Compact heat exchanger made of ceramics having corrosion resistance at high temperature

Ishiyama; Shintaro ;   et al.

Patent Application Summary

U.S. patent application number 11/514139 was filed with the patent office on 2007-05-17 for compact heat exchanger made of ceramics having corrosion resistance at high temperature. This patent application is currently assigned to Japan Atomic Energy Research Institute. Invention is credited to Shintaro Ishiyama, Shigeki Maruyama.

Application Number20070107888 11/514139
Document ID /
Family ID34269065
Filed Date2007-05-17

United States Patent Application 20070107888
Kind Code A1
Ishiyama; Shintaro ;   et al. May 17, 2007

Compact heat exchanger made of ceramics having corrosion resistance at high temperature

Abstract

Ceramic materials that are highly resistant to strong acids such as concentrated sulfuric acid and halides such as hydrogen iodide are employed to make block elements through which a large number of circular ingress channels extend in perpendicular directions and which are joined and piled in the heat exchanging medium section to provide a compact heat exchanger that excels not only in corrosion resistance but also in high-temperature strength.


Inventors: Ishiyama; Shintaro; (Ibaraki-ken, JP) ; Maruyama; Shigeki; (Kanagawa-ken, JP)
Correspondence Address:
    STAAS & HALSEY LLP
    SUITE 700
    1201 NEW YORK AVENUE, N.W.
    WASHINGTON
    DC
    20005
    US
Assignee: Japan Atomic Energy Research Institute
Kashiwa-shi
JP

Kabushiki Kaisha Toshiba
Minato-ku
JP

Family ID: 34269065
Appl. No.: 11/514139
Filed: September 1, 2006

Related U.S. Patent Documents

Application Number Filing Date Patent Number
10922153 Aug 20, 2004 7168481
11514139 Sep 1, 2006

Current U.S. Class: 165/165 ; 165/DIG.396
Current CPC Class: F28F 7/02 20130101; F28F 21/04 20130101; Y02E 60/36 20130101
Class at Publication: 165/165 ; 165/DIG.396
International Class: F28D 7/02 20060101 F28D007/02

Foreign Application Data

Date Code Application Number
Aug 20, 2003 JP 2003-295841

Claims



1. A heat exchanger having corrosion resistance at high temperature comprising a heat exchanging section, said heat exchanging section comprising ceramic blocks made from silicon carbide or silicon nitride having a first and a second group of channels opened in two sides of each block, the blocks being stacked to fabricate a ceramic pillar vaporizer, said first group of channels oriented vertically to carry a corrosive solution of sulfuric acid or hydrogen iodide upward, and said second group of channels oriented horizontally to carry a hot helium gas laterally throughout the horizontal channels, wherein the corrosive solution is supplied from the bottom of the vaporizer, and a hot helium gas is introduced laterally through the vaporizer; and the solution and gas are respectively vertically and horizontally guided to the channels through each of the ceramic blocks in the vaporizer, where they undergo heat exchange until the corrosive solution is gasified.

2. A heat exchanger of which the heat exchanging section comprises ceramic blocks made from silicon carbide and silicon nitride.

3. A heat exchanger of which the heat exchanging section comprises a bundle of pillar structures each consisting of ceramic blocks joined together.

4. A heat exchanger for use in a chemical plant comprising a heat exchange section, in which a corrosive solution of sulfuric acid or hydrogen iodide near 600.degree. C. can be gasified by heating with hot helium, SO2 and/or hydrogen iodide gas.

5. A corrosion-resistant heat exchanger comprising a heat exchange section which permits heat exchange between a gas having a maximum temperature of 1000.degree. C. and a maximum pressure of 6 MPa and a gasified corrosive solution.

6. A compact heat exchanger comprising a heat exchange section which enables the heat exchange of a primary helium coolant/a secondary helium coolant near at 1000.degree. C. between a hot gas furnace and a chemical plant.

7. A heat exchanger comprising a heat exchanger section which enables heat exchange in the heat exchanging section through perpendicular channels provided in ceramic blocks.

8. A heat exchanger according to claim 1, wherein a concentrated sulfuric acid solution near 600.degree. C. can be gasified by heating the hot helium gas.

9. A heat exchanger according to claim 1, which enables heat exchange in the vaporizer through perpendicular channels provided in ceramic blocks

10. A heat exchanger according to claim 8, which enables heat exchange in the vaporizer through perpendicular channels provided in ceramic blocks
Description



BACKGROUND OF THE INVENTION

[0001] This invention relates to heat exchangers that have the heat exchanging section composed of ceramic blocks and which are applicable to wide areas including the atomic industry, aerospace, industries in general, and consumers use.

[0002] No corrosion-resistant materials have heretofore been available that enable concentrated sulfuric acid solutions to be vaporized and hydrogen iodide solutions to be vaporized and decomposed under high-temperature (>1000.degree. C.) and high-pressure (>6 MPa) conditions; heat exchangers for such purposes have also been unavailable. To date, several ceramics manufacturers have made attempts to fabricate heat exchangers for high-temperature operation by using ceramic blocks but all failed to make large enough equipment on account of inadequacy in the strength of the blocks.

SUMMARY OF THE INVENTION

[0003] An object, therefore, of the present invention is to provide a heat exchanger that withstands heat exchange in large capacities ranging from several tens to a hundred megawatts in high-temperature (>1000.degree. C.) and high-pressure (>6 MPa) environments of strong acids and halides in a solution as well as a gaseous phase and which yet can be fabricated in a compact configuration.

[0004] According to the present invention, ceramic materials that are highly resistant to strong acids such as concentrated sulfuric acid and halides such as hydrogen iodide are employed to make block elements through which a large number of circular ingress channels extend in perpendicular directions; by joining such block elements and piling them in the heat exchanging medium section, the invention provides a compact heat exchanger that excels not only in corrosion resistance but also in high-temperature strength.

[0005] The compact heat exchanger of the invention which withstands high temperature (-1000.degree. C.) and high pressure as well as exhibiting high corrosion resistance can also be used as an intermediate heat exchanger in hot gas furnaces.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 shows the concept of a nuclear thermochemical IS plant;

[0007] FIG. 2 shows the design concept of a concentrated sulfuric acid vaporizer in actual operation;

[0008] FIG. 3 shows the shapes of ceramic blocks and experimentally fabricated ceramic pillars;

[0009] FIG. 4 shows a method of fabricating a ceramic pillar;

[0010] FIG. 5 shows individual ceramic blocks which are joined in a plurality of pillars and then bundled together to form a heat exchanging section;

[0011] FIG. 6 shows how ceramic pillars are eventually bundled together and how they are combined with section plates and partition plates to establish helium passageways;

[0012] FIG. 7 shows how section plates and partition plates are assembled;

[0013] FIG. 8 shows ceramic flow rate regulating plates as attached to the top and bottom of the fabricated heat exchanging section;

[0014] FIG. 9 shows reinforcing rings as subsequently attached to the fabricated heat exchanging section;

[0015] FIG. 10 shows the heat exchanging section as it is tightened by means of tie rods;

[0016] FIG. 11 shows the installation of inner tubes;

[0017] FIG. 12 shows how a pressure vessel for accommodating the heat exchanging section is assembled;

[0018] FIG. 13 shows how the heat exchanging section is installed within the pressure vessel;

[0019] FIG. 14 shows earthquake-resistant structures as they are fitted between the pressure vessel and the heat exchanging section;

[0020] FIG. 15 shows how a top reflector and helium inlet bellows are attached;

[0021] FIG. 16 shows a top cover as it is fitted on the pressure vessel;

[0022] FIG. 17 shows a mechanical seal as it is fitted on the pressure vessel;

[0023] FIG. 18 shows the autoclave employed in a high-temperature, high-pressure corrosion test; and

[0024] FIG. 19 shows the results of the high-temperature, high-pressure corrosion test conducted on various ceramics and refractory alloys.

DETAILED DESCRIPTION OF THE INVENTION

[0025] The invention provides a heat exchanger essential for realizing commercialization of a nuclear thermochemical IS plant that can produce large quantities of hydrogen and oxygen from the water feed using nuclear heat with 950.degree. C. FIG. 1 shows the concept of a nuclear thermochemical IS plant. Among the various components shown, those which are operated under the most rigorous conditions are the sulfuric acid vaporizer and the hydrogen iodide decomposer.

[0026] FIG. 1 shows the concept of a nuclear thermochemical IS plant; the reaction involved is such that using the hot thermal energy of 850.degree. C. as supplied from the hot gas furnace, water as the feed is decomposed into hydrogen and oxygen primarily through the combination of a sulfuric acid decomposing and regenerating cycle with a hydrogen iodide decomposing and synthesizing cycle.

[0027] To be more specific, H.sub.2O as supplied into the Bunsen reactor is decomposed under high-temperature, high-pressure conditions in the presence of both H.sub.2SO.sub.4 and HI. After the reaction, the liquid portion containing H.sub.2SO.sub.4 and HI is supplied into the acid separator where it is separated into two layers of H.sub.2SO.sub.4 and HI. The HI containing solution passes through the purifier to be supplied into the distillation column; the resulting HI vapor is decomposed in the HI decomposer and the product H.sub.2 is recovered from the condenser. The distillation residue in the distillation column and the condensate in the condenser are returned to the reactor.

[0028] The H.sub.2SO.sub.4 containing solution coming from the acid separator passes through the purifier to be supplied into the concentrator and the concentrated H.sub.2SO.sub.4 solution is subjected to vaporization in the H.sub.2SO.sub.4 vaporizer; the resulting vapor is fed into the H.sub.2SO.sub.4 decomposer, where it is decomposed into S02, H.sub.2O and O.sub.2, which then pass through the condenser to return to the Bunsen reactor.

[0029] FIG. 2 shows the design concept of a concentrated sulfuric acid vaporizer in actual operation. A concentrated sulfuric acid solution is supplied from the furnace bottom of the vaporizer toward the upper arm, whereas helium gas with 689.degree. C. is introduced laterally through the upper arm of the vaporizer; the two feeds are respectively guided to the perpendicular channels through each of the ceramic blocks in the vaporizer, where they undergo heat exchange until the concentrated sulfuric acid is completely gasified.

[0030] FIG. 3 shows the shapes of ceramic blocks and experimentally fabricated ceramic pillars. Individual blocks are piled up along the four sides of the cross-shaped perforated section plate provided through the center of the sulfuric acid vaporizer shown in FIG. 2 and they are held in position as the sulfuric acid feed is flowed upward through six or nine channels (holes) opened in two sides of each block. The hot helium gas feed is flowed laterally through four channels (holes) opened in a side of each block, whereby the sulfuric acid is heated via each block. The two groups of channels are formed in the block in such a way that they do not communicate with each other.

[0031] FIG. 4 shows a method of fabricating a ceramic pillar by stacking a plurality of ceramic blocks. As shown, a sufficient number of blocks to form a pillar are vacuum sealed into a metal vacuum chamber and heated from the outside, so that the blocks are joined one on top of another by means of brazing sheets to form a single pillar.

[0032] FIG. 5 shows individual ceramic blocks which are joined in a plurality of pillars and then bundled together to form a heat exchanging section.

[0033] FIG. 6 shows how ceramic pillars are eventually bundled together and how they are combined with section plates and partition plates to establish helium passageways.

[0034] FIG. 7 shows how section plates and partition plates are assembled, with four ceramic blocks being inserted and fixed in the center between adjacent partition plates.

[0035] FIG. 8 shows ceramic flow rate regulating plates as attached to the top and bottom of the fabricated heat exchanging section and FIG. 9 shows reinforcing rings as subsequently attached to the fabricated heat exchanging section.

[0036] FIG. 10 shows the individual constituent elements of the heat exchanging section as they are tightened by means of tie rods.

[0037] FIG. 11 shows the installation of inner tubes on side walls of the heat exchanging section that has been tightened by the tie rods.

[0038] FIG. 12 shows that a pressure vessel for accommodating the heat exchanging section is assembled as shown.

[0039] FIG. 13 shows how the heat exchanging section is installed within the pressure vessel after it has been assembled as shown in FIG. 12.

[0040] FIG. 14 shows earthquake-resistant structures as they are fitted between the pressure vessel and the heat exchanging section.

[0041] FIG. 15 shows how a top reflector and helium inlet bellows are attached to the heat exchanging section as it has been mounted in the pressure vessel with the aid of the earthquake-resistant structures.

[0042] FIGS. 16 and 17 shows a top cover and a mechanical seal, respectively, as they are fitted on the pressure vessel to complete a heat exchanger for sulfuric acid.

EXAMPLE

(A) Design Concept of a Ceramic Compact Concentrated Sulfuric Acid Vaporizer and Experimental Fabrication of Individual Elements

[0043] Table 1 shows the design specifications of a concentrated sulfuric acid vaporizer for use in a nuclear thermochemical IS plant in actual operation that can be connected to a hot gas furnace of 200 MW. FIG. 2 shows the design concept of the concentrated sulfuric acid vaporizer. TABLE-US-00001 TABLE 1 Specifications of Sulfuric Acid Vaporizer in Actual Operation Hydrogen production rate 25,514 N.sup.3/h Heat load on vaporizer 63 MV Heating helium gas In/out temperature 689.degree. C./486.degree. C. Flow rate 1.2 .times. 10.sup.8 Nm.sup.3/h Process In/out temperature 455.degree. C./486.degree. C. Inlet H.sub.2O/(L/G) 363/816 kmol/h H.sub.2SO.sub.4 (L/G) 1552/408 kmol/h Total 3139 kmol/h Outlet H.sub.2O/(L/G) 0/1178 kmol/h H.sub.2SO.sub.4 (L/G) 0/1949 kmol/h Total 70,045 Nm.sup.3/h Heat exchange .DELTA.t1 203.degree. C. .DELTA.t2 31.degree. C. LMTD 92.degree. C. Heat transfer coefficient 400 kcal/m.sup.2 .degree. C. (as assumed) Pressure Helium inlet/H.sub.2SO.sub.4 inlet 3 MPa/2 MPa

[How to Assemble the Concentrated Sulfuric Vaporizer]

[0044] (i) Fabricate a plurality of ceramic blocks (see FIG. 3) in each of which helium channels cross concentrated sulfuric acid solution channels at right angles.

[0045] (ii) Fabricate a ceramic block pillar as shown in FIG. 4 by vacuum sealing into a metallic vacuum chamber a sufficient number of ceramic blocks to form a pillar and heating the blocks from the outside.

[0046] (iii) Join individual ceramic blocks in a plurality of pillars and bundle them together as shown in FIG. 5 to form a heat exchanging section.

[0047] (iv) Eventually bundle ceramic pillars together and combine them with section plates and partition plates to establish helium passageways as shown in FIG. 6.

[0048] (v) Attach the ceramic heat exchanging section to the assembled section plates and partition plates as shown in FIG. 7.

[0049] (vi) Attach ceramic flow rate regulating plates to the top and bottom of the fabricated heat exchanging section as shown in FIG. 8; subsequently attach reinforcing rings to the fabricated heat exchanging section as shown in FIG. 9.

[0050] (vii) Tighten the heat exchanging section by means of tie rods as shown in FIG. 10.

[0051] (viii) Install inner tubes as shown in FIG. 11.

[0052] (ix) In a separate step, assemble a pressure vessel for accommodating the heat exchanging section as shown in FIG. 12.

[0053] (x) Install the heat exchanging section within the pressure vessel as shown in FIG. 13.

[0054] (xi) Further, fit earthquake-resistant structures between the pressure vessel and the heat exchanging section as shown in FIG. 14.

[0055] (xii) Attach a top reflector and helium inlet bellows as shown in FIG. 15.

[0056] (xiii) In the last step, fit a top cover and a mechanical seal on the pressure vessel as shown in FIGS. 16 and 17, respectively.

(B) Concentrated Sulfuric Acid Corrosion Test

[0057] The various ceramics and refractory alloys shown in Table 2 were filled into glass ampules together with concentrated sulfuric acid and subjected to a high-temperature, high-pressure corrosion test in an autoclave (see FIG. 18) under high-temperature (460.degree. C.) high-pressure (2 MPa) conditions for 100 and 1000 hours. Test results are shown in Tables 3 and 4 and in FIG. 19. The results for the 1000-h test are summarized in Table 5. Silicon carbide and silicon nitride were found to have satisfactory corrosion resistance. TABLE-US-00002 TABLE 2 Test Sections for High-Pressure Boiling H.sub.2SO.sub.4 Corrosion Test (.times.100 h and 1000 h) Description Ampule No. Designation Symbol Classification Remarks 100 h test 1 SiC SiC-1 ceramic atmospheric pressure sintering of 97 wt % SiC, 1 wt % B and 2 wt % C 2 Si--SiC Si--SiC--N-1 atmospheric pressure sintering of 80 wt % SiC and 20 wt % Si (as silicon impregnated) 3 Si.sub.3N.sub.4 Si.sub.3N.sub.4-1 atmospheric pressure sintering of 1 wt % SrO, 4 wt % MgO and 5 wt % CeO.sub.2 4 Sx SX-2 H.sub.2SO.sub.4 resistant steel preliminarily oxidized at 800.degree. C. .times. 90 h 5 FeSi FS-1 high-Si ferrous alloy 14.8 Si--Fe 6 FS-2 19.7 Si--Fe 1000 h test 1 SX SX-2/half H.sub.2SO.sub.4 resistant steel oxidized with the atmosphere at 800.degree. C. .times. 90 h in half size 2 SX-2/small oxidized with the atmosphere at 800.degree. C. .times. 90 h in small size 3 SX SX-4/RT-1 H.sub.2SO.sub.4 resistant steel oxidized with nitric acid in small size SX-4/70.1 oxidized with nitric acid in small size 4 SiC SiC ceramic 5 Si--SiC Si--SiC--N-3 Si-impregnated silicon carbide ceramic 6 Si.sub.3N.sub.4 Si.sub.3N.sub.4 ceramic 7 FeSi FS-2/untreated high-Si ferrous alloy 19.7 Si--Fe FS-2/stress 19.7 Si--Fe, vacuum annealed at 1100.degree. C. .times. 100 h relieved

[0058] TABLE-US-00003 TABLE 3 Results of Size Measurements in High-Pressure Boiling H.sub.2SO.sub.4 Corrosion Test (.times.100 h) Length (mm) Width (mm) Thickness (mm) Ampule Before After Change Before After Change Before After Change No. Designation Symbol test test (%) test test (%) test test (%) 1 SX-2 SX-2/half 26.824 26.71 -0.42% 3.949 3.944 -0.13% 1.516 1.358 -10.42% 2 SX-2/small 1.798 1.789 -0.50% 3.988 4.1 2.81% 1.545 1.589 2.85% 3 SX-4 SX-4/RT-1 15.493 15.453 -0.26% 3.943 3.878 -1.65% 1.635 1.624 -0.67% SX-4/70.1 15.071 15.063 -0.05% 3.937 3.903 -0.86% 1.627 1.744 7.19% 4 SiC SiC 39.727 39.71 -0.04% 4.035 4.034 -0.02% 2.993 2.991 -0.07% 5 Si--SiC Si--SiC 40.029 40.04 0.03% 4.061 4.06 -0.02% 3.077 3.080 0.10% 6 Si.sub.3N.sub.4 Si.sub.3N.sub.4 39.826 39.8 -0.07% 4.065 4.068 0.07% 3.013 3.021 0.27% 7 FeSi FS-2/untreated 19.083 19.101 0.09% 3.638 3.7 1.70% 3.595 3.638 1.20% FS-2/stress 19.585 20.055 2.40% 5.700 3.705 -35.00% 5.557 3.578 -35.61% relieved

[0059] TABLE-US-00004 TABLE 4 Results of Weight Measurements and Corrosion Rate in High-Pressure Boiling H.sub.2SO.sub.4 Corrosion Test (.times.100 h) Weight (g) Corrosion Ampule Before After Weight change Area rate No. Designation Symbol test test (%) (mg) (cm.sup.2) (g/m.sup.2 h) Remarks 1 SX-2 SX-2/half 1.2162 0.9816 19.29% -234.6 0.03052 0.961 Ampule broke in 800 h 2 SX-2/small 0.0772 0.0656 15.03% -11.6 0.00322 0.360 3 SX-4 SX-4/RT-1 0.7570 0.6738 10.99% -83.2 0.01857 1.244 Ampule broke in 360 h SX-4/70.1 0.7967 0.7198 9.65% -76.9 0.01805 1.183 Ampule broke in 360 h 4 SiC SiC 1.4476 1.4487 -0.08% 1.1 0.05826 -0.002 5 Si--SiC Si--SiC 1.4823 1.4856 -0.22% 3.3 0.05964 -0.006 6 Si.sub.3N.sub.4 Si.sub.3N.sub.4 1.5611 1.5653 -0.27% 4.2 0.05883 -0.007 7 FeSi FS-2/untreated 1.6720 1.6330 2.33% -39.0 0.03022 0.129 FS-2/stress 1.7425 1.7097 1.88% -32.8 0.05043 0.065 relieved

[0060] TABLE-US-00005 TABLE 5 Summary of 1000 h Test Cross section Dimensional Corrosion observed at Overall Designation Symbol change rate Appearance magnification Other rating SX-2 SX-2/half X X .circleincircle. .circleincircle. -- X SX-2/small .largecircle. .DELTA. .circleincircle. .circleincircle. -- .DELTA. SX-4 SX-4/RT-1 .DELTA. X .circleincircle. .circleincircle. -- X SX-4/70.1 .DELTA. X .circleincircle. .circleincircle. -- X SiC SiC .circleincircle. .circleincircle. .circleincircle. .circleincircle. .largecircle. .largecircle. Si--SiC Si--SiC .circleincircle. .circleincircle. .circleincircle. .circleincircle. .largecircle. .largecircle. Si.sub.3N.sub.4 Si.sub.3N.sub.4 .circleincircle. .circleincircle. .circleincircle. .circleincircle. .largecircle. .largecircle. FeSi FS-2/untreated .circleincircle. .DELTA. X X -- X FS-2/stress relieved X .DELTA. X X -- X

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed