Mechanism for providing residual thrust load on chuck actuating screw

Puzio; Daniel ;   et al.

Patent Application Summary

U.S. patent application number 11/399455 was filed with the patent office on 2006-10-26 for mechanism for providing residual thrust load on chuck actuating screw. Invention is credited to Warren A. Ceroll, Robert S. Gehret, Richard J. Heavel, Daniel Puzio, Craig A. Schell.

Application Number20060237917 11/399455
Document ID /
Family ID37186046
Filed Date2006-10-26

United States Patent Application 20060237917
Kind Code A1
Puzio; Daniel ;   et al. October 26, 2006

Mechanism for providing residual thrust load on chuck actuating screw

Abstract

A tool chuck may include an input shaft. A chuck actuating shaft may be mounted for rotation on the input shaft. A chuck actuating screw may be screw coupled to the chuck actuating shaft. A spring may be interposed between the chuck actuating shaft and the input shaft. Upon tightening the tool chuck, the spring may be compressed to provide force against the chuck actuating screw.


Inventors: Puzio; Daniel; (Baltimore, MD) ; Gehret; Robert S.; (Hampstead, MD) ; Ceroll; Warren A.; (Owings Mills, MD) ; Schell; Craig A.; (Street, MD) ; Heavel; Richard J.; (Hanover, PA)
Correspondence Address:
    HARNESS, DICKEY & PIERCE, P.L.C.
    P.O. BOX 8910
    RESTON
    VA
    20195
    US
Family ID: 37186046
Appl. No.: 11/399455
Filed: April 7, 2006

Related U.S. Patent Documents

Application Number Filing Date Patent Number
60672862 Apr 20, 2005

Current U.S. Class: 279/110
Current CPC Class: Y10T 279/19 20150115; B23B 31/1253 20130101; B23B 2260/136 20130101; Y10T 279/17615 20150115
Class at Publication: 279/110
International Class: B23B 31/16 20060101 B23B031/16

Claims



1. A tool chuck comprising: an input shaft; a chuck actuating shaft mounted for rotation on the input shaft; a chuck actuating screw screw coupled to the chuck actuating shaft; and a residual clamping force mechanism interposed between the chuck actuating shaft and the input shaft; the residual clamping force mechanism being compressible to provide force against the chuck actuating screw.

2. The tool chuck according to claim 1, further comprising: a thrust bearing interposed between the residual clamping force mechanism and the input shaft.

3. The tool chuck according to claim 2, wherein the thrust bearing is a plurality of rolling elements.

4. The tool chuck according to claim 3, wherein the plurality of rolling elements is provided in a carrier.

5. The tool chuck according to claim 1, wherein the residual clamping force mechanism is a spring.

6. The tool chuck according to claim 5, wherein the spring is a belleville spring.

7. A tool chuck comprising: an input shaft; a chuck actuating shaft mounted for rotation on the input shaft; chuck actuating screw screw coupled to the chuck actuating shaft; and clamping force means for compressing to provide force against the chuck actuating screw.

8. The tool chuck according to claim 7, further comprising: a thrust bearing interposed between the clamping force means and the input shaft.

9. The tool chuck according to claim 8, wherein the thrust bearing is a plurality of rolling elements.

10. The tool chuck according to claim 9, wherein the plurality of rolling elements is provided in a carrier.

11. The tool chuck according to claim 7, wherein the clamping force means is a spring.

12. The tool chuck according to claim 11, wherein the spring is a belleville spring.

13. A tool chuck comprising: an input shaft; a chuck actuating shaft mounted for rotation on the input shaft; a chuck actuating screw coupled to the chuck actuating shaft; and a spring interposed between the chuck actuating shaft and the input shaft.

14. The tool chuck according to claim 13, further comprising: a thrust bearing interposed between the spring and the input shaft.

15. The tool chuck according to claim 14, wherein the thrust bearing is a plurality of rolling elements.

16. The tool chuck according to claim 15, wherein the plurality of rolling elements is provided in a carrier.

17. The tool chuck according to claim 13, wherein the spring is a belleville spring.
Description



CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This U.S. non-provisional application clams priority under 35 USC .sctn.119 to U.S. Provisional Application No. 60/672,862 filed Apr. 20, 2005, the content of which is incorporated herein in its entirety by reference.

BACKGROUND

[0002] 1. Field of the Invention

[0003] Example, non-limiting embodiments of the present invention relate in general to tool chucks for attachment of accessories to power drivers, and more particularly to a tool chuck having a spring that may provide residual thrust load on a chuck actuating screw.

[0004] 2. Description of Related Art

[0005] Once tight, a non-self-tightening tool chuck may loosen as the accessory material yields and the grip interface loosens.

[0006] Pusher-type tool chuck technology may be of the self-tightening variety. That is, as application torque increases, the torque tightening the tool chuck may increase to that application torque. For some applications, the tightening torque that results may be several times higher than torques achieved manually. While this tends to make the pusher-type tool chuck more costly and heavy, it may be effective at reducing accessory slip and fall out.

[0007] Some tool chucks may be actuated (to open and close the chuck jaws) via a power take off ("PTO") feature. Tool chucks with various PTO features are described in commonly-assigned, copending provisional Application entitled "TOOL CHUCK WITH POWER TAKE OFF AND DEAD SPINDLE FEATURES," filed Apr. 19, 2005, U.S. Provisional Application No. 60/672,503 (the "copending provisional application"). The content of the copending provisional application is incorporated herein in its entirety by reference.

SUMMARY

[0008] According to an example, non-limiting embodiments, a tool chuck may include an input shaft. A chuck actuating shaft may be mounted for rotation on the input shaft. A chuck actuating screw may be screw coupled to the chuck actuating shaft. A residual clamping force mechanism may be interposed between the chuck actuating shaft and the input shaft. The residual clamping force mechanism may be compressible to provide force against the chuck actuating screw.

[0009] According to another example, non-limiting embodiment, a tool chuck may include an input shaft. A chuck actuating shaft may be mounted for rotation on the input shaft. A chuck actuating screw may be screw coupled to the chuck actuating shaft. Clamping force means may be provided for compressing to provide force against the chuck actuating screw.

[0010] According to another example, non-limiting embodiments, a tool chuck may include an input shaft. A chuck actuating shaft may be mounted for rotation on the input shaft. A chuck actuating screw may be coupled to the chuck actuating shaft. A spring may be interposed between the chuck actuating shaft and the input shaft.

[0011] The above and other features of the invention including various and novel details of construction and combinations of parts will now be more particularly described with reference to the accompanying drawings. It will be understood that the details of the example embodiments are shown by way of illustration only and not as limitations of the invention. The principles and features of this invention may be employed in varied and numerous embodiments without departing from the spirit and scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] Example, non-limiting embodiments of the present invention will become more fully understood from the detailed description below and the accompanying drawings, wherein like elements are represented by like reference numerals, which are given by way of illustration only and thus are not limiting of the present invention.

[0013] FIG. 1 is a schematic view of tool chuck sub-assembly implementing a residual clamping force mechanism according to an example, non-limiting embodiment of the present invention.

[0014] FIG. 2 is a schematic view of the tool chuck sub-assembly shown in FIG. 1 and in a loose condition.

[0015] FIG. 3 is a schematic view of the tool chuck sub-assembly shown in FIG. 1 and in a tightened condition.

DESCRIPTION OF EXAMPLE, NON-LIMITING EMBODIMENTS

[0016] A PTO feature may be implemented using a pusher-type tool chuck. The pusher-type tool chuck may be non-self-tightening. The PTO system may tighten the tool chuck and then lock. To eliminate slip and fall out, the PTO system may include a residual clamping force mechanism 100 as shown in FIGS. 1-3.

[0017] FIG. 1 shows a portion of a tool chuck subassembly of the PTO system. Those skilled in the art will recognize the chuck actuating screw 55 and understand how it interacts with the chuck actuating shaft 64 to actuate the chuck jaws (not shown). The clamping force mechanism 100 may store energy in a compression element and then provide a residual force against the chuck actuating screw 55 (and thus the back of the chuck jaws).

[0018] By way of example only, the clamping force mechanism 100 may be in the form of a spring, which may be positioned between the pusher screw system (inclusive of the chuck actuating screw 55 and the chuck actuating shaft 64) and the input shaft 60. In this example embodiment, the spring may be a belleville spring 102. In alternative embodiments, numerous and varied springs (other than a belleville spring) that are well known in this art may be suitably implemented.

[0019] The clamping force mechanism 100 may be combined with a thrust bearing 104. The thrust bearing 104 may be positioned at an interface between the belleville spring 102 and the input shaft 60. The thrust bearing 104 may include a plurality of balls. The balls may be conjoined via a carrier (for example), or they may be loose. In this way, the belleville spring 102 and an annular recess provided in the input shaft 60 may act as bearing races.

[0020] FIG. 2 shows the pusher screw system in a loose (or not completely tight) condition. Here, the belleville spring 102 may not be fully compressed. The lines of force acting through the thrust bearing 104 are shown as arrows F.

[0021] FIG. 3 shows the pusher screw system in a tight (or nearly tight condition). The lines of force acting through the thrust bearing 104 are shown as arrows F.

[0022] Those skilled in the art will appreciate that the pusher screw system may be tightened via a relative rotation between the chuck actuating shaft 64 and the chuck actuating screw 55, which may cause the chuck actuating screw 55 to advance axially and relative to the chuck actuating shaft 64. The translational movement of the chuck actuating screw 55 may push on the chuck jaws to close the same upon an accessory. When the chuck jaws clamp the accessory, a further relative rotation between the chuck actuating shaft 64 and the chuck actuating screw 55 may cause the chuck actuating shaft 64 to retract in an axial direction and against the influence of the belleville spring 102. As a result, the belleville spring 102 may become compressed, as shown in FIG. 3

[0023] By comparing FIGS. 2 and 3, it will be appreciated that the lines of force (arrows F) may change direction as the pusher system tightens. The input shaft 60 may include an internal torroidal surface to provide a bearing race that may accommodate this change in bearing loading as the tool chuck is tightened.

[0024] In the disclosed example embodiments, the residual clamping force mechanism 100 is in the form of a spring. In alternative embodiments, numerous and varied structures (other than springs) may be suitably implemented as the residual clamping force mechanism. Such structures may include, but are not limited to a gas filled bladder and an elastically deformable body. Such alternative structures may be combined with the thrust bearing 104 by providing such structures with a washer (for example) that may serve as a bearing race.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed