Method of manufacturing carbon nanotube electron field emitters by dot-matrix sequential electrophoretic deposition

Cheng; Kuei-Wen ;   et al.

Patent Application Summary

U.S. patent application number 11/354846 was filed with the patent office on 2007-08-16 for method of manufacturing carbon nanotube electron field emitters by dot-matrix sequential electrophoretic deposition. This patent application is currently assigned to Teco Electric & Machinery Co., Ltd.. Invention is credited to Kuei-Wen Cheng, Chun-Yen Hsiao, Shie-Heng Lee, Yu-An Li, Jin-Lung Tsai.

Application Number20070187246 11/354846
Document ID /
Family ID38367216
Filed Date2007-08-16

United States Patent Application 20070187246
Kind Code A1
Cheng; Kuei-Wen ;   et al. August 16, 2007

Method of manufacturing carbon nanotube electron field emitters by dot-matrix sequential electrophoretic deposition

Abstract

A method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition forms an electric field for only one pixel in the electrophoretic deposition, so that only the electrophoretic area has the electrophoretic effect. Longitudinally aligned cathode electrodes of a cathode plate include a plurality of electron field transmitters at the depositing positions, and anode electrodes of an anode plate perpendicular to the cathode electrodes are preinstalled, and a switch unit provides a potential difference for each cathode or anode electrode by a sequential change, and only one alternating pixel having an electric field between the cathode and anode plates per unit time of the electrophoresis produces a deposition effect in the area for manufacturing a carbon nanotube electron field transmitter, and the sequential voltage change of each cathode or anode electrode is used to achieve the electrophoretic deposition effect for all pixels of the cathode plate.


Inventors: Cheng; Kuei-Wen; (Guanyin Township, TW) ; Tsai; Jin-Lung; (Guanyin Township, TW) ; Lee; Shie-Heng; (Guanyin Township, TW) ; Li; Yu-An; (Guanyin Township, TW) ; Hsiao; Chun-Yen; (Guanyin Township, TW)
Correspondence Address:
    HDSL
    4331 STEVENS BATTLE LANE
    FAIRFAX
    VA
    22033
    US
Assignee: Teco Electric & Machinery Co., Ltd.

Family ID: 38367216
Appl. No.: 11/354846
Filed: February 16, 2006

Current U.S. Class: 204/471
Current CPC Class: C25B 7/00 20130101
Class at Publication: 204/471
International Class: C25B 7/00 20060101 C25B007/00

Claims



1. A method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition, comprising the steps of: connecting an anode of a power supply to a plurality of anode electrodes of an anode plate, and connecting a cathode of the power supply to an input end of a switch unit, and connecting an output end of the switch unit to a plurality of cathode electrodes of a cathode plate such that the cathode electrodes and the anode electrodes are perpendicular with each other, and connecting a signal generator to an input end of the plurality of switch units; preparing an electrophoresis solution in an electrophoresis tank, and placing the cathode plate and the anode plate which are parallel to each other in the electrophoresis tank; an anode of a power supply outputting a voltage to the plurality of anode electrodes of the anode plate, and the signal generator producing a pulse signal outputted to the plurality of switch units, such that in the electrophoretic deposition, only one switch unit is electrically connected, and the rest of the switch units remain electrically disconnected, and one of the cathode electrodes of the cathode plate is electrically connected to allow only one pixel to produce a potential different and have an electric field between the cathode electrode and the anode electrode in an electrophoresis period, and the electrically connected cathode electrode forms a carbon nanotube at a position for depositing the electron field transmitter; and the electrically connected switch unit counting the time, while the electrically connected cathode electrode is going through the electrophoretic deposition, and once the counted time is up, the electric power supplied to the cathode electrode will be disconnected to allow the next switch unit to be electrically connected and the rest of the switch units remain electrically disconnected, so as to proceed the electrophoretic deposition for the next cathode electrode sequentially.

2. The method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition of claim 1, wherein the power supply is a scanning power supply that supplies a voltage to complete the electrophoresis for a full area in the period of a cycle, such as completing a full electrophoresis in a second, and the voltage of a pulse voltage provided by the anode is equal to 120V.

3. The method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition of claim 1, wherein the anode plate includes a plurality of anode electrodes disposed transversally on an insulating board.

4. The method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition of claim 3, wherein the insulating board is a glass substrate having the anode electrode produced on the glass substrate by a process selected from screen printing and lithography.

5. The method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition of claim 1, wherein the cathode plate includes a plurality of longitudinally aligned cathode electrodes.

6. The method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition of claim 1, wherein the cathode electrode is a semi-finished product structure having a finished gate and a manufactured sacrificial layer.

7. The method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition of claim 6, wherein the sacrificial layer is intended for preventing a sediment such as a gate or a dielectric layer remained in a region without going through an electrophoretic deposition.

8. The method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition of claim 6, further comprising the step of removing the film of a sacrificial layer after the electrophoretic deposition process is completed.

9. The method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition of claim 1, wherein the cathode plate and the anode plate are parallel to each other and have an interval of 3 cm to 5 cm, and the cathode plates and the anode plate are placed in the electrophoresis tank.

10. The method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition of claim 1, wherein the solution adopts ethanol as a solvent, and the phosphor powder material for the electron field transmitter of the electrophoresis employs carbon nanotubes produced by an electric arc discharge, and its average nanotube length is below 5 .mu.m, and its average nanotube diameter is below 100 nm, and the carbon nanotube is a multiwalled carbon nanotube structure with a concentration in weight percentage equal to 0.1%.about.0.005%.

11. The method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition of claim 10, wherein the concentration in weight percentage is preferably equal to 0.02%.

12. The method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition of claim 1, wherein the solution further comprises a secondary salt which is a conducting metal oxide salt formed after the electrophoresis.

13. The method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition of claim 12, wherein the metal oxide salt is one selected from the group of indium chloride, indium nitrate, and other salts such as a tin salt.

14. The method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition of claim 12, wherein the secondary salt is indium chloride with a concentration in weight percentage equal to 0.1%.about.0.005%, and a glass powder for increasing adhesiveness with a concentration in weight percentage greater than 5%.

15. The method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition of claim 14, wherein the secondary salt selects a concentration in weight percentage preferably equal to 0.01%.

16. The method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition of claim 1, wherein the signal generator produces a continuous square wave output.

17. The method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition of claim 1, wherein the switch unit is a timer.

18. The method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition of claim 1, wherein the switch unit comprises a timer and a switch.
Description



BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The present invention relates to a field emission display, and more particular to an electrophoretic deposition technology for manufacturing electron field emitters for pixels by dot-matrix sequential electrophoretic carbon nanotubes.

[0003] 2. Description of Prior Art

[0004] In a field emission display referred by this invention, an electric field is used for driving a cathode electron emitter to produce electrons, and the electrons excite phosphors of an anode plate, such that the phosphors produce photons to emit light. The field emission display has lightweight and thin features, and the size of an effective display area can be made according to the manufacturing process and product requirements. Furthermore, the field emission displays do not have the viewing angle issue occurred in the flat panel displays.

[0005] The structure of a prior art triode field emission display includes an anode plate, a cathode plate, and a spacer installed between the anode plate and the cathode plate for providing an interval with a vacuum area between the anode plate and the cathode plate as a support between the anode plate and the cathode plate. The anode plate includes an anode substrate, an anode conducting layer, and a phosphors layer, and the cathode plate includes a cathode substrate, a cathode conducting layer, an electron field transmitter layer, a dielectric layer, and a gate layer, wherein the gate layer provides a potential difference to draw electron emissions of the electron field transmitter layer, and the high voltage provided by the anode conducting layer accelerates the electron beams, so that the electrons have sufficient kinetic energy to impinge the phosphors layer on the anode plate to excite the phosphors to emit light. Thus, when the electrons are moving in the field emission display, it requires a vacuum equipment to maintain the display at a vacuum level lower than 10 to 5 torrs, such that the electrons can obtain a good mean free path, while avoiding contaminations and infections to the electron field transmitter and phosphors area To provide sufficient energy for electrons to impinge the phosphors, an appropriate gap is maintained between the two plates, so that the electrons can have enough space for their acceleration to impinge the phosphors and maximize the effect of producing lights.

[0006] The so-called electron field transmitter layer uses carbon nanotubes as its major components. Since carbon nanotube was introduced by Sumio Iijima in 1991 (Nature, Vol. 354, p 56 (1991)), the carbon nanotube has very high electronic characteristics and thus it is used extensively in various different electronic components, and the carbon nanotube comes with a high aspect ratio greater than 500 and a high rigidity with a Young's Modulus greater than 1000 GPn, and the tip or recession of the carbon nanotube is exposed at an atomic level. The aforementioned characteristics are considered ideal for being used as a material for making electron field transmitters, such as an electron field transmitter used for a cathode plate of a field emission display. Since carbon nanotubes have the aforementioned physical properties, therefore they can be designed for different manufacturing processes such as screen printing or thin film process and used for patterning electronic components.

[0007] In the so-called cathode plate manufacturing technology, the carbon nanotube is used as the material for making electron field transmitters and is manufactured on the cathode conducting layer, and the manufacturing method includes a chemical vapor deposition (CVD) to directly grow carbon nanotubes onto the cathode electrode layer of each cathode pixel, or uses a photosensitive carbon nanotube solution to be patterned onto the cathode conducting layer of each pixel, or coats a carbon nanotube solution accompanied with a masking process. However, the electron field transmitter structure of the foregoing triode field emission display adopts carbon nanotubes which are applied to the cathode electrode structure of each pixel, and such manufacturing process still has issues on its manufacturing costs and limitations on its three-dimensional structure, and more specifically it is difficult to achieve the evenness for large-size electron field transmitters.

[0008] Recently, a so-called electrophoretic deposition (EPD) technology disclosed in U.S. Pat. Publication No. 2003/0102222 prepares an alcohol suspension by employing carbon nanotubes and uses magnesium, lanthanum, yttrium, or aluminum ion salts as secondary salts (chargers) to produce the electrophoresis solution, and connects the cathode electrode with the electrophoresis solution for the electrophoretic deposition, such that an AD or DC voltage is supplied to form an electric field in the solution, and the ions in the secondary salt solution are attached on the carbon nanotube phosphors. The electrophoretic mobility produced by the electric field assists depositing the carbon nanotubes onto a specific electrode, so that the carbon nanotubes can be deposited and patterned onto the electrode. The aforementioned technology is called electrophoretic deposition technology, which can deposit carbon nanotubes onto an electrode layer easily, and also can avoid the limitation of the cathode structure on the triode field emission display, and thus this technology can be used extensively for manufacturing the cathode plate structure.

[0009] Since the prior art electrophoretic deposition can only deposit carbon nanotubes onto a cathode electrode without depositing the carbon nanotubes on the gates that will electrically connect the gates with the cathode electrode, therefore a sacrificial layer or a protective layer is usually installed between the gate and the dielectric layer to expose the patterned cathode electrode area before performing the electrophoretic deposition, and then the protective layer as well as any unnecessary carbon nanotubes remained in regions that do not require carbon nanotubes are removed to avoid improper electrical connections. Another prior art disclosed in Japan Pat. Publication No. 2001020093 forms a protrusion at the anode electrode corresponding to a specific region of the cathode in an electrophoresis. Since the protrusions form a specific electric field to the corresponding cathode electrode, the carbon nanotubes in the solution can be deposited in the specific region and the deposited carbon nanotubes can be centralized at the specific electrode layer region. A further prior art disclosed by the present inventor's previous patent application teaches a simple and easy way of making patterned electrophoresis anode structure to effectively centralize the electrophoretic deposition regions of an anode plate device.

[0010] Although the present electrophoretic deposition method limits and reduces the electrophoretic deposition area, yet the prior art also provides a voltage to the cathode plate and the anode plate to form an electric field, and thus a meticulous computation or design is required for producing the electric field to maximize the effective regions, or else a poor applicability for the high-resolution panels may result. The unit area of the electrophoresis region so produced will become smaller, and the point-to-point electric field so produced will be affected by the electric field in the neighborhood and thus making it difficult to achieve the expected effect. Although the point-to-point electrophoretic deposition technology is employed, an electric field is produced at the same time, so that the electric fields of adjacent pixels will interfere with each other easily, and the dot-matrix point-to-point electrophoretic deposition effect can no longer be maintained.

SUMMARY OF THE INVENTION

[0011] In view of the foregoing shortcomings of the prior art, the inventor of the present invention based on years of experience in the related industry to conduct experiments and modifications, and finally invented a method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition

[0012] Therefore, the present invention is to provide an alternating electrophoretic deposition technology to improve the electrophoretic deposition effect on the regions of a dot-matrix structure, so that the electrophoresis time can be focused on the electrophoretic deposition of a pixel only to centralize the electrophoretic deposition region and simplify the design of the anode plate and the electric field produced by the electrophoresis. The invention enhances the current density used for the electrophoresis and greatly lowers the equipment cost and reduces the power consumption for manufacturing large panels, and the present invention also improves the operating safety.

[0013] Accordingly, a method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition according to the invention comprises the following steps:

[0014] An anode of a power supply is connected to a plurality of anode electrodes of an anode plate and a cathode of a power supply is connected to a switch unit, and the switch unit is connected to a plurality of cathode electrodes of a cathode plate, and the plurality of cathode electrodes and the plurality of anode electrodes are perpendicular to each other, and a signal generator is connected to an input end of the plurality of switch units, and the cathode plate and the anode plate are parallel with each other and placed in an electrophoresis tank.

[0015] The anode of the power supply outputs a voltage to the plurality of anode electrodes of the anode plate, and the signal generator produces a pulse signal outputted to the plurality of switch units. During the electrophoretic deposition process, only one switch unit is electrically connected, and the rest of the switch units is electrically disconnected, and the electrically connected switch unit applies a pulse signal produced by the signal generator to a cathode electrode of the cathode plate, such that the cathode electrode is electrically connected, and only one pixel forms a potential different with an electric field between the electrically connected cathode electrode and anode electrode, and the cathode electrode forms carbon nanotubes disposed at positions for depositing an electron field transmitter.

[0016] When one of the electrically connected cathode electrodes of the cathode plate goes through the electrophoresis process, the electrically connected switch unit counts the time, so that if the time counted by the switch unit is up, the electric power supplied to the cathode electrode will be disconnected to allow the next switch unit to be connected electrically and the rest of the switch unit will remain disconnected, and such sequence will apply to the next cathode electrode for continuing the electrophoretic deposition process.

BRIEF DESCRIPTION OF DRAWINGS

[0017] The features of the invention believed to be novel are set forth with particularity in the appended claims. The invention itself however may be best understood by reference to the following detailed description of the invention, which describes certain exemplary embodiments of the invention, taken in conjunction with the accompanying drawings in which:

[0018] FIG. 1 is a schematic view of a cathode plate and an anode plate of the present invention;

[0019] FIG. 2 is a schematic view of connecting a cathode plate and an anode plate to an electrophoresis equipment according to the present invention;

[0020] FIG. 3 is a schematic view of a cathode plate and an anode plate in an electrophoresis process according to the present invention;

[0021] FIG. 4 is a schematic view of connecting a cathode plate and an anode plate to an electrophoresis equipment in a simple and easy way according to the present invention; and

[0022] FIG. 5 is a schematic view of cathode plate and an anode plate in another electrophoresis process according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0023] The technical characteristics, features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiments with reference to the accompanying drawings.

[0024] Referring to FIGS. 1 and 2 for the schematic views of a cathode plate and an anode plate, and connecting the cathode plate and the anode plate to an electrophoresis equipment according to the present invention respectively, a method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition of the invention mainly uses an alternating scan electrophoretic deposition technology to alternate the current distribution to the pixels at different regions of the cathode electrode to produce a carbon nanotube electron field transmitter on the cathode plate, and such scan method can effectively lower the peak of the current and also can apply a pulse signal for manufacturing large panels.

[0025] In the manufacturing method, a cathode plate 1 is prepared first, and the cathode plate 1 has a or 32 pieces of longitudinally aligned cathode electrodes 11, and the plurality of cathode electrodes 11 are semi-finished structures with a finished gate and a manufactured sacrificial layer, and the sacrificial layer is intended for preventing sediments (such as gates and dielectric layers) remained on the regions without going through the electrophoretic deposition, and the film of the sacrificial layer is removed after the electrophoretic deposition process is completed, and a semi-finished substrate of the cathode plate 1 provides a.times.b or 32.times.32 pixels.

[0026] An anode plate 2 is prepared, and a plurality of anode electrodes 21 of the anode plate 2 are manufactured and disposed transversally on an insulating board and perpendicular to the plurality of cathode electrodes 11, and correspond to the pixels of b or 32 pieces of anode electrodes 21 provided by the cathode plate 2, wherein the insulating board could be a glass substrate having a plurality of anode electrodes 21 produced on the glass substrate by screen printing or lithography.

[0027] The plurality of anodes 31 of the scanning power supply 3 are connected to the plurality of anode electrodes 21 of the anode plate 2 for providing a pulse voltage to each anode electrode 21 sequentially, and the cathode 32 is connected to the input end of the plurality of switch units 4, and the output end of the switch unit 4 is connected to the plurality of cathode electrodes 11 of the cathode plate 1.

[0028] The aforementioned switch unit 4 is selected from either a timer or a timer operating with a switch, and the switch unit 4 has a timing function and its path can be set to be electrically connected or disconnected, and another input end of the switch unit 4 is connected to the output end of the signal generator 5 to complete the connections by the electrophoretic deposition, wherein the scanning power supply 3 provides a pulse voltage with a lag to each anode electrode 21 sequentially.

[0029] Referring to FIGS. 3 and 4 for the schematic views of connecting a cathode plate and an anode plate in an electrophoresis process and connecting a cathode and an anode plate with an electrophoresis equipment in a simple and easy way according to the present invention respectively, the cathode plate 1, anode plate 2, scanning power supply 3, switch unit 4, and signal generator 5 are connected, and then an electrophoresis solution in the electrophoresis tank 6 is prepared, and ethanol is used as a solvent, and the phosphors powder of the electron field transmitter of the electrophoresis adopts carbon nanotubes manufactured by an electric arc discharge, and the average nanotube length is below 5 .mu.m, and the average nanotube diameter is below 100 nm. The carbon nanotube has a multiwalled carbon nanotube structure, and its concentration in weight percentage is 0.1%.about.0.005% (and preferably 0.02%) and the secondary salts produced after the electrophoresis adopt the conducting metallic oxide salts including indium chloride, indium nitrate, or other salts such as tin salts, and the concentration in weight percentage of indium chloride is 0.1%.about.0.005% (and preferably 0.01%), and the concentration in weight percentage of a glass powder for improving adhesiveness is at least 5%.

[0030] The gap between the cathode plate 1 and the corresponding anode plate 2 is maintained at an interval of 3.about.5 cm and placed in the electrophoresis tank 6, wherein the voltage of the scanning power supply 3 is supplied to complete a whole-area electrophoresis per cycle (such as a whole electrophoresis per second), and the scanning power supply 3 supplies a voltage to each of the plurality of anode electrodes 21 with a lag sequentially, and scans with a frequency b or 32 of each anode with a lag sequentially and each anode has a Duty=1/b or 1/32 of the positive pulse voltage 120V supplied to the plurality of anode electrodes 21a of the anode plate 2, and the signal generator 5 produces continuous square wave signals outputted to a plurality of switch units 4. By then, the first switch unit 4 is electrically connected, and the rest of the switch units 4 are electrically disconnected. The electrically connected switch unit 4 drives the signal generator 5 to generate square wave signals applied to the first cathode electrode 11. By then, the first cathode electrode 11 is electrically connected, and thus a potential difference of only one pixel of the first cathode electrode 11 and first anode electrode 21 is formed to produce an electric field signal during the electrophoresis period, so that a carbon nanotube is formed at a position for the cathode electrode 11 to deposit the electron field transmitter. During the electrophoretic deposition process, the first switch unit 4 counts the time synchronously. Once the time counted by a first switch unit is up, the switch unit 4 will stop timing, and will disconnect the electric power supplied to the first cathode electrode 11, so that the second switch unit 4 will be electrically connected and the rest of the switch units 4 will remain electrically disconnected. Such sequence will apply to the next cathode electrode 11 for continuing the electrophoretic deposition process, so as to complete the manufacture of the electron field transmitters of the cathode electrode 11. Each of the foregoing cathode electrodes 11 has a sequential change (or a higher frequency multiplication) with Duty= 1/32 or 1/a and sequentially scans with a lag for each cathode electrode 11 with a frequency equal to a or 32, and thus each pixel is scanned to perform an electrophoretic deposition with a frequency of a.times.b or 32.times.32 or its frequency multiplication, and the time for the electrophoresis counted by the switch unit 4 is set to 15 minutes, and each electrophoresis can produce an electron field transmitter structure with an even thickness of approximately 5.about.10 um.

[0031] Referring to FIG. 5 for another schematic view of an electrophoresis process for manufacturing a cathode plate and an anode plate according to the present invention, the cathode plate 1a according to this embodiment includes a plurality of cathode electrode 11a, and the anode plate 2a includes a plurality of anode electrodes 21a, and the anode 31a of the scanning power supply 3a a is connected to a plurality of anode electrodes 21a of the anode plate 2a for supplying a pulse voltage to each anode electrode 21a sequentially, and the cathode 32a is connected to an input end of the switch unit 4a, and the output end of the switch unit 4a is connected to a plurality of cathode electrodes 11a on the cathode plate 1a, and a signal generator 5a is connected to an input end of the switch unit 4a, and the foregoing switch unit 4a is comprised of a timer 41a and a switch 42a.

[0032] The plurality of cathode electrodes 11a and anode electrodes 21a are perpendicular to each other and keep an interval of 3.about.5 cm in between and these electrodes 1a, 21a are placed in the electrophoresis tank 6a. The scanning power supply 3a supplies electric power to each anode electrode 21a with a lag sequentially and scans each anode electrode 21a with a lag. The scanning power supply 3a provides a positive pulse voltage equal to 120V. By then, the signal generator 5a produces a signal outputted to the plurality of switch units 4a, wherein only the first switch unit 4a is electrically connected, and the rest of the switch units 4a remained electrically disconnected. Therefore, only one pixel forms a potential difference to produce an electric field between the first cathode electrode 11a and the first anode electrode 21a during the period of electrophoresis, so that the first cathode electrode 11a forms carbon nanotubes disposed at the positions for depositing an electron field transmitter, while the timer 41a of the switch unit 4a starts counting time. Once the time counted by the timer 41a is up, the switch 42a will immediately disconnect the power supplied to the first cathode electrode 11a, and allow the second switch unit 4a to be electrically connected and the rest of the switch units 4a remain electrically disconnected, so as to perform the electrophoretic deposition process for the next cathode electrode 11a sequentially, and scan the pixel of the next cathode electrode 11a sequentially.

[0033] In summation of the description above, the method of manufacturing carbon nanotube electron field emitters by do-matrix sequential electrophoretic deposition in accordance with the present invention has the following advantages:

[0034] 1. The conducting wires on the electrodes of the cathode plate and the anode plate in the electrophoresis are installed alternately, so that the time of the electrophoresis focuses on a pixel for the electrophoretic deposition to centralize the electrophoretic deposition region.

[0035] 2. The design of the invention provides a simpler and easier way to simplify the design of the anode plate in an electrophoresis. Unlike the complicated interactions of electric fields in the prior art, the electrophoresis process of the invention is simplified, such that the invention can produce a simplified electric field for the electrophoresis.

[0036] 3. Since the electrophoresis gives better regions per unit area, and thus the current density for the electrophoresis is improved.

[0037] 4. The current for a large-area electrophoresis is large, and thus the invention can lower the equipment cost, reduce the power consumption, and improve the operating safety.

[0038] The present invention is illustrated with reference to the preferred embodiment and not intended to limit the patent scope of the present invention. Various substitutions and modifications have suggested in the foregoing description, and other will occur to those of ordinary skill in the art. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the invention as defined in the appended claims.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed