Methods and means for increasing the tolerance of plants to stress conditions

De Block; Marc

Patent Application Summary

U.S. patent application number 10/552552 was filed with the patent office on 2006-08-17 for methods and means for increasing the tolerance of plants to stress conditions. This patent application is currently assigned to Bayer BioScience N.V.. Invention is credited to Marc De Block.

Application Number20060185038 10/552552
Document ID /
Family ID33161008
Filed Date2006-08-17

United States Patent Application 20060185038
Kind Code A1
De Block; Marc August 17, 2006

Methods and means for increasing the tolerance of plants to stress conditions

Abstract

Methods and means are provided to increase the tolerance of plants to abiotic stress or adverse growing conditions, including drought, high light intensities, high temperatures, nutrient limitations and the like by reducing the activity of endogenous PARG proteins in plants.


Inventors: De Block; Marc; (Merelbeke, BE)
Correspondence Address:
    HUNTON & WILLIAMS LLP;INTELLECTUAL PROPERTY DEPARTMENT
    1900 K STREET, N.W.
    SUITE 1200
    WASHINGTON
    DC
    20006-1109
    US
Assignee: Bayer BioScience N.V.
IP Department Technolgiepark 38
Gent
BE
B-9052

Family ID: 33161008
Appl. No.: 10/552552
Filed: April 9, 2004
PCT Filed: April 9, 2004
PCT NO: PCT/EP04/03995
371 Date: October 7, 2005

Related U.S. Patent Documents

Application Number Filing Date Patent Number
60496588 Aug 21, 2003

Current U.S. Class: 800/289 ; 435/468
Current CPC Class: C12N 9/0028 20130101; C12N 15/8271 20130101; C12Y 105/01011 20130101; C12Y 302/01143 20130101
Class at Publication: 800/289 ; 435/468
International Class: A01H 1/00 20060101 A01H001/00; C12N 15/82 20060101 C12N015/82

Foreign Application Data

Date Code Application Number
Apr 9, 2003 EP 03076044.1

Claims



1. A method of producing a plant tolerant to stress conditions comprising the steps of (a) providing plant cells with a chimeric gene to create transgenic plant cells, said chimeric gene comprising the following operably linked DNA fragments (i) a plant-expressible promoter; (ii) a DNA region, which when transcribed yields an ParG inhibitory RNA molecule; (iii) a 3' end region involved in transcription termination and polyadenylation; (b) regenerating a population of transgenic plant lines from said transgenic plant cell; and (c) identifying a stress tolerant plant line within said population of transgenic plant lines.

2. The method according to claim 1, wherein said parG inhibitory RNA molecule comprises a nucleotide sequence of at least 20 consecutive nucleotides of the nucleotide sequence of the ParG gene present in said plant cell.

3. The method according to claim 1, wherein said parG inhibitory RNA molecule comprises a nucleotide sequence of at least 20 consecutive nucleotides of the complement of the nucleotide sequence of the ParG gene present in said plant cell.

4. The method according to claim 2 or 3, wherein said chimeric gene further comprises a DNA region encoding a self-splicing ribozyme between said DNA region coding for said parG inhibitory RNA molecule and said 3' end region.

5. The method according to claim 1, wherein said parG inhibitory RNA comprises a sense region comprising a nucleotide sequence of at least 20 consecutive nucleotides of the nucleotide sequence of the ParG gene present in said plant cell and an antisense region comprising a nucleotide sequence of at least 20 consecutive nucleotides of the complement of the nucleotide sequence of the ParG gene present in said plant cell, wherein said sense and antisense region are capable of forming a double stranded RNA region comprising said at least 20 consecutive nucleotides.

6. The method according to claim 1, wherein said stress conditions are heat, drought, nutrient depletion, oxidative stress or high light conditions.

7. The method according to claim 1, comprising further crossing said transgenic plant line with another plant line to obtain stress tolerant progeny plants.

8. A method of producing a plant tolerant to stress conditions comprising the steps of: (a) isolating a DNA fragment of at least 100 bp comprising a part of the parG encoding gene of said plant; (b) producing a chimeric gene by operably linking the following DNA fragments; (i) a plant expressible promoter region; (ii) said isolated DNA fragment comprising part of the parG encoding gene of said plant in direct orientation compared to the promoter region; (iii) said isolated DNA fragment comprising part of the parG encoding gene of said plant in inverted orientation compared to the promoter region; (iv) a 3' end region involved in transcription termination and polyadenylation; (c) providing plant cells with said chimeric gene to create transgenic plant cells (d) regenerating a population of transgenic plant lines from said transgenic plant cell; and (e) identifying a stress tolerant plant line within said population of transgenic plant lines.

9. A DNA molecule comprising (i) a plant-expressible promoter; (ii) a DNA region, which when transcribed yields a ParG inhibitory RNA molecule; and (iii) a 3' end region involved in transcription termination and polyadenylation.

10. The DNA molecule according to claim 9, wherein said DNA region comprises a nucleotide sequence of at least 21 to 100 nucleotides of a nucleotide sequence encoding a protein comprising the amino acid sequence of SEQ ID No 1, 2 or 16 or at least 21 to 100 nucleotides of a nucleotide sequence of SEQ ID 3, 4, 15 or 23.

11. A plant cell comprising the DNA molecule of claim 9 or 10.

12. A plant consisting essentially of the plant cells of claim 11.

13. A process for producing stress tolerant plants, comprising the step of crossing a plant of claim 12 with another plant.

14. Seeds and propagating material of a plant according to claim 12.

15. Plants obtainable or obtained by the process of claim 8.

16. A method of producing a plant tolerant to stress conditions comprising the steps of (a) providing plant cells with a chimeric gene to create transgenic plant cells, said chimeric gene comprising the following operably linked DNA fragments (i) a plant-expressible promoter; (ii) a DNA region, which when transcribed yields an ParG inhibitory RNA molecule, said DNA region comprising a nucleotide sequence of at least 21 to 100 nucleotides of a nucleotide sequence encoding a protein comprising the amino acid sequence of SEQ ID No 1, 2 or 16 or at least 21 to 100 nucleotides of a nucleotide sequence of SEQ ID 3, 4, 15 or 23; (iii) a 3' end region involved in transcription termination and polyadenylation; (b) regenerating a population of transgenic plant lines from said transgenic plant cell; and (c) identifying a stress tolerant plant line within said population of transgenic plant lines.

17. A method of producing a plant tolerant to stress conditions comprising the steps of (a) subjecting a plant cell line or a plant or plant line, to mutagenesis; (b) identifying those plant cells or plants that have a mutation in an endogenous ParG gene; (c) subjecting the identified plant cells or plants to stress conditions; (d) identifying plant cells or plants that tolerate said stress conditions better than control plants.

18. A method of producing a plant tolerant to stress conditions comprising the steps of (a) selecting a plant cell line or a plant or plant line which is resistant to a ParG inhibitor; (b) identifying those plant cells or plants that have a mutation in an endogenous ParG gene; (c) subjecting the identified plant cells or plants to stress conditions; (d) identifying plant cells or plants that tolerate said stress conditions better than control plants.

19. A stress tolerant plant cell or plant comprising a mutation in an endogenous ParG gene.
Description



FIELD OF THE INVENTION

[0001] The present invention relates to the use of poly (ADP-ribose) glycohydrolases in plants to increase the tolerance of plants to adverse growing conditions, including drought, high light intensities, high temperatures, nutrient limitations and the like. Methods and means are provided to produce plants that are tolerant to abiotic stress conditions.

BACKGROUND TO THE INVENTION

[0002] Frequently, abiotic stress will lead either directly or indirectly to damage of the DNA of the cells of the plants exposed to the adverse conditions. Genomic damage, if left unrepaired, can lead to cell death. Tolerance to stress conditions exhibited by plants is the result of the ability of the plant cells exposed to the adverse conditions to reduce and/or repair the damage, and to survive.

[0003] Plant cells, like other eukaryotic cells, have evolved an elaborate DNA repair system. The activation of poly(ADP-ribose) polymerase (PARP) by DNA strand breaks is often one of the first cellular responses to DNA damage. PARP catalyzes the post-translational modification of proteins by adding successively molecules of ADP-ribose, obtained from the conversion of nicotineamide dinucleotide (NAD), to form multibranched polymers containing up to 200 ADP-ribose residues (about 40 residues in plants). The dependence of poly(ADP-ribose) synthesis on DNA strand breaks, and the presence of PARP in multiprotein complexes further containing key effectors of DNA repair, replication and transcription reactions, strongly suggests that this posttranslational modification is involved in metabolism of nucleic acids, and DNA repair. There are also indications that poly (ADP-ribose) synthesis is involved in regulation of cell cycle and cell death.

[0004] Poly (ADP-ribosylation) of proteins is transient in living cells. The poly (ADP-ribose) polymers are rapidly turned over, being converted to free ADP-ribose by the exoglycosidase and endoglycosidase activity of poly (ADP-ribose) glycohydrolase (PARG; E.C.3.2.1.143). The most proximal unit of ADP ribose on the protein acceptor is hydrolyzed by the action of another enzyme (ADP-ribosyl protein lyase).

[0005] In addition to this positive (DNA-repair associated) effect of PARP on cell survival, there is also a negative effect of PARP. The process of activating PARP upon DNA damage is associated with a rapid lowering of NAD+ levels, since each ADP-ribose unit transferred by PARP consumes one molecule of NAD+. NAD+ depletion in turn results in ATP depletion, because NAD+ resynthesis requires at least (depending on the biosynthesis pathway) three molecules of ATP per molecule of NAD+. Furthermore, NAD+ depletion block glyceraldehyde-3-phosphate dehydrogenase activity, which is required to resynthesize ATP during glycolysis. Finally, NAD+ is a key carrier of electrons needed to generate ATP via electron transport and oxidative phosphorylation.

[0006] The physiological consequence of NAD+ and ATP depletion has been established in the context of DNA-damage induced cell death. It has been shown that the completion of apoptosis is absolutely dependent on the presence of ATP and that, in the absence of this nucleotide, the type of cellular demise switches from apoptosis to necrosis. Since the cellular lysis associates with necrosis generates further damage to neighboring cells it is preferable for multicellular organisms to favor apoptotic cell death rather than necrosis.

[0007] It is thus very important to consider the delicate balance of positive and negative effects of the poly (ADP ribosyl)ation on the potential of a cell to survive DNA damage.

[0008] WO 00/04173 describes methods to modulate programmed cell death (PCD) in eukaryotic cells and organisms, particularly plant cells and plants, by introducing of "PCD modulating chimeric genes" influencing the expression and/or apparent activity of endogenous poly-(ADP-ribose) polymerase (PARP) genes. Programmed cell death may be inhibited or provoked. The invention particularly relates to the use of nucleotide sequences encoding proteins with PARP activity for modulating PCD, for enhancing growth rate or for producing stress tolerant cells and organisms.

[0009] PARG encoding genes have been identified in a number of animals such as Rattus norvegicus (Accession numbers: NM.sub.--031339, NW.sub.--043030, AB019366,), Mus musculus (Accession numbers: NT.sub.--039598, NM.sub.--003631, AF079557), Homo sapiens (Accession numbers: NT.sub.--017696; NM.sub.--003631, AF005043), Bos taurus (Accession numbers: NM.sub.--174138, U78975) Drosophila melanogaster (Accession number: AF079556)

[0010] In plants, a poly(ADP-ribose) glycohydrolase has been identified by map-based cloning of the wild-type gene inactivated in a mutant affected in clock-controlled transcription of genes in Arabidopsis and in photoperiod dependent transition from vegetative growth to flowering (tej). The nucleotide sequence of the gene can be obtained from nucleotide databases under the accession number AF394690 (Panda et al., 2002 Dev. Cell. 3, 51-61).

SUMMARY OF THE INVENTION

[0011] The invention provides a method to produce a plant tolerant to stress conditions comprising the steps of providing plant cells with a chimeric gene to create transgenic plant cells, wherein the chimeric gene comprises the following operably linked DNA fragments: a plant-expressible promoter; a DNA region, which when transcribed yields an ParG inhibitory RNA molecule; and a 3' end region involved in transcription termination and polyadenylation. A population of transgenic plant lines is regenerated from the transgenic plant cell; and a stress tolerant plant line is identified within the population of transgenic plant lines. The ParG inhibitory RNA molecule may comprise a nucleotide sequence of at least 20 consecutive nucleotides of the nucleotide sequence of the ParG gene present in the plant cell (the endogenous ParG gene). The ParG inhibitory RNA molecule may also comprise a nucleotide sequence of at least 20 consecutive nucleotides of the complement of the nucleotide sequence of the ParG gene present in the plant cell (the endogenous ParG gene). In yet another embodiment, the parG inhibitory RNA may comprise a sense region comprising a nucleotide sequence of at least 20 consecutive nucleotides of the nucleotide sequence of the ParG gene present in the plant cell and an antisense region comprising a nucleotide sequence of at least 20 consecutive nucleotides of the complement of the nucleotide sequence of the ParG gene present in the plant cell, wherein the sense and antisense region are capable of forming a double stranded RNA region comprising said at least 20 consecutive nucleotides. The chimeric gene may further comprise a DNA region encoding a self-splicing ribozyme between said DNA region coding for parG inhibitory RNA molecule and the 3' end region. Stress conditions may be selected from heat, drought, nutrient depletion, oxidative stress or high light conditions.

[0012] In another embodiment of the invention, a method is provided to produce a plant tolerant to stress conditions comprising the steps of: isolating a DNA fragment of at least 100 bp comprising a part of the parG encoding gene of the plant of interest; producing a chimeric gene by operably linking a plant expressible promoter region to the isolated DNA fragment comprising part of the parG encoding gene of the plant in direct orientation compared to the promoter region; and to the isolated DNA fragment comprising part of the parG encoding gene of said plant in inverted orientation compared to the promoter region, and a 3' end region involved in transcription termination and polyadenylation. These chimeric genes are then provided to plant cells to create transgenic plant cells. A population of transgenic plant lines is regenerated from the transgenic plant cells; and a stress tolerant plant line is identified within the population of transgenic plant lines. The invention also relates to stress tolerant plant cells and plants obtained by this process.

[0013] In yet another embodiment of the invention, a method is provided to produce a plant tolerant to stress conditions comprising the steps of providing plant cells with a chimeric gene to create transgenic plant cells, comprising a DNA region, which when transcribed yields an ParG inhibitory RNA molecule, whereby the DNA region comprises a nucleotide sequence of at least 21 to 100 nucleotides of a nucleotide sequence encoding a protein comprising the amino acid sequence of SEQ ID No 1, 2 or 16 or at least 21 to 100 nucleotides of a nucleotide sequence of SEQ ID 3, 4, 15 or 23 operably linked to a plant-expressible promoter and a 3' end region involved in transcription termination and polyadenylation; regenerating a population of transgenic plant lines from said transgenic plant cell; and identifying a stress tolerant plant line within the population of transgenic plant lines.

[0014] The invention also provides DNA molecules comprising a plant-expressible promoter, operably linked to a DNA region, which when transcribed yields an ParG inhibitory RNA molecule, and to a 3' end region involved in transcription termination and polyadenylation. The ParG inhibitory RNA molecule may comprise a nucleotide sequence of at least 20 consecutive nucleotides of the nucleotide sequence of the ParG gene present in the plant cell (the endogenous ParG gene). The ParG inhibitory RNA molecule may also comprise a nucleotide sequence of at least 20 consecutive nucleotides of the complement of the nucleotide sequence of the ParG gene present in the plant cell (the endogenous ParG gene). In yet another embodiment, the parG inhibitory RNA may comprise a sense region comprising a nucleotide sequence of at least 20 consecutive nucleotides of the nucleotide sequence of the ParG gene present in the plant cell and an antisense region comprising a nucleotide sequence of at least 20 consecutive nucleotides of the complement of the nucleotide sequence of the ParG gene present in the plant cell, wherein the sense and antisense region are capable of forming a double stranded RNA region comprising said at least 20 consecutive nucleotides. The chimeric gene may further comprise a DNA region encoding a self-splicing ribozyme between said DNA region coding for parG inhibitory RNA molecule and the 3' end region. The chimeric gene may also comprise a nucleotide sequence of at least 21 to 100 nucleotides of a nucleotide sequence encoding a protein comprising the amino acid sequence of SEQ ID No 1, 2 or 16 or at least 21 to 100 nucleotides of a nucleotide sequence of SEQ ID 3, 4, 15 or 23.

[0015] In yet another embodiment, the invention relates to plant cell comprising the DNA molecule of the invention and plants consisting essentially of such plant cells, as well as to processes for producing stress tolerant plants, comprising the step of further crossing such plants with another plant. Seeds and propagating material of such plants comprising the chimeric genes of the invention are also provided.

[0016] The invention also relates to a method for obtaining stress tolerant plants comprising the steps of subjecting a plant cell line or a plant or plant line, to mutagenesis; identifying those plant cells or plants that have a mutation in an endogenous ParG gene; subjecting the identified plant cells or plants to stress conditions and identifying plant cells or plants that tolerate said stress conditions better than control plants. Alternatively, plant cells or plants may be selected for resistance to ParG inhibitors and further treated as described in this paragraph.

[0017] The invention further relates to a stress tolerant plant cell or plant having a mutation in the endogenous ParG gene.

BRIEF DESCRIPTION OF THE FIGURES

[0018] FIG. 1. Schematic representation of the poly-ADP ribose polymeratization/depolymerization cycle by the action of PARP/PARG in a eukaryotic cell.

[0019] FIG. 2. Diagram of the NAD+ and ATP content of Arabidopsis lines under high light stress. Dark boxes represent NAD content under high light conditions expressed as percentage of the value for NAD content determined under low light conditions. Light boxes represent ATP content under high light conditions expressed as percentage of the value for ATP content determined under low light conditions.

[0020] FIG. 3. Diagram of the NAD+ and ATP content of corn lines under nitrogen depletion stress. Dark boxes represent NAD content while light boxes represent ATP content.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0021] The invention is based, on the one hand, on the demonstration that cells from stress resistant plant lines comprising a chimeric gene reducing the PARP gene expression, exhibited a higher NAD/ATP content under adverse conditions than cells from untransformed plant lines. On the other hand, it has been observed that silencing of the expression of PARG encoding gene in tobacco using a transient silencing RNA vector based on satellite viruses resulted in a similar phenotype as that observed for silencing of PARP encoding gene using the same silencing system. Furthermore, silencing the expression of PARG encoding gene in plants, such as Arabidopsis and tobacco, resulted in plants that were more resistant to stress conditions, such as e.g. those imposed by high light conditions.

[0022] Although not intending to limit the invention to a specific mode of action, it is expected that silencing of PARG gene expression results in a similar phenotype as silencing of PARP gene expression for the following reasons. As can be seen from FIG. 1, polymerization of ADP ribose catalyzed by PARP, consuming NAD, is followed by depolymerization of poly ADP ribose, catalyzed by PARG. Poly ADP ribosylation of the PARP protein itself results in inactivation of the PARP protein. The speed at which the ADP ribose polymerization/depolymerization cycle occurs in plant cells, leading to NAD depletion and consequently ATP depletion, can be slowed down or stopped by reduction of the PARP gene expression or of the enzymatic activity of PARP. As a result, plant cells, and plants comprising such cells are more resistant to adverse conditions. The data provided here indicate that a similar effect can be obtained through slowing down or stopping the cycle by reduction of the PARG gene expression or PARG activity.

[0023] The invention relates to reduction of plant cell death in response to adverse environmental conditions, and consequently to enhanced stress resistance, by altering the level of expression of ParG genes, or by altering the activity or the apparent activity of PARG proteins in that plant cell. Conveniently, the level of expression of ParG genes may be controlled genetically by introduction of chimeric genes altering the expression of ParG genes, or by altering the endogenous PARG encoding genes, including the expression signals.

[0024] In one embodiment of the invention, a method for producing plants tolerant to stress conditions or adverse growing conditions is provided comprising the steps of:

[0025] providing plant cells with a chimeric gene to create transgenic plant cells, wherein the chimeric gene comprises the following operably linked DNA fragments: [0026] a plant-expressible promoter; [0027] a DNA region, which when transcribed yields a ParG inhibitory RNA molecule; [0028] a 3' end region involved in transcription termination and polyadenylation;

[0029] regenerating a population of transgenic plant lines from said transgenic plant cell; and

[0030] identifying a stress tolerant plant line within said population of transgenic plant lines.

[0031] As used herein "a stress tolerant plant" or "a plant tolerant to stress conditions or adverse growing conditions" is a plant (particularly a plant obtained according to the methods of the invention), which, when subjected to adverse growing conditions for a period of time, such as but not limited to drought, high temperatures, limited supply of nutrients (particularly nitrogen), high light intensities, grows better than a control plant not treated according to the methods of the invention. This will usually be apparent from the general appearance of the plants and may be measured e.g., by increased biomass production, continued vegetative growth under adverse conditions or higher seed yield. Stress tolerant plant have a broader growth spectrum, i.e. they are able to withstand a broader range of climatological and other abiotic changes, without yield penalty. Biochemically, stress tolerance may be apparent as the higher NAD.sup.+-NADH/ATP content and lower production of reactive oxygen species of stress tolerant plants compared to control plants under stress condition. Stress tolerance may also be apparent as the higher chlorophyll content, higher photosynthesis and lower chlorophyll fluorescence under stress conditions in stress tolerant plants compared to control plants under the same conditions.

[0032] It will be clear that it is also not required that the plant be grown continuously under the adverse conditions for the stress tolerance to become apparent. Usually, the difference in stress tolerance between a plant or plant cell according to the invention and a control plant or plant cell will become apparent even when only a relatively short period of adverse conditions is encountered during growth.

[0033] As used herein, a "ParG inhibitory RNA molecule" is an RNA molecule that is capable of decreasing the expression of the endogenous PARG encoding genes of a plant cell, preferably through post-transcriptional silencing. It will be clear that even when a ParG inhibitory RNA molecule decreases the expression of a PARG encoding gene through post-transcriptional silencing, such an RNA molecule may also exert other functions within a cell, such as e.g. guiding DNA methylation of the endogenous ParG gene, again ultimately leading to decreased expression of the PARG encoding gene. Also, expression of the endogenous PARG encoding genes of a plant cell may be reduced by transcriptional silencing, e.g., by using RNAi or dsRNA targeted against the promoter region of the endogenous ParG gene.

[0034] As used herein, a "PARG encoding gene" or a "ParG gene" is a gene capable of encoding a PARG (poly ADP ribose glycohydrolase) protein, wherein the PARG protein catalyzes the depolymerization of poly ADP-ribose, by releasing free ADP ribose units either by endoglycolytic or exoglycolytic action.

[0035] PARG encoding genes may comprise a nucleotide sequence encoding a protein comprising the amino acid sequence of SEQ ID No 1 (Arabidopsis thaliana) or of SEQ ID No 2 (Solanum tuberosum) or of SEQ ID No 16 (Oryza sativa) or parts thereof, such as a DNA fragment comprising the nucleotide sequence of SEQ ID No 3 or SEQ ID 4 or SEQ ID No 15. or SEQ ID 23 (Zea mays).

[0036] However, it will be clear that the skilled person can isolate variant DNA sequences from other plant species, by hybridization with a probe derived from the above mentioned PARG encoding genes from plant species, or even with a probe derived from the above mentioned PARG encoding genes from animal species. To this end, the probes should preferably have a nucleotide sequence comprising at least 40 consecutive nucleotides from the coding region of those mentioned PARG encoding genes sequences, preferably from the coding region of SEQ ID No 3 or SEQ ID No 4. The probes may however comprise longer regions of nucleotide sequences derived from the ParG genes, such as about 50, 60, 75, 100, 200 or 500 consecutive nucleotides from any of the mentioned ParG genes. Preferably, the probe should comprise a nucleotide sequence coding for one of the highly conserved regions of the catalytic domain, which have been identified by aligning the different PARG proteins from animals. These regions are also present in the identified PARG protein from Arabidopsis thaliana and comprise the amino acid sequence LXVDFANXXXGGG (corresponding to SEQ ID No 1 from the amino acid at position 252 to the amino acid at position 264; X may be any amino acid) LXVDFANXXXGGGXXXXGXVQEEIRF (corresponding to SEQ ID No 1 from the amino acid at position 252 to the amino acid at position 277) or LXVDFANXXXGGGXXXXGXVQEEIRFXXXPE (corresponding to SEQ ID No 1 from the amino acid at position 252 to the amino acid at position 282), TGXWGCGXFXGD (corresponding to SEQ ID No 1 from the amino acid at position 449 to the amino acid at position 460) or TGXWGCGAFXGDXXLKXXXQ (corresponding to SEQ ID No 1 from the amino acid at position 449 to the amino acid at position 468). Other conserved regions have the amino acid sequence DXXXRXXXXAIDA (corresponding to SEQ ID No 1 from the amino acid at position 335 to the amino acid at position 344) or REXXKAXXGF (corresponding to SEQ ID No 1 from the amino acid at position 360 to the amino acid at position 369) or GXXXXSXYTGY (corresponding to SEQ ID No 1 from the amino acid at position 303 to the amino acid at position 313). Hybridization should preferably be under stringent conditions.

[0037] "Stringent hybridization conditions" as used herein mean that hybridization will generally occur if there is at least 95% and preferably at least 97% sequence identity between the probe and the target sequence. Examples of stringent hybridization conditions are overnight incubation in a solution comprising 50% formamide, 5.times.SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5.times. Denhardt's solution, 10% dextran sulfate, and 20 .mu.g/ml denatured, sheared carrier DNA such as salmon sperm DNA, followed by washing the hybridization support in 0.1.times.SSC at approximately 65.degree. C., e.g. for about 10 min (twice). Other hybridization and wash conditions are well known and are exemplified in Sambrook et al, Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y. (1989), particularly chapter 11.

[0038] Alternatively, ParG encoding genes or parts thereof may also be isolated by PCR based techniques, using as primers oligonucleotides comprising at least 20 consecutive nucleotides from a nucleotide sequence of the mentioned PARG encoding genes or the complement thereof. Such primers may comprise a nucleotide sequence encoding a conserved region, as mentioned above, or be complementary to such a nucleotide sequence. Oligonucleotides which may be used for that purpose may comprise the nucleotide sequence of either or SEQ ID No. 5, SEQ ID No 6., SEQ ID No. 7 or SEQ ID No. 8. Oligonucleotides which may be used may also be degenerate, such as the oligonucleotide primers of SEQ ID No 17, SEQ ID No 18, SEQ ID No 19; SEQ ID No 20, SEQ ID No 21 or SEQ ID No 22.

[0039] Specific PCR fragments from ParG genes may e.g., be obtained by using combinations of the oligonucleotides having the nucleotide sequence of SEQ ID No. 5 and SEQ ID No 6 using e.g., Arabidopsis genomic DNA or cDNA as a template DNA, or by using combinations of the oligonucleotides having the nucleotide sequence of SEQ ID No. 7 and SEQ ID No 8 using e.g., potato genomic DNA or cDNA as a template DNA, under stringent annealing conditions.

[0040] The isolated sequences may encode a functional PARG protein or a part thereof. Preferably the isolated sequences should comprise a nucleotide sequence coding for one or more of the highly conserved regions from the catalytic domain of PARG proteins as mentioned elsewhere.

[0041] However, for the purpose of the invention is not required that the isolated sequences encode a functional ParG protein nor that a complete coding region is isolated. Indeed, all that is required for the invention is that a chimeric gene can be designed or produced, based on the identified or isolated sequence of the endogenous ParG gene from a plant, which is capable of producing a ParG inhibitory RNA. Several alternative methods are available to produce such a ParG inhibitory RNA molecule.

[0042] In one embodiment, the ParG inhibitory RNA molecule encoding chimeric gene is based on the so-called antisense technology. In other words, the coding region of the chimeric gene comprises a nucleotide sequence of at least 20 consecutive nucleotides of the complement of the nucleotide sequence of the endogenous ParG gene of the plant cell or plant, the expression of which is targeted to be reduced. Such a chimeric gene may be conveniently constructed by operably linking a DNA fragment comprising at least 20 nucleotides from the isolated or identified ParG gene, or part of such a gene, in inverse orientation, to a plant expressible promoter and 3'end formation region involved in transcription termination and polyadenylation. It will be immediately clear that there is no need to know the exact nucleotide sequence or complete nucleotide sequence of such a DNA fragment from an isolated ParG gene.

[0043] In another embodiment the ParG inhibitory RNA molecule encoding chimeric gene is based on the so-called co-suppression technology. In other words, the coding region of the chimeric gene comprises a nucleotide sequence of at least 20 consecutive nucleotides of the nucleotide sequence of the endogenous ParG gene of the plant cell or plant, the expression of which is targeted to be reduced. Such a chimeric gene may be conveniently constructed by operably linking a DNA fragment comprising at least 20 nucleotides from the isolated or identified ParG gene, or part of such a gene, in direct orientation, to a plant expressible promoter and 3'end formation region involved in transcription termination and polyadenylation. Again it is not required to know the exact nucleotide sequence of the used DNA fragment from the isolated ParG gene.

[0044] The efficiency of the above mentioned chimeric genes in reducing the expression of the endogenous ParG gene may be further enhanced by inclusion of DNA elements which result in the expression of aberrant, unpolyadenylated ParG inhibitory RNA molecules. One such DNA element suitable for that purpose is a DNA region encoding a self-splicing ribozyme, as described in WO 00/01133.

[0045] The efficiency or the above mentioned chimeric genes in reducing the expression of the endogenous ParG gene of a plant cell may also be further enhanced by including into one plant cell simultaneously a chimeric gene as herein described encoding a antisense ParG inhibitory RNA molecule and a chimeric gene as herein described encoding a sense ParG inhibitory RNA molecule, wherein said antisense and sense ParG inhibitory RNA molecules are capable of forming a double stranded RNA region by base pairing between the mentioned at least 20 consecutive nucleotides, as described in WO 99/53050.

[0046] As further described in WO 99/53050, the sense and antisense ParG inhibitory RNA regions, capable of forming a double stranded RNA region may be present in one RNA molecule, preferably separated by a spacer region. The spacer region may comprise an intron sequence. Such a chimeric gene may be conveniently constructed by operably linking a DNA fragment comprising at least 20 nucleotides from the isolated or identified endogenous ParG gene, the expression of which is targeted to be reduced, in an inverted repeat, to a plant expressible promoter and 3' end formation region involved in transcription termination and polyadenylation. To achieve the construction of such a chimeric gene, use can be made of the vectors described in WO 02/059294

[0047] An embodiment of the invention thus concerns a method for obtaining a stress tolerant plant line comprising the steps of

[0048] providing plant cells with a chimeric gene to create transgenic plant cells, wherein the chimeric gene comprises the following operably linked DNA fragments: [0049] a plant-expressible promoter, [0050] a DNA region, which when transcribed yields a ParG inhibitory RNA molecule comprising a nucleotide sequence of at least 20 consecutive nucleotides of the nucleotide sequence of the ParG gene present in said plant cell; or [0051] a DNA region, which when transcribed yields a ParG inhibitory RNA molecule comprising a nucleotide sequence of at least 20 consecutive nucleotides of the complement of the nucleotide sequence of the ParG gene present in said plant cell; or [0052] a DNA region, which when transcribed yields a ParG inhibitory RNA molecule comprising a sense region comprising a nucleotide sequence of at least 20 consecutive nucleotides of the nucleotide sequence of the ParG gene present in said plant cell and an antisense region comprising a nucleotide sequence of at least 20 consecutive nucleotides of the complement of the nucleotide sequence of the ParG gene present in said plant cell, wherein said sense and antisense region are capable of forming a double stranded RNA region comprising said at least 20 consecutive nucleotides. [0053] a 3' end region involved in transcription termination and polyadenylation;

[0054] regenerating a population of transgenic plant lines from said transgenic plant cell; and

[0055] identifying a stress tolerant plant line within said population of transgenic plant lines.

[0056] As used herein "comprising" is to be interpreted as specifying the presence of the stated features, integers, steps or components as referred to, but does not preclude the presence or addition of one or more features, integers, steps or components, or groups thereof. Thus, e.g., a nucleic acid or protein comprising a sequence of nucleotides or amino acids, may comprise more nucleotides or amino acids than the actually cited ones, i.e., be embedded in a larger nucleic acid or protein. A chimeric gene comprising a DNA region which is functionally or structurally defined, may comprise additional DNA regions etc.

[0057] It will thus be clear that the minimum nucleotide sequence of the antisense or sense RNA region of about 20 nt of the ParG coding region may be comprised within a larger RNA molecule, varying in size from 20 nt to a length equal to the size of the target gene.

[0058] The mentioned antisense or sense nucleotide regions may thus be about from about 21 nt to about 5000 nt long, such as 21 nt, 40 nt, 50 nt, 100 nt, 200 nt, 300 nt, 500 nt, 1000 nt, 2000 nt or even about 5000 nt or larger in length.

[0059] Moreover, it is not required for the purpose of the invention that the nucleotide sequence of the used inhibitory ParG RNA molecule or the encoding region of the chimeric gene, is completely identical or complementary to the endogenous ParG gene the expression of which is targeted to be reduced in the plant cell. The longer the sequence, the less stringent the requirement for the overall sequence identity is. Thus, the sense or antisense regions may have an overall sequence identity of about 40% or 50% or 60% or 70% or 80% or 90% or 100% to the nucleotide sequence of the endogenous ParG gene or the complement thereof. However, as mentioned antisense or sense regions should comprise a nucleotide sequence of 20 consecutive nucleotides having about 100% sequence identity to the nucleotide sequence of the endogenous ParG gene. Preferably the stretch of about 100% sequence identity should be about 50, 75 or 100 nt.

[0060] For the purpose of this invention, the "sequence identity" of two related nucleotide sequences, expressed as a percentage, refers to the number of positions in the two optimally aligned sequences which have identical residues (.times.100) divided by the number of positions compared. A gap, i.e. a position in an alignment where a residue is present in one sequence but not in the other is regarded as a position with non-identical residues. The alignment of the two sequences is performed by the Needleman and Wunsch algorithm (Needleman and Wunsch 1970) Computer-assisted sequence alignment, can be conveniently performed using standard software program such as GAP which is part of the Wisconsin Package Version 10.1 (Genetics Computer Group, Madison, Wis., USA) using the default scoring matrix with a gap creation penalty of 50 and a gap extension penalty of 3.

[0061] It will be clear that whenever nucleotide sequences of RNA molecules are defined by reference to nucleotide sequence of corresponding DNA molecules, the thymine (T) in the nucleotide sequence should be replaced by uracil (U). Whether reference is made to RNA or DNA molecules will be clear from the context of the application.

[0062] It will also be clear that chimeric genes capable of producing inhibitory ParG genes for a particular ParG gene in a particular plant variety or plant species, may also be used to inhibit ParG gene expression in other plant varieties or plant species. Indeed, when sufficient homology exists between the ParG inhibitory RNA region and the ParG gene, or when the ParG genes share the same stretch of 19 nucleotides, expression of those other genes will also be down-regulated.

[0063] In view of the potential role of ParG in nucleic acid metabolism, it may be advantageous that the expression of the endogenous ParG gene by the ParG inhibitory RNA is not completely inhibited. Downregulating the expression of a particular gene by gene silencing through the introduction of a chimeric gene encoding ParG inhibitory RNA will result in a population of different transgenic lines, exhibiting a distribution of different degrees of silencing of the ParG gene. The population will thus contain individual transgenic plant lines, wherein the endogenous ParG gene is silenced to the required degree of silencing. A person skilled in the art can easily identify such plant lines, e.g. by subjecting the plant lines to a particular adverse condition, such a high light intensity, oxidative stress, drought, heat etc. and selecting those plants which perform satisfactory and survive best the treatment.

[0064] As used herein, the term "promoter" denotes any DNA which is recognized and bound (directly or indirectly) by a DNA-dependent RNA-polymerase during initiation of transcription. A promoter includes the transcription initiation site, and binding sites for transcription initiation factors and RNA polymerase, and can comprise various other sites (e.g., enhancers), at which gene expression regulatory proteins may bind.

[0065] The term "regulatory region", as used herein, means any DNA, that is involved in driving transcription and controlling (i.e., regulating) the timing and level of transcription of a given DNA sequence, such as a DNA coding for a protein or polypeptide. For example, a 5' regulatory region (or "promoter region") is a DNA sequence located upstream (i.e., 5') of a coding sequence and which comprises the promoter and the 5'-untranslated leader sequence. A 3' regulatory region is a DNA sequence located downstream (i.e., 3') of the coding sequence and which comprises suitable transcription termination (and/or regulation) signals, including one or more polyadenylation signals.

[0066] In one embodiment of the invention the promoter is a constitutive promoter. In another embodiment of the invention, the promoter activity is enhanced by external or internal stimuli (inducible promoter), such as but not limited to hormones, chemical compounds, mechanical impulses, abiotic or biotic stress conditions. The activity of the promoter may also regulated in a temporal or spatial manner (tissue-specific promoters; developmentally regulated promoters).

[0067] For the purpose of the invention, the promoter is a plant-expressible promoter. As used herein, the term "plant-expressible promoter" means a DNA sequence which is capable of controlling (initiating) transcription in a plant cell. This includes any promoter of plant origin, but also any promoter of non-plant origin which is capable of directing transcription in a plant cell, i.e., certain promoters of viral or bacterial origin such as the CaMV35S (Hapster et al., 1988), the subterranean clover virus promoter No 4 or No 7 (WO9606932), or T-DNA gene promoters but also tissue-specific or organ-specific promoters including but not limited to seed-specific promoters (e.g., WO89/03887), organ-primordia specific promoters (An et al., 1996), stem-specific promoters (Keller et al., 1988), leaf specific promoters (Hudspeth et al., 1989), mesophyl-specific promoters (such as the light-inducible Rubisco promoters), root-specific promoters (Keller et al., 1989), tuber-specific promoters (Keil et al., 1989), vascular tissue specific promoters (Peleman et al., 1989), stamen-selective promoters (WO 89/10396, WO 92/13956), dehiscence zone specific promoters (WO 97/13865) and the like.

[0068] Methods for the introduction of chimeric genes into plants are well known in the art and include Agrobacterium-mediated transformation, particle gun delivery, microinjection, electroporation of intact cells, polyethyleneglycol-mediated protoplast transformation, electroporation of protoplasts, liposome-mediated transformation, silicon-whiskers mediated transformation etc. The transformed cells obtained in this way may then be regenerated into mature fertile plants.

[0069] The transgenic plant cells and plant lines according to the invention may further comprise chimeric genes which will reduce the expression of PARP genes as described in WO 00/04173. These further chimeric genes may be introduced e.g. by crossing the transgenic plant lines of the current invention with transgenic plants containing PARP gene expression reducing chimeric genes. Transgenic plant cells or plant lines may also be obtained by introducing or transforming the chimeric genes of the invention into transgenic plant cells comprising the PARP gene expression reducing chimeric genes or vice versa. Alternatively, the PARP and PARG inhibitory RNA regions may be encoded by one chimeric gene and transcribed as one RNA molecule.

[0070] The chimeric genes of the invention (or the inhibitory RNA molecules corresponding thereto) may also be introduced into plant cells in a transient manner, e.g. using the viral vectors, such as viral RNA vectors as described in WO 00/63397 or WO 02/13964.

[0071] Having read this specification, it will be immediately clear to the skilled artisan, that mutant plant cells and plant lines, wherein the PARG activity is reduced may be used to the same effect as the transgenic plant cells and plant lines described herein. Mutants in ParG gene of a plant cell or plant may be easily identified using screening methods known in the art, whereby chemical mutagenesis, such as e.g., EMS mutagenesis, is combined with sensitive detection methods (such as e.g., denaturing HPLC). An example of such a technique is the so-called "Targeted Induced Local Lesions in Genomes" method as described in McCallum et al, Plant Physiology 123 439-442 or WO 01/75167. However, other methods to detect mutations in particular genome regions or even alleles, are also available and include screening of libraries of existing or newly generated insertion mutant plant lines, whereby pools of genomic DNA of these mutant plant lines are subjected to PCR amplification using primers specific for the inserted DNA fragment and primers specific for the genomic region or allele, wherein the insertion is expected (see e.g. Maes et al., 1999, Trends in Plant Science, 4, pp 90-96).

[0072] Plant cell lines and plant lines may also be subjected to mutagenesis by selection for resistance to ParG inhibitors, such as gallotannines. (Ying, et al. (2001). Proc. Natl. Acad. Sci. USA 98(21), 12227-12232; Ying, W., Swanson, R. A. (2000). NeuroReport 11 (7), 1385-1388.

[0073] Thus, methods are available in the art to identify plant cells and plant lines comprising a mutation in the ParG gene. This population of mutant cells or plant lines can then be subjected to different abiotic stresses, and their phenotype or survival can be easily determined. Additionally, the NAD and/or the ATP content of the stressed cells can be determined and compared to results of such determinations of unstressed cells. In stress tolerant cells, the reduction of NAD content under stress conditions should when compared with unstressed cells, should be lower than for corresponding control cells.

[0074] It is also an object of the invention to provide plant cells and plants containing the chimeric genes or the RNA molecules according to the invention. Gametes, seeds, embryos, either zygotic or somatic, progeny or hybrids of plants comprising the chimeric genes of the present invention, which are produced by traditional breeding methods are also included within the scope of the present invention.

[0075] The plants obtained by the methods described herein may be further crossed by traditional breeding techniques with other plants to obtain stress tolerant progeny plants comprising the chimeric genes of the present invention.

[0076] The methods and means described herein are believed to be suitable for all plant cells and plants, both dicotyledonous and monocotyledonous plant cells and plants including but not limited to cotton, Brassica vegetables, oilseed rape, wheat, corn or maize, barley, alfalfa, peanuts, sunflowers, rice, oats, sugarcane, soybean, turf grasses, barley, rye, sorghum, sugar cane, vegetables (including chicory, lettuce, tomato, zucchini, bell pepper, eggplant, cucumber, melon, onion, leek), tobacco, potato, sugarbeet, papaya, pineapple, mango, Arabidopsis thaliana, but also plants used in horticulture, floriculture or forestry (poplar, fir, eucalyptus etc.).

[0077] The following non-limiting Examples describe method and means for increasing stress tolerance in plants according to the invention.

[0078] Unless stated otherwise in the Examples, all recombinant DNA techniques are carried out according to standard protocols as described in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, NY and in Volumes 1 and 2 of Ausubel et al. (1994) Current Protocols in Molecular Biology, Current Protocols, USA. Standard materials and methods for plant molecular work are described in Plant Molecular Biology Labfax (1993) by R. D. D. Croy, jointly published by BIOS Scientific Publications Ltd (UK) and Blackwell Scientific Publications, UK. Other references for standard molecular biology techniques include Sambrook and Russell (2001) Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press, NY, Volumes I and II of Brown (1998) Molecular Biology LabFax, Second Edition, Academic Press (UK). Standard materials and methods for polymerase chain reactions can be found in Dieffenbach and Dveksler (1995) PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, and in McPherson at al. (2000) PCR--Basics: From Background to Bench, First Edition, Springer Verlag, Germany.

[0079] Throughout the description and Examples, reference is made to the following sequences:

[0080] SEQ ID No. 1: amino acid sequence of the ParG protein from Arabidopsis thaliana.

[0081] SEQ ID No. 2: amino acid sequence of part of the ParG protein from Solanum tuberosum.

[0082] SEQ ID No. 3: nucleotide sequence encoding the ParG protein from Arabidopsis thaliana.

[0083] SEQ ID No. 4: nucleotide sequence encoding the part of the ParG protein from Solanum tuberosum.

[0084] SEQ ID No. 5: nucleotide sequence of an oligonucleotide primer suitable for PCR amplification of part of a ParG protein encoding DNA fragment.

[0085] SEQ ID No. 6: nucleotide sequence of an oligonucleotide primer suitable for PCR amplification of part of a ParG protein encoding DNA fragment.

[0086] SEQ ID No. 7: nucleotide sequence of an oligonucleotide primer suitable for PCR amplification of part of a ParG protein encoding DNA fragment.

[0087] SEQ ID No. 8: nucleotide sequence of an oligonucleotide primer suitable for PCR amplification of part of a ParG protein encoding DNA fragment.

[0088] SEQ ID No. 9: nucleotide sequence of the T-DNA vector containing the ParG expression reducing chimeric gene based on the Arabidopsis ParG gene sequence.

[0089] SEQ ID No. 10: amino acid sequence of conserved sequence 1 of PARG proteins.

[0090] SEQ ID No. 11: amino acid sequence of conserved sequence 2 of PARG proteins.

[0091] SEQ ID No. 12: amino acid sequence of conserved sequence 3 of PARG proteins.

[0092] SEQ ID No. 13: amino acid sequence of conserved sequence 4 of PARG proteins.

[0093] SEQ ID No. 14: amino acid sequence of conserved sequence 5 of PARG proteins.

[0094] SEQ ID No. 15: nucleotide sequence of the ParG protein from Oryza sativa.

[0095] SEQ ID No. 16: amino acid sequence of the ParG protein from Oryza sativa.

[0096] SEQ ID No. 17: nucleotide sequence of an oligonucleotide primer PG1 suitable for PCR amplification of part of a ParG protein encoding DNA fragment.

[0097] SEQ ID No. 18: nucleotide sequence of an oligonucleotide primer PG2 suitable for PCR amplification of part of a ParG protein encoding DNA fragment.

[0098] SEQ ID No. 19: nucleotide sequence of an oligonucleotide primer PG3 suitable for PCR amplification of part of a ParG protein encoding DNA fragment.

[0099] SEQ ID No. 20: nucleotide sequence of an oligonucleotide primer PG4 suitable for PCR amplification of part of a ParG protein encoding DNA fragment.

[0100] SEQ ID No. 21: nucleotide sequence of an oligonucleotide primer PG5 suitable for PCR amplification of part of a ParG protein encoding DNA fragment.

[0101] SEQ ID No. 22: nucleotide sequence of an oligonucleotide primer PG6 suitable for PCR amplification of part of a ParG protein encoding DNA fragment.

[0102] SEQ ID No. 23: nucleotide sequence encoding a ParG protein from Zea mays.

[0103] SEQ ID No. 24: nucleotide sequence of a T-DNA vector comprising a chimeric gene capable of reducing PARG expression

[0104] SEQ ID No. 25: nucleotide sequence of a T-DNA vector comprising a chimeric gene capable of reducing PARG expression

EXAMPLES

Example 1

Analysis of the Influence of Stress on Energy Production Efficiency of Transgenic Stress Tolerant Plant Lines Containing PARP Gene Expresssion Reducing Chimeric Genes

[0105] Hypocotyls of transgenic Brassica napus plants comprising PARP gene expression reducing chimeric genes as described in WO 00/04173 were cultivated for 5 days on a growth medium. Explants were then transferred to liquid medium comprising 30 mg/L aspirin or acetylsalicylic acid (resulting in oxidative stress conditions) for one day. In control experiments, hypocotyls of non-transgenic Brassica napus plants N90-740 were cultivated on the same growth medium and then incubated for one day in liquid medium comprising 30 mg/L aspirin. In addition, hypocotyls of both the transgenic lines and the control line were cultivated on the same growth medium without aspirin.

[0106] After the cultivation period, the ATP content of 125 explants was determined for each experiment. Additionally, the oxygen consumed in 3 hours by 125 explants was determined. The results are summarized in Table 1. The standard error of the mean was less than 6%. Whereas, the ratio of moles ATP per mg consumed oxygen in the control plants decreased in the control plants when oxidative stress was applied, the same ratio in the stress tolerant transgenic plant lines actually increased under stress conditions, and was considerably higher (about 24%) than in the control plants. The stress resistant transgenic lines thus maintained an constant energy production efficiency, whereas the control lines exhibited an decreased energy production efficiency. In addition, superoxide production, expressed as a percentage of superoxide production in control plants not subjected to the oxidative stress, did not increase in stress tolerant plants subjected to stress conditions. TABLE-US-00001 TABLE 1 Influence of stress on energy production efficiency of 5 days cultured Brassica napus hypocotyl explants. O.sub.2 moles mg/L ATP moles consumed mg ATP in 3 hrs con- per 125 by 125 sumed Superoxide Plant line Stress explants explants O.sub.2 production N90-740 None 12.4 .times. 2.96 4.19 .times. 100% (control) 10.sup.-7 10.sup.-7 30 mg/L 13.2 .times. 4.06 3.25 .times. 167% aspirin 10.sup.-7 10.sup.-7 Transgenic None 9.3 .times. 2.33 3.99 .times. 108% line 10.sup.-7 10.sup.-7 30 mg/L 11.4 .times. 2.82 4.04 .times. 100% aspirin 10.sup.-7 10.sup.-7

[0107] In another experiment, the NAD+ and ATP content of 4 different transgenic Arabidopsis lines comprising PARP gene expression reducing chimeric genes as described in WO 00/04173 were determined under high and low light conditions, and compared to the values obtained for a non transformed control line under the same conditions. The 4 different lines exhibited different degrees of stress resistance as exhibited e.g. by their ability to withstand heat and/or drought conditions. The values obtained for the NAD and ATP contents under high light stress are expressed as a percentage of the values for the NAD and ATP contents under low light conditions, and are plotted in FIG. 2.

[0108] The results show that high light stress leads to a significant NAD reduction in control plant cells and in the transgenic plant line which is the least stress resistant. The more stress resistant the transgenic plant lines are, the less signicifant the NAD reduction is under high light stress conditions.

[0109] In another experiment, the NAD+ and ATP content of a segregating population resulting from a cross between transgenic corn lines comprising PARP gene expression reducing chimeric genes as described in WO 00/04173 and an untransformed corn line, were determined under conditions of nutrient (nitrogen) depletion, and compared to the values obtained for a non transformed control line under the same conditions. FIG. 3 is a graphic representation of the of the obtained results. Hemizygous and azygous lines were discriminated by verification for the presence of the selectable marker gene. The NAD and ATP content was significantly higher in the hemizygous, stress tolerant plants than in the untransformed control plants or the azygous plants.

Example 2

Construction of ParG Gene Expression Reducing Chimeric Genes

[0110] To reduce the expression of the PARG gene e.g. in Arabidopsis and related plants, a chimeric gene was constructed which is capable expressing a dsRNA comprising both a sense and antisense region which can form a double stranded RNA. Such dsRNA is very effective in reducing the expression of the genes with which is shares sequence homology, by post-transcriptional silencing. The chimeric gene comprises the following DNA fragments: [0111] A promoter region from Cauliflower mosaic Virus (CaMV 35S); [0112] A DNA fragment comprising 163 bp from the ParG gene from Arabidopsis thaliana in direct orientation (Genbank Accession number AF394690 from nucleotide position 973 to 1135); [0113] A DNA fragment encoding intron 2 from the pdk gene from Flaveria; [0114] The DNA fragment comprising 163 bp from the ParG gene from Arabidopsis thaliana in inverted orientation (Genbank Accession number AF394690 from nucleotide position 973 to 1135) [0115] A fragment of the 3' untranslated end from the octopine synthetase gene from Agrobacterium tumefaciens.

[0116] This chimeric gene was introduced in a T-DNA vector, between the left and right border sequences from the T-DNA, together with a selectable marker gene providing resistance to the herbicide phosphinotricin.

[0117] To reduce the expression of the PARG gene e.g. in potatoes and related plants, a chimeric gene is constructed which is capable expressing a dsRNA comprising both a sense and antisense region of a cDNA sequence from potato, that is capable of encoding a protein having high sequence identity with the N-terminal part of the Arabidopsis PARG protein. The chimeric gene comprises the following DNA fragments: [0118] A promoter region from Cauliflower mosaic Virus (CaMV 35S); [0119] A DNA fragment comprising a sequence of at least 100 bp from ParG homologue from Solanum tuberosum in direct orientation (Genbank Accession number BE340510); [0120] A DNA fragment encoding intron 2 from the pdk gene from Flaveria; [0121] The DNA fragment comprising the sequence of at least 100 bp from ParG homologue from Solanum tuberosum in inverted orientation (Genbank Accession number BE340510); [0122] A fragment of the 3' untranslated end from the octopine synthetase gene from Agrobacterium tumefaciens

[0123] This chimeric gene is introduced in a T-DNA vector, between the left and right border sequences from the T-DNA, together with a selectable marker gene providing resistance to the herbicide phosphinotricin.

Example 3

Analysis of Transgenic Plant Lines Comprising ParG Gene Expression Reducing Chimeric Genes

[0124] The chimeric genes of Example 2 are introduced into Arabidopsis or potato respectively, by Agrobacterium mediated transformation.

[0125] The population of obtained transgenic lines is subjected to the following stress conditions, together with control plants: [0126] Increased heat for a period of days (greenhouse) or hours (in vitro) [0127] Drought for a period of days [0128] High light conditions for a period of days [0129] Nutrient depletion

[0130] Individual plant lines surviving well the above mendioned stress conditions are selected.

[0131] The NAD content and ATP content for the above mentioned plants is determined under control and stress conditions.

Example 4

Quantitative Determination of NAD, ATP and Superoxide Radicals in Plant Cells

[0132] Quantification of ATP in plant tissues was done basically as decribed by Rawyler et al. (1999), Plant Physiol. 120, 293-300. The assay was used for the determination of the ATP content of hypocotyl explants that were cultured for 4-5 days on A2S3 medium or 2 weeks old in vitro cultured Arabidopsis plants. All manipulations are performed on crushed ice unless otherwhise indicated.

[0133] ATP Extraction [0134] Freeze plant material with liquid nitrogen [0135] 100 hypocotyl explants [0136] .+-.700 mg Arabidopsis plants (roots+shoots) (about 32-37 18-days old C24 plants) [0137] Put frozen hypocotyls in mortar and add 6 ml of 6% perchloric acid. [0138] Extraction can be done at room temperature using a pestle. After extraction, put samples as soon as possible on ice. [0139] Centrifuge at 24,000 g (Sorvall, SS34 rotor at 14,000 rpm) for 10 min. at 4.degree. C. [0140] The supernatant is neutralized with 5M K.sub.2CO.sub.3 (add 350 .mu.l of 5M K.sub.2CO.sub.3 to 3 ml of supernatant). [0141] KClO.sub.4 is removed by spinning as described above.

[0142] Quantitative bioluminescent determination of ATP [0143] The ATP bioluminescent assay kit from Sigma is used (FL-M). [0144] Dilute extract 6000.times.(about 6 mL extract from which 100 .mu.l is taken, that is diluted 1000 times) The dilutions are made with the `ATP assay mix dilution buffer` (FL-AAB) of the ATP bioluminescent assay kit [0145] The amount of light that is produced is measured with the TD-20/20 luminometer of Turner Designs (Sunnyvale, USA). [0146] Standard curve: disolve ATP standard of kit (FL-MS) in 10 ml of water (2.times.10.sup.-6 moles)

[0147] Quantification of NAD+ and NADH in plant tissues was performed, essentially as described by Karp et al. (1983) or Filipovic et al. (1999) on the following plant material: [0148] Brassica napus: 150 5-days cultured hypocotyl explants/sample Arabidopsis: 1000 mg 18-days old in vitro grown plants (shoots+roots)/sample (corresponds to .+-.60 C24 plants)

[0149] Assay Solution [0150] (A) For measuring NADH: [0151] 25 mM potassium phosphate buffer pH7 [0152] 0.1 mM DTT [0153] 3 .mu.M FMN (Fluka, 83810) [0154] 30 .mu.M n-decanal (Sigma, D-7384) [0155] (B) For measuring NAD.sup.++NADH: [0156] idem as for measuring NADH alone+2 .mu.g/mL alcohol dehydrogenase (Roche, 102 717)

[0157] Extraction [0158] Freeze with liquid nitrogen [0159] Put frozen plant material in cooled mortar (cooled at -20.degree. C.) and add 5 mL extraction buffer [0160] Grind material using a pestle [0161] Centrifuge at 24 000 g (Sorvall, SS34 rotor at 14 000 rpm) for 15 minutes at 4.degree. C. [0162] Take 1 mL of supernatant for analysis

[0163] Assay

NADH

[0164] 390 .mu.L of assay solution A [0165] +10 .mu.L extract [0166] +2 .mu.L NAD(P)H:FMN oxidoreductase [0167] +100 .mu.L luciferase solution NAD.sup.++NADH [0168] 390 .mu.L of assay solution B [0169] +10 .mu.L extract [0170] 2 minutes at room temperature [0171] +2 .mu.L NAD(P)H:FMN oxidoreductase [0172] +100 .mu.L luciferase solution The amount of light that is produced is measured with the TD-20/20 luminometer of Turner Designs (Sunnyvale, USA) NADH-Standard

[0173] NADH stock solution: 1 mM (7.1 mg/10 mL H.sub.2O) [0174] NADH: disodium salt, Roche, 107 735 [0175] Dilution series in 10 mM potassium phosphate buffer pH7: (10.sup.-2); 5.times.10.sup.-3; [0176] 2.times.10.sup.-3; 10.sup.-3; 5.times.10.sup.-4 [0177] Add 10 .mu.L of dilutions in 390 .mu.L of assay solution A and perform reaction [0178] Make standard curve

[0179] Superoxide radicals production was measured by quantifying the reduction of XTT as described in De Block and De Brouwer (2002) Plant Physiol. Biochem. 40, 845-852

[0180] Brassica Napus

[0181] Media and Reaction Buffers

Sowing Medium (Medium 201):

[0182] Half concentrated Murashige and Skoog salts [0183] 2% sucrose [0184] pH 5.8 [0185] 0.6% agar (Difco Bacto Agar) [0186] 250 mg/l triacillin Callus Inducing Medium A2S3: [0187] MS medium, 0.5 g/l Mes (pH 5.8), 3% sucrose, 40 mg/ adenine-SO.sub.4, [0188] 0.5% agarose, 1 mg/l 2,4-D, 0.25 mg/l NAA, 1 mg/l BAP, 250 mg/l triacillin Incubation Medium: [0189] 25 mM K-phosphate buffer pH5.8 [0190] 2% sucrose [0191] 1 drop Tween20 for 25 ml medium Reaction Buffer [0192] 50 mM K-phosphate buffer pH7.4 [0193] 1 mM sodium, 3'-{1-[phenylamino-carbonyl]-3,4-tetrazolium}-bis(4-methoxy-6-nitro)=XTT (bts, Germany, cat no. 2525) 1 drop Tween20 for 25 ml buffer

[0194] Sterilization of seeds--pregermination of seeds--growing of the seedlings. Seeds are soaked in 70% ethanol for 2 min, then surface-sterilized for 15 min in a sodium hypochlorite solution (with about 6% active chlorine) containing 0.1% Tween20. Finally, the seeds are rinsed with 1l of sterile tap water. Incubate seeds for at least one hour in sterile tap water (to allow diffusion from seeds of components that may inhibit germination). Seeds are put in 250 ml erlenmeyer flasks containing 50 ml of sterile tap water (+250 mg/l triacillin). Shake for about 20 hours. Seeds from which the radicle is protruded are put in Vitro Vent containers from Duchefa containing about 125 ml of sowing medium (10 seeds/vessel, not too many to reduce loss of seed by contamination). The seeds are germinated at .+-.94.degree. C. and 10-30:Einstein/s.sup.-1 m.sup.-2 with a daylength of 16 h.

[0195] Preculture of the hypocotyl explants and induction of stress [0196] 12-14 days after sowing, the hypocotyls are cut in about 7-10 mm segments. [0197] The hypocotyl explants (25 hypocotyls/Optilux Petridish, Falcon S1005, Denmark) are cultured for 5 days on medium A2S3 at 25.degree. C. (at 10-30.quadrature. Einstein/s.sup.-1m.sup.-2).

[0198] XTT-Assay [0199] Transfer 150 hypocotyl explants to a 50 ml Falcon tube. [0200] Wash with reaction buffer (without XTT). [0201] Add 20 mL reaction buffer+XTT. [0202] (explants have to be submerged, but do not vacuum infiltrate) [0203] Incubate in the dark at 26.degree. C. for about 3 hours [0204] Measure the absorption of the reaction medium at 470 nm

[0205] Arabidopsis Thaliana

[0206] Media and reaction buffers

Plant Medium:

[0207] Half concentrated Murashige and Skoog salts [0208] B5 vitamins [0209] 1.5% sucrose [0210] pH 5.8 [0211] 0.7% Difco agar Incubation Medium: [0212] 10 mM K-phosphate buffer pH5.8 [0213] 2% sucrose [0214] 1 drop Tween20 for 25 ml medium Reaction Buffer: [0215] 50 mM K-phosphate buffer pH7.4 [0216] 1 mM sodium, 3'-{1-[phenylamino-carbonyl]-3,4-tetrazolium}-bis(4-methoxy-6-nitro)=XTT (bts, Germany, cat no. 2525) [0217] 1 drop Tween20 for 25 ml buffer

[0218] Arabidopsis Plants [0219] Arabidopsis lines: [0220] control [0221] lines to test [0222] Sterilization of Arabidopsis seeds: [0223] 2 min. 70% ethanol [0224] 10 min. bleach (6% active chlorine)+1 drop Tween 20 for 20 ml [0225] solution [0226] wash 5 times with sterile tap water [0227] Pregermination of seeds: [0228] In 9 cm Optilux Petridishes (Falcon) containing 12 ml sterile tap water. [0229] Low light overnight to 24 hours. [0230] Growing of Arabidopsis plants [0231] Seeds are sown in Intergrid Tissue Culture disks of Falcon (nr. 3025) containing.+-.125 ml of plant medium: 1 seed/grid. [0232] Plants are grown at 24.degree. C. [0233] 30.mu.Einstein s.sup.-1m.sup.-2 [0234] 16 hours light-8 hours dark [0235] for about 3 weeks (before bolting)

[0236] XTT-Assay

Control Condition (No Stress)

[0237] Harvest shoots (roots included) from agar plates and put them directly in a 50 ml Falcon tube containing reaction buffer (without XTT) Stressed Shoots [0238] Transfer shoots to 50 ml Falcon tubes containing reaction buffer (without XTT) [0239] Replace reaction buffer with buffer containing XTT (40 mL/tube) [0240] Shoots have to be submerged, but do not vacuum infiltrate [0241] Incubate in the dark at 26.degree. C. for about 3 hours [0242] Measure the absorption of the reaction medium at 470 nm

[0243] Quantification of respiration by measuring oxygen consumption using a Clark polarographic electrode was done in the following way:

[0244] Plant Material

Brassica napus

[0245] 150-200* hypocotyl explants Cultured for 5 days at 25.degree. C. [0246] (cfr. protocol vigour assay) [0247] * 150 explants error<10%; 200 explants error<6%

[0248] Arabidopsis [0249] For C24.+-.1000 mg* in vitro plants (shoots+roots) (corresponds with [0250] .about.50 18-days old plants) [0251] Pregerminate seeds before sowing [0252] Grow for 18 days at 24.degree. C. [0253] (cfr. protocol in vitro growth Arabidopis) [0254] * for error<8%

[0255] Incubation Media

Brassica napus

[0256] 25 mM K-phosphate buffer pH5.8 [0257] 2% sucrose [0258] Tween20 (1 drop/25 ml) Arabidopsis [0259] 10 mM K-phosphate buffer pH5.8 [0260] 2% sucrose [0261] Tween20 (1 drop/25 ml) Before use, aerate (saturate with oxygen) medium well by stirring for at least a few hours

[0262] Assay [0263] Put explants in 100 ml glass bottle (Schott, Germany) filled with incubation medium. Put the same weight of shoots in each bottle (+700 mg) [0264] Fill bottle to overflowing and close tightly (avoid large air bubbles) [0265] Fill also a bottle with incubation medium that does not contain explants (blanco) [0266] Incubate at 24.degree. C. at low light for: [0267] 34 hours (Brassica napus) [0268] 3 hours (Arabidopsis) [0269] Shake gently during incubation (to avoid oxygen depletion of medium around explants) [0270] Measure oxygen concentration (mg/l) of incubation media using an hand-held dissolved oxygen meter (Cyberscan DO 310; Eutech Instruments, Singapore) [0271] mg/l consumed oxygen=[oxygen]blanco-[oxygen]sample.

Example 5

Analysis of Transgenic Plant Lines Comprising ParG Gene Expression Reducing Chimeric Genes

[0272] The chimeric genes of Example 2 were introduced into Arabidopsis an Nicotiana tabacum c.v. Petit Havana SR1 by Agrobacterium mediated transformation.

[0273] Transgenic seeds were germinated on a medium containing MS salts/2; B5 vitamins; 1.5% sucrose; pH5.8 and 0.7% Difco agar. Germinated seeds were subject to low light (photosynthetic photon flux of about 30 .mu.mol m.sup.-1 s.sup.-1 for 14 to 18 days, after which the light intensity was increased about 6-fold (photosynthetic photon flux of about 190 .mu.mol m.sup.-1 s.sup.-1). After 1 day, the NAD and NADH contents were determined using the enzymatic cycling method (Karp et al. (1983) Anal. Biochem. 128, pp 175-180). A portion of the seedlings were cultivated further under high light conditions for about 3 to about days, after which the damage was scored. Damage was visible as darkening of the young leaves and shoot tip, bleaching of older leaves and growth retardation. The results are summarized in Table 1 for Arabidopsis and in Table 2 for tobacco. TABLE-US-00002 TABLE 1 Analysis of Arabidopsis (Columbia). % NAD + NADH TTC-reducing High light content in 1 gram capacity vs tolerance of tissue (10.sup.-3 .mu.M) control Non-transgenic control S 17.3 100 Transgenic line 9 R 28.2 ND Transgenic line 10 R 31.7 ND Transgenic line 11 .+-.R 26.5 ND Transgenic line 12 S 19.4 ND Transgenic line 26 R 33.2 55 Transgenic line 27 S 21.3 100 Transgenic line 28 .+-.R 26.5 75 Transgenic line 29 S 17.7 102 Transgenic line 30 R 28.3 66 .+-.R indicates that some dark pigmentation was observed. ND: not determined

[0274] TABLE-US-00003 TABLE 2 Analysis of Nicotiana tabacum c.v. Petit Havana SR1. % TTC-reducing High light capacity vs tolerance control Non-transgenic control S 100 Transgenic line 1 R/S 88 Transgenic line 2 .+-.R 79 Transgenic line 3 R 53 .+-.R indicates that some dark pigmentation was observed. R/S indicates tha the resistance phenotype was not very clear.

[0275] There is a positive correlation between the resistance to high light stress in the transgenic plants and the NAD+NADH content of the cells. An inverse correlation can be seen between TTC reducing capacity and high light tolerance.

Example 6

Construction of ParG Gene Expression Reducing Chimeric Genes Suited for Use in Cereal Plants

[0276] To reduce the expression of the PARG gene e.g. in cereals such as rice or corn (maize) and related plants, a chimeric gene is constructed which is capable expressing a dsRNA comprising both a sense and antisense region of nucleotide sequence from rice, that is capable of encoding a protein having high sequence identity with PARG protein encoding nucleotide sequences. The chimeric gene comprises the following DNA fragments: [0277] A promoter region from Cauliflower mosaic Virus (CaMV 35S); [0278] A DNA fragment comprising a sequence of at least 100 bp from ParG homologue from Oryza saliva (SEQ ID No 15) in direct orientation; [0279] A DNA fragment encoding intron 2 from the pdk gene from Flaveria; [0280] A DNA fragment comprising a sequence of at least 100 bp from ParG homologue from Oryza sativa (SEQ ID No 15) in inverted orientation; [0281] A fragment of the 3' untranslated end from the octopine synthetase gene from Agrobacterium tumefaciens.

[0282] This chimeric gene is introduced in a T-DNA vector, between the left and right border sequences from the T-DNA, together with a selectable marker gene providing resistance to e.g. the herbicide phosphinotricin.

[0283] To reduce the expression of the PARG gene e.g. in cereals such as rice or corn (maize) and related plants, a chimeric gene is constructed which is capable expressing a dsRNA comprising both a sense and antisense region of nucleotide sequence from rice, that is capable of encoding a protein having high sequence identity with PARG protein encoding nucleotide sequences. The chimeric gene comprises the following DNA fragments: [0284] A promoter region from Cauliflower mosaic Virus (CaMV 35S); [0285] A DNA fragment comprising a sequence of at least 100 bp from ParG homologue from Zea mays (SEQ ID No 23) in direct orientation; [0286] A DNA fragment encoding intron 2 from the pdk gene from Flaveria; [0287] A DNA fragment comprising a sequence of at least 100 bp from ParG homologue from Zea mays (SEQ ID No 23) in inverted orientation; [0288] A fragment of the 3' untranslated end from the octopine synthetase gene from Agrobacterium tumefaciens.

[0289] This chimeric gene is introduced in a T-DNA vector, between the left and right border sequences from the T-DNA, together with a selectable marker gene providing resistance to e.g. the herbicide phosphinotricin. The nucleotide sequence of two examples of such T-DNA vectors comprising two different chimeric gences as described in the previous paragraph is represented in SEQ ID Nos 24 and 25.

Example 7

Analysis of Transgenic Plant Lines Comprising ParG Gene Expression Reducing Chimeric Genes

[0290] The chimeric genes of Example 6 are introduced into rice or corn respectively, by Agrobacterium mediated transformation.

[0291] The population of obtained transgenic lines is subjected to the following stress conditions, together with control plants: [0292] Increased heat for a period of days (greenhouse) or hours (in vitro) [0293] Drought for a period of days [0294] High light conditions for a period of days [0295] Nutrient depletion

[0296] Individual plant lines surviving well the above mentioned stress conditions, or at least one thereof, are selected.

[0297] The NAD content and ATP content for the above mentioned plants is determined under control and stress conditions.

Sequence CWU 1

1

25 1 548 PRT Arabidopsis thaliana 1 Met Glu Asn Arg Glu Asp Leu Asn Ser Ile Leu Pro Tyr Leu Pro Leu 1 5 10 15 Val Ile Arg Ser Ser Ser Leu Tyr Trp Pro Pro Arg Val Val Glu Ala 20 25 30 Leu Lys Ala Met Ser Glu Gly Pro Ser His Ser Gln Val Asp Ser Gly 35 40 45 Glu Val Leu Arg Gln Ala Ile Phe Asp Met Arg Arg Ser Leu Ser Phe 50 55 60 Ser Thr Leu Glu Pro Ser Ala Ser Asn Gly Tyr Ala Phe Leu Phe Asp 65 70 75 80 Glu Leu Ile Asp Glu Lys Glu Ser Lys Arg Trp Phe Asp Glu Ile Ile 85 90 95 Pro Ala Leu Ala Ser Leu Leu Leu Gln Phe Pro Ser Leu Leu Glu Val 100 105 110 His Phe Gln Asn Ala Asp Asn Ile Val Ser Gly Ile Lys Thr Gly Leu 115 120 125 Arg Leu Leu Asn Ser Gln Gln Ala Gly Ile Val Phe Leu Ser Gln Glu 130 135 140 Leu Ile Gly Ala Leu Leu Ala Cys Ser Phe Phe Cys Leu Phe Pro Asp 145 150 155 160 Asp Asn Arg Gly Ala Lys His Leu Pro Val Ile Asn Phe Asp His Leu 165 170 175 Phe Ala Ser Leu Tyr Ile Ser Tyr Ser Gln Ser Gln Glu Ser Lys Ile 180 185 190 Arg Cys Ile Met His Tyr Phe Glu Arg Phe Cys Ser Cys Val Pro Ile 195 200 205 Gly Ile Val Ser Phe Glu Arg Lys Ile Thr Ala Ala Pro Asp Ala Asp 210 215 220 Phe Trp Ser Lys Ser Asp Val Ser Leu Cys Ala Phe Lys Val His Ser 225 230 235 240 Phe Gly Leu Ile Glu Asp Gln Pro Asp Asn Ala Leu Glu Val Asp Phe 245 250 255 Ala Asn Lys Tyr Leu Gly Gly Gly Ser Leu Ser Arg Gly Cys Val Gln 260 265 270 Glu Glu Ile Arg Phe Met Ile Asn Pro Glu Leu Ile Ala Gly Met Leu 275 280 285 Phe Leu Pro Arg Met Asp Asp Asn Glu Ala Ile Glu Ile Val Gly Ala 290 295 300 Glu Arg Phe Ser Cys Tyr Thr Gly Tyr Ala Ser Ser Phe Arg Phe Ala 305 310 315 320 Gly Glu Tyr Ile Asp Lys Lys Ala Met Asp Pro Phe Lys Arg Arg Arg 325 330 335 Thr Arg Ile Val Ala Ile Asp Ala Leu Cys Thr Pro Lys Met Arg His 340 345 350 Phe Lys Asp Ile Cys Leu Leu Arg Glu Ile Asn Lys Ala Leu Cys Gly 355 360 365 Phe Leu Asn Cys Ser Lys Ala Trp Glu His Gln Asn Ile Phe Met Asp 370 375 380 Glu Gly Asp Asn Glu Ile Gln Leu Val Arg Asn Gly Arg Asp Ser Gly 385 390 395 400 Leu Leu Arg Thr Glu Thr Thr Ala Ser His Arg Thr Pro Leu Asn Asp 405 410 415 Val Glu Met Asn Arg Glu Lys Pro Ala Asn Asn Leu Ile Arg Asp Phe 420 425 430 Tyr Val Glu Gly Val Asp Asn Glu Asp His Glu Asp Asp Gly Val Ala 435 440 445 Thr Gly Asn Trp Gly Cys Gly Val Phe Gly Gly Asp Pro Glu Leu Lys 450 455 460 Ala Thr Ile Gln Trp Leu Ala Ala Ser Gln Thr Arg Arg Pro Phe Ile 465 470 475 480 Ser Tyr Tyr Thr Phe Gly Val Glu Ala Leu Arg Asn Leu Asp Gln Val 485 490 495 Thr Lys Trp Ile Leu Ser His Lys Trp Thr Val Gly Asp Leu Trp Asn 500 505 510 Met Met Leu Glu Tyr Ser Ala Gln Arg Leu Tyr Lys Gln Thr Ser Val 515 520 525 Gly Phe Phe Ser Trp Leu Leu Pro Ser Leu Ala Thr Thr Asn Lys Ala 530 535 540 Ile Gln Pro Pro 545 2 169 PRT Solanum tuberosum 2 Met Glu Asn Arg Glu Asp Val Lys Ser Ile Leu Pro Phe Leu Pro Val 1 5 10 15 Cys Leu Arg Ser Ser Ser Leu Phe Trp Pro Pro Leu Val Val Glu Ala 20 25 30 Leu Lys Ala Leu Ser Glu Gly Pro His Tyr Ser Asn Val Asn Ser Gly 35 40 45 Gln Val Leu Phe Leu Ala Ile Ser Asp Ile Arg Asn Ser Leu Ser Leu 50 55 60 Pro Asp Ser Ser Ile Ser Ser Ser Ala Ser Asp Gly Phe Ser Leu Leu 65 70 75 80 Phe Asp Asp Leu Ile Pro Arg Asp Glu Ala Val Lys Trp Phe Lys Glu 85 90 95 Val Val Pro Lys Met Ala Asp Leu Leu Leu Arg Leu Pro Ser Leu Leu 100 105 110 Glu Ala His Tyr Glu Lys Ala Asp Gly Gly Ile Val Lys Gly Val Asn 115 120 125 Thr Gly Leu Arg Leu Leu Glu Ser Gln Gln Pro Gly Ile Val Phe Leu 130 135 140 Ser Gln Glu Leu Val Gly Ala Leu Leu Ala Cys Ser Phe Phe Cys Tyr 145 150 155 160 Ser Leu Pro Met Ile Glu Val Ser Val 165 3 1647 DNA Arabidopsis thaliana 3 atggagaatc gcgaagatct taactcaatt cttccgtacc ttccacttgt aattcgttcg 60 tcgtcgctgt attggccgcc gcgtgtggtg gaggcgttaa aggcaatgtc tgaaggacca 120 tctcacagcc aagttgactc aggagaggtt ctacggcaag ctattttcga tatgagacga 180 tccttatctt tctctactct cgagccatct gcttctaatg gctacgcatt tctctttgac 240 gaattgattg atgagaaaga atcaaagaga tggttcgatg agattatccc agcattggcg 300 agcttacttc tacagtttcc atctctgtta gaagtgcatt tccaaaatgc tgataatatt 360 gttagtggaa tcaaaaccgg tcttcgtttg ttaaattccc aacaagctgg cattgttttc 420 ctcagccagg agttgattgg agctcttctt gcatgctctt tcttttgttt gtttccggat 480 gataatagag gtgcaaaaca ccttccagtc atcaactttg atcatttgtt tgcaagcctt 540 tatataagtt atagtcaaag tcaagaaagc aagataagat gtattatgca ttactttgaa 600 aggttttgct cctgcgtgcc tattggtatt gtttcatttg aacgcaagat taccgctgct 660 cctgatgctg atttctggag caagtctgac gtttctcttt gtgcatttaa ggttcactct 720 tttgggttaa ttgaagatca acctgacaat gctctcgaag tggactttgc aaacaagtat 780 ctcggaggtg gttccctaag tagagggtgc gtgcaggaag agatacgctt catgattaac 840 cctgaattaa tcgctggcat gcttttcttg cctcggatgg atgacaatga agctatagaa 900 atagttggtg cggaaagatt ttcatgttac acagggtatg catcttcgtt tcggtttgct 960 ggtgagtaca ttgacaaaaa ggcaatggat cctttcaaaa ggcgaagaac cagaattgtt 1020 gcaattgatg cattatgtac accgaagatg agacacttta aagatatatg tcttttaagg 1080 gaaattaata aggcactatg tggcttttta aattgtagca aggcttggga gcaccagaat 1140 atattcatgg atgaaggaga taatgaaatt cagcttgtcc gaaacggcag agattctggt 1200 cttctgcgta cagaaactac tgcgtcacac cgaactccac taaatgatgt tgagatgaat 1260 agagaaaagc ctgctaacaa tcttatcaga gatttttatg tggaaggagt tgataacgag 1320 gatcatgaag atgatggtgt cgcgacaggg aattggggat gtggtgtttt tggaggagac 1380 ccagagctaa aggctacgat acaatggctt gctgcttccc agactcgaag accatttata 1440 tcatattaca cctttggagt agaggcactc cgaaacctag atcaggtgac gaagtggatt 1500 ctttcccata aatggactgt tggagatctg tggaacatga tgttagaata ttctgctcaa 1560 aggctctaca agcaaaccag tgttggcttc ttttcttggc tacttccatc tctagctacc 1620 accaacaaag ctatccagcc gccttga 1647 4 598 DNA Solanum tuberosum 4 gcaatggaga atagagaaga cgtgaagtca atccttccct ttttgccggt gtgtctccga 60 tcatcttctc ttttctggcc gccgctagtt gttgaagcac tgaaagccct ctctgaaggc 120 cctcattaca gcaatgttaa ctccggccaa gtcctcttcc tcgcaatctc cgacattcgg 180 aattcccttt cactacctga ttcttcaatt tcctcttctg cttcagacgg attttctctc 240 ttatttgatg atttaattcc tagggatgaa gctgttaaat ggttcaaaga agtggtgccg 300 aaaatggcgg atttgctatt gcggttgcct tccttattgg aggctcacta tgagaaggct 360 gatggtggaa ttgttaaagg agtcaacact ggtcttcgct tattggaatc acaacagcct 420 ggcattgttt tcctcagtca ggaattagtc ggtgctcttc ttgcatgttc cttcttttgc 480 tattccctac caatgataga ggtatctgta tgatcagtat gacgagaaat ttgaaaataa 540 attgaagtgc attcttcact attttgagag gattggctca ttgatacctg cgggctac 598 5 37 DNA Artificial Sequence oligonucleotide primer ParGAt1 5 ggatcccctg caggacaaaa aggcaatgga tcctttc 37 6 39 DNA Artificial Sequence oligonucleotide primer ParGAt2 6 gcacgaattc gcggccgcgg tgctcccaag ccttgctac 39 7 39 DNA Artificial Sequence oligonucleotide primer ParGSt1 7 ggatcccctg caggctcact atgagaaggc tgatggtgg 39 8 43 DNA Artificial Sequence oligonucleotide primer ParGSt2 8 gcacgaattc gcggccgcgt catactgatc atacagatac ctc 43 9 13466 DNA Artificial Sequence nucleotide sequence of pTVE428 9 agattcgaag ctcggtcccg tgggtgttct gtcgtctcgt tgtacaacga aatccattcc 60 cattccgcgc tcaagatggc ttcccctcgg cagttcatca gggctaaatc aatctagccg 120 acttgtccgg tgaaatgggc tgcactccaa cagaaacaat caaacaaaca tacacagcga 180 cttattcaca cgcgacaaat tacaacggta tatatcctgc cagtactcgg ccgtcgaccg 240 cggtaccccg gaattaagct tgcatgcctg caggtcctgc tgagcctcga catgttgtcg 300 caaaattcgc cctggacccg cccaacgatt tgtcgtcact gtcaaggttt gacctgcact 360 tcatttgggg cccacataca ccaaaaaaat gctgcataat tctcggggca gcaagtcggt 420 tacccggccg ccgtgctgga ccgggttgaa tggtgcccgt aactttcggt agagcggacg 480 gccaatactc aacttcaagg aatctcaccc atgcgcgccg gcggggaacc ggagttccct 540 tcagtgaacg ttattagttc gccgctcggt gtgtcgtaga tactagcccc tggggccttt 600 tgaaatttga ataagattta tgtaatcagt cttttaggtt tgaccggttc tgccgctttt 660 tttaaaattg gatttgtaat aataaaacgc aattgtttgt tattgtggcg ctctatcata 720 gatgtcgcta taaacctatt cagcacaata tattgttttc attttaatat tgtacatata 780 agtagtaggg tacaatcagt aaattgaacg gagaatatta ttcataaaaa tacgatagta 840 acgggtgata tattcattag aatgaaccga aaccggcggt aaggatctga gctacacatg 900 ctcaggtttt ttacaacgtg cacaacagaa ttgaaagcaa atatcatgcg atcataggcg 960 tctcgcatat ctcattaaag caggactcta gagacaaaaa ggcaatggat cctttcaaaa 1020 ggcgaagaac cagaattgtt gcaattgatg cattatgtac accgaagatg agacacttta 1080 aagatatatg tcttttaagg gaaattaata aggcactatg tggcttttta aattgtagca 1140 aggcttggga gcaccatcga tttcgaaccc agcttcccaa ctgtaatcaa tccaaatgta 1200 agatcaatga taacacaatg acatgatcta tcatgttacc ttgtttattc atgttcgact 1260 aattcattta attaatagtc aatccattta gaagttaata aaactacaag tattatttag 1320 aaattaataa gaatgttgat tgaaaataat actatataaa atgatagatc ttgcgctttg 1380 ttatattagc attagattat gttttgttac attagattac tgtttctatt agtttgatat 1440 tatttgttac tttagcttgt tatttaatat tttgtttatt gataaattac aagcagattg 1500 gaatttctaa caaaatattt attaactttt aaactaaaat atttagtaat ggtatagata 1560 tttaattata taataaacta ttaatcataa aaaaatatta ttttaattta tttattctta 1620 tttttactat agtattttat cattgatatt taattcatca aaccagctag aattactatt 1680 atgattaaaa caaatattaa tgctagtata tcatcttaca tgttcgatca aattcattaa 1740 aaataatata cttactctca acttttatct tcttcgtctt acacatcact tgtcatattt 1800 ttttacatta ctatgttgtt tatgtaaaca atatatttat aaattatttt ttcacaatta 1860 taacaactat attattataa tcatactaat taacatcact taactatttt atactaaaag 1920 gaaaaaagaa aataattatt tccttaccaa gctggggtac cggtgctccc aagccttgct 1980 acaatttaaa aagccacata gtgccttatt aatttccctt aaaagacata tatctttaaa 2040 gtgtctcatc ttcggtgtac ataatgcatc aattgcaaca attctggttc ttcgcctttt 2100 gaaaggatcc attgcctttt tgtcctcgag cgtgtcctct ccaaatgaaa tgaacttcct 2160 tatatagagg aagggtcttg cgaaggatag tgggattgtg cgtcatccct tacgtcagtg 2220 gagatgtcac atcaatccac ttgctttgaa gacgtggttg gaacgtcttc tttttccacg 2280 atgctcctcg tgggtggggg tccatctttg ggaccactgt cggcagagag atcttgaatg 2340 atagcctttc ctttatcgca atgatggcat ttgtaggagc caccttcctt ttctactgtc 2400 ctttcgatga agtgacagat agctgggcaa tggaatccga ggaggtttcc cgaaattatc 2460 ctttgttgaa aagtctcaat agccctttgg tcttctgaga ctgtatcttt gacatttttg 2520 gagtagacca gagtgtcgtg ctccaccatg ttgacgaaga ttttcttctt gtcattgagt 2580 cgtaaaagac tctgtatgaa ctgttcgcca gtcttcacgg cgagttctgt tagatcctcg 2640 atttgaatct tagactccat gcatggcctt agattcagta ggaactacct ttttagagac 2700 tccaatctct attacttgcc ttggtttatg aagcaagcct tgaatcgtcc atactggaat 2760 agtacttctg atcttgagaa atatgtcttt ctctgtgttc ttgatgcaat tagtcctgaa 2820 tcttttgact gcatctttaa ccttcttggg aaggtatttg atctcctgga gattgttact 2880 cgggtagatc gtcttgatga gacctgctgc gtaggcctct ctaaccatct gtgggtcagc 2940 attctttctg aaattgaaga ggctaacctt ctcattatca gtggtgaaca tagtgtcgtc 3000 accttcacct tcgaacttcc ttcctagatc gtaaagatag aggaaatcgt ccattgtaat 3060 ctccggggca aaggagatct cttttggggc tggatcactg ctgggccttt tggttcctag 3120 cgtgagccag tgggcttttt gctttggtgg gcttgttagg gccttagcaa agctcttggg 3180 cttgagttga gcttctcctt tggggatgaa gttcaacctg tctgtttgct gacttgttgt 3240 gtacgcgtca gctgctgctc ttgcctctgt aatagtggca aatttcttgt gtgcaactcc 3300 gggaacgccg tttgttgccg cctttgtaca accccagtca tcgtatatac cggcatgtgg 3360 accgttatac acaacgtagt agttgatatg agggtgttga atacccgatt ctgctctgag 3420 aggagcaact gtgctgttaa gctcagattt ttgtgggatt ggaattaatt cgtcgagcgg 3480 ccgctcgacg agcgcgccga tatcgcgatc gcccgggccg gccatttaaa tgaattcgag 3540 ctcggtaccc aaacgcggcc gcaagctata acttcgtata gcatacatta tacgaagtta 3600 ttcgactcta gaggatccca attcccatgc atggagtcaa agattcaaat agaggacact 3660 tctcgaactc ggccgtcgaa ctcggccgtc gagtacatgg tcgataagaa aaggcaattt 3720 gtagatgtta attcccatct tgaaagaaat atagtttaaa tatttattga taaaataaca 3780 agtcaggtat tatagtccaa gcaaaaacat aaatttattg atgcaagttt aaattcagaa 3840 atatttcaat aactgattat atcagctggt acattgccgt agatgaaaga ctgagtgcga 3900 tattatgtgt aatacataaa ttgatgatat agctagctta gctcatcggg ggatcctaga 3960 cgcgtgagat cagatctcgg tgacgggcag gaccggacgg ggcggtaccg gcaggctgaa 4020 gtccagctgc cagaaaccca cgtcatgcca gttcccgtgc ttgaagccgg ccgcccgcag 4080 catgccgcgg ggggcatatc cgagcgcctc gtgcatgcgc acgctcgggt cgttgggcag 4140 cccgatgaca gcgaccacgc tcttgaagcc ctgtgcctcc agggacttca gcaggtgggt 4200 gtagagcgtg gagcccagtc ccgtccgctg gtggcggggg gagacgtaca cggtcgactc 4260 ggccgtccag tcgtaggcgt tgcgtgcctt ccaggggccc gcgtaggcga tgccggcgac 4320 ctcgccgtcc acctcggcga cgagccaggg atagcgctcc cgcagacgga cgaggtcgtc 4380 cgtccactcc tgcggttcct gcggctcggt acggaagttg accgtgcttg tctcgatgta 4440 gtggttgacg atggtgcaga ccgccggcat gtccgcctcg gtggcacggc ggatgtcggc 4500 cgggcgtcgt tctgggtcca ttgttcttct ttactctttg tgtgactgag gtttggtcta 4560 gtgctttggt catctatata taatgataac aacaatgaga acaagctttg gagtgatcgg 4620 agggtctagg atacatgaga ttcaagtgga ctaggatcta caccgttgga ttttgagtgt 4680 ggatatgtgt gaggttaatt ttacttggta acggccacaa aggcctaagg agaggtgttg 4740 agacccttat cggcttgaac cgctggaata atgccacgtg gaagataatt ccatgaatct 4800 tatcgttatc tatgagtgaa attgtgtgat ggtggagtgg tgcttgctca ttttacttgc 4860 ctggtggact tggccctttc cttatgggga atttatattt tacttactat agagctttca 4920 tacctttttt ttaccttgga tttagttaat atataatggt atgattcatg aataaaaatg 4980 ggaaattttt gaatttgtac tgctaaatgc ataagattag gtgaaactgt ggaatatata 5040 tttttttcat ttaaaagcaa aatttgcctt ttactagaat tataaatata gaaaaatata 5100 taacattcaa ataaaaatga aaataagaac tttcaaaaaa cagaactatg tttaatgtgt 5160 aaagattagt cgcacatcaa gtcatctgtt acaatatgtt acaacaagtc ataagcccaa 5220 caaagttagc acgtctaaat aaactaaaga gtccacgaaa atattacaaa tcataagccc 5280 aacaaagtta ttgatcaaaa aaaaaaaacg cccaacaaag ctaaacaaag tccaaaaaaa 5340 acttctcaag tctccatctt cctttatgaa cattgaaaac tatacacaaa acaagtcaga 5400 taaatctctt tctgggcctg tcttcccaac ctcctacatc acttccctat cggattgaat 5460 gttttacttg taccttttcc gttgcaatga tattgatagt atgtttgtga aaactaatag 5520 ggttaacaat cgaagtcatg gaatatggat ttggtccaag attttccgag agctttctag 5580 tagaaagccc atcaccagaa atttactagt aaaataaatc accaattagg tttcttatta 5640 tgtgccaaat tcaatataat tatagaggat atttcaaatg aaaacgtatg aatgttatta 5700 gtaaatggtc aggtaagaca ttaaaaaaat cctacgtcag atattcaact ttaaaaattc 5760 gatcagtgtg gaattgtaca aaaatttggg atctactata tatatataat gctttacaac 5820 acttggattt ttttttggag gctggaattt ttaatctaca tatttgtttt ggccatgcac 5880 caactcattg tttagtgtaa tactttgatt ttgtcaaata tatgtgttcg tgtatatttg 5940 tataagaatt tctttgacca tatacacaca cacatatata tatatatata tatattatat 6000 atcatgcact tttaattgaa aaaataatat atatatatat agtgcatttt ttctaacaac 6060 catatatgtt gcgattgatc tgcaaaaata ctgctagagt aatgaaaaat ataatctatt 6120 gctgaaatta tctcagatgt taagattttc ttaaagtaaa ttctttcaaa ttttagctaa 6180 aagtcttgta ataactaaag aataatacac aatctcgacc acggaaaaaa aacacataat 6240 aaatttgaat ttcgaccgcg gtacccggaa ttgggttata attacctcag gtcgaggaat 6300 taattcggta cgtacctaat aacttcgtat agcatacatt atacgaagtt atatggatct 6360 cgaggcatta cggcattacg gcactcgcga gggtcccaat tcgagcatgg agccatttac 6420 aattgaatat atcctgccgc cgctgccgct ttgcacccgg tggagcttgc atgttggttt 6480 ctacgcagaa ctgagccggt taggcagata atttccattg agaactgagc catgtgcacc 6540 ttccccccaa cacggtgagc gacggggcaa cggagtgatc cacatgggac ttttaaacat 6600 catccgtcgg atggcgttgc gagagaagca gtcgatccgt gagatcagcc gacgcaccgg 6660 gcaggcgcgc aacacgatcg caaagtattt gaacgcaggt acaatcgagc cgacgttcac 6720 ggtaccggaa cgaccaagca agctagctta gtaaagccct cgctagattt taatgcggat 6780 gttgcgatta cttcgccaac tattgcgata acaagaaaaa gccagccttt catgatatat 6840 ctcccaattt gtgtagggct tattatgcac gcttaaaaat aataaaagca gacttgacct 6900 gatagtttgg ctgtgagcaa ttatgtgctt agtgcatcta acgcttgagt taagccgcgc 6960 cgcgaagcgg cgtcggcttg aacgaattgt tagacattat ttgccgacta ccttggtgat 7020 ctcgcctttc acgtagtgga caaattcttc caactgatct gcgcgcgagg ccaagcgatc 7080 ttcttcttgt ccaagataag cctgtctagc ttcaagtatg acgggctgat actgggccgg 7140 caggcgctcc attgcccagt cggcagcgac atccttcggc gcgattttgc cggttactgc 7200 gctgtaccaa atgcgggaca acgtaagcac tacatttcgc tcatcgccag cccagtcggg 7260 cggcgagttc catagcgtta aggtttcatt tagcgcctca aatagatcct gttcaggaac 7320 cggatcaaag agttcctccg ccgctggacc taccaaggca acgctatgtt ctcttgcttt 7380 tgtcagcaag atagccagat caatgtcgat cgtggctggc tcgaagatac ctgcaagaat 7440 gtcattgcgc tgccattctc caaattgcag ttcgcgctta gctggataac gccacggaat 7500 gatgtcgtcg tgcacaacaa tggtgacttc tacagcgcgg agaatctcgc tctctccagg 7560 ggaagccgaa gtttccaaaa ggtcgttgat caaagctcgc cgcgttgttt catcaagcct 7620 tacggtcacc gtaaccagca aatcaatatc actgtgtggc ttcaggccgc catccactgc 7680 ggagccgtac aaatgtacgg ccagcaacgt cggttcgaga tggcgctcga tgacgccaac 7740 tacctctgat

agttgagtcg atacttcggc gatcaccgct tccctcatga tgtttaactt 7800 tgttttaggg cgactgccct gctgcgtaac atcgttgctg ctccataaca tcaaacatcg 7860 acccacggcg taacgcgctt gctgcttgga tgcccgaggc atagactgta ccccaaaaaa 7920 acagtcataa caagccatga aaaccgccac tgcgccgtta ccaccgctgc gttcggtcaa 7980 ggttctggac cagttgcgtg agcgcatacg ctacttgcat tacagcttac gaaccgaaca 8040 ggcttatgtc cactgggttc gtgccttcat ccgtttccac ggtgtgcgtc acccggcaac 8100 cttgggcagc agcgaagtcg aggcatttct gtcctggctg gcgaacgagc gcaaggtttc 8160 ggtctccacg catcgtcagg cattggcggc cttgctgttc ttctacggca agtgctgtgc 8220 acggatctgc cctggcttca ggagatcgga agacctcggc cgtccgggcg cttgccggtg 8280 gtgctgaccc cggatgaagt ctctagagct ctagagggtt cgcatcctcg gttttctgga 8340 aggcgagcat cgtttgttcg cccagcttct gtatggaacg ggcatgcgga tcagtgaggg 8400 tttgcaactg cgggtcaagg atctggattt cgatcacggc acgatcatcg tgcgggaggg 8460 caagggctcc aaggatcggg ccttgatgtt acccgagagc ttggcaccca gcctgcgcga 8520 gcagggatcg atccaacccc tccgctgcta tagtgcagtc ggcttctgac gttcagtgca 8580 gccgtcttct gaaaacgaca tgtcgcacaa gtcctaagtt acgcgacagg ctgccgccct 8640 gcccttttcc tggcgttttc ttgtcgcgtg ttttagtcgc ataaagtaga atacttgcga 8700 ctagaaccgg agacattacg ccatgaacaa gagcgccgcc gctggcctgc tgggctatgc 8760 ccgcgtcagc accgacgacc aggacttgac caaccaacgg gccgaactgc acgcggccgg 8820 ctgcaccaag ctgttttccg agaagatcac cggcaccagg cgcgaccgcc cggagctggc 8880 caggatgctt gaccacctac gccctggcga cgttgtgaca gtgaccaggc tagaccgcct 8940 ggcccgcagc acccgcgacc tactggacat tgccgagcgc atccaggagg ccggcgcggg 9000 cctgcgtagc ctggcagagc cgtgggccga caccaccacg ccggccggcc gcatggtgtt 9060 gaccgtgttc gccggcattg ccgagttcga gcgttcccta atcatcgacc gcacccggag 9120 cgggcgcgag gccgccaagg cccgaggcgt gaagtttggc ccccgcccta ccctcacccc 9180 ggcacagatc gcgcacgccc gcgagctgat cgaccaggaa ggccgcaccg tgaaagaggc 9240 ggctgcactg cttggcgtgc atcgctcgac cctgtaccgc gcacttgagc gcagcgagga 9300 agtgacgccc accgaggcca ggcggcgcgg tgccttccgt gaggacgcat tgaccgaggc 9360 cgacgccctg gcggccgccg agaatgaacg ccaagaggaa caagcatgaa accgcaccag 9420 gacggccagg acgaaccgtt tttcattacc gaagagatcg aggcggagat gatcgcggcc 9480 gggtacgtgt tcgagccgcc cgcgcacgtc tcaaccgtgc ggctgcatga aatcctggcc 9540 ggtttgtctg atgccaagct ggcggcctgg ccggccagct tggccgctga agaaaccgag 9600 cgccgccgtc taaaaaggtg atgtgtattt gagtaaaaca gcttgcgtca tgcggtcgct 9660 gcgtatatga tgcgatgagt aaataaacaa atacgcaagg ggaacgcatg aaggttatcg 9720 ctgtacttaa ccagaaaggc gggtcaggca agacgaccat cgcaacccat ctagcccgcg 9780 ccctgcaact cgccggggcc gatgttctgt tagtcgattc cgatccccag ggcagtgccc 9840 gcgattgggc ggccgtgcgg gaagatcaac cgctaaccgt tgtcggcatc gaccgcccga 9900 cgattgaccg cgacgtgaag gccatcggcc ggcgcgactt cgtagtgatc gacggagcgc 9960 cccaggcggc ggacttggct gtgtccgcga tcaaggcagc cgacttcgtg ctgattccgg 10020 tgcagccaag cccttacgac atatgggcca ccgccgacct ggtggagctg gttaagcagc 10080 gcattgaggt cacggatgga aggctacaag cggcctttgt cgtgtcgcgg gcgatcaaag 10140 gcacgcgcat cggcggtgag gttgccgagg cgctggccgg gtacgagctg cccattcttg 10200 agtcccgtat cacgcagcgc gtgagctacc caggcactgc cgccgccggc acaaccgttc 10260 ttgaatcaga acccgagggc gacgctgccc gcgaggtcca ggcgctggcc gctgaaatta 10320 aatcaaaact catttgagtt aatgaggtaa agagaaaatg agcaaaagca caaacacgct 10380 aagtgccggc cgtccgagcg cacgcagcag caaggctgca acgttggcca gcctggcaga 10440 cacgccagcc atgaagcggg tcaactttca gttgccggcg gaggatcaca ccaagctgaa 10500 gatgtacgcg gtacgccaag gcaagaccat taccgagctg ctatctgaat acatcgcgca 10560 gctaccagag taaatgagca aatgaataaa tgagtagatg aattttagcg gctaaaggag 10620 gcggcatgga aaatcaagaa caaccaggca ccgacgccgt ggaatgcccc atgtgtggag 10680 gaacgggcgg ttggccaggc gtaagcggct gggttgtctg ccggccctgc aatggcactg 10740 gaacccccaa gcccgaggaa tcggcgtgac ggtcgcaaac catccggccc ggtacaaatc 10800 ggcgcggcgc tgggtgatga cctggtggag aagttgaagg ccgcgcaggc cgcccagcgg 10860 caacgcatcg aggcagaagc acgccccggt gaatcgtggc aagcggccgc tgatcgaatc 10920 cgcaaagaat cccggcaacc gccggcagcc ggtgcgccgt cgattaggaa gccgcccaag 10980 ggcgacgagc aaccagattt tttcgttccg atgctctatg acgtgggcac ccgcgatagt 11040 cgcagcatca tggacgtggc cgttttccgt ctgtcgaagc gtgaccgacg agctggcgag 11100 gtgatccgct acgagcttcc agacgggcac gtagaggttt ccgcagggcc ggccggcatg 11160 gccagtgtgt gggattacga cctggtactg atggcggttt cccatctaac cgaatccatg 11220 aaccgatacc gggaagggaa gggagacaag cccggccgcg tgttccgtcc acacgttgcg 11280 gacgtactca agttctgccg gcgagccgat ggcggaaagc agaaagacga cctggtagaa 11340 acctgcattc ggttaaacac cacgcacgtt gccatgcagc gtacgaagaa ggccaagaac 11400 ggccgcctgg tgacggtatc cgagggtgaa gccttgatta gccgctacaa gatcgtaaag 11460 agcgaaaccg ggcggccgga gtacatcgag atcgagctag ctgattggat gtaccgcgag 11520 atcacagaag gcaagaaccc ggacgtgctg acggttcacc ccgattactt tttgatcgat 11580 cccggcatcg gccgttttct ctaccgcctg gcacgccgcg ccgcaggcaa ggcagaagcc 11640 agatggttgt tcaagacgat ctacgaacgc agtggcagcg ccggagagtt caagaagttc 11700 tgtttcaccg tgcgcaagct gatcgggtca aatgacctgc cggagtacga tttgaaggag 11760 gaggcggggc aggctggccc gatcctagtc atgcgctacc gcaacctgat cgagggcgaa 11820 gcatccgccg gttcctaatg tacggagcag atgctagggc aaattgccct agcaggggaa 11880 aaaggtcgaa aaggtctctt tcctgtggat agcacgtaca ttgggaaccc aaagccgtac 11940 attgggaacc ggaacccgta cattgggaac ccaaagccgt acattgggaa ccggtcacac 12000 atgtaagtga ctgatataaa agagaaaaaa ggcgattttt ccgcctaaaa ctctttaaaa 12060 cttattaaaa ctcttaaaac ccgcctggcc tgtgcataac tgtctggcca gcgcacagcc 12120 gaagagctgc aaaaagcgcc tacccttcgg tcgctgcgct ccctacgccc cgccgcttcg 12180 cgtcggccta tcgcggccgc tggccgctca aaaatggctg gcctacggcc aggcaatcta 12240 ccagggcgcg gacaagccgc gccgtcgcca ctcgaccgcc ggcgcccaca tcaaggcacc 12300 ctgcctcgcg cgtttcggtg atgacggtga aaacctctga cacatgcagc tcccggagac 12360 ggtcacagct tgtctgtaag cggatgccgg gagcagacaa gcccgtcagg gcgcgtcagc 12420 gggtgttggc gggtgtcggg gcgcagccat gacccagtca cgtagcgata gcggagtgta 12480 tactggctta actatgcggc atcagagcag attgtactga gagtgcacca tatgcggtgt 12540 gaaataccgc acagatgcgt aaggagaaaa taccgcatca ggcgctcttc cgcttcctcg 12600 ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc tcactcaaag 12660 gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa 12720 ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc tggcgttttt ccataggctc 12780 cgcccccctg acgagcatca caaaaatcga cgctcaagtc agaggtggcg aaacccgaca 12840 ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc tcctgttccg 12900 accctgccgc ttaccggata cctgtccgcc tttctccctt cgggaagcgt ggcgctttct 12960 catagctcac gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa gctgggctgt 13020 gtgcacgaac cccccgttca gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag 13080 tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc 13140 agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac 13200 actagaagga cagtatttgg tatctgcgct ctgctgaagc cagttacctt cggaaaaaga 13260 gttggtagct cttgatccgg caaacaaacc accgctggta gcggtggttt ttttgtttgc 13320 aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atccggaaaa cgcaagcgca 13380 aagagaaagc aggtagcttg cagtgggctt acatggcgat agctagactg ggcggtttta 13440 tggacagcaa gcgaaccgga attgcc 13466 10 31 PRT Artificial Sequence Consensus sequence 1 of PARG protein 10 Leu Xaa Val Asp Phe Ala Asn Xaa Xaa Xaa Gly Gly Gly Xaa Xaa Xaa 1 5 10 15 Xaa Gly Xaa Val Gln Glu Glu Ile Arg Phe Xaa Xaa Xaa Pro Glu 20 25 30 11 20 PRT Artificial Sequence Consensus sequence 2 for PARG protein 11 Thr Gly Xaa Trp Gly Cys Gly Ala Phe Xaa Gly Asp Xaa Xaa Leu Lys 1 5 10 15 Xaa Xaa Xaa Gln 20 12 13 PRT Artificial Sequence Consensus sequence 3 for PARG protein 12 Asp Xaa Xaa Xaa Arg Xaa Xaa Xaa Xaa Ala Ile Asp Ala 1 5 10 13 10 PRT Artificial Sequence Consensus sequence 4 for PARG protein 13 Arg Glu Xaa Xaa Lys Ala Xaa Xaa Gly Phe 1 5 10 14 11 PRT Artificial Sequence conserved PARG region 14 Gly Xaa Xaa Xaa Xaa Ser Xaa Tyr Thr Gly Tyr 1 5 10 15 1530 DNA Oryza sativa CDS (1)..(1530) 15 atg gag gcg cgc ggc gac ctg cgc tcg atc ctg ccc tac ctc ccc gtc 48 Met Glu Ala Arg Gly Asp Leu Arg Ser Ile Leu Pro Tyr Leu Pro Val 1 5 10 15 gtg ctc cgc ggc ggc gcg ctc ttc tgg ccg ccg gcg gcg cag gag gcg 96 Val Leu Arg Gly Gly Ala Leu Phe Trp Pro Pro Ala Ala Gln Glu Ala 20 25 30 ctc aag gcg ctg gcg ctg ggc ccc gac gtg agc cgc gtc tcc tcc ggc 144 Leu Lys Ala Leu Ala Leu Gly Pro Asp Val Ser Arg Val Ser Ser Gly 35 40 45 gac gtc ctc gcc gac gcc ctc acc gac ctc cgc ctc gcg ctc aac ctc 192 Asp Val Leu Ala Asp Ala Leu Thr Asp Leu Arg Leu Ala Leu Asn Leu 50 55 60 gac cca ctc ccg cgc cgc gcc gcc gag ggc ttc gcg ctc ttc ttc gac 240 Asp Pro Leu Pro Arg Arg Ala Ala Glu Gly Phe Ala Leu Phe Phe Asp 65 70 75 80 gac ctc ctg tcg cgg gcg cag gcg cgg gac tgg ttc gac cac gtc gcc 288 Asp Leu Leu Ser Arg Ala Gln Ala Arg Asp Trp Phe Asp His Val Ala 85 90 95 ccc tcc ctc gcc cgc ctc ctc ctc cgc ctc ccc acg ctg ctc gag ggc 336 Pro Ser Leu Ala Arg Leu Leu Leu Arg Leu Pro Thr Leu Leu Glu Gly 100 105 110 cac tac cgc gcc gcc ggc gac gag gct cgc ggg ctc cgc atc ctg agc 384 His Tyr Arg Ala Ala Gly Asp Glu Ala Arg Gly Leu Arg Ile Leu Ser 115 120 125 tcg cag gat gcc ggg ctc gtg ctc ctc agc cag gag ctc gcc gcc gcg 432 Ser Gln Asp Ala Gly Leu Val Leu Leu Ser Gln Glu Leu Ala Ala Ala 130 135 140 ctg ctc gcc tgc gcg ctc ttc tgc ctg ttc ccc acc gcc gat agg gcc 480 Leu Leu Ala Cys Ala Leu Phe Cys Leu Phe Pro Thr Ala Asp Arg Ala 145 150 155 160 gag gcg tgc ctc ccg gcg atc aat ttc gat agc cta ttt gcg gca ctg 528 Glu Ala Cys Leu Pro Ala Ile Asn Phe Asp Ser Leu Phe Ala Ala Leu 165 170 175 tgt tat aat tcg agg caa agc cag gag cag aag gtg agg tgc ctt gtt 576 Cys Tyr Asn Ser Arg Gln Ser Gln Glu Gln Lys Val Arg Cys Leu Val 180 185 190 cac tat ttt gac agg gtg acc gct tct aca cct act ggt tcc gtt tcg 624 His Tyr Phe Asp Arg Val Thr Ala Ser Thr Pro Thr Gly Ser Val Ser 195 200 205 ttt gag cgt aag gtt ctt cct cgc cgt cct gaa tct gat ggc att acg 672 Phe Glu Arg Lys Val Leu Pro Arg Arg Pro Glu Ser Asp Gly Ile Thr 210 215 220 tac cct gac atg gat act tgg atg aaa tct ggt gtt ccc ctt tgc aca 720 Tyr Pro Asp Met Asp Thr Trp Met Lys Ser Gly Val Pro Leu Cys Thr 225 230 235 240 ttc cgg gta ttt tcc tca ggc ttg ata gaa gat gag gaa caa gaa gcc 768 Phe Arg Val Phe Ser Ser Gly Leu Ile Glu Asp Glu Glu Gln Glu Ala 245 250 255 ctt gaa gtt gac ttt gca aat aga tat ttg gga ggt ggc gca ctt tcc 816 Leu Glu Val Asp Phe Ala Asn Arg Tyr Leu Gly Gly Gly Ala Leu Ser 260 265 270 aga ggc tgc gtg cag gaa gaa atc cgg ttc atg ata aac cca gaa ttg 864 Arg Gly Cys Val Gln Glu Glu Ile Arg Phe Met Ile Asn Pro Glu Leu 275 280 285 atc gtg ggc atg ctc ttc atg gtt tca atg gaa gat aat gaa gct ata 912 Ile Val Gly Met Leu Phe Met Val Ser Met Glu Asp Asn Glu Ala Ile 290 295 300 gaa att gtt ggt gca gaa agg ttc tca cag tac atg ggg tat ggt tcc 960 Glu Ile Val Gly Ala Glu Arg Phe Ser Gln Tyr Met Gly Tyr Gly Ser 305 310 315 320 tca ttc cgt ttt act ggt gac tac tta gat agc aaa ccc ttt gat gcg 1008 Ser Phe Arg Phe Thr Gly Asp Tyr Leu Asp Ser Lys Pro Phe Asp Ala 325 330 335 atg ggt aga cgg aaa act agg ata gtg gca att gat gct ttg gac tgt 1056 Met Gly Arg Arg Lys Thr Arg Ile Val Ala Ile Asp Ala Leu Asp Cys 340 345 350 cca act agg tta cag ttt gaa tct agt ggt ctt cta agg gaa gtg aac 1104 Pro Thr Arg Leu Gln Phe Glu Ser Ser Gly Leu Leu Arg Glu Val Asn 355 360 365 aag gct ttt tgt gga ttt ttg gat caa tca aat cat cag ctc tgt gca 1152 Lys Ala Phe Cys Gly Phe Leu Asp Gln Ser Asn His Gln Leu Cys Ala 370 375 380 aag ctt gtc cag gat tta aat aca aag gat aac tgt cca agt gtc att 1200 Lys Leu Val Gln Asp Leu Asn Thr Lys Asp Asn Cys Pro Ser Val Ile 385 390 395 400 cct gat gaa tgc ata gga gtt tca act gga aac tgg ggt tgc ggg gct 1248 Pro Asp Glu Cys Ile Gly Val Ser Thr Gly Asn Trp Gly Cys Gly Ala 405 410 415 ttt ggt gga aac cct gaa atc aag agc atg att caa tgg att gct gca 1296 Phe Gly Gly Asn Pro Glu Ile Lys Ser Met Ile Gln Trp Ile Ala Ala 420 425 430 tca cag gca ctc cga tct ttt att aac tac tac act ttt gag tcc gaa 1344 Ser Gln Ala Leu Arg Ser Phe Ile Asn Tyr Tyr Thr Phe Glu Ser Glu 435 440 445 tca ctg aaa aga tta gaa gag gtg acc cag tgg ata ttg cgc cat agg 1392 Ser Leu Lys Arg Leu Glu Glu Val Thr Gln Trp Ile Leu Arg His Arg 450 455 460 tgg acg gtt ggc gag ttg tgg gac atg ctt gtg gag tat tca tcc cag 1440 Trp Thr Val Gly Glu Leu Trp Asp Met Leu Val Glu Tyr Ser Ser Gln 465 470 475 480 agg cta aga gga gac acc aat gag ggc ttt tta aca tgg cta ctt ccc 1488 Arg Leu Arg Gly Asp Thr Asn Glu Gly Phe Leu Thr Trp Leu Leu Pro 485 490 495 aag gac atc ccc aat ggt gat gta gat tac atg tgt gaa tag 1530 Lys Asp Ile Pro Asn Gly Asp Val Asp Tyr Met Cys Glu 500 505 16 509 PRT Oryza sativa 16 Met Glu Ala Arg Gly Asp Leu Arg Ser Ile Leu Pro Tyr Leu Pro Val 1 5 10 15 Val Leu Arg Gly Gly Ala Leu Phe Trp Pro Pro Ala Ala Gln Glu Ala 20 25 30 Leu Lys Ala Leu Ala Leu Gly Pro Asp Val Ser Arg Val Ser Ser Gly 35 40 45 Asp Val Leu Ala Asp Ala Leu Thr Asp Leu Arg Leu Ala Leu Asn Leu 50 55 60 Asp Pro Leu Pro Arg Arg Ala Ala Glu Gly Phe Ala Leu Phe Phe Asp 65 70 75 80 Asp Leu Leu Ser Arg Ala Gln Ala Arg Asp Trp Phe Asp His Val Ala 85 90 95 Pro Ser Leu Ala Arg Leu Leu Leu Arg Leu Pro Thr Leu Leu Glu Gly 100 105 110 His Tyr Arg Ala Ala Gly Asp Glu Ala Arg Gly Leu Arg Ile Leu Ser 115 120 125 Ser Gln Asp Ala Gly Leu Val Leu Leu Ser Gln Glu Leu Ala Ala Ala 130 135 140 Leu Leu Ala Cys Ala Leu Phe Cys Leu Phe Pro Thr Ala Asp Arg Ala 145 150 155 160 Glu Ala Cys Leu Pro Ala Ile Asn Phe Asp Ser Leu Phe Ala Ala Leu 165 170 175 Cys Tyr Asn Ser Arg Gln Ser Gln Glu Gln Lys Val Arg Cys Leu Val 180 185 190 His Tyr Phe Asp Arg Val Thr Ala Ser Thr Pro Thr Gly Ser Val Ser 195 200 205 Phe Glu Arg Lys Val Leu Pro Arg Arg Pro Glu Ser Asp Gly Ile Thr 210 215 220 Tyr Pro Asp Met Asp Thr Trp Met Lys Ser Gly Val Pro Leu Cys Thr 225 230 235 240 Phe Arg Val Phe Ser Ser Gly Leu Ile Glu Asp Glu Glu Gln Glu Ala 245 250 255 Leu Glu Val Asp Phe Ala Asn Arg Tyr Leu Gly Gly Gly Ala Leu Ser 260 265 270 Arg Gly Cys Val Gln Glu Glu Ile Arg Phe Met Ile Asn Pro Glu Leu 275 280 285 Ile Val Gly Met Leu Phe Met Val Ser Met Glu Asp Asn Glu Ala Ile 290 295 300 Glu Ile Val Gly Ala Glu Arg Phe Ser Gln Tyr Met Gly Tyr Gly Ser 305 310 315 320 Ser Phe Arg Phe Thr Gly Asp Tyr Leu Asp Ser Lys Pro Phe Asp Ala 325 330 335 Met Gly Arg Arg Lys Thr Arg Ile Val Ala Ile Asp Ala Leu Asp Cys 340 345 350 Pro Thr Arg Leu Gln Phe Glu Ser Ser Gly Leu Leu Arg Glu Val Asn 355 360 365 Lys Ala Phe Cys Gly Phe Leu Asp Gln Ser Asn His Gln Leu Cys Ala 370 375 380 Lys Leu Val Gln Asp Leu Asn Thr Lys Asp Asn Cys Pro Ser Val Ile 385 390 395 400 Pro Asp Glu Cys Ile Gly Val Ser Thr Gly Asn Trp Gly Cys Gly Ala 405 410 415 Phe Gly Gly Asn Pro Glu Ile Lys Ser Met Ile Gln Trp Ile Ala Ala 420 425 430 Ser Gln Ala Leu Arg Ser Phe Ile Asn Tyr Tyr Thr Phe Glu Ser Glu 435 440 445 Ser Leu Lys Arg Leu Glu Glu Val Thr Gln Trp Ile Leu Arg His Arg 450 455 460 Trp Thr Val Gly Glu Leu Trp Asp Met Leu Val Glu Tyr Ser Ser Gln 465 470 475 480 Arg Leu Arg Gly Asp Thr Asn Glu Gly Phe Leu Thr Trp Leu Leu Pro 485 490 495 Lys Asp Ile Pro Asn Gly Asp Val Asp Tyr Met Cys Glu 500 505 17 25 DNA Artificial Sequence degenerate oligonucleotide primer PG1 17 atgtbccaca rmtckccrac mgtcc 25 18 28 DNA Artificial Sequence degenerate oligonucleotide primer PG2 18 gggtytccwc caaaarcmcc rcawcccc 28 19 26 DNA

Artificial Sequence degenerate oligonucleotide primer PG3 19 gctatagaaa twgtyggtgy rgaaag 26 20 26 DNA Artificial Sequence degenerate oligonucleotide primer PG4 20 agrggstgyg trcaggarga ratmcg 26 21 23 DNA Artificial Sequence degenerate oligonucleotide primer PG5 21 atggargaya aygargcnat hga 23 22 24 DNA Artificial Sequence degenerate oligonucleotide primer PG6 22 ccaytgdagc atrctyttda gytc 24 23 603 DNA zea mays 23 tagggctgtg tgcaggagga aatccgcttc atgataaacc ccgaattgat tgtgggtatg 60 ctattcttgt cttgtatgga agataacgag gctatagaaa tctttggtgc agaacggttc 120 tcacagtata tgggttatgg ttcctccttt cgctttgttg gtgactattt agataccaaa 180 ccctttgatt cgatgggcag acggagaact aggattgtgg ctatcgatgc tttggactgt 240 ccagctaggt tacactatga atctggctgt ctcctaaggg aagtgaacaa ggcattttgt 300 ggatttttcg atcaatcgaa acaccatctc tatgcgaagc ttttccagga tttgcacaac 360 aaggatgact tttcaagcat caattccagt gagtacgtag gagtttcaac aggaaactgg 420 ggttgtggtg cttttggtgg aaaccctgaa atcaagagca tgattcagtg gattgctgca 480 tcacaggctc ttcgcccttt tgttaattac tacacttttg agaacgtgtc tctgcaaaga 540 ttagaggagg tgatccagtg gatacggctt catggctgga ctgtcggcga gctgtggaac 600 ata 603 24 12987 DNA Artificial sequence T-DNA vector comprising a chimeric ParG expression reducing gene 24 cggcaggata tattcaattg taaatggctc catggcgatc gctctagagg atcttcccga 60 tctagtaaca tagatgacac cgcgcgcgat aatttatcct agtttgcgcg ctatattttg 120 ttttctatcg cgtattaaat gtataattgc gggactctaa tcataaaaac ccatctcata 180 aataacgtca tgcattacat gttaattatt acatgcttaa cgtaattcaa cagaaattat 240 atgataatca tcgcaagacc ggcaacagga ttcaatctta agaaacttta ttgccaaatg 300 tttgaacgat ctgcttcgga tcctagacgc gtgagatcag atctcggtga cgggcaggac 360 cggacggggc ggtaccggca ggctgaagtc cagctgccag aaacccacgt catgccagtt 420 cccgtgcttg aagccggccg cccgcagcat gccgcggggg gcatatccga gcgcctcgtg 480 catgcgcacg ctcgggtcgt tgggcagccc gatgacagcg accacgctct tgaagccctg 540 tgcctccagg gacttcagca ggtgggtgta gagcgtggag cccagtcccg tccgctggtg 600 gcggggggag acgtacacgg tcgactcggc cgtccagtcg taggcgttgc gtgccttcca 660 ggggcccgcg taggcgatgc cggcgacctc gccgtccacc tcggcgacga gccagggata 720 gcgctcccgc agacggacga ggtcgtccgt ccactcctgc ggttcctgcg gctcggtacg 780 gaagttgacc gtgcttgtct cgatgtagtg gttgacgatg gtgcagaccg ccggcatgtc 840 cgcctcggtg gcacggcgga tgtcggccgg gcgtcgttct gggtccatgg ttatagagag 900 agagatagat ttatagagag agactggtga tttcagcgtg tcctctccaa atgaaatgaa 960 cttccttata tagaggaagg gtcttgcgaa ggatagtggg attgtgcgtc atcccttacg 1020 tcagtggaga tgtcacatca atccacttgc tttgaagacg tggttggaac gtcttctttt 1080 tccacgatgc tcctcgtggg tgggggtcca tctttgggac cactgtcggc agaggcatct 1140 tgaatgatag cctttccttt atcgcaatga tggcatttgt aggagccacc ttccttttct 1200 actgtccttt cgatgaagtg acagatagct gggcaatgga atccgaggag gtttcccgaa 1260 attatccttt gttgaaaagt ctcaatagcc ctttggtctt ctgagactgt atctttgaca 1320 tttttggagt agaccagagt gtcgtgctcc accatgttga cgaagatttt cttcttgtca 1380 ttgagtcgta aaagactctg tatgaactgt tcgccagtct tcacggcgag ttctgttaga 1440 tcctcgattt gaatcttaga ctccatgcat ggccttagat tcagtaggaa ctaccttttt 1500 agagactcca atctctatta cttgccttgg tttatgaagc aagccttgaa tcgtccatac 1560 tggaatagta cttctgatct tgagaaatat gtctttctct gtgttcttga tgcaattagt 1620 cctgaatctt ttgactgcat ctttaacctt cttgggaagg tatttgatct cctggagatt 1680 gttactcggg tagatcgtct tgatgagacc tgctgcgtag gaacgcggcc gcgtatacgt 1740 atcgatatct tcgaattcga gctcgtcgag cggccgctcg acgaattaat tccaatccca 1800 caaaaatctg agcttaacag cacagttgct cctctcagag cagaatcggg tattcaacac 1860 cctcatatca actactacgt tgtgtataac ggtccacatg ccggtatata cgatgactgg 1920 ggttgtacaa aggcggcaac aaacggcgtt cccggagttg cacacaagaa atttgccact 1980 attacagagg caagagcagc agctgacgcg tacacaacaa gtcagcaaac agacaggttg 2040 aacttcatcc ccaaaggaga agctcaactc aagcccaaga gctttgctaa ggccctaaca 2100 agcccaccaa agcaaaaagc ccactggctc acgctaggaa ccaaaaggcc cagcagtgat 2160 ccagccccaa aagagatctc ctttgccccg gagattacaa tggacgattt cctctatctt 2220 tacgatctag gaaggaagtt cgaaggtgaa ggtgacgaca ctatgttcac cactgataat 2280 gagaaggtta gcctcttcaa tttcagaaag aatgctgacc cacagatggt tagagaggcc 2340 tacgcagcag gtctcatcaa gacgatctac ccgagtaaca atctccagga gatcaaatac 2400 cttcccaaga aggttaaaga tgcagtcaaa agattcagga ctaattgcat caagaacaca 2460 gagaaagaca tatttctcaa gatcagaagt actattccag tatggacgat tcaaggcttg 2520 cttcataaac caaggcaagt aatagagatt ggagtctcta aaaaggtagt tcctactgaa 2580 tctaaggcca tgcatggagt ctaagattca aatcgaggat ctaacagaac tcgccgtgaa 2640 gactggcgaa cagttcatac agagtctttt acgactcaat gacaagaaga aaatcttcgt 2700 caacatggtg gagcacgaca ctctggtcta ctccaaaaat gtcaaagata cagtctcaga 2760 agaccaaagg gctattgaga cttttcaaca aaggataatt tcgggaaacc tcctcggatt 2820 ccattgccca gctatctgtc acttcatcga aaggacagta gaaaaggaag gtggctccta 2880 caaatgccat cattgcgata aaggaaaggc tatcattcaa gatctctctg ccgacagtgg 2940 tcccaaagat ggacccccac ccacgaggag catcgtggaa aaagaagacg ttccaaccac 3000 gtcttcaaag caagtggatt gatgtgacat ctccactgac gtaagggatg acgcacaatc 3060 ccactatcct tcgcaagacc cttcctctat ataaggaagt tcatttcatt tggagaggac 3120 acgctcgagc ccgaattgat tgtgggtatg ctattcttgt cttgtatgga agataacgag 3180 gctatagaaa tctttggtgc agaacggttc tcacagtata tgggttatgg ttcctccttt 3240 cgctttgttg gtgactattt agataccaaa ccctttgatt cgatgggcag acggagaact 3300 aggattgtgg cggtacccca gcttggtaag gaaataatta ttttcttttt tccttttagt 3360 ataaaatagt taagtgatgt taattagtat gattataata atatagttgt tataattgtg 3420 aaaaaataat ttataaatat attgtttaca taaacaacat agtaatgtaa aaaaatatga 3480 caagtgatgt gtaagacgaa gaagataaaa gttgagagta agtatattat ttttaatgaa 3540 tttgatcgaa catgtaagat gatatactag cattaatatt tgttttaatc ataatagtaa 3600 ttctagctgg tttgatgaat taaatatcaa tgataaaata ctatagtaaa aataagaata 3660 aataaattaa aataatattt ttttatgatt aatagtttat tatataatta aatatctata 3720 ccattactaa atattttagt ttaaaagtta ataaatattt tgttagaaat tccaatctgc 3780 ttgtaattta tcaataaaca aaatattaaa taacaagcta aagtaacaaa taatatcaaa 3840 ctaatagaaa cagtaatcta atgtaacaaa acataatcta atgctaatat aacaaagcgc 3900 aagatctatc attttatata gtattatttt caatcaacat tcttattaat ttctaaataa 3960 tacttgtagt tttattaact tctaaatgga ttgactatta attaaatgaa ttagtcgaac 4020 atgaataaac aaggtaacat gatagatcat gtcattgtgt tatcattgat cttacatttg 4080 gattgattac agttgggaag ctgggttcga aatcgatagc cacaatccta gttctccgtc 4140 tgcccatcga atcaaagggt ttggtatcta aatagtcacc aacaaagcga aaggaggaac 4200 cataacccat atactgtgag aaccgttctg caccaaagat ttctatagcc tcgttatctt 4260 ccatacaaga caagaatagc atacccacaa tcaattcggg tctagagtcc tgctttaatg 4320 agatatgcga gacgcctatg atcgcatgat atttgctttc aattctgttg tgcacgttgt 4380 aaaaaacctg agcatgtgta gctcagatcc ttaccgccgg tttcggttca ttctaatgaa 4440 tatatcaccc gttactatcg tatttttatg aataatattc tccgttcaat ttactgattg 4500 taccctacta cttatatgta caatattaaa atgaaaacaa tatattgtgc tgaataggtt 4560 tatagcgaca tctatgatag agcgccacaa taacaaacaa ttgcgtttta ttattacaaa 4620 tccaatttta aaaaaagcgg cagaaccggt caaacctaaa agactgatta cataaatctt 4680 attcaaattt caaaaggccc caggggctag tatctacgac acaccgagcg gcgaactaat 4740 aacgttcact gaagggaact ccggttcccc gccggcgcgc atgggtgaga ttccttgaag 4800 ttgagtattg gccgtccgct ctaccgaaag ttacgggcac cattcaaccc ggtccagcac 4860 ggcggccggg taaccgactt gctgccccga gaattatgca gcattttttt ggtgtatgtg 4920 ggccccaaat gaagtgcagg tcaaaccttg acagtgacga caaatcgttg ggcgggtcca 4980 gggcgaattt tgcgacaaca tgtcgaggct cagcaggacc tgcaggtcga cggccgagta 5040 ctggcaggat atataccgtt gtaatttgtc gcgtgtgaat aagtcgctgt gtatgtttgt 5100 ttgattgttt ctgttggagt gcagcccatt tcaccggaca agtcggctag attgatttag 5160 ccctgatgaa ctgccgaggg gaagccatct tgagcgcgga atgggaatgg atttcgttgt 5220 acaacgagac gacagaacac ccacgggacc gagcttcgat cgagcatcaa atgaaactgc 5280 aatttattca tatcaggatt atcaatacca tatttttgaa aaagccgttt ctgtaatgaa 5340 ggagaaaact caccgaggca gttccatagg atggcaagat cctggtatcg gtctgcgatt 5400 ccgactcgtc caacatcaat acaacctatt aatttcccct cgtcaaaaat aaggttatca 5460 agtgagaaat caccatgagt gacgactgaa tccggtgaga atggcaaaag tttatgcatt 5520 tctttccaga cttgttcaac aggccagcca ttacgctcgt catcaaaatc actcgcatca 5580 accaaaccgt tattcattcg tgattgcgcc tgagcgagac gaaatacgcc gctgttaaaa 5640 ggacaattac aaacaggaat cgaatgcaac cggcgcagga acactgccag cgcatcaaca 5700 atattttcac ctgaatcagg atattcttct aatacctgga atgctgtttt tccggggatc 5760 gcagtggtga gtaaccatgc atcatcagga gtacggataa aatgcttgat ggtcggaaga 5820 ggcataaatt ccgtcagcca gtttagtctg accatctcat ctgtaacatc attggcaacg 5880 ctacctttgc catgtttcag aaacaactct ggcgcatcgg gcttcccata caatcgatag 5940 attgtcgcac ctgattgccc gacattatcc gaatctggca attccggttc gcttgctgtc 6000 cataaaaccg cccagtctag ctatcgccat gtaagcccac tgcaagctac ctgctttctc 6060 tttgcgcttg cgttttccgg atcttcttga gatccttttt ttctgcgcgt aatctgctgc 6120 ttgcaaacaa aaaaaccacc gctaccagcg gtggtttgtt tgccggatca agagctacca 6180 actctttttc cgaaggtaac tggcttcagc agagcgcaga taccaaatac tgtccttcta 6240 gtgtagccgt agttaggcca ccacttcaag aactctgtag caccgcctac atacctcgct 6300 ctgctaatcc tgttaccagt ggctgctgcc agtggcgata agtcgtgtct taccgggttg 6360 gactcaagac gatagttacc ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc 6420 acacagccca gcttggagcg aacgacctac accgaactga gatacctaca gcgtgagcta 6480 tgagaaagcg ccacgcttcc cgaagggaga aaggcggaca ggtatccggt aagcggcagg 6540 gtcggaacag gagagcgcac gagggagctt ccagggggaa acgcctggta tctttatagt 6600 cctgtcgggt ttcgccacct ctgacttgag cgtcgatttt tgtgatgctc gtcagggggg 6660 cggagcctat ggaaaaacgc cagcaacgcg gcctttttac ggttcctggc cttttgctgg 6720 ccttttgctc acatgttctt tcctgcgtta tcccctgatt ctgtggataa ccgtattacc 6780 gcctttgagt gagctgatac cgctcgccgc agccgaacga ccgagcgcag cgagtcagtg 6840 agcgaggaag cggaagagcg cctgatgcgg tattttctcc ttacgcatct gtgcggtatt 6900 tcacaccgca tatggtgcac tctcagtaca atctgctctg atgccgcata gttaagccag 6960 tatacactcc gctatcgcta cgtgactggg tcatggctgc gccccgacac ccgccaacac 7020 ccgctgacgc gccctgacgg gcttgtctgc tcccggcatc cgcttacaga caagctgtga 7080 ccgtctccgg gagctgcatg tgtcagaggt tttcaccgtc atcaccgaaa cgcgcgaggc 7140 agggtgcctt gatgtgggcg ccggcggtcg agtggcgacg gcgcggcttg tccgcgccct 7200 ggtagattgc ctggccgtag gccagccatt tttgagcggc cagcggccgc gataggccga 7260 cgcgaagcgg cggggcgtag ggagcgcagc gaccgaaggg taggcgcttt ttgcagctct 7320 tcggctgtgc gctggccaga cagttatgca caggccaggc gggttttaag agttttaata 7380 agttttaaag agttttaggc ggaaaaatcg ccttttttct cttttatatc agtcacttac 7440 atgtgtgacc ggttcccaat gtacggcttt gggttcccaa tgtacgggtt ccggttccca 7500 atgtacggct ttgggttccc aatgtacgtg ctatccacag gaaagagacc ttttcgacct 7560 ttttcccctg ctagggcaat ttgccctagc atctgctccg tacattagga accggcggat 7620 gcttcgccct cgatcaggtt gcggtagcgc atgactagga tcgggccagc ctgccccgcc 7680 tcctccttca aatcgtactc cggcaggtca tttgacccga tcagcttgcg cacggtgaaa 7740 cagaacttct tgaactctcc ggcgctgcca ctgcgttcgt agatcgtctt gaacaaccat 7800 ctggcttctg ccttgcctgc ggcgcggcgt gccaggcggt agagaaaacg gccgatgccg 7860 ggatcgatca aaaagtaatc ggggtgaacc gtcagcacgt ccgggttctt gccttctgtg 7920 atctcgcggt acatccaatc agctagctcg atctcgatgt actccggccg cccggtttcg 7980 ctctttacga tcttgtagcg gctaatcaag gcttcaccct cggataccgt caccaggcgg 8040 ccgttcttgg ccttcttcgt acgctgcatg gcaacgtgcg tggtgtttaa ccgaatgcag 8100 gtttctacca ggtcgtcttt ctgctttccg ccatcggctc gccggcagaa cttgagtacg 8160 tccgcaacgt gtggacggaa cacgcggccg ggcttgtctc ccttcccttc ccggtatcgg 8220 ttcatggatt cggttagatg ggaaaccgcc atcagtacca ggtcgtaatc ccacacactg 8280 gccatgccgg ccggccctgc ggaaacctct acgtgcccgt ctggaagctc gtagcggatc 8340 acctcgccag ctcgtcggtc acgcttcgac agacggaaaa cggccacgtc catgatgctg 8400 cgactatcgc gggtgcccac gtcatagagc atcggaacga aaaaatctgg ttgctcgtcg 8460 cccttgggcg gcttcctaat cgacggcgca ccggctgccg gcggttgccg ggattctttg 8520 cggattcgat cagcggccgc ttgccacgat tcaccggggc gtgcttctgc ctcgatgcgt 8580 tgccgctggg cggcctgcgc ggccttcaac ttctccacca ggtcatcacc cagcgccgcg 8640 ccgatttgta ccgggccgga tggtttgcga ccgtcacgcc gattcctcgg gcttgggggt 8700 tccagtgcca ttgcagggcc ggcagacaac ccagccgctt acgcctggcc aaccgcccgt 8760 tcctccacac atggggcatt ccacggcgtc ggtgcctggt tgttcttgat tttccatgcc 8820 gcctccttta gccgctaaaa ttcatctact catttattca tttgctcatt tactctggta 8880 gctgcgcgat gtattcagat agcagctcgg taatggtctt gccttggcgt accgcgtaca 8940 tcttcagctt ggtgtgatcc tccgccggca actgaaagtt gacccgcttc atggctggcg 9000 tgtctgccag gctggccaac gttgcagcct tgctgctgcg tgcgctcgga cggccggcac 9060 ttagcgtgtt tgtgcttttg ctcattttct ctttacctca ttaactcaaa tgagttttga 9120 tttaatttca gcggccagcg cctggacctc gcgggcagcg tcgccctcgg gttctgattc 9180 aagaacggtt gtgccggcgg cggcagtgcc tgggtagctc acgcgctgcg tgatacggga 9240 ctcaagaatg ggcagctcgt acccggccag cgcctcggca acctcaccgc cgatgcgcgt 9300 gcctttgatc gcccgcgaca cgacaaaggc cgcttgtagc cttccatccg tgacctcaat 9360 gcgctgctta accagctcca ccaggtcggc ggtggcccat atgtcgtaag ggcttggctg 9420 caccggaatc agcacgaagt cggctgcctt gatcgcggac acagccaagt ccgccgcctg 9480 gggcgctccg tcgatcacta cgaagtcgcg ccggccgatg gccttcacgt cgcggtcaat 9540 cgtcgggcgg tcgatgccga caacggttag cggttgatct tcccgcacgg ccgcccaatc 9600 gcgggcactg ccctggggat cggaatcgac taacagaaca tcggccccgg cgagttgcag 9660 ggcgcgggct agatgggttg cgatggtcgt cttgcctgac ccgcctttct ggttaagtac 9720 agcgataacc ttcatgcgtt ccccttgcgt atttgtttat ttactcatcg catcatatac 9780 gcagcgaccg catgacgcaa gctgttttac tcaaatacac atcacctttt tagacggcgg 9840 cgctcggttt cttcagcggc caagctggcc ggccaggccg ccagcttggc atcagacaaa 9900 ccggccagga tttcatgcag ccgcacggtt gagacgtgcg cgggcggctc gaacacgtac 9960 ccggccgcga tcatctccgc ctcgatctct tcggtaatga aaaacggttc gtcctggccg 10020 tcctggtgcg gtttcatgct tgttcctctt ggcgttcatt ctcggcggcc gccagggcgt 10080 cggcctcggt caatgcgtcc tcacggaagg caccgcgccg cctggcctcg gtgggcgtca 10140 cttcctcgct gcgctcaagt gcgcggtaca gggtcgagcg atgcacgcca agcagtgcag 10200 ccgcctcttt cacggtgcgg ccttcctggt cgatcagctc gcgggcgtgc gcgatctgtg 10260 ccggggtgag ggtagggcgg gggccaaact tcacgcctcg ggccttggcg gcctcgcgcc 10320 cgctccgggt gcggtcgatg attagggaac gctcgaactc ggcaatgccg gcgaacacgg 10380 tcaacaccat gcggccggcc ggcgtggtgg tgtcggccca cggctctgcc aggctacgca 10440 ggcccgcgcc ggcctcctgg atgcgctcgg caatgtccag taggtcgcgg gtgctgcggg 10500 ccaggcggtc tagcctggtc actgtcacaa cgtcgccagg gcgtaggtgg tcaagcatcc 10560 tggccagctc cgggcggtcg cgcctggtgc cggtgatctt ctcggaaaac agcttggtgc 10620 agccggccgc gtgcagttcg gcccgttggt tggtcaagtc ctggtcgtcg gtgctgacgc 10680 gggcatagcc cagcaggcca gcggcggcgc tcttgttcat ggcgtaatgt ctccggttct 10740 agtcgcaagt attctacttt atgcgactaa aacacgcgac aagaaaacgc caggaaaagg 10800 gcagggcggc agcctgtcgc gtaacttagg acttgtgcga catgtcgttt tcagaagacg 10860 gctgcactga acgtcagaag ccgactgcac tatagcagcg gaggggttgg atcgatccct 10920 gctcgcgcag gctgggtgcc aagctctcgg gtaacatcaa ggcccgatcc ttggagccct 10980 tgccctcccg cacgatgatc gtgccgtgat cgaaatccag atccttgacc cgcagttgca 11040 aaccctcact gatccgcatg cccgttccat acagaagctg ggcgaacaaa cgatgctcgc 11100 cttccagaaa accgaggatg cgaaccactt catccggggt cagcaccacc ggcaagcgcc 11160 cggacggccg aggtcttccg atctcctgaa gccagggcag atccgtgcac agcacttgcc 11220 gtagaagaac agcaaggccg ccaatgcctg acgatgcgtg gagaccgaaa ccttgcgctc 11280 gttcgccagc caggacagaa atgcctcgac ttcgctgctg cccaaggttg ccgggtgacg 11340 cacaccgtgg aaacggatga aggcacgaac ccagtggaca taagcctgtt cggttcgtaa 11400 gctgtaatgc aagtagcgta tgcgctcacg caactggtcc agaaccttga ccgaacgcag 11460 cggtggtaac ggcgcagtgg cggttttcat ggcttgttat gactgttttt ttggggtaca 11520 gtctatgcct cgggcatcca agcagcaagc gcgttacgcc gtgggtcgat gtttgatgtt 11580 atggagcagc aacgatgtta cgcagcaggg cagtcgccct aaaacaaagt taaacatcat 11640 gagggaagcg gtgatcgccg aagtatcgac tcaactatca gaggtagttg gcgtcatcga 11700 gcgccatctc gaaccgacgt tgctggccgt acatttgtac ggctccgcag tggatggcgg 11760 cctgaagcca cacagtgata ttgatttgct ggttacggtg accgtaaggc ttgatgaaac 11820 aacgcggcga gctttgatca acgacctttt ggaaacttcg gcttcccctg gagagagcga 11880 gattctccgc gctgtagaag tcaccattgt tgtgcacgac gacatcattc cgtggcgtta 11940 tccagctaag cgcgaactgc aatttggaga atggcagcgc aatgacattc ttgcaggtat 12000 cttcgagcca gccacgatcg acattgatct ggctatcttg ctgacaaaag caagagaaca 12060 tagcgttgcc ttggtaggtc cagcggcgga ggaactcttt gatccggttc ctgaacagga 12120 tctatttgag gcgctaaatg aaaccttaac gctatggaac tcgccgcccg actgggctgg 12180 cgatgagcga aatgtagtgc ttacgttgtc ccgcatttgg tacagcgcag taaccggcaa 12240 aatcgcgccg aaggatgtcg ctgccgactg ggcaatggag cgcctgccgg cccagtatca 12300 gcccgtcata cttgaagcta gacaggctta tcttggacaa gaagaagatc gcttggcctc 12360 gcgcgcagat cagttggaag aatttgtcca ctacgtgaaa ggcgagatca ccaaggtagt 12420 cggcaaataa tgtctaacaa ttcgttcaag ccgacgccgc ttcgcggcgc ggcttaactc 12480 aagcgttaga tgcactaagc acataattgc tcacagccaa actatcaggt caagtctgct 12540 tttattattt ttaagcgtgc ataataagcc ctacacaaat tgggagatat atcatgaaag 12600 gctggctttt tcttgttatc gcaatagttg gcgaagtaat cgcaacatcc gcattaaaat 12660 ctagcgaggg ctttactaag ctagcttgct tggtcgttcc ggtaccgtga acgtcggctc 12720 gattgtacct gcgttcaaat actttgcgat cgtgttgcgc gcctgcccgg tgcgtcggct 12780 gatctcacgg atcgactgct tctctcgcaa cgccatccga cggatgatgt ttaaaagtcc 12840 catgtggatc actccgttgc cccgtcgctc accgtgttgg ggggaaggtg cacatggctc 12900 agttctcaat ggaaattatc tgcctaaccg gctcagttct gcgtagaaac caacatgcaa 12960 gctccaccgg gtgcaaagcg gcagcgg 12987 25 13226 DNA Artificial sequence T-DNA vector comprising a chimeric ParG expression reducing gene 25 cggcaggata tattcaattg taaatggctc catggcgatc gctctagagg atcttcccga 60 tctagtaaca tagatgacac cgcgcgcgat aatttatcct agtttgcgcg ctatattttg 120 ttttctatcg cgtattaaat gtataattgc gggactctaa tcataaaaac ccatctcata 180 aataacgtca tgcattacat gttaattatt acatgcttaa cgtaattcaa cagaaattat 240 atgataatca tcgcaagacc ggcaacagga ttcaatctta agaaacttta ttgccaaatg 300 tttgaacgat ctgcttcgga tcctagacgc gtgagatcag atctcggtga cgggcaggac 360 cggacggggc ggtaccggca ggctgaagtc cagctgccag aaacccacgt catgccagtt 420 cccgtgcttg aagccggccg cccgcagcat gccgcggggg gcatatccga gcgcctcgtg 480 catgcgcacg ctcgggtcgt tgggcagccc gatgacagcg accacgctct tgaagccctg 540 tgcctccagg gacttcagca ggtgggtgta gagcgtggag cccagtcccg tccgctggtg 600 gcggggggag acgtacacgg tcgactcggc cgtccagtcg taggcgttgc gtgccttcca 660 ggggcccgcg taggcgatgc cggcgacctc gccgtccacc

tcggcgacga gccagggata 720 gcgctcccgc agacggacga ggtcgtccgt ccactcctgc ggttcctgcg gctcggtacg 780 gaagttgacc gtgcttgtct cgatgtagtg gttgacgatg gtgcagaccg ccggcatgtc 840 cgcctcggtg gcacggcgga tgtcggccgg gcgtcgttct gggtccatgg ttatagagag 900 agagatagat ttatagagag agactggtga tttcagcgtg tcctctccaa atgaaatgaa 960 cttccttata tagaggaagg gtcttgcgaa ggatagtggg attgtgcgtc atcccttacg 1020 tcagtggaga tgtcacatca atccacttgc tttgaagacg tggttggaac gtcttctttt 1080 tccacgatgc tcctcgtggg tgggggtcca tctttgggac cactgtcggc agaggcatct 1140 tgaatgatag cctttccttt atcgcaatga tggcatttgt aggagccacc ttccttttct 1200 actgtccttt cgatgaagtg acagatagct gggcaatgga atccgaggag gtttcccgaa 1260 attatccttt gttgaaaagt ctcaatagcc ctttggtctt ctgagactgt atctttgaca 1320 tttttggagt agaccagagt gtcgtgctcc accatgttga cgaagatttt cttcttgtca 1380 ttgagtcgta aaagactctg tatgaactgt tcgccagtct tcacggcgag ttctgttaga 1440 tcctcgattt gaatcttaga ctccatgcat ggccttagat tcagtaggaa ctaccttttt 1500 agagactcca atctctatta cttgccttgg tttatgaagc aagccttgaa tcgtccatac 1560 tggaatagta cttctgatct tgagaaatat gtctttctct gtgttcttga tgcaattagt 1620 cctgaatctt ttgactgcat ctttaacctt cttgggaagg tatttgatct cctggagatt 1680 gttactcggg tagatcgtct tgatgagacc tgctgcgtag gaacgcggcc gcgtatacgt 1740 atcgatatct tcgaattcga gctcgtcgag cggccgctcg acgaattaat tccaatccca 1800 caaaaatctg agcttaacag cacagttgct cctctcagag cagaatcggg tattcaacac 1860 cctcatatca actactacgt tgtgtataac ggtccacatg ccggtatata cgatgactgg 1920 ggttgtacaa aggcggcaac aaacggcgtt cccggagttg cacacaagaa atttgccact 1980 attacagagg caagagcagc agctgacgcg tacacaacaa gtcagcaaac agacaggttg 2040 aacttcatcc ccaaaggaga agctcaactc aagcccaaga gctttgctaa ggccctaaca 2100 agcccaccaa agcaaaaagc ccactggctc acgctaggaa ccaaaaggcc cagcagtgat 2160 ccagccccaa aagagatctc ctttgccccg gagattacaa tggacgattt cctctatctt 2220 tacgatctag gaaggaagtt cgaaggtgaa ggtgacgaca ctatgttcac cactgataat 2280 gagaaggtta gcctcttcaa tttcagaaag aatgctgacc cacagatggt tagagaggcc 2340 tacgcagcag gtctcatcaa gacgatctac ccgagtaaca atctccagga gatcaaatac 2400 cttcccaaga aggttaaaga tgcagtcaaa agattcagga ctaattgcat caagaacaca 2460 gagaaagaca tatttctcaa gatcagaagt actattccag tatggacgat tcaaggcttg 2520 cttcataaac caaggcaagt aatagagatt ggagtctcta aaaaggtagt tcctactgaa 2580 tctaaggcca tgcatggagt ctaagattca aatcgaggat ctaacagaac tcgccgtgaa 2640 gactggcgaa cagttcatac agagtctttt acgactcaat gacaagaaga aaatcttcgt 2700 caacatggtg gagcacgaca ctctggtcta ctccaaaaat gtcaaagata cagtctcaga 2760 agaccaaagg gctattgaga cttttcaaca aaggataatt tcgggaaacc tcctcggatt 2820 ccattgccca gctatctgtc acttcatcga aaggacagta gaaaaggaag gtggctccta 2880 caaatgccat cattgcgata aaggaaaggc tatcattcaa gatctctctg ccgacagtgg 2940 tcccaaagat ggacccccac ccacgaggag catcgtggaa aaagaagacg ttccaaccac 3000 gtcttcaaag caagtggatt gatgtgacat ctccactgac gtaagggatg acgcacaatc 3060 ccactatcct tcgcaagacc cttcctctat ataaggaagt tcatttcatt tggagaggac 3120 acgctcgagg aatctggctg tctcctaagg gaagtgaaca aggcattttg tggatttttc 3180 gatcaatcga aacaccatct ctatgcgaag cttttccagg atttgcacaa caaggatgac 3240 ttttcaagca tcaattccag tgagtacgta ggagtttcaa caggaaactg gggttgtggt 3300 gcttttggtg gaaaccctga aatcaagagc atgattcagt ggattgctgc atcacaggct 3360 cttcgccctt ttgttaatta ctacactttt gagaacgtgt ctctgcaaag attagaggag 3420 gtgatccagt gggtacccca gcttggtaag gaaataatta ttttcttttt tccttttagt 3480 ataaaatagt taagtgatgt taattagtat gattataata atatagttgt tataattgtg 3540 aaaaaataat ttataaatat attgtttaca taaacaacat agtaatgtaa aaaaatatga 3600 caagtgatgt gtaagacgaa gaagataaaa gttgagagta agtatattat ttttaatgaa 3660 tttgatcgaa catgtaagat gatatactag cattaatatt tgttttaatc ataatagtaa 3720 ttctagctgg tttgatgaat taaatatcaa tgataaaata ctatagtaaa aataagaata 3780 aataaattaa aataatattt ttttatgatt aatagtttat tatataatta aatatctata 3840 ccattactaa atattttagt ttaaaagtta ataaatattt tgttagaaat tccaatctgc 3900 ttgtaattta tcaataaaca aaatattaaa taacaagcta aagtaacaaa taatatcaaa 3960 ctaatagaaa cagtaatcta atgtaacaaa acataatcta atgctaatat aacaaagcgc 4020 aagatctatc attttatata gtattatttt caatcaacat tcttattaat ttctaaataa 4080 tacttgtagt tttattaact tctaaatgga ttgactatta attaaatgaa ttagtcgaac 4140 atgaataaac aaggtaacat gatagatcat gtcattgtgt tatcattgat cttacatttg 4200 gattgattac agttgggaag ctgggttcga aatcgatcac tggatcacct cctctaatct 4260 ttgcagagac acgttctcaa aagtgtagta attaacaaaa gggcgaagag cctgtgatgc 4320 agcaatccac tgaatcatgc tcttgatttc agggtttcca ccaaaagcac cacaacccca 4380 gtttcctgtt gaaactccta cgtactcact ggaattgatg cttgaaaagt catccttgtt 4440 gtgcaaatcc tggaaaagct tcgcatagag atggtgtttc gattgatcga aaaatccaca 4500 aaatgccttg ttcacttccc ttaggagaca gccagattct ctagagtcct gctttaatga 4560 gatatgcgag acgcctatga tcgcatgata tttgctttca attctgttgt gcacgttgta 4620 aaaaacctga gcatgtgtag ctcagatcct taccgccggt ttcggttcat tctaatgaat 4680 atatcacccg ttactatcgt atttttatga ataatattct ccgttcaatt tactgattgt 4740 accctactac ttatatgtac aatattaaaa tgaaaacaat atattgtgct gaataggttt 4800 atagcgacat ctatgataga gcgccacaat aacaaacaat tgcgttttat tattacaaat 4860 ccaattttaa aaaaagcggc agaaccggtc aaacctaaaa gactgattac ataaatctta 4920 ttcaaatttc aaaaggcccc aggggctagt atctacgaca caccgagcgg cgaactaata 4980 acgttcactg aagggaactc cggttccccg ccggcgcgca tgggtgagat tccttgaagt 5040 tgagtattgg ccgtccgctc taccgaaagt tacgggcacc attcaacccg gtccagcacg 5100 gcggccgggt aaccgacttg ctgccccgag aattatgcag catttttttg gtgtatgtgg 5160 gccccaaatg aagtgcaggt caaaccttga cagtgacgac aaatcgttgg gcgggtccag 5220 ggcgaatttt gcgacaacat gtcgaggctc agcaggacct gcaggtcgac ggccgagtac 5280 tggcaggata tataccgttg taatttgtcg cgtgtgaata agtcgctgtg tatgtttgtt 5340 tgattgtttc tgttggagtg cagcccattt caccggacaa gtcggctaga ttgatttagc 5400 cctgatgaac tgccgagggg aagccatctt gagcgcggaa tgggaatgga tttcgttgta 5460 caacgagacg acagaacacc cacgggaccg agcttcgatc gagcatcaaa tgaaactgca 5520 atttattcat atcaggatta tcaataccat atttttgaaa aagccgtttc tgtaatgaag 5580 gagaaaactc accgaggcag ttccatagga tggcaagatc ctggtatcgg tctgcgattc 5640 cgactcgtcc aacatcaata caacctatta atttcccctc gtcaaaaata aggttatcaa 5700 gtgagaaatc accatgagtg acgactgaat ccggtgagaa tggcaaaagt ttatgcattt 5760 ctttccagac ttgttcaaca ggccagccat tacgctcgtc atcaaaatca ctcgcatcaa 5820 ccaaaccgtt attcattcgt gattgcgcct gagcgagacg aaatacgccg ctgttaaaag 5880 gacaattaca aacaggaatc gaatgcaacc ggcgcaggaa cactgccagc gcatcaacaa 5940 tattttcacc tgaatcagga tattcttcta atacctggaa tgctgttttt ccggggatcg 6000 cagtggtgag taaccatgca tcatcaggag tacggataaa atgcttgatg gtcggaagag 6060 gcataaattc cgtcagccag tttagtctga ccatctcatc tgtaacatca ttggcaacgc 6120 tacctttgcc atgtttcaga aacaactctg gcgcatcggg cttcccatac aatcgataga 6180 ttgtcgcacc tgattgcccg acattatccg aatctggcaa ttccggttcg cttgctgtcc 6240 ataaaaccgc ccagtctagc tatcgccatg taagcccact gcaagctacc tgctttctct 6300 ttgcgcttgc gttttccgga tcttcttgag atcctttttt tctgcgcgta atctgctgct 6360 tgcaaacaaa aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa gagctaccaa 6420 ctctttttcc gaaggtaact ggcttcagca gagcgcagat accaaatact gtccttctag 6480 tgtagccgta gttaggccac cacttcaaga actctgtagc accgcctaca tacctcgctc 6540 tgctaatcct gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt accgggttgg 6600 actcaagacg atagttaccg gataaggcgc agcggtcggg ctgaacgggg ggttcgtgca 6660 cacagcccag cttggagcga acgacctaca ccgaactgag atacctacag cgtgagctat 6720 gagaaagcgc cacgcttccc gaagggagaa aggcggacag gtatccggta agcggcaggg 6780 tcggaacagg agagcgcacg agggagcttc cagggggaaa cgcctggtat ctttatagtc 6840 ctgtcgggtt tcgccacctc tgacttgagc gtcgattttt gtgatgctcg tcaggggggc 6900 ggagcctatg gaaaaacgcc agcaacgcgg cctttttacg gttcctggcc ttttgctggc 6960 cttttgctca catgttcttt cctgcgttat cccctgattc tgtggataac cgtattaccg 7020 cctttgagtg agctgatacc gctcgccgca gccgaacgac cgagcgcagc gagtcagtga 7080 gcgaggaagc ggaagagcgc ctgatgcggt attttctcct tacgcatctg tgcggtattt 7140 cacaccgcat atggtgcact ctcagtacaa tctgctctga tgccgcatag ttaagccagt 7200 atacactccg ctatcgctac gtgactgggt catggctgcg ccccgacacc cgccaacacc 7260 cgctgacgcg ccctgacggg cttgtctgct cccggcatcc gcttacagac aagctgtgac 7320 cgtctccggg agctgcatgt gtcagaggtt ttcaccgtca tcaccgaaac gcgcgaggca 7380 gggtgccttg atgtgggcgc cggcggtcga gtggcgacgg cgcggcttgt ccgcgccctg 7440 gtagattgcc tggccgtagg ccagccattt ttgagcggcc agcggccgcg ataggccgac 7500 gcgaagcggc ggggcgtagg gagcgcagcg accgaagggt aggcgctttt tgcagctctt 7560 cggctgtgcg ctggccagac agttatgcac aggccaggcg ggttttaaga gttttaataa 7620 gttttaaaga gttttaggcg gaaaaatcgc cttttttctc ttttatatca gtcacttaca 7680 tgtgtgaccg gttcccaatg tacggctttg ggttcccaat gtacgggttc cggttcccaa 7740 tgtacggctt tgggttccca atgtacgtgc tatccacagg aaagagacct tttcgacctt 7800 tttcccctgc tagggcaatt tgccctagca tctgctccgt acattaggaa ccggcggatg 7860 cttcgccctc gatcaggttg cggtagcgca tgactaggat cgggccagcc tgccccgcct 7920 cctccttcaa atcgtactcc ggcaggtcat ttgacccgat cagcttgcgc acggtgaaac 7980 agaacttctt gaactctccg gcgctgccac tgcgttcgta gatcgtcttg aacaaccatc 8040 tggcttctgc cttgcctgcg gcgcggcgtg ccaggcggta gagaaaacgg ccgatgccgg 8100 gatcgatcaa aaagtaatcg gggtgaaccg tcagcacgtc cgggttcttg ccttctgtga 8160 tctcgcggta catccaatca gctagctcga tctcgatgta ctccggccgc ccggtttcgc 8220 tctttacgat cttgtagcgg ctaatcaagg cttcaccctc ggataccgtc accaggcggc 8280 cgttcttggc cttcttcgta cgctgcatgg caacgtgcgt ggtgtttaac cgaatgcagg 8340 tttctaccag gtcgtctttc tgctttccgc catcggctcg ccggcagaac ttgagtacgt 8400 ccgcaacgtg tggacggaac acgcggccgg gcttgtctcc cttcccttcc cggtatcggt 8460 tcatggattc ggttagatgg gaaaccgcca tcagtaccag gtcgtaatcc cacacactgg 8520 ccatgccggc cggccctgcg gaaacctcta cgtgcccgtc tggaagctcg tagcggatca 8580 cctcgccagc tcgtcggtca cgcttcgaca gacggaaaac ggccacgtcc atgatgctgc 8640 gactatcgcg ggtgcccacg tcatagagca tcggaacgaa aaaatctggt tgctcgtcgc 8700 ccttgggcgg cttcctaatc gacggcgcac cggctgccgg cggttgccgg gattctttgc 8760 ggattcgatc agcggccgct tgccacgatt caccggggcg tgcttctgcc tcgatgcgtt 8820 gccgctgggc ggcctgcgcg gccttcaact tctccaccag gtcatcaccc agcgccgcgc 8880 cgatttgtac cgggccggat ggtttgcgac cgtcacgccg attcctcggg cttgggggtt 8940 ccagtgccat tgcagggccg gcagacaacc cagccgctta cgcctggcca accgcccgtt 9000 cctccacaca tggggcattc cacggcgtcg gtgcctggtt gttcttgatt ttccatgccg 9060 cctcctttag ccgctaaaat tcatctactc atttattcat ttgctcattt actctggtag 9120 ctgcgcgatg tattcagata gcagctcggt aatggtcttg ccttggcgta ccgcgtacat 9180 cttcagcttg gtgtgatcct ccgccggcaa ctgaaagttg acccgcttca tggctggcgt 9240 gtctgccagg ctggccaacg ttgcagcctt gctgctgcgt gcgctcggac ggccggcact 9300 tagcgtgttt gtgcttttgc tcattttctc tttacctcat taactcaaat gagttttgat 9360 ttaatttcag cggccagcgc ctggacctcg cgggcagcgt cgccctcggg ttctgattca 9420 agaacggttg tgccggcggc ggcagtgcct gggtagctca cgcgctgcgt gatacgggac 9480 tcaagaatgg gcagctcgta cccggccagc gcctcggcaa cctcaccgcc gatgcgcgtg 9540 cctttgatcg cccgcgacac gacaaaggcc gcttgtagcc ttccatccgt gacctcaatg 9600 cgctgcttaa ccagctccac caggtcggcg gtggcccata tgtcgtaagg gcttggctgc 9660 accggaatca gcacgaagtc ggctgccttg atcgcggaca cagccaagtc cgccgcctgg 9720 ggcgctccgt cgatcactac gaagtcgcgc cggccgatgg ccttcacgtc gcggtcaatc 9780 gtcgggcggt cgatgccgac aacggttagc ggttgatctt cccgcacggc cgcccaatcg 9840 cgggcactgc cctggggatc ggaatcgact aacagaacat cggccccggc gagttgcagg 9900 gcgcgggcta gatgggttgc gatggtcgtc ttgcctgacc cgcctttctg gttaagtaca 9960 gcgataacct tcatgcgttc cccttgcgta tttgtttatt tactcatcgc atcatatacg 10020 cagcgaccgc atgacgcaag ctgttttact caaatacaca tcaccttttt agacggcggc 10080 gctcggtttc ttcagcggcc aagctggccg gccaggccgc cagcttggca tcagacaaac 10140 cggccaggat ttcatgcagc cgcacggttg agacgtgcgc gggcggctcg aacacgtacc 10200 cggccgcgat catctccgcc tcgatctctt cggtaatgaa aaacggttcg tcctggccgt 10260 cctggtgcgg tttcatgctt gttcctcttg gcgttcattc tcggcggccg ccagggcgtc 10320 ggcctcggtc aatgcgtcct cacggaaggc accgcgccgc ctggcctcgg tgggcgtcac 10380 ttcctcgctg cgctcaagtg cgcggtacag ggtcgagcga tgcacgccaa gcagtgcagc 10440 cgcctctttc acggtgcggc cttcctggtc gatcagctcg cgggcgtgcg cgatctgtgc 10500 cggggtgagg gtagggcggg ggccaaactt cacgcctcgg gccttggcgg cctcgcgccc 10560 gctccgggtg cggtcgatga ttagggaacg ctcgaactcg gcaatgccgg cgaacacggt 10620 caacaccatg cggccggccg gcgtggtggt gtcggcccac ggctctgcca ggctacgcag 10680 gcccgcgccg gcctcctgga tgcgctcggc aatgtccagt aggtcgcggg tgctgcgggc 10740 caggcggtct agcctggtca ctgtcacaac gtcgccaggg cgtaggtggt caagcatcct 10800 ggccagctcc gggcggtcgc gcctggtgcc ggtgatcttc tcggaaaaca gcttggtgca 10860 gccggccgcg tgcagttcgg cccgttggtt ggtcaagtcc tggtcgtcgg tgctgacgcg 10920 ggcatagccc agcaggccag cggcggcgct cttgttcatg gcgtaatgtc tccggttcta 10980 gtcgcaagta ttctacttta tgcgactaaa acacgcgaca agaaaacgcc aggaaaaggg 11040 cagggcggca gcctgtcgcg taacttagga cttgtgcgac atgtcgtttt cagaagacgg 11100 ctgcactgaa cgtcagaagc cgactgcact atagcagcgg aggggttgga tcgatccctg 11160 ctcgcgcagg ctgggtgcca agctctcggg taacatcaag gcccgatcct tggagccctt 11220 gccctcccgc acgatgatcg tgccgtgatc gaaatccaga tccttgaccc gcagttgcaa 11280 accctcactg atccgcatgc ccgttccata cagaagctgg gcgaacaaac gatgctcgcc 11340 ttccagaaaa ccgaggatgc gaaccacttc atccggggtc agcaccaccg gcaagcgccc 11400 ggacggccga ggtcttccga tctcctgaag ccagggcaga tccgtgcaca gcacttgccg 11460 tagaagaaca gcaaggccgc caatgcctga cgatgcgtgg agaccgaaac cttgcgctcg 11520 ttcgccagcc aggacagaaa tgcctcgact tcgctgctgc ccaaggttgc cgggtgacgc 11580 acaccgtgga aacggatgaa ggcacgaacc cagtggacat aagcctgttc ggttcgtaag 11640 ctgtaatgca agtagcgtat gcgctcacgc aactggtcca gaaccttgac cgaacgcagc 11700 ggtggtaacg gcgcagtggc ggttttcatg gcttgttatg actgtttttt tggggtacag 11760 tctatgcctc gggcatccaa gcagcaagcg cgttacgccg tgggtcgatg tttgatgtta 11820 tggagcagca acgatgttac gcagcagggc agtcgcccta aaacaaagtt aaacatcatg 11880 agggaagcgg tgatcgccga agtatcgact caactatcag aggtagttgg cgtcatcgag 11940 cgccatctcg aaccgacgtt gctggccgta catttgtacg gctccgcagt ggatggcggc 12000 ctgaagccac acagtgatat tgatttgctg gttacggtga ccgtaaggct tgatgaaaca 12060 acgcggcgag ctttgatcaa cgaccttttg gaaacttcgg cttcccctgg agagagcgag 12120 attctccgcg ctgtagaagt caccattgtt gtgcacgacg acatcattcc gtggcgttat 12180 ccagctaagc gcgaactgca atttggagaa tggcagcgca atgacattct tgcaggtatc 12240 ttcgagccag ccacgatcga cattgatctg gctatcttgc tgacaaaagc aagagaacat 12300 agcgttgcct tggtaggtcc agcggcggag gaactctttg atccggttcc tgaacaggat 12360 ctatttgagg cgctaaatga aaccttaacg ctatggaact cgccgcccga ctgggctggc 12420 gatgagcgaa atgtagtgct tacgttgtcc cgcatttggt acagcgcagt aaccggcaaa 12480 atcgcgccga aggatgtcgc tgccgactgg gcaatggagc gcctgccggc ccagtatcag 12540 cccgtcatac ttgaagctag acaggcttat cttggacaag aagaagatcg cttggcctcg 12600 cgcgcagatc agttggaaga atttgtccac tacgtgaaag gcgagatcac caaggtagtc 12660 ggcaaataat gtctaacaat tcgttcaagc cgacgccgct tcgcggcgcg gcttaactca 12720 agcgttagat gcactaagca cataattgct cacagccaaa ctatcaggtc aagtctgctt 12780 ttattatttt taagcgtgca taataagccc tacacaaatt gggagatata tcatgaaagg 12840 ctggcttttt cttgttatcg caatagttgg cgaagtaatc gcaacatccg cattaaaatc 12900 tagcgagggc tttactaagc tagcttgctt ggtcgttccg gtaccgtgaa cgtcggctcg 12960 attgtacctg cgttcaaata ctttgcgatc gtgttgcgcg cctgcccggt gcgtcggctg 13020 atctcacgga tcgactgctt ctctcgcaac gccatccgac ggatgatgtt taaaagtccc 13080 atgtggatca ctccgttgcc ccgtcgctca ccgtgttggg gggaaggtgc acatggctca 13140 gttctcaatg gaaattatct gcctaaccgg ctcagttctg cgtagaaacc aacatgcaag 13200 ctccaccggg tgcaaagcgg cagcgg 13226

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed