Organic Memory Device And Method Of Fabricating The Same

Chang; Chia-Chieh ;   et al.

Patent Application Summary

U.S. patent application number 11/309357 was filed with the patent office on 2007-07-26 for organic memory device and method of fabricating the same. Invention is credited to Chia-Chieh Chang, Wen-Miao Lo, Zing-Way Pei.

Application Number20070170420 11/309357
Document ID /
Family ID38284648
Filed Date2007-07-26

United States Patent Application 20070170420
Kind Code A1
Chang; Chia-Chieh ;   et al. July 26, 2007

ORGANIC MEMORY DEVICE AND METHOD OF FABRICATING THE SAME

Abstract

An organic memory device includes a top electrode, a bottom electrode, and a bistable organic polymer layer between the top and bottom electrodes. Moreover, the organic memory device further includes a surface treatment layer between the organic polymer layer and the bottom electrode. Because the surface treatment layer can stabilize the interface between the organic polymer layer and the bottom electrode, the reliability of the device may be promoted.


Inventors: Chang; Chia-Chieh; (Taipei City, TW) ; Pei; Zing-Way; (Taichung City, TW) ; Lo; Wen-Miao; (Kaohsiung City, TW)
Correspondence Address:
    JIANQ CHYUN INTELLECTUAL PROPERTY OFFICE
    7 FLOOR-1, NO. 100, ROOSEVELT ROAD, SECTION 2
    TAIPEI
    100
    omitted
Family ID: 38284648
Appl. No.: 11/309357
Filed: July 31, 2006

Current U.S. Class: 257/40
Current CPC Class: G11C 13/0014 20130101; G11C 13/0016 20130101; G11C 2213/51 20130101; H01L 51/105 20130101; B82Y 10/00 20130101; H01L 27/285 20130101; H01L 51/0591 20130101
Class at Publication: 257/40
International Class: H01L 29/08 20060101 H01L029/08

Foreign Application Data

Date Code Application Number
Jan 11, 2006 TW 95101034

Claims



1. An organic memory device, comprising a top electrode, a bottom electrode, and a polymer thin film disposed between the top electrode and the bottom electrode, wherein the organic memory device further includes: a bottom surface treatment layer disposed between the polymer thin film and the bottom electrode to stabilize interface between the polymer thin film and the bottom electrode.

2. The organic memory device as claimed in claim 1, wherein the bottom surface treatment layer includes a metal oxide layer, a metal nitride layer, a silicon oxide layer, a silicon nitride layer, or an organic self-assembling polymer layer.

3. The organic memory device as claimed in claim 1, further comprising a top surface treatment layer disposed between the polymer thin film and the top electrode to stabilize interface between the polymer thin film and the top electrode stable.

4. The organic memory device as claimed in claim 3, wherein the top surface treatment layer includes a metal oxide layer, a metal nitride layer, a silicon oxide layer, a silicon nitride layer, or an organic self-assembling polymer layer.

5. The organic memory device as claimed in claim 1, wherein the top electrode and the bottom electrode includes metal.

6. The organic memory device as claimed in claim 5, wherein the bottom electrode includes aluminum or copper.

7. The organic memory device as claimed in claim 1, wherein the polymer thin film has a bistable structure.

8. A method of fabricating an organic memory device, comprising: forming a bottom electrode on a substrate; performing a first surface treatment on the bottom electrode to form a bottom surface treatment layer on a surface thereof; forming a polymer thin film on the bottom surface treatment layer; and forming a top electrode on the polymer thin film.

9. The method of fabricating an organic memory device as claimed in claim 8, wherein the first surface treatment includes an oxidation treatment or a nitridation treatment.

10. The method of fabricating an organic memory device as claimed in claim 9, wherein the first surface treatment includes an O.sub.2 plasma treatment, an N.sub.2 plasma treatment, or an NH.sub.3 plasma treatment.

11. The method of fabricating an organic memory device as claimed in claim 8, wherein the first surface treatment includes a thermal treatment performed in an oxygen, nitrogen or an ammonia gas atmosphere.

12. The method of fabricating an organic memory device as claimed in claim 8, wherein performing the first surface treatment on the bottom electrode includes depositing or coating the bottom surface treatment layer on the bottom electrode.

13. The method of fabricating an organic memory device as claimed in claim 12, wherein the bottom surface treatment layer includes a silicon oxide layer or a silicon nitride layer.

14. The method of fabricating an organic memory device as claimed in claim 12, wherein the bottom surface treatment layer includes an organic self-assembling polymer.

15. The method of fabricating an organic memory device as claimed in claim 8, further comprising a step of performing a second surface treatment on the polymer thin film to form a top surface treatment layer on the polymer thin film after the step of forming the polymer thin film and before forming the bottom electrode.

16. The method of fabricating an organic memory device as claimed in claim 15, wherein the second surface treatment is performed at a temperature below melting point of the polymer thin film.

17. The method of fabricating an organic memory device as claimed in claim 15, wherein the second surface treatment includes introducing a reaction gas containing oxygen, nitrogen or ammonia to make the interface between the polymer thin film and the top electrode to be an oxide interface or a nitride interface before the step of forming the top electrode.

18. The method of fabricating an organic memory device as claimed in claim 15, wherein the step of performing the second surface treatment on the polymer thin film comprises depositing or coating the top surface treatment layer on the polymer thin film.

19. The method of fabricating an organic memory device as claimed in claim 18, wherein the top surface treatment layer includes a silicon oxide layer or a silicon nitride layer.

20. The method of fabricating an organic memory device as claimed in claim 18, wherein the top surface treatment layer includes a self-assembling silicon oxide layer.

21. The method of fabricating an organic memory device as claimed in claim 8, wherein the top electrode and the bottom electrode include metal.

22. The method of fabricating the organic memory device as claimed in claim 8, wherein the polymer thin film comprises a bistable structure.
Description



CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the priority benefit of Taiwan application serial no. 95101034, filed on Jan. 11, 2006. All disclosure of the Taiwan application is incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The present invention relates to an organic memory device and a method of fabricating the same. More particularly, the present invention relates to an organic memory device with high device reliability and a method of fabricating the same.

[0004] 2. Description of Related Art

[0005] With the approach of the nanometer age, recently a new nanometer memory with a larger storage capacity, higher speed, and better performance and adaptability has attracted much attention. Among various new non-volatile memories, one of the most interesting memories is the organic memory.

[0006] The organic memory utilizes the memory effect of organic materials to store data. Therefore, all organic materials with bistable memory effects may be used in memory devices. The technique that employs organic polymer thin films to fabricate organic memories is under rapid development, and may be combined with the existing film coating techniques in the industry. For example, multilayer organic films structure comprising multiple organic polymer thin films may be fabricated to form high density memories using the existing mature semiconductor process. Moreover, the organic memory has an additional advantageous feature that other nanometer memory techniques, such as magnetic memory and phase change memory, do not possess, i.e., low-cost flexible memories and electronic devices can be fabricated by applying non-semiconductor film coating techniques (e.g. processes of an evaporation technique for OLED, a screen coating technique, or an inkjet technique) with soft materials or surfaces of irregular objects used as substrates.

[0007] However, there exist difficulties in reading and writing memory devices formed of organic materials and non-organic materials (e.g. metal electrodes) due to the poor electrical property caused by the contact interface.

SUMMARY OF THE INVENTION

[0008] Accordingly, an object of the present invention is to provide an organic memory device, wherein the adhesion between the metal electrodes and the polymer thin film is improved. Thus, the reliability of the device may be effectively promoted.

[0009] Another object of the present invention is to provide a method of fabricating the organic memory device, wherein the interface between the metal electrodes and the polymer thin film may be improved. Thus, the interface between the metal electrodes and the polymer thin film may be stabilized and the number of carrier traps caused by interface defects may be reduced.

[0010] The present invention provides an organic memory device comprising a top electrode, a bottom electrode and a polymer thin film. The polymer thin film is disposed between the top electrode and bottom electrode. The memory device further includes a bottom surface treatment layer between the polymer thin film and the bottom electrode, so as to form a stable interface.

[0011] According to an embodiment of the present invention, the aforementioned bottom surface treatment layer includes a metal oxide layer, a metal nitride layer, a silicon oxide layer or an organic self-assembling polymer layer.

[0012] According to an embodiment of the present invention, the top electrode and bottom electrode may comprise a metal. The bottom electrode may comprise aluminum or copper.

[0013] According to an embodiment of the present invention, the aforementioned polymer thin film may comprise a bistable structure.

[0014] According to an embodiment of the present invention, the organic memory device further comprise an additional top surface treatment layer disposed between the polymer thin film and the top electrode.

[0015] The present invention also provides a method of fabricating the organic memory device including forming a bottom electrode on a substrate; performing a first surface treatment on the bottom electrode to form a bottom surface treatment layer on the surface of the bottom electrode; forming a polymer thin film on the surface treatment layer; and forming a top electrode on the polymer thin film.

[0016] According to an embodiment of the present invention, the first surface treatment comprises, for example an oxidation treatment including an O.sub.2 plasma treatment or a nitridation treatment including an N.sub.2 plasma treatment or an NH.sub.3 plasma treatment.

[0017] According to an embodiment of the present invention, the aforementioned first surface treatment includes a thermal treatment performed in an oxygen, a nitrogen, or an ammonia gas atmosphere.

[0018] According to an embodiment of the present invention, the first surface treatment applied to the bottom electrode includes depositing or coating the aforementioned bottom surface treatment layer on the bottom electrode. The bottom surface treatment layer comprises a silicon oxide layer or a silicon nitride layer or an organic self-assembling polymer.

[0019] According to an embodiment of the present invention, the polymer thin film may be optionally subjected to a second surface treatment, after the aforementioned polymer thin film is formed but before the top electrode is formed so as to form a second top surface treatment layer over the surface of the polymer thin film. The surface treatment may also stabilize the interface between the organic thin film and the inorganic conductor. Preferably, the top surface treatment is completed at a temperature below the glass transition temperature of the polymer thin film. Furthermore, the surface treatment includes introducing a reaction gas containing oxygen, nitrogen or ammonia before the formation of the top electrode, so that the interface between the polymer thin film and the top electrode is an oxide interface or a nitride interface. Alternatively, the top surface treatment layer may be deposited or coated on the polymer thin film. The top surface treatment layer comprises a silicon oxide layer or a silicon nitride layer or a self-assembling silicon oxide layer.

[0020] According to an embodiment of the present invention, the top electrode and bottom electrode may comprise a metal. In addition, the polymer thin film comprises a bistable structure.

[0021] According to an embodiment of the present invention, a bottom surface treatment layer is added into the structure of the organic memory in order to stabilize the interface between the polymer thin film and the bottom electrode and thereby reduce the number of carrier traps caused by interface defects. Furthermore, the adhesion between the metal electrodes and the polymer thin film may also be improved. Thus, the reliability of the device may be effectively promoted.

[0022] In order to the make aforementioned and other objects, features and advantages of the present invention comprehensible, preferred embodiments accompanied with figures are described in detail below.

[0023] It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0024] FIGS. 1A-1C are sectional views illustrating the process steps of fabricating an organic memory device in accordance with an embodiment of the present invention.

DESCRIPTION OF EMBODIMENTS

[0025] FIGS. 1A-1C are sectional views illustrating the process steps of fabricating an organic memory device in accordance with an embodiment of the present invention.

[0026] Referring to FIG. 1A, a layer of bottom electrode 102 comprised of aluminum or copper is formed on a substrate 100. Next, the bottom electrode 102 is treated with a first surface treatment 104 to form a bottom surface treatment layer 106 on the surface of the bottom electrode 102, wherein the thickness of the bottom surface treatment layer 106 is below several tens of nanometers according to the device design requirement. The first surface treatment 104 comprises, for example, an oxidation treatment including an O.sub.2 plasma treatment or a nitridation treatment including, an N.sub.2 plasma treatment or an NH.sub.3 plasma treatment. In addition, the aforementioned first surface treatment 104 may also include a thermal treatment in oxygen, nitrogen or ammonia gas atmosphere. Furthermore, the first surface treatment 104 applied to the bottom electrode 102 may also includes depositing or coating the bottom surface treatment layer 106, for example, a silicon oxide layer, a silicon nitride layer or an organic self-assembling polymer on the bottom electrode 102. The bottom surface treatment layer 106 formed by the aforementioned first surface treatment 104 in spite of using the above method or any other method, includes a metal oxide layer, a metal nitride layer, a silicon oxide layer, a silicon nitride layer, or an organic self-assembling polymer layer.

[0027] Next, referring to FIG. 1B, a layer of polymer thin film 108 is formed on the bottom surface treatment layer 106 using an evaporation technique, a screen coating technique or an inkjet technique, and the thickness of the polymer thin film 108 may be several tens of nanometers depending on the device design requirement. The layer of polymer thin film 108 comprises, for example, a bistable structure including a mixture of polystyrene (PS), 8-hydroxyquinoline (8HQ) and Au, or any bistable organic substances.

[0028] Next, referring to FIG. 1C, a top electrode 110 is formed on the polymer thin film 108, wherein the material of the top electrode 110 includes metal. The structure shown in FIG. 1C is the organic memory device of the preferred embodiment of the present invention.

[0029] Additionally, the top electrode 110 may be formed on a optional top surface treatment layer (not shown) that is formed by treating the polymer thin film 108 with a second surface treatment, wherein the thickness of the top surface treatment layer is below several tens of nanometers according to the device design requirement. The aforementioned second surface treatment includes, for example, introducing a reaction gas containing oxygen, nitrogen or ammonia before the formation of the top electrode 110, such that the interface between the polymer thin film 108 and the top electrode 110 may be an oxide interface or a nitride interface. Furthermore, the aforementioned second surface treatment applied to the polymer thin film 108 may also include depositing or coating a top surface treatment layer, for example, a silicon oxide layer, a silicon nitride layer, or a self-assembling silicon oxide layer on the polymer thin film 108. Preferably, the aforementioned second surface treatment is performed at a temperature below the glass transition temperature of polymer thin film 108. The top surface treatment layer formed by the aforementioned second surface treatment in spite of by using the above method or any other method, includes a metal oxide layer, a metal nitride layer, a silicon oxide layer, a silicon nitride layer, or an organic self-assembling polymer layer.

[0030] To sum up, the present invention is characterized in disposing the bottom surface treatment layer between the polymer thin film and the bottom surface treatment layer of the bottom electrode to improve the stability of the interface. Furthermore, a top surface treatment layer may be optionally formed between the polymer thin film and the top electrode. Thus, the number of carrier traps caused by interface defects may be effectively reduced, and the adhesion between metal electrodes and the polymer thin film may be promoted. Thus, the reliability of the organic memory device may be effectively promoted.

[0031] It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed