Compressor for refrigeratory equipment

Chung; Kuo Cheng

Patent Application Summary

U.S. patent application number 11/600638 was filed with the patent office on 2007-05-24 for compressor for refrigeratory equipment. This patent application is currently assigned to A. Solares High Technology Co., Ltd.. Invention is credited to Kuo Cheng Chung.

Application Number20070113583 11/600638
Document ID /
Family ID38052143
Filed Date2007-05-24

United States Patent Application 20070113583
Kind Code A1
Chung; Kuo Cheng May 24, 2007

Compressor for refrigeratory equipment

Abstract

A compressor for the refrigeratory equipment is provided. The compressor includes a casing having a compressing device mounted therein and a cooling pipe passing through the casing for cooling the compressing device.


Inventors: Chung; Kuo Cheng; (Lujhu Township, TW)
Correspondence Address:
    VOLPE AND KOENIG, P.C.
    UNITED PLAZA, SUITE 1600
    30 SOUTH 17TH STREET
    PHILADELPHIA
    PA
    19103
    US
Assignee: A. Solares High Technology Co., Ltd.
Lujhu Township
TW

Family ID: 38052143
Appl. No.: 11/600638
Filed: November 16, 2006

Current U.S. Class: 62/505 ; 62/498
Current CPC Class: F25B 31/008 20130101; F04B 39/062 20130101
Class at Publication: 062/505 ; 062/498
International Class: F25B 31/00 20060101 F25B031/00; F25B 1/00 20060101 F25B001/00

Foreign Application Data

Date Code Application Number
Nov 21, 2005 TW 094140856

Claims



1. A refrigeratory equipment, comprising: a compressor having a casing and a compressing device contained in the casing; a condenser connected with the compressor for condensing a refrigerant coming from the compressor; an expansion valve connected with the condenser for expanding the refrigerant condensed by the condenser; an evaporator connected with both the expansion valve and the compressor wherein the refrigerant coming from the expansion salve is evaporated for absorbing a heat and the evaporated refrigerant is transported to the compressor to be compressed; and a cooling pipeline connected with the casing and having a cool liquid flowing therein to absorb and to dissipate a heat from the compressor.

2. A refrigeratory equipment as claimed in claim 1, wherein the cooling pipeline further comprises an outer section outside of the casing and an inner section inside of the casing.

3. A refrigeratory equipment as claimed in claim 2, wherein the outer section is further connected with a heater so as to heat a substance by the heater.

4. A refrigeratory equipment as claimed in claim 3, wherein the substance is water.

5. A refrigeratory equipment as claimed in claim 1, wherein the cooling pipeline is further connected with an auxiliary cooling pipeline for cooling a substance in the cooling pipeline.

6. A refrigeratory equipment as claimed in claim 5, wherein the cooling pipeline is further connected to a rotary cooling pipeline.

7. A compressor configuration for a refrigeratory equipment, comprising: a casing having a compressing device mounted therein; and a cooling pipe passing through the casing for cooling the compressing device.

8. A compressor configuration as claimed in claim 7, wherein the cooling pipe comprises an outer section outside of the casing and an inner section inside of the casing.

9. A compressor configuration as claimed in claim 8, wherein the inner section includes a plurality of manifolds.

10. A compressor configuration as claimed in claim 9, further comprising a fin disposed between the manifolds.

11. A compressor configuration as claimed in claim 7, wherein the cooling pipe is connected with a heater wherein the heater uses a heat absorbed by the cooling pipe for heating.

12. A compressor configuration as claimed in claim 7, further being connected with a condenser for condensing a refrigerant, a pressure releaser and an evaporator, wherein the cooling pipe is connected with the condenser for introducing the refrigerant condensed by the condenser into the casing.

13. A compressor configuration as claimed in claim 12, wherein the pressure releaser is an expansion valve.

14. A compressor configuration for a refrigeratory equipment, comprising: a compressing device having a first cooling channel for cooling the compressing device; and an electromotor having a second cooling channel connected to the first cooling channel for cooling the electromotor, wherein a heat generated from both the compressing device and the electromotor is dissipated from the compressor configuration.

15. A compressor configuration as claimed in claim 14, further comprising a cooling device connected with the first and the second cooling channels, wherein the cooling device has a working fluid circulating between an inside of the compressing configuration and the cooling device, wherein the working fluid absorbs a heat at the first and the second cooling channels and is further cooled at the cooling device.

16. A compressor configuration as claimed in claim 15, wherein the cooling device further comprises a first auxiliary cooling pipeline for cooling the working fluid coming from the compressor configuration.

17. A compressor configuration as claimed in claim 16, wherein the cooling device further comprises a second auxiliary cooling pipeline for cooling the working fluid coming from the first auxiliary cooling pipeline.

18. A compressor configuration as claimed in claim 17, wherein the second auxiliary cooling pipeline is a rotary cooling pipe.

19. A compressor configuration as claimed in claim 18, wherein the rotary cooling pipe is a rotating heat pipe.
Description



FIELD OF THE INVENTION

[0001] The present invention relates to a refrigeratory equipment and its compressor. More particularly, the refrigeratory equipment can absorb and dissipate the mechanical heat produced by the compressor.

BACKGROUND OF THE INVENTION

[0002] The conventional refrigeratory equipment comprises several components. In the compressor, the refrigerant is compressed and converted into a high pressure and high temperature gas. Once compressed, the hot refrigerant is then discharged into a condenser and converted into a low temperature liquid state. After that, the pressure of the liquid refrigerant is decreased and the liquid refrigerant is converted into the gas refrigerant by a pressure releaser which is usually a capillary or an expansion salve. When the refrigerant is cooled, it is then delivered into a evaporator wherein the evaporation of the refrigerant is the cause of the decrease of the temperature. For air conditioners, what exchanges heat energy with the evaporator is room air.

[0003] There are two major devices in the compressor. One is a electromotor and the other is a compressor drived by the electromotor. The reciprocating compressor uses a motor driven crankshaft to drive internal pistons. For the rotary compressor and the scroll compressor, the compression of the refrigerant is driven by a rotor in the compressor. However, frictional heat is generated in all these mechanical devices and the electromotor produces heat itself too. Although in the compressor heat energy is dispersed by the refrigerant which functions as the cooling fluid, the heat energy causes temperature of the gas refrigerant to rise even up to 150.degree. C. Hence, more energy has to be consumed to condense the refrigerant after heat is absorbed at compressor, and therefore the efficiency of the compressor is quite low. Otherwise, though there is lubricant between the ring and rotor and in the bearing of the compressor and the electromotor, it absorbs heat when the compressor and the electromotor work. There is no specific heat sink for lubricant, so it has no way to disperse its heat energy.

[0004] Therefore, because of the defect in the prior art, the inventors provide a refrigeratory equipment and its compressor to effectively overcome the demerit that there is no way to disperse the mechanical heat generated in the compressor existing in the prior art.

SUMMARY OF THE INVENTION

[0005] In accordance with an aspect of the present invention, a refrigeratory equipment is provided. The refrigeratory equipment comprises a compressor having a casing and a compressing device contained in the casing, a condenser connected with the compressor for condensing a refrigerant coming from the compressor, an expansion valve connected with the condenser for expanding the refrigerant condensed by the condenser, an evaporator connected with both the expansion valve and the compressor wherein the refrigerant coming from the expansion salve is evaporated for absorbing a heat and the evaporated refrigerant is transported to the compressor to be compressed, and a cooling pipeline connected with the casing and having a cool liquid flowing therein to absorb and to dissipate a heat from the compressor.

[0006] Preferably, the cooling pipeline further comprises an outer section outside of the casing and an inner section inside of the casing.

[0007] Preferably, the outer section is further connected with a heater so as to heat a substance by the heater.

[0008] Preferably, the substance is water.

[0009] Preferably, the cooling pipeline is further connected with an auxiliary cooling pipeline and a rotary cooling pipeline for cooling a substance in the cooling pipeline.

[0010] In accordance with another aspect of the present invention, a compressor configuration for a refrigeratory equipment is provided. The compressor configuration comprises a casing having a compressing device mounted therein and a cooling pipe passing through the casing for cooling the compressing device.

[0011] Preferably, the cooling pipe comprises an outer section outside of the casing and an inner section inside of the casing.

[0012] Preferably, the inner section includes a plurality of manifolds.

[0013] Preferably, the compressor configuration further comprises a fin disposed between the manifolds.

[0014] Preferably, the cooling pipe is connected with a heater wherein the heater uses a heat absorbed by the cooling pipe for heating.

[0015] Preferably, the cooling pipe is further connected with a condenser for condensing a refrigerant, a pressure releaser and an evaporator, wherein the cooling pipe is connected with the condenser for introducing the refrigerant condensed by the condenser into the casing.

[0016] Preferably, the pressure releaser is an expansion valve.

[0017] In accordance with a further aspect of the present invention, a compressor configuration for a refrigeratory equipment is provided. The compressor configuration comprises a compressing device having a first cooling channel for cooling the compressing device, an electromotor having a second cooling channel connected to the first cooling channel for cooling the electromotor, wherein a heat generated from both the compressing device and the electromotor is dissipated from the compressor configuration.

[0018] Preferably, the compressor configuration further comprises a cooling device connected with the first and the second cooling channels, wherein the cooling device has a working fluid circulating between an inside of the compressing configuration and the cooling device, wherein the working fluid absorbs a heat at the first and the second cooling channels and is further cooled at the cooling device.

[0019] Preferably, the cooling device further comprises a first auxiliary cooling pipeline for cooling the working fluid coming from the compressor configuration and a second auxiliary cooling pipeline for cooling the working fluid coming from the first auxiliary cooling pipeline.

[0020] Preferably, the second auxiliary cooling pipeline is a rotary cooling pipe.

[0021] Preferably, the rotary cooling pipe is a rotating heat pipe.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] FIG. 1 is a diagram showing the compressor used for the refrigeratory equipment according to the present invention;

[0023] FIG. 2 is an embodiment according to the present invention;

[0024] FIG. 3 is another embodiment according to the present invention;

[0025] FIG. 4 is an embodiment of the refrigeratory equipment according to the present invention; and

[0026] FIG. 5 is another embodiment of the refrigeratory equipment according to the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0027] In order to solve the problem of the low efficiency of the conventional compressor, the present invention proposes a compressor for the refrigeratory equipment. To achieve the purpose of improving the efficiency of the compressor, cooling outside and inside of the compressor is focused.

[0028] Please refer to FIG. 1, which is a diagram showing the compressor used for the refrigeratory equipment according to the present invention. As shown, a compressor 1 comprises an electromotor 12 and a compressing device 10. Although FIG. 1 is illustrated with a rotary compressor, but the type of compressor can be varied. The electromotor 12 drives a rotor 100 in the compressing device 10 via a transmission shaft 120 to compress a refrigerant. For achieving the purpose of taking away the heat generated by the compressor 1, a first cooling channel 31 is installed in the compressing device 10 and a second cooling channel 32 is installed in the electromotor 12. The effect of taking away the heat energy generated by the compressing device 10 or the electromotor 12 is achieved by a working fluid flowing in the first cooling channel 31 and the second cooling channel 32.

[0029] Please refer to FIG. 1 again. The compressor has a casing 13 for containing the compressing device 10 and the electromotor 12. The first and the second cooling channels 31, 32 are also contained in the casing 13, so they are called the inner section as well. A first outer section 33a and a second outer section 33b are outside of the casing 13, wherein they are used to introduce the working fluid into the refrigeratory equipment and introduce the working fluid coming from the refrigeratory equipment into the casing 13 again. Before arriving the first cooling channel 31, the working fluid which flows through the first outer section 33a to the casing 13 arrives a first circular section 30a first. It is because that in order to have better cooling effect, there are a plurality of the first cooling channels 31. The working fluid is distributed to each first cooling channel 31 via the first circular section 30a connected to the first outer section 33a. The working fluid then flows to the second cooling channel 32 which usually directly takes the heat generated from the electromotor 12 away by passing through a silicon steel-sheet 121 of the electromotor 12. Of course the number and the size between the first and the second cooling channels 31, 32 can be different, which depends on the actual necessity of the compressor. The working fluid coming from the second cooling channel 32 is converged at a second circular section 30b and then flows to a second outer section 33b. The aforementioned working fluid passes the first cooling channel 31 first and then the second cooling channel 32; however it can flow in opposite direction, which depends on the actual necessity of the compressor as well. The working fluid can flow from lower temperature devices to higher temperature ones in principle. The second outer section is further connected to a cooling device. After the working, fluid is cooled in the cooling device, it flows back into the compressor configuration again. In addition, in order to increase the rate of heat exchange, a fin 310 is configured outside of the first cooling channel 31 to increase the heat exchanging area.

[0030] FIG. 2 is an embodiment according to the present invention, wherein the compressor 1 is covered by a shell 5. A cooling space 30 formed between the compressor 1 and the shell 5 is connected to the cooling device 4 by the first outer section 33a and the second outer section 33b. The cooling device 4 is used to cool the compressor 1 via introducing a working fluid coming from the first outer section 33a into the cooling space 30, where the working fluid absorbs heat generated from the compressor 1, and then the-working fluid is discharged from the space via the second outer section 33b and flows back to the cooling device 4. The heat absorbed from the compressor 1 is taken away in the cooling device 4, and then the cooled working fluid is introduced into the cooling space 30 again and moves in circles for cooling the compressor 1.

[0031] FIG. 3 is another embodiment according to the present invention. The embodiment of FIG. 3 is advantageous to reduce the volume of the compressor, because the embodiment of FIG. 2 occupies more space. An outer cooling pipeline 8 wraps around the outside of the compressor 1. The working fluid, which is used to cool the compressor 1, enters an entry 81a of the outer cooling pipeline 8 and is discharged from an exit 81b. Both the two outer sections are connected to the cooling device 4, as shown in FIG. 2. Please refer to FIG. 2 for the functions of the cooling device 4.

[0032] Please refer to FIG. 4, which shows an embodiment of the refrigeratory equipment according to the present invention. As shown, the refrigeratory equipment cormprises a compressor 1. After compressing a refrigerant, the high pressure and high temperature refrigerant is delivered into a condenser 6a by a first pipe 7a and converted into a low temperature liquid state. After that, the reprigerant is further delivered into a pressure releaser 6b by a second pipe 7b. The pressure of the liquid refrigerant is reduced by the pressure releaser 6b which is usually a capillary or an expansion salve. Furthermore, the refrigerant is then delivered into a evaporator 6c by a third pipe 7c. The evaporator 6c is usually a type of heat exchanger. If the refrigeratory equipment is an air conditioner, then the evaporator 6c that functions as a heat exchanger exchanges heat with room air to reduce room temperature. The temperature of the refrigerant in the evaporator 6c will rise and the refrigerant will be delivered back to the compressor 1 by a fourth pipe finally. Concering the second pipe 7b, a shunt 7b' is designed in the present invention for collecting part of the working fluid to cool the compressor 1. Therefore, the shunt 7b' is a tool for the entry of the working fluid into a cooling device of a compressor configuration 3'. The shunt 7b' can be connected to the first outer section 33a, as shown in FIG. 1. Reffering to FIG. 1, the mechanical and electricalal heat generated from the compressor 1 will be taken away by the first and the second cooling channels 31, 32 in the compressor 1. Therefor, the first and the second cooling channels 31, 32 in FIG. 1 constitute the cooling device of the compressor configuration 3' in FIG. 4. Moreover, the shunt 7b' can be connected to the first outer section 33a, as shown in FIG. 2, and leads the working fluid into the cooling space 30 for cooling the compressor 1. Thus, the cooling space 30 in FIG. 2 constitutes the cooling device of the compressor configuration 3' in FIG. 4. Furthermore, the shunt 7b' can be connected to the entry 81a of the outer cooling pipeline 8, as shown in FIG. 3, for cooling the compressor 1. Therefore, the outer cooling pipeline 8 in FIG. 3 constitutes the cooling device of the compressor configuration 3' in FIG. 4.

[0033] Please refer to FIG. 4 again. After the working fluid enters the cooling device of the compressor configuration 3', the compressed working fluid, which is a refrigerant, then enters the condenser 6a. Accordingly, working fluid circles in the cooling device of the compressor configuration 3' are formed.

[0034] Please refer to FIG. 5, which shows another embodiment of the refrigeratory equipment according to the present invention. The refrigeratory equipment comprises a compressor 1. Once the refrigerant is compressed, it is then discharged into a condenser 6a by the first pipe 7a, and the high pressure and high temperature refrigerant will be condensed into a low temperature liquid state. After that, the reprigerant is further delivered into a pressure releaser 6b by the second pipe 7b. The pressure of the liquid refrigerant is decreased by the pressure releaser 6b which is usually a capillary or an expansion salve. Furthermore, the refrigerant is then delivered into a evaporator 6c by the third pipe 7c. The evaporator 6c is usually a type of heat exchanger. If the refrigeratory equipment is an air conditioner, the evaporator 6c that functions as a heat exchanger exchanges heat with room air to reduce room temperature. The temperature of the refrigerant in the evaporator 6c will rise and the refrigerant will be delivered back to the compressor 1 by a fourth pipe finally. However, the characteristic of the embodiment of FIG. 5 lies in a cooling device 4 for cooling the compressor 1. The cooling device 4 comprises a refrigeratory 40 and a cooling pipe that includes a first cooling pipe 4a, a second cooling pipe 4b and a third cooling pipe 4c. The refrigeratory 40 will introduce a cooled working fluid into the compressor 1 by the third cooling pipe 4c. After the working fluid absorbs the mechanical and electrical heat generated from the compressor 1, it will be delivered back to the refrigeratory 40 by the first cooling pipe 4a for cooling. In respect of the refrigeratory 40, it is a heat exchanger such as an air-cooled or a water-cooled heat exchanger. Furthermore, the refrigeratory 40 comprises a cooling loop pipe 41 and a rotating heat pipe 42 for increasing the cooling efficiency. Besides, the cooling loop pipe 41 can be a shell and tube heat exchanger, a plate heat exchanger, an air-cooled cooling tower, or a cooling tower.

[0035] Please refer to FIG. 5 and FIG. 1 again. Because the cooling device 4 is used to cool the compressor 1, it is connected to the first outer section 33a and the second outer section 33b. That is to say, the third cooling channel 4c is connected to the first outer section 33a, and the first cooling channel 4a is connected to the second outer section 33b. Hence, after the working fluid is cooled by the cooling device 4, it is then introduced into the compressor 1 by the interconnected third cooling channel 4c and first outer section 33a. In the first and second cooling channels 31, 32, the working fluid absorbs mechanical and electrical heat generated by the compressor 1. Then, the working fluid is delivered from the compressor 1 via the interconnected first cooling channel 4a and second outer section 33b to the cooling device 4.

[0036] Please refer to FIG. 5 and FIG. 2 again. Because the cooling device 4 is used to cool the compressor 1, it is connected to the first outer section 33a and the second outer section 33b. That is to say, the third cooling channel 4c is connected to the first outer section 33a, and the first cooling channel 4a is connected to the second outer section 33b. Thus, after the working fluid is cooled by the cooling device 4, it is then introduced into the cooling space 30 formed between the compressor 1 and the shell 5 by the interconnected third cooling channel 4c and first outer section 33a. After the working fluid exchanges heat with the compressor 1, it is discharged from the cooling space 30 via the second outer section 33b and enters the cooling device 4 again via the first cooling channel 4a.

[0037] Please refer to FIG. 5 and FIG. 3 again. Because the cooling device 4 is used to cool the compressor 1, the working fluid that is cooled by the cooling device 4 will enter the entry 81a as shown in FIG. 3, pass the outer cooling pipeline 8, and then is discharged from the exit 81b. Therefore, the entry 81a is connected to the third cooling channel 4c in FIG. 5, and the exit 81b is connected to the first cooling channel 4a in FIG. 5. Accordingly, a cooling loop for cooling the compressor is formed.

[0038] Therefore, according to the aforementioned embodiments, the characteristic of the present invention lies in the cooling for the compressor. The reason for cooling the compressor is that mechanical elements for compressing the refrigerant in the compressor and the electromotor used to drive the mechanical elements all generate heat. The heat leads to the decrease in the efficiency of the compressor. Hence, the present invention proposes a configuration for cooling the compressor to solve the mentioned problem. The compressor will be efficiently cooled by the cooling channel that is inside of the compressor as shown in FIG. 1, or the cooling space formed outside of the compressor as shown in FIG. 2, or the cooling pipeline configured outside of the compressor as shown in FIG. 3. The operating system of the refrigeratory equipment that possesses the function of cooling the compressor is illustrated in FIG. 4 and FIG. 5, wherein the working fluid of the refrigeratory equipment itself is used to cool the compressor in FIG. 4, and an independent cycle is used to cool the compressor in FIG. 5.

[0039] While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclose embodiments. Therefore, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims, which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed