtgattgc tgagagtggt ttagctggat ctagaattac actctgaaat 900 cgtgttctgc ctgtgctgat tacttgccgt cctttgtagc agcaaaatat agggacatgg 960 tagtacgaaa cgaagataga acctacacag caatacgaga aatgtgtaat ttggtgctta 1020 gcggtattta tttaagcaca tgttggtgtt atagggcact tggattcaga agtttgctgt 1080 taatttaggc acaggcttca tactacatgg gtcaatagta tagggattca tattataggc 1140 gatactataa taatttgttc gtctgcagag cttattattt gccaaaatta gatattccta 1200 ttctgttttt gtttgtgtgc tgttaaattg ttaacgcctg aaggaataaa tataaatgac 1260 gaaattttga tgtttatctc tgctccttta ttgtgaccat aagtcaagat cagatgcact 1320 tgttttaaat attgttgtct gaagaaataa gtactgacag tattttgatg cattgatctg 1380 cttgtttgtt gtaacaaaat ttaaaaataa agagtttcct ttttgttgct ctccttacct 1440 cctgatggta tctagtatct accaactgac actatattgc ttctctttac atacgtatct 1500 tgctcgatgc cttctcccta gtgttgacca gtgttactca catagtcttt gctcatttca 1560 ttgtaatgca gataccaagc ggcctctaga ggccctacgg gcc 1603 9 582 DNA Zea mays 9 ggtactcctg agatactata ccctcctgtt ttaaaatagt tggcattatc gaattatcat 60 tttacttttt aatgttttct cttcttttaa tatattttat gaattttaat gtattttaaa 120 atgttatgca gttcgctctg gacttttctg ctgcgcctac acttgggtgt actgggccta 180 aattcagcct gaccgaccgc ctgcattgaa taatggatga gcaccggtaa aatccgcgta 240 cccaactttc gagaagaacc gagacgtggc gggccgggcc accgacgcac ggcaccagcg 300 actgcacacg tcccgccggc gtacgtgtac gtgctgttcc ctcactggcc gcccaatcca 360 ctcatgcatg cccacgtaca cccctgccgt ggcgcgccca gatcctaatc ctttcgccgt 420 tctgcacttc tgctgcctat aaatggcggc atcgaccgtc acctgcttca ccaccggcga 480 gccacatcga gaacacgatc gagcacacaa gcacgaagac tcgtttagga gaaaccacaa 540 accaccaagc cgtgcaagca ccctgcaggg gccctacggg cc 582 10 1790 DNA Zea mays 10 gacatggagg tggaaggcct gacgtagata gagaagatgc tcttagcttt cattgtcttt 60 cttttgtagt catctgattt acctctctcg tttatacaac tggtttttta aacactcctt 120 aacttttcaa attgtctctt tctttaccct agactagata attttaatgg tgattttgct 180 aatgtggcgc catgttagat agaggtaaaa tgaactagtt aaaagctcag agtgataaat 240 caggctctca aaaattcata aactgttttt taaatatcca aatattttta catggaaaat 300 aataaaattt agtttagtat taaaaaattc agttgaatat agttttgtct tcaaaaatta 360 tgaaactgat cttaattatt tttccttaaa accgtgctct atctttgatg tctagtttga 420 gacgattata taattttttt tgtgcttaac tacgacgagc tgaagtacgt agaaatacta 480 gtggagtcgt gccgcgtgtg cctgtagcca ctcgtacgct acagcccaag cgctagagcc 540 caagaggccg gaggtggaag gcgtcgcggc actatagcca ctcgccgcaa gagcccaaga 600 gaccggagct ggaaggatga gggtctgggt gttcacgaat tgcctggagg caggaggctc 660 gtcgtccgga gccacaggcg tggagacgtc cgggataagg tgagcagccg ctgcgatagg 720 ggcgcgtgtg aaccccgtcg cgccccacgg atggtataag aataaaggca ttccgcgtgc 780 aggattcacc cgttcgcctc tcaccttttc gctgtactca ctcgccacac acaccccctc 840 tccagctccg ttggagctcc ggacagcagc aggcgcgggg cggtcacgta gtaagcagct 900 ctcggctccc tctccccttg ctccatttga tagtgcaacc catcgagcta caggcctaat 960 ctagcctcgg actagtcgag agatctaccg tcttcggtac gcgctcactc cgccctctgc 1020 ctttgttact gccacgtttc tctgaatgct ctcttgtgtg gtgattgctg agagtggttt 1080 agctggatct agaattacac tctgaaatcg tgttctgcct gtgctgatta cttgccgtcc 1140 tttgtagcag caaaatatag ggacatggta gtacgaaacg aagatagaac ctacacagca 1200 atacgagaaa tgtgtaattt ggtgcttagc ggtatttatt taagcacatg ttggtgttat 1260 agggcacttg gattcagaag tttgctgtta atttaggcac aggcttcata ctacatgggt 1320 caatagtata gggattcata ttataggcga tactataata atttgttcgt ctgcagagct 1380 tattatttgc caaaattaga tattcctatt ctgtttttgt ttgtgtgctg ttaaattgtt 1440 aacgcctgaa ggaataaata taaatgacga aattttgatg tttatctctg ctcctttatt 1500 gtgaccataa gtcaagatca gatgcacttg ttttaaatat tgttgtctga agaaataagt 1560 actgacagta ttttgatgca ttgatctgct tgtttgttgt aacaaaattt aaaaataaag 1620 agtttccttt ttgttgctct ccttacctcc tgatggtatc tagtatctac caactgacac 1680 tatattgctt ctctttacat acgtatcttg ctcgatgcct tctccctagt gttgaccagt 1740 gttactcaca tagtctttgc tcatttcatt gtaatgcaga taccaagcgg 1790 11 1263 DNA Zea mays 11 acttaaaaat caacaatatc ttcacatgac ttaattataa tgtcttgctt gagacgttgt 60 ttttgctact acataagata aagttcaaat aaatgcatgg tggagttcag cctaggcaaa 120 gtgatggtcc gaatgattaa caccccaagc aagacattat aagtcatgtg aagatctgca 180 agacgtgcta agagtctctg acacaccaac aagtggaagc ccgaacaaac aaaaacgaag 240 ccatcaaagt tgagataaag aggtggataa attgaaaatt gtctcatgat tttggatata 300 ctcaaatcga catgacttca tctctaaact atagaacttt tgatttgctt ttcaaaaagt 360 ccaagatcaa caaaacgtgt tggtgggtgc gggtttggtt cttaacccaa taggtttttt 420 ctcgtgtgta tgaaaaggtt gtacccatgt gtgaccgagc cagacagggg tacgggcaaa 480 ccgaagggaa accacttagg tggatccctt ggctagcctg agactgacac accataagtg 540 atcggccgct tttaactacg cctggtgccg agccacaata gagatgtcgg tctgtctccc 600 acttatgacc tacgaacccc tcgtactatg gctcatctat gggtcgtgtg ccccttggct 660 tactgcgcac tcatgcccta tcaaggctag gccagagtgc gtaggccgct ttcagagatc 720 actcggtgaa aaaatcactc ggtgatgaaa ccggcgaact gtcgttgggt gggtgggtct 780 tactatcaaa gaaaacgtat tccagcaaac gtattccact ctccacaaaa taaacatttc 840 tgttcggtta cctaggtgag gcatcctgta agaacttggc tgtgtttagt cacagcaaac 900 gtataccact ctccacaaaa taaaataaaa aacgggtcag tgaagctgca attaatccct 960 tctcttgctt gctggttgct gccagggaaa tggcattagt gtttgttccc gttccgaaga 1020 ccgcagcaac ccccggaatc ggaaacgcct gccccctgca gcaccaaaga ccgtaccaac 1080 ccccgcaatc gcagttcgca aaccaaacta atttgtgtac acaaaccggc cccgtctcgg 1140 ttctattcta taaaaccccc gccagaccgc tggcttgttc cgtcgcctcc gctgtccgct 1200 gcacagactg tagtaccggg gcaggggcag gggcaggggc acaaacagag ccacaccaca 1260 cac 1263 12 925 DNA Pisum sativum 12 tatgaaccaa gtttcttgtt cttcaaactt tttctaattc tccatcttag agtttctttt 60 cataattaat gtaggaattg accctagtaa gaaagtcact catacccttt ccttcttcta 120 gccctaaatt tccgtgaaac atatagtctt cccttaaccc tttttggaac atccaacatt 180 gcagcttatc atatattgat cctactttgg tgaagcgttc catgtactcc cggaggattt 240 ccattttcat ctattggatt cctatgaaga caactatagt cttggatttc aaattttggg 300 aagtaaacta ggaagtgaag gagtagcaga attccttcca agaatctatg caaccatcag 360 gtaagatttt aaaccatgtc atggcagctc cattgtgggt cagggcgtat agtttacatt 420 tcacaacgct ctatcccgtg acattattaa ataccatttt gaaataaaaa gtttctacaa 480 aaaaagtcct tcgtcgttat ccatcatttt tattaaagta tattttatta tttattcaaa 540 caagtaatca tccattagcg gagaaataga ggagtgaagc atttaacttt tccaaacgaa 600 agcgacgtaa tcaacctaca tttgacttag attggattaa gcatgcaaca aattaaaatt 660 taatcgccgt tgcaatttgc acaccacaat aagacgtgtg atgaaaacga tatctacgtg 720 gaaataatcc aagggtggcc ttgtggaccc atgcaacaca ggatgacaac acgtggacgg 780 tcaagatttc accaattatt ctctcccacc ttataaaatg gggcacgcaa catcattaaa 840 agacatcaat tgtagtgaag ataacagcaa ccaagcaatt aatatcaatt gttgtttgca 900 aaaaatctta ggttctgaaa atacc 925 13 2192 DNA Oryza sativa 13 gacaacaaca tgcttctcat caacatggag ggaagaggga gggagaaagt gtcgcctggt 60 cacctccatt gtcacactag ccactggcca gctctcccac accaccaatg ccaggggcga 120 gctttagcac agccaccgct tcacctccac caccgcacta ccctagcttc gcccaacagc 180 caccgtcaac gcctcctctc cgtcaacata agagagagag agaagaggag agtagccatg 240 tggggaggag gaatagtaca tggggcctac cgtttggcaa gttattttgg gttgccaagt 300 taggccaata aggggaggga tttggccatc cggttggaaa ggttattggg gtagtatctt 360 tttactagaa ttgtcaaaaa aaaatagttt gagagccatt tggagaggat gttgcctgtt 420 agaggtgctc ttaggacatc aaattccata aaaacatcag aaaaattctc tcgatgaaga 480 tttataacca ctaaaactgc cctcaattcg aagggagttc aaaacaatta aaatcatgtt 540 cgaattgagt ttcaatttca ctttaacccc tttgaaatct caatggtaaa acatcaaccc 600 gtcaggtagc atggttcttt ttattccttt caaaaagagt taattacaaa cagaatcaaa 660 actaacagtt aggcccaagg cccatccgag caaacaatag atcatgggcc aggcctgcca 720 ccaccctccc cctcctggct cccgctcttg aatttcaaaa tccaaaaata tcggcacgac 780 tggccgccga cggagcgggc ggaaaatgac ggaacaaccc ctcgaattct accccaacta 840 cgcccaccaa cccacacgcc actgacaatc cggtcccacc cttgtgggcc cacctacaag 900 cgagacgtca gtcgctcgca gcaaccagtg ggcccacctc ccagtgagcg gcgggtagat 960 ctggactctt acccacccac actaaacaaa acggcatgaa tattttgcac taaaaccctc 1020 agaaaaattc cgatattcca aaccagtaca gttcctgacc gttggaggag ccaaagtgga 1080 gcggagtgta aaattgggaa acttaatcga gggggttaaa cgcaaaaacg ccgaggcgcc 1140 tcccgctcta tagaaagggg aggagtggga ggtggaaacc ctaccacacc gcagagaaag 1200 gcgtcttcgt actcgcctct ctccgcgccc tcctccgccg ccgctcgccg ccgttcgtct 1260 ccgccgccac cggctagcca tccaggtaaa acaaacaaaa acggatctga tgcttccatt 1320 cctccgtttc tcgtagtagc gcgcttcgat ctgtgggtgg atctgggtga tcctggggtg 1380 tggttcgttc tgtttgatag atctgtcggt ggatctggcc ttctgtggtt gtcgatgtcc 1440 ggatctgcgt tttgatcagt ggtagttcgt ggatctggcg aaatgttttg gatctggcag 1500 tgagacgcta agaatcggga aatgatgcaa tattaggggg gtttcggatg gggatccact 1560 gaattagtct gtctccctgc tgataatctg ttcctttttg gtagatctgg ttagtgtatg 1620 tttgtttcgg atagatctga tcaatgcttg tttgtttttt caaattttct acctaggttg 1680 tataggaatg gcatgcggat ctggttggat tgccatgatc cgtgctgaaa tgcccctttg 1740 gttgatggat cttgatattt

tactgctgtt cacctagatt tgtactcccg tttatactta 1800 atttgttgct tattatgaat agatctgtaa cttaggcaca tgtatggacg gagtatgtgg 1860 atctgtagta tgtacattgc tgcgagctaa gaactatttc agagcaagca cagaaaaaaa 1920 tatttagaca gattgggcaa ctatttgatg gtctttggta tcatgctttg tagtgctcgt 1980 ttctgcgtag taatcttttg atctgatctg aagataggtg ctattatatt cttaaaggtc 2040 attagaacgc tatctgaaag gctgtattat gtggattggt tcacctgtga ctccctgttc 2100 gtcttgtctt gataaatcct gtgataaaaa aaattcttaa ggcgtaattt gttgaaatct 2160 tgttttgtcc tatgcagcct gatccttaat ta 2192 14 1400 DNA Oryza sativa 14 ctcgaggtca ttcatatgct tgagaagaga gtcgggatag tccaaaataa aacaaaggta 60 agattacctg gtcaaaagtg aaaacatcag ttaaaaggtg gtataaagta aaatatcggt 120 aataaaaggt ggcccaaagt gaaatttact cttttctact attataaaaa ttgaggatgt 180 ttttgtcggt actttgatac gtcatttttg tatgaattgg tttttaagtt tattcgcttt 240 tggaaatgca tatctgtatt tgagtcgggt tttaagttcg tttgcttttg taaatacaga 300 gggatttgta taagaaatat ctttaaaaaa acccatatgc taatttgaca taatttttga 360 gaaaaatata tattcaggcg aattctcaca atgaacaata ataagattaa aatagctttc 420 ccccgttgca gcgcatgggt attttttcta gtaaaaataa aagataaact tagactcaaa 480 acatttacaa aaacaacccc taaagtccta aagcccaaag tgctatccac gatccatagc 540 aagcccagcc caacccaacc caacccaacc caccccagtc cagccaactg gacaatagtc 600 tccacacccc cccactatca ccgtgagttg tccgcacgca ccgcacgtct cgcagccaaa 660 aaaaaaaaaa gaaagaaaaa aaagaaaaag aaaaaacagc aggtgggtcc gggtcgtggg 720 ggccggaaac gcgaggagga tcgcgagcca gcgacgaggc cggccctccc tccgcttcca 780 aagaaacgcc ccccatcgcc actatataca tacccccccc tctcctccca tccccccaac 840 cctaccacca ccaccaccac cacctccacc tcctcccccc tcgctgccgg acgacgagct 900 cctcccccct ccccctccgc cgccgccgcg ccggtaacca ccccgcccct ctcctctttc 960 tttctccgtt ttttttttcc gtctcggtct cgatctttgg ccttggtagt ttgggtgggc 1020 gagaggcggc ttcgtgcgcg cccagatcgg tgcgcgggag gggcgggatc tcgcggctgg 1080 ggctctcgcc ggcgtggatc cggcccggat ctcgcgggga atggggctct cggatgtaga 1140 tctgcgatcc gccgttgttg ggggagatga tggggggttt aaaatttccg ccatgctaaa 1200 caagatcagg aagaggggaa aagggcacta tggtttatat ttttatatat ttctgctgct 1260 tcgtcaggct tagatgtgct agatctttct ttcttctttt tgtgggtaga atttgaatcc 1320 ctcagcattg ttcatcggta gtttttcttt tcatgatttg tgacaaatgc agcctcgtgc 1380 ggagcttttt tgtaggtaga 1400 15 1403 DNA Oryza sativa 15 ctcgaggtca ttcatatgct tgagaagaga gtcgggatag tccaaaataa aacaaaggta 60 agattacctg gtcaaaagtg aaaacatcag ttaaaaggtg gtataaagta aaatatcggt 120 aataaaaggt ggcccaaagt gaaatttact cttttctact attataaaaa ttgaggatgt 180 ttttgtcggt actttgatac gtcatttttg tatgaattgg tttttaagtt tattcgcttt 240 tggaaatgca tatctgtatt tgagtcgggt tttaagttcg tttgcttttg taaatacaga 300 gggatttgta taagaaatat ctttaaaaaa acccatatgc taatttgaca taatttttga 360 gaaaaatata tattcaggcg aattctcaca atgaacaata ataagattaa aatagctttc 420 ccccgttgca gcgcatgggt attttttcta gtaaaaataa aagataaact tagactcaaa 480 acatttacaa aaacaacccc taaagttcct aaagcccaaa gtgctatcca cgatccatag 540 caagcccagc ccaacccaac ccaacccaac ccaccccagt ccagccaact ggacaatagt 600 ctccacaccc ccccactatc accgtgagtt gtccgcacgc accgcacgtc tcgcagccaa 660 aaaaaaaaaa agaaagaaaa aaaagaaaaa gaaaaaacag caggtgggtc cgggtcgtgg 720 gggccggaaa cgcgaggagg atcgcgagcc agcgacgagg ccggccctcc ctccgcttcc 780 aaagaaacgc cccccatcgc cactatatac ataccccccc ctctcctccc atccccccaa 840 ccctaccacc accaccacca ccacctccac ctcctccccc ctcgctgccg gacgacgagc 900 tcctcccccc tccccctccg ccgccgccgc gccggtaacc accccgcccc tctcctcttt 960 ctttctccgt tttttttttc cgtctcggtc tcgatctttg gccttggtag tttgggtggg 1020 cgagaggcgg cttcgtgcgc gcccagatcg gtgcgcggga ggggcgggat ctcgcggctg 1080 gggctctcgc cggcgtggat ccggcccgga tctcgcgggg aatggggctc tcggatgtag 1140 atctgcgatc cgccgttgtt gggggagatg atggggggtt taaaatttcc gccatgctaa 1200 acaagatcag gaagagggga aaagggcact atggtttata tttttatata tttctgctgc 1260 ttcgtcaggc ttagatgtgc tagatctttc tttcttcttt ttgtgggtag aatttgaatc 1320 cctcagcatt gttcatcggt agtttttctt ttcatgattt gtgacaaatg cagcctcgtg 1380 cggagctttt ttgtaggtag acc 1403 16 1189 DNA Zea mays 16 atcggaatat tagcatgtca acttgcactc tctaaggctc ctttggaaag caggatttta 60 gaaaaaaaaa tcatataaat tttttacatg aatcagttta ttttcggatt atgaaatatt 120 ttctcataac agtataacac atattttgta tataagttat tatgttatta tatataaccg 180 ttgcaacgta cgggcattca cctagtaaag aaagaagatt aattattctc tggtggagat 240 tgtgcccgag cccgaaggtc atgatatgga cgttgcaaac ccacttcacg aggggacaaa 300 aaagaaatag ggttaccact ttcatcagtt aaagggcgtg acatggacgt gttgaagatc 360 cggcacattc cctgcgaaat atacacgtca tggtactaac gaggcatgaa actggccaca 420 tggccgtgga cgcgtgaagc gtgccatgca ttggacatgc ggcatccgaa cttctgaaga 480 tcatatcaga gagacactga tgtacgaact gccgtaacat tctattctat atataccctc 540 agtccctgtt ccagttctcg ttaagctagc agcaccaagt tgtcgaacac ttgcctgctc 600 ttgagctcga tcaagctatc atcagctgcg tcttgcgcac agcaacagct tcccaactgc 660 aaccgtagca gccagatcca agggaggcct ccgccgccgc cggtaaccac cccgcccctc 720 tcctctttct ttctccgttt ttttttccgt ctcggtctcg atctttggcc ttggtagttt 780 gggtgggcga gaggcggctt cgtgcgcgcc cagatcggtg cgcgggaggg gcgggatctc 840 gcggctgggg ctctcgccgg cgtggatccg gcccggatct cgcggggaat ggggctctcg 900 gatgtagatc tgcgatccgc cgttgttggg ggagatgatg gggggtttaa aatttccgcc 960 gtgctaaaca agatcaggaa gaggggaaaa gggcactatg gtttatattt ttatatattt 1020 ctgctgcttc gtcaggctta gatgtgctag atctttcttt cttctttttg tgggtagaat 1080 ttgaatccct cagcattgtt catcggtagt ttttcttttc atgatttgtg acaaatgcag 1140 cctcgtgcgg agcttttttg taggtagaag tgatcaggcc ctacgggcc 1189 17 1809 DNA Hordeum vulgare 17 catcgatttt aaaaaaaagt tcataccttt caaaaacgtt catcaatttt tttaaaaagt 60 tcactaaaaa tgaaaaaaag ttcatccaat ttaaaaaaag ttcattaatt ttttataaat 120 ttcaataaat ttgaaaaaac ttcataaaat tcaacaaaag ttcattgaag tgaaaaaagc 180 tcataaatct ttaaaaagtg catccatttt caaaaagatg ttcatcaaaa ttcaatatag 240 ttcaccaata ttcaaaaaag ttcattaatc ttaaaaaata ttcgctaaaa tttaaaaaat 300 gtttatcaat atttaaacgg cgtctagatg agccggtcta tttacaaaca ccataggcgc 360 caattaacaa aaatgcacgt tagatcacgt ctacggcgtc aaataggaaa tgcccatcgg 420 ccttactatt aagagttgtt ttggttatcc tttaggattt atgctgtggg ctggacttaa 480 cacaaaaccc acagccatgg taggccggaa tctattattc agctcacaaa cgatgttcta 540 ctcaaaagaa gaaaaaaatc tgttgtcaga aaaagagaac aaaaaaggct cacgaacatg 600 ccgcggctcg cacaggtggc cgtgagcttc tgaatgactt ggccacccgg catgtccact 660 gcccccctag acggtgtggg tgggtggaca ggtcaagcgc attgaacaag gtcaccctgc 720 gttctgccac gaggccaact gcgtggccct catgcaacgc gccttgctgc cacttctaca 780 cacgccctcg ccggccgacc gctgctataa aagcagctcc ccgttgcgtc ctcgacggca 840 tccatcgaga gacgttcgca gcagcaaaga gcacgcagca actagctttc agttgtttca 900 accatcccgg gacctgcagg accaggtggg cccaccgtct tcggtacgcg ctcactccgc 960 cctctgcctt tgttactgcc acgtttctct gaatgctctc ttgtgtggtg attgctgaga 1020 gtggtttagc tggatctaga attacactct gaaatcgtgt tctgcctgtg ctgattactt 1080 gccgtccttt gtagcagcaa aatataggga catggtagta cgaaacgaag atagaaccta 1140 cacagcaata cgagaaatgt gtaatttggt gcttagcggt atttatttaa gcacatgttg 1200 gtgttatagg gcacttggat tcagaagttt gctgttaatt taggcacagg cttcatacta 1260 catgggtcaa tagtataggg attcatatta taggcgatac tataataatt tgttcgtctg 1320 cagagcttat tatttgccaa aattagatat tcctattctg tttttgtttg tgtgctgtta 1380 aattgttaac gcctgaagga ataaatataa atgacgaaat tttgatgttt atctctgctc 1440 ctttattgtg accataagtc aagatcagat gcacttgttt taaatattgt tgtctgaaga 1500 aataagtact gacagtattt tgatgcattg atctgcttgt ttgttgtaac aaaatttaaa 1560 aataaagagt ttcctttttg ttgctctcct tacctcctga tggtatctag tatctaccaa 1620 ctgacactat attgcttctc tttacatacg tatcttgctc gatgccttct ccctagtgtt 1680 gaccagtgtt actcacatag tctttgctca tttcattgta atgcagatac caagcgggag 1740 ctcgacgtcc ctcagcagtc gctgtgcgat cgccagcggt actcgctgag gcctaggcgc 1800 ggatccccc 1809 18 973 DNA Arabidopsis thaliana 18 actaaatcta gccttttcag accggacatg aacttcgcat attggcgtaa ctgtgcagtt 60 ttaccttttt cggatcagac aagatcagat ttagaccacc caacaatagt cagtcatatt 120 tgacaaccta agctagccga cactactaaa aagcaaacaa aagaagaatt ctatgttgtc 180 attttaccgg tggcaagtgg acccttctat aaaagagtaa agagacagcc tgtgtgtgta 240 taatctctaa ttatgttcac cgacacaatc acacaaaccc ttctctaatc acacaacttc 300 ttcatgattt acgacattaa ttatcattaa ctctttaaat tcactttaca tgctcaaaaa 360 tatctaattt gcagcattaa tttgagtacc gataactatt attataatcg tcgtgattcg 420 caatcttctt cattagatgc tgtcaagttg tactcgcacg cggtggtcca gtgaagcaaa 480 tccaacggtt taaaaccttc ttacatttct agatctaatc tgaaccgtca gatatctaga 540 tctcattgtc tgaacacagt tagataaaac tgggaataaa tctggacgaa attacgatct 600 tacaccaacc ccctcgacga gctcgtatat ataaagctta tacgctcctc cttcaccttc 660 gtactactac taccaccaca tttctttagc tcaaccttca ttactaatct ccttttaagg 720 taagttcact tttcttcgat tcatactttc tcaagattcc tgcatttctt tagaatttga 780 accaagtgtc gatttttgtt tgagagaagt gttgatttat agatctggtt attgaatcta 840 gattccaatt tttaattgat tcgagtttgt taagtgcgtt tatactactt ctcattgatc 900 ttgtttgatt tctctgctct gtattaggtt tctttcgtga atcagatcgg aacctgcagg 960 ggccctacgg gcc 973 19 506 DNA Arabidopsis thaliana 19 attttacgta taaaataaaa gatcatacct attagaacga ttaaggagaa atacaattcg 60 aatgagaagg atgtgccgtt tgttataata aacagccaca cgacgtaaac gtaaaatgac 120 cacatgatgg gccaatagac atggaccgac tactaataat agtaagttac attttaggat 180 ggaataaata tcataccgac atcagtttga aagaaaaggg aaaaaaagaa aaaataaata 240 aaagatatac taccgacatg agttccaaaa agcaaaaaaa aagatcaagc cgacacagac 300 acgcgtagag agcaaaatga ctttgacgtc acaccacgaa aacagacgct tcatacgtgt 360 ccctttatct ctctcagtct ctctataaac ttagtgagac cctcctctgt tttactcaca 420 aatatgcaaa ctagaaaaca atcatcagga ataaagggtt tgattacttc tattggaaag 480 aaaaaaatct ttggaaaaga tctacc 506 20 1727 DNA Arabidopsis thaliana 20 caaatttatt atgtgttttt tttccgtggt cgagattgtg tattattctt tagttattac 60 aagactttta gctaaaattt gaaagaattt actttaagaa aatcttaaca tctgagataa 120 tttcagcaat agattatatt tttcattact ctagcagtat ttttgcagat caatcgcaac 180 atatatggtt gttagaaaaa atgcactata tatatatata ttattttttc aattaaaagt 240 gcatgatata taatatatat atatatatat atatgtgtgt gtgtatatgg tcaaagaaat 300 tcttatacaa atatacacga acacatatat ttgacaaaat caaagtatta cactaaacaa 360 tgagttggtg catggccaaa acaaatatgt agattaaaaa ttccagcctc caaaaaaaaa 420 tccaagtgtt gtaaagcatt atatatatat agtagatccc aaatttttgt acaattccac 480 actgatcgaa tttttaaagt tgaatatctg acgtaggatt tttttaatgt cttacctgac 540 catttactaa taacattcat acgttttcat ttgaaatatc ctctataatt atattgaatt 600 tggcacataa taagaaacct aattggtgat ttattttact agtaaatttc tggtgatggg 660 ctttctacta gaaagctctc ggaaaatctt ggaccaaatc catattccat gacttcgatt 720 gttaacccta ttagttttca caaacatact atcaatatca ttgcaacgga aaaggtacaa 780 gtaaaacatt caatccgata gggaagtgat gtaggaggtt gggaagacag gcccagaaag 840 agatttatct gacttgtttt gtgtatagtt ttcaatgttc ataaaggaag atggagactt 900 gagaagtttt ttttggactt tgtttagctt tgttgggcgt tttttttttt gatcaataac 960 tttgttgggc ttatgatttg taatattttc gtggactctt tagtttattt agacgtgcta 1020 actttgttgg gcttatgact tgttgtaaca tattgtaaca gatgacttga tgtgcgacta 1080 atctttacac attaaacata gttctgtttt ttgaaagttc ttattttcat ttttatttga 1140 atgttatata tttttctata tttataattc tagtaaaagg caaattttgc ttttaaatga 1200 aaaaaatata tattccacag tttcacctaa tcttatgcat ttagcagtac aaattcaaaa 1260 atttcccatt tttattcatg aatcatacca ttatatatta actaaatcca aggtaaaaaa 1320 aaggtatgaa agctctatag taagtaaaat ataaattccc cataaggaaa gggccaagtc 1380 caccaggcaa gtaaaatgag caagcaccac tccaccatca cacaatttca ctcatagata 1440 acgataagat tcatggaatt atcttccacg tggcattatt ccagcggttc aagccgataa 1500 gggtctcaac acctctcctt aggcctttgt ggccgttacc aagtaaaatt aacctcacac 1560 atatccacac tcaaaatcca acggtgtaga tcctagtcca cttgaatctc atgtatccta 1620 gaccctccga tcactccaaa gcttgttctc attgttgtta tcattatata tagatgacca 1680 aagcactaga ccaaacctca gtcacacaaa gagtaaagaa gatctcc 1727 21 780 DNA Arabidopsis thaliana 21 agatacgaat cgagaatgcc ttttttcctt gtttccgaca attatcgatt gacgtgtgac 60 cactttaaaa gtttaaacag ctcgactttc caatatgggt ttatttcttg ttttatccac 120 accattaaag aatggttttt gggattttta tttatgtgat aattaatcat ttttccaaat 180 tttattttgt atataataaa tgaagcaaat gttggaaaac tatccaatgg atgtggtggg 240 ttaatatcac cagattcgca tagctggttt ttgacttgtc ttcttaatta tttgtccaga 300 aaaagagaag aactcttcac atcatcattg tcaactttag cattattgta ttagcttttt 360 atttctttac gtctacaaag ctattggtac aacgttctaa aatcaaattc gtcatcagta 420 gattttgtaa actaattaag taaagttcag tgattaaaga agctagatga agaacgtgtg 480 caacgactcc tctgagatct acacggaata atgtcgtcag tgagcaaaca actcccatca 540 cgtcgtccct ccacctgtcc tctcttctcc ttccttgctt gtctttctct ctcaaatcat 600 ttcacctaaa aataataaat atctttcgtt ttctaaagaa aaaaaaaaaa aaacttttca 660 aattcatctt tggtttctgc agcagcaaca acaaccgagc cctgttcgtt agggttttcg 720 gtttttgtta gcttttcttc ttcttcttct tcgtttcctt ccacctgaat tgttgtaacc 780 22 1364 DNA Arabidopsis thaliana 22 gtatttttga tattttaaaa taataaatta tcctcgtgta gacgtatgag tctttgaatt 60 gatccccaag aaaacgaaat cataggttac tttcaacact ctcacaacat gattgataaa 120 aagatcacac cagtttctta caaattggaa cttgtaaact gtcttatttt aattctaatt 180 cgcattttcg tataaaggaa taaacatgaa ccctctaagg ctttaatggc ccattagcgg 240 aaaagagttc aaatccaact gctcaacaaa atttgtcatt tgatggaatt ggtttatcaa 300 ttttttttta accgttgaaa cgtaactaac gatatttttc tacggtctta gtatttcaat 360 ataattccag caaatttttg acaactttat ttccttttga cagataaaaa atcatcagta 420 atccatgtgt aacagtcata ttgattgatc ctcattaaaa ataattatat gtattgctat 480 aatggcaaaa ggtcaatata ggttaatcta taatatttta actatttatg gaatatatgt 540 aaaagatttg tgaaatattt aacgaatata atatttaaaa tgttattgta tatgttaaac 600 taataatgaa tgtattaaat gtaaactttc taaaatagag atcatatttt tttaattaat 660 atatagataa tttttacttt tatttattta tccttgctaa aatgtatatt gtttttgata 720 agaggatatt ttattgtttg gataaaactg atttaaagac aagacaagat aagactgatt 780 aagaggatat attaattaat atatttttat aaaaagattg atattgcaat attgaattga 840 aatagtatca tagatcatag ttgtccatgt aaataataat tgatacattt atacttgtat 900 acttgttagt atttagatac ttgacaagtt tacactgttt tatgaattaa tgataaatat 960 caagaaagca tgaaaaatca caataaagag aatctcaccg acatctggct ttcattggcc 1020 ggtgacatgt cggatacgct caagttagaa tctgatactc tttgtctctt acagccgacg 1080 tgtccggtat actcatggac actaaacaaa cgacaaaccg atcgttaaac cggactaagt 1140 ataatgatta gttgattact caagaagaga acaactaatt tcatcggttt ggtttgtaaa 1200 tttataaaac cattcgtcct ggttcgaact agaaccaaat cgtgcaaaac cgtttaaagt 1260 gtccaagaga gttaatataa ataagaagat ctctctaatc gtgttgtttc agaaaacaag 1320 agcgtccttt gattggtttt ggattttgtt gtgttcctct caaa 1364 23 820 DNA Arabidopsis thaliana 23 agctctacta tagcaattga cgggacagga ctcataagta acaacaaagt acacttcgaa 60 acaaatttca catgtaatac ttgttttttt ttcccgttta aattcacatg taataattta 120 attcacgtaa atactaaagt gattcaccca tcacgaagta ttttttgaat taaatacatc 180 aactaatcga gtttttgata gggacttttg cttttttgaa tattgcttat caaatcaaaa 240 ttttcaaatt cttgtccata tacgcctatc aaatatcttc ttttaaagaa agtctcctaa 300 agagttgaaa acttgaaata tatacttttc taaaatataa ttttatttgg gcgttacgtt 360 ctagaaaatg gaacccgtct actaaaatgg gccgctcgtg aactcgtggc agtcaaacac 420 tggtcggcgc ataaaagcat atccaaatac gctgcgtttc atgcttaccc gacccgtctt 480 aaatatttaa agaatattcc agattagcgc gtgagatgca gttgccatgt ctcgcctcag 540 gaatgacgac atttgccaaa ataacagagc tacaacggta aataaggaaa atgattaagg 600 gcaatttggt cttttaggtt aagaaaagta ttgaatcaga tctgactttt tggccaagaa 660 aaactctcag ccactagatc attccgaccc ctcctccacg ttcttctctc ttttaaataa 720 cctcttcacg gaacccttct cactcaccta tctcactcta aaatctctct ctgccaatct 780 catcttcaac ctctctctaa ctctcgtttt cgatcctaca 820 24 1396 DNA Arabidopsis thaliana 24 gaattcatca acaaattact cctcaatcac actcctatag aaaacggttt aagctatcat 60 tacatgtcta gttggtttta ctcagcccta gaagtgttgt ttattgcatc actttccacg 120 aagcacaatt tttctttttt acaatcacca gacctcacag gctcacacat atgctttaga 180 gcacattcta aactttgaac tataaaagct gttaacacta atacactatg cgttcttttt 240 tgctccaaac acttttgatc cattattagg agacactcca cttagaaaga ttttctaatc 300 ctttggtcaa ctaggaagtt caaggttttt ctaaacagaa attcatttca caagtaattt 360 aatttataag gaaatgaata gagaaatcaa atcattgaag aactacaaaa tatagattca 420 aggtcaggtc taagaaaata ttcctgaagc tcaaaaaaga gttttcctct cacattatag 480 aattggcctt tacttcaaca ttttcccacc tattccacat ttggtcagaa catttttaat 540 tacttgtgga tcaatttccg gttgaaatgg gtttggtgaa tatccggttc agttatatgg 600 tggccgttgg aattggctta ttagttgtgg ccgttgttga agccgttggt attggtaagg 660 gagaagcaga cttgtggcta tgagtctatg accatgactc gtgattatgg agctgtctta 720 tgaccctgac catcaccttg atctggtgga ttccaatgtt ttcttcttct tctaataaaa 780 tattatggtc aatacaggtg ctaattaaga tggtaataat ttcttatgtt tctgtggtaa 840 agtttgattc aattccgtag ttttagataa tcttatttcc atacataaat tttatagttt 900 tatctacttt gttcttatgt tttatctcta gccaagagtt attattatta tcagaagaag 960 aaaaaaaaaa gaagcatata tacaaaaggt ttaataaaat gtattataca aggcaattat 1020 ccaaattttt tttgttttgg tttacattga tgctctcagg atttcataag gatagagaga 1080 tctattcgta tacgtgtcac gtcatgagtg ggtgtttcgc caatccatga aacgcaccta 1140 gatatctaaa acacatatca attgcgaatc tgcgaagtgc gagccattaa ccacgtaagc 1200 aaacaaacaa tctaaacccc aaaaaaaatc tatgactagc caatagcaac ctcagagatt 1260 gatatttcaa gataagacag tatttagatt tctgtattat atatagcgaa aatcgcatca 1320 ataccaaacc acccatttct tggcttacaa caacaaatct taaacgtttt actttgtgct 1380 gcactactca acctta 1396 25 2365 DNA Arabidopsis thaliana 25 ggcgagtgat ggtatattta ttggttgggc ttaaatatat ttcagatgca aaaccatatt 60 gaatcaataa attataaata catagcttcc ctaaccactt aaaccaccag ctacaaaacc 120 aataaacccg atcaatcatt atgttttcat aggatttcct gaacatacat taaattattt 180 ttcattttct tggtgctctt ttctgtctta ttcacgtttt aatggacata atcggtttca 240 tattgtaaat ctctttaacc taacgaacaa tttaatgacc ctagtaatag gataagaagg 300 tcgtgaaaaa tgaacgagaa aaaacccacc aaaacactat ataagaaaga ccgaaaaagt 360 aaaaagggtg agccataaac caaaaacctt accagatgtt gtcaaagaac aaaaatcatc 420 atccatgatt aacctacgct tcactactaa gacaaggcga ttgtgtcccg gttgaaaagg 480 ttgtaaaaca gtttgaggat gctacaaaag tggatgttaa gtatgaagcg gctaaggttt 540 tggatttggt ctaggagcac

attggttaag caatatcttc ggtggagatt gagtttttag 600 agatagtaga tactaattca tctatggaga catgcaaatt catcaaaatg cttggatgaa 660 ttagaaaaac taggtggaga atacagtaaa aaaattcaaa aagtgcatat tgtttggaca 720 acattaatat gtacaaatag tttacattta aatgtattat tttactaatt aagtacatat 780 aaagttgcta aactaaacta atataatttt tgcataagta aatttatcgt taaaagtttt 840 ctttctagcc actaaacaac aatacaaaat cgcccaagtc acccattaat taatttagaa 900 gtgaaaaaca aaatcttaat tatatggacg atcttgtcta ccatatttca agggctacag 960 gcctacagcc gccgaataaa tcttaccagc cttaaaccag aacaacggca aataagttca 1020 tgtggcggct ggtgatgatt cacaatttcc ccgacagttc tatgataatg aaactatata 1080 attattgtac gtacatacat gcatgcgacg aacaacactt caatttaatt gttagtatta 1140 aattacattt atagtgaagt atgttgggac gattagacgg atacaatgca cttatgttct 1200 ccggaaaatg aatcatttgt gttcagagca tgactccaag agtcaaaaaa gttattaaat 1260 ttatttgaat ttaaaactta aaaatagtgt aatttttaac cacccgctgc cgcaaacgtt 1320 ggcggaagaa tacgcggtgt taaacaattt ttgtgatcgt tgtcaaacat ttgtaaccgc 1380 aatctctact gcacaatctg ttacgtttac aatttacaag ttagtataga agaacgttcg 1440 tacctgaaga ccaaccgacc tttagttatt gaataaatga ttatttagtt aagagtaaca 1500 aaatcaatgg ttcaaatttg tttctcttcc ttacttctta aattttaatc atggaagaaa 1560 caaagtcaac ggacatccaa ttatggccta atcatctcat tctcctttca acaaggcgaa 1620 tcaaatcttc tttatacgta atatttattt gccagcctga aatgtatacc aaatcatttt 1680 taaattaatt gcctaaatta ttagaacaaa aactattagt aaataactaa ttagtcttat 1740 gaaactagaa atcgagatag tggaatatag agagacacca ttaaattcac aaaatcattt 1800 ttaaattacc taaattatta caacaaaaac tattagacag aactaagtct ataatgaaac 1860 gagagatcgt atttggaatg tagagcgaga gacaattttc aattcattga atatataagc 1920 aaaattatat agcccgtaga ctttggtgag atgaagtcta agtacaaaca actgaatgaa 1980 tttataatca ataatattga ttatattgtg attagaaaaa gaaaacaact tgcgttattt 2040 ttcaatatta ttgtgaggat taatgtgaac atggaatcgt gtttctcctg aaaaaaatat 2100 cagcatagag cttagaacaa tataaatata tccaccaaaa ataacttcaa catttttata 2160 caactaatac aaaaaaaaaa aagcaaactt tttgtatata taaataaatt tgaaaactca 2220 aaggtcggtc agtacgaata agacacaaca actactataa attagaggac tttgaagaca 2280 agtaggttaa ctagaacatc cttaatttct aaacctacgc actctacaaa agattcatca 2340 aaaggagtaa aagactaact ttctc 2365 26 2244 DNA Arabidopsis thaliana 26 aactaggggt gcataatgat ggaacaaagc acaaatcttt taacgcaaac taactacaac 60 cttcttttgg ggtccccatc cccgacccta atgttttgga attaataaaa ctacaatcac 120 ttaccaaaaa ataaaagttc aaggccacta taatttctca tatgaaccta catttataaa 180 taaaatctgg tttcatatta atttcacaca ccaagttact ttctattatt aactgttata 240 atggaccatg aaatcatttg catatgaact gcaatgatac ataatccact ttgttttgtg 300 ggagacattt accagatttc ggtaaattgg tattccccct tttatgtgat tggtcattga 360 tcattgttag tggccagaca tttgaactcc cgtttttttg tctataagaa ttcggaaaca 420 tatagtatcc tttgaaaacg gagaaacaaa taacaatgtg gacaaactag atataatttc 480 aacacaagac tatgggaatg attttaccca ctaattataa tccgatcaca aggtttcaac 540 gaactagttt tccagatatc aaccaaattt actttggaat taaactaact taaaactaat 600 tggttgttcg taaatggtgc tttttttttt tgcggatgtt agtaaagggt tttatgtatt 660 ttatattatt agttatctgt tttcagtgtt atgttgtctc atccataaag tttatatgtt 720 ttttctttgc tctataactt atatatatat atgagtttac agttatattt atacatttca 780 gatacttgat cggcattttt tttggtaaaa aatatatgca tgaaaaactc aagtgtttct 840 tttttaagga atttttaaat ggtgattata tgaatataat catatgtata tccgtatata 900 tatgtagcca gatagttaat tatttggggg atatttgaat tattaatgtt ataatattct 960 ttcttttgac tcgtctggtt aaattaaaga acaaaaaaaa cacatacttt tactgtttta 1020 aaaggttaaa ttaacataat ttattgatta caagtgtcaa gtccatgaca ttgcatgtag 1080 gttcgagact tcagagataa cggaagagat cgataattgt gatcgtaaca tccagatatg 1140 tatgtttaat tttcatttag atgtggatca gagaagataa gtcaaactgt cttcataatt 1200 taagacaacc tcttttaata ttttcccaaa acatgtttta tgtaactact ttgcttatgt 1260 gattgcctga ggatactatt attctctgtc tttattctct tcacaccaca tttaaatagt 1320 ttaagagcat agaaattaat tattttcaaa aaggtgatta tatgcatgca aaatagcaca 1380 ccatttatgt ttatattttc aaattattta atacatttca atatttcata agtgtgattt 1440 tttttttttt tgtcaatttc ataagtgtga tttgtcattt gtattaaaca attgtatcgc 1500 gcagtacaaa taaacagtgg gagaggtgaa aatgcagtta taaaactgtc caataattta 1560 ctaacacatt taaatatcta aaaagagtgt ttcaaaaaaa attcttttga aataagaaaa 1620 gtgatagata tttttacgct ttcgtctgaa aataaaacaa taatagttta ttagaaaaat 1680 gttatcaccg aaaattattc tagtgccact cgctcggatc gaaattcgaa agttatattc 1740 tttctcttta cctaatataa aaatcacaag aaaaatcaat ccgaatatat ctatcaacat 1800 agtatatgcc cttacatatt gtttctgact tttctctatc cgaatttctc gcttcatggt 1860 ttttttttaa catattctca tttaattttc attactatta tataactaaa agatggaaat 1920 aaaataaagt gtctttgaga atcgaacgtc catatcagta agatagtttg tgtgaaggta 1980 aaatctaaaa gatttaagtt ccaaaaacag aaaataatat attacgctaa aaaagaagaa 2040 aataattaaa tacaaaacag aaaaaaataa tatacgacag acacgtgtca cgaagatacc 2100 ctacgctata gacacagctc tgttttctct tttctatgcc tcaaggctct cttaacttca 2160 ctgtctcctc ttcggataat cctatccttc tcttcctata aatacctctc cactcttcct 2220 cttcctccac cactacaacc acca 2244 27 2946 DNA Zea mays 27 atgtgctggt gccccataag gtaggcacct aggtctgtgt ttgaagcatc gacagatttg 60 taaacatgtt cctatgaacc tatttctgat tgataatttg tcaaaactca tcatttgtct 120 tcatccttgc ctgcttgcgt tcacgtgaca aagtacgtgt atgtcttcgg cctttgctgt 180 gtatgtttcg cattgcttag atgtggtgaa agaacatcag aagatgcatt gatggcgtgc 240 ttaaaccagt gatgtgctcc aggtgttcct gcagtctgca gagatattta ctcttgtagt 300 cttgttgaca gcacagttgt atgtgatttc ttggatgtaa tgtaaaccaa atgaaagata 360 ggaacagttc gtcctcttcc gtatacgaag gtcactgtat catttgtcgt ggcacaagat 420 gatctgcagg caggactgca acatggtttc ttggactgtc ctgaatgccc gttcttgttc 480 tttagttgag ccagagcagc agcctggtgt cggtgcctga gacctgacga agcacacggc 540 aaacaaacaa gtcgcagcag ctagcagggg cgttgccatc gccacaagcc cccaagagac 600 ccgccgagga aaagaaaaaa aaactacggc cgccgttgcc aagccgagcg tgcgaaccga 660 tccacggatg ggagatcaga gatcacccac cgcaggcggg cggcagtggc tggcgaggtg 720 cgtccacaga acctgctgca ggtccctgtc cgtcccggcg accccttttc taggcgagca 780 actccccatg gcagagctgc acgcagcagg gcccgtcgtt ggttgcagct ttaacccttt 840 ttgttttaac catacaatgc agagtcgcag aggtgaaaca ggacggaaat tacagaaaag 900 atggtggtgt gccagcagcc ccagcatgaa gaagatcagg acaaaagaaa agcttgtgat 960 tggtgacagc aacaggattg gattggagcc aagctaggca gtgagaggca ggcagcaaga 1020 cgcgtcagcc actgaaatcc agagggcaac ctcggcctca caactcatat ccccttgtgc 1080 tgttgcgcgc cgtggttagc caggtgtgct gcagggggta ccatggcatg catcgataga 1140 tctcgaggga tccaaagaca tggaggtgga aggcctgacg tagatagaga agatgctctt 1200 agctttcatt gtctttcttt tgtagtcatc tgatttacct ctctcgttta tacaactggt 1260 tttttaaaca ctccttaact tttcaaattg tctctttctt taccctagac tagataattt 1320 taatggtgat tttgctaatg tggcgccatg ttagatagag gtaaaatgaa ctagttaaaa 1380 gctcagagtg ataaatcagg ctctcaaaaa ttcataaact gttttttaaa tatccaaata 1440 tttttacatg gaaaataata aaatttagtt tagtattaaa aaattcagtt gaatatagtt 1500 ttgtcttcaa aaattatgaa actgatctta attatttttc cttaaaaccg tgctctatct 1560 ttgatgtcta gtttgagacg attatataat tttttttgtg cttaactacg acgagctgaa 1620 gtacgtagaa atactagtgg agtcgtgccg cgtgtgcctg tagccactcg tacgctacag 1680 cccaagcgct agagcccaag aggccggagg tggaaggcgt cgcggcacta tagccactcg 1740 ccgcaagagc ccaagagacc ggagctggaa ggatgagggt ctgggtgttc acgaattgcc 1800 tggaggcagg aggctcgtcg tccggagcca caggcgtgga gacgtccggg ataaggtgag 1860 cagccgctgc gataggggcg cgtgtgaacc ccgtcgcgcc ccacggatgg tataagaata 1920 aaggcattcc gcgtgcagga ttcacccgtt cgcctctcac cttttcgctg tactcactcg 1980 ccacacacac cccctctcca gctccgttgg agctccggac agcagcaggc gcggggcggt 2040 cacgtagtaa gcagctctcg gctccctctc cccttgctcc atttgatagt gcaacccatc 2100 gagctacagg cctaatctag cctcggacta gtcgagagat ctaccgtctt cggtacgcgc 2160 tcactccgcc ctctgccttt gttactgcca cgtttctctg aatgctctct tgtgtggtga 2220 ttgctgagag tggtttagct ggatctagaa ttacactctg aaatcgtgtt ctgcctgtgc 2280 tgattacttg ccgtcctttg tagcagcaaa atatagggac atggtagtac gaaacgaaga 2340 tagaacctac acagcaatac gagaaatgtg taatttggtg cttagcggta tttatttaag 2400 cacatgttgg tgttataggg cacttggatt cagaagtttg ctgttaattt aggcacaggc 2460 ttcatactac atgggtcaat agtataggga ttcatattat aggcgatact ataataattt 2520 gttcgtctgc agagcttatt atttgccaaa attagatatt cctattctgt ttttgtttgt 2580 gtgctgttaa attgttaacg cctgaaggaa taaatataaa tgacgaaatt ttgatgttta 2640 tctctgctcc tttattgtga ccataagtca agatcagatg cacttgtttt aaatattgtt 2700 gtctgaagaa ataagtactg acagtatttt gatgcattga tctgcttgtt tgttgtaaca 2760 aaatttaaaa ataaagagtt tcctttttgt tgctctcctt acctcctgat ggtatctagt 2820 atctaccaac tgacactata ttgcttctct ttacatacgt atcttgctcg atgccttctc 2880 cctagtgttg accagtgtta ctcacatagt ctttgctcat ttcattgtaa tgcagatacc 2940 aagcgg 2946 28 185 PRT Zea mays 28 Met Ala Glu Ala Pro Ala Ser Pro Gly Gly Gly Gly Gly Ser His Glu 1 5 10 15 Ser Gly Ser Pro Arg Gly Gly Gly Gly Gly Gly Ser Val Arg Glu Gln 20 25 30 Asp Arg Phe Leu Pro Ile Ala Asn Ile Ser Arg Ile Met Lys Lys Ala 35 40 45 Ile Pro Ala Asn Gly Lys Thr Ile Pro Ala Asn Gly Lys Ile Ala Lys 50 55 60 Asp Ala Lys Glu Thr Val Gln Glu Cys Val Ser Glu Phe Ile Ser Phe 65 70 75 80 Ile Thr Ser Glu Ala Ser Asp Lys Cys Gln Arg Glu Lys Arg Lys Thr 85 90 95 Ile Asn Gly Asp Asp Leu Leu Trp Ala Met Ala Thr Leu Gly Phe Glu 100 105 110 Asp Tyr Ile Glu Pro Leu Lys Val Tyr Leu Gln Lys Tyr Arg Glu Met 115 120 125 Glu Gly Asp Ser Lys Leu Thr Ala Lys Ser Ser Asp Gly Ser Ile Lys 130 135 140 Lys Asp Ala Leu Gly His Val Gly Ala Ser Ser Ser Ala Ala Gln Gly 145 150 155 160 Met Gly Gln Gln Gly Ala Tyr Asn Gln Gly Met Gly Tyr Met Gln Pro 165 170 175 Gln Tyr His Asn Gly Asp Ile Ser Asn 180 185 29 558 DNA Zea mays 29 atggcggaag ctccggcgag ccctggcggc ggcggcggga gccacgagag cgggagcccc 60 aggggaggcg gaggcggtgg cagcgtcagg gagcaggaca ggttcctgcc catcgccaac 120 atcagtcgca tcatgaagaa ggccatcccg gctaacggga agaccatccc ggctaacggg 180 aagatcgcca aggacgctaa ggagaccgtg caggagtgcg tctccgagtt catctccttc 240 atcactgccg aagcgagtga caagtgccag agggagaagc ggaagaccat caatggcgac 300 gatctgctgt gggccatggc cacgctgggg tttgaagact acattgaacc cctcaaggtg 360 tacctgcaga agtacagaga gatggagggt gatagcaagt taactgcaaa atctagcgat 420 ggctcaatta aaaaggatgc ccttggtcat gtgggagcaa gtagctcagc tgcacaaggg 480 atgggccaac agggagcata caaccaagga atgggttata tgcaacccca gtaccataac 540 ggggatatct caaactga 558 30 324 DNA Zea mays 30 atggtcaggg agcaggacag gttcctgccc atcgccaaca tcagtcgcat catgaagaag 60 gccatcccgg ctaacgggaa gaccatcccg gctaacggga agatcgccaa ggacgctaag 120 gagaccgtgc aggagtgcgt ctccgagttc atctccttca tcactagcga agcgagtgac 180 aagtgccaga gggagaagcg gaagaccatc aatggcgacg atctgctgtg ggccatggcc 240 acgctggggt ttgaagacta cattgaaccc ctcaaggtgt acctgcagaa gtacagagag 300 atggagggtg atagcaagtt atga 324 31 207 DNA Zea mays 31 atggagaccg tgcaggagtg cgtctccgag ttcatctcct tcatcactag cgaagcgagt 60 gacaagtgcc agagggagaa gcggaagacc atcaatggcg acgatctgct gtgggccatg 120 gccacgctgg ggtttgaaga ctacattgaa cccctcaagg tgtacctgca gaagtacaga 180 gagatggagg gtgatagcaa gttatga 207 32 558 DNA Zea mays 32 atggcggaag ctccggcgag ccctggcggc ggcggcggga gccacgagag cgggagcccc 60 aggggaggcg gaggcggtgg cagcgtcagg gagcaggaca ggttcctgcc catcgccaac 120 atcagtcgca tcatgaagaa ggccatcccg gctaacggga agaccatccc ggctaacggg 180 aagatcgcca aggacgctaa ggagaccgtg caggagtccg tctccgagtt catctccttc 240 atcactagcg aagcgagtga caagtcccag agggagaagc ggaagaccat caatggcgac 300 gatctgctgt gggccatggc cacgctgggg tttgaagact acattgaacc cctcaaggtg 360 tacctgcaga agtacagaga gatggagggt gatagcaagt taactgcaaa atctagcgat 420 ggctcaatta aaaaggatgc ccttggtcat gtgggagcaa gtagctcagc tgcacaaggg 480 atgggccaac agggagcata caaccaagga atgggttata tgcaacccca gtaccataac 540 ggggatatct caaactga 558 33 558 DNA Zea mays 33 atggcggaag ctccggcgag ccctggcggc ggcggcggga gccacgagag cgggagcccc 60 aggggaggcg gaggcggtgg cagcgtcagg gagcaggaca ggttcctgcc catcgccaac 120 atcagtcgca tcatgaagaa ggccatcccg gctaacggga agaccatccc ggctaacggg 180 aagatcgcca aggacgctaa ggagaccgtg caggagaggg tctccgagtt catctccttc 240 atcactagcg aagcgagtga caagtcccag agggagaagc ggaagaccat caatggcgac 300 gatctgctgt gggctatggc cacgctgggg tttgaagact acattgaacc cctcaaggtg 360 tacctgcaga agtacagaga gatggagggt gatagcaagt taactgcaaa atctagcgat 420 ggctcaatta aaaaggatgc ccttggtcat gtgggagcaa gtagctcagc tgcacaaggg 480 atgggccaac agggagcata caaccaagga atgggttata tgcaacccca gtaccataac 540 ggggatatct caaactga 558 34 558 DNA Zea mays 34 atggcggaag ctccggcgag ccctggcggc ggcggcggga gccacgagag cgggagcccc 60 aggggaggcg gaggcggtgg cagcgtcagg gagcaggaca ggttcctgcc catcgccaac 120 atcagtcgca tcatgaagaa ggccatcccg gctaacggga agaccatccc ggctaacggg 180 aagatcgcca aggacgctaa ggagaccgtg caggagtccg tctccgagtt catctccttc 240 atcactagcg aagcgagtga caagtcccag agggagaagc ggaagaccat caatggcgac 300 gataggctgt gggctatggc cacgctgggg tttgaagact acattgaacc cctcaaggtg 360 tacctgcaga agtacagaga gatggagggt gatagcaagt taactgcaaa atctagcgat 420 ggctcaatta aaaaggatgc ccttggtcat gtgggagcaa gtagctcagc tgcacaaggg 480 atgggccaac agggagcata caaccaagga atgggttata tgcaacccca gtaccataac 540 ggggatatct caaactga 558 35 558 DNA Zea mays 35 atggcggaag ctccggcgag ccctggcggc ggcggcggga gccacgagag cgggagcccc 60 aggggaggcg gaggcggtgg cagcgtcagg gagcaggaca ggttcctgcc catcgccaac 120 atcagtcgca tcatgaagaa ggccatcccg gctaacggga agaccatccc ggctaacggg 180 aagatcgcca aggacgctaa ggagaccgtg caggagtgcg tctccaggtt catctccttc 240 atcactaggg aagcgagtga caagtgccag agggagaagc ggaagaccat caatggcgac 300 gatctgctgt gggccatggc cacgctgggg tttgaagact acattgaacc cctcaaggtg 360 tacctgcaga agtacagaga gatggagggt gatagcaagt taactgcaaa atctagcgat 420 ggctcaatta aaaaggatgc ccttggtcat gtgggagcaa gtagctcagc tgcacaaggg 480 atgggccaac agggagcata caaccaagga atgggttata tgcaacccca gtaccataac 540 ggggatatct caaactag 558 36 558 DNA Zea mays 36 atggcggaag ctccggcgag ccctggcggc ggcggcggga gccacgagag cgggagcccc 60 aggggaggcg gaggcggtgg cagcgtcagg gagcaggaca ggttcctgcc catcgccaac 120 atcagtcgca tcatgaagaa ggccatcccg gctaacggga agaccatccc ggctaacggg 180 aagatcgcca aggacgctaa ggagaccgtg caggagtgcg tctccgagtt catctccttc 240 atcactagcg aagcgagtga caagtgccag agggagaagc ggaagaccat caatggcgac 300 gatctgctgt gggctatggc cacgctgggg tttgaagact acgctgaacc cctcaaggtg 360 tacctgcaga agtacagaga gatggagggt gatagcaagt taactgcaaa atctagcgat 420 ggctcaatta aaaaggatgc ccttggtcat gtgggagcaa gtagctcagc tgcacaaggg 480 atgggccaac agggagcata caaccaagga atgggttata tgcaacccca gtaccataac 540 ggggatatct caaactga 558 37 558 DNA Zea mays 37 atggcggaag ctccggcgag ccctggcggc ggcggcggga gccacgagag cgggagcccc 60 aggggaggcg gaggcggtgg cagcgtcagg gagcaggaca ggttcctgcc catcgccaac 120 atcagtcgca tcatgaagaa ggccaggccg gctaacggga agaccatccc ggctaacggg 180 aagatcgcca aggacgctaa ggagaccgtg caggagaggg tctccgagtt catctccttc 240 atcactagcg aagcgagtga caagtcccag agggagaagc ggaagaccat caatggcgac 300 gataggctgt gggctatggc cacgctgggg tttgaagact acattgaacc cctcaaggtg 360 tacctgcaga agtacagaga gatggagggt gatagcaagt taactgcaaa atctagcgat 420 ggctcaatta aaaaggatgc ccttggtcat gtgggagcaa gtagctcagc tgcacaaggg 480 atgggccaac agggagcata caaccaagga atgggttata tgcaacccca gtaccataac 540 ggggatatct caaactga 558 38 558 DNA Zea mays 38 atggcggaag ctccggcgag ccctggcggc ggcggcggga gccacgagag cgggagcccc 60 aggggaggcg gaggcggtgg cagcgtcagg gagcaggaca ggttcctgcc catcgccaac 120 atcagtcgca tcatgaagaa ggccaggccg gctaacggga agaccatccc ggctaacggg 180 aagatcgcca aggacgctaa ggagaccgtg caggagtccg tctccgagtt catctccttc 240 atcactagcg aagcgagtga caagtcccag agggagaagc ggaagaccat caatggcgac 300 gatctgctgt gggctatggc cacgctgggg tttgaagact acattgaacc cctcaaggtg 360 tacctgcaga agtacagaga gatggagggt gatagcaagt taactgcaaa atctagcgat 420 ggctcaatta aaaaggatgc ccttggtcat gtgggagcaa gtagctcagc tgcacaaggg 480 atgggccaac agggagcata caaccaagga atgggttata tgcaacccca gtaccataac 540 ggggatatct caaactga 558 39 558 DNA Zea mays 39 atggcggaag ctccggcgag ccctggcggc ggcggcggga gccacgagag cgggagcccc 60 aggggaggcg gaggcggtgg cagcgtcagg gagcaggaca ggttcctgcc catcgccaac 120 atcagtcgca tcatgaagaa ggccatcccg gctaacggga agaccatccc ggctaacggg 180 aagatcgcca aggacgctaa ggagaccgtg caggagtgcg tctccgagtt catctccttc 240 atcactagcg aagcgagtga caagtgccag agggagaagc ggaagaccat caatggcgac 300 gatgcgctgt gggctatggc cacgctgggg tttgaagact acattgaacc cctcaaggtg 360 tacctgcaga agtacagaga gatggagggt gatagcaagt taactgcaaa atctagcgat 420 ggctcaatta aaaaggatgc ccttggtcat gtgggagcaa gtagctcagc tgcacaaggg 480 atgggccaac agggagcata caaccaagga atgggttata tgcaacccca gtaccataac 540 ggggatatct caaactga 558 40 558 DNA Zea mays 40 atggcggaag ctccggcgag ccctggcggc ggcggcggga gccacgagag cgggagcccc 60 aggggaggcg gaggcggtgg cagcgtcagg gagcaggaca ggttcctgcc catcgccaac 120 atcagtcgca tcatgaagaa ggccatcccg gctaacggga agaccatccc ggctaacggg 180 aagatcgcca aggacgctaa ggagaccgtg caggagtgcg tctccgagtt catctccttc 240 atcactagcg aagcgagtga caagtgccag agggagaagc ggaagaccat caatggcgac 300 gatctggcgt gggctatggc cacgctgggg tttgaagact acattgaacc cctcaaggtg 360 tacctgcaga agtacagaga gatggagggt gatagcaagt taactgcaaa atctagcgat 420 ggctcaatta aaaaggatgc ccttggtcat gtgggagcaa gtagctcagc

tgcacaaggg 480 atgggccaac agggagcata caaccaagga atgggttata tgcaacccca gtaccataac 540 ggggatatct caaactga 558 41 558 DNA Zea mays 41 atggcggaag ctccggcgag ccctggcggc ggcggcggga gccacgagag cgggagcccc 60 aggggaggcg gaggcggtgg cagcgtcagg gagcaggaca ggttcctgcc catcgccaac 120 atcagtcgca tcatgaagaa ggccatcccg gctaacggga agaccatccc ggctaacggg 180 aagatcgcca aggacgctaa ggagaccgtg caggagtgcg tctccgagtt catctccttc 240 atcactagcg aagcgagtga caagtgccag agggagaagc ggaagaccat caatggcgac 300 gatctgctgt gggctatggc cacggcgggg tttgaagact acattgaacc cctcaaggtg 360 tacctgcaga agtacagaga gatggagggt gatagcaagt taactgcaaa atctagcgat 420 ggctcaatta aaaaggatgc ccttggtcat gtgggagcaa gtagctcagc tgcacaaggg 480 atgggccaac agggagcata caaccaagga atgggttata tgcaacccca gtaccataac 540 ggggatatct caaactga 558 42 555 DNA Zea mays 42 atggcggaag ctccggcgag ccctggcggc ggcggcggga gccacgagag cgggagcccc 60 aggggaggcg gaggcggtgg cagcgtcagg gagcaggaca ggttcctgcc catcgccaac 120 atcagtcgca tcatgaagaa ggccatcccg gctaacggga agaccatccc ggctaacggg 180 aagatcgcca aggacgctaa ggagaccgtg caggagtgcg tctccgagtt catctccttc 240 atcactagcg aagcgagtga caagtgccag agggagaagc ggaagaccat caatggcgac 300 gatctgctgt gggctatggc cacgctgggg tttgaagact acattgaacc cgccaaggtg 360 tacctgcaga agtacagaga gatggagggt gatagcaagt taactgcaaa atctagcgat 420 ggctcaatta aaaaggatgc ccttggtcat gtgggagcaa gtagctcagc tgcacaaggg 480 atgggccaac agggagcata caaccaagga atgggttata tgcaacccca gtaccataac 540 ggggatatct caaac 555 43 555 DNA Zea mays 43 atggcggaag ctccggcgag ccctggcggc ggcggcggga gccacgagag cgggagcccc 60 aggggaggcg gaggcggtgg cagcgtcagg gagcaggaca ggttcctgcc catcgccaac 120 atcagtcgca tcatgaagaa ggccatcccg gctaacggga agaccatccc ggctaacggg 180 aagatcgcca aggacgctaa ggagaccgtg caggagtgcg tctccgagtt catctccttc 240 atcactagcg aagcgagtga caagtgccag agggagaagc ggaagaccat caatggcgac 300 gatctgctgt gggctatggc cacgctgggg tttgaagact acattgaacc cctcaaggtg 360 tacgcgcaga agtacagaga gatggagggt gatagcaagt taactgcaaa atctagcgat 420 ggctcaatta aaaaggatgc ccttggtcat gtgggagcaa gtagctcagc tgcacaaggg 480 atgggccaac agggagcata caaccaagga atgggttata tgcaacccca gtaccataac 540 ggggatatct caaac 555 44 558 DNA Zea mays 44 atggcggaag ctccggcgag ccctggcggc ggcggcggga gccacgagag cgggagcccc 60 aggggaggcg gaggcggtgg cagcgtcagg gagcaggaca ggttcctgcc catcgccaac 120 atcagtcgca tcatgaagaa ggccatcccg gctaacggga agaccatccc ggctaacggg 180 aagatcgcca aggacgctaa ggagaccgtg caggagtgcg tctccgagtt catctccttc 240 atcactagcg aagcgagtga caagtgccag agggagaagc ggaagaccat caatggcgac 300 gatctgctgt gggccatggc cacgctgggg tttgaagact acattgaacc cctcaaggtg 360 tacctgcaga agtacagaga gatggagggt gatagcaagt taactgcaaa atctagcgat 420 ggctcaatta aaaaggatgc ccttggtcat gtgggagcaa gtagctcagc tgcacaaggg 480 atgggccaac agggagcata caaccaagga atgggttata tgcaacccca gtaccataac 540 ggggatatct caaactga 558 45 537 DNA Zea mays 45 atggcggaag ctccggcgag ccctggcggc ggcggcggga gccacgagag cgggagcccc 60 aggggaggcg gaggcggtgg cagcgtcagg gagcaggaca ggttcctgcc catcgccaac 120 atcagtcgca tcatgaagaa ggccatcccg gctaacggga agatcgccaa ggacgctaag 180 gagaccgtgc aggagtgcgt ctccgagttc atctccttca tcactagcga agcgagtgac 240 aagtgccaga gggagaagcg gaagaccatc aatggcgacg atctgctgtg ggccatggcc 300 acgctggggt ttgaagacta cattgaaccc ctcaaggtgt acctgcagaa gtacagagag 360 atggagggtg atagcaagtt aactgcaaaa tctagcgatg gctcaattaa aaaggatgcc 420 cttggtcatg tgggagcaag tagctcagct gcacaaggga tgggccaaca gggagcatac 480 aaccaaggaa tgggttatat gcaaccccag taccataacg gggatatctc aaactga 537 46 558 DNA Zea mays 46 atggcggaag ctccggcgag ccctggcggc ggcggcggga gccacgagag cgggagcccc 60 aggggaggcg gaggcggtgg cagcgtcagg gagcaggaca ggttcctgcc catagccaac 120 atcagtcgca tcatgaagaa ggccatcccg gctaacggga agaccatccc ggctaacggg 180 aagatcgcca aggacgctaa ggagaccgtg caggagtgcg tctccgagtt catctccttc 240 atcactagcg aagcgagtga caagtgccag agggagaagc ggaagaccat caatggcgac 300 gatctgctgt gggccatggc cacgctgggg tttgaagact acattgaacc cctcaaggtg 360 tacctgcaga agtacagaga gatggagggt gatagcaagt taactgcaaa atctagcgat 420 ggctcaatta aaaaggatgc ccttggtcat gtgggagcaa gtagctcagc tgcacaaggg 480 atgggccaac agggagcata caaccaagga atgggttata tgcaacccca gtaccataac 540 ggggatatct caaactga 558 47 516 DNA Glycine max 47 atggccgacg gtccggctag cccaggcggc ggcagccacg agagcggcga ccacagccct 60 cgctctaacg tgcgcgagca ggacaggtac ctccctatcg ctaacataag ccgcatcatg 120 aagaaggcac ttcctgccaa cggtaaaatc gcaaaggacg ccaaagagac cgttcaggaa 180 tgcgtctccg agttcatcag cttcatcacc agcgaggcct ctgataagtg tcagagagaa 240 aagagaaaga ctattaacgg cgatgatttg ctctgggcga tggccactct cggtttcgag 300 gattatatgg atcctcttaa aatttacctc actagatacc gagagatgga gggtgatacg 360 aagggctctg ccaagggtgg agactcatct gctaagagag atgttcagcc aagtcctaat 420 gctcagcttg ctcatcaagg ttctttctca caaaatgtta cttacccgaa ttctcagggt 480 cgacatatga tggttccaat gcaaggcccg gagtag 516 48 516 DNA Glycine max 48 atggctgagt cggacaacga gtccggaggt cacacgggga acgcaagcgg aagcaacgaa 60 ttctccggtt gcagggagca agacaggttc cttccgatag cgaacgtgag caggatcatg 120 aagaaggcgt tgccggcgaa cgcgaagatc tcgaaggagg cgaaggagac ggtgcaggag 180 tgcgtgtcgg agttcatcag cttcataaca ggagaagcgt ccgataagtg ccagaaggag 240 aagaggaaga cgatcaacgg cgatgatctg ctgtgggcca tgaccacgct ggggttcgag 300 gagtacgtgg agcctctcaa ggtttatctg cataagtata gggagctgga aggggagaaa 360 actgctatga tgggaaggcc acatgagagg gatgagggtt atggtcatgc aactcctatg 420 atgatcatga tggggcatca gcagcagcag catcagggac acgtgtatgg atctggaact 480 actactggat cagcatcttc tgcaagaact agataa 516 49 522 DNA Glycine max 49 atgtcggatg cgccaccgag cccgactcat gagagtgggg gcgagcagag cccgcgcggt 60 tcgtcgtccg gcgcgaggga gcaggaccgg tacctcccga ttgccaacat cagccgcatt 120 atgaagaagg ctctgcctcc caacggcaag attgcaaagg atgccaaaga caccatgcag 180 gaatgcgttt ctgagttcat cagcttcatt accagcgagg cgagtgagaa atgccagaag 240 gagaagagaa agacaatcaa tggagacgat ttgctatggg ccatggccac tttaggattt 300 gaagactaca tagagccgct taaggtgtac ctggctaggt acagagaggc ggagggtgac 360 actaaaggat ctgctagaag tggtgatgga tctgctacac cagatcaagt tggccttgca 420 ggtcaaaatt ctcagcttgt tcatcagggt tcgctgaact atattggttt gcaggtgcaa 480 ccacaacatc tggttatgcc ttcaatgcaa agccatgaat ag 522 50 489 DNA Glycine max 50 atgtccgatg ctccggcgag tccatgcggc ggcggcggcg gaggcagcca cgagagcggc 60 gagcacagtc cccgctccaa tttccgcgag caggaccgct tcctccccat cgccaacatc 120 agccgcatca tgaagaaagc gcttcctccc aacgggaaaa tcgccaagga cgccaaggaa 180 accgtgcagg aatgcgtctc cgagttcatc agcttcgtca ccagcgaagc gagcgataag 240 tgtcagagag agaagaggaa gaccatcaac ggcgacgatt tgctttgggc tatgaccact 300 ttaggtttcg aggagtatat tgatccgctc aaggtttacc tcgccgctta cagagagatt 360 gagggtgatt caaagggttc ggccaagggt ggagatgcat ctgctaagag agatgtttat 420 cagagtccta atggccaggt tgctcatcaa ggttctttct cacaaggtgt taattatacg 480 aattcttag 489 51 525 DNA Glycine max 51 atgtcggatg caccggcgag tccgagtcac gagagtggtg gcgagcagag ccctcgcggc 60 tcgttgtccg gcgcggctag agagcaggac cggtaccttc ccattgccaa catcagccgc 120 atcatgaaga aggctctgcc tcccaatggc aagattgcga aggatgcaaa agacacaatg 180 caagaatgcg tttctgaatt catcagcttc attaccagcg aggcgagtga gaaatgccag 240 aaggagaaga gaaagacaat caatggagac gatttactat gggccatggc aactttaggg 300 tttgaagact acattgagcc gcttaaggtg tacctggcta ggtacagaga ggcggagggt 360 gacactaaag gatctgctag aagtggtgat ggatctgcta gaccagatca agttggcctt 420 gcaggtcaaa atgctcagct tgttcatcag ggttcgctga actatattgg tttgcaggtg 480 caaccacaac atctggttat gccttcaatg caaggccatg aatag 525 52 690 DNA Glycine max 52 atggagacca acaaccagca acaacaacaa caaggagctc aagcccaatc gggaccctac 60 cccgtcgccg gcgccggcgg cagtgcaggt gcaggtgcag gcgctcctcc ccctttccag 120 caccttctcc agcagcagca gcagcagctc cagatgttct ggtcttacca gcgtcaagaa 180 atcgagcacg tgaacgactt taagaatcac cagctccctc ttgcccgcat caagaagatc 240 atgaaggccg acgaggatgt ccgcatgatc tccgccgagg cccccatcct cttcgccaag 300 gcctgcgagc tcttcatcct cgagctcacc atccgctcct ggctccacgc cgaggagaac 360 aagcgccgca ccctccagaa gaacgacatc gccgccgcca tcacccgcac cgacattttc 420 gacttcctcg ttgatattgt cccccgcgac gagatcaagg acgacgctgc tcttgtgggg 480 gccaccgcca gtggggtgcc ttactactac ccgcccattg gacagcctgc cgggatgatg 540 attggccgcc ccgccgtcga tcccgccacc ggggtttatg tccagccgcc ctcccaggca 600 tggcagtccg tctggcagtc cgctgccgag gacgcttcct atggcaccgg cggggccggt 660 gcccagcgga gccttgatgg ccagagctag 690 53 426 DNA Arabidopsis thaliana 53 atggcggata cgccttcgag cccagctgga gatggcggag aaagcggcgg ttccgttagg 60 gagcaggatc gataccttcc tatagctaat atcagcagga tcatgaagaa agcgttgcct 120 cctaatggta agattggaaa agatgctaag gatacagttc aggaatgcgt ctctgagttc 180 atcagcttca tcactagcga ggccagtgat aagtgtcaaa aagagaaaag gaaaactgtg 240 aatggtgatg atttgttgtg ggcaatggca acattaggat ttgaggatta cctggaacct 300 ctaaagatat acctagcgag gtacagggag ttggagggtg ataataaggg atcaggaaag 360 agtggagatg gatcaaatag agatgctggt ggcggtgttt ctggtgaaga aatgccgagc 420 tggtag 426 54 522 DNA Arabidopsis thaliana 54 atggcggagt cgcaggccaa gagtcccgga ggctgtggaa gccatgagag tggtggagat 60 caaagtccca ggtcgttaca tgttcgtgag caagataggt ttcttccgat tgctaacata 120 agccgtatca tgaaaagagg tcttcctgct aatgggaaaa tcgctaaaga tgctaaggag 180 attgtgcagg aatgtgtctc tgaattcatc agtttcgtca ccagcgaagc gagtgataaa 240 tgtcaaagag agaaaaggaa gactattaat ggagatgatt tgctttgggc aatggctact 300 ttaggatttg aagactacat ggaacctctc aaggtttacc tgatgagata tagagagatg 360 gagggtgaca caaagggatc agcaaaaggt ggggatccaa atgcaaagaa agatgggcaa 420 tcaagccaaa atggccagtt ctcgcagctt gctcaccaag gtccttatgg gaactctcaa 480 gctcagcagc atatgatggt tccaatgccg ggaacagact ag 522 55 486 DNA Arabidopsis thaliana 55 atggcggatt cggacaacga ttcaggagga cacaaagacg gtggaaatgc ttcgacacgt 60 gagcaagata ggtttctacc gatcgctaac gttagcagga tcatgaagaa agcacttcct 120 gcgaacgcaa aaatctctaa ggatgctaaa gaaacggttc aagagtgtgt atcggaattc 180 ataagtttca tcaccggtga ggcttctgac aagtgtcaga gagagaagag gaagacaatc 240 aacggtgacg atcttctttg ggcgatgact acgctagggt ttgaggacta cgtggagcct 300 ctcaaggttt atctgcaaaa gtatagggag gtggaaggag agaagactac tacggcaggg 360 agacaaggcg ataaggaagg tggaggagga ggcggtggag ctggaagtgg aagtggagga 420 gctccgatgt acggtggtgg catggtgact acgatgggac atcaattttc ccatcatttt 480 tcttaa 486 56 528 DNA Gossypium hirsutum 56 atgggaggag ggccaactag tccggcagga gggagccatg agagcggagg agagcacagc 60 agtcctcagt caactgtgag ggaacaagat cgttacctcc caattgctaa tataagtaga 120 atcatgaaga aagccttgcc ttctaatggg aaaattgcta aggatgctaa agatactgtt 180 caagaatgtg tttccgagtt catcagcttc atcactagcg aggcaagtga taaatgtcaa 240 aaagagaaaa ggaagacaat taatggagat gacttgttgt gggcaatggc aacattagga 300 ttcgaagact atatcgagcc acttaaaata tatcttgcca gatacaggga gttggagggt 360 gacaccaagg gatcagcccg tggtggtgat ggatctttta aaagagacgc agctggagct 420 cttcctgccc aaaatccaca gttttcaatc caggggtcat tgaactatat taattcccaa 480 gcacaaggac agcatatgat cattccctcc atgcaaggca atgagggc 528 57 534 DNA Gossypium hirsutum 57 atggcggatg gtatggcaag ggggccaacg agtccagcag gagggagtca tgagagtgga 60 gagcagtgca gttctcactc aactgtgagg gaacaagacc gttaccttcc aattgccaat 120 ataagcagaa tcatgaagag agcattgcct actaatggca aaattgctaa ggatgctaaa 180 gaaactgttc aagaatgtgt ttctgagttc atcagcttca tcactagcga ggctagcgat 240 aaatgccaga aagagaagag gaagacaatt aatggagatg atttgttgtg ggcaatggca 300 acattaggct ttgaagacta tattgagcca cttaaaatat atctggccag gtacagagag 360 ttggagggtg atgctaaggg atcaatcagg ggtgaagtgc ctcttaaaag agatgcagtt 420 cgagttcttg ctgtccccaa cccacagttt cctatcgaag gatcattgaa ctatattaat 480 tcccaggcac aaggacatca tatgatcgtc ccctccatgc aaggcaacga gtag 534 58 516 DNA Glycine max 58 atggccgacg gtccggcgag tccaggcggc ggtagccacg agagcggcga gcacagccct 60 cgctctaacg tgcgcgagca ggacaggtac ctccccatcg ctaacataag ccgcatcatg 120 aagaaggcac tacctgcgaa cggtaaaatc gccaaggacg ccaaagagac cgttcaggaa 180 tgcgtatccg agttcatcag tttcatcacc agcgaggcct ctgataagtg tcagagggaa 240 aagagaaaga ctattaacgg tgatgatttg ctctgggcca tggccactct tggttttgag 300 gattatatcg atcctcttaa aatttacctc actagataca gagagatgga gggtgatacg 360 aagggttcag ccaagggcgg agactcatct tctaagaaag atgttcagcc aagtcctaat 420 gctcagcttg ctcatcaagg ttctttctca caaggtgtta gttacacaat ttctcagggt 480 caacatatga tggttccaat gcaaggcccg gagtag 516 59 558 DNA Oryza sativa 59 atggcggatg ggccggggag cccgggggga ggagggggga gccacgagag cgggagcccg 60 agggggggag ggggaggagg gggaggtggg ggtgggggtg gcccacgcgt ccggcaggac 120 aggttcctcc ccatcgccaa catcagccgc atcatgaaga aggccatccc ggccaacggg 180 aagatcgcca aggacgccaa ggagaccgtg caggagtgcg tctccgagtt catctccttc 240 atcaccagcg aggcgagcga taaatgccag agggagaagc gcaagaccat caacggcgac 300 gacttgctgt gggcgatggc cacgctgggc ttcgaggact acatcgagcc cctcaaggtc 360 tacctgcaga agtacagaga gatggagggt gatagtaaat taactgcaaa ggctggtgat 420 ggctctgtga aaaaggatgt acttggttct catggaggaa gcagttcaag tgcccaaggg 480 atgggccaac aagcagcata caatcaagga atgggttata tgcaacctca gtaccataat 540 ggggatgtct caaactga 558 60 1148 DNA Arabidopsis thaliana 60 ggaagtttct ctcttgaggg aggttgctcg tggaatggga cacatatggt tgttataata 60 aaccatttcc attgtcatga gattttgagg ttaatatata ctttacttgt tcattatttt 120 atttggtgtt tgaataaatg atataaatgg ctcttgataa tctgcattca ttgagatatc 180 aaatatttac tctagagaag agtgtcatat agattgatgg tccacaatca atgaaatttt 240 tgggagacga acatgtataa ccatttgctt gaataacctt aattaaaagg tgtgattaaa 300 tgatgtttgt aacatgtagt actaaacatt cataaaacac aaccaaccca agaggtattg 360 agtattcacg gctaaacagg ggcataatgg taatttaaag aatgatatta ttttatgtta 420 aaccctaaca ttggtttcgg attcaacgct ataaataaaa ccactctcgt tgctgattcc 480 atttatcgtt cttattgacc ctagccgcta cacacttttc tgcgatatct ctgaggtaag 540 cgttaacgta cccttagatc gttctttttc tttttcgtct gctgatcgtt gctcatatta 600 tttcgatgat tgttggattc gatgctcttt gttgattgat cgttctgaaa attctgatct 660 gttgtttaga ttttatcgat tgttaatatc aacgtttcac tgcttctaaa cgataattta 720 ttcatgaaac tattttccca ttctgatcga tcttgttttg agattttaat ttgttcgatt 780 gattgttggt tggtggatct atatacgagt gaacttgttg atttgcgtat ttaagatgta 840 tgtcgatttg aattgtgatt gggtaattct ggagtagcat aacaaatcca gtgttccctt 900 tttctaaggg taattctcgg attgtttgct ttatatctct tgaaattgcc gatttgattg 960 aatttagctc gcttagctca gatgatagag caccacaatt tttgtggtag aaatcggttt 1020 gactccgata gcggcttttt actatgattg ttttgtgtta aagatgattt tcataatggt 1080 tatatatgtc tactgttttt attgattcaa tatttgattg ttcttttttt tgcagatttg 1140 ttgaccag 1148 61 828 DNA Glycine max 61 ggcaaaaaca tttaatacgt attatttaag aaaaaaatat gtaataatat atttatattt 60 taatatctat tcttatgtat tttttaaaaa tctattatat attgatcaac taaaatattt 120 ttatatctac acttattttg catttttatc aattttcttg cgttttttgg catatttaat 180 aatgactatt ctttaataat caatcattat tcttacatgg tacatattgt tggaaccata 240 tgaagtgtcc attgcatttg actatgtgga tagtgttttg atccaggcct ccatttgccg 300 cttattaatt aatttggtaa cagtccgtac taatcagtta cttatccttc ctccatcata 360 attaatcttg gtagtctcga atgccacaac actgactagt ctcttggatc ataagaaaaa 420 gccaaggaac aaaagaagac aaaacacaat gagagtatcc tttgcatagc aatgtctaag 480 ttcataaaat tcaaacaaaa acgcaatcac acacagtgga catcacttat ccactagctg 540 atcaggatcg ccgcgtcaag aaaaaaaaac tggaccccaa aagccatgca caacaacacg 600 tactcacaaa ggtgtcaatc gagcagccca aaacattcac caactcaacc catcatgagc 660 ccacacattt gttgtttcta acccaacctc aaactcgtat tctcttccgc cacctcattt 720 ttgtttattt caacacccgt caaactgcat gccaccccgt ggccaaatgt ccatgcatgt 780 taacaagacc tatgactata aatatctgca atctcggccc aggttttc 828

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed