Mashing process

Festersen; Rikke Monica ;   et al.

Patent Application Summary

U.S. patent application number 10/583676 was filed with the patent office on 2007-06-28 for mashing process. This patent application is currently assigned to Novozymes A/S. Invention is credited to Lars Lehmann Hylling Christensen, Rikke Monica Festersen, Christel Thea Joergensen, Anders Viksoe Nielsen.

Application Number20070148741 10/583676
Document ID /
Family ID34684454
Filed Date2007-06-28

United States Patent Application 20070148741
Kind Code A1
Festersen; Rikke Monica ;   et al. June 28, 2007

Mashing process

Abstract

The present invention relates to a mashing and filtration step in a brewing process and to a composition useful in the mashing and filtration step of a brewing process. The mash is prepared in the presence of enzyme activities comprising a xylanase of GH family 10.


Inventors: Festersen; Rikke Monica; (Slangerup, DK) ; Nielsen; Anders Viksoe; (Slangerup, DK) ; Joergensen; Christel Thea; (Lyngby, DK) ; Christensen; Lars Lehmann Hylling; (Alleroed, DK)
Correspondence Address:
    NOVOZYMES NORTH AMERICA, INC.
    500 FIFTH AVENUE
    SUITE 1600
    NEW YORK
    NY
    10110
    US
Assignee: Novozymes A/S
Krogshoejvej 36
Bagsvaerd
DK
DK-2880

Family ID: 34684454
Appl. No.: 10/583676
Filed: December 17, 2004
PCT Filed: December 17, 2004
PCT NO: PCT/DK04/00880
371 Date: June 19, 2006

Current U.S. Class: 435/93
Current CPC Class: C12N 9/248 20130101; A23K 20/189 20160501; C12C 5/004 20130101; C12Y 302/01004 20130101; C12Y 302/01008 20130101; C12N 9/2437 20130101; C12C 7/04 20130101; A23K 20/163 20160501; A23L 29/35 20160801; C21C 7/04 20130101; C12C 7/16 20130101
Class at Publication: 435/093
International Class: C12C 1/00 20060101 C12C001/00

Foreign Application Data

Date Code Application Number
Dec 19, 2003 DK PA 2003 01895

Claims



1-27. (canceled)

28. A process for production of a mash having enhanced filterability and/or improved extract yield after filtration, which comprises; preparing a mash in the presence of enzyme activities and filtering the mash to obtain a wort, wherein the enzyme activities comprise; a xylanase of GH family 10 present in an amount of at least 15% w/w of the total xylanase and endoglucanase enzyme protein of said composition.

29. The process of claim 1 wherein endoglucanase is present, said endoglucanase belonging to a GH family selected from the list consisting of; GH12, GH7 and GH5.

30. The process of claim 1 wherein the endoglucanase activity belonging to GH family GH12, GH7 and/or GH5 is present in an amount of at least 40% w/w of the total xylanase and endoglucanase enzyme protein of said composition.

31. The process of claim 1 wherein the xylanase of GH family 10 is present in an amount of at least 20%, preferably 25%, such as at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 60%, or even at least 70% w/w of the total xylanase and endoglucanase enzyme protein

32. The process of claim 1 wherein the endoglucanase of GH Family 12, 7 and/or 5 endoglucanase is present in an amount of at least 45%, preferably 50%, such as at least 55%, at least 60%, at least 70% or even at least 80% w/w of the total xylanase and endoglucanase enzyme protein.

33. The process of claim 1 wherein the xylanase is a type A xylanase.

34. The process of claim 1 wherein the xylanase is a type A xylanase having a I1,3terminal/I1,3internal ratio of at least 0.25, such as at least 0.30, al least 0.40, at least 0.50, or even at least 0.60.

35. The process of claim 1 wherein the xylanase has a CBM, preferably a CBM of family 1.

36. The process of claim 1 wherein the xylanase is a xylanase which in the xylanase binding assay described herein has a barley soluble/insoluble fibre binding ratio of at least 0.50, preferably at least 0.60, more preferably at least 0.70, such as 0.80, 0.90, 1.00, 1.10 or even at least 1.20.

37. The process of claim 1 wherein the xylanase is a xylanase derived from a filamentous fungi such as from a strain of an Aspergillus sp., preferably from Aspergillus aculeatus (SEQ ID NO:8 or SEQ ID NO:9), from a strain of a Myceliophotora sp., preferably from a Myceliophotora thermophilia (SEQ ID NO:13), from a strain of a Humicola sp., preferably from Humicola insolens (SEQ ID NO:12), or from a strain of Trichoderma sp., preferably from T reesei (SEQ ID NO:17).

38. The process of claim 1 wherein the xylanase is derived from a bacterium such as from a strain of a Bacillus.

39. The process of claim 1 wherein the endoglucanase is; an endoglucanase derived from Humicola sp., such as the endoglucanase from Humicola insolens (SEQ ID NO:3), or the endoglucanase from H. insolens (SEQ ID NO:4), from Thermoascus sp., such as the endoglucanase derived from Thermoascus aurantiacus (SEQ ID NO:6) or from Aspergillus sp., such as the endoglucanase derived from Aspergillus aculeatus (SEQ ID NO:16) or from Trichoderma sp., such as the endoglucanase from T. reseei shown in SEQ ID NO:18, the endoglucanase from T. viride sp. shown in SEQ ID NO:19 or the endoglucanase from T. reseei shown in SEQ ID NO:20.

40. The process of claim 1 wherein at least one additional enzyme is present, which enzyme is selected from the list comprising; arabinofuranosidase, ferulic acid esterase and xylan acetyl esterase.

41. A process of reducing the viscosity of an aqueous solution comprising a starch hydrolysate, said process comprising: a. testing at least one xylanolytic enzyme for its hydrolytic activity towards insoluble wheat arabinoxylan, b. selecting a xylanolytic enzyme which cleaves next to branched residues thereby leaving terminal substituted xylose oligosaccharides. c. adding the selected xylanolytic enzyme to the aqueous solution comprising a starch hydrolysate.

42. A process of reducing the viscosity of an aqueous solution comprising a starch hydrolysate, said process comprising: d. testing at least one endoglucanolytic enzyme for its hydrolytic activity towards barley beta-glucan, e. selecting a endoglucanolytic enzyme which under the conditions: 10 microgram/ml purified enzyme and 5 mg/ml barley beta-glucan in 50 mM sodium acetate, 0.01% Triton X-100, at pH 5.5 and 50.degree. C., within 1 hour degrades more than 70% of the barley beta-glucan to DP 6 or DP<6, f. adding the selected endoglucanolytic enzyme to the aqueous solution comprising a starch hydrolysate.

43. The process claim 15, wherein the aqueous solution comprising a starch hydrolysate is a mash for beer making or a feed composition

44. A composition comprising; g. a GH10 xylanase present in an amount of at least 15% w/w of the total enzyme protein; and/or, h. a GH12, GH7 and/or GH5 endoglucanase present in an amount of at least 20% w/w of the total enzyme protein.

45. The composition according to claim 47 wherein the xylanase is a type A xylanase, and preferably a type A xylanase having a I1,3terminal/I1,3internal ratio of at least 0.25, such as at least 0.30, al least 0.40, at least 0.50, or even at least 0.60.

46. The composition according to claim 47 wherein the xylanase is derived from a filamentous fungi such as from a strain of an Aspergillus sp., preferably from Aspergillus aculeatus (SEQ ID NO:8 or SEQ ID NO:9), from a strain of a Myceliophotora sp., preferably from a Myceliophotora thermophilia (SEQ ID NO:13), from a strain of a Humicola sp., preferably from Humicola insolens (SEQ ID NO:12).

47. The composition according to the preceding claims wherein the xylanase is derived from a bacterium such as from a strain of a Bacillus.
Description



FIELD OF THE INVENTION

[0001] The present invention relates, inter alia, to a mashing and filtration step in a process for the production of an alcoholic beverage, such as beer or whiskey, and to a composition useful in the mashing and filtration step in such a process.

BACKGROUND OF THE INVENTION

[0002] The use of enzymes in brewing is common. Application of enzymes to the mashing step to improve mash filterability and increase extract yield is described in WO 97/42302. However, there is a need for improvement of the mashing and filtration step and for improved enzymatic compositions for use in the mashing and filtration step.

SUMMARY OF THE INVENTION

[0003] The invention provides a process for production of a mash having enhanced filterability and/or improved extract yield after filtration, which comprises; preparing a mash in the presence of enzyme activities and filtering the mash to obtain a wort, wherein the enzyme activities comprise; a xylanase of glucoside hydrolase family 10 present in an amount of at least 15% w/w of the total xylanase and endoglucanase enzyme protein.

[0004] In a further aspect the invention provides a process of reducing the viscosity of an aqueous solution comprising a starch hydrolysate, said process comprising: testing at least one xylanolytic enzyme for its hydrolytic activity towards insoluble wheat arabinoxylan, selecting a xylanolytic enzyme which cleaves next to branched residues thereby leaving terminal substituted xylose oligosaccharides, and adding the selected xylanolytic enzyme to the aqueous solution comprising a starch hydrolysate.

[0005] In an even further aspect the invention provides a process of reducing the viscosity of an aqueous solution comprising a starch hydrolysate, said process comprising: testing at least one endoglucanolytic enzyme for its hydrolytic activity towards barley beta-glucan, selecting a endoglucanolytic enzyme which under the conditions: 10 microgram/ml purified enzyme and 5 mg/ml barley beta-glucan in 50 mM sodium acetate, 0.01% Triton X-100, at pH 5.5 and 50.degree. C., within 1 hour degrades more than 70% of the barley beta-glucan to DP 6 or DP<6, and adding the selected endoglucanolytic enzyme to the aqueous solution comprising a starch hydrolysate.

[0006] In yet a further aspect the invention provides a composition comprising; a GH10 xylanase present in an amount of at least 15% w/w of the total enzyme protein; and/or, a GH12, GH7 and/or GH5 endoglucanase present in an amount of at least 40% w/w of the total enzyme protein.

[0007] Other aspects include the use of the composition of the proceeding aspect in a process of comprising reduction of the viscosity of an aqueous solution comprising a starch hydrolysate, including such processes wherein the aqueous solution comprising a starch hydrolysate is a mash for beer making, or wherein the aqueous solution comprising a starch hydrolysate is intended for use in a feed composition.

DETAILED DESCRIPTION OF THE INVENTION

DEFINITIONS

[0008] Throughout this disclosure, various terms that are generally understood by those of ordinary skill in the arts are used. Several terms are used with specific meaning, however, and are meant as defined by the following.

[0009] As used herein the term "grist" is understood as the starch or sugar containing material that's the basis for beer production, e.g. the barley malt and the adjunct.

[0010] The term "malt" is understood as any malted cereal grain, in particular barley.

[0011] The term "adjunct" is understood as the part of the grist which is not barley malt. The adjunct may be any carbohydrate rich material.

[0012] The term "mash" is understood as a aqueous starch slurry, e.g. comprising crushed barley malt, crushed barley, and/or other adjunct or a combination hereof, steeped in water to make wort.

[0013] The term "wort" is understood as the unfermented liquor run-off following extracting the grist during mashing.

[0014] The term "spent grains" is understood as the drained solids remaining when the grist has been extracted and the wort separated from the mash.

[0015] The term "beer" is here understood as fermented wort, e.g. an alcoholic beverage brewed from barley malt, optionally adjunct and hops.

[0016] The term "extract recovery" in the wort is defined as the sum of soluble substances extracted from the grist (malt and adjuncts) expressed in percentage based on dry matter.

[0017] The term "a thermostable enzyme" is understood as an enzyme that under the temperature regime and the incubation period applied in the processes of the present invention in the amounts added is capable of sufficient degradation of the substrate in question.

[0018] The term "Type A xylanase" is understood as a xylanase that cleaves arabinoxylan polymers close to branched residues leaving terminal substituted xylose oligosaccharides. Type A xylanases may be identified using the method described in the Methods section of the present disclosure

[0019] The term "homology" when used about polypeptide or DNA sequences and referred to in this disclosure is understood as the degree of homology between two sequences indicating a derivation of the first sequence from the second. The homology may suitably be determined by means of computer programs known in the art such as GAP provided in the GCG program package (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wis., USA 53711) (Needleman, S. B. and Wunsch, C. D., (1970), Journal of Molecular Biology, 48, 443-453. The following settings for polypeptide sequence comparison are used: GAP creation penalty of 3.0 and GAP extension penalty of 0.1.

[0020] The term "DP" is the degree of polymerisation, herein used for average number of glucose units in polymers in a polysaccharide hydrolysate.

[0021] The numbering of Glycoside Hydrolase Families (GH) and Carbohydrate Binding Modules (CBM) applied in this disclosure follows the concept of Coutinho, P. M. & Henrissat, B. (1999) CAZy--Carbohydrate-Active Enzymes server at URL: http://afmb.cnrs-mrs.fr/.about.cazy/CAZY/index.html or alternatively Coutinho, P. M. & Henrissat, B. 1999; The modular structure of cellulases and other carbohydrate-active enzymes: an integrated database approach. In "Genetics, Biochemistry and Ecology of Cellulose Degradation", K. Ohmiya, K. Hayashi, K. Sakka, Y. Kobayashi, S. Karita and T. Kimura eds., Uni Publishers Co., Tokyo, pp. 15-23, and in Bourne, Y. & Henrissat, B. 2001; Glycoside hydrolases and glycosyltransferases: families and functional modules, Current Opinion in Structural Biology 11:593-600. This classification system groups glucoside hydrolases based on similarities in primary structure. The members of a family furthermore show the same catalytic mechanism and have similarities in the overall three-dimensional structure, although a family may contain members with substantial variation in substrate specificity.

[0022] The naming of Humicola insolens endoglucanases follows the system of Karlsson, J. 2000. Fungal Cellulases, Study of hydrolytic properties of endoglucanases from Trichoderma reesei and Humicola insolens. Lund University.

[0023] Brewing processes are well-known in the art, and generally involve the steps of malting, mashing, and fermentation. In the traditional brewing process the malting serves the purpose of converting insoluble starch to soluble starch, reducing complex proteins, generating colour and flavour compounds, generating nutrients for yeast development, and the development of enzymes. The three main steps of the malting process are steeping, germination, and kilning.

[0024] Steeping includes mixing the barley kernels with water to raise the moisture level and activate the metabolic processes of the dormant kernel. In the next step, the wet barley is germinated by maintaining it at a suitable temperature and humidity level until adequate modification, i.e. such as degradation of starch and activation of enzymes, has been achieved. The final step is to dry the green malt in the kiln. The temperature regime in the kiln determines the colour of the barley malt and the amount of enzymes which survive for use in the mashing process. Low temperature kilning is more appropriate for malts when it is essential to preserve enzymatic activity. Malts kilned at high temperatures have very little or no enzyme activity but are very high in colouring such as caramelized sugars as well as in flavouring compounds.

[0025] Mashing is the process of converting starch from the milled barley malt and solid adjuncts into fermentable and unfermentable sugars to produce wort of the desired composition. Traditional mashing involves mixing milled barley malt and adjuncts with water at a set temperature and volume to continue the biochemical changes initiated during the malting process. The mashing process is conducted over a period of time at various temperatures in order to activate the endogenous malt enzymes responsible for the degradation of proteins and carbohydrates. By far the most important change brought about in mashing is the conversion of starch molecules into fermentable sugars. The principal enzymes responsible for starch conversion in a traditional mashing process are alpha- and beta-amylases. Alpha-amylase very rapidly reduces insoluble and soluble starch by splitting starch molecules into many shorter chains that can be attacked by beta-amylase. The disaccharide produced is maltose.

[0026] Traditionally lager beer has often been brewed using a method referred to as "step-infusion". This mashing procedure involves a series of rests at various temperatures, each favouring one of the necessary endogenous enzyme activities. To day the double-mash infusion system is the most widely used system for industrial production of beer, especially lager type beer. This system prepares two separate mashes. It utilizes a cereal cooker for boiling adjuncts and a mash tun for well-modified, highly enzymatically active malts.

[0027] When brewing from grists low in enzymes such as high adjunct grists, mashing may be performed in the presence of added enzyme compositions comprising the enzymes necessary for the hydrolysis of the grist starch. These enzymes may comprise alpha-amylases, pullulanases, beta-amylases and glucoamylases.

[0028] After mashing, it is necessary to separate the liquid extract (the wort) from the solids (spent grains i.e. the insoluble grain and husk material forming part of grist). Wort separation is important because the solids contain large amounts of non-starch polysaccharides, protein, poorly modified starch, fatty material, silicates, and polyphenols (tannins). Important non-starch polysaccharides present in cereal grains are beta-glucan and arabinoxylan. The endosperm cell wall of barley comprises 75% beta-glucan, 20% arabinoxylan, and 5% remaining protein with small amount of cellulose, glucomannan and phenolic acids. Long chains of barley arabinoxylans, and to a lesser degree beta-glucan, which have not been modified due to enzymatic hydrolysis may cause formation of gels when solubilised in water, these gels will strongly increase wort viscosity and reduce filterability. Likewise is it very important for the quality of the wort that the beta-glucan has been reduced to smaller oligomers, as unmodified beta-glucans later on will give rise to haze stability problems in the final beer. Therefore, enzymatic compositions comprising endoglucanases and xylanases, such as Ultraflo.RTM. or Viscozyme.RTM., are often used in the mashing step to improve wort separation. The objectives of wort separation, inter alia, include the following:

[0029] to obtain good extract recovery,

[0030] to obtain good filterability, and

[0031] to produce clear wort.

[0032] Extraction recovery and filterability are important for the economy in the brewing process, while the wort clarity is a must in order to produce a beer which does not develop haze. Extraction recovery, filterability and wort clarity is greatly affected by the standard of the grist, e.g. the barley malt and the types of adjunct, as well as the applied mashing procedure.

[0033] Following the separation of the wort from the spent grains the wort may be fermented with brewers yeast to produce a beer.

[0034] Further information on conventional brewing processes may be found in "Technology Brewing and Malting" by Wolfgang Kunze of the Research and Teaching Institute of Brewing, Berlin (VLB), 2nd revised Edition 1999, ISBN 3-921690-39-0.

Embodiments of the Invention

[0035] The invention provides a process for production of a mash having enhanced filterability and/or improved extract yield after filtration, which comprises; preparing a mash in the presence of enzyme activities and filtering the mash to obtain a wort, wherein the enzyme activities comprise; a xylanase of GH family 10 present in an amount of at least 15%, 20%, preferably 25%, such as at least 30%, or at least 40%, at least 50% or at least 60% such as at least 70%, at least 80%, at least 90%, or even 100% w/w of the total xylanase and endoglucanase enzyme protein.

[0036] In a preferred embodiment the xylanase is a type A xylanase, and in a particular embodiment the xylanase is a type A xylanase having a I.sub.1,3terminal/I.sub.1,3internal ratio of at least 0.25, such as at least 0.30, al least 0.40, at least 0.50, or even at least 0.60.

[0037] Preferably the xylanase has a CBM, preferably a CBM of family 1.

[0038] In another preferred embodiment the xylanase is a xylanase which in the xylanase binding assay described herein has a barley soluble/insoluble fibre binding ratio of at least 0.50, preferably at least 0.60, more preferably at least 0.70, such as 0.80, 0.90, 1.00, 1.10 or even at least 1.20.

[0039] In another preferred embodiment the xylanase is derived from a filamentous fungi such as from a strain of an Aspergillus sp., preferably from Aspergillus aculeatus (SEQ ID NO:8 or SEQ ID NO:9), from a strain of a Myceliophotora sp., preferably from a Myceliophotora thermophilia (SEQ ID NO:13), from a strain of a Humicola sp., preferably from Humicola insolens (SEQ ID NO:12). In yet another preferred embodiment the xylanase is derived from a strain of a Trichoderma sp., preferably from T. reesei such as the xylanase shown in SEQ ID NO:17 In a more preferred embodiment the xylanase the xylanase is derived from a has at least 50%, such as at least 60%, 70%, 80% or even 90% homology to any of the aforementioned sequences.

[0040] In another preferred embodiment the xylanase is derived from a bacterium such as from a strain of a Bacillus, preferably from Bacillus halodurans.

[0041] In another preferred embodiment the endoglucanase is an endoglucanase derived from Humicola sp., such as the endoglucanase from Humicola insolens (SEQ ID NO:3), or the endoglucanase from H. insolens (SEQ ID NO:4), from Thermoascus sp., such as the endoglucanase derived from Thermoascus aurantiacus (SEQ ID NO:6), or from Aspergillus sp., such as the endoglucanase derived from Aspergillus aculeatus (SEQ ID NO:16).

[0042] In a preferred embodiment the xylanase has at least 50%, such as at least 60%, 70%, 80% or even 90% homology to any of the aforementioned sequences.

[0043] In another preferred embodiment at least one additional enzyme is present, which enzyme is arabinofuranosidase.

[0044] The invention also provides a process of reducing the viscosity of an aqueous solution comprising a starch hydrolysate, said process comprising: testing at least one xylanolytic enzyme for its hydrolytic activity towards insoluble wheat arabinoxylan, selecting a xylanolytic enzyme which cleaves next to branched residues thereby leaving terminal substituted xylose oligosaccharides, and adding the selected xylanolytic enzyme to the aqueous solution comprising a starch hydrolysate.

[0045] The invention further provides a process of reducing the viscosity of an aqueous solution comprising a starch hydrolysate, said process comprising: testing at least one endoglucanolytic enzyme for its hydrolytic activity towards barley beta-glucan, selecting a endoglucanolytic enzyme which under the conditions: 10 microgram/ml purified enzyme and 5 mg/ml barley beta-glucan in 50 mM sodium acetate, 0.01% Triton X-100, at pH 5.5 and 50.degree. C., within 1 hour degrades more than 70% of the barley beta-glucan to DP 6 or DP<6, and adding the selected endoglucanolytic enzyme to the aqueous solution comprising a starch hydrolysate.

[0046] In preferred embodiments of the two processes the aqueous solution comprising a starch hydrolysate is a mash for beer making.

[0047] The invention also provides a composition comprising; a GH10 xylanase present in an amount of at least 15% w/w of the total enzyme protein; and/or, a GH12, GH7 and/or GH5 endoglucanase present in an amount of at least 40% w/w of the total enzyme protein.

[0048] In a preferred embodiment the xylanase of the composition is a type A xylanase, and preferably a type A xylanase having a I.sub.1,3terminal/I.sub.1,3internal ratio of at least 0.25, such as at least 0.30, al least 0.40, at least 0.50, or even at least 0.60.

[0049] In a preferred embodiment the xylanase of the composition is derived from a filamentous fungi such as from a strain of an Aspergillus sp., preferably from Aspergillus aculeatus (SEQ ID NO:8 or SEQ ID NO:9), from a strain of a Myceliophotora sp., preferably from a Myceliophotora thermophilia (SEQ ID NO:13), from a strain of a Humicola sp., preferably from Humicola insolens (SEQ ID NO:12). In a preferred embodiment the xylanase of the composition has at least 50%, such as at least 60%, 70%, 80% or even 90% homology to any of the aforementioned sequences.

[0050] In a preferred embodiment the xylanase of the composition is derived from a bacterium such as from a strain of a Bacillus, preferably from Bacillus halodurans.

[0051] In a preferred embodiment the endoglucanase of the composition is an endoglucanase derived from Humicola sp., such as the endoglucanase from Humicola insolens (SEQ ID NO:3), the endoglucanase from H. insolens (SEQ ID NO:4) or from Thermoascus sp., such as the endoglucanase derived from Thermoascus aurantiacus (SEQ ID NO:6), or from Aspergillus sp., such as the endoglucanase derived from Aspergillus aculeatus (SEQ ID NO:16), or from Trichoderma sp. preferably from T. reesei and/or T. viride, such as the family 5 endoglucanase shown in SEQ ID NO:18, the family 7, beta-glucanase shown in SEQ ID NO:19 or the fam 12, beta-glucanase shown in SEQ ID NO:20

[0052] In a preferred embodiment the endoglucanase of the composition has at least 50%, such as at least 60%, 70%, 80% or even 90% homology to any of the aforementioned sequences.

[0053] In a preferred embodiment the xylanase GH family 10 of the composition is present in an amount of at least 20%, preferably at least 25%, such as at least 30%, at least 35%, at least 40%, at least 45% or even at least 50% w/w of the total xylanase and endoglucanase enzyme protein.

[0054] In a preferred embodiment the endoglucanase of GH Family 12, 7 and/or 5 endoglucanase of the composition is present in an amount of at least 25%, preferably 30%, such as at least 35%, at least 40%, at least 45% or even at least 50%, such as at least 55%, or even at least 60% w/w of the total xylanase and endoglucanase enzyme protein.

[0055] The composition according to the proceeding aspect may be used in a process comprising reducing the viscosity of an aqueous solution comprising a starch hydrolysate.

[0056] The composition may even be used in a process comprising filtering of an aqueous solution comprising a starch hydrolysate. In a preferred embodiment the aqueous solution comprising a starch hydrolysate is a mash for beer making, and in another preferred embodiment the aqueous solution comprising a starch hydrolysate is a feed composition.

[0057] The process of the invention may be applied in the mashing of any grist. According to the invention the grist may comprise any starch and/or sugar containing plant material derivable from any plant and plant part, including tubers, roots, stems, leaves and seeds. Preferably the grist comprises grain, such as grain from barley, wheat, rye, oat, corn, rice, milo, millet and sorghum, and more preferably, at least 10%, or more preferably at least 15%, even more preferably at least 25%, or most preferably at least 35%, such as at least 50%, at least 75%, at least 90% or even 100% (w/w) of the grist of the wort is derived from grain. Most preferably the grist comprises malted grain, such as barley malt. Preferably, at least 10%, or more preferably at least 15%, even more preferably at least 25%, or most preferably at least 35%, such as at least 50%, at least 75%, at least 90% or even 100% (w/w) of the grist of the wort is derived from malted grain.

[0058] For mashing of low malt grists the mashing enzymes may be exogenously supplied. The enzymes mostly used as starch degrading enzymes include pullulanases, alpha-amylases and amyloglucosidases. The use of starch degrading enzymes in mashing is well-known to the skilled person.

[0059] Adjunct comprising readily fermentable carbohydrates such as sugars or syrups may be added to the malt mash before, during or after the mashing process of the invention but is preferably added after the mashing process. A part of the adjunct may be treated with a protease and/or a endoglucanase, and/or heat treated before being added to the mash of the invention.

[0060] During the mashing process, starch extracted from the grist is gradually hydrolyzed into fermentable sugars and smaller dextrins. Preferably the mash is starch negative to iodine testing, before wort separation.

[0061] The application of the appropriate xylanase and endoglucanase activities in the process of the present invention results in efficient reduction of beta-glucan and arabino-xylan level facilitating wort separation, thus ensuring reduced cycle time, high extract recovery and clear wort.

[0062] The wort produced by the process of the first aspect of the invention may be fermented to produce a beer. Fermentation of the wort may include pitching the wort with a yeast slurry comprising fresh yeast, i.e. yeast not previously used for the invention or the yeast may be recycled yeast. The yeast applied may be any yeast suitable for beer brewing, especially yeasts selected from Saccharomyces spp. such as S. cerevisiae and S. uvarum, including natural or artificially produced variants of these organisms. The methods for fermentation of wort for production of beer are well known to the person skilled in the arts.

[0063] The process of the invention may include adding silica hydrogel to the fermented wort to increase the colloidal stability of the beer. The processes may further include adding kieselguhr to the fermented wort and filtering to render the beer bright. The beer produced by fermenting the wort of the invention may be any type of beer, e.g. ale, strong ale, stout, porter, lager, pilsner, bitter, export beer, malt liquor, happoushu, Iambic, barley wine, high-alcohol beer, low-alcohol beer, low-calorie beer or light beer.

[0064] The beer produced by the process of the invention may be distilled to recover ethanol, e.g. for whisky production. Contemplated are any kind of whisky (spelled "whiskey" in US and Ireland) include bourbon, Canadian whisky, Irish whiskey, rye, and scotch.

Xylanase

[0065] For the present purposes a xylanase is an enzyme classified as EC 3.2.1.8. The official name is endo-1,4-beta-xylanase. The systematic name is 1,4-beta-D-xylan xylanohydrolase. Other names may be used, such as endo-(1-4)-beta-xylanase; (1-4)-beta-xylan 4-xylanohydrolase; endo-1,4- xylanase; xylanase; beta-1,4-xylanase; endo-1,4-xylanase; endo-beta-1,4-xylanase; endo-1,4-beta-D-xylanase; 1,4-beta-xylan xylanohydrolase; beta-xylanase; beta-1,4-xylan xylanohydrolase; endo-1,4-beta-xylanase; beta-D-xylanase. The reaction catalysed is the endohydrolysis of 1,4-beta-D-xylosidic linkages in xylans.

[0066] While the xylanase to be used for the present invention may be of any origin including mammalian, plant or animal origin it is presently preferred that the xylanase is of microbial origin. In particular the xylanase may be one derivable from a filamentous fungus or a yeast.

[0067] Xylanases have been found in a number of fungal species, in particular species of Aspergillus, such as A. niger, A. awamori, A. aculeatus and A. oryzae, Trichoderma, such as T. reesei or T. harzianum, Penicillium, such as P. camenbertii, Fusarium, such as F. oxysporum, Humicola, such as H. insolens, and Thermomyces lanuginosa, such as T. lanuginosa. Xylanases have also been found in bacterial species, e.g. within the genus Bacillus, such as B. pumilus.

[0068] Preferably, according to the process of the invention the xylanase is derived from a filamentous fungus such as from Aspergillus sp., Bacillus sp., Humicola sp., Myceliophotora sp., Poitrasia sp. Rhizomucor sp. or Trichoderma.

[0069] Substrate specificity was shown to be a key parameter for the performance of xylanases in the process of the invention. A xylanase with optimum performance in the process of the invention seems to be an enzyme which binds rather strongly to soluble arabino-xylan and rather weakly to insoluble arabino-xylan. Preferably the xylanase to be used in the present invention is a xylanase which in the binding assay in the Methods description of this disclosure has a barley soluble/insoluble fibre binding ratio of at least 0.50, preferably at least 0.60, more preferably at least 0.70, such as 0.80, 0.90, 1.00, 1.10 or even at least 1.20.

[0070] A number of xylanases identified having these characteristics are members of the glucoside hydrolase family 10. Preferably the xylanase to be used in the present invention is a Glycoside Hydrolase Family 10 (GH10) xylanase, and most preferably the xylanase is a GH10 xylanase which is also a type A xylanase i.e. a xylanase which cleaves insoluble wheat arabinoxylan polymers close to branched residues leaving terminal substituted xylose oligosaccharides (please see the examples for a definition of type A and B). As the GH10 enzymes are able to go closer to the branched xylose units, they form smaller oligosaccharides than the GH11 xylanases.

[0071] Preferably the xylanase to be used in the present invention has a functional CBM, such as a CBM of family 1.

[0072] Preferably, according to the process of the invention the xylanase is selected from the list consisting of the xylanase from shown as, the xylanase from Aspergillus aculeatus shown as SEQ ID NO:8 (AA XYL I), the xylanase from Aspergillus aculeatus shown as SEQ ID NO:9 (AA XYL II), the xylanase from Bacillus halodurans shown as SWISS PROT P07528 (BH XYL A), the xylanase from Humicola insolens shown as SEQ ID NO:12 (HI XYL III), the xylanase from Myceliophotora thermophila shown as SEQ ID NO:13 (MT XYL I), and the xylanase from Trichoderma reesei, such as the xylanase shown as SEQ ID NO:17. Also preferred are any sequence having at least 50%, at least 60%, at least 70%, at least 80%, or even at least 90% homology to any of the aforementioned xylanase sequences.

Endoglucanase

[0073] For the present purposes an endoglucanase is an enzyme classified as EC 3.2.1.4. While the endoglucanase to be used for the present invention may be of any origin including mammalian, plant or animal origin it is presently preferred that the endoglucanase is of microbial origin. In particular the endoglucanase may be one derivable from a filamentous fungus or a yeast.

[0074] Preferably the endoglucanase is a Glycoside Hydrolase Family 12 (GH12), Glycoside Hydrolase Family 7 (GH7) or a Glycoside Hydrolase Family 5 (GH5) glucanase. More preferably the endoglucanase is a polypeptide having a beta-jelly-roll or a b8/a8-barrell in superstructure.

[0075] While the endoglucanase to be used for the present invention may be of any origin including mammalian, plant or animal origin it is presently preferred that the endoglucanase is of microbial origin. In particular the endoglucanase may be one derivable from a filamentous fungus or a yeast.

[0076] More preferably, according to the process of the invention the endoglucanase is derived from a filamentous fungus such as from Aspergillus sp. or Humicola sp.

[0077] Preferably, according to the process of the invention the endoglucanase is selected from the list consisting of the endoglucanase from Aspergillus aculeatus shown in SEQ ID NO:1 (AA EG I), the endoglucanase from Aspergillus aculeatus shown in SEQ ID NO:2 (AA EG II), the endoglucanase from Aspergillus aculeatus shown in SEQ ID NO:16 (AA EG III), the endoglucanase from Humicola insolens shown in SEQ ID NO:3 (HI EG I), the endoglucanase from Humicola insolens shown in SEQ ID NO:4 (HI EG II), the endoglucanase from Humicola insolens shown in SEQ ID NO:5 (HI EG IV), the endoglucanase from Trichoderma sp. shown in SEQ ID NO:18, the endoglucanase from Trichoderma sp. shown in SEQ ID NO:19 or the endoglucanase from Trichoderma sp. shown in SEQ ID NO:20. Also preferred are any sequence having at least 50%, at least 60%, at least 70%, at least 80%, or even at least 90% homology to any of the aforementioned sequences.

[0078] Other GH12 glucanases includes endoglucanases obtained from Aspergillus sp. such as from Aspergillus kawachii (SWISSPROT Q12679), or Aspergillus niger (SWISSPROT 074705), Aspergillus oryzae (SWISSPROT O13454), from Erwinia sp., such as from Erwinia carotovora (SWISSPROT P16630), and from Thermotoga sp., such as from Thermotoga maritima (SWISSPROT Q60032 or Q9S5X8). Also preferred are any sequence having at least 50%, at least 60%, at least 70%, at least 80%, or even at least 90% homology to any of the aforementioned GH12 glucanases sequences.

[0079] Other GH7 glucanases includes endoglucanases obtained from Agaricus sp., such as from Agaricus bisporus (SWISSPROT Q92400), from Aspergillus sp., such as from Aspergillus niger (SWISSPROT Q9UVS8), from Fusarium sp., such as from Fusarium oxysporum (SWISSPROT P46238), from Neurospora sp., such as from Neurospora crassa (SWISSPROT P38676), and from Trichoderma sp., such as from Trichoderma longibrachiatum (SWISSPROT Q12714). Also preferred are any sequence having at least 50%, at least 60%, at least 70%, at least 80%, or even at least 90% homology to any of the aforementioned GH7 glucanases sequences.

[0080] Other GH5 glucanases includes endoglucanases obtained from Acidothermus sp., such as from Acidothermus cellulolyticus (SWISSPROT P54583), from Aspergillus sp., such as from Aspergillus niger (SWISSPROT O74706), and from Bacillus sp., such as from Bacillus polymyxa (SWISSPROT P23548). Also preferred are any sequence having at least 50%, at least 60%, at least 70%, at least 80%, or even at least 90% homology to any of the aforementioned GH5 glucanases sequences.

Arabinofuranosidase

[0081] Arabinofuranosidase EC 3.2.1.55, common name alpha-N-arabinofuranosidase hydrolysise terminal non-reducing alpha-L-arabinofuranoside residues in alpha-L-arabinosides. The enzyme acts on alpha-L-arabinofuranosides, alpha-L-arabinans containing (1,3)- and/or (1,5)-linkages, arabinoxylans and arabinogalactans.

Materials and Methods

Xylanase Activity

[0082] The xylanolytic activity can be expressed in FXU-units, determined at pH 6.0 with remazol-xylan (4-O-methyl-D-glucurono-D-xylan dyed with Remazol Brilliant Blue R, Fluka) as substrate.

[0083] A xylanase sample is incubated with the remazol-xylan substrate. The background of non-degraded dyed substrate is precipitated by ethanol. The remaining blue colour in the supernatant (as determined spectrophotometrically at 585 nm) is proportional to the xylanase activity, and the xylanase units are then determined relatively to an enzyme standard at standard reaction conditions, i.e. at 50.0.degree. C., pH 6.0, and 30 minutes reaction time.

[0084] A folder AF 293.6/1 describing this analytical method in more detail is available upon request to Novozymes A/S, Denmark, which folder is hereby included by reference.

Glucanase Activity

[0085] The cellulytic activity may be measured in fungal endoglucanase units (FBG), determined on a 0.5% beta-glucan substrate at 30.degree. C., pH 5.0 and reaction time 30 min. Fungal endoglucanase reacts with beta-glucan releases glucose or reducing carbohydrate which is determined as reducing sugar according to the Somogyi-Nelson method.

[0086] 1 fungal endoglucanase unit (FBG) is the amount of enzyme which according to the above outlined standard conditions, releases glucose or reducing carbohydrate with a reduction capacity equivalent to 1 micromol glucose per minute.

Enzymes

[0087] Ultraflo.RTM. L, a multicomponent enzyme composition derived from Humicola insolens comprising a mixture of endoglucanases, xylanases, pentosanases and arabanases. Ultraflo.RTM. L is standardized to 45 FBG/g, and has a gravity of approximately 1.2 g/ml. Ultraflo.RTM. is available from Novozymes A/S.

[0088] Viscozyme.RTM. L, a multicomponent enzyme composition derived from Aspergillus aculeatus comprising a mixture of endoglucanases, arabanases and xylanases. Viscozyme.RTM. L is standardized to 100 FBG/g, and has a gravity of approximately 1.2 g/m l. Viscozyme is available from Novozymes A/S.

[0089] Alcalase.RTM., Subtilisin a protease composition derived from Bacillus licheniformis. Alcalase.RTM. is available from Novozymes A/S.

[0090] Termamyl SC .RTM., a Bacillus alpha-amylase available from Novozymes A/S.

[0091] The following monocomponent endoglucanases and xylanases were applied: TABLE-US-00001 Endoglucanases; AA EG I Aspergillus aculeatus SEQ ID NO: 1 AA EG II Aspergillus aculeatus Cel12b SEQ ID NO: 2 AA EG III Aspergillus aculeatus Cel12a SEQ ID NO: 16 HI EG I Humicola insolens Cel12a, GH12 SEQ ID NO: 3. HI EG III Humicola insolens Cel12a, GH12 SEQ ID NO: 4. HI EG IV Humicola insolens Cel5a, GH12 SEQ ID NO: 5 HI EG V Humicola insolens Cel45a, GH45 SEQ ID NO: 8 TA EG Thermoascus SEQ ID NO: 6 BG025 aurantiacus

[0092] TABLE-US-00002 Xylanases AA XYL I Aspergillus aculeatus GH10, Type A SEQ ID NO: 8 AA XYL II Aspergillus aculeatus GH10, Type A SEQ ID NO: 9 AA XYL III Aspergillus aculeatus GH11, Type B SEQ ID NO: 10 BH XYL A Bacillus halodurans GH10, Type A SWISS PROT P07528. HI XYL I Humicola insolens GH11, Type B SEQ ID NO: 11 HI XYL III Humicola insolens GH10, Type A SEQ ID NO: 12 MT XYL I Myceliophotora GH10, Type A SEQ ID NO: 13 thermophila MT XYL III Myceliophotora GH11, Type B SEQ ID NO: 14 thermophila TL XYL Thermomyces GH11, Type B SEQ ID NO: 15 lanuginosus

Methods Mash Preparation

[0093] Unless otherwise stated mashing was performed as follows. Except when noted (e.g. with regard to enzyme dosage) the mash was prepared according to EBC: 4.5.1 using malt grounded according to EBC: 1.1. Mashing trials were performed in 500 ml lidded vessels incubated in water bath with stirring and each containing a mash with 50 g grist and adjusted to a total weight of 300.+-.0.2 g with water preheated to the initial incubation temperature +1.degree. C. The wort produced was app. 12% Plato.

Mashing Temperature Profile

[0094] Unless otherwise stated mashing was carried out using an initial incubation temperature at 52.degree. C. for 30 minutes, followed by an increasing step to 63.degree. C. remaining here for 20 min. The profile is continued with an increasing step to 72.degree. C. for 30 min, and mashing off at 78.degree. C. for 5 min. All step wise temperature gradients are achieved by an increase of 1.degree. C./min. The mash is cooled to 20.degree. C. during 15 min, which result in a total incubation period of 2 hours and 11 min.

Additional Methods

[0095] Methods for analysis of raw products, wort, beer etc. can be found in Analytica-EBC, Analysis Committee of EBC, the European Brewing Convention (1998), Verlag Hans Carl Geranke-Fachverlag. For the present invention the methods applied for determination of the following parameters were as indicated below.

[0096] Plato: refractometer.

[0097] Beta-glucan: EBC: 8.13.2 (High Molecular weight beta-glucan content of wort: Fluorimetric Method).

[0098] Turbidity: EBC: 4.7.1

[0099] Filterability: Volume of filtrate (ml) determination: According to EBC: 4.5.1 (Extract of Malt: Congress Mash) subsection 8.2. Filterability: Filtration volume is read after 1 hour of filtration through fluted filter paper, 320 mm diameter. Schleicher and Schull No. 597 1/2, Machery, Nagel and Co. in funnels, 200 mm diameter, fitted in 500 ml flasks.

[0100] Extract recovery: EBC: 4.5.1 (Extract of Malt: Congress Mash, Extract in dry). The term extract recovery in the wort is defined as the sum of soluble substances (glucose, sucrose, maltose, maltotriose, dextrins, protein, gums, inorganic, other substances) extracted from the grist (malt and adjuncts) expressed in percentage based on dry matter. The remaining insoluble part is defined as spent grains. a ) .times. .times. E 1 = P .function. ( M + 800 ) 100 - P b ) .times. .times. E 2 = E 1 100 100 - M ##EQU1##

[0101] where;

[0102] E.sub.1=the extract content of sample, in % (m/m)

[0103] E.sub.2=the extract content of dry grist, in % (m/m)

[0104] P=the extract content in wort, in % Plato

[0105] M=the moisture content of the grist, in % (m/m)

[0106] 800=the amount of destined water added into the mash to 100 g of grist

[0107] Viscosity: Automated Microviscometer (AMVn) is based on the rolling ball principle. The sample to be measured is introduced into a glass capillary in which a steel ball rolls. The viscous properties of the test fluid can be determined by measuring the rolling time of the steel ball. The rolling time t.sub.0 of a ball over a defined measuring distance in a capillary is measured. The dynamic viscosity .eta. of the sample is calculated from the calibration constant K.sub.1(.alpha.) of the measuring system, the rolling time t.sub.0 and the difference of density .DELTA..rho. between the ball and the sample. The following equation is used: .eta.=K.sub.1(.alpha.)t.sub.0(.rho..sub.k-.rho..sub.s), where

[0108] .eta.=Dynamic vis cos ity of the sample, [mPas]

[0109] K(.alpha.)=Calibration constant for the Measuring system [mPascm.sup.3/g]

[0110] t.sub.0=Rolling time for 100 mm [s]

[0111] .rho..sub.k=Ball density [7,85 g/cm.sup.3]

[0112] .rho..sub.s=Density of the sample measured [g/cm.sup.3]

[0113] The viscosity is presented based on the extract (Plato.degree.) as is, or converted to 8.6 .degree. Plato based upon a Congress mashing procedure.

EXAMPLE 1

Characterisation of Xylanases Using Binding Assay

Production of Fibre Fractions

[0114] Soluble fibre fraction of barley was produced as follows: [0115] 1. 50 kg of barley was milled and slurred into 450 kg water at 50.degree. C. under stirring. [0116] 2. The extraction was carried out for 30 minutes under stirring. [0117] 3. Using a preheated decanter centrifuge at 50.degree. C., and a solids ejecting centrifuge a particle free and clarified fraction was prepared. [0118] 4. The clarified fraction was ultra filtered at 50.degree. C. on a tubular membrane with a cut-off value of 20000 Dalton. The ultra filtration process was continued until the viscosity increased and the flow was reduced significantly in the system. [0119] 5. The concentrated fraction was collected and lyophilized.

[0120] Insoluble fibre fraction of barley was produced as follows: [0121] 1. 50 kg of barley was milled and slurred into 450 kg of water at 50.degree. C. 0.25 kg of Termamyl SC was added and the solution was heated to 85.degree. C. under stirring. The reaction was carried out for 30 minutes. A sample was taken for starch analysis by iodine test. [0122] 2. The sample was centrifuged for 5 min at 3000.times.g (in 10 ml centrifuge vial). .degree.Plato was measured by using a refractometer on the supernatant. Starch conversion was followed by iodine colour reaction; if blue starch was remaining. [0123] 3. The reaction was continued until .degree.Plato has stabilized. The reaction product was ready for centrifugation. [0124] 4. The centrifugation was carried out using a decanter. The separation was carried out at 75.degree. C., and a clear and particle free supernatant was obtained. This fraction was discarded. Only the solid fraction was used in the following process. [0125] 5. The collected solid fraction was slurred into 500 kg of hot water. The temperature of this slurry was adjusted to 50.degree. C. [0126] 6. pH was adjusted to 7.5 using NaOH. A hydrolysis reaction was carried out using 125 g Alcalase 2.4 L. During the hydrolysis pH was maintained at pH=7.5 (pH-stat) and the reaction time was 120 minutes. Hereafter the reaction was left stirred without pH-stat at T=50.degree. C. over night. [0127] 7. pH was then adjusted to 6.5 using HCl. [0128] 8. The reaction mixture was centrifuged using the decanter. [0129] 9. The solid fraction was collected and washed with 500 L of water at 50.degree. C. for 30 minutes. The centrifugation step and washing step was repeated. [0130] 10. This washed solid fraction was lyophilized. Fibre Fraction Analysis

[0131] The sugar composition of the fibre fractions was analysed as follows: 1 g of fibre was added 50 mL of 1 M HCl and incubated at 100.degree. C. for 2 hours with shaking. After this treatment the reaction mixture was immediately cooled on ice and 11 mL of 4 M NaOH was added to neutralise the mixture. The content of arabinose, galactose, glucose and xylose was quantified using a Dionex BioLC system equipped with a CarBoPac PA-1 column as described in Sorensen et al. (2003) Biotech. Bioeng. vol. 81, No. 6, p. 726-731. The results are shown in table 1. TABLE-US-00003 TABLE 1 Content (g/kg) of the individual sugars in the fibre fractions from barley Arabinose Galactose Glucose Xylose Soluble fibers 34.9 14.8 486.6 38.1 Insoluble fibers 102.3 10.4 42.3 207.2

Xylanases Binding Assay

[0132] The xylanases binding assay was performed as follows: The fibre (10 mg) was washed in an Eppendorf tube by whirly-mixing with 500 microL of acetate buffer (50 mM, pH 5.5, 0.1% Triton X-100) before being centrifuged for 2 min at 13000 g. Washing and centrifuging was performed twice. The solution containing the enzyme* (500 microL, in acetate buffer pH 5.5) was then added to the substrate and the mixture was thoroughly whirly-mixed and kept in an ice bath for 10 min. The Eppendorf tube containing the reaction mixture was then centrifuged at 14000 g for 3 min where after initial and residual activity was determined by using as substrate 0.2% AZCL-Arabinoxylan from wheat (Megazyme) in 0.2 M Na-phosphate buffer pH 6.0+0.01% Triton-x-100. A vial with 900 microL substrate was preheated to 37.degree. C. in a thermomixer. 100 microL enzyme sample was added followed by incubation for 15 min at 37.degree. C. and maximum shaking. The vial was placed on ice for 2 min before being centrifuged for 1 min at 20.000 g. From the supernatant 2.times.200 microL was transferred to a microtiter plate and endpoint OD 590 nm was measured and compared relative to a control. The control was 100 microL enzyme sample incubated with 900 microL 0.2 M Na-phosphate buffer pH 6.0+0.01% Triton-x-100 instead of substrate and subsequently all activity is recovered in the supernatant and this value set to 1. The results are shown in table 2.

[0133] The two xylanases having the highest soluble/insoluble barley fibre binding ratio, Xylanase II and I from A. aculeatus, were also the two xylanases having the best performance in the mashing trials. TABLE-US-00004 TABLE 2 Soluble/insoluble barley fibre binding ratio. Relative activity measured in the supernatant after 10 min incubation with soluble and insoluble barley fibre fractions and the resulting ratios between activities measured in the supernatants over soluble and insoluble barley fibre. Insoluble Soluble GH barley barley Ratio Xylanase Family fibers fibers Soluble/ Aspergillus aculeatus Xyl II 10 86 104 1.21 Aspergillus aculeatus Xyl I 10 105 56 0.52 Humicola insolens Xyl II 11 82 37 0.45 Thermomyces lanuginosus Xyl 11 83 14 0.17 Humicola insolens Xyl I 11 74 7 0.09 Bacillus halodurans Xyl A 11 79 7 0.09

EXAMPLE 2

Characterization of Xylanase Specificity

[0134] High field Nuclear Magnetic Resonance (.sup.1H NMR) was applied to identify differences in xylanase specificity towards insoluble wheat arabinoxylan (AX) (insoluble, Megazyme). In .sup.1H NMR, arabinoxylan or oligosaccharides hereof (AXO) show signals (chemical shifts) around 5.0-5.5 ppm arising from the anomeric protons H-1 from the .alpha.-L-arabinofuranoside units. The individual differences among these depending on their local surroundings can be used to evaluate the specificity of xylanases towards this highly branched polymer. The standard condition was 10 mg/mL of AX in 50 mM acetate buffer, pH 5.5 was incubated with 0.1 XU/mL for 120 min at 30.degree. C. The xylanase was then inactivated (95.degree. C., 20 min) and the solution concentrated on a rotary evaporator. The sample was then evaporated twice from D.sub.2O (1 mL) and finally re-suspended in D.sub.2O (.about.0.8 mL) before being analyzed. .sup.1H NMR spectra were recorded on a Varian Mercury 400 MHz at 30.degree. C. Data were collected over 100 scans and the HDO signal was used as a reference signal (4.67 ppm).

[0135] Degradation of AX with a xylanase changes the .sup.1H NMR spectra according to the specificity of the enzyme. Thus, the chemical shift of the arabinofuranoside H-1 changes if the arabinose in the resulting oligosaccharide is located on a terminal xylose as compared to an "internal" xylose. This will be the result if the xylanase is capable at placing a substituted xylose unit in its +1 subsite. Using the applied conditions it was found that all tested GH10 xylanases was able to do this, whereas no GH11 xylanases having the characteristic were found. Type A refers to a xylanase that cleaves next to branched residues (leaving terminal substituted xylose oligosaccharides) whereas Type B refers to a xylanase that cleaves between unsubstituted xylose units giving internal substituted units only. Type A xylanases are also capable at cleaving between unsubstituted xylose units. Examples of Type A and Type B xylanase identified by the inventors are shown in table 3. For the invention a type A xylanase is preferred. TABLE-US-00005 TABLE 3 Examples of Type A and Type B xylanases Type A Type B Aspergillus aculeatus Xyl I Biobake (Quest) Aspergillus aculeatus Xyl II Humicola insolens Xyl I Bacillus halodurans Xyl A Myceliophotora thermophila Xyl III Humicola insolens XYl III Thermomyces lanuginosus Xyl I Myceliophotora thermophila Xyl I

[0136] Even within the type A xylanases the preference for cleavage next to branched residues or between unsubstituted xylose varies as shown in table 4, where the ratio I.sub.1,3terminal/I.sub.1,3internal relates to the ratio between the respective integrals of the two types of protons. Thus, type A cleavage result in an increase of I.sub.1,3terminal whereas type B does not. The chemical shifts for the two types of protons are: 1,3-linked arabinofuranoside H-1 on terminal xylose : 5.26 ppm and 1,3-linked arabinofuranoside H-1 on internal xylose: 5.32 ppm. For the invention a type A xylanase having a I.sub.1,3terminal/I.sub.1,3internal ratio of at least 0.25, such as at least 0.30, al least 0.40, at least 0.50, or even at least 0.60, is preferred. TABLE-US-00006 TABLE 4 Xylanases specificity, preference for cleavage next to branched residues or between unsubstituted xylose I.sub.1,3terminal/I.sub.1,3internal Myceliophotora thermophila Xyl I 0.64 Aspergillus aculeatus Xyl II 0.60 Humicola insolens Xyl III 0.30 Aspergillus aculeatus Xyl I 0.28

EXAMPLE 3

Characterization of Endoglucanase Specificity

[0137] Specificity of endoglucanases was studied by analyzing degradation products upon incubation with barley beta-glucan. Eppendorf tubes with 0.1 and 10 microgram/ml purified enzyme and 5 mg/ml barley beta-glucan (Megazyme, low viscosity) in 50 mM sodium acetate, 0.01% Triton X-100 at pH 5.5 were incubated in an Eppendorf thermomixer at 50.degree. C. with agitation.

[0138] Enzymes tested were endoglucanase EG I from Humicola insolens, endoglucanase EG III from Humicola insolens, endoglucanase Humicola insolens EG IV, Aspergillus aculeatus EG II (XG5, Cel12B), and Aspergillus aculeatus EG III (XG53, Cel12A).

[0139] Samples were withdrawn between 1 and 21.5 hours and inactivated by heating for 30 min at 95.degree. C. Half the volume of each sample was degraded with lichenase (0.085 microgram/ml, Megazyme, from Bacillus subtilis) in 50 mM MES, 1 mM CaCl2, pH 6.5 for 2 hours at 50.degree. C., after which the lichenase was inactivated by heating to 95.degree. C. for 30 min. Samples with and without lichenase treatment were diluted appropriately with Milli Q water and analyzed on a Dionex DX-500 HPAEC-PAD system (CarboPac PA-100 column; A buffer: 150 mM NaOH; B buffer: 150 mM NaOH+0.6 M sodium acetate; Flow rate: 1 ml/min. Elution conditions: 0-3 min: 95% A+5% B; 3-19 min: linear gradient: 95% A+5% B to 50% A and 50% B; 19-21 min: linear gradient: 50% A+50% B to 100% B; 21-23 min: 100% B). As reference on the Dionex system a mixture of cellooligosaccharides was used (DP1 to DP6, 100 microM of each). Peaks in chromatograms were identified using the cellooligo references and known composition of barley beta-glucan after lichenase treatment (e.g. Izydorczyk, M. S., Macri, L. J., & MacGregor, A. W., 1997, Carbohydrate Polymers, 35, 249-258). Quantification of peaks in chromatograms was done using response factors obtained for cellooligo references and assuming that response factor was identical for oligosaccharides of same DP with beta-1,3 bonds. For oligosaccharides larger than DP6 response factor of DP6 was used.

[0140] From the analysis of degradation products with EG I from Humicola insolens (Tables 5 and 6), it was found that the enzyme is able to degrade both beta-1,3 and beta-1,4 bonds. Initially, cellobiose, cellotriose and to some extent laminaribiose are the main products increasing after lichenase treatment. This indicates that beta-1,3 bonds are accepted between glucose units in subsites -4/-3, -5/-4 and +1/+2. The main products with highest enzyme dosage (10 microgram/ml) and longest incubation time (21.5 hours) were found to be glucose and cellobiose.

[0141] With EG III from Humicola insolens (Tables 7 and 8) the main products after 21.5 hours and 10 microgram/ml enzyme were tetraoses (mainly Glu(beta-1,4)Glu(beta-1,3)Glu(beta-1,4)Glu and Glu(beta-1,4)Glu(beta-1,4)Glu(beta-1,3)Glu but not Glu(beta-1,3)Glu(beta-1,4)Glu(beta-1,4)Glu), pentaoses (probably mainly Glu(beta-1,3)Glu(beta-1,4)Glu(beta-1,4)Glu(beta-1,3)Glu and Glu(beta-1,4)Glu(beta-1,4)Glu(beta-1,3)Glu(beta-1,4)Glu) and larger oligomers. Composition of degradation products after lichenase treatment shows that the enzyme exclusively degrades the beta-1,4 bonds in beta-glucan. Futhermore, the the beta-1,4 linkages that are hydrolysed are mainly those not hydrolysed by lichenases (without adjacent beta-1,3 bond towards the non-reducing end). That the amount of Glu(beta-1,4)Glu(beta-1,3)Glu ("Lic3") after lichenase treatment does not decrease significantly even after 21.5 hours with 10 microgram/ml indicates that the enzyme only has limited activity on stretches with only two beta-1,4 bonds between beta-1,3 linkages. The appearance of significant amounts of glucose and laminaribiose but not cellobiose or cellotriose after lichenase treatment indicates that beta-1,3 bonds are accepted between glucose units in subsites -3/-2 and +1/+2 but not between -4/-3 or -5/-4.

[0142] The enzyme EG IV from Humicola insolens mainly degrades the beta-glucan to larger oligomers (Tables 9 and 10), but after 21.5 hours with 10 microgram/ml enzyme substantial amounts of cellobiose and oligomers of DP4 (probably mainly Glu(beta-1,4)Glu(beta-1,3)Glu(beta-1,4)Glu and Glu(beta-1,3)Glu(beta-1,4)Glu(beta-1,4)Glu) are formed. The enzyme degrades about equal amounts of beta-1,4 and beta-1,3 bonds in beta-glucan and the beta-1,4 bonds cleaved seem to be those without an adjacent beta-1,3 bond towards the non-reducing end (unlike lichenases). Lichenase treatment gives increased cellotriose already after limited hydrolysis with EG IV, whereas cellobiose and glucose only appear after more extensive hydrolysis with EG IV. This indicates that beta-1,3 bonds are better accepted between glucose in subsites -5/-4 than between -4/-3 and especially -3/-2. The appearance of laminaribiose after lichenase treatment shows that beta-1,3 bonds are also accepted between glucose in subsites +1/+2.

[0143] With Aspergillus aculeatus EGII (XG5, Cel12B), glucose is seen to be the main low molecular weight product (Tables 11 and 12). Lichenase treatment of samples with little degradation of beta-glucan by EG II gives increase of cellobiose, cellotriose and laminaribiose but not glucose. This indicates that beta-1,3 bonds are accepted between glucose units in subsites -5/-4, -4/-3 and +1/+2 but probably not -3/-2. Thus, the glucose liberated by EG II is probably released by exo-action on degradation products. The enzyme is able to hydrolyse both beta-1,4 and beta-1,3 bonds although beta-1,4 linkages seem to be preferred. After 20 hours with the highest enzyme concentration, the beta-glucan is seen to be almost totally degraded to glucose.

[0144] The Aspergillus aculeatus EG III (XG53, Cel12A) rapidly degrades the beta-glucan giving oligomers of DP4 (mainly Glu(beta-1,3)Glu(beta-1,4)Glu(beta-1,4)Glu and Glu(beta-1,3)Glu(beta-1,4)Glu(beta-1,4)Glu) and DP5 (mainly Glu(beta-1,4)Glu(beta-1,4)Glu(beta-1,3)Glu(beta-1,4)Glu but also some Glu(beta-1,4)Glu(beta-1,3)Glu(beta-1,4)Glu(beta-1,4)Glu and Glu(beta-1,4)Glu(beta-1,4)Glu(beta-1,4)Glu(beta-1,3)Glu) (Tables 13 and 14). After 20 hours with the highest enzyme concentration significant amounts of cellobiose, glucose and cellotriose are also formed. Lichenase treatment of samples gives increase of glucose, cellotriose and laminaribiose and especially cellobiose. This indicates that beta-1,3 bonds may be preferred between glucose units in subsites -4/-3 but are also accepted between -5/-4, -3/-2 and +1/+2. The enzyme is capable of degrading both beta-1,4 and beta-1,3 linkages. TABLE-US-00007 TABLE 5 Degradation products of barley beta-glucan with endoglucanase Humicola insolens EG I given as weight % of degradation products. Enzyme dosage (microgram/ml) 0.1 0.1 0.1 10 10 10 Incubation time (hours) 1 2.5 21.5 1 2.5 21.5 Glu 0.10 0.28 0.35 3.68 15.45 40.96 Cel.sub.2 0.40 0.93 1.51 13.80 27.32 28.76 Cel.sub.3 0.69 1.64 2.38 9.91 6.00 0.00 Cel.sub.4 0.25 0.48 0.68 2.37 0.85 0.00 Cel.sub.5 0.00 0.40 0.35 1.66 0.11 0.00 Cel.sub.6 0.00 0.00 0.00 0.00 0.00 0.00 Lam.sub.2 0.00 0.00 0.13 0.07 0.06 2.12 DP.sub.3 0.63 0.00 0.06 0.86 3.51 5.33 DP.sub.4 0.00 0.00 0.08 1.29 4.40 4.13 DP.sub.5 0.87 2.38 3.65 22.91 23.44 9.14 DP.sub.6 1.12 2.66 4.50 16.08 4.16 3.41 DP > 6 95.93 91.23 86.30 27.38 14.70 6.16 Glu: Glucose. Cel.sub.i: Cellooligo of DP i. Lam.sub.2: Laminaribiose. DP.sub.i: Oligosaccharide of DP i with a single beta-1,3 bond and the rest beta-1,4 bonds between the glucose units. DP > 6: Oligosaccharide consisting of more than 6 glucose units.

[0145] TABLE-US-00008 TABLE 6 Degradation products of barley beta-glucan with endoglucanase Humicola insolens EG I and subsequent lichenase degradation given as weight % of degradation products. Enzyme dosage (microgram/ml) 0.1 0.1 0.1 10 10 10 Incubation time (hours) 1 2.5 21.5 1 2.5 21.5 Glu 0.14 0.17 0.45 5.15 16.24 43.66 Cel.sub.2 3.38 4.99 10.09 36.73 43.18 35.48 Cel.sub.3 1.24 3.31 5.26 14.14 6.42 0.17 Cel.sub.4 0.21 0.79 1.39 3.79 0.90 0.00 Cel.sub.5 0.00 0.16 0.62 1.18 0.84 0.00 Cel.sub.6 0.00 0.00 0.00 0.00 0.00 0.00 Lam.sub.2 2.95 2.43 3.58 9.90 7.53 4.99 DP.sub.3 61.59 58.54 52.42 3.56 6.49 5.46 DP.sub.4 20.92 19.72 16.97 5.19 6.01 4.58 DP.sub.5 4.33 4.10 5.46 13.49 9.44 2.84 DP.sub.6 2.23 2.88 2.75 4.84 1.00 2.47 DP > 6 3.01 2.91 0.29 2.04 1.96 0.34 Glu: Glucose. Cel.sub.i: Cellooligo of DP i. Lam.sub.2: Laminaribiose. DP.sub.i: Oligosaccharide of DP i with a single beta-1,3 bond and the rest beta-1,4 bonds between the glucose units. DP > 6: Oligosaccharide consisting of more than 6 glucose units.

[0146] TABLE-US-00009 TABLE 7 Results upon degradation of barley beta-glucan with endoglucanase Humicola insolens EG III given as weight % of degradation products. Enzyme dosage (microgram/ml) 0.1 0.1 0.1 10 10 10 Incubation time (hours) 1 2.5 21.5 1 2.5 21.5 Glu 0.00 0.08 0.06 0.30 0.25 0.68 Cel2 0.00 0.00 0.00 0.08 0.01 0.53 Cel3 0.00 0.00 0.00 0.00 0.00 0.00 Cel4 0.00 0.00 0.00 0.00 0.03 0.00 Cel5 0.00 0.00 0.00 0.00 0.00 0.00 Cel6 0.00 0.00 0.00 0.00 0.00 0.00 Lam2 0.00 0.00 0.00 0.00 0.03 0.24 DP3 1.07 0.00 0.00 0.66 0.05 0.00 DP4 0.00 0.14 0.53 5.99 7.95 39.08 DP5 0.78 0.00 0.75 4.50 6.68 25.08 DP6 0.00 0.00 0.36 1.26 1.92 7.08 DP > 6 98.15 99.78 98.29 87.22 83.09 27.31 Glu: Glucose. Cel.sub.i: Cellooligo of DP i. Lam.sub.2: Laminaribiose. DP.sub.i: Oligosaccharide of DP i with a single beta-1,3 bond and the rest beta-1,4 bonds between the glucose units. DP > 6: Oligosaccharide consisting of more than 6 glucose units.

[0147] TABLE-US-00010 TABLE 8 Results upon degradation of barley beta-glucan with endoglucanase Humicola insolens EG III and subsequent lichenase degradation given as weight % of degradation products. Enzyme dosage (microgram/ml) 0.1 0.1 0.1 10 10 10 Incubation time (hours) 1 2.5 21.5 1 2.5 21.5 Glu 0.15 0.29 1.37 6.70 14.43 13.80 Cel2 0.32 0.19 0.44 0.21 0.24 0.90 Cel3 1.03 0.00 2.01 0.93 0.45 0.15 Cel4 0.00 0.00 0.00 0.00 0.03 0.00 Cel5 0.80 0.00 0.00 0.00 0.00 0.00 Cel6 0.00 0.00 0.00 0.00 0.00 0.00 Lam2 4.10 1.26 2.10 7.43 13.20 13.77 "Lic3" 59.81 65.09 61.00 47.76 40.48 56.20 "Lic4" 22.63 23.12 21.54 18.78 7.08 9.72 "Lic5" 4.24 4.45 4.92 10.59 15.64 2.88 "Lic6" 3.91 2.82 3.67 3.28 2.90 2.05 "Lic7" 3.00 2.79 2.93 4.32 5.54 0.55 Glu: Glucose. Cel.sub.i: Cellooligo of DP i. Lam.sub.2: Laminaribiose. DP.sub.i: Oligosaccharide of DP i with a single beta-1,3 bond and the rest beta-1,4 bonds between the glucose units. DP > 6: Oligosaccharide consisting of more than 6 glucose units.

[0148] TABLE-US-00011 TABLE 9 Degradation products of barley beta-glucan with endoglucanase Humicola insolens EG IV given as weight % of degradation products. Enzyme dosage (microgram/ml) 0.1 0.1 0.1 10 10 10 Incubation time (hours) 1 2.5 21.5 1 2.5 21.5 Glu 0.00 0.00 0.00 0.13 0.63 0.66 Cel.sub.2 0.14 0.38 1.07 7.02 5.51 12.11 Cel.sub.3 0.09 0.19 0.77 2.89 1.72 1.02 Cel.sub.4 0.81 0.20 0.34 1.10 0.55 0.13 Cel.sub.5 0.15 0.28 0.30 0.00 0.00 0.00 Cel.sub.6 0.00 0.29 0.00 0.00 0.00 0.00 Lam.sub.2 0.00 0.00 0.00 0.00 0.04 0.16 DP.sub.3 0.00 0.00 0.00 0.68 0.00 0.11 DP.sub.4 0.00 0.00 0.00 1.03 1.83 12.77 DP.sub.5 0.18 0.21 0.07 0.59 0.71 3.25 DP.sub.6 0.00 0.13 0.26 5.78 6.04 2.44 DP > 6 98.63 98.32 97.20 80.77 82.96 67.36 Glu: Glucose. Cel.sub.i: Cellooligo of DP i. Lam.sub.2: Laminaribiose. DP.sub.i: Oligosaccharide of DP i with a single beta-1,3 bond and the rest beta-1,4 bonds between the glucose units. DP > 6: Oligosaccharide consisting of more than 6 glucose units.

[0149] TABLE-US-00012 TABLE 10 Degradation products of barley beta-glucan with endoglucanase Humicola insolens EG IV and subsequent lichenase degradation given as weight % of degradation products. Enzyme dosage (microgram/ml) 0.1 0.1 0.1 10 10 10 Incubation time (hours) 1 2.5 21.5 1 2.5 21.5 Glu 0.07 0.05 0.09 1.83 2.93 7.24 Cel.sub.2 0.40 0.50 1.97 4.53 7.23 19.84 Cel.sub.3 1.45 2.05 5.59 11.84 12.00 6.94 Cel.sub.4 0.81 1.13 1.90 1.48 0.57 0.08 Cel.sub.5 0.00 0.00 0.00 0.00 0.00 0.00 Cel.sub.6 0.00 0.00 0.00 0.00 0.00 0.00 Lam.sub.2 2.10 3.92 3.82 5.43 7.41 11.87 DP.sub.3 63.45 61.92 60.26 54.03 47.65 30.59 DP.sub.4 22.95 23.32 21.96 16.11 11.03 15.88 DP.sub.5 4.97 4.99 3.46 3.03 2.51 4.01 DP.sub.6 3.82 0.20 0.49 0.11 3.04 1.00 DP > 6 0.00 1.93 0.47 1.60 5.62 2.55 Cel.sub.i: Cellooligo of DP i. Lam.sub.2: Laminaribiose. DP.sub.i: Oligosaccharide of DP i with a single beta-1,3 bond and the rest beta-1,4 bonds between the glucose units. DP > 6: Oligosaccharide consisting of more than 6 glucose units.

[0150] TABLE-US-00013 TABLE 11 Degradation products of barley beta-glucan with endoglucanase Aspergillus aculeatus EG II (XG5, Cel12B) given as weight % of degradation products. Enzyme dosage (microgram/ml) 0.16 0.16 16 16 Incubation time (hours) 1 20 1 20 Glu 0.17 2.30 33.64 99.25 Cel.sub.2 0.00 0.00 0.54 0.00 Cel.sub.3 0.00 0.00 0.60 0.00 Cel.sub.4 0.00 0.00 0.52 0.00 Cel.sub.5 0.00 0.00 0.11 0.00 Cel.sub.6 0.00 0.00 0.00 0.00 Lam.sub.2 0.00 0.12 2.97 0.00 DP.sub.3 0.00 0.45 0.09 0.16 DP.sub.4 0.00 0.06 1.85 0.02 DP.sub.5 0.00 0.20 1.69 0.16 DP.sub.6 0.00 0.28 4.58 0.00 DP > 6 99.83 96.59 53.42 0.41 Glu: Glucose. Celi: Cellooligo of DP i. Lam2: Laminaribiose. DPi: Oligosaccharide of DP i with a single beta-1,3 bond and the rest beta-1,4 bonds between the glucose units. DP > 6: Oligosaccharide consisting of more than 6 glucose units.

[0151] TABLE-US-00014 TABLE 12 Degradation products of barley beta-glucan with endoglucanase Aspergillus aculeatus EG II (XG5, Cel12B) and subsequent lichenase degradation given as weight % of degradation products. Enzyme dosage (microgram/ml) 0.016 0.016 1.6 1.6 Incubation time (hours) 1 20 1 20 Glu 0.20 2.21 26.22 99.53 Cel.sub.2 4.88 0.61 1.31 0.00 Cel.sub.3 3.76 3.44 4.10 0.00 Cel.sub.4 0.00 0.20 0.82 0.00 Cel.sub.5 0.00 0.88 0.00 0.00 Cel.sub.6 0.00 0.00 0.00 0.00 Lam.sub.2 0.17 2.17 9.95 0.00 DP.sub.3 61.15 59.72 36.11 0.27 DP.sub.4 23.43 21.49 14.35 0.04 DP.sub.5 3.82 3.83 3.38 0.16 DP.sub.6 0.08 2.52 2.20 0.00 DP > 6 2.51 2.94 1.55 0.00 Glu: Glucose. Celi: Cellooligo of DP i. Lam2: Laminaribiose. DPi: Oligosaccharide of DP i with a single beta-1,3 bond and the rest beta-1,4 bonds between the glucose units. DP > 6: Oligosaccharide consisting of more than 6 glucose units.

[0152] TABLE-US-00015 TABLE 13 Degradation products of barley beta-glucan with endoglucanase Aspergillus aculeatus EG III (XG53, Cel12A) given as weight % of degradation products. Enzyme dosage (microgram/ml) 0.1 0.1 10 10 Incubation time (hours) 1 20 1 20 Glu 0.05 0.23 1.42 13.28 Cel.sub.2 0.09 0.78 4.20 20.68 Cel.sub.3 0.15 1.21 2.69 7.57 Cel.sub.4 0.17 0.91 1.19 0.00 Cel.sub.5 0.08 0.00 0.00 0.00 Cel.sub.6 0.00 0.00 0.00 0.00 Lam.sub.2 0.00 0.15 0.25 0.03 DP.sub.3 0.33 0.16 0.00 0.42 DP.sub.4 0.28 8.71 40.77 33.42 DP.sub.5 1.24 15.49 30.18 20.94 DP.sub.6 0.79 6.69 0.26 1.65 DP > 6 96.83 65.67 19.04 2.01 Glu: Glucose. Celi: Cellooligo of DP i. Lam2: Laminaribiose. DPi: Oligosaccharide of DP i with a single beta-1,3 bond and the rest beta-1,4 bonds between the glucose units. DP > 6: Oligosaccharide consisting of more than 6 glucose units.

[0153] TABLE-US-00016 TABLE 14 Degradation products of barley beta-glucan with endoglucanase Aspergillus aculeatus III (XG53, Cel12A) and subsequent lichenase degradation given as weight % of degradation products. Enzyme dosage (microgram/ml) 0.1 0.1 10 10 Incubation time (hours) 1 20 1 20 Glu 1.08 6.84 7.12 16.22 Cel.sub.2 3.37 16.31 21.82 30.46 Cel.sub.3 3.90 5.25 4.40 7.66 Cel.sub.4 0.70 2.35 0.65 0.03 Cel.sub.5 0.58 0.00 0.00 0.10 Cel.sub.6 0.00 1.22 0.00 0.00 Lam.sub.2 4.12 16.93 16.24 5.07 DP.sub.3 57.22 33.12 6.11 0.99 DP.sub.4 18.69 12.16 38.91 35.81 DP.sub.5 4.39 1.46 2.41 2.62 DP.sub.6 3.44 2.16 0.26 0.78 DP > 6 2.51 2.19 2.08 0.26 Glu: Glucose. Celi: Cellooligo of DP i. Lam2: Laminaribiose. DPi: Oligosaccharide of DP i with a single beta-1,3 bond and the rest beta-1,4 bonds between the glucose units. DP > 6: Oligosaccharide consisting of more than 6 glucose units.

EXAMPLE 4

Mashing and Filtration Performance

[0154] A conventional standard treatment of Ultraflo.RTM. 2.7 mg EP/kg dry matter (dm) grist (index 1,000) was compared to an experimental treatment with Ultraflo.RTM. 1.4 mg EP/kg dm grist supplemented with various endoglucanases. A dosage of 0.2 g Ultraflo.RTM./kg DM grist equals 2.7 mg enzyme protein/kg dm grist. TABLE-US-00017 TABLE 15 Effect of Humicola insolens EG I endoglucanase (Cel 7b, GH 7) and Humicola insolens EG V endoglucanase, (Cel 45a, GH45). Best Beta-glucan Extract Viscosity Filterability Performing Ultraflo .RTM. 2.7 mg EP/kg dm 1.000 1.000 1.000 1.000 -- Ultraflo .RTM. 1.4 mg EP/kg dm + 1.184 0.997 1.032 0.904 -- HI EG I 1.25 mg EP/kg dm Ultraflo .RTM. 1.4 mg EP/kg dm + 2.986 0.996 1.033 0.865 -- HI EG V 1.25 mg EP/kg dm Ultraflo .RTM. 1.4 mg EP/kg dm + 0.377 0.992 1.021 0.962 ** beta- HI EG I 8 mg EP/kg dm glucan Ultraflo .RTM. 1.4 mg EP/kg dm + 3.262 1.000 1.055 0.865 -- HI EG V 8 mg EP/kg dm Beta-glucan (n = 4), Extract % (n = 4, based on dry matter), Viscosity (n = 4, conv. 8, 6.degree. Plato, cP), Filterability (n = 2) after 10 min

[0155] Ultraflo.RTM. 1.4 mg EP/kg dm supplemented with H. insolens EG I, Cel 7b (GH 7) 8 mg EP/kg dm reduced beta-glucan compared to the standard treatment (index 1.000). TABLE-US-00018 TABLE 16 Effect of Humicola insolens EGIII endoglucanase, (Cel 12a, GH12) and Humicola insolens EG IV endoglucanase, (Cel 5a, GH12). Beta- Best glucan OD Extract Viscosity Filterability Performing Ultraflo .RTM. 2.7 mg EP/kg dm 1.000 1.000 1.000 1.000 1.000 -- Ultraflo .RTM. 1.4 mg EP/kg dm + 3.019 0.975 1.002 1.002 0.979 -- HI EG IV 1.25 mg EP/kg dm Ultraflo .RTM. 1.4 mg EP/kg dm + 0.628 0.949 1.000 0.999 0.957 -- HI EG III 1.25 mg EP/kg dm Ultraflo .RTM. 1.4 mg EP/kg dm + 2.045 1.013 0.999 1.006 1.085 -- HI EG IV 8.0 mg EP/kg dm Ultraflo .RTM. 1.4 mg EP/kg dm + 0.341 0.937 1.003 0.938 1.085 *** HI EG III 8.0 mg EP/kg dm beta- viscosity, filterability Beta-glucan (n = 4), OD (n = 2), Extract % (n = 4, based on dry matter), Viscosity (n = 4, Conv. 8, 6.degree. Plato, cP), Filterability (n = 2) after 10 min

[0156] The H. insolens, endoglucanase III, (Cel 12a, GH12) and Ultraflo.RTM. 1.4 mg EP/kg dm reduced the beta-glucan, O.D and viscosity while also improving filterability compared to the standard treatment. TABLE-US-00019 TABLE 17 Effect of Thermoascus aurantiacus endoglucanase (GH 5). Best Perfor- Beta-glucan OD Extract Viscosity Filterability ming Ultraflo .RTM. 2.7 mg EP/kg dm 1.000 1.000 1.000 1.000 1.000 Ultraflo .RTM. 1.4 mg EP/kg dm + 1.627 1.065 1.002 1.015 1.037 AT EG 5 1.25 mg EP/kg dm Ultraflo .RTM. 1.4 mg EP/kg dm + 0.432 1.033 1.001 1.017 1.000 ** AT EG 8 mg EP/kg dm beta- glucan Beta-glucan (n = 4), OD (n = 2), Extract % (n = 4, based on dry matter), Viscosity (n = 4, conv. 8, 6.degree. Plato, cP), Filterability (n = 2) after 10 min

[0157] Ultraflo.RTM. 1.4 mg EP/kg dm supplemented with the T. aurantiacus endoglucanase BG025 (GH 5) reduced the beta-glucan level significantly compared to the standard treatment.

[0158] A conventional standard treatment of Ultraflo.RTM. 0.2 g/kg DM grist (index 1,000) was compared to an experimental treatment with Ultraflo.RTM. 0.1 g/kg DM grist supplemented with various xylanases.

[0159] None of the two GH 11, type B xylanases from the fungi Bh and Cc had any positive effect on beta-glucan, OD, Extract recovery, viscosity or filterability. TABLE-US-00020 TABLE 18 Effect of Bh xylanase B (GH 11, type B) & Cc xylanase II (GH 11 type B). Best Perfor- Beta-glucan OD Extract Viscosity Filterability ming Ultraflo .RTM. 2.7 mg EP/kg dm 1.000 1.000 1.000 1.000 1.000 -- Ultraflo .RTM. 1.4 mg EP/kg dm + 3.223 1.100 1.000 1.032 1.082 -- BH XYL 0.7 mg EP/kg dm Ultraflo .RTM. 1.4 mg EP/kg + 3.279 1.025 0.998 1.028 1.012 -- CC XYL II 0.7 mg EP/kg dm Ultraflo .RTM. 1.4 mg EP/kg dm + 3.231 1.025 1.000 1.048 1.035 -- BH XYL B 5 mg EP/kg dm Ultraflo .RTM. 1.4 mg EP/kg dm + 3.213 1.038 1.003 1.030 1.082 -- CC XYL II 5 mg EP/kg dm Beta-glucan (n = 4), OD (n = 2), Extract % (n = 4, based on dry matter), Viscosity (n = 4, conv. 8, 6.degree. Plato, cP), Filterability (n = 2) after 10 min

[0160] TABLE-US-00021 TABLE 19 Effect of Aspergillus aculeatus xylanase I (GH10, type A) and Myceliophotora thermophila xylanase III (GH 11, type B). Best Beta-glucan OD Extract Viscosity Filterability Performing Ultraflo .RTM. 2.7 mg EP/kg dm 1.000 1.000 1.000 1.000 1.000 -- Ultraflo .RTM. 1.4 mg EP/kg dm + 3.401 1.125 1.006 0.981 1.143 *** AA XYL I 5 mg EP/kg dm Viscosity, filterability Ultraflo .RTM. 1.4 mg EP/kg dm + 3.740 0.990 1.005 1.019 0.939 -- MT XYL II 5 mg EP/kg dm Ultraflo .RTM. 1.4 mg EP/kg dm + 3.894 1.010 1.006 1.006 0.980 -- AA XYL I 0.7 mg EP/kg dm Ultraflo .RTM. 1.4 mg EP/kg dm + 3.218 0.927 1.007 1.020 0.776 -- MT XYL II 0.7 mg EP/kg dm Beta-glucan (n = 4), OD (n = 2), Extract % (n = 4, based on dry matter), Viscosity (n = 4, conv. 8, 6.degree. Plato, cP), Filterability (n = 2) after 10 min

[0161] TABLE-US-00022 TABLE 20 Effect of Thermomyces lanuginosus xylanase (GH 11, type B) and Aspergillus aculeatus xylanase II (GH10, type A). Beta-glucan Extract Viscosity Filterability Best Performing Ultraflo .RTM. 2.7 mg EP/kg dm 1.000 1.000 1.000 1.000 -- Ultraflo .RTM. 1.4 mg EP/kg dm + 2.296 1.002 0.985 0.981 -- AA XYL II 0.7 mg EP/kg dm Ultraflo .RTM. 1.4 mg EP/kg dm + 2.375 0.994 1.015 0.868 -- TL XYL 0.7 mg EP/kg dm Ultraflo .RTM. 1.4 mg EP/kg dm + 2.152 1.000 0.970 1.075 *** Viscosity, AA XYL II 5 mg EP/kg dm filterability Ultraflo .RTM. 1.4 mg EP/kg dm + 2.357 1.004 1.032 0.906 -- TL XYL 5 mg EP/kg dm Beta-glucan (n = 4), Extract % (n = 4, based on dry matter), Viscosity (n = 4, conv. 8, 6.degree. Plato, cP), Filterability (n = 2) after 10 min

[0162] The Aspergillus aculeatus xylanase I and Aspergillus aculeatus xylanase II reduced viscosity as well as improved filterability compared to the standard treatment.

[0163] A conventional standard treatment of Ultraflo.RTM. 0.2 g/kg dm grist (index 1.000) was compared to an experimental treatment with Viscozyme 0.1 g or 0 g/kg dm grist supplemented with Aspergillus aculeatus xylanase II and various endoglucanases. TABLE-US-00023 TABLE 21 Effect of Aspergillus aculeatus betaglucanase EGI (XG 5) and Aspergillus aculeatus endoglucanase EGIII (XG53) in combination with Aspergillus aculeatus xylanase II and/or the Viscozyme .RTM. endoglucanase composition. Best Beta-glucan Extract Viscosity Filterability Performing Ultraflo .RTM.: 2.7 mg EP/kg dm 1.000 1.000 1.000 1.000 AA EG II 4 mg EP/kg dm 5.795 0.997 0.981 1.140 AA XYL II 4 mg EP/kg dm Viscozyme .RTM. 1.7 mg EP/kg dm AA EG III 1 mg EP/kg dm 2.631 1.000 0.964 1.118 ** AA XYL II 4 mg EP/kg dm viscosity, Viscozyme .RTM. 1.7 mg EP/kg dm filterability AA EG III 2 mg EP/kg dm 1.317 1.003 0.955 1.011 AA XYL II 4 mg EP/kg dm Viscozyme .RTM. 1.7 mg EP/kg dm AA EG III 4 mg EP/kg dm, 0.918 1.004 0.956 1.236 *** AA XYL II 4 mg EP/kg dm beta-glucan, viscosity, filterability AA EG II 8 mg EP/kg dm 6.601 1.003 0.977 1.096 AA XYL II 4 mg EP/kg dm Beta-glucan (n = 4), Extract % (n = 4, based on dry matter), Viscosity (n = 4, conv. 8, 6.degree. Plato, cP), Filterability (n = 2) after 10 min

[0164] A combination of Aspergillus aculeatus Xylanase II and Aspergillus aculeatus endoglucanase EG III had a significant effect on beta-glucan, viscosity and filterability. TABLE-US-00024 TABLE 22 Comparison of increasing amounts of Viscozyme .RTM. and of a composition of the present invention. Absolute values. Beta- Extract glucan OD % Viscosity Viscozyme .RTM. 3.6 mg EP/kg dm 189 0.030 85.0 1.38 Viscozyme .RTM. 9 mg EP/kg dm 155 0.030 85.0 1.35 Viscozyme .RTM. 13.5 mg EP/kg dm 127 0.031 85.2 1.34 Viscozyme .RTM. 18 mg EP/kg dm 101 0.028 85.5 1.32 Viscozyme .RTM. 27 mg EP/kg dm 75 0.030 85.7 1.30 Viscozyme .RTM. 3.6 mg EP/kg dm 0 0.030 85.8 1.22 AA EG III 2 mg EP/kg dm AA XYL II 4 mg EP/kg dm Beta-glucan (mg/l, n = 4), OD (n = 2), Extract % (n = 4, extract in dry malt, % (m/m)), Viscosity (n = 4, conv. 8, 6.degree. Plato, cP),

[0165] A composition comprising Viscozyme.RTM. 3.6 mg EP/kg dm, Aspergillus aculeatus EG III 2 mg EP/kg dm, and Aspergillus aculeatus Xylanase II 4 mg EP/kg dm had a significantly more positive effect on beta-glucan, OD, extract recovery, and viscosity than had a dosage of 7.5 times the conventional standard dosage of Viscozyme.RTM. (Std. dosage=3.6 mg EP/kg dm) (Table 22).

EXAMPLE 5

Quantification of Protein Bands in SDS-PAGE Gels

[0166] The enzyme composition was diluted 250 times in deionized water and loaded onto a 4-20% Tris-glycine SDS-PAGE gel (Nu Page, Invitrogen) and the electrophoresis was conducted as described by the manufacturer.

[0167] After electrophoresis the gel was stained with GelCode Blue (Pierce) o/n and subsequently decolorized in water to the background became clear.

[0168] The resulting gel was then scanned using a densitometer and analyzed by the ImageMaster.TM. v. 1 0 software from Amersham Biosciences following the protocol from the manufacturer. The results are expressed as % band density of total density in a given lane.

[0169] The total amount of protein in the enzyme samples were measured using the Micro BCA kit from Pierce using the protocol supplied with the kit.

Sequence CWU 1

1

20 1 332 PRT Aspergillus aculeatus 1 Met Lys Leu Leu Asn Leu Leu Val Ala Ala Ala Ala Ala Gly Ser Ala 1 5 10 15 Val Ala Ala Pro Thr His Glu His Thr Lys Arg Ala Ser Val Phe Glu 20 25 30 Trp Ile Gly Ser Asn Glu Ser Asp Ala Glu Phe Gly Thr Ala Ile Pro 35 40 45 Gly Thr Trp Gly Ile Asp Tyr Ile Phe Pro Asp Thr Ser Ala Ile Ala 50 55 60 Thr Leu Val Ser Lys Gly Met Asn Ile Phe Arg Val Gln Phe Met Met 65 70 75 80 Glu Arg Leu Val Pro Asn Ser Met Thr Gly Ser Tyr Asp Asp Ala Tyr 85 90 95 Leu Asn Asn Leu Thr Thr Val Val Asn Ala Ile Ala Ala Ala Gly Val 100 105 110 His Ala Ile Val Asp Pro His Asn Tyr Gly Arg Tyr Asn Asn Glu Ile 115 120 125 Ile Ser Ser Thr Ala Asp Phe Gln Thr Phe Trp Gln Asn Leu Ala Gly 130 135 140 Gln Phe Lys Asp Asn Asp Leu Val Ile Phe Asp Thr Asn Asn Glu Tyr 145 150 155 160 Asn Thr Met Asp Gln Thr Leu Val Leu Asp Leu Asn Gln Ala Ala Ile 165 170 175 Asp Gly Ile Arg Ala Ala Gly Ala Thr Ser Gln Tyr Ile Phe Ala Glu 180 185 190 Gly Asn Ser Trp Ser Gly Ala Trp Thr Trp Ala Asp Ile Asn Asp Asn 195 200 205 Met Lys Ala Leu Thr Asp Pro Gln Asp Lys Leu Val Tyr Glu Met His 210 215 220 Gln Tyr Leu Asp Ser Asp Gly Ser Gly Thr Ser Gly Val Cys Val Ser 225 230 235 240 Glu Thr Ile Gly Ala Glu Arg Leu Gln Ala Ala Thr Gln Trp Leu Lys 245 250 255 Asp Asn Gly Lys Val Asp Ile Leu Gly Glu Tyr Ala Gly Gly Ala Asn 260 265 270 Asp Val Cys Arg Thr Ala Ile Ala Gly Met Leu Glu Tyr Met Ala Asn 275 280 285 Asn Thr Asp Val Trp Lys Gly Ala Val Trp Trp Thr Ala Gly Pro Trp 290 295 300 Trp Ala Asp Tyr Met Phe Ser Met Glu Pro Pro Ser Gly Pro Ala Tyr 305 310 315 320 Ser Gly Met Leu Asp Val Leu Glu Pro Tyr Leu Gly 325 330 2 238 PRT Aspergillus aculeatus 2 Met Lys Leu Ser Leu Leu Ser Leu Ala Thr Leu Ala Ser Ala Ala Ser 1 5 10 15 Leu Gln Arg Arg Ser Asp Phe Cys Gly Gln Trp Asp Thr Ala Thr Ala 20 25 30 Gly Asp Phe Thr Leu Tyr Asn Asp Leu Trp Gly Glu Ser Ala Gly Thr 35 40 45 Gly Ser Gln Cys Thr Gly Val Asp Ser Tyr Ser Gly Asp Thr Ile Ala 50 55 60 Trp His Thr Ser Trp Ser Trp Ser Gly Gly Ser Ser Ser Val Lys Ser 65 70 75 80 Tyr Val Asn Ala Ala Leu Thr Phe Thr Pro Thr Gln Leu Asn Cys Ile 85 90 95 Ser Ser Ile Pro Thr Thr Trp Lys Trp Ser Tyr Ser Gly Ser Ser Ile 100 105 110 Val Ala Asp Val Ala Tyr Asp Thr Phe Leu Ala Glu Thr Ala Ser Gly 115 120 125 Ser Ser Lys Tyr Glu Ile Met Val Trp Leu Ala Ala Leu Gly Gly Ala 130 135 140 Gly Pro Ile Ser Ser Thr Gly Ser Thr Ile Ala Thr Pro Thr Ile Ala 145 150 155 160 Gly Val Asn Trp Lys Leu Tyr Ser Gly Pro Asn Gly Asp Thr Thr Val 165 170 175 Tyr Ser Phe Val Ala Asp Ser Thr Thr Glu Ser Phe Ser Gly Asp Leu 180 185 190 Asn Asp Phe Phe Thr Tyr Leu Val Asp Asn Glu Gly Val Ser Asp Glu 195 200 205 Leu Tyr Leu Thr Thr Leu Glu Ala Gly Thr Glu Pro Phe Thr Gly Ser 210 215 220 Asn Ala Lys Leu Thr Val Ser Glu Tyr Ser Ile Ser Ile Glu 225 230 235 3 435 PRT Humicola insolens 3 Met Ala Arg Gly Thr Ala Leu Leu Gly Leu Thr Ala Leu Leu Leu Gly 1 5 10 15 Leu Val Asn Gly Gln Lys Pro Gly Glu Thr Lys Glu Val His Pro Gln 20 25 30 Leu Thr Thr Phe Arg Cys Thr Lys Arg Gly Gly Cys Lys Pro Ala Thr 35 40 45 Asn Phe Ile Val Leu Asp Ser Leu Ser His Pro Ile His Arg Ala Glu 50 55 60 Gly Leu Gly Pro Gly Gly Cys Gly Asp Trp Gly Asn Pro Pro Pro Lys 65 70 75 80 Asp Val Cys Pro Asp Val Glu Ser Cys Ala Lys Asn Cys Ile Met Glu 85 90 95 Gly Ile Pro Asp Tyr Ser Gln Tyr Gly Val Thr Thr Asn Gly Thr Ser 100 105 110 Leu Arg Leu Gln His Ile Leu Pro Asp Gly Arg Val Pro Ser Pro Arg 115 120 125 Val Tyr Leu Leu Asp Lys Thr Lys Arg Arg Tyr Glu Met Leu His Leu 130 135 140 Thr Gly Phe Glu Phe Thr Phe Asp Val Asp Ala Thr Lys Leu Pro Cys 145 150 155 160 Gly Met Asn Ser Ala Leu Tyr Leu Ser Glu Met His Pro Thr Gly Ala 165 170 175 Lys Ser Lys Tyr Asn Pro Gly Gly Ala Tyr Tyr Gly Thr Gly Tyr Cys 180 185 190 Asp Ala Gln Cys Phe Val Thr Pro Phe Ile Asn Gly Leu Gly Asn Ile 195 200 205 Glu Gly Lys Gly Ser Cys Cys Asn Glu Met Asp Ile Trp Glu Ala Asn 210 215 220 Ser Arg Ala Ser His Val Ala Pro His Thr Cys Asn Lys Lys Gly Leu 225 230 235 240 Tyr Leu Cys Glu Gly Glu Glu Cys Ala Phe Glu Gly Val Cys Asp Lys 245 250 255 Asn Gly Cys Gly Trp Asn Asn Tyr Arg Val Asn Val Thr Asp Tyr Tyr 260 265 270 Gly Arg Gly Glu Glu Phe Lys Val Asn Thr Leu Lys Pro Phe Thr Val 275 280 285 Val Thr Gln Phe Leu Ala Asn Arg Arg Gly Lys Leu Glu Lys Ile His 290 295 300 Arg Phe Tyr Val Gln Asp Gly Lys Val Ile Glu Ser Phe Tyr Thr Asn 305 310 315 320 Lys Glu Gly Val Pro Tyr Thr Asn Met Ile Asp Asp Glu Phe Cys Glu 325 330 335 Ala Thr Gly Ser Arg Lys Tyr Met Glu Leu Gly Ala Thr Gln Gly Met 340 345 350 Gly Glu Ala Leu Thr Arg Gly Met Val Leu Ala Met Ser Ile Trp Trp 355 360 365 Asp Gln Gly Gly Asn Met Glu Trp Leu Asp His Gly Glu Ala Gly Pro 370 375 380 Cys Ala Lys Gly Glu Gly Ala Pro Ser Asn Ile Val Gln Val Glu Pro 385 390 395 400 Phe Pro Glu Val Thr Tyr Thr Asn Leu Arg Trp Gly Glu Ile Gly Ser 405 410 415 Thr Tyr Gln Glu Val Gln Lys Pro Lys Pro Lys Pro Gly His Gly Pro 420 425 430 Arg Ser Asp 435 4 254 PRT Humicola insolens 4 Met Leu Lys Ser Ala Leu Leu Leu Gly Pro Ala Ala Val Ser Val Gln 1 5 10 15 Ser Ala Ser Ile Pro Thr Ile Pro Ala Asn Leu Glu Pro Arg Gln Ile 20 25 30 Arg Ser Leu Cys Glu Leu Tyr Gly Tyr Trp Ser Gly Asn Gly Tyr Glu 35 40 45 Leu Leu Asn Asn Leu Trp Gly Lys Asp Thr Ala Thr Ser Gly Trp Gln 50 55 60 Cys Thr Tyr Leu Asp Gly Thr Asn Asn Gly Gly Ile Gln Trp Ser Thr 65 70 75 80 Ala Trp Glu Trp Gln Gly Ala Pro Asp Asn Val Lys Ser Tyr Pro Tyr 85 90 95 Val Gly Lys Gln Ile Gln Arg Gly Arg Lys Ile Ser Asp Ile Asn Ser 100 105 110 Met Arg Thr Ser Val Ser Trp Thr Tyr Asp Arg Thr Asp Ile Arg Ala 115 120 125 Asn Val Ala Tyr Asp Val Phe Thr Ala Arg Asp Pro Asp His Pro Asn 130 135 140 Trp Gly Gly Asp Tyr Glu Leu Met Ile Trp Leu Ala Arg Tyr Gly Gly 145 150 155 160 Ile Tyr Pro Ile Gly Thr Phe His Ser Gln Val Asn Leu Ala Gly Arg 165 170 175 Thr Trp Asp Leu Trp Thr Gly Tyr Asn Gly Asn Met Arg Val Tyr Ser 180 185 190 Phe Leu Pro Pro Ser Gly Asp Ile Arg Asp Phe Ser Cys Asp Ile Lys 195 200 205 Asp Phe Phe Asn Tyr Leu Glu Arg Asn His Gly Tyr Pro Ala Arg Glu 210 215 220 Gln Asn Leu Ile Val Tyr Gln Val Gly Thr Glu Cys Phe Thr Gly Gly 225 230 235 240 Pro Ala Arg Phe Thr Cys Arg Asp Phe Arg Ala Asp Leu Trp 245 250 5 388 PRT Humicola insolens 5 Met Lys His Ser Val Leu Ala Gly Leu Phe Ala Thr Gly Ala Leu Ala 1 5 10 15 Gln Gly Gly Ala Trp Gln Gln Cys Gly Gly Val Gly Phe Ser Gly Ser 20 25 30 Thr Ser Cys Val Ser Gly Tyr Thr Cys Val Tyr Leu Asn Asp Trp Tyr 35 40 45 Ser Gln Cys Gln Pro Gln Pro Thr Thr Leu Arg Thr Thr Thr Thr Pro 50 55 60 Gly Ala Thr Ser Thr Thr Arg Ser Ala Pro Ala Ala Thr Ser Thr Thr 65 70 75 80 Pro Ala Lys Gly Lys Phe Lys Trp Phe Gly Ile Asn Gln Ser Cys Ala 85 90 95 Glu Phe Gly Lys Gly Glu Tyr Pro Gly Leu Trp Gly Lys His Phe Thr 100 105 110 Phe Pro Ser Thr Ser Ser Ile Gln Thr His Ile Asn Asp Gly Phe Asn 115 120 125 Met Phe Arg Val Ala Phe Ser Met Glu Arg Leu Ala Pro Asn Gln Leu 130 135 140 Asn Ala Ala Phe Asp Ala Asn Tyr Leu Arg Asn Leu Thr Glu Thr Val 145 150 155 160 Asn Phe Ile Thr Gly Lys Gly Lys Tyr Ala Met Leu Asp Pro His Asn 165 170 175 Phe Gly Arg Tyr Tyr Glu Arg Ile Ile Thr Asp Lys Ala Ala Phe Ala 180 185 190 Ser Phe Phe Thr Lys Leu Ala Thr His Phe Ala Ser Asn Pro Leu Val 195 200 205 Val Phe Asp Thr Asn Asn Glu Tyr His Asp Met Asp Gln Gln Leu Val 210 215 220 Phe Asp Leu Asn Gln Ala Ala Ile Asp Ala Ile Arg Ala Ala Gly Ala 225 230 235 240 Thr Ser Gln Tyr Ile Met Val Glu Gly Asn Ser Trp Thr Gly Ala Trp 245 250 255 Thr Trp Asn Val Thr Asn Asn Asn Leu Ala Ala Leu Arg Asp Pro Glu 260 265 270 Asn Lys Leu Val Tyr Gln Met His Gln Tyr Leu Asp Ser Asp Gly Ser 275 280 285 Gly Thr Ser Thr Ala Cys Val Ser Thr Gln Val Gly Leu Gln Arg Val 290 295 300 Ile Gly Ala Thr Asn Trp Leu Arg Gln Asn Gly Lys Val Gly Leu Leu 305 310 315 320 Gly Glu Phe Ala Gly Gly Ala Asn Ser Val Cys Gln Gln Ala Ile Glu 325 330 335 Gly Met Leu Thr His Leu Gln Glu Asn Ser Asp Val Trp Thr Gly Ala 340 345 350 Leu Trp Trp Ala Gly Gly Pro Trp Trp Gly Asp Tyr Ile Tyr Ser Phe 355 360 365 Glu Pro Pro Ser Gly Ile Gly Tyr Thr Tyr Tyr Asn Ser Leu Leu Lys 370 375 380 Lys Tyr Val Pro 385 6 305 PRT Humicola insolens 6 Met Arg Ser Ser Pro Leu Leu Arg Ser Ala Val Val Ala Ala Leu Pro 1 5 10 15 Val Leu Ala Leu Ala Ala Asp Gly Arg Ser Thr Arg Tyr Trp Asp Cys 20 25 30 Cys Lys Pro Ser Cys Gly Trp Ala Lys Lys Ala Pro Val Asn Gln Pro 35 40 45 Val Phe Ser Cys Asn Ala Asn Phe Gln Arg Ile Thr Asp Phe Asp Ala 50 55 60 Lys Ser Gly Cys Glu Pro Gly Gly Val Ala Tyr Ser Cys Ala Asp Gln 65 70 75 80 Thr Pro Trp Ala Val Asn Asp Asp Phe Ala Leu Gly Phe Ala Ala Thr 85 90 95 Ser Ile Ala Gly Ser Asn Glu Ala Gly Trp Cys Cys Ala Cys Tyr Glu 100 105 110 Leu Thr Phe Thr Ser Gly Pro Val Ala Gly Lys Lys Met Val Val Gln 115 120 125 Ser Thr Ser Thr Gly Gly Asp Leu Gly Ser Asn His Phe Asp Leu Asn 130 135 140 Ile Pro Gly Gly Gly Val Gly Ile Phe Asp Gly Cys Thr Pro Gln Phe 145 150 155 160 Gly Gly Leu Pro Gly Gln Arg Tyr Gly Gly Ile Ser Ser Arg Asn Glu 165 170 175 Cys Asp Arg Phe Pro Asp Ala Leu Lys Pro Gly Cys Tyr Trp Arg Phe 180 185 190 Asp Trp Phe Lys Asn Ala Asp Asn Pro Ser Phe Ser Phe Arg Gln Val 195 200 205 Gln Cys Pro Ala Glu Leu Val Ala Arg Thr Gly Cys Arg Arg Asn Asp 210 215 220 Asp Gly Asn Phe Pro Ala Val Gln Ile Pro Ser Ser Ser Thr Ser Ser 225 230 235 240 Pro Val Asn Gln Pro Thr Ser Thr Ser Thr Thr Ser Thr Ser Thr Thr 245 250 255 Ser Ser Pro Pro Val Gln Pro Thr Thr Pro Ser Gly Cys Thr Ala Glu 260 265 270 Arg Trp Ala Gln Cys Gly Gly Asn Gly Trp Ser Gly Cys Thr Thr Cys 275 280 285 Val Ala Gly Ser Thr Cys Thr Lys Ile Asn Asp Trp Tyr His Gln Cys 290 295 300 Leu 305 7 335 PRT Thermoascus aurantiacus 7 Met Lys Leu Gly Ser Leu Val Leu Ala Leu Ser Ala Ala Arg Leu Thr 1 5 10 15 Leu Ser Ala Pro Leu Ala Asp Arg Lys Gln Glu Thr Lys Arg Ala Lys 20 25 30 Val Phe Gln Trp Phe Gly Ser Asn Glu Ser Gly Ala Glu Phe Gly Ser 35 40 45 Gln Asn Leu Pro Gly Val Glu Gly Lys Asp Tyr Ile Trp Pro Asp Pro 50 55 60 Asn Thr Ile Asp Thr Leu Ile Ser Lys Gly Met Asn Ile Phe Arg Val 65 70 75 80 Pro Phe Met Met Glu Arg Leu Val Pro Asn Ser Met Thr Gly Ser Pro 85 90 95 Asp Pro Asn Tyr Leu Ala Asp Leu Ile Ala Thr Val Asn Ala Ile Thr 100 105 110 Gln Lys Gly Ala Tyr Ala Val Val Asp Pro His Asn Tyr Gly Arg Tyr 115 120 125 Tyr Asn Ser Ile Ile Ser Ser Pro Ser Asp Phe Gln Thr Phe Trp Lys 130 135 140 Thr Val Ala Ser Gln Phe Ala Ser Asn Pro Leu Val Ile Phe Asp Thr 145 150 155 160 Asn Asn Glu Tyr His Asp Met Asp Gln Thr Leu Val Leu Asn Leu Asn 165 170 175 Gln Ala Ala Ile Asp Gly Ile Arg Ser Ala Gly Ala Thr Ser Gln Tyr 180 185 190 Ile Phe Val Glu Gly Asn Ser Trp Thr Gly Ala Trp Thr Trp Thr Asn 195 200 205 Val Asn Asp Asn Met Lys Ser Leu Thr Asp Pro Ser Asp Lys Ile Ile 210 215 220 Tyr Glu Met His Gln Tyr Leu Asp Ser Asp Gly Ser Gly Thr Ser Ala 225 230 235 240 Thr Cys Val Ser Ser Thr Ile Gly Gln Glu Arg Ile Thr Ser Ala Thr 245 250 255 Gln Trp Leu Arg Ala Asn Gly Lys Lys Gly Ile Ile Gly Glu Phe Ala 260 265 270 Gly Gly Ala Asn Asp Val Cys Glu Thr Ala Ile Thr Gly Met Leu Asp 275 280 285 Tyr Met Ala Gln Asn Thr Asp Val Trp Thr Gly Ala Ile Trp Trp Ala 290 295 300 Ala Gly Pro Trp Trp Gly Asp Tyr Ile Phe Ser Met Glu Pro Asp Asn 305 310 315 320 Gly Ile Ala Tyr Gln Gln Ile Leu Pro Ile Leu Thr Pro Tyr Leu 325 330 335 8 327 PRT Aspergillus aculeatus 8 Met Val Gln Ile Lys Ala Ala Ala Leu Ala Val Leu Phe Ala Ser Asn 1 5 10 15 Val Leu Ser Asn Pro Ile Glu Pro Arg Gln Ala Ser Val Ser Ile Asp 20 25 30 Ala Lys Phe Lys Ala His Gly Lys Lys Tyr Leu Gly Thr Ile Gly Asp 35 40 45 Gln Tyr Thr Leu Asn Lys Asn Ala Lys Thr Pro Ala Ile Ile Lys Ala 50 55 60 Asp Phe Gly Gln Leu Thr Pro Glu Asn Ser Met Lys Trp Asp Ala Thr 65 70 75 80 Glu Pro Asn Arg Gly Gln Phe Ser Phe Ser Gly Ser Asp Tyr Leu Val 85 90 95 Asn Phe Ala Gln Ser Asn Gly Lys Leu Ile Arg Gly His Thr Leu Val 100 105 110 Trp His Ser Gln Leu Pro Ser Trp Val Gln Ser Ile Ser Asp Lys Asn 115 120 125 Thr Leu Ile Gln Val Met Gln Asn His Ile Thr Thr Val Met

Gln Arg 130 135 140 Tyr Lys Gly Lys Val Tyr Ala Trp Asp Val Val Asn Glu Ile Phe Asn 145 150 155 160 Glu Asp Gly Ser Leu Cys Gln Ser His Phe Tyr Asn Val Ile Gly Glu 165 170 175 Asp Tyr Val Arg Ile Ala Phe Glu Thr Ala Arg Ala Val Asp Pro Asn 180 185 190 Ala Lys Leu Tyr Ile Asn Asp Tyr Asn Leu Asp Ser Ala Ser Tyr Pro 195 200 205 Lys Leu Thr Gly Leu Val Asn His Val Lys Lys Trp Val Ala Ala Gly 210 215 220 Val Pro Ile Asp Gly Ile Gly Ser Gln Thr His Leu Ser Ala Gly Ala 225 230 235 240 Gly Ala Ala Val Ser Gly Ala Leu Asn Ala Leu Ala Gly Ala Gly Thr 245 250 255 Lys Glu Val Ala Ile Thr Glu Leu Asp Ile Ala Gly Ala Ser Ser Thr 260 265 270 Asp Tyr Val Asn Val Val Lys Ala Cys Leu Asn Gln Pro Lys Cys Val 275 280 285 Gly Ile Thr Val Trp Gly Ser Ser Asp Pro Asp Ser Trp Arg Ser Ser 290 295 300 Ser Ser Pro Leu Leu Phe Asp Ser Asn Tyr Asn Pro Lys Ala Ala Tyr 305 310 315 320 Thr Ala Ile Ala Asn Ala Leu 325 9 406 PRT Aspergillus aculeatus 9 Met Val Gly Leu Leu Ser Ile Thr Ala Ala Leu Ala Ala Thr Val Leu 1 5 10 15 Pro Asn Ile Val Ser Ala Val Gly Leu Asp Gln Ala Ala Val Ala Lys 20 25 30 Gly Leu Gln Tyr Phe Gly Thr Ala Thr Asp Asn Pro Glu Leu Thr Asp 35 40 45 Ile Pro Tyr Val Thr Gln Leu Asn Asn Thr Ala Asp Phe Gly Gln Ile 50 55 60 Thr Pro Gly Asn Ser Met Lys Trp Asp Ala Thr Glu Pro Ser Gln Gly 65 70 75 80 Thr Phe Thr Phe Thr Lys Gly Asp Val Ile Ala Asp Leu Ala Glu Gly 85 90 95 Asn Gly Gln Tyr Leu Arg Cys His Thr Leu Val Trp Tyr Asn Gln Leu 100 105 110 Pro Ser Trp Val Thr Ser Gly Thr Trp Thr Asn Ala Thr Leu Thr Ala 115 120 125 Ala Leu Lys Asn His Ile Thr Asn Val Val Ser His Tyr Lys Gly Lys 130 135 140 Cys Leu His Trp Asp Val Val Asn Glu Ala Leu Asn Asp Asp Gly Thr 145 150 155 160 Tyr Arg Thr Asn Ile Phe Tyr Thr Thr Ile Gly Glu Ala Tyr Ile Pro 165 170 175 Ile Ala Phe Ala Ala Ala Ala Ala Ala Asp Pro Asp Ala Lys Leu Phe 180 185 190 Tyr Asn Asp Tyr Asn Leu Glu Tyr Gly Gly Ala Lys Ala Ala Ser Ala 195 200 205 Arg Ala Ile Val Gln Leu Val Lys Asn Ala Gly Ala Lys Ile Asp Gly 210 215 220 Val Gly Leu Gln Ala His Phe Ser Val Gly Thr Val Pro Ser Thr Ser 225 230 235 240 Ser Leu Val Ser Val Leu Gln Ser Phe Thr Ala Leu Gly Val Glu Val 245 250 255 Ala Tyr Thr Glu Ala Asp Val Arg Ile Leu Leu Pro Thr Thr Ala Thr 260 265 270 Thr Leu Ala Gln Gln Ser Ser Asp Phe Gln Ala Leu Val Gln Ser Cys 275 280 285 Val Gln Thr Thr Gly Cys Val Gly Phe Thr Ile Trp Asp Trp Thr Asp 290 295 300 Lys Tyr Ser Trp Val Pro Ser Thr Phe Ser Gly Tyr Gly Ala Ala Leu 305 310 315 320 Pro Trp Asp Glu Asn Leu Val Lys Lys Pro Ala Tyr Asn Gly Leu Leu 325 330 335 Ala Gly Met Gly Val Thr Val Thr Thr Thr Thr Thr Thr Thr Thr Ala 340 345 350 Thr Ala Thr Gly Lys Thr Thr Thr Thr Thr Thr Gly Ala Thr Ser Thr 355 360 365 Gly Thr Thr Ala Ala His Trp Gly Gln Cys Gly Gly Leu Asn Trp Ser 370 375 380 Gly Pro Thr Ala Cys Ala Thr Gly Tyr Thr Cys Thr Tyr Val Asn Asp 385 390 395 400 Tyr Tyr Ser Gln Cys Leu 405 10 231 PRT Aspergillus aculeatus 10 Met Ala Arg Leu Ser Gln Phe Leu Leu Ala Cys Ala Leu Ala Val Lys 1 5 10 15 Ala Phe Ala Ala Pro Ala Ala Glu Pro Val Glu Glu Arg Gly Pro Asn 20 25 30 Phe Phe Ser Ala Leu Ala Gly Arg Ser Thr Gly Ser Ser Thr Gly Tyr 35 40 45 Ser Asn Gly Tyr Tyr Tyr Ser Phe Trp Thr Asp Gly Ala Ser Gly Asp 50 55 60 Val Glu Tyr Ser Asn Gly Ala Gly Gly Ser Tyr Ser Val Thr Trp Ser 65 70 75 80 Ser Ala Ser Asn Phe Val Gly Gly Lys Gly Trp Asn Pro Gly Ser Ala 85 90 95 His Asp Ile Thr Tyr Ser Gly Ser Trp Thr Ser Thr Gly Asn Ser Asn 100 105 110 Ser Tyr Leu Ser Val Tyr Gly Trp Thr Thr Gly Pro Leu Val Glu Tyr 115 120 125 Tyr Ile Leu Glu Asp Tyr Gly Glu Tyr Asn Pro Gly Ser Ala Gly Thr 130 135 140 Tyr Lys Gly Ser Val Tyr Ser Asp Gly Ser Thr Tyr Asn Ile Tyr Thr 145 150 155 160 Ala Thr Arg Thr Asn Ala Pro Ser Ile Gln Gly Thr Ala Thr Phe Thr 165 170 175 Gln Tyr Trp Ser Ile Arg Gln Thr Lys Arg Val Gly Gly Thr Val Thr 180 185 190 Thr Ala Asn His Phe Asn Ala Trp Ala Lys Leu Gly Met Asn Leu Gly 195 200 205 Thr His Asn Tyr Gln Ile Val Ala Thr Glu Gly Tyr Tyr Ser Ser Gly 210 215 220 Ser Ala Ser Ile Thr Val Ala 225 230 11 227 PRT Humicola insolens 11 Met Val Ser Leu Lys Ser Val Leu Ala Ala Ala Thr Ala Val Ser Ser 1 5 10 15 Ala Ile Ala Ala Pro Phe Asp Phe Val Pro Arg Asp Asn Ser Thr Ala 20 25 30 Leu Gln Ala Arg Gln Val Thr Pro Asn Ala Glu Gly Trp His Asn Gly 35 40 45 Tyr Phe Tyr Ser Trp Trp Ser Asp Gly Gly Gly Gln Val Gln Tyr Thr 50 55 60 Asn Leu Glu Gly Ser Arg Tyr Gln Val Arg Trp Arg Asn Thr Gly Asn 65 70 75 80 Phe Val Gly Gly Lys Gly Trp Asn Pro Gly Thr Gly Arg Thr Ile Asn 85 90 95 Tyr Gly Gly Tyr Phe Asn Pro Gln Gly Asn Gly Tyr Leu Ala Val Tyr 100 105 110 Gly Trp Thr Arg Asn Pro Leu Val Glu Tyr Tyr Val Ile Glu Ser Tyr 115 120 125 Gly Thr Tyr Asn Pro Gly Ser Gln Ala Gln Tyr Lys Gly Thr Phe Tyr 130 135 140 Thr Asp Gly Asp Gln Tyr Asp Ile Phe Val Ser Thr Arg Tyr Asn Gln 145 150 155 160 Pro Ser Ile Asp Gly Thr Arg Thr Phe Gln Gln Tyr Trp Ser Ile Arg 165 170 175 Lys Asn Lys Arg Val Gly Gly Ser Val Asn Met Gln Asn His Phe Asn 180 185 190 Ala Trp Gln Gln His Gly Met Pro Leu Gly Gln His Tyr Tyr Gln Val 195 200 205 Val Ala Thr Glu Gly Tyr Gln Ser Ser Gly Glu Ser Asp Ile Tyr Val 210 215 220 Gln Thr His 225 12 389 PRT Humicola insolens 12 Met Arg Ser Ile Ala Leu Ala Leu Ala Ala Ala Pro Ala Val Leu Ala 1 5 10 15 Gln Ser Gln Leu Trp Gly Gln Cys Gly Gly Ile Gly Trp Asn Gly Pro 20 25 30 Thr Thr Cys Val Ser Gly Ala Thr Cys Thr Lys Ile Asn Asp Trp Tyr 35 40 45 His Gln Cys Leu Pro Gly Gly Asn Asn Asn Asn Pro Pro Pro Ala Thr 50 55 60 Thr Ser Gln Trp Thr Pro Pro Pro Ala Gln Thr Ser Ser Asn Pro Pro 65 70 75 80 Pro Thr Gly Gly Gly Gly Gly Asn Thr Leu His Glu Lys Phe Lys Ala 85 90 95 Arg Gly Lys Gln Tyr Phe Gly Thr Glu Ile Asp His Tyr His Leu Asn 100 105 110 Asn Asn Gln Leu Met Glu Ile Ala Arg Arg Glu Phe Gly Gln Ile Thr 115 120 125 His Glu Asn Ser Met Lys Trp Asp Ala Thr Glu Pro Ser Arg Gly Ser 130 135 140 Phe Ser Phe Gly Asn Ala Asp Arg Val Val Asp Trp Ala Thr Ser Asn 145 150 155 160 Gly Lys Leu Ile Arg Gly His Thr Leu Leu Trp His Ser Gln Leu Pro 165 170 175 Gln Trp Val Gln Asn Ile Asn Asp Arg Asn Thr Leu Thr Gln Val Ile 180 185 190 Glu Asn His Val Arg Thr Val Met Thr Arg Tyr Lys Gly Lys Ile Phe 195 200 205 His Tyr Asp Val Val Asn Glu Ile Leu Asp Glu Asn Gly Gly Leu Arg 210 215 220 Asn Ser Val Phe Ser Arg Val Leu Gly Glu Asp Phe Val Gly Ile Ala 225 230 235 240 Phe Arg Ala Ala Arg Ala Ala Asp Pro Asp Ala Lys Leu Tyr Ile Asn 245 250 255 Asp Tyr Asn Leu Asp Ser Ala Asn Tyr Ala Lys Thr Arg Gly Met Ile 260 265 270 Asn Leu Val Asn Lys Trp Val Ser Gln Gly Val Pro Ile Asp Gly Ile 275 280 285 Gly Thr Gln Ala His Leu Ala Gly Pro Gly Gly Trp Asn Pro Ala Ser 290 295 300 Gly Val Pro Ala Ala Leu Gln Ala Leu Ala Gly Ala Asn Val Lys Glu 305 310 315 320 Val Ala Ile Thr Glu Leu Asp Ile Gln Gly Ala Gly Ala Asn Asp Tyr 325 330 335 Val Thr Val Ala Asn Ala Cys Leu Asn Val Gln Lys Cys Val Gly Ile 340 345 350 Thr Val Trp Gly Val Ser Asp Arg Asp Thr Trp Arg Ser Asn Glu Asn 355 360 365 Pro Leu Leu Tyr Asp Arg Asp Tyr Arg Pro Lys Ala Ala Tyr Asn Ala 370 375 380 Leu Met Asn Ala Leu 385 13 375 PRT Myceliophthora thermophila 13 Met His Leu Ser Ser Ser Leu Leu Leu Leu Ala Ala Leu Pro Leu Gly 1 5 10 15 Ile Ala Gly Lys Gly Lys Gly His Gly His Gly Pro His Thr Gly Leu 20 25 30 His Thr Leu Ala Lys Gln Ala Gly Leu Lys Tyr Phe Gly Ser Ala Thr 35 40 45 Asp Ser Pro Gly Gln Arg Glu Arg Ala Gly Tyr Glu Asp Lys Tyr Ala 50 55 60 Gln Tyr Asp Gln Ile Met Trp Lys Ser Gly Glu Phe Gly Leu Thr Thr 65 70 75 80 Pro Thr Asn Gly Gln Lys Trp Leu Phe Thr Glu Pro Glu Arg Gly Val 85 90 95 Phe Asn Phe Thr Glu Gly Asp Ile Val Thr Asn Leu Ala Arg Lys His 100 105 110 Gly Phe Met Gln Arg Cys His Ala Leu Val Trp His Ser Gln Leu Ala 115 120 125 Pro Trp Val Glu Ser Thr Glu Trp Thr Pro Glu Glu Leu Arg Gln Val 130 135 140 Ile Val Asn His Ile Thr His Val Ala Gly Tyr Tyr Lys Gly Lys Cys 145 150 155 160 Tyr Ala Trp Asp Val Val Asn Glu Ala Leu Asn Glu Asp Gly Thr Tyr 165 170 175 Arg Glu Ser Val Phe Tyr Lys Val Leu Gly Glu Asp Tyr Ile Lys Leu 180 185 190 Ala Phe Glu Thr Ala Ala Lys Val Asp Pro His Ala Lys Leu Tyr Tyr 195 200 205 Asn Asp Tyr Asn Leu Glu Ser Pro Ser Ala Lys Thr Glu Gly Ala Lys 210 215 220 Arg Ile Val Lys Met Leu Lys Asp Ala Gly Ile Arg Ile Asp Gly Val 225 230 235 240 Gly Leu Gln Ala His Leu Val Ala Glu Ser His Pro Thr Leu Asp Glu 245 250 255 His Ile Asp Ala Ile Lys Gly Phe Thr Glu Leu Gly Val Glu Val Ala 260 265 270 Leu Thr Glu Leu Asp Ile Arg Leu Ser Ile Pro Ala Asn Ala Thr Asn 275 280 285 Leu Ala Gln Gln Arg Glu Ala Tyr Lys Asn Val Val Gly Ala Cys Val 290 295 300 Gln Val Arg Gly Cys Ile Gly Val Glu Ile Trp Asp Phe Tyr Asp Pro 305 310 315 320 Phe Ser Trp Val Pro Ala Thr Phe Pro Gly Gln Gly Ala Pro Leu Leu 325 330 335 Trp Phe Glu Asp Phe Ser Lys His Pro Ala Tyr Asp Gly Val Val Glu 340 345 350 Ala Leu Thr Asn Arg Thr Thr Gly Gly Cys Lys Gly Lys Gly Lys Gly 355 360 365 Lys Gly Lys Val Trp Lys Ala 370 375 14 226 PRT Myceliophthora thermophila 14 Met Val Thr Leu Thr Arg Leu Ala Val Ala Ala Ala Ala Met Ile Ser 1 5 10 15 Ser Thr Gly Leu Ala Ala Pro Thr Pro Glu Ala Gly Pro Asp Leu Pro 20 25 30 Asp Phe Glu Leu Gly Val Asn Asn Leu Ala Arg Arg Ala Leu Asp Tyr 35 40 45 Asn Gln Asn Tyr Arg Thr Ser Gly Asn Val Asn Tyr Ser Pro Thr Asp 50 55 60 Asn Gly Tyr Ser Val Ser Phe Ser Asn Ala Gly Asp Phe Val Val Gly 65 70 75 80 Lys Gly Trp Arg Thr Gly Ala Thr Arg Asn Ile Thr Phe Ser Gly Ser 85 90 95 Thr Gln His Thr Ser Gly Thr Val Leu Val Ser Val Tyr Gly Trp Thr 100 105 110 Arg Asn Pro Leu Ile Glu Tyr Tyr Val Gln Glu Tyr Thr Ser Asn Gly 115 120 125 Ala Gly Ser Ala Gln Gly Glu Lys Leu Gly Thr Val Glu Ser Asp Gly 130 135 140 Gly Thr Tyr Glu Ile Trp Arg His Gln Gln Val Asn Gln Pro Ser Ile 145 150 155 160 Glu Gly Thr Ser Thr Phe Trp Gln Tyr Ile Ser Asn Arg Val Ser Gly 165 170 175 Gln Arg Pro Asn Gly Gly Thr Val Thr Leu Ala Asn His Phe Ala Ala 180 185 190 Trp Gln Lys Leu Gly Leu Asn Leu Gly Gln His Asp Tyr Gln Val Leu 195 200 205 Ala Thr Glu Gly Trp Gly Asn Ala Gly Gly Ser Ser Gln Tyr Thr Val 210 215 220 Ser Gly 225 15 225 PRT Thermomyces lanuginosus 15 Met Val Gly Phe Thr Pro Val Ala Leu Ala Ala Leu Ala Ala Thr Gly 1 5 10 15 Ala Leu Ala Phe Pro Ala Gly Asn Ala Thr Glu Leu Glu Lys Arg Gln 20 25 30 Thr Thr Pro Asn Ser Glu Gly Trp His Asp Gly Tyr Tyr Tyr Ser Trp 35 40 45 Trp Ser Asp Gly Gly Ala Gln Ala Thr Tyr Thr Asn Leu Glu Gly Gly 50 55 60 Thr Tyr Glu Ile Ser Trp Gly Asp Gly Gly Asn Leu Val Gly Gly Lys 65 70 75 80 Gly Trp Asn Pro Gly Leu Asn Ala Arg Ala Ile His Phe Glu Gly Val 85 90 95 Tyr Gln Pro Asn Gly Asn Ser Tyr Leu Ala Val Tyr Gly Trp Thr Arg 100 105 110 Asn Pro Leu Val Glu Tyr Tyr Ile Val Glu Asn Phe Gly Thr Tyr Asp 115 120 125 Pro Ser Ser Gly Ala Thr Asp Leu Gly Thr Val Glu Cys Asp Gly Ser 130 135 140 Ile Tyr Arg Leu Gly Lys Thr Thr Arg Val Asn Ala Pro Ser Ile Asp 145 150 155 160 Gly Thr Gln Thr Phe Asp Gln Tyr Trp Ser Val Arg Gln Asp Lys Arg 165 170 175 Thr Ser Gly Thr Val Gln Thr Gly Cys His Phe Asp Ala Trp Ala Arg 180 185 190 Ala Gly Leu Asn Val Asn Gly Asp His Tyr Tyr Gln Ile Val Ala Thr 195 200 205 Glu Gly Tyr Phe Ser Ser Gly Tyr Ala Arg Ile Thr Val Ala Asp Val 210 215 220 Gly 225 16 237 PRT Aspergillus aculeatus 16 Met Lys Ala Phe Tyr Phe Leu Ala Ser Leu Ala Gly Ala Ala Val Ala 1 5 10 15 Gln Gln Thr Gln Leu Cys Asp Gln Tyr Ala Thr Tyr Thr Gly Ser Val 20 25 30 Tyr Thr Ile Asn Asn Asn Leu Trp Gly Lys Asp Ala Gly Ser Gly Ser 35 40 45 Gln Cys Thr Thr Val Asn Ser Ala Ser Ser Ala Gly Thr Ser Trp Ser 50 55 60 Thr Lys Trp Asn Trp Ser Gly Gly Glu Asn Ser Val Lys Ser Tyr Ala 65 70 75 80 Asn Ser Gly Leu Ser Phe Asn Lys Lys Leu Val Ser Gln Ile Ser Arg 85 90 95 Ile Pro Thr Ala Ala Gln Trp Ser Tyr Asp Asn Thr Gly Ile Arg Ala 100 105 110 Asp Val Ala Tyr Asp Leu Phe Thr Ala Ala Asp Ile Asn His Val Thr 115 120 125 Trp Ser Gly Asp Tyr Glu Leu Met Ile Trp Leu Ala Arg Tyr Gly Gly 130 135 140 Val Gln Pro Leu Gly Ser Lys Ile Ala Thr Ala Thr Val Glu Gly Gln 145

150 155 160 Thr Trp Glu Leu Trp Tyr Gly Val Asn Gly Ala Gln Lys Thr Tyr Ser 165 170 175 Phe Val Ala Pro Thr Pro Ile Thr Ser Phe Gln Gly Asp Val Asn Asp 180 185 190 Phe Phe Lys Tyr Leu Thr Gln Asn His Gly Phe Pro Ala Ser Ser Gln 195 200 205 Tyr Leu Ile Thr Leu Gln Phe Gly Thr Glu Pro Phe Thr Gly Gly Pro 210 215 220 Ala Thr Leu Thr Val Ser Asp Trp Ser Ala Ser Val Gln 225 230 235 17 347 PRT T. reesei PEPTIDE (1)..(347) 17 Met Lys Ala Asn Val Ile Leu Cys Leu Leu Ala Pro Leu Val Ala Ala 1 5 10 15 Leu Pro Thr Glu Thr Ile His Leu Asp Pro Glu Leu Ala Ala Leu Arg 20 25 30 Ala Asn Leu Thr Glu Arg Thr Ala Asp Leu Trp Asp Arg Gln Ala Ser 35 40 45 Gln Ser Ile Asp Gln Leu Ile Lys Arg Lys Gly Lys Leu Tyr Phe Gly 50 55 60 Thr Ala Thr Asp Arg Gly Leu Leu Gln Arg Glu Lys Asn Ala Ala Ile 65 70 75 80 Ile Gln Ala Asp Leu Gly Gln Val Thr Pro Glu Asn Ser Met Lys Trp 85 90 95 Gln Ser Leu Glu Asn Asn Gln Gly Gln Leu Asn Trp Gly Asp Ala Asp 100 105 110 Tyr Leu Val Asn Phe Ala Gln Gln Asn Gly Lys Ser Ile Arg Gly His 115 120 125 Thr Leu Ile Trp His Ser Gln Leu Pro Ala Trp Val Asn Asn Ile Asn 130 135 140 Asn Ala Asp Thr Leu Arg Gln Val Ile Arg Thr His Val Ser Thr Val 145 150 155 160 Val Gly Arg Tyr Lys Gly Lys Ile Arg Ala Trp Asp Val Val Asn Glu 165 170 175 Ile Phe Asn Glu Asp Gly Thr Leu Arg Ser Ser Val Phe Ser Arg Leu 180 185 190 Leu Gly Glu Glu Phe Val Ser Ile Ala Phe Arg Ala Ala Arg Asp Ala 195 200 205 Asp Pro Ser Ala Arg Leu Tyr Ile Asn Asp Tyr Asn Leu Asp Arg Ala 210 215 220 Asn Tyr Gly Lys Val Asn Gly Leu Lys Thr Tyr Val Ser Lys Trp Ile 225 230 235 240 Ser Gln Gly Val Pro Ile Asp Gly Ile Gly Ser Gln Ser His Leu Ser 245 250 255 Gly Gly Gly Gly Ser Gly Thr Leu Gly Ala Leu Gln Gln Leu Ala Thr 260 265 270 Val Pro Val Thr Glu Leu Ala Ile Thr Glu Leu Asp Ile Gln Gly Ala 275 280 285 Pro Thr Thr Asp Tyr Thr Gln Val Val Gln Ala Cys Leu Ser Val Ser 290 295 300 Lys Cys Val Gly Ile Thr Val Trp Gly Ile Ser Asp Lys Asp Ser Trp 305 310 315 320 Arg Ala Ser Thr Asn Pro Leu Leu Phe Asp Ala Asn Phe Asn Pro Lys 325 330 335 Pro Ala Tyr Asn Ser Ile Val Gly Ile Leu Gln 340 345 18 419 PRT T.reesei PEPTIDE (1)..(419) 18 Met Asn Lys Pro Met Ser Ser Leu Leu Leu Ala Ala Thr Leu Leu Ala 1 5 10 15 Gly Gly Ser Ile Ala Gln Gln Thr Val Trp Gly Gln Cys Gly Gly Gln 20 25 30 Gly Trp Ser Gly Pro Thr Ser Cys Val Ala Gly Ser Ala Cys Ser Thr 35 40 45 Leu Asn Pro Tyr Tyr Ala Gln Cys Ile Pro Gly Ala Thr Thr Met Ser 50 55 60 Thr Thr Thr Lys Pro Thr Ser Val Ser Ala Ser Thr Thr Arg Ala Ser 65 70 75 80 Ala Thr Ser Ser Ala Thr Pro Pro Pro Ser Ser Gly Leu Thr Arg Phe 85 90 95 Ala Gly Val Asn Ile Ala Gly Phe Asp Phe Gly Cys Gly Thr Asp Gly 100 105 110 Thr Cys Val Thr Ser Lys Val Tyr Pro Pro Leu Lys Asn Tyr Ala Gly 115 120 125 Thr Asn Asn Tyr Pro Asp Gly Val Gly Gln Met Gln His Phe Val Asn 130 135 140 Asp Asp Lys Leu Thr Ile Phe Arg Leu Pro Val Gly Trp Gln Tyr Leu 145 150 155 160 Val Asn Asn Asn Leu Gly Gly Thr Leu Asp Ser Asn Asn Phe Gly Lys 165 170 175 Tyr Asp Gln Leu Val Gln Ala Cys Leu Ser Leu Gly Val Tyr Cys Ile 180 185 190 Val Asp Ile His Asn Tyr Ala Arg Trp Asn Gly Gly Ile Ile Gly Gln 195 200 205 Gly Gly Pro Thr Asn Asp Gln Phe Thr Ser Leu Trp Ser Gln Leu Ala 210 215 220 Gln Lys Tyr Ala Ser Gln Ser Lys Val Trp Phe Gly Ile Met Asn Glu 225 230 235 240 Pro His Asp Val Asn Ile Asn Thr Trp Ala Thr Thr Val Gln Ala Val 245 250 255 Val Thr Ala Ile Arg Asn Ala Gly Ala Thr Ser Gln Phe Ile Ser Leu 260 265 270 Pro Gly Asn Asp Trp Gln Ser Ala Gly Ala Phe Ile Ser Asp Gly Ser 275 280 285 Ala Ala Ala Leu Ser Gln Val Lys Asn Pro Asp Gly Ser Thr Pro Asn 290 295 300 Leu Ile Phe Asp Leu His Lys Tyr Leu Asp Ser Asp Asn Ser Gly Thr 305 310 315 320 His Ala Asp Cys Val Thr Asn Asn Val Asn Asp Ala Phe Ser Pro Val 325 330 335 Ala Thr Trp Leu Arg Gln Asn Asn Arg Gln Ala Ile Leu Thr Glu Thr 340 345 350 Gly Gly Gly Asn Thr Gln Ser Cys Ile Gln Tyr Leu Cys Gln Gln Phe 355 360 365 Gln Tyr Ile Asn Gln Asn Ser Asp Val Tyr Leu Gly Tyr Val Gly Trp 370 375 380 Gly Ala Gly Ser Phe Asp Ser Thr Tyr Ile Leu Thr Glu Thr Pro Thr 385 390 395 400 Gly Ser Gly Ser Ser Trp Thr Asp Thr Ser Leu Val Ser Ser Cys Ile 405 410 415 Ser Arg Lys 19 459 PRT T.viride PEPTIDE (1)..(459) 19 Met Ala Pro Ser Val Thr Leu Pro Leu Thr Thr Ala Ile Leu Ala Ile 1 5 10 15 Ala Arg Leu Val Ala Ala Gln Gln Pro Gly Thr Ser Thr Pro Glu Val 20 25 30 His Pro Lys Leu Thr Thr Tyr Lys Cys Thr Lys Ser Gly Gly Cys Val 35 40 45 Ala Gln Asp Thr Ser Val Val Leu Asp Trp Asn Tyr Arg Trp Met His 50 55 60 Asp Ala Asn Tyr Asn Ser Cys Thr Val Asn Gly Gly Val Asn Thr Thr 65 70 75 80 Leu Cys Pro Asp Glu Ala Thr Cys Gly Lys Asn Cys Phe Ile Glu Gly 85 90 95 Val Asp Tyr Ala Ala Ser Gly Val Thr Thr Ser Gly Ser Ser Leu Thr 100 105 110 Met Asn Gln Tyr Met Pro Ser Ser Ser Gly Gly Tyr Ser Ser Val Ser 115 120 125 Pro Arg Leu Tyr Leu Leu Asp Ser Asp Gly Glu Tyr Val Met Leu Lys 130 135 140 Leu Asn Gly Gln Glu Leu Ser Phe Asp Val Asp Leu Ser Ala Leu Pro 145 150 155 160 Cys Gly Glu Asn Gly Ser Leu Tyr Leu Ser Gln Met Asp Glu Asn Gly 165 170 175 Gly Ala Asn Gln Tyr Asn Thr Ala Gly Ala Asn Tyr Gly Ser Gly Tyr 180 185 190 Cys Asp Ala Gln Cys Pro Val Gln Thr Trp Arg Asn Gly Thr Leu Asn 195 200 205 Thr Ser His Gln Gly Phe Cys Cys Asn Glu Met Asp Ile Leu Glu Gly 210 215 220 Asn Ser Arg Ala Asn Ala Leu Thr Pro His Ser Cys Thr Ala Thr Ala 225 230 235 240 Cys Asp Ser Ala Gly Cys Gly Phe Asn Pro Tyr Gly Ser Gly Tyr Lys 245 250 255 Ser Tyr Tyr Gly Pro Gly Asp Thr Val Asp Thr Ser Lys Thr Phe Thr 260 265 270 Ile Ile Thr Gln Phe Asn Thr Asp Asn Gly Ser Pro Ser Gly Asn Leu 275 280 285 Val Gly Ile Thr Arg Lys Tyr Gln Gln Asn Gly Val Asp Ile Pro Ser 290 295 300 Ala Gln Pro Gly Gly Asp Thr Ile Ser Ser Cys Pro Ser Ala Ser Ala 305 310 315 320 Tyr Gly Gly Leu Ala Thr Met Gly Lys Ala Leu Ser Ser Gly Met Val 325 330 335 Leu Val Phe Ser Ile Trp Asn Asp Asn Ser Gln Tyr Met Asn Trp Leu 340 345 350 Asp Ser Gly Asn Ala Gly Pro Cys Ser Ser Thr Glu Gly Asn Pro Ser 355 360 365 Asn Ile Leu Ala Asn Asn Pro Asn Thr His Val Val Phe Ser Asn Ile 370 375 380 Arg Trp Gly Asp Ile Gly Ser Thr Thr Asn Ser Thr Ala Pro Pro Pro 385 390 395 400 Pro Pro Ala Ser Ser Thr Thr Phe Ser Thr Thr Arg Arg Ser Ser Thr 405 410 415 Thr Ser Ser Ser Pro Ser Cys Thr Gln Thr His Trp Gly Gln Cys Gly 420 425 430 Gly Ile Gly Tyr Ser Gly Cys Lys Thr Cys Thr Ser Gly Thr Thr Cys 435 440 445 Gln Tyr Ser Asn Asp Tyr Tyr Ser Gln Cys Leu 450 455 20 232 PRT T.reesei PEPTIDE (1)..(232) 20 Met Lys Phe Leu Gln Val Leu Pro Ala Leu Ile Pro Ala Ala Leu Ala 1 5 10 15 Gln Thr Ser Cys Asp Gln Trp Ala Thr Phe Thr Gly Asn Gly Tyr Thr 20 25 30 Val Ser Asn Asn Leu Trp Gly Ala Ser Ala Gly Ser Gly Phe Gly Cys 35 40 45 Val Thr Ala Val Ser Leu Ser Gly Gly Ala His Ala Asp Trp Gln Trp 50 55 60 Ser Gly Gly Gln Asn Asn Val Lys Ser Tyr Gln Asn Ser Gln Ile Ala 65 70 75 80 Ile Pro Gln Lys Arg Thr Val Asn Ser Ile Ser Ser Met Pro Thr Thr 85 90 95 Ala Ser Trp Ser Tyr Ser Gly Ser Asn Ile Arg Ala Asn Val Ala Tyr 100 105 110 Asp Leu Phe Thr Ala Ala Asn Pro Asn His Val Thr Tyr Ser Gly Asp 115 120 125 Tyr Glu Leu Met Ile Trp Leu Gly Lys Tyr Gly Asp Ile Gly Pro Ile 130 135 140 Gly Ser Ser Gln Gly Thr Val Asn Val Gly Gly Gln Ser Trp Thr Leu 145 150 155 160 Tyr Tyr Gly Tyr Asn Gly Ala Met Gln Val Tyr Ser Phe Val Ala Gln 165 170 175 Thr Asn Thr Thr Asn Tyr Ser Gly Asp Val Lys Asn Phe Phe Asn Tyr 180 185 190 Leu Arg Asp Asn Lys Gly Tyr Asn Ala Ala Gly Gln Tyr Val Leu Ser 195 200 205 Tyr Gln Phe Gly Thr Glu Pro Phe Thr Gly Ser Gly Thr Leu Asn Val 210 215 220 Ala Ser Trp Thr Ala Ser Ile Asn 225 230

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed