Virulence genes, proteins, and their use

Cosson; Pierre ;   et al.

Patent Application Summary

U.S. patent application number 10/536606 was filed with the patent office on 2006-08-03 for virulence genes, proteins, and their use. Invention is credited to Mohammed Benghezal, Pierre Cosson, Christian Van Delden, Thilo Kohler, Anna Marchetti.

Application Number20060171959 10/536606
Document ID /
Family ID32593615
Filed Date2006-08-03

United States Patent Application 20060171959
Kind Code A1
Cosson; Pierre ;   et al. August 3, 2006

Virulence genes, proteins, and their use

Abstract

A series of genes from Pseudomonas aeruginosa and Klebsiella are shown to encode products that are implicated in virulence. The identification of theses genes therefore allows attenuated microorganisms to be produced. Furthermore, the genes or their encoded products can be used to identify antimicrobial drugs, diagnostic methods for the identification of a pathogen-associated disease, and in the manufacture of vaccines.


Inventors: Cosson; Pierre; (Carouge, CH) ; Kohler; Thilo; (Carouge, CH) ; Benghezal; Mohammed; (Grand-Saconnex, CH) ; Marchetti; Anna; (Geneva, CH) ; Delden; Christian Van; (Colony, CH)
Correspondence Address:
    MINTZ, LEVIN, COHN, FERRIS, GLOVSKY;AND POPEO, P.C.
    ONE FINANCIAL CENTER
    BOSTON
    MA
    02111
    US
Family ID: 32593615
Appl. No.: 10/536606
Filed: December 19, 2003
PCT Filed: December 19, 2003
PCT NO: PCT/CH03/00836
371 Date: December 15, 2005

Related U.S. Patent Documents

Application Number Filing Date Patent Number
10324967 Dec 20, 2002 6974680
10536606 Dec 15, 2005

Current U.S. Class: 424/200.1 ; 424/260.1; 435/252.34
Current CPC Class: A61K 2039/522 20130101; C07K 14/26 20130101; C07K 14/21 20130101
Class at Publication: 424/200.1 ; 424/260.1; 435/252.34
International Class: A61K 39/02 20060101 A61K039/02; A61K 39/108 20060101 A61K039/108; C12N 1/21 20060101 C12N001/21

Claims



1. An attenuated bacterial mutant derived from a pathogenic bacterial strain, wherein said attenuated mutant has: (i) a mutation of a gene selected from the group consisting of VIR1, VIR2, VIR3, VIR4, VIR5, VIR6, VIR7, VIR8, VIR9, VIR10, VIR11, VIR12, VIR13, VIR14. VIR15, VIR16, VIR17, VIR18, VIR19, VIR20, VIR21, VIR22, VIR23, VIR24, VIR25, VIR26, VIR27, VIR28, VIR29, VIR30, VIR31, VIR32, VIR33, VIR34, VIR35, VIR36, VIR37, VIR38, VIR39, VIR40, VIR41, VIR42, VIR43, VIR44, VIR45, and VIR46; and (ii) reduced inhibition of Dictyostelium amoeba growth when compared to the growth observed in the presence of an isogenic bacterial strain.

2. An attenuated bacterial mutant of claim 1, wherein said mutation is insertional inactivation or a gene deletion.

3. An attenuated bacterial mutant of claim 1, wherein said mutant is a gram-negative bacteria.

4. An attenuated bacterial mutant of claim 3, wherein said attenuated gram-negative bacterial mutant is a Pseudomonas species.

5. An attenuated bacterial mutant of claim 4, wherein said Pseudomonas species is Pseudomonas aeruginosa.

6. An attenuated Pseudomonas mutant of claim 5, wherein said attenuated Pseudomonas mutant is selected from the group consisting of: MUT1; MUT2; MUT3; MUT4; MUT5; MUT6; MUT7; MUT8; MUT9; MUT10; MUT11; MUT12; MUT13; MUT14; MUT15; MUT16; MUT17; MUT18; and MUT19.

7. An attenuated bacterial mutant of claim 3, wherein said gram-negative bacterial mutant is a Klebsiella species.

8. An attenuated bacterial mutant of claim 7, wherein said Klebsiella species is Klebsiella pneumoniae.

9. An attenuated Klebsiella mutant of claim 8, wherein said attenuated Klebsiella mutant is selected from the group consisting of: MUT20; MUT21; MUT22; MUT23; MUT24; MUT25; MUT26; MUT27; MUT28; MUT29; MUT30; MUT31; MUT32; MUT33; MUT34; MUT35; MUT36; MUT37; MUT38; MUT39; MUT40; MUT41; MUT42; MUT43; MUT44; MUT45; and MUT46.

10. A method for identifying an antimicrobial drug, said method comprising: (a) contacting a candidate composition with at least one polypeptide encoded by a gene selected from the group consisting of VIR1, VIR2, VIR3, VIR4, VIR5, VIR6, VIR7, VIR8, VIR9, VIR10, VIR11, VIR12, VIR13, VIR14, VIR15, VIR16, VIR17, VIR18, VIR19, VIR20, VIR21, VIR22, VIR23, VIR24, VIR25, VIR26, VIR27, VIR28, VIR29, VIR30, VIR31, VIR32, VIR33, VIR34, VIR35, VIR36, VIR37, VIR38, VIR39, VIR40, VIR41, VIR42, VIR43, VIR44, VIR45 and VIR46; and (b) comparing the biological activity of said polypeptide in the presence and absence of said candidate composition, wherein alteration of the biological activity of said polypeptide indicates that said candidate composition is an antimicrobial drug.

11. A method of claim 10, wherein said candidate composition contains at least two molecules.

12. A method of claim 10, wherein said candidate composition contains at least one-molecule less than about 500 Daltons.

13. A method of claim 10, wherein said candidate composition contains at least one molecule greater than about 500 Daltons.

14. A method of claim 10, wherein said candidate composition contains at least one molecule selected from a group consisting of a polypeptide, polysaccharide, lipid, nucleic acid, or combination thereof.

15. A composition of claim 14, wherein said polypeptide is an immunoglobulin.

16. A method for identifying an antimicrobial drug, said method comprising: (a) contacting at a candidate composition with at least one polynucleotide encoded by a gene selected from the group consisting of VIR1, VIR2, VIR3, VIR4, VIR5, VIR6, VIR7, VIR8, VIR9, VIR10, VIR11, VIR12, VIR13, VIR14, VIR15, VIR16, VIR17, VIR18, VIR19, VIR20, VIR21, VIR22, VIR23, VIR24, VIR25, VIR26, VIR27, VIR28, VIR29, VIR30, VIR31, VIR32, VIR33, VIR34, VIR35, VIR36, VIR37, VIR38, VIR39, VIR40, VIR41, VIR42, VIR43, VIR44, VIR45, and VIR46; and (b) comparing the expression of said polynucleotide in the presence and absence of said candidate composition, wherein alteration of the expression of said nucleotide indicates that said candidate composition is an antimicrobial drug.

17. A method of claim 16, wherein said candidate composition contains at least two molecules.

18. A method of claim 16, wherein said candidate composition contains at least one molecule less than about 500 Daltons.

19. A method of claim 16, wherein said candidate composition contains at least one molecule greater than about 500 Daltons.

20. A method of claim 16, wherein said candidate composition contains at least one molecule selected from a group consisting of a polypeptide, polysaccharide, lipid, nucleic acid, or combination thereof.

21. A composition of claim 20, wherein said nucleic acid is a ribonucleic acid.

22. A nucleic acid of claim 21, wherein said nucleic acid is a small interfering ribonucleic acid.

23. A method for determining the degree of virulence of a pathogen in a subject, said method comprising: (a) measuring the level of expression of at least one polypeptide encoded by a gene selected from the group consisting of VIR1, VIR2, VIR3, VIR4, VIR5, VIR6, VIR7, VIR8, VIR9, VIR10, VIR11, VIR12, VIR13, VIR14, VIR15, VIR16, VIR17, VIR18, VIR19, VIR20, VIR21, VIR22, VIR23, VIR24, VIR25, VIR26, VIR27, VIR28, VIR29, VIR30, VIR31, VIR32, VIR33, VIR34, VIR35, VIR36, VIR37, VIR38, VIR39, VIR40, VIR41, VIR42, VIR43, VIR44, VIR45, and VIR46, in a sample from the first subject; and (b) comparing the amount of said polypeptide in said sample of step (a) to the amount of said polypeptide present in a control sample from a second subject known not to have the presence of said pathogen, wherein an alteration in the expression level of said polypeptide in said first subject as compared to said control sample indicates the degree of virulence of said pathogen.

24. A method of claim 23, wherein said subject is a mammal.

25. A mammalian subject of claim 24, wherein said mammalian subject is a human.

26. A method for determining the degree of virulence of a pathogen in a subject, said method comprising: (a) measuring the level of expression of at least one polynucleotide encoded by a gene selected from the group consisting of VIR1, VIR2, VIR3, VIR4, VIR5, VIR6, VIR7, VIR8, VIR9, VIR10, VIR11, VIR12, VIR13, VIR14, VIR15, VIR16, VIR17, VIR18, VIR19, VIR20, VIR21, VIR22, VIR23, VIR24, VIR25, VIR26, VIR27, VIR28, VIR29, VIR30, VIR31, VIR32, VIR33, VIR34, VIR35, VIR36, VIR37, VIR38, VIR39, VIR40, VIR41, VIR42, VIR44, VIR45, and VIR46, in a sample from the first subject; and (b) comparing the amount of said polynucleotide in said sample of step (a) to the amount of said polynucleotide present in a control sample from a second subject known not to have the presence of said pathogen, wherein an alteration in the expression level of said polynucleotide in said first subject as compared to said control sample indicates the degree of virulence of said pathogen.

27. A method of claim 26, wherein said subject is a mammal.

28. A mammalian subject of claim 27, wherein said mammalian subject is a human.

29. An attenuated bacterial mutant of claim 1, wherein said mutant encodes and expresses a foreign antigen.

30. An attenuated bacterial mutant of claim 1, wherein said mutant contains a plasmid which encodes and expresses, in a eukaryotic cell, a foreign antigen.

31. A vaccine against a disease caused by a pathogenic microorganism comprising: (a) a pharmaceutically effective dosage of one or more of the attenuated bacterial mutants of claim 1 and; (b) a pharmaceutically acceptable diluent or carrier.

32. An attenuated bacterial mutant derived from a pathogenic bacterial strain, wherein said attenuated mutant has: (i) a mutation of a gene selected from the group consisting of pchE, pchF, pchG, pchH, and pchI; and (ii) reduced inhibition of Dictyostelium amoeba growth when compared to the growth observed in the presence of an isogenic bacterial strain.

33. A bacterial strain comprising an operon encoding a gene selected from the group consisting of VIR1, VIR2, VIR3, VIR4, VIR5, VIR6, VIR7, VIR8, VIR9, VIR10, VIR11, VIR12, VIR13, VIR14, VIR15, VIR16, VIR17, VIR18, VIR19, VIR20, VIR21, VIR22, VIR23, VIR24, VIR25, VIR26, VIR27, VIR28, VIR29, VIR30, VIR31, VIR32, VIR33, VIR34, VIR35, VIR36, VIR37, VIR38, VIR39, VIR40, VIR41, VIR42, VIR44, VIR45, and VIR46, wherein said bacterial strain includes a mutation that reduces expression of said gene relative to an isogenic bacterial strain lacking said mutation.

34. A bacterial strain of claim 33, wherein said mutation reduces inhibition of Dictyostelium amoeba growth when compared to the growth of Dictyostelium amoeba in the presence of an isogenic bacterial strain lacking said mutation.
Description



FIELD OF THE INVENTION

[0001] This invention relates to virulence genes and proteins, and their use. More particularly, it relates to genes and proteins/peptides obtained from gram-negative bacteria, and their use in therapy and in screening for drugs.

BACKGROUND OF THE INVENTION

[0002] According to health care experts, infectious diseases caused by microbes are responsible for more deaths worldwide than any other single cause. The current estimate of the annual cost of medical care for treating infectious diseases in the United States alone is about $120 billion. While antibiotic treatment is effective for many microbial infections, antibiotic resistance among pathogenic bacteria is a growing health concern. Indeed, the American Medical Association has concluded that, "the global increase in resistance to antimicrobial drugs, including the emergence of bacterial strains that are resistant to all available antibacterial agents, has created a public health problem of potentially crisis proportions."

[0003] Pseudomonas and Klebsiella are two genuses of gram-negative bacteria that pose a significant health risk to infected host organisms, in part, due to their resistance to many antibiotics. These bacteria are noted for causing life-threatening infections, particularly in the lung. Cancer and burn patients also commonly suffer serious Pseudomonas infections, as do certain other individuals with immune system deficiencies. While Klebsiella sp. is responsible for many types of infections, outside of a medical setting, the most common infection caused by Klebsiella bacteria is pneumonia.

[0004] There is a need in the art for new antimicrobial therapeutic strategies.

SUMMARY OF THE INVENTION

[0005] The present invention is based, in part, on the discovery of 46 genes, when mutated lower the virulence of a gram-negative bacterium, and can be used in new antimicrobial therapeutic strategies. The invention provides attenuated bacterial mutants that are derived from pathogenic strains. These attenuated bacterial stains have a mutation in a VIRX gene identified herein as VIR1, VIR2, VIR3, VIR4, VIR5, VIR6, VIR7, VIR8, VIR9, VIR10, VIR11, VIR12, VIR13, VIR14, VIR15, VIR16, VIR17, VIR18, VIR19, VIR20, VIR21, VIR22, VIR23, VIR24, VIR25, VIR26, VIR27, VIR28, VIR29, VIR30, VIR31, VIR32, VIR33, VIR34, VIR35, VIR36, VIR37, VIR38, VIR39, VIR40, VIR41, VIR42, VIR43, VIR44, VIR45, and VIR46; and show reduced inhibition of Dictyostelium amoeba growth when compared to the growth observed in the presence of an isogenic bacterial strain. The term, "pathogenic," as used herein, is defined as an agent's ability to cause disease, damage or harm to a host organism. The term, "attenuated," as used herein, means an organism made less virulent relative to an isogenic pathogenic organism. The term, "mutant," as used herein, an organism carrying a specific mutation of a gene that is expressed in the organism's phenotype. A mutation may be insertional inactivation or deletion of a gene. It is preferred that the mutation be an insertional inactivation of a gene.

[0006] The invention also provides attenuated bacterial mutants that are derived from pathogenic gram-negative bacterial strains. These attenuated gram-negative bacterial strains have a mutation in a VIRX gene identified herein as VIR1, VIR2, VIR3, VIR4, VIR5, VIR6, VIR7, VIR8, VIR9, VIR10, VIR11, VIR12, VIR13, VIR14, VIR15, VIR16, VIR17, VIR18, VIR19, VIR20, VIR21, VIR22, VIR23, VIR24, VIR25, VIR26, VIR27, VIR28, VIR29, VIR30, VIR31, VIR32, VIR33, VIR34, VIR35, VIR36, VIR37, VIR38, VIR39, VIR40, VIR41, VIR42, VIR43, VIR44, VIR45, and VIR46; and show reduced inhibition of Dictyostelium amoeba growth when compared to the growth observed in the presence of an isogenic bacterial strain. A mutation may be insertional inactivation or deletion of a gene. It is preferred that the mutation be an insertional inactivation of a gene. It is also preferred that the attenuated gram-negative bacterial mutant be derived from a Pseudomonas or Klebiella spp. It is more preferred that the attenuated gram-negative bacterial mutant is a strain of P. aeruginosa or K. pneumoniae.

[0007] The invention additionally provides for a VIRX gene that may be part of an operon. The term, "operon," as used herein, is a unit of bacterial gene expression and regulation comprising several genes, usually with complementary functions. Insertion in a gene in an operon typically interferes with the function of this gene and of other genes located downstream or upstream in the operon. The function attributed to a gene refers to its function and/or that of any gene located downstream or upstream in the same operon. Accordingly, the invention also provides for a bacterial strain comprising an operon encoding a gene selected from the group consisting of VIR1, VIR2, VIR3, VIR4, VIR5, VIR6, VIR7, VIR8, VIR9, VIR10, VIR11, VIR12, VIR13, VIR14, VIR15, VIR16, VIR17, VIR18, VIR19, VIR20, VIR21, VIR22, VIR23, VIR24, VIR25, VIR26, VIR27, VIR28, VIR29, VIR30, VIR31, VIR32, VIR33, VIR34, VIR35, VIR36, VIR37, VIR38, VIR39, VIR40, VIR41, VIR42, VIR44, VIR45, and VIR46, wherein the bacterial strain includes a mutation that reduces expression of the VIRX gene relative to an isogenic bacterial strain lacking the mutation. In one embodiment, the the mutation reduces inhibition of Dictyostelium amoeba growth when compared to the growth of Dictyostelium amoeba in the presence of an isogenic bacterial strain lacking the mutation.

[0008] The invention provides for one or more of the following attenuated Pseudomonas mutant strains: MUT1; MUT2; MUT3; MUT4; MUT5; MUT6; MUT7; MUT8; MUT9; MUT10; MUT11; MUT12; MUT13; MUT14; MUT15: MUT16; MUT17; MUT18; and MUT19. The invention also provides for one or more of the following attenuated Klebsiella mutant strains: MUT20; MUT21; MUT22; MUT23; MUT24; MUT25; MUT26; MUT27; MUT28; MUT29; MUT30; MUT31; MUT32; MUT33; MUT34; MUT35; MUT36; MUT37; MUT38; MUT39; MUT40; MUT41; MUT42; MUT43; MUT44; MUT45; and MUT46.

[0009] The invention additionally provides a method for identifying an antimicrobial drug, wherein a candidate composition is contacted with at least one polypeptide encoded by a gene selected from the group consisting of VIR1, VIR2, VIR3, VIR4, VIR5, VIR6, VIR7, VIR8, VIR9, VIR10, VIR11, VIR12, VIR13, VIR14, VIR15, VIR16, VIR17, VIR18, VIR19, VIR20, VIR21, VIR22, VIR23, VIR24, VIR25, VIR26, VIR27, VIR28, VIR29, VIR30, VIR31, VIR32, VIR33, VIR34, VIR35, VIR36, VIR37, VIR38, VIR39, VIR40, VIR41, VIR42, VIR43, VIR44, VIR45 and VIR46. The biological activity of polypeptide in the presence of the candidate composition is compared with the biological activity of the polypeptide in the absence of the candidate composition. Alteration of the biological activity of the polypeptide indicates that the candidate composition is an antimicrobial drug. In some embodiments, the candidate composition contains at least two molecules. The candidate composition can contain at least one molecule less than about 500 Daltons or at least one molecule greater than about 500 Daltons. The candidate composition can be, e.g., an immunoglobulin, polysaccharide, lipid, nucleic acid, or combination thereof.

[0010] The invention additionally provides a method for identifying an antimicrobial drug, wherein a candidate composition is contacted with at least one polynucleotide encoded by a gene selected from the group consisting of VIR1, VIR2, VIR3, VIR4, VIR5, VIR6, VIR7, VIR8, VIR9, VIR10, VIR11, VIR12, VIR13, VIR14, VIR15, VIR16, VIR17, VIR18, VIR19, VIR20, VIR21, VIR22, VIR23, VIR24, VIR25, VIR26, VIR27, VIR28, VIR29, VIR30, VIR31, VIR32, VIR33, VIR34, VIR35, VIR36, VIR37, VIR38, VIR39, VIR40, VIR41, VIR42, VIR43, VIR44, VIR45, and VIR46. The expression of the polynucleotide in the presence of the candidate composition is compared with the expression of the polynucleotide in the absence of the candidate composition. Alteration of the expression of the polynucleotide indicates that the candidate composition is an antimicrobial drug. In some embodiments, the candidate composition contains at least two molecules. The candidate composition can contain at least one molecule less than about 500 Daltons or at least one molecule greater than about 500 Daltons. The candidate composition can be a polypeptide, polysaccharide, lipid, nucleic acid, e.g., ribonucleic acid, or combination thereof. In a preferred embodiment, the ribonucleic acid of the candidate composition is a small interfering ribonucleic acid.

[0011] The invention additionally provides a method for determining the degree of virulence of a pathogen present in a subject, comprising: [0012] (a) measuring the level of expression of at least one polypeptide encoded by a gene selected from the group consisting of VIR1, VIR2, VIR3, VIR4, VIR5, VIR6, VIR7, VIR8, VIR9, VIR10, VIR11, VIR12, VIR13, VIR14, VIR15, VIR16, VIR17, VIR18, VIR19, VIR20, VIR21, VIR22, VIR23, VIR24, VIR25, VIR26, VIR27, VIR28, VIR29, VIR30, VIR31, VIR32, VIR33, VIR34, VIR35, VIR36, VIR37, VIR38, VIR39, VIR40, VIR41, VIR42, VIR43, VIR44, VIR45, and VIR46, in a sample from the first subject; and [0013] (b) comparing the amount of the polypeptide in the sample of step (a) to the amount of the polypeptide present in a control sample from a second subject known not to have the presence of the pathogen, wherein an alteration in the expression level of the polypeptide in the first subject as compared to the control sample indicates the degree of virulence of the pathogen.

[0014] In a preferred embodiment, the subject is a mammal. It is more preferred that the subject is a human.

[0015] The invention also provides a method for determining the degree of virulence of a pathogen present in a subject, comprising:

[0016] (a) measuring the level of expression of at least one polynucleotide encoded by a gene selected from the group consisting of VIR1, VIR2, VIR3, VIR4, VIR5, VIR6, VIR7, VIR8, VIR9, VIR10, VIR11, VIR12, VIR13, VIR14, VIR15, VIR16, VIR17, VIR18, VIR19, VIR20, VIR21, VIR22, VIR23, VIR24, VIR5, VIR26, VIR27, VIR28, VIR29, VIR30, VIR31, VIR32, VIR33, VIR34, VIR35, VIR36, VIR37, VIR38, VIR39, VIR40, VIR41, VIR42, VIR44, VIR45, and VIR46, in a sample from the first subject; and

[0017] (b) comparing the amount of the polynucleotide in the sample of step (a) to the amount of the polynucleotide present in a control sample from a second subject known not to have the presence of the pathogen, wherein an alteration in the expression level of the polypeptide in the first subject as compared to the control sample indicates the degree of virulence of the pathogen.

[0018] In a preferred embodiment, the subject is a mammal. It is more preferred that the subject is a human.

[0019] The invention additionally provides attenuated bacterial strains that can be used as vaccines and as vectors for foreign antigens and for foreign DNA. These attenuated bacterial strains are useful for the preparation of vaccines effective against diseases associated with the corresponding bacterial strains. In a preferred embodiment, the attenuated bacterial strains are derived from Pseudomonas or Klebsiella spp.

[0020] The invention additionally provides attenuated bacterial strains that can be used as vectors for foreign genes cloned from other pathogens that will be expressed into proteins, and will raise protective immune responses against the pathogens from which they are derived. In a preferred embodiment, the attenuated bacterial strains used as the vectors are derived from Pseudomonas or Klebsiella spp.

[0021] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

[0022] Other features and advantages of the invention will be apparent from the following detailed description and claims.

DETAILED DESCRIPTION OF THE INVENTION

[0023] The present invention is based, in part, on the discovery of 46 genes when mutated lower the virulence of a gram-negative bacterium. Nineteen of these virulence genes were identified in P. aeruginosa PT894, while the remaining 27 genes were derived from mutagenesis of Klebsiella. These bacterial mutants have attenuated virulence relative to isogenic bacterial strains and are designated "MUX." Provided herein are virulence genes affected in each novel, attenuated MUTX strain, as well as the nucleotides and polypeptides encoded thereby. The sequences encoded by the affected genes are collectively referred to as "VIRX nucleic acids" or "VIRX polynucleotides" and the corresponding encoded polypeptides are referred to as "VIRX polypeptides" or "VIRX proteins." Unless indicated otherwise, "VIRX" is meant to refer to any of the novel sequences disclosed herein.

[0024] The peptides and genes of the invention are useful for the preparation of therapeutic agents to treat infection because they attenuate the virulence of the wild-type pathogen. Therapy can be preventative or therapeutic. A subject receiving therapy can be, e.g., a human, a non-human primate (such as an ape, gorilla, or chimpanzee), cow, horse, pig, sheep, dog, cat, or rodent (including mouse or rat).

I. Identification of Pseudomonas and Klebsiella Genes Encoding Virulence Factors

[0025] Genes encoding virulence factors (e.g., pathogens or toxins) to a host organism were identified by comparing the growth of Dictyostelium discoideum, in the presence and absence of test mutants of Pseudomonas and Klebsiella with an identifiable genetic alteration as detailed in International Application PCT/IB02/03277, filed Jun. 7, 2002. Dictyostelium amoebae feed phagocytically upon bacteria such as K. pneumoniae. When Dictyostelium cells are plated with K. pneumoniae bacteria, each amoeba creates a plaque in the bacterial lawn in the region where bacteria have been phagocytosed. Addition of pathogenic bacteria, e.g., P. aeruginosa strain PT894 to the lawn of K. pneumoniae bacteria, inhibits the growth of the amoebae.

[0026] Pseudomonas test mutants were made by transposon insertion according to known methods in the art and tested for virulence in a Dictyostelium growth assay (see, PCT/IB02/03277, filed Jun. 7, 2002). Klebsiella mutants were also made by transposon insertion according to known methods in the art and tested for virulence in a Dictyostelium growth assay (see, PCT/IB02/03277, filed Jun. 7, 2002) using the PHG1a mutant Dictyostelium strain (Cornillon et al., J. Biol. Chem., 275(44): 34287-92, 2000), a strain which was found to be particularly sensitive to virulent bacteria. Specifically, the Klebsiella mutants were obtained by standard bacteria electroporation technique using the plasposon pNKBOR (Genbank accession number: AF310136) and selected on solid LB medium containing 50 .mu.g/ml kanamycin (Rossignol et al., Res. Microbiol., 152(5): 481-5, 2001). Other mutagenesis methods known in the art, e.g., ultraviolet radiation exposure, treatment with intercalating agent or transducing phage, may also be used to generate mutants. Mutations yielding reduced virulence were identified where the growth of the Dictyostelium test host organism exposed to the mutant pathogen was greater than the Dictyostelium test host organism exposed to wild-type pathogen. Specific genetic mutations in pathogens displaying reduced virulence were subsequently identified and characterized by techniques well known in the art. Identification of specific gene mutations in Klebsiella mutants was performed by plasmid rescue and cloning of the genomic DNA at the insertion site mutant using the BglII or ApaI restriction enzyme according to (Rossignol et al., Res. Microbiol., 152(5): 481-5, 2001). Identification of specific gene mutations in Pseudomonas mutants was performed by subcloning the transposon and surrounding bacteria genomic DNA into an acceptor plamid. DNA sequencing was performed on amplified rescued plasmids, in order to identify the insertion site of the transposon. Rat mortality assays such as that described by Join-Lambert et al., Antimicrob. Agents Chemother., 45(2): 571-6, 2001, can be used to corroborate attenuated virulence activity in a mammalian host.

[0027] The 19 Pseudomonas attenuated MUTX organisms harboring the VIRX genes are summarized below in Table 1. TABLE-US-00001 TABLE 1 STRAIN AFFECTED VIRULENCE GENE(S) REFERENCE MUT1 anthranilate phosphoribosyltransferase Essar et al, J. Bacteriol., 172: 853-66, (trpD; PA0650) 1990; Essar et al., J. Bacteriol., 172: 867- 83, 1990. MUT2 ATP sulfurylase small subunit Leyh et al., J. Biol. Chem., 263: 2409- (CysD; PA4443) 16, 1988; Hummerjohann et al., Microbiology, 144 (Pt 5): 1375-86, 1998 MUT3 CysQ (PA5175) Peng and Verma, J. Biol. Chem., 270: 29105-10, 1995; Neuwald et al., J. Bacteriol., 174: 415-25, 1992. MUT4 D-amino acid dehydrogenase, small subunit Lobacka et al., J. Bacteriol., 176: 1500-10, (dadA; PA5304) 1994. MUT5 imidazoleglycerol-phosphate synthase, cyclase Fani et al., Mol. Gen. Genet., 216: 224-9, subunit (hisF1; PA5140) 1989; Fani et al., Mol. Gen. Genet., 216: 224-9, 1989. MUT6 N-acetyl-.gamma.-glutamyl-phosphate reductase Smith et al., Gene, 49: 53-60. 1986. (ArgC; PAO 0662) MUT7 Dihydrolipoamide acetyltransferase (AceF; Rae et al., J. Bacteriol., 179: 3561-71, pyruvate dehydrogenase complex component 1997. E2; PA5016) MUT8 NADH dehydrogenase I chain H Weidner et al., J. Mol. Biol., 5: 233: 109- (nuoH; PA2643) 22, 1993; Weidner et al., J. Mol. Biol., 233: 109-22, 1993. MUT9 pyoverdine synthetase D Rombel et al., Mol. Gen. Genet., 246: 519- (PvdD; PA2399) 28, 1995; Merriman et al., J. Bacteriol., 177: 252-8, 1995. MUT10 RND multidrug efflux transporter MexD Poole et al., Mol. Microbiol., 21:713-24, (mexD; PA4598) 1996; Poole et al., Mol. Microbiol., 21: 713-24, 1996. MUT11 PA3721 Stover et al., Nature, 406: 959-964, 2000. MUT12 PA0596 Tan et al., Proc. Natl. Acad. Sci. USA, 96: 2408-13, 1999. MUT13 PA5265 Stover et al., Nature, 406: 959-964, 2000. MUT14 pyochelin biosynthetic protein pchC Serino et al., Mol. Gen. Genet., 249: (PA4229) 217-28, 1995; Serino et al., J. Bactiol., 179: 248-57, 1997 MUT15 dihydroaeruginoic acid synthetase Reimmann et al., Microbiology, 144: (pchE; PA4226) 3135-48, 1998. MUT16 Pyochelin synthetase Reimmann et al., Microbiology, 144: (pchF; PA4225) 3135-48, 1998. MUT17 ATP-binding component of the ABC Featherston et al., Mol. Microbiol., transporter 32(2): 289-99, 1999; Reimmann et al., J. (pchH; PA4223) Bacteriol., 183: 813-20, 2001. MUT18 ATP-binding component of the ABC Reimmann et al., J. Bacteriol., 183: 813-20, transporter (pchI; PA4222) 2001. MUT19 putative O-antigen biosynthesis gene cluster Rocchetta et al., Microbiol. Mol. Biol. Rev. 63: 523-53, 1999.

[0028] The 27 Klebsiella attenuated MUTX organisms harboring the VIRX genes disclosed in the present invention and assigned a new role in virulence are summarized below in Table 2. TABLE-US-00002 TABLE 2 STRAIN AFFECTED VIRULENCE GENE(S) MUT20 hypothetical transcriptional regulator in met G-dld intergenic region MUT21 .beta.-cystathionase MUT22 ribosome binding factor A MUT23 aspartokinase/homoserine dehydrogenase MUT24 cystathionine .gamma.-synthase MUT25 Phophoribosylformylglycinamidine synthase MUT26 homoserine transsuccinylase MUT27 3'-phosphoadenosine 5'-phosphosulfate reductase MUT28 Sfi protein MUT29 transcriptional activator protein LysR MUT30 TrpD MUT31 N-acetylglucosamine-6-phosphate deacetylase MUT32 WaaQ MUT33 2-Isopropylmalate synthase MUT34 histidinol dehydrogenase MUT35 UDP-galactopyranose mutase MUT36 O-antigen export system permease protein rfba MUT37 uridyltransferase MUT38 pyridoxine phosphate biosynthetic protein PdxJ-PdxA MUT39 triose phosphate isomerase MUT40 aldehyde dehydrogenase MUT41 galactosyl transferase MUT42 siroheme synthetase MUT43 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase MUT44 glucose-6-phosphate isomerase MUT45 DNA methylase MUT46 putative inner membrane protein

II. Attenuated Bacterial Mutants

[0029] A. Attenuated Pseudomonas aeruginosa Mutants

MUT1

[0030] A Pseudomonas bacterial mutant (MUT1) was made by transposon insertion in a P. aeruginosa wild-type strain PT894. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding anthranilate phosphoribosyltransferase (PA0650). This gene encodes the VIR1 nucleic acid (SEQ ID NO:1) shown in Table 3A. TABLE-US-00003 TABLE 3A VIR1 Nucleotide Sequence (SEQ ID NO:1) ATGGATATCAAGGGAGCCCTCAATCGCATCGTCAACCAGCTCGACCTGACCACCGAGGAAATGCAGG CGGTCATGCGCCAGATCATGACCGGGCAGTGCACCGACGCGCAGATCGGCGCCTTCCTGATGGGCAT GCGGATGAAGAGCGAAACCATCGACGAGATCGTCGGCGCGGTGGCGGTGATGCGCGAACTGGCCGAC GGCGTGCAGTTGCCTACGCTGAAGCATGTGGTCGACGTGGTCGGCACCGGCGGCGATGGCGCGAACA TCTTCAACGTGTCCTCGGCGGCGTCCTTCGTGGTCGCCGCCGCTGGCGGCAAGGTCGCCAAACACGG TAACCGCGCGGTCTCCGGCAAGAGCGGCAGCGCCGACTTGCTGGAAGCCGCCGGCATCTACCTGGAG CTGACCTCCGAACAGGTGGCGCGTTGCATCGACACCGTCGGCGTCGGGTTCATGTTCGCCCAGGTCC ACCACAAGGCGATGAACTACGCCGCCGGTCCGCGCCGCGAGCTGGGCTTGCGGACTCTGTTCAACAT GCTTGGCCCACTGACCAACCCGGCGGGACTGAGGCACCAGGTGGTCGGGGTGTTCACCCAGGAACTG TGCAAGCCGCTGGCTGAAGTGCTCAAGCGTCTCGGCAGCGAGCATGTGCTGGTGGTGCATTCGCGCG ACGGGCTGGACGAGTTCAGTCTGGCCGCGGCGACCCACATTGCCGAGTTGAAGGACGGCGAGGTACG CGAGTACGAAGTGCGTCCCGAGGACTTCGGGATCAAGAGCCAGACCCTGATGGGGCTGGAGGTCGAC AGTCCGCAGGCCTCGCTGGAACTGATCCGCGACGCTTTGGGGCGGCGCAAGACCGAGGCTGGGCAGA AGGCCGCCGAGCTGATCGTGATGAATGCCGGCCCGGCACTGTACGCTGCCGATCTGGCGACCAGCCT GCACGAGGGCATTCAACTGGCCCACGATGCCCTGCACACCGGGCTGGCACGGGAGAAGATGGACGAA CTGGTGGCCTTCACCGCCGTTTACAGAGAGGAGAACGCACAGTGA

[0031] The VIR1 protein (SEQ ID NO:2) encoded by SEQ ID NO:1 is presented using the one-letter amino acid code in Table 3B. TABLE-US-00004 TABLE 3B Encoded VIR1 protein sequence (SEQ ID NO:2) MDIKGALNRIVNQLDLTTEEMQAVMRQIMTGQCTDAQIGAFLMGMRMKSETIDEIVGAVAVMREL ADGVQLPTLKHVVDVVGTGGDGANIFNVSSAASFVVAAAGGKVAKHGNRAVSGKSGSADLLEAAG IYLELTSEQVARCIDTVGVGFMFAQVHHKAMKYAAGPRRELGLRTLFNMLGPLTNPAGVRHQVVG VFTQELCKPLAEVLKRLGSEHVLVVHSRDGLDEFSLAAATHIAELKDGEVREYEVRPEDFGIKSQ TLMGLEVDSPQASLELIRDALGRRKTEAGQKAAELIVMNAGPALYAADLATSLHEGIQLAHDALH TGLAREKMDELVAFTAVYREENAQ

[0032] The role of VIR1 in virulence was confirmed using phage to retransduce this mutation into the wild-type PT894 strain where attenuated virulence was again observed in the Dictyostelium growth assay compared to an isogenic bacterial strain.

MUT2

[0033] A Pseudomonas bacterial mutant (MUT2) was made by transposon insertion in a P. aeruginosa wild-type strain PT894. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding the ATP sulfurylase small subunit (CysD; PA4443). This gene encodes the VIR2 nucleic acid (SEQ ID NO:3) shown in Table 4A. TABLE-US-00005 TABLE 4A VIR2 Nucleotide Sequence (SEQ ID NO:3) ATGGTCGACAAACTGACGCACCTGAAACAGCTGGAGGCGGAAAGCATCCA CATCATCCGCGAGGTGGCCGCCGAGTTCGATAACCCGGTGATGCTGTACT CGATCGGCAAGGATTCCGCGGTCATGCTGCACCTGGCCCGCAAGGCCTTC TTCCCCGGCAAGCTGCCCTTCCCGGTGATGCACGTGGACACCCGCTGGAA ATTCCAGGAGATGTACAGGTTCCGTGATCGGATGGTCGAGGAAATGGGCC TGGATCTGATCACCCACGTCAACCCGGACGGCGTCGCCCAGGGCATCAAC CCGTTCACCCACGGCAGCGCCAAGCACACCGACGTGATGAAGACCGAGGG ACTCAAGCAGGCCCTGGACAAGTACGGTTTCGACGCTGCCTTCGGCGGTG CGCGCCGCGACGAGGAGAAGTCGCGGGCCAAGGAACGGGTCTATTCGTTC CGCGACAGCAAGCACCGCTGGGACCCGAAGAACCAGCGTCCCGAGCTGTG GAACATCTACAACGGCAAGGTGAAGAAGGGCGAGTCGATCCGCGTCTTCC CGCTGTCCAACTGGACCGAGCTGGACATCTGGCAATACATCTACCTGGAA GGCATCCCGATCGTCCCGCTGTACTTCGCCGCCGAGCGCGAGGTCATCGA GAAGAATGGCACATTGATCATGATCGACGACGAGCGCATCCTCGAGCATC TCTCTGACGAAGAGAAAGCCCGCATCGAGAAGCGCATGGTGCGCTTCCGT ACCCTCGGCTGCTACCCGCTCACCGGCGCGGTCGAGTCCAGCGCCACCAC GCTGCCGGAAATCATCCAGGAAATGCTCCTGACGCGTACTTCCGAACGCC AGGGCCGGGTCATCGACCATGACCAGGCCGGTTCGATGGAAGAAAAGAAA CGTCAGGGCTATTTCTGA

[0034] The VIR2 protein (SEQ ID NO:4) encoded by SEQ ID NO:3 is presented using the one-letter amino acid code in Table 4B. TABLE-US-00006 TABLE 4B Encoded VIR2 protein sequence (SEQ ID NO:4)hz,1/32 MVDKLTHLKQLEAESIHIIREVAAEFDNPVMLYSIGKDSAVMLHLARKAF FPGKLPFPVMHVDTRWKFQEMYRFRDRMVEEMGLDLITHVNPDGVAQGIN PFTHGSAKHTDVMKTEGLKQALDKYGFDAAFGGARRDEEKSRAKERVYSF RDSKHRWDPKNQRPELWNIYNGKVKKGESIRVFPLSNWTELDIWQYIYLE GIPIVPLYFAAEREVIEKNGTLIMIDDERILEHLSDEEKARIEKRMVRFR TLGCYPLTGAVESSATTLPEIIQEMLLTRTSERQGRVIDHDQAGSMEEKK RQGYF

[0035] The role of VIR2 in virulence was confirmed using phage to retransduce this mutation into the wild-type PT894 strain where attenuated virulence was again observed in the Dictyostelium growth assay compared to an isogenic bacterial strain.

MUT3

[0036] A Pseudomonas bacterial mutant (MUT3) was made by transposon insertion in a P. aeruginosa wild-type strain PT894. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding CysQ (PA5175). This gene encodes the VIR3 nucleic acid (SEQ ID NO:5) shown in Table 5A. TABLE-US-00007 TABLE 5A VIR3 Nucleotide Sequence (SEQ ID NO:5) ATGAGGCCGGTGCCTTGGGGCGAATTGGTGGCGCTGGTGCGGCGCGCCGGCGAGGCGATCCTGCCGC ACTGGCGCGCCGACCTGGTGGTGCGCTCGAAGGCCGACGAATCGCCGGTGACTGCCGCCGACCTGGC CGCGCACCATATATTGGAGGCGGGATTGCGGGCGCTGGCGCCGGACATTCCGGTGCTTTCCGAAGAG GATTGCGAGATACCGCTGAGCGAGCGCGGCCACTGGCGGCGCTGGTGGCTGGTGGACCCGCTGGACG GCACCAAGGAGTTCATCTCCGGTAGCGAGGAGTTCACCGTCAACGTGGCCCTGGTCGAGGATGGCCG GGTGCTGTTCGGCCTGGTCGGCGTGCCGGTGAGCGGCCGCTGCTACTACGGTGGCGCCGGTCTCGGT GCCTGGCGCGAGGAGGCCGATGGCCGCGCGCAACCGATCAGTGTGCGCCTGGAGCCCGAGGAGGCCT TCACCGTGCTGGCCAGCAAGCGCCATGGCAGCCCGGCCCAGGAGCGCCTGCTGGATGGCTTGAGCGA GCGCTTCGGCGACCTGCGGCGAGCCAGCATCGGCAGTTCGCTGAAGTTCTGCCTGCTGGCCGAGGGC GCTGCCGACTGCTATCCGCGCCTGACGCCAACCTCGCAATGGGACACGGCCGCCGCCCAGGGTGTGC TGGAAGGCGCCGGCGGCGAGGTGCTCGACCTGCATGGTGCGCCATTCACCTACGAGCCGCGCGAGGA TTACCTCAACGGCTCCTTCCTGGCCCTGCCGCGCGCCGCCCAGTGGCGCAGCGAGCTGATCCAACTG GCGCGCGCGCTGCACTGA

[0037] The VIR3 protein (SEQ ID NO:6) encoded by SEQ ID NO:5 is presented using, the one-letter amino acid code in Table 5B. TABLE-US-00008 TABLE 5B Encoded VIR3 protein sequence (SEQ ID NO:6) MRPVPWGELVALVRRAGEAILPHWRADVVVRDKADESPVTAADLAAHHIL EAGLRALAPDIPVLSEEDCEIPLSERGHWRRWWLVDPLDGTKEFISGSEE FTVNVALVEDGRVLFGLVGVPVSGRCYYGGAGLGAWREEADGRAQPISVR LEPEEAFTVVASKRHGSPAQERLLDGLSERFGDLRRASIGSSLKFCLLAE GAADCYPRLTPTSQWDTAAAQGVLEGAGGEVLDLHGAPFTYEPREDYLNG SFLALPRAAEWRSELIQLARALH

MUT4

[0038] A Pseudomonas bacterial mutant (MUT4) was made by transposon insertion in a P. aeruginosa wild-type strain PT894. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding D-amino acid dehydrogenase, small subunit (dadA; PA5304). This gene encodes the VIR4 nucleic acid (SEQ ID NO:7) shown in Table 6A. TABLE-US-00009 TABLE 6A VIR4 Nucleotide Sequence (SEQ ID NO:7) ATGCGAGTTCTGGTCCTTGGCAGCGGTGTCATCGGTACCGCCAGTGCGTATTACCTGGCCCGTGCCG GGTTCGAGGTGGTGGTGGTCGACCGTCACCACGGTCCCGCGCTGGAAACCAGCTTCGCCAACGCCGG CCAGGTGTCTCCCGGCTACGCTTCGCCCTGGGCAGCCCCGGGCATTCCCCTGAAGGCCATGAAGTGG CTGCTGGAAAAGCACGCGCCGCTGGCCATCAAGCTCACCTCCGATCCCAGCCAGTACGCCTGGATGC TGCAGATGCTGCGCAACTGCACCGCCGAGCGCTACGCCGTGAACAAGGAGCGCATGGTCCGCCTGTC CGAGTACAGCCGCGATTGCCTCGACGAACTGCGCGCCGAGACCGGCATCGCCTACGAGGGCCGCACC CTCGGCACCACCCAACTGTTCCGCACCCAGGCGCAGCTGGACGCCGCCGGCAAGGACATCGCCGTGC TCGAGCGCTCCGGCGTGCCCTACGAGGTTCTCGACCGCGACGGCATCGCCCGCGTAGAGCCGGCTTT GGCCAAGGTCGCCGACAAGCTGGTCGGCGCCTTGCGCCTGCCCAACGACCAGACCGGCGACTGCCAG CTGTTCACCACCCGCCTGGCGGAAATGGCCAAGGGCCTGGGCGTGGAGTTCCGCTTCGGCCAGAACA TCGAGCGCCTGGACTTCGCCGGCGACCGCATCAACGGCGTGCTGGTCAACGGCGAATTGCTCACCGC CGACCACTACGTGCTGGCCCTGGGCAGCTACTCGCCGCAACTGCTCAAGCCGCTGGGTATCAAGGCT CCGGTCTATCCGCTGAAGGGTTATTCGCTGACCGTGCCGATCACCAACCCGGAGATGGCGCCGACCT CGACCATCCTCGACGAGACCTACAAGGTGGCGATCACCCGCTTCGACCAGCGCATCCGCGTCGGCGG CATGGCGGAAATCGCCGGCTTCGACCTGTCGCTGAACCCGCGCCGCCGCGAGACCCTGGAAATGATC ACCACCGACCTCTATCCCGAGGGCGGCGATATCAGCCAGGCGACCTTCTGGACCGGCCTGCGCCCGG CGACCCCGGATGGCACCCCGATCGTCGGCGCCACCCGCTACCGCAACCTGTTCCTCAATACCGGCCA CGGCACCCTGGGTTGGACCATGGCCTGCGGGTCGGGTCGCTACCTGGCCGACCTGATGGCGAAGAAG CGCCCGCAGATCAGTACCGAAGGCCTGGATATTTCCCGCTACAGCAATTCCCCGGAGAACGCCAAGA ATGCCCATCCAGCGCCAGCACACTAA

[0039] The VIR4 protein (SEQ ID NO:8) encoded by SEQ ID NO:7 is presented using the one-letter amino acid code in Table 6B. TABLE-US-00010 TABLE 6B Encoded VIR4 protein sequence (SEQ ID NO:8) MRVLVLGSGVIGTASAYYLARAGFEVVVVDRQDGPALETSFANAGQVSPG YASPWAAPGIPLKAMKWLLEKHAPLAIKLTSDPSQYAWMLQMLRNCTART YAVNKERMVRLSEYSRDCLDELRAETGIAYEGRTLGTTQLFRTQAQLDAA GKDIAVLERSGVPYEVLDRDGIARVEPALAKVADKLVGALRLPNDQTGDC QLFTTRLAEMAKGLGVEFRFGQNIERLDFAGDRINGVLVNGELLTADHYV LALGSYSPQLLKPLGIKAPYPLKGYSLTVPITNPEEMAPTSTILDETYKV AITRFDQRIRVGGMAEIAGFDLSLNPRRRETLEMITTDLYPEGGDISQAT FWTGLRPATPDGTPIVGATRYRNLFLNTGHGTLGWTMACGSGRYLADLMA KKRPQISTEGLDISRYSNSPENAKNAHPAPAH

[0040] The role of VIR4 in virulence was confirmed using phage to retransduce this mutation into the wild-type PT894 strain where attenuated virulence was again observed in the Dictyostelium growth assay compared to an isogenic bacterial strain.

MUT5

[0041] A Pseudomonas bacterial mutant (MUT5) was made by transposon insertion in a P. aeruginosa wild-type strain PT894. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding imidazoleglycerol-phosphate synthase, cyclase subunit (hisF; PA5140). This gene encodes the VIR5 nucleic acid (SEQ ID NO:9) shown in Table 7A. TABLE-US-00011 TABLE 7A VIR5 Nucleotide Sequence (SEQ ID NO:9) ATGGCACTGGCAAAACGCATCATCCCCTGCCTCGACGTGGACAACGGCCGAGTGGTCAAGGGCGTCA AGTTCGAGAACATCCGCGACGCCGGCGACCCGGTCGAGATCGCTCGCCGCTACGACGAGCAGGGTGC CGACGAGATCACCTTCCTCGATATCACCGCCAGCGTCGACGGGCGCGACACCACCCTGCATACCGTC GAGCGCATGGCTAGCCAGGTGTTCATTCCGCTGACCGTGGGCGGCGGCGTACGCAGCGTGCAGGACA TCCGCAACCTGTTGAATGCCGGCGCGGACAAGGTCTCGATCAACACCGCCGCGGTGTTCAACCCCGA GTTCGTCGGTGAGGCCGCCGACCGCTTCGGCTCGCAGTGCATCGTGGTCGCCATCGACGCGAAGAAG GTTTCCGCCCCGGGCGAGGCGCCGCGCTGGGAAATCTTCACCCATGGCGGGCGCAAGCCCACCGGGC TGGATGCCGTGCTCTGGGCGAAGAAGATGGAAGACTTGGGCGCTGGCGAGATTCTCCTGACCAGCAT GGACCAGGACGGCGTGAAGAGCGGTTACGACCTGGGCGTGACCCGCGCCATCAGCGAGGCGGTGAAC GTGCCGGTGATCGCTTCCGGCGGCGTCGGCAACCTGGAGCACCTGGCCGCCGGCATCCTCGAGGGCA AGGCCGACGCGGTGCTCGCGGCGAGCATCTTCCACTTCGGCGAGTACACCGTGCCGGAAGCCAAGGC CTACCTGGCCAGCCGCGGTATCGTGGTGCGCTGA

[0042] The VIR5 protein (SEQ ID NO:10) encoded by SEQ ID NO:9 is presented using the one-letter amino acid code in Table 7B. TABLE-US-00012 !Encoded VIR5 protein sequence (SEQ ID NO:10) MALAKRIIPCLDVDNGRVVKGVKFENIRDAGDPVEIARRYDEQGADEITF LDITASVDGRDTTLHTVERMASQVFIPLTVGGGVRSVQDIRNLLNAGADK VSINTAAVFNPEFVGEAADRFGSQCIVVAIDAKKVSAPGEAPRWEIFTHG GRKPTGLDAVLWAKKMEDLGAGEILLTSMDQDGVKSGYDLGVTRAISEAV NVPVIASGGVGNLEHLAAGILEGKADAVLAASIFHFGEYTVPEAKAYLAS RGIVVR

MUT6

[0043] A Pseudomonas bacterial mutant (MUT6) was made by transposon insertion in a P. aeruginosa wild-type strain PT894. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding N-acetyl-.cndot.-glutamyl-phosphate reductase (ArgC; PA0662). This gene encodes the VIR6 nucleic acid (SEQ ID NO:11) shown in Table 8A. TABLE-US-00013 TABLE 8A VIR6 Nucleotide Sequence (SEQ ID NO: 11) ATGATCAAGGTCGGCATCGTTGGCGGTACGGGTTATACGGGCGTGGAACTGCTGCGCCTGCTGGCGC AGCATCCGCAGGCCCGGGTGGAAGTGATCACTTCGCGTTCCGAGGCGGGGGTGAAGGTCGCCGACAT GTACCCGAACCTGCGAGGTCATTATGACGACCTGCAGTTCAGCGTGCCGGACGCGCAGCGCCTCGGC GCCTGCCACGTGGTGTTCTTCGCCACGCCGCACGGCGTGGCGCACGCGCTGGCTGGCGAACTGCTGG ACGCCGGGACCCGGGTCATCGATCTGTCCGCTGACTTCCGCCTGGCGGACGCCGAGGAGTGGGCGCG CTGGTACGGCCAGCCGCATGGCGCTCCGGCGCTGCTCGACGAGGCTGTCTACGGCCTGCCGGAAGTG AACCGCGAGAAGATCCGCCAGGCCCGCCTGATCGCCGTGCCGGGCTGCTACCCGACCGCGACCCAGC TGGGCCTGATCCCGCTGCTCGAAGCCGGCCTGGCCGACGCCTCGCGGCTGATCGCCGATTGCAAGTC CGGGGTCAGCGGTGCCGGTCGGGGCGCCAAGGTTGGCTCGCTGTTCTGCGAGGCGGGCGAAAGCATG ATGGCCTACGCGGTCAAAGGGCATCGGCATCTCCCGGAAATCAGCCAGGGCCTGCGTCGGGCCTCCG GCGGCGACGTCGGGCTGACGTTCGTACCGCACCTGACGCCAATGATCCGCGGTATCCATGCAACCCT CTATGCCCATGTCGCGGATCGCTCGGTCGACCTCCAGGCGTTGTTCGAGAAGCGCTACGCCGACGAA CCCTTCGTCGACGTGATGCCGGCCGGCAGCCATCCGGAGACCCGCAGCGTGCGTGGCGCCAATGTCT GCCGAATCGCCGTGCATCGCCCCCAGGGCGGCGACCTGGTGGTGCTGCTGTCGGTGATCGACAACCT GGTCAAGGGCGCCTCGGGTCAGGCGCTCCAGAACATGAACATCCTGTTCGGGCTGGACGAGCGCCTG GGCCTCTCGCATGCGGCCCTGCTCCCCTGA

[0044] The VIR6 protein (SEQ ID NO:12) encoded by SEQ ID NO:11 is presented using the one-letter amino acid code in Table 8B. TABLE-US-00014 TABLE 8B Encoded VIR6 protein sequence (SEQ ID NO: 12) MIKVGIVGGTGYTGVELLRLLAQHPQARVEVITSRSEAGVKVADMYPNLRGHYDDLQFSVPDAQR LGACDVVFFATPHGVAHALAGELLDAGTRVIDLSADFRLADAEEWARWYGQPHGAPALLDEAVYG LPEVNREKIRQARLIAVPGCYPTATQLGLIPLLEAGLADASRLIADCKSGVSGAGRGAKVGSLFC EAGESMMAYAVKGHRHLPEISQGLRRASGGDVGLTFVPHLTPMIRGIHATLYAHVADRSVDLQAL FEKRYADEPFVDVMPAGSHPETRSVRGANVCRIAVHRPQGGDLVVVLSVIDNLVKGASGQALQNM NILFGLDERLGLSHAALLP

[0045] The role of VIR6 in virulence was confirmed using phage to retransduce this mutation into the wild-type PT894 strain where attenuated virulence was again observed in the Dictyostelium growth assay compared to an isogenic bacterial strain.

MUT7

[0046] A Pseudomonas bacterial mutant (MM) was made by transposon insertion in a P. aeruginosa wild-type strain PT894. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding dihydrolipoamide acetyltransferase (AceF; PA5016). This gene encodes the VIR7 nucleic acid (SEQ ID NO:13) is shown in Table 9A. TABLE-US-00015 TABLE 9A VIR7 Nucleotide Sequence (SEQ ID NO: 13) GTGAGCGAACTCATTCGCGTACCCGACATCGGCAACGGTGAGGGTGAAGTCATCGAGCTGCTGGTCA AGCCCGGCGACAAGGTCGAGGCCGATCAGAGCCTGCTGACCCTGGAATCCGACAAGGCCAGCATGGA AATCCCCAGTCCCAAGGCCGGGGTAGTGAAAAGCATCAAGGCGAAGGTCGGCGACACCTTGAAAGAA GGTGACGAAATCCTCGAGCTGGAAGTGGAAGGCGGCGAACAGCCTGCCGAAGCCAAGGCCGAGGCAG CGCCCGCCCAACCGGAAGCGCCGAAAGCCGAAGCGCCTGCTCCCGCCCCGAGCGAGAGCAAGCCGGC CGCCCCCGCCGCGGCCAGCGTCCAGGACATCAAGGTCCCGGACATCGGCTCGGCCGGCAAGGCCAAC GTCATCGAAGTGATGGTCAAGGCCGGCGACACGGTCGAGGCCGACCAGTCGCTGATCACCCTGGAAT CCGACAAGGCCAGCATGGAGATCCCCTCGCCGGCCTCCGGGGTGGTGGAAAGCGTCTCGATCAAGGT CGGTGACGAAGTCGGCACCGGCGACCTGATCCTCAAGCTGAAGGTGGAAGGCGCCGCTCCGGCAGCC GAAGAGCAACCGGCAGCCGCTCCGGCCCAGGCCGCGGCGCCCGCCGCCGAGCAGAAGCCCGCCGCGG CGGCCCCTGCGCCAGCCAAGGCCGATACCCCGGCTCCGGTCGGCGCACCCAGCCGCGACGGCGCCAA GGTCCACGCCGGCCCGGCGGTGCGCATGCTGGCGCGCGAGTTCGGCGTCGAGCTGAGCGAAGTGAAA GCCAGCGGTCCCAAGGGTCGCATCCTCAAGGAAGACGTCCAGGTCTTCGTCAAGGAGCAACTGCAGC GCGCCAAGTCCGGCGGTGCCGGCGCCACCGGCGGAGCCGGCATCCCGCCGATCCCGGAAGTCGACTT CAGCAAGTTCGGCGAAGTGGAAGAAGTGGCGATGACCCGCCTGATGCAGGTCGGCGCCGCCAACCTG CATCGCAGCTGGCTGAACGTGCCGCACGTGACCCAGTTCGACCAGTCGGACATCACCGACATGGAAG CCTTCCGCGTTGCCCAGAAGGCCGCGGCGGAGAAGGCCGGGGTCAAGCTGACCGTACTGCCGATCCT GCTCAAGGCCTGCGCCCACCTGCTCAAGGAACTGCCGGACTTCAACAGTTCGCTGGCCCCCAGCGGC AAGGCGCTGATCCGCAAGAAGTACGTACACATCGGCTTCGCCGTGGACACTCCGGACGGCCTGCTGG TCCCGGTGATCCGCGATGTCGACCGGAAGAGCCTCCTGCAACTGGCCGCCGAGGCCGCCGACCTGGC CGACAAGGCCCGCAACAAGAAGCTCTCGGCCGATGCCATGCAGGGCGCCTGCTTCACCATCTCCAGT CTCGGCCACATCGGCGGCACCGGCTTCACGCCGATCGTCAACGCGCCGGAAGTGGCGATCCTCGGTG TGTCCAAGGCGACCATGCAGCCGGTATGGGACGGCAAGGCCTTCCAGCCGCGCCTGATGCTGCCGCT GTCGCTGTCCTACGACCATCGCGTGATCAACGGTGCCGCCGCGGCGCGCTTCACCAAGCGCCTGGGC GAGCTGCTGGCGGACATCCGCACCCTGCTCCTGTAA

[0047] The VIR7 protein (SEQ ID NO:14) encoded by SEQ ID NO:13 is presented using the one-letter amino acid code in Table 9B. TABLE-US-00016 TABLE 9B Encoded VIR7 protein sequence (SEQ ID NO: 14) MSELIRVPDIGNGEGEVIELLVKPGDKVEADQSLLTLESDKASMEIPSPKAGVVKSIKAKVGDTL KEGDEILELEVEGGEQPAEAKAEAAPAQPEAPKAEAPAPAPSESKPAAPAAASVQDIKVPDIGSA GKANVIEVMVKAGDTVEADQSLITLESDKASMEIPSPASGVVESVSIKVGDEVGTGDLILKLKVE GAAPAAEEQPAAAPAQAAAPAAEQKPAAAAPAPAKADTPAPVGAPSRDGAKVHAGPAVRMLAREF GVELSEVKASGPKGRILKEDVQVFVKEQLQRAKSGGAGATGGAGIPPIPEVDFSKFGEVEEVAMT RLMQVGAANLHRSWLNVPHVTQFDQSDITDMEAFRVAQKAAAEKAGVLKTVLPILLKACAHLLKE LPDFNSSLAPSGKALIRKKYVHIGFAVDTPDGLLVPVIRDVDRKSLLQLAAEAADLADKARNKKL SADAMQGACFTISSLGHIGGTGFTPIVNAPEVAILGVSKATMQPVWDGKAFQPRLMLPLSLSYDH RVINGAAAARFTKRLGELLADIRTLLL

MUT8

[0048] A Pseudomonas bacterial mutant (MUT8) was made by transposon insertion in a P. aeruginosa wild-type strain PT894. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding NADH dehydrogenase I chain H (nuoH; PA2643). This gene encodes the VIR8 nucleic acid (SEQ ID NO:15) shown in Table 10A. TABLE-US-00017 TABLE 10A VIR8 Nucleotide Sequence (SEQ ID NO: 15) ATGAGTTGGCTGACTCCCGCTCTGGTCACCATCATCCTCACCGTGGTCAAGGCCATCGTGGTGCTGC TCGCCGTGGTCATCTGCGGCGCCCTGCTAAGCTGGGTCGAGCGCCGCCTGCTCGGCCTCTGGCAGGA CCGCTACGGCCCCAACCGGGTCGGTCCGTTCGGTGCGTTCCAGCTCGGCGCGGACATGGTCAAGATG TTCTTCAAGGAGGACTGGACCCCGCCGTTCGCCGACAAGATGATCTTCACCCTGGCCCCGGTAATCG CGATGGGCGCCCTGCTCGTCGCCTTCGCCATCGTGCCGATCACCCCCACCTGGGGCGTGGCGGACCT GAACATCGGCATCCTGTTCTTCTTCGCCATGGCCGGCCTGACGGTGTACGCCGTGCTGTTCGCCGGC TGGTCGAGCAACAACAAGTTCGCCCTGCTCGGCAGCCTGCGCGCCTCGGCCCAGACCATCTCCTACG AGGTGTTCCTGGCCCTGTCGCTGATGGGCATCGTCGCCCAGGTCGGCTCGTTCAACATGCGCGACAT CGTCCAGTACCAGATCGACAACGTCTGGTTCATCATTCCGCAGTTCTTCGGCTTCTGCACCTTCATC ATCGCCGGCGTCGCCGTGACCCACCGTCACCCGTTCGACCAGCCGGAAGCGGAGCAGGAACTGGCGG ACGGCTACCACATCGAGTACGCCGGGATGAAATGGGGCATGTTCTTCGTCGGCGAGTACATCGGCAT CGTACTGGTCTCGGCGCTGCTGGCGACCCTGTTCTTCGGCGGCTGGCACGGTCCGTTCCTGGACACC CTGCCCTGGCTGTCGTTCTTCTACTTCGCCGCCAAGACCGGCTTCTTCATCATGCTCTTCATCCTGA TCCGCGCCTCGCTGCCGCGTCCGCGCTATGACCAGGTGATGGCGTTCAGCTGGAAGGTGTGCCTGCC GCTGACCCTGATCAACCTGCTGGTGACCGGCGCGCTCGTGCTGGCCGCGGCCCAGTAA

[0049] The VIR8 protein (SEQ ID NO:16) encoded by SEQ ID NO:15 is presented using the one-letter amino acid code in Table 10B. TABLE-US-00018 TABLE 10B Encoded VIR8 protein sequence (SEQ ID NO: 16) MSWLTPALVTIILTVVKAIVVLLAVVICGALLSWVERRLLGLWQDRYGPNRVGPFGAFQLGADMV KMFFKEDWTPPFADKMIFTLAPVIAMGALLVAFAIVPITPTWGVADLNIGILFFFAMAGLTVYAN LFAGWSSNNKFALLGSLRASAQTISYEVFLALSLMGIVAQVGSFNMRDIVQYQIDNVWFIIPQFF GFCTFIIAGVAVTHRHPFDQPEAEQELADGYHIEYAGMKWGMFFVGEYIGIVLVSALLATLFFGG WHGPFLDTLPWLSFFYFAAKTGFFIMLFILIRASLPRPRYDQVMAFSWKVCLPLTLINLLVTGAL VLAAAQ

MUT9

[0050] A Pseudomonas bacterial mutant (MUT9) was made by transposon insertion in a P. aeruginosa wild-type strain PT894. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding pyoverdine synthase D (PvdD; PA2399). This gene encodes the VIR9 nucleic acid (SEQ ID NO:17) shown in Table 11A. TABLE-US-00019 TABLE 11A VIR9 Nucleotide Sequence (SEQ ID NO: 17) GTGCAAGCACTCATAGAGAAGGTGGGCTCCCTTTCCCCCCAGGAAAGGAAGGCATTGGCTGTCCTGC TCAAGCAGCAAGGTGTCAATCTCTTCGAGATCGCGCCAGTGTTCAAGCGCCAGGACGGCGAGCCCCT GCGGCTCTCCTATGCCCAGGAGCGACAGTGGTTTCTCTGGCAACTGGAGCCGGAAAGCGCGGCCTAC CATATCCCGAGTGTCTTGCGTCTACGTGGGCGGCTGGACCTGGATGCCCTGCAACGCAGCTTCGACA GCCTGGTTGCGCGGCACGACACCCTACGCACCCGTTTTCGCCTCGACGGCGACGAGGCGCGCCAGGA GATCGCCGCATCCATGGCATTGCCGTTGGATATCGTCGCGTTGGGGCCGCTCGAGGAGGGCGCCCTC GCTCGGCAGGTCGAGACGACGATCGCGCGGCCGTTCGACCTGGAGCGTGGGCCGCTGCTGCGGGTGA GCCTGTTGCGGCTGGCCGAGGACGACCATGTGCTGGTGCTGGTCCAGCATCACATCGTGTCCGACGG TTGGTCGATGCAGGTGATGGTCGAGGAACTGGTCCAGCTCTATGCCGCCTATAGTCGAGGGCTCGAG GTAGCGCTGCCGGCTTTGCCGATCCAGTACGCGGACTACGCCCTGTGGCAGCGCAGCTGGATGGAGG CCGGGGAAAAGGAGCGCCAGTTGGCGTACTGGACCGGCCTGCTGGGCGGCGAGCAGCCGGTGCTGGA GTTGCCGTTCGACCGGCCCCGCCCGGTTCGGCAAAGCCATCGTGGTGCCCAGTTCATCCTGGAACTG GATATTGATCTGTCCCAGGCGCTCAGGCGCGTGGCCCAGCAGGAGGGGGCTACTGCCTTCGCCCTGT TGCTGGCTTCGTTCCAGGCGCTGCTGTATCGCTACAGCGGGCAGGCGGATATCCGTGTCGGCGTGCC GATCGCCAATCGCAACCGCGTGGAGACCGAGCGGCTGATCGGCTTCTTCGTCAACACCCAGGTGCTC AAGGCCGACCTGGACGGTCGGATGGGCTTCGACGAGCTGCTGGCCCAGGCCCGCCAACGCGCGCTGG AGGCCCAGGCGCACCAGGACCTGCCGTTCGAGCAACTGGTGGAGGCCTTGCAGCCGGAGCGCAGTCT TAGCCACAACCCGCTGTTCCAGGTGCTGTTCAACTACCAGAGCGAAGCCCGTGGCAACGGCCAGGCA TTCCGCTTCGACGAGTTACAGATGGAAAGCGTGCAGTTCGACAGCCGGACGGCGCAGTTCGACTTGA CGTTGGACCTGACGGACGAAGAGCAGCGTTTTTGCGCCGTTTTCGACTACGCCACCGACCTGTTCGA CGCCTCCACCGTGGAACGCCTGGCCGGCCATTGGCGCAACCTGTTGCGCGGCATCGTCGCCAACCCA CGACAGCGGCTCGGCGAGTTGCCGCTGCTGGATGCGCCGGAGCGCCGGCAGACCCTCTCCGAATGGA ACCCGGCCCAGCGCGAGTGCGCGGTGCAGGGCACCTTGCAGCAGCGTTTCGAGGAACAGGCGCGGCA ACGGCCACAGGCGGTTGCGCTGATCCTCGACGAACAACGGTTGAGCTACGGCGAACTGAATGCGCGG GCCAATCGCCTGGCGCACTGCCTGATCGCCCGTGGCGTTGGCGCGGACGTGCCGGTCGGGCTGGCGC TGGAGCGTTCGCTGGACATGCTGGTCGGCTTGCTGGCGATCCTCAAGGCCGGCGGCGCCTACCTGCC GTTGGACCCGGCGGCGCCAGAGGAGCGCCTGGCGCATATCCTCGACGACAGTGGGGTACGGCTGCTG CTGACCCAGGGGCATCTGCTCGAGCGCCTGCCACGGCAGGCGGGGGTGGAGGTGCTGGCCATCGACG GACTGGTGCTGGACGGCTACGCCGAGAGCGATCCGCTCCCGACGCTATCGGCGGACAACCTGGCCTA CGTGATCTATACCTCGGGCTCGACCGGCAAGCCCAAGGGCACATTGCTCACCCACCGCAACGCGCTG CGCCTGTTCAGCGCCACCGAGGCCTGGTTCGGCTTCGACGAGCGGGACGTGTGGACATTGTTCCATT CCTACGCCTTCGATTTCTCGGTCTGGGAAATCTTCGGCGCGCTGCTCTATGGCGGGTGCCTGGTGAT TGTGCCGCAATGGGTGAGCCGTTCGCCGGAAGACTTCTACCGTCTGCTGTGCCGCGAAGGCGTGACG GTGCTCAACCAGACGCCGTCGGCGTTCAAGCAACTGATGGCGGTGGCCTGTTCCGCCGACATGGCGA CGCAGCAGCCGGCGCTGCGCTACGTGATCTTCGGTGGCGAGGCGCTGGATCTGCAGAGCCTGCGGCC GTGGTTCCAGCGCTTCGGCGATCGCCAGCCGCAACTGGTGAACATGTACGGCATCACCGAGACCACG GTGCACGTAACCTACCGTCCGGTGAGCGAGGCCGACCTGGAAGGTGGCCTGGTCAGTCCGATTGGCG GGACCATCCCGGACCTGTCCTGGTACATCCTCGACCGTGACCTGAACCCGGTGCCGCGCGGCGCGGT GGGCGAGCTGTACATCGGTCGCGCCGGGCTGGCGCGCGGCTACCTGAGGCGGCCCGGGTTGAGTGCC ACCCGCTTCGTGCCGAACCCGTTCCCCGGCGGCGCCGGCGAGCGGCTGTACCGTACCGGCGACCTGG CACGGTTCCAGGCGGATGGCAATATCGAGTACATCGGGCGTATCGACCACCAGGTGAAGGTTCGCGG CTTCCGTATCGAACTGGGCGAGATCGAAGCGGCGCTCGCCGGTCTGGCCGGGGTACGCGATGCCGTG GTGCTGGCCCATGACGGAGTCGGCGGCACGCAACTGGTGGGATACGTGGTGGCGGACTCGGCGGAGG ATGCCGAGCGTCTGCGGGAGTCGCTGCGGGAGTCGCTGAAGCGGCACCTGCCGGACTACATGGTGCC GGCGCACCTGATGCTGCTGGAGCGGATGCCGCTGACGGTCAATGGCAAGCTCGACCGGCAGGCGTTG CCGCAACCGGATGCGAGCCTGTCGCAACAGGCCTATCGAGCGCCCGGTAGCGAGCTGGAGCAGCGCA TCGCAGCGATCTGGTCGGAGATCCTGGGAGTGGAACGGGTCGGCCTGGACGACAACTTCTTCGAACT GGGCGGTCATTCGTTGCTGGCTACCCGGGTGATTTCTCGGGTTCGCCAGGAGCAGCAGTTGGACGCA AGCCTGAAGGCGTTGTTCGAGCGGCCGGTTCTGGAAGCGTTCGCCCAGGGATTGGAACGCACGACGG ATGCGGTCTCGACGATACCGCTTGCCGATCGGCAGCAACCGTTGGCACTGTCCTTCGCTCAGGAGCG TCAGTGGTTCCTCTGGCAACTGGAGCCGGAAAGCGCGGCCTACCATATTCCGAGTGCCTTGCGCCTA CGCGGGCGGCTGGACGTGGATGCCTTGCAACGCAGCTTCGACAGCCTGGTCGCGCGGCATGAAACCT TGCGTACCCGCTTCCGGCTGGAGGGAGGGCGTTCGTACCAGCAGGTACAACCTGCGGTTAGCGTTTC CATCGAGCGGGAACAGTTCGGTGAAGAAGGCCTGATCGAACGGATACAGGCCATCGTTGTGCAGCCA TTCGACCTGGAACGGGGGCCGCTGCTGCGGGTGAACCTGTTGCAACTGGCCGAGGACGACCATGTAC TGGTGCTGGTCCAGCACCACATCGTGTCCGATGGTTGGTCGATGCAGGTGATGGTCGAGGAACTGGT CCAGCTCTATGCCGCCTATAGCCAAGGGCTCGACGTGGTGTTGCCAGCCCTGCCGATCCAGTACGCG GACTACGCCCTGTGGCAGCGCAGCTGGATGGAGGCGGGGGAAAAGGAGCGCCAGTTGGCGTACTGGA CCGGCCTGCTGGGCGGCGAGCAGCCGGTGCTGGAGTTGCCGTTCGATCGGCCGCGTCCGGCCCGGCA GAGCCATCGTGGCGCGCAGTTGGGTTTCGAGCTATCGCGGGAACTGGTCGAGGCCGTGAGAGCCTTG GCCCAGCGTGAAGGCGCCAGTAGTTTCATGCTGTTGCTGGCCTCGTTCCAGGCGCTGTTGTATCGCT ACAGCGGGCAGGCGGATATCCGTGTCGGTGTGCCGATCGCCAATCGCAACCGCGTGGAGACCGAGCG GCTGATCGGCTTCTTCGTCAACACCCAGGTGCTCAAGGCCGACCTGGACGGTCGGATGGGCTTCGAC GAGCTGCTGGCCCAGGCCCGCCAACGCGCGCTGGAGGCCCAGGCGCACCAGGACCTGCCGTTCGAGC AACTGGTGGAAGCCTTGCAGCCGGAGCGCAATGCCAGCCACAACCCACTGTTCCAGGTGCTGTTCAA CCATCAGAGCGAGATACGCTCGGTGACGCCCGAGGTTCAGTTGGAGGACCTGCGTCTGGAAGGCCTG GCCTGGGACGGCCAGACTGCGCAGTTCGACCTGACGCTGGATATTCAGGAAGACGAAAACGGCATCT GGGCCTCCTTCGACTATGCCACCGATCTGTTCGACGCCTCCACCGTGGAACGCCTGGCCGGCCATTG GCGCAACCTGTTGCGCGGCATCGTCGCCAACCCACGACAGCGGCTCGGCGAGTTGCCGCTGCTGGAT GCGCCGGAGCGCCGGCAGACCCTCTCCGAATGGAACCCGGCCCAGCGCGAGTGCGCGGTGCAGGGCA CCTTGCAGCAGCGTTTCGAGGAGCAGGCGCGGCAACGGCCACAGGCGGTTGCGCTGATCCTCGACGA ACAACGGTTGAGCTACGGCGAACTGAATGCGCGGGCCAATCGCCTGGCGCACTGCCTGATCGCTCGC GGCGTTGGCGCGGACGTGCCGGTCGGGCTGGCGCTGGAGCGTTCGCTGGACATGCTGGTCGGCTTGC TGGCGATCCTCAAGGCCGGCGGCGCCTACCTGCCGTTGGACCCGGCGGCGCCACAGGAGCGCCTGGC GCATATCCTCGACGACAGTGGGGTACGGCTGCTGCTGACCCAGGGGCATCTGCTCGAGCGCCTGCCG CGGCAGGCGGGGGTGGAGGTGCTGGCCATCGACGGACTGGTGCTGGACGGCTACGCCGAGAGCGATC CGCTCCCGACGCTATCGGCGGACAACCTGGCCTACGTGATCTATACCTCGGGCTCGACCGGCAAGCC CAAGGGCACGTTGCTCACCCACCGCAACGCGCTGCGCCTGTTCAGCGCCACCGAGGCCTGGTTCGGC TTCGACGAGCGGGACGTGTGGACGTTGTTCCATTCCTACGCCTTCGATTTCTCGGTCTGGGAAATCT TCGGCGCGCTGCTCTATGGCGGGCGCCTGGTGATCGTGCCGCAATGGGTGAGCCGTTCGCCGGAAGA CTTCTACCGTCTGCTGTGCCGCGAAGGCGTGACGGTGCTCAACCAGACGCCGTCGGCGTTCAAGCAA CTGATGGCGGTGGCCTGTTCCGCCGACATGGCGACGCAGCAGCCGGCGCTGCGCTACGTGATCTTCG GTGGCGAGGCGCTGGATCTGCAGAGCCTGCGGCCGTGGTTCCAGCGCTTTGGCGATCGCCAGCCGCA ACTGGTGAACATGTACGGCATCACCGAGACCACGGTACACGTAACCTACCGTCCGGTGAGCGAAGCC GACCTGAAGGGTGGCCTGGTCAGTCCGATCGGCGGGACCATCCCGGACCTGTCCTGGTACATCCTCG ACCGTGACCTGAACCCGGTGCCGCGCGGCGCGGTGGGCGAGCTGTACATCGGTCGCGCCGGTCTGGC GCGCGGCTACCTGAGGCGGCCCGGGTTGAGTGCCACCCGCTTCGTGCCGAACCCGTTCCCCGGCGGT GCCGGCGAGCGGCTGTACCGTACCGGCGACCTGGCACGGTTCCAGGCGGATGGCAATATCGAGTACA TCGGGCGTATCGACCACCAGGTGAAGGTTCGCGGCTTCCGTATCGAACTGGGTGAGATCGAAGCGGC GCTCGCCGGTCTGGCCGGGGTACGCGATGCCGTGGTGCTGGCCCATGACGGGGTCGGCGGCACGCAA CTGGTGGGATACGTGGTGGCGGACTCGGCGGAGGATGCCGAGCGTCTGCGGGAGTCGCTGCGGGAGT CGCTGAAGCGGCACCTGCCGGACTACATGGTGCCGGCGCACCTGATGCTGCTGGAGCGGATGCCGCT GACGGTCAATGGCAAGCTCGACCGGCAGGCGTTGCCGCAACCGGATGCGAGCTTGTCGCAGCAGGCC TATCGAGCGCCCGGTAGCGAGCTGGAGCAGCGCATCGCAGCGATCTGGGCGGAGATCCTGGGAGTGG AACGGGTCGGCCTGGACGACAACTTCTTCGAACTGGGCGGTCACTCATTGTTGCTGCTGATGCTCAA GGAGCGGATCGGCGATACCTGCCAGGCTACGCTGAGCATCAGCCAACTGATGACCCATGCCAGCGTC GCGGAACAGGCGGCATGCATCGAGGGGCAGGCGCGTGAGTCGTTGCTGGTGCCGCTCAACGGCAGGC GCGAAGGTTCGCCGCTGTTCATGTTCCATCCGAGTTTCGGCTCTGTGCACTGTTACAAGACCCTCGC CATGGCGCTGCGGGATCGTCATCCGGTCAAGGGTGTTGTCTGCCGTGCCCTGCTGGGCGCTGGTCGC GAGGTGCCGGAGTGGGACGATATGGTTGCGGAATACGCCGAGCAATTGCTGCAGGAGCACCCCGAAG GGGTTTTCAACCTGGCGGGATGGTCGCTCGGCGGCAACCTGGCGATGGATGTCGCGGCCCGGCTGGA GCAGCGTGGGCGGCAGGTGGCTTTCGTCGGCTGGATCGATGCACCGGCACCGGTCAGGGTCGAAGCG TTCTGGAACGAGATCGGGCCGACGCCGGAGGCAGTCCCGAACCTATCCGTGGGCGAGATGCGGGTGG AACTGCTCGGTGTCATGTTTCCGGAGCGGGCCGAGCATATCGAACGGGCCTGGTCATCGATCTGCTC CGCCACGACGGACGATGAGCAGCGCTGGACGAGGATGAGCGACTGGGCGGAAGCGGAGATCGGCGCC GAGTTCGCGACACTGCGCAGCGAAATCGCACAGAGCAACGAACTGGAAGTGTCCTGGGAGTTGAAAC AGATCCTCGACGAGCGCCTGAAAGCGATGGATTACCCGCGTCTGACGGCGAAGGTCAGCCTCTGGTG GGCCGCGCGCAGCACCAATGCCATCCAGCGGAGCGCGGTGGAGCGCTCGATGGCCGAGGCGATCGGG GCTGAGCGTGTCGAACCGGTGCGGGTGCTGGATACCCGGCACGACAAGATCATCGACCACCCTGAGT TTGTGCAGAGCTTCCGGGCCGCCCTGGAGCGTGCCGGGCGCTGA

[0051] The VIR9 protein (SEQ ID NO:18) encoded by SEQ ID NO:17 is presented using the one-letter amino acid code in Table 11B. TABLE-US-00020 TABLE 11B Encoded VIR9 protein sequence (SEQ ID NO: 18) MQALIEKVGSLSPQERKALAVLLKQQGVNLFEIAPVFKRQDGEPLRLSYAQERQWFLWQLEPESA AYHIPSVLRLRGRLDLDALQRSFDSLVARHETLRTRFRLDGDEARQEIAASMALPLDIVALGPLE EGALARQVETTIARPFDLERGPLLRVSLLRLAEDDHVLVLVQHHIVSDGWSMQVMVEELVQLYAA YSRGLEVALPALPIQYADYALWQRSWMEAGEKERQLAYWTGLLGGEQPVLELPFDRPRPVRQSHR GAQFILELDIDLSQALRRVAQQEGATAFALLLASFQALLYRYSGQADIRVGVPIANRNRVETERL IGFFVNTQVLKADLDGRMGFDELLAQARQRALEAQAHQDLPFEQLVEALQPERSLSHNPLFQVLF NYQSEARGNGQAFRFDELQMESVQFDSRTAQFDLTLDLTDEEQRFCAVFDYATDLFDASTVERLA GHWRNLLRGIVANPRQRLGELPLLDAPERRQTLSEWNPAQRECAVQGTLQQRFEEQARQRPQAVA LILDEQRLSYGELNARANRLAHCLIARGVGADVPVGLALERSLDMLVGLLAILKAGGAYLPLDPA APEERLAHILDDSGVRLLLTQGHLLERLPRQAGVEVLAIDGLVLDGYAESDPLPTLSADNLAYVI YTSGSTGKPKGTLLTHRNALRLFSATEAWFGFDERDVWTLFHSYAFDFSVWEIFGALLYGGCLVI VPQWVSRSPEDFYRLLCREGVTVLNQTPSAFKQLMAVACSADMATQQPALRYVIFGGEALDLQSL RPWFQRFGDRQPQVLNMYGITETTVHVTYRPVSEADLEGGLVSPIGGTIPDLSWYILDRDLNPVP RGAVGELYIGRAGLARGYLRRPGLSATRFVPNPFPGGAGERLYRTGDLARFQADGNIEYIGRIDH QVKVRGFRIELGEIEAALAGLAGVRDAVVLAHDGVGGTQLVGYVVADSAEDAERLRESLRESLKR HLPDYMVPAHLMLLERMPLTVNGKLDRQALPQPDASLSQQAYRAPGSELEQRIAAIWSEILGVER VGLDDNFFELGGHSLLATRVISRVRQEQQLDASLKALFERPVLEAFAQGLERTTDAVSTIPLADR QQPLALSFAQERQWFLWQLEPESAAYHIPSALRLRGRLDVDALQRSFDSLVARHETLRTRFRLEG GRSYQQVQPAVSVSIEREQFGEEGLIERIQAIVVQPFDLERGPLLRVNLLQLAEDDHVLVLVQHH IVSDGWSMQVMVEELVQLYAAYSQGLDVVLPALPIQYADYALWQRSWMEAGEKERQLAYWTGLLG GEQPVLELPFDRPRPARQSHRGAQLGFELSRELVEAVRALAQREGASSFMLLLASFQALLYRYSG QADIRVGVPIANRNRVETERLIGFFVNTQVLKADLDGRMGFDELLAQARQRALEAQAHQDLPFEQ LVEALQPERNASHNPLFQVLFNHQSEIRSVTPEVQLEDLRLEGLAWDGQTAQFDLTLDIQEDENG IWASFDYATDLFDASTVERLAGHWRNLLRGIVANPRQRLGELPLLDAPERRQTLSEWNPAQRECA VQGTLQQRFEEQARQRPQAVALILDEQRLSYGELNARANRLAHCLIARGVGADVPVGLALERSLD MLVGLLAILKAGGAYLPLDPAAPEERLAHILDDSGVRLLLTQGHLLERLPRQAGVEVLAIDGLVL DGYAESDPLPTLSADNLAYVIYTSGSTGKPKGTLLTHRNALRLFSATEAWFGFDERDVWTLFHSY AFDFSVWEIFGALLYGGRLVIVPQWVSRSPEDFYRLLCREGVTVLNQTPSAFKQLMAVACSADMA TQQPALRYVIFGGEALDLQSLRPWFQRFGDRQPQLVNMYGITETTVHVTYRPVSEADLKGGLVSP IGGTIPDLSWYILDRDLNPVPRGAVGELYIGRAGLARGYLRRPGLSATRFVPNPFPGGAGERLYR TGDLARFQADGNIEYIGRIDHQVKVRGFRIELGEIEAALAGLAGVRDAVVLAHDGVGGTQLVGYV VADSAEDAERLRESLRESLKRHLPDYMVPAHLMLLERMPLTVNGKLDRQALPQPDASLSQQAYRA PGSELEQRIAAIWAEILGVERVGLDDNFFELGGHSLLLLMLKERIGDTCQATLSISQLMTHASVA EQAACIEGQARESLLVPLNGRREGSPLFMFHPSFGSVHCYKTLAMALRDRHPVKGVVCRALLGAG REVPEWDDMVAEYAEQLLQEHPEGVFNLAGWSLGGNLAMDVAARLEQRGRQVAFVGWIDAPAPVR VEAFWNEIGPTPEAVPNLSVGEMRVELLGVMFPERAEHIERAWSSICSATTDDEQRWTRMSDWAE AEIGAEFATLRSEIAQSNELEVSWELKQILDERLKAMDYPRLTAKVSLWWAARSTNAIQRSAVER SMAEAIGAERVEPVRVLDTRHDKIIDHPEFVQSFRAALERAGR

[0052] A Pseudomonas bacterial mutant (MUT10) was made by transposon insertion in a P. aeruginosa wild-type strain PT894. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding the RND multidrug efflux transporter MexD (mexD; PA4598). This gene encodes the VIR10 nucleic acid (SEQ ID NO:19) shown in Table 12A. TABLE-US-00021 TABLE 12A VIR10 Nucleotide Sequence (SEQ ID NO: 19) ATGTCCGAATTCTTCATCAAGCGGCCGAACTTCGCCTGGGTGGTGGCCCTGTTCATCTCCCTGGCCG GCCTGCTGGTCATTTCCAAATTGCCGGTAGCGCAGTACCCCAATGTCGCGCCGCCACAGATCACCAT CACCGCCACCTATCCCGGCGCCTCGGCGAAGGTGCTGGTGGACTCCGTCACCAGTGTGCTCGAGGAG TCGCTGAACGGCGCCAAGGGCCTGCTCTACTTCGAGTCGACCAACAACTCCAACGGCACCGCCGAGA TCGTCGTCACCTTCGAGCCGGGCACCGATCCGGACCTGGCCCAGGTGGACGTGCAGAACCGCCTGAA GAAAGCCGAGGCGCGCATGCCGCAGGCGGTGCTGACCCAGGGCCTGCAGGTCGAGCAGACCAGCGCC GGTTTCCTGCTGATCTATGCGCTCAGCTACAAGGAAGGCGCTCAGCGCAGCGACACCACCGCCCTCG GCGACTACGCCGCGCGCAATATCAACAACGAGCTGCGGCGCCTGCCGGGCGTCGGCAAGCTGCAATT CTTCTCTTCCGAGGCGGCCATGCGGGTCTGGATCGATCCGCAGAAGCTGGTGGGCTTCGGCCTCTCC ATCGACGACGTGAGCAATGCCATCCGCGGGCAGAACGTGCAGGTGCCGGCCGGCGCCTTCGGCAGCG CACCGGGCAGTTCCGCGCAGGAGCTGACGGCGACCCTGGCGGTGAAGGGCACCCTGGACGATCCGCA GGAGTTCGGCCAGGTAGTGCTGCGCGCCAACGAGGACGGCTCGCTGGTCCGGCTCGCCGATGTCGCG CGCCTGGAACTCGGCAAGGAGAGCTACAACATTTCCTCGCGACTGAACGGCACGCCCACCGTGGGCG GGGCTATCCAGCTGTCGCCCGGGGCCAACGCGATCCAGACCGCTACCCTGGTGAAACAGCGTCTCGC CGAACTGTCGGCGTTCTTCCCCGAGGACATGCAGTACAGCGTGCCCTACGACACCTCGCGCTTCGTC GACGTGGCCATCGAGAAGGTGATCCACACCCTGATCGAAGCGATGGTCCTGGTGTTCCTGGTGATGT TCCTGTTCCTGCAGAACGTCCGCTACACCCTGATCCCGTCCATCGTGGTGCCGGTGTGCCTGCTGGG TACGCTGATGGTGATGTACCTGCTGGGGTTCTCGGTGAACATGATGACCATGTTCGGCATGGTCCTG GCGATCGGCATCCTGGTGGACGACGCCATCGTGGTGGTGGAGAACGTCGAGCGGATCATGGCGGAGG AGGGGATTTCCCCGGCCGAGGCCACGGTCAAGGCGATGAAGCAGGTATCCGGCGCCATCGTCGGCAT CACCCTGGTGCTCTCGGCGGTGTTCCTGCCGCTGGCTTTCATGGCCGGTTCGGTGGGGGTGATCTAC CAGCAGTTCTCGGTGTCGCTGGCGGTCTCGATCCTGTTCTCCGGCTTCCTCGCCCTGACCTTCACCC CGGCGCTGTGCGCCACGCTGCTCAAGCCCATTCCCGAAGGGCACCACGAGAAGCGCGGCTTCTTCGG CGCCTTCAACCGTGGCTTCGCCCGCGTCACCGAGCGCTATTCGCTGCTCAACTCGAAGCTGGTGGCG CGCGCCGGACGCTTCATGCTGGTGTACGCCGGCCTGGTGGCCATGCTCGGCTACTTCTACCTGCGCC TGCCGGAAGCCTTCGTGCCGGCGGAAGACCTCGGCTACATGGTGGTCGACGTGCAACTGCCGCCTGG CGCTTCGCGCGTGCGCACCGATGCCACCGGCGAGGAGCTCGAGCGCTTCCTCAAGTCCCGCGAGGCG GTGGCTTCGGTGTTCCTGATCTCGGCTTCAGCTTCTCCGGCCAGGGCGACAATGCCGCCGCTGGCCT TCCCAACCTTCAAGGACTGGTCCGAGCGAGGCGCCGAGCAGTCGGCCGCCGCCGAGATCGCCGCGCT GAACGAGCATTTCGCGCTGCCCGACGATGGCACGGTCATGGCCGTGTCGCCGCCACCGATCAACGGT CTGGGTAACTCCGGCGGCTTCGCATTGCGCCTGATGGACCGTAGCGGGGTCGGCCGCGAAGCGCTGC TGCAGGCTCGCGATACTCTTCTTGGCGAGATCCAGACCAACCCGAAATTCCTTTACGCGATGATGGA AGGACTGGCCGAAGCGCCGCAACTGCGCCTGTTGATCGACCGGGAGAAGGCCCGTGCCCTGGGGGTG AGCTTCGAGACCATCAGCGGCACGCTGTCCGCTGCCTTCGGCTCGGAGGTGATCAACGACTTCACCA ATGCGGGGCGCCAACAGCGGGTGGTGATCCAGGCCGAACAGGGCAACCGGATGACCCCGGAAAGCGT GCTCGAGCTATACGTGCCTAACGCTGCTGGCAACCTGGTACCGCTCAGCGCCTTCGTCAGCGTGAAA TGGGAAGAGGGACCGGTGCAATTGGTGCGCTATAACGGCTACCCGTCGATCCGCATCGTCGGTGACG CCGCGCCCGGCTTCAGTACCGGCGAAGCCATGGCGGAAATGGAGCGCCTGGCCTCGCAGCTGCCGGC CGGCATCGGCTACGAGTGGACCGGCCTGCTCCTATCAGGAGAAGGTCTCCGCCGGCAGGCCACCAGC CTGTTCGCCCTCGCCATCCTGGTGGTGTTCCTGTTGCTGGTGGCGCTCTACGAGAGCTGGTCGATCC CGCTGTCGGTGATGCTGATCGTGCCGATCGGCGCCATCGGCGCGGTGCTCGCGGTGATGGTCAGCGG TATGTCCAACGACGTGTATTTCAAGGTCGGCCTGATCACCATCATCGGTCTTTCGGCGAAGAACGCG ATCCTCATCGTCGAGTTCGCCAAGGAACTCTGGGAGCAGGGGCATAGCCTGCGCGACGCCGCCATCG AGGCCGCGCGCCTGCGCTTCCGGCCGATCATCATGACTTCCATGGCGTTCATCCTCGGCGTGATACC CCTGGCCCTGGCCAGCGGTGCCGGCGCGGCGAGCCAGCGTGCCATCGGCACCGGAGTGATCGGCGGG ATGCTCAGCGCCACCTTCCTCGGCGTGCTGTTCGTACCTATCTGTTTCGTCTGGCTGCTGTCGCTGC TGCGCAGCAAGCCGGCACCCATCGAACAGGCCGCTTCGGCCGGGGAGTGA

[0053] The VIR10 protein (SEQ ID NO:20) encoded by SEQ ID NO:19 is presented using the one-letter amino acid code in Table 12B. TABLE-US-00022 TABLE 12B Encoded VIR10 protein sequence (SEQ ID NO: 20) MSEFFIKRPNFAWVVALFISLAGLLVISKLPVAQYPNVAPPQITITATYPGASAKVLVDSVTSVL EESLNGAKGLLYFESTNNSNGTAEIVVTFEPGTDPDLAQVDVQNRLKKAEARMPQAVLTQGLQVE QTSAGFLLIYALSYKEGAQRSDTTALGDYAARNINNELRRLPGVGKLQFFSSEAAMRVWIDPQKL VGFGLSIDDVSNAIRGQNVQVPAGAFGSAPGSSAQELTATLAVKGTLDDPQEFGQVVLRANEDGS LVRLADVARLELGKESYNISSRLNGTPTVGGAIQLSPGANAIQTATLVKQRLAELSAFFPEDMQY SVPYDTSRFVDVAIEKVIHTLIEAMVLVFLVMFLFLQNVRYTLIPSIVVPVCLLGTLMVMYLLGF SVNMMTMFGMVLAIGILVDDAIVVVENVERIMAEEGISPAEATVKAMKQVSGAIVGITLVLSAVF LPLAFMAGSVGVIYQQFSVSLAVSILFSGFLALTFTPALCATLLKPIPEGHHEKRGFFGAFNRGF ARVTERYSLLNSKLVARAGRFMLVYAGLVAMLGYFYLRLPEAFVPAEDLGYMVVDVQLPPGASRV RTDATGEELERFLKSREAVASVFLISGFSFSGQGDNAALAFPTFKDWSERGAEQSAAAEIAALNE HFALPDDGTVMAVSPPPINGLGNSGGFALRLMDRSGVGREALLQARDTLLGEIQTNPKFLYAMME GLAEAPQLRLLIDREKARALGVSFETISGTLSAAFGSEVINDFTNAGRQQRVVIQAEQGNRMTPE SVLELYVPNAAGNLVPLSAFVSVKWEEGPVQLVRYNGYPSIRIVGDAAPGFSTGEAMEAMERLAS QLPAGIGYEWTGLSYQEKVSAGQATSLFALAILVVFLLLVALYESWSIPLSVMLIVPIGAIGAVL AVMVSGMSNDVYFKVGLITIIGLSAKNAILIVEFAKELWEQGHSLRDAAIEAARLRFRPIIMTSM AFILGVIPLALASGAGAASQRAIGTGVIGGMLSATFLGVLFVPICFVWLLSLLRSKPAPIEQAAS AGE

MUT11

[0054] A Pseudomonas bacterial mutant (MUT11) was made by transposon insertion in a P. aeruginosa wild-type strain PT894. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding PA3721. This gene encodes the VIR11 nucleic acid (SEQ ID NO:21) shown in Table 13A. TABLE-US-00023 TABLE 13A VIR11 Nucleotide Sequence (SEQ ID NO: 21) ATGAACGATGCTTCTCCCCGTCTGACCGAACGCGGCAGGCAACGCCGCCGCGCCATGCTCGACGCCG CTACCCAGGCCTTTCTCGAACACGGTTTCGAAGGCACCACCCTGGACATGGTGATAGAACGGGCCGG TGGTTCACGGGGGACCCTGTACAGCTCCTTCGGCGGCAAGGAGGGCCTGTTCGCCGCGGTGATCGCC CACATGATCGGGGAAATCTTCGACGACAGCGCCGATCAGCCGCGCCCCGCCGCCACGCTGAGCGCCA CCCTCGAGCATTTCGGCCGGCGCTTTCTCACCAGCCTGCTCGATCCCCGCTGCCAGAGCCTCTATCG CCTGGTGGTGGCGGAATCCCCGCGGTTTCCGGCGATCGGCAAGTCCTTCTACGAGCAGGGGCCGCAG CAGAGCTATCTGCTGCTCAGCGAGCGACTGGCCGCGGTCGCTCCTCACATGGACGAGGAAACGCTCT ACGCGGTGGCCTGCCAGTTTCTCGAGATGCTCAAGGCCGACCTGTTCCTCAAGGCCCTCAGCGTGGC CGACTTCCAGCCGACCATGGCGCTGCTGGAAACCCGCCTCAAGCTGTCGGTGGACATCATCGCCTGC TACCTGGAACACCTGTCGCAGAGCCCCGCGCAGGGCTGA

[0055] The VIR11 protein (SEQ ID NO:22) encoded by SEQ ID NO:21 is presented using the one-letter amino acid code in Table 13B. TABLE-US-00024 TABLE 13B Encoded VIR11 protein sequence (SEQ ID NO: 22) MNDASPRLTERGRQRRRAMLDAATQAFLEHGFEGTTLDMVIERAGGSRGTLYSSFGGKEGLFAAV IAHMIGEIFDDSADQPRPAATLSATLEHFGRRFLTSLLDPRCQSLYRLVVAESPRFPAIGKSFYE QGPQQSYLLLSERLAAVAPHMDEETLYAVACQFLEMLKADLFLKALSVADFQPTMALLETRLKLS VDIIACYLEHLSQSPAQG

MUT12

[0056] A Pseudomonas bacterial mutant (MUT12) was made by transposon insertion in a P. aeruginosa wild-type strain PT894. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding PA0596. This gene encodes the VIR12 nucleic acid (SEQ ID NO:23) shown in Table 14A. TABLE-US-00025 TABLE 14A VIR12 Nucleotide Sequence (SEQ ID NO: 23) ATGTCTGATGATGCCCGTTTCCAGCAGCTGAATTGCTGGTTGGACTCTTGTTTGCCCGAGTTGTTCG TTGCCGAAGGTTGGGGGGAAGTGCCCCCCGCCGAACTGATCCCGGCCAGTAGCGACGCCAGCTTCCG TCGTTATTTCCGCTGGCAGGGAGGGGACCGCAGCCTGGTGGTGATGGACGCGCCGCCGCCCCAGGAA GACTGCCGACCGTTCGTCAAGGTCGCCGGACTGCTCGCCGGAGCCGGCGTGCATGTGCCGAGGATTC TCGCCCAGGACCTGGAGAACGGTTTCCTGCTGCTCAGTGACCTGGGCCGGCAGACCTACCTCGACGT GCTTCATCCCGGGAATGCCGACGAGCTGTTCGAACCGGCCCTGGATGCGCTGATCGCCTTCCAGAAG GTCGATGTCGCCGGTGTCCTGCCTGCCTACGACGAAGCGGTGCTGCGCCGCGAGCTGCAGCTGTTCC CCGACTGGTACCTGGCCCGCCACCTCGGCGTGGAGCTGGAGGGCGAGACGCTGGCCCGCTGGAAACG GATCTGCGACCTGCTGGTACGCAGCGCGCTGGAGCAACCGCGGGTGTTCGTCCATCGCGACTATATG CCGCGCAATCTGATGCTCAGCGAGCCCAACCCGGGCGTCCTCGACTTCCAGGACGCCCTGCACGGCC CGGTCACCTACGATGTCACCTGCCTGTACAAGGACGCCTTCGTCAGTTGGCCGGAGCCGCGCGTGCA TGCCGCGCTGAACCGTTACTGGAAGAAGGCGACCTGGGCCGGCATCCCGCTGCCGCCAAGCTTCGAA GACTTCCTCCGTGCCAGCGACCTGATGGGCGTGCAGCGCCACCTGAAGGTGATTGGCATCTTCGCCC GTATCTGTCACCGCGACGGCAAGCCGCGCTACCTGGGTGACGTGCCGCGCTTCTTCCGTTATCTGGA AACCGCCGTGGCGCGCCGTCCCGAGCTGGCCGAACTGGGCGAGCTGCTGGCCTCGCTGCCGCAGGGA GCCGAGGCATGA

[0057] The VIR12 protein (SEQ ID NO:24) encoded by SEQ ID NO:23 is presented using the one-letter amino acid code in Table 14B. TABLE-US-00026 TABLE 14B Encoded VIR12 protein sequence (SEQ ID NO: 24) MSDDARFQQLNCWLDSCLPELFVAEGWGEVPPAELIPASSDASFRRYFRWQGGDRSLVVMDAPPP QEDCRPFVKVAGLLAGAGVHVPRILAQDLENGFLLLSDLGRQTYLDVLHPGNADELFEPALDALI AFQKVDVAGVLPAYDEAVLRRELQLFPDWYLARHLGVELEGETLARWKRICDLLVRSALEQPRVF VHRDYMPRNLMLSEPNPGVLDFQDALHGPVTYDVTCLYKDAFVSWPEPRVHAALNRYWKKATWAG IPLPPSFEDFLRASDLMGVQRHLKVIGIFARICHRDGKPRYLGDVPRFFRYLETAVARRPELAEL GELLASLPQGAEA

MUT13

[0058] A Pseudomonas bacterial mutant (MUT13) was made by transposon insertion in a P. aeruginosa wild-type strain PT894. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding PA5265. This gene encodes the VIR13 nucleic acid (SEQ ID NO:25) shown in Table 15A. TABLE-US-00027 TABLE 15A VIR13 Nucleotide Sequence (SEQ ID NO: 25) ATGAGCGGATTCCAGGACCAGAGTATCGACGAAGGCGTGCGCAAGCGCACCGCCTACCAGAACGATC GGCGTGCACGACTGGCATTGAACGTCGAGCGACAGGACGGCGGTATCCTGCAGATTCCGGTGGCCAG CGATATGCTCGGCCATGAGGAGCACGAGCGTATCCAGCAGAACACCTTCCTGGCTGTGATGCCGCTG GTCCGCCTGCCAACGCTGGGCAAGGCCGGTTATGGCGACCAGCTGCCCGCCGGCGCGCTACCGCGGG CGGGACGGATCTACCTGTTCCAGGACGGCAAGTTGTGGCGCGAACTGGAATGTGATGGCAAGGGCAA CCTGTTCGAAGTCGATCTCCTGCAGGGGCGCAGCCAGCGTGCGGACAAGCGTCCGGCCTTAGGCAAG ACACAAGCGCTGATCCTGGTGCCGGTGCTGGTCAAGGGGCAGTTCGTGATCCCACGCTACACCATGG CCTATAGCGAAACTCCCTGGCCTTGGTCGTACATCGACTGGCTGGAGGAGGACCCGCAGCGGGTCAA CCGGCGCTGCCAGCAGATGGCGTCCGCTTGGAACGCCTCGGTGGCCAACCAGCACTGGAAAGCCTCC ATCCATCAACCCGCGCTGGTCATTGATCATCACGCCCAGGGTTTGCGACCTCGCGACTTCAACGTCG AGAGCGCGCTGGAAGACCCGGCGGAATTCACACCTGAGTTCGCCGCCTTTCGCGAAGAGTCGCTGGT GTGCCAGTTGCAGCGACGCCAGCAGGAATTGGCGCCCCTGCTGAAGCAGGCTCCGCCCTCTGCGCTA CCTACTCTGGAAGCCGGAGAGGACGTACTGGAAACCCTCAAGCTGCGTGGCCATCCCAACCTCATCG GGCTGATGCTCGACGACTCGCTGTTCGCCTTGCGCCACGCTGCGGCGCAGGCGCGCCACTGCGCCGC CTACTTGCGCAGCCTCAATGCACTGCTGCCGCACCGTCCCAACGGACGCTATGCACAGGTGCTGAGC AACATGCTCGACGGCCCGCTCGCCAAGCTCAGGGGCGAGGTCGATCAGGCCGAACTGGACGAGGCGA TCTTCGCCGAGGAGCGACAGTCTTGCCGAATCCACCTGACGCAGCAGGTCGAGCATCTGGTTGCCCT GCTGGAAGGCCCCTTGCACCCGGTGTTGCAGGACTGGACCCACCAGTGCGACGAAGCCCTGCTGGAG CCCTACAGCCTGATGAGCGAGGCACTGGCTGCGCTGAACCAGCTTCCCGACCGCTGCGACGCACTGT ACAGCGGTACCGCCTACCGGGCGCTGGCGGCACATGTCGAGCGGGTGGTCAGCACGGTTCTGCAGGC AAGCCACCCGCTTGGCGCCATGCTCCTGGCCAAGGACGAAGGACAACTTCCCGAGCCGGTTCGGCGC CTGCAGGCGCTGCGCGATAGCCCGCGGACGCCGGACCCCGATGCAATGGGCCTCAGCACGCTGATGC TGGGAGCCAGTCTGCTGGGCGAGGTCGACCAGCCCAGCGCCGGCAAGAGCCTCGCCTACTTCCTCGG CGACCTGCTGGACGTGTTCGGCGCCAGCGTAGTCGAGCAACTCGGCCGGCTGTCCCAGGGCGCCACC CAGATCCAGCTCGACCGCTTGTTCGCACCGACCTTCAATACTCTGAGCGCCCTCTCGGTGAAGATGA AAGGTATCCGCCTGCTGCCCGACAGTCAGGTGCCGCTCGACATGGTTGTCGTCGGCGTGCGCGGAGC CGGCCTGCGCAACGGTCTGACCGAGGTCGAGCGCCAGGAGCTGAGGCGCAAGAGCTATCGGCGCGCC ATCGTTCAGGACGGTGCCGGCAATCCCCTGGCCGGCACCAGTCCCCGCGACACCGGCATGAGTCGCG CCAACCTGCGCAACGTCATGGTGGTGGCGGTACCCAAGGATCACCCGGACCTGCTTGCCTACACGAA ATTCCGTACGCAGTTAGGCACGTTGACCCAGGTGATGGAGAACACTCGCATCGTGCCGACGATGATG CTGGGGTTTGCGATTTATAACTTGAATGTGCAGGTGCAGGCATACAGTGGCTTTGTAGACAGTGGAG AAAAGCACAGAGGGACGATCGGGGCTGTCGGTGCAGTAATCGATTTAACAGCCGCTGGAGGAAGCCA TGCAAAGCTGCTTTTCGGACCATCTACTGCAAAGTATCTAGAAACCCCACGTATATCGGTAGCCCAA ATATCCCCTCGATGGGCCAGGAATCTAGAAGTTCAAACAGGCAGCCCTAAGTTAGGGTTGCTACGTG GGCTTGGTGGCGCAGCCACACTATTCGGTGCAGGCATCAGTGTATGGGATGGCTACCGAGCTTTGAG GCAGGGAGATAGCGATGCGGCTGCGGCCTACGGTGTGGCCGCAGTGGGTGGGGGCCTTTGGGGTGCC TACGTCCTAGGATGGATAGTAAACCCTTATGCTTTGCTGGCTGGTGCGGTTTTGGCGATCGGAGGCA CTGTGGTCGCTAATCTACTGACTGACAGCGATGCGGAAACCATCGTAAAGAAAGGCCCCTTCGGCCG GCAATTCGCCGAGGCTGGCCTGCTCGATTCGCTGATGGGCCAGGACCAGCGCTTCGCCCATCTGAAA GACCCGCAAACGGCCTATCGCCAATTGCTGGGAGTCCTCGGCCATCCGCGGGTCTTTGTCCATCGCC TGGAAGACTGGCGCAAATTGGCGCCGGCGGCGCATCGATCTGTCTTGCAGGAAGCGGAACGGGGTCG CCAAGCGGTCAGCCGCACTGCGCTATCCTGCATCGACCCCAAGTTGCAGGCGCTGGAGGCAAACGAT TGGGCCGTGGTGCTGAGTTCCCCGCTCCTGGCCATGTTCGAGAATGGCCAGAAGGCGTTCCGCCTGG TGGCCCAGGAGTTTCTCAGCAGCTTGCCGATCGATCCGGGCACCCTGTTCGGCGTCAAGCGCTACCA TCGGGTCCCCGCGGGCCCCGCCAAGCTCGAAGCCTTGCCGTTGGATGCTGCCAGCGTGCTCTATGTG CTGCCGGCCAGCCTGCCGATTCCGCAGTTGTCTCCTCGGGCCCGCTATAGCATGCGCATGACCCAGG GTTTGAAGATCAGCGCACAGTTCGAACTCAATGCCGACCAGCCTGAGCAGCGGCTTGTCCTGCCTCA ACCCAGCCCGAAGAGTTGGAGTGCATTCACATCCGCCAATCGGTACCTTCCCCCGGACGACTTGGGC CCCCATGCTGCGCCACCTTATTGGTTGATAGAGAACAGTGAGTTCAACGTATGA

[0059] The VIR13 protein (SEQ ID NO:26) encoded by SEQ ID NO:25 is presented using the one-letter amino acid code in Table 15B. TABLE-US-00028 TABLE 15B Encoded VIR13 protein sequence (SEQ ID NO: 26) MSGFQDQSIDEGVRKRTAYQNDRRARLALNVERQDGGILQIPVASDMLGHEEHERIQQNTFLAVM PLVRLPTLGKAGYGDQLPAGALPRAGRIYLFQDGLKWRELECDGKGNLFEVDLLQGRSQRADKRP ALGKTQALILVPVLVKGQFVIPRYTMAYSETPWPWSYIDWLEEDPQRVNRRCQQMASAWNASVAN QHWKASIHQPALVIDHHAQGLRPRDFNVESALEDPAEFTPEFAAFREESLVCQLQRRQQELAPLL KQAPPSALPTLEAGEDVLETLKLRGHPNLIGLMLDDSLPALRHAAAQARHCAAYLRSLNALLPHR PNGRYAQVLSNMLDGPLAKLRGEVDQAELDEAIFAEERQSCRIHLTQQVEHLVALLEGPLHPVLQ DWTHQCDEALLEPYSLMSEALAALNQLPDRCDALYSGTAYRALAAHVERVVSTVLQASHPLGAML LAKDEGQLPEPVRRLQALRDSPRTPDPDAMGLSTLMLGASLLGEVDQPSAGKSLAYFLGDLLDVF GASVVEQLGRLSQGATQIQLDRLFAPTFNTLSALSVKMKGIRLLPDSQVPLDMVVVGVRGAGLRN GLTEVERQELRRKSYRRAIVQDGAGNPLAGTSPRDTGMSRANLRNVMVVAVPKDHPDLLAYTKFR TQLGTLTQVMENTRIVPTMMLGFAIYNLNVQVQAYSGFVDSGEKHRGTIGAVGAVIDLTAAGGSH AKLLFGPSTAKYLETPRISVAQISPRWARNLEVQTGSPKLGGLRGLGGAATLFGAGISVWDGYRA LRQGDSDAAAAYGVAAVGGGLWGAYVLGWIVNPYALLAGAVLAIGGTVVANLLTDSDAETIVKKG PFGRQFAEAGLLDSLMGQDQRFAHLKDPQTAYRQLLGVLGHPRVFVHRLEDWRKLAPAAHRSVLQ EAERGRQAVSRTALSCIDPKLQALEANDWAVVLSSPLLAMFENGQKAFRLVAQEFLSSLPIDPGT LFGVKRYHRVPAGPAKLEALPLDAASVLYVLPASLPIPQLSPRARYSMRMTQGLKISAQFELNAD QPEQRLVLPQPSPKSWSAFTSANRYLPPDDLGPHAAPPYWLIENSEFNV

MUT14

[0060] A Pseudomonas bacterial mutant (MUT14) was made by transposon insertion in a P. aeruginosa wild-type strain PT894. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding pyochelin biosynthetic protein pchC (PA4229). This gene encodes the VIR14 nucleic acid (SEQ ID NO:27) shown in Table 16A. TABLE-US-00029 TABLE 16A VIR14 Nucleotide Sequence (SEQ ID NO: 27) ATGAGCGCCGCCTGGGTCCGGCCGTTCCGCCTGACGCCGATGCCGCGCCTGCGCCTGGCCTGCTTCC CCCATGCAGGCGGCAGCGCCAGCTTCTTCCGTAGCTGGAGCGAACGCCTGCCGCCAGACATCGACCT GCTTGCCCTGCAGTACCCGGGTCGCGAGGACCGCTTCAACGAGGCGCCGGCCACCCGCCTGGAGGAC CTCGCCGACGGCGCCGCCCTCGCCCTGCGCGATTTCGCCGACGCGCCCCTGGCGCTGTTCGGCCACA GTCTCGGCGCGGCGCTGGCCTACGAAACCGCCCTGCGCCTGGAAAGCGCCGGCGCGCCGCTGCGCCA CCTGTTCGTCTCCGCCCATCCGGCACCGCACCGGCAACGCGGCGGCGCGTTGCACCGCGGCGACGAG GCGGCGCTGCTGGAGGACGTCCGCCGCCAGGGTGGCGCCAGCGAGCTACTCGAGGACGCCGACCTGC GCGCGCTGTTCCTGCCGATCCTGCGCGCCGACTACCAGGCGATCGAGACCTACCGACGGGCGCAGCC CATCGCCCTGGCCTGCGCCCTCGACGTCCTCCTCGGCGAGCACGACGAGGAAGTCAGCGCCGCCGAG GCGCAGGCCTGGAGCGACGCCAGCCGGACTCCCGCCAGGCTGCGGCGCTTTCCTGGCGGCCACTTCT ACCTGAGCGAGGGGCGCGACGCGGTGATCGAGCACCTGCTGCGCCGCCTCGCACATCCCGACGCCCT TTCCCGAGAGGTTGCATGA

[0061] The VIR14 protein (SEQ ID NO:28) encoded by SEQ ID NO:27 is presented using the one-letter amino acid code in Table 16B. TABLE-US-00030 TABLE 16B Encoded VIR14 protein sequence (SEQ ID NO: 28) MSAAWVRPFRLTPMPRLRLACFPHAGGSASFFRSWSERLPPDIDLLALQYPGREDRFNEAPATRLEDL ADGAALALRDFADAPLALFGHSLGAALAYETALRLESAGAPLRHLFVSAHPAPHRQRGGALHRGDEAA LLEDVRRQGGASELLEDADLRALFLPILRADYQAIETYRRAQPIALACALDVLLGEHDEEVSAAEAQA WSDASRTPARLRRFPGGHFYLSEGRDAVIEHLLRRLAHPDALSREVA

MUT15

[0062] A Pseudomonas bacterial mutant (MUT15) was made by transposon insertion in a P. aeruginosa wild-type strain PT894. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding dihydroaeruginoic acid synthetase pchE (PA4226). This gene encodes the VIR15 nucleic acid (SEQ ID NO:29) shown in Table 17A. TABLE-US-00031 TABLE 17A VIR15 Nucleotide Sequence (SEQ ID NO: 29) ATGGATCTGCCCCCCGATTCCCGTACCGCCCTGCGCGACTGGCTGACCGAGCAGCTCGCCGACCTGC TCGGCGAACCGCTTGCTGACGTGCGCGCCCTGGCGGACGACGACGACCTGCTGGGCTGCGGCCTCGA CTCGATCCGCCTGATGTACCTGCAGGAACGCCTGCGCGCGCGTGGCTCGACGCTGGACTTCGCCCAG TTGGCGCAGCGCCCCTGCCTGGGGGCCTGGCTCGACCTGCTGGCCTGCGCGGACCGGCTGTCCGCCC CGGCAACGGTCGCGCTGCCGACGGCGCAGGATCGCGATCAGCCGTTCGAGCTGTCTTCCGTGCAGCA GGCCTACTGGCTGCGACGTGGCGCCGGCGAGGTGCTGGGCAACGTCAGCTGCCATGCCTTTCTGGAA TTCCGCACGCGGGATGTCGACCCGCAGCGCCTGGCCGCGGCGGCGGAGTGCGTGCGTCAACGCCACC CGATGTTGCGGGCGCGCTTCCTCGACGGTCGCCAGCAGATCCTTCCGACGCCGCCGCTGTCCTGCTT CGACCTGCAGGACTGGCGCACCTTACAGGTGGACGAGGCCGAGCGCGACTGGCAGGCGCTGCGCGAC TGGCGCGCCCATGAATGCCTGGCGGTGGAGCGCGGCCAGGTGTTCCTGCTCGGGCTGGTGCGCATGC CGGGCGGCGAGGATCGCCTCTGGCTGAGTCTCGACCTGCTTGCCGCCGATGTCGAAAGCCTCCGCCT GCTGCTGGCCGAACTGGGCGTTGCCTACCTGGCGCCGGAGCGCCTGGCGGAGCCGCCGGCGCTGCAT TTCGCCGACTACCTGGCGCACCGTGCGGCGCAACGCGCCGAGGCCGCGGCGCGGGCCCGCGACTACT GGCTGGAACGCCTGCCGCGCTTGCCGGACGCGCCGGCCCTGCCGTTGGCCTGCGCGCCGGAAAGCAT CCGCCAGCCGCGCACCCGGCGCCTGGCATTCCAGCTTTCCGCCGGCGAGAGCCGGCGCCTGGAGCGT CTTGCCGCGCAGCATGGCGTGACCTTGTCCAGCGTGTTCGGCTGCGCCTTCGCGCTGGTCCTGGCGC GCTGGAGCGAAAGCGCGGAATTTCTCCTCAACGTGCCGTTGTTCGATCGGCATGCCGACGACCCGCG TATCGGCGAGGTGATCGCCGACTTCACCACCCTGTTGCTGCTGGAGTGCCGGATGCAGGCCGGGGTG TCCTTCGCCGAGGCGGTGAAGAGCTTCCAGCGCAACCTCCACGGAGCCATCGACCACGCCGCATTCC CCGCCCTGGAGGTGCTCCGCGAGGCGCGCCGGCAGGGCCAGCCACGCTCGGCGCCGGTGGTGTTCGC CAGCAACCTGGGCGAGGAGGGCTTCGTCCCGGCGGCCTTCCGCGACGCTTTCGGCGATCTCCACGAC ATGCTCTCGCAGACCCCGCAGGTCTGGCTCGACCACCAGCTCTACCGGGTGGGCGACGGTATCCTGC TGGCCTGGGATAGCGTCGTCGGCCTGTTCCCCGAAGGTCTGCCGGAAACCATGTTCGAAGCCTACGT GGGGCTGCTCCAGCGTCTCTGCGACAGCGCCTGGGGGCAGCCCGCCGATCTGCCGTTGCCCTGGGCG CAGCAGGCGCGCCGGGCCCTGCTCAACGGCCAGCCGGCATGCGCCACGGCGCGCACCCTGCATCGCG ACTTCTTCCTTCGCGCCGCCGAGGCGCCGGATGCCGACGCGCTGCTCTATCGCGACCAACGTGTCAC CCGCGGCGAACTGGCCGAGCGTGCGCTGCGCATCGCCGGCGGCCTGCGCGAAGCCGGGGTGCGCCCT GGCGACGCGGTCGAGGTCAGCCTGCCGCGCGGACCGCAGCAGGTCGCGGCGGTATTCGGCGTGCTCG CCGCAGGCGCCTGCTACGTGCCGCTGGACATCGACCAGCCGCCCGCACGGCGGCGCCTGATCGAAGA GGCCGCCGGGGTATGCCTGGCGATCACCGAGGAGGACGATCCGCAGGCCTTGCCGCCGCGCCTGGAT GTCCAGCGCCTGCTGCGCGGCCCGGCGCTGGCCGCCCCCGTGCCGCTGGCGCCGCAGGCGAGTGCCT ATGTGATCTACACCTCGGGCTCCACCGGGGTGCCCAAGGGCGTCGAGGTCAGCCACGCGGCGGCGAT CAATACCATCGACGCGCTGCTCGACCTGCTGCGGGTGAACGCATCGGATCGCTTGCTGGCGGTCTCC GCGCTGGACTTCGATCTGTCGGTCTTCGACCTGTTCGGCGGCCTCGGCGCCGGTGCCAGCCTGGTCC TGCCGGCCCAGGAACAGGCGCGCGATGCCGCTGCCTGGGCGGAGGCTATCCAGCGGCATGCGGTGAG CCTGTGGAACTCGGCGCCGGCCTTGCTGGAGATGGCCCTCAGCCTGCCGGCGAGCCAGGCCGACTAT CGCAGTCTGCGGGCGGTGCTGCTGTCCGGCGACTGGGTGGCCCTGGACCTGCCCGGCCGCCTGCGCC CACGTTGTGCCGAAGGCTGCCGCCTGCATGTGCTGGGTGGCGCTACCGAAGCGGGCATCTGGTCGAA CCTGCAGAGCGTCGATACGGTGCCGCCGCACTGGCGTTCGATTCCCTACGGCCGGCCATTGCCGGGA CAGGCCTACCGGGTGGTCGACACCCACGGGCGCGACGTGCCGGACCTGGTGGTCGGCGAGCTGTGGA TCGGCGGCGCCAGCCTGGCCCGCGGCTATCGCAACGATCCCGAACTCAGCGCCCGGCGTTTCGTCCA CGATGCCCAGGGCCGCTGGTATCGCACCGGCGATCGCGGTCGCTACTGGGGCGACGGTACCCTGGAA TTCCTCGGTCGGGTCGACCAGCAGGTGAAAGTGCGCGGCCAGCGCATCGAGTTGGGCGAGGTGGAGG CCGCGCTGTGCGCCCAGGCTGGCGTGGAGAGCGCCTGCGCGGCGGTGCTCGGCGGTGGCGTGGCGAG CCTCGGCGCGGTGCTGGTACCGCGCCTGGCGCCACGGGCCGAAGGCTCCATGGATCTACCGGCCGCA CAGCCCTTCGCCGGCCTGGCAGAGGCCGAGGCGGTACTCACCCGGGAAATCCTCGGCGCGCTGCTGG AGGCGCCGCTGGAGCTAGACGACGGTTTGCGCCGGCGCTGGCTGGACTGGCTAGCGGACTCCGCCGC CAGCGCGCTGCCGTCGCTCGACGAGGCGTTGCGCCGGCTCGGCTGGCAGGCCGCGGGGCTGACCGCG ATGGGCAACGCTCTGCGCGGCCTGCTCGCCGGCGAACAGGCGCCGGCCGCGCTGCTCCTCGATCCCT GGCTGGCGCCGCAGGCGGTGGCCGCGCGCCTGCCGGACGGCCGCGAGGCCCTGGCGCGCCTGCTCGA AGCGCTGCCGACGCCGGCTGCCGGCGAACGCCTGCGGGTGGCGGTGCTGGATACCCGCGCCGGGCTC TGGCTCGACCAGGGCATGGCCTCGCTGTTGCGCCCAGGGCTGGAACTGACCCTCTTCGAACGCAGCC GCGTCCTCCTCGACGCCGCCGCCACCCGCTTGCCGGAACGGATCGTGGTGCAGGCGCTGGACGACGG CCTGCTACCTGCCGAGCACCTCGGTCGCTACGACCGGGTGATCAGCTTCGCCGCGCTGCACGCCTAC GAGGCCAGCCGCGAAGGCCTGGCGCTGGCGGCGGCGCTGCTGCGCCCGCAGGGCCGCCTGTTGCTGG TGGACCTGCTATGCGAGTCGCCACTGGCGCTGCTCGGTGCGGCCTTGCTCGACGACCGGCCGCTGCG CCTGGCGGAGCTGCCGAGCCTGTTGGCCGATCTCGCCGCTGCGGGACTGGCGCCGCGTTGCCTGTGG CGCAGCGAGCGGATCGCCCTGGTCGAGGCGCTGGCACCGGGACTCGGGCTCGACGCCGCCGCGCTCC AGGCCGGCCTGGAGCAACGCCTGCCCCAGGCGATGCGGCCCGAACGCCTGTGGTGCCTGCCAAGCCT GCCGTTGAACGGCAATGGCAAGGTCGATCGTCGCCGCCTGGCCGAGAGCATGACCCGCGCACTCGGC GAGTGTCGTCACGAGCCCTCGGCGGAGGAGCCGCTGGAAGCCCATGAGCAAGCGCTGGCCGAGTGCT GGGAAGCGGTTCTCAAACGCCCGGTGCGTCGTCGCGAGGCGAGCTTCTTCAGCCTCGGCGGCGACAG CCTGCTGGCGACCCGCCTGCTGGCCGGCATACGTGAGCGTTTCGGCGTACGCCTGGGCATGGCCGAC TTCTATCGCCAGCCGACCCTGGCCGGTCTTGCCCGCCACTTGCAGGTGCAGACCGTCGAAATCGAGG AAACCCAACTGGAAGAGGGCGTGCTATGA

[0063] The VIR15 protein (SEQ ID NO:30) encoded by SEQ ID NO:29 is presented using the one-letter amino acid code in Table 17B. TABLE-US-00032 TABLE 17B Encoded VIR15 protein sequence (SEQ ID NO: 30) MDLPPDSRTALRDWLTEQLADLLGEPLADVRALADDDDLLGCGLDSIRLMYLQERLRARGSTLDFAQL AQRPCLGAWLDLLACADRLSAPATVALPTAQDRDQPFELSSVQQAYWLGRGAGEVLGNVSCHAFLEFR TRDVDPQRLAAAAECVRQRHPMLRARFLDGRQQILPTPPLSCFDLQDWRTLQVDEAERDWQALRDWRA HECLAVERGQVFLLGLVRMPGGEDRLWLSLDLLAADVESLRLLLAELGVAYLAPERLAEPPALHFADY LAHRAAQRAEAAARARDYWLERLPRLPDAPALPLACAPESIRQPRTRRLAFQLSAGESRRLERLAAQH GVTLSSVFGCAFALVLARWSESAEFLLNVPLFDRHADDPRIGEVIADFTTLLLLECRMQAGVSFAEAV KSFQRNLHGAIDHAAFPALEVLREARRQGQPRSAPVVFASNLGEEGFVPAAFRDAFGDLHDMLSQTPQ VWLDHQLYRVGDGILLAWDSVVGLFPEGLPETMFEAYVGLLQRLCDSAWGQPADLPLPWAQQARRALL NGQPACATARTLHRDFFLRAAEAPDADALLYRDQRVTRGELAERALRIAGGLREAGVRPGDAVEVSLP RGPQQVAAVFGVLAAGACYVPLDIDQPPARRRLIEEAAGVCLAITEEDDPQALPPRLDVQRLLRGPAL AAPVPLAPQASAYVIYTSGSTGVPKGVEVSHAAAINTIDALLDLLRVNASDRLLAVSALDFDLSVFDL FGGLGAGASLVLPAQEQARDAAAWAEAIQRHAVSLWNSAPALLEMALSLPASQADYRSLRAVLLSGDW VALDLPGRLRPRCAEGCRLHVLGGATEAGIWSNLQSVDTVPPHWRSIPYGRPLPGQAYRVVDTHGRDV PDLVVGELWIGGASLARGYRNDPELSARRFVHDAQGRWYRTGDRGRYWGDGTLEFLGRVDQQVKVRGQ RIELGEVEAALCAQAGVESACAAVLGGGVASLGAVLVPRLAPRAEGSMDLPAAQPFAGLAEAEAVLTR EILGALLEAPLELDDGLRRRWLDWLADSAASALPSLDEALRRLGWQAAGLTAMGNALRGLLAGEQAPA ALLLDPWLAPQAVAARLPDGREALARLLEALPTPAAGERLRVAVLDTRAGLWLDQGMASLLRPGLELT LFERSRVLLDAAATRLPERIVVQALDDGLLPAEHLGRYDRVISFAALHAYEASREGLALAAALLRPQG RLLLVDLLCESPLALLGAALLDDRPLRLAELPSLLADLAAAGLAPRCLWRSERIALVEALAPGLGLDA AALQAGLEQRLPQAMRPERLWCLPSLPLNGNGKVDRRRLAESMTRALGECRHEPSAEEPLEAHEQALA ECWEAVLKRPVRRREASFFSLGGDSLLATRLLAGIRERFGVRLGMADFYRQPTLAGLARHLQVQTVEI EETQLEEGVL

MUT16

[0064] A Pseudomonas bacterial mutant (MUT16) was made by transposon insertion in a P. aeruginosa wild-type strain PT894. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding pyochelin synthetase pchF (PA4225). This gene encodes the VIR16 nucleic acid (SEQ ID NO:31) shown in Table 18A. TABLE-US-00033 TABLE 18A VIR16 Nucleotide Sequence (SEQ ID NO: 31) ATGAGCCTCGGCGAACTGCTGGAAACCTGCCGCAGCCGGCGCATCGAACTCTGGAGCGAGGCGGGCC GCCTGCGCTATCGCGCCCCCCAGGGTGCCCTCGACGCCGGCCTCGCCGAGCGCCTGCGGGCCGAGCG CGAGGCCCTGCTGGAACACCTGGAAGGCGGCCCTGGCTGGCGCGCCGAACCCGACATGGCCCACCAG CGCTTCCCGCTGACCCCGGTGCAGGCCGCCTACGTGCTGGGCCGCCAGGCGGCCTTCGACTACGGCG GTAACGCCTGCCAGCTGTACGCCGAGTACGACTGGCCGGCCGACACCGATCCGGCGCGCCTGGAGGC GGCCTGGAACGCCATGGTCGAGCGCCACCCGATGCTGCGCGCGGTGATCGAGGACAACGCCTGGCAG CGCGTGCTGCCCGAGGTGCCCTGGCAGCGGCTGACCGTGCATGCCTGCGCGGGGCTCGACGAGGCCG CTTTCCAGGCGCACCTGGAGCGGGTCCGCGAACGCCTCGACCACGCCTGCGCGGCGCTCGACCAGTG GCCGGTCCTGCGCCCCGAGCTGAGTATCGGCCGGGATGCCTGCGTACTGCACTGCTCGGTGGATTTC ACCCTGGTCGACTACGCCAGCCTGCAATTGCTGCTTGGCGAATGGCGCCGCCGCTATCTCGATCCGC AATGGACGGCGGAACCGCTGGAGGCGACCTTCCGCGACTATGTCGGCGTCGAGCAGCGCCGACGCCA GTCGCCAGCCTGGCAGCGCGACCGCGACTGGTGGCTGGCGCGTCTCGACGCGCTACCGGGGCGTCCC GACCTGCCGCTGCGGGTGCAGCCGGACACCCGGTCCACGCGCTTCCGGCACTTCCACGCGCGCCTCG ACGAGGCCGCCTGGCAGGCGCTCGGCGCGCGCGCCGGCGAACACGGCCTGAGCGCTGCCGGCGTGGC CTTGGCGGCCTTCGCCGAGACCATCGGTCGCTGGAGCCAGGCACCGGCGTTCTGTCTCAACCTGACG GTACTCAACCGGCCGCCGCTGCATCCGCAGCTGGCGCAGGTGCTCGGTGACTTCACCGCGCTCAGCC TGCTGGCAGTGGACAGCCGCCACGGCGACAGTTTCGTCGAGCGTGCCCGACGCATCGGCGAGCAGAT GTTCGACGACCTCGACCACCCGACCTTCAGCGGCGTCGACCTGCTGCGCGAACTGGCGCGCCCGCGT GGTCGCGGCGCCGATCTCATGCCGGTGGTGTTCACCAGTGGCATCGGCAGCGTGCAGCGCCTGCTCG GCGATGGCGAGGCGCCGCGCGCGCCACGCTACATGATCAGCCAGACCCCGCAGGTCTGGCTGGACTG CCAGGTCACCGACCAGTTCGGCGGCCTGGAGATCGGCTGGGACGTACGCCTCGGGTTGTTCCCCGAG GGCCAGGCGGAAGCCATGTTCGACGACTTCGTCCGGCTGCTCCGGCGCCTGGCGCAGAGCCCGCGCG CCTGGACCGACGGCGATGCCACGGAACCCGTCGAGGCGCCGCCGCAGGCGTTGCCCGGTAGTGCCCG GAGCATCGCCGCCGGTTTCGCCGAGCGTGCCCTGCTGACCCCCGACGCCACGGCGATCCACGATGCC GCCGGCAGCTACAGCTACCGCCAGCTCGCCCAGCACGCCAGCGCCCTGCGCCGCGTCCTGGAAGCGC ACGGCGCGGGCCGTGGCCGGCGGGTCGCGGTGATGCTGCCGAAAAGCGCCGCGCAATTGGTCGCGGT GATCGGCATCCTCCAGGCCGGCGCCGCCTATGTGCCGGTGGACATCCGCCAGCCTCCGCTGCGGCGC CAGGCGATCCTCGCCAGCGCCGAAGTGGTCGCGCTGGTCTGCCTGGAAAGCGATGTCCCGGACGTCG GCTGCGCCTGCGTGGCCATCGACCGGCTGGCCGCCGACAGCGCCTGGCCGCCACCGCCCGCGGCGGA GGTGGCGGCGGACGACCTCGCCTACGTGATCTACACCTCCGGCTCCACCGGCACGCCAAAGGGCGTG ATGCTCAGCCATGCGGCGGTGAGCAACACGCTGCTCGACATCAACCAGCGCTACGGCGTCGACGCCA ACGACCGCGTCCTCGGCCTCGCCGAGCTGAGCTTCGACCTCTCGGTCTACGACTTCTTCGGCGCCAC CGCGGCGGGGGCCCAGGTGGTCCTCCCGGACCCGGCGCGCGGCAGCGATCCATCGCACTGGGCGGAA CTGCTGGAACGCCACGCCATCACCCTGTGGAACTCGGTGCCGGCCCAAGGCCAGATGCTCATCGATT ACCTGGAGAGCGAGCCGCAACGTCACCTGCCGGGACCGCGCTGCGTGCTCTGGTCCGGTGACTGGAT TCCGGTCAGCCTGCCGACCCGCTGGTGGCGGCGCTGGCCGGACAGCGCGCTGTTCAGCCTGGGCGGC GCCACCGAGGCGGCGATCTGGTCGATCGAGCAGCCGATCCGCCCGCAGCACACCGAGCTGGCCAGCA TCCCTTATGGCCGTGCCCTGCGCGGGCAGAGCGTGGAAGTCCTGGATGCCCGCGGGCGGCGCTGCCC GCCGGGCGTGCGCGGCGAGATCCATATCGGCGGGGTGGGCCTGGCGCTCGGCTACGCCGGCGATCCG CAGCGCACCGCCGAACGCTTCGTCCGTCACCCCGATGGCCGTCGCCTGTATCGCACCGGCGACCTCG GCCGCTACCTGGCCGACGGCAGCATCGAGTTCCTCGGCCGCGAGGACGACCAGGTGAAGATTCGCGG CCACCGCATCGAACTGGCCGAACTGGACGCCGCGCTGTGCGCTCATCCGCAGGTCAACCTGGCGGCC ACCGTGGTGCTCGGCGAGACCCACGAGCGCAGCCTGGCCAGCTTCGTCACCCTGCATGCGCCGGTGG AGGCTGGCGAGGATCCGCGTACGGCGCTCGACGCGGTGCGCCAGCGGGCGGCCCAGGCCTTGCGCCG CGACTGGGGCAGCGAGGAGGGCATCGCCGCGGCGGTGGCCGCACTCGACCGTGCCTGCCTCGCCTCG TTGGCCGCCTGGCTGGCCGGCAGCGGTCTGTTCGCCAGTGCGACGCCGCTGGACTTAGCCACCCTGT GCCAGCGCCTGGGTATCGCCGAGGCGCGCCAGCGCCTGCTGCGCCACTGGTTGCGCCAACTGGAGGA GGGCGGCTACCTGCGCGCCGAGGGCGAGGGCTGGCTGGGCTGCGCCGAGCGTCCCGCGCAGAGTCCG GAGGACGCCTGGACGGCGTTCGCCGGCTGCGCGCCGGCGGCGCTCTGGCCGGCCGAGCTGGTCGCCT ACCTGCGTGACAGCGCGCAATCCCTCGGCGAGCAACTGGCCGGGCGGATCAGCCCGGCGGCGCTGAT GTTCCCGCAGGGCTCGGCGCGCATCGCCGAGGCCATGTACAGCCAGGGCCTGCATGCCCAGGCGCTG CACGAGGCCATGGCCGAGGCCATCGCCGCCATCGTCGAGCGCCAGCCGCAACGGCGCTGGCGCCTGC TGGAGCTTGGCGCCGGCACCGCCGCCGCCAGCCGCACGGTGATCGCCCGGTTGGCGCCGCTGGTGCA GCGAGGGGCGGAGGTGGACTACCTGTTCACCGACGTTTCCAGCTACTTCCTCGCCGCCGCCCGCGAG CGCTTCGCCGACCAGCCGTGGGTACGCTTCGGCCGCTTCGACATGAACGGCGATCTTCTCGACCAGG GCGTGGCGCCGCACTCGGTGGATATCCTGCTCAGCTCCGGGGCCTTGAACAACGCGCTGGACACCCC GGCGCTGCTCGCCGGCCTGCGCGAGTTGCTGAGCGCCGACGCCTGGCTGGTGATCCAGGAACTGACG CGCGAGCACAACGAGATCAGCGTCAGCCAGAGCCTGATGATGGAAAACCCGCGCGACCTCCGCGACG AGCGCCGCCAACTGTTCGTCCACACCGGGCAATGGCTGGAGTGGCTGGCGGCACAGGGTGGCGACCT GGCTTGTGGGGTGGTGCCGCCGGGCAGCGCTCTCGACCTGCTTGGCTACGATGTCCTGCTGGCTCGC TGCAAGACCGACCGCGCCCGCCTGGAGCCGGCCGAGCTGCTGGCCTTCGTCGAAGCGCGGGTGCCGC GCTACATGCTCCCGGCGCAGTTGCGCGTGCTCGAACGCCTGCCGGTCACCGGCAACGGCAAGATCGA CCGCAAGGCCCTGACCGGCTTTGCCCGCCAGCCCCAGGCGGACCTTCGGCATGGCGTCGCGCAGGCA CCGGCCGACGAACTGGAGAATGCGCTGCTGGCACTCTGGCGGGAGGTGCTGGACAACCCGTCGCTGG GCGTCGAGCAAGACTTCTTCGGGGCCGGCGGCGACTCGCTGTTGATCGCCCAGTTGATCGCCCGTTT GCGCGAACGACTGGAAAGCGCCCGTCGGCATCCGTTCGATCGCCTGCTACGCTGGGCGCTCAGCCAG CCGACGCCGCGCGGCCTGGCCGAACGCCTGCGCAGCGCGCCGGAAGAGGGCCGTGGGCCAGCCCTGG CCGCGGCGCGCGGCGTCGCCCCGGCGCCGGCCGGCATGTCGCGCGCACCGCTCGCCGAGGGCGCGGT GGCGCTCGACCCGCTGGTGCGCCTGGTGCCCGGCGAGGGCGTGCCGCGGGTGCTGGTCCACGAAGGC CTCGGCACGCTACTGCCGTACCGCCCGCTGCTTCGCGCCCTGGGTGAGGGGCGGCCGTTGCTGGGGC TGGCCGTGCATGACAGCGACGCCTACCTGGCGATCCCCGCCGAGCATCTCAACGCCTGCCTCGGCCG CCGCTACGCCGAGGCGCTCCATCGCGCCGGGCTACGCGAGGTCGACCTGCTCGGCTACTGCTCCGGC GGGCTGGTCGCCCTGGAGACCGCCAAGTCCCTGGTCCAGCGCGGGGTGCGCGTGCGCCAACTGGATA TCGTCTCCAGCTACCGGATTCCCTACCGGGTGGACGACGAGCGCCTGCTGTTGTTCAGCTTCGCCGC GACCCTCGGCCTGGATACCGCGGCGCTCGGCTTCCCCGCGCCGGAACGTCTCGGCCAGGCGGTGCAG GCGGCGCTCGCGCAGACACCGGAGCGCCTGGTCGCCGAGGCGCTGGCGGGGCTGCCGGGCCTGGCCG ATCTCGTCGCCCTGCGCGGCCGCGTGCTACAGGCGGCCAGCGGTAGCGCCGACGCCGTCAGCGTCGA ACGCGACACCCTCTACCGGCTGTTCTGTCACTCGGTGCGTGCCAGCCAGGCCGAGGCGCCGGAGCCC TACGTCGGCGCGCTGCGGCTGTTCGTGCCGGACGCCGGCAACCCATTGGTGCCGCGCTACGCCGAGG CTCTGGAGACCCAATGGCGGGCCGCCGCGCTTGGCGCGTGCGGCATCCACGAGGTGCCCGGCGGGCA CTTCGACTGCCTGGGCGAAGCCCTGGCGCAATCCTTGTCGAAACCCATGCCAGAGGAGGCGAGCCGA TGA

[0065] The VIR16 protein (SEQ ID NO:32) encoded by SEQ ID NO:31 is presented using the one-letter amino acid code in Table 18B. TABLE-US-00034 TABLE 18B Encoded VIR16 protein sequence (SEQ ID NO: 32) MSLGELLETCRSRRIELWSEAGRLRYRAPQGALDAGLAERLRAEREALLEHLEGGPGWRAEPDMA HQRFPLTPVQAAYVLGRQAAFDYGGNACQLYAEYDWPADTDPARLEAAWNAMVERHPMLRAVIED NAWQRVLPEVPWQRLTVHACAGLDEAAFQAHLERVRERLDHACAALDQWPVLRPELSIGRDACVL HCSVDFTLVDYASLQLLLGEWRRRYLDPQWTAEPLEATFRDYVGVEQRRRQSPAWQRDRDWWLAR LDALPGRPDLPLRVQPDTRSTRFRHFHARLDEAAWQALGARAGEHGLSAAGVALAAFAETIGRWS QAPAFCLNLTVLNRPPLHPQLAQVLGDFTALSLLAVDSRHGDSFVERARRIGEQMFDDLDHPTFS GVDLLRELARRRGRGADLMPVVFTSGIGSVQRLLGDGEAPRAPRYMISQTPQVWLDCQVTDQFGG LEIGWDVRLGLFPEGQAEAMFDDFVGLLRRLAQSPRAWTDGDATEPVEAPPQALPGSARSIAAGF AERALLTPDATAIHDAAGSYSYRQVAQHASALRRVLEAHGAGRGRRVAVMLPKSAAQLVAVIGIL QAGAAYVPVDIRQPPLRRQAILASAEVVALVCLESDVPDVGCACVAIDRLAADSAWPPPPAAEVA ADDLAYVIYTSGSTGTPKGVMLSHAAVSNTLLDINQRYGVDANDRVLGLAELSFDLSVYDFFGAT AAGAQVVLPDPARGSDPSHWAELLERHAITLWNSVPAQGQMLIDYLESEPQRHLPGPRCVLWSGD WIPVSLPTRWWRRWPDSALFSLGGATEAAIWSIEQPIRPQHTELASIPYGRALRGQSVEVLDARG RRCPPGVRGEIHIGGVGLALGYAGDPQRTAERFVRHPDGRRLYRTGDLGRYLADGSIEFLGREDD QVKIRGHRIELAELDAALCAHPQVNLAATVVLGETHERSLASFVTLHAPVEAGEDPRTALDAVRQ RAAQALRRDWGSEEGIAAAVAALDRACLASLAAWLAGSGLFASATPLDLATLCQRLGIAEARQRL LRHWLRQLEEGGYLRAEGEGWLGCAERPAQSPEDAWTAFAGCAPAALWPAELVAYLRDSAQSLGE QLAGRISPAALMFPQGSARIAEAMYSQGLHAQALHEAMAEAIAAIVERQPQRRWRLLELGAGTAA ASRTVIARLAPLVQRGAEVDYLFTDVSSYFLAAARERFADQPWVRFGRFDMNGDLLDQGVAPHSV DILLSSGALNNALDTPALLAGLRELLSADAWLVIQELTREHNEISVSQSLMMENPRDLRDERRQL FVHTGQWLEWLAAQGGDLACGVVPPGSALDLLGYDVLLARCKTDRARLEPAELLAFVEARVPRYM LPAQLRVLERLPVTGNGKIDRKALTGFARQPQADLRHGVAQAPADELENALLALWREVLDNPSLG VEQDFFGAGGDSLLIAQLIARLRERLESARRHPFDRLLRWALSQPTPRGLAERLRSAPEEGRGPA LAAARGVAPAPAGMSRAPLAEGAVALDPLVRLVPGEGVPRVLVHEGLGTLLPYRPLLRALGEGRP LLGLAVHDSDAYLAIPAEHLNACLGRRYAEALHRAGLREVDLLGYCSGGLVALETAKSLVQRGVR VRQLDIVSSYRIPYRVDDERLLLFSFAATLGLDTAALGFPAPERLGQAVQAALAQTPERLVAEAL AGLPGLADLVALRGRVLQAASGSADAVSVERDTLYRLFCHSVRASQAEAPEPYVGALRLFVPDAG NPLVPRYAEALETQWRAAALGACGIHEVPGGHFDCLGEALAQSLSKPMPEEASR

MUT17

[0066] A Pseudomonas bacterial mutant (MUT17) was made by transposon insertion in a P. aeruginosa wild-type strain PT894. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding, putative ATP-binding component of the ABC transporter, pchH (PA4223). This gene encodes the VIR17 nucleic acid (SEQ ID NO:33) shown in Table 19A. TABLE-US-00035 TABLE 19A VIR17 Nucleotide Sequence (SEQ ID NO: 33) GTGACCCCGGTGCTGTGGCGCCTGCTGCGCACCTATCGCTGGCGGCTGGCGGCGGCCATGGGGTTGC AGGCCCTGGCCGGGCTCTGCTCGCTGTTGCCCTGGATGCTTCTCGCCTGGCTCGCCGAGCCGCTGGC GCGCGGCCAGGCGCAGCCGGCCCTGCTGGCCCTGGTGCTGCTGGCGGTGCTGGCCTGGCTGGGCTGC CAGGCGCTGCCCGCGCACCTGGCCCACCGGGTCGACGCGGACCTCTGCAACGACCTGCGCCTGCGCC TGCTGGCGCACCTGCAACGGCTGCCGCTGGACTGGTTCGGTCGCCAGGGCCCGGACGGCGTGGCGCG CCTCGTGGAGCAGGACGTGCGGGCCCTGCACCAACTGATCGCGCACGCTCCCAACGATCTCAGCAAC CTGTTGGTGGTGCCGCTCGTCGCGTTGCTCTGGCTGGCCTGGCTGCACCCCTGGCTGCTGCTGTTCT GCCTGCTGCCGCTGGTGCTGGCCGCCGCCGGCTTCCTGCTGCTGCGCTCGGCGCGCTACCGCGACCT GGTGCTGCGGCGCAACGCCGCGCTGGAAAGGCTCTCGGCGGACTATGGCGAATTCGCCCACAACCTG CTGCTGGCCCGACAGTACCCCGGCGCCGGCATACAACAGGGCGCCGAGGCGTCGGCGGCGGCCTTCG GCGAAGCGTTCGGCGCCTGGGTGAAGCGGGTCGGCCACCTCGCCGCGCTGGTCTACGTGCAGTTGTC GACGCCCTGGCTGCTGGCCTGGGTCCTGCTCGGCGCGCTGGCCCTGGATGCCCTCGGCGTGCCGCTG GCGCTCGGCCAGGCCTGTGCCTTCCTGCTCCTGCTGCGGGCCTTGGCTGCCCCGGTGCAGGCGCTCG GCCACGCCGGCGACGCGCTGCTGGGCGCGCGCGCCGCCGCCGAGCGCCTGCAGCAGGTGTTCGACCA GGCGCCGCTGGCCGAGGGCCGCTCGACCCGCGAGCCGGTCGATGGCGCGGTGGCGCTGCACGGCCTG GGCCATGCCTATGAAGGCGTGGAGGTCCTGGCCGATATCGATCTGGAGCTGGAGGATGGCAGCCTGG TGGCCCTGGTCGGTCCCTCGGGCTCCGGCAAGAGCACCCTGCTGCACCTGCTGGCGCGCTACATGGA CGCGCAGCGCGGCGAACTGGAGGTTGGCGGCCTGGCACTGAAGGACATGCCTGATGCCGTGCGCCAT CGGCATATCGCGCTGGTCGGCCAGCAGGCGGCGGCGCTGGAGATATCCCTGGCCGACAACATTGCCC TGTTCCGCCCCGATGCCGATCTCCAGGAGATTCGCCAGGCGGCCCGTGACGCCTGCCTCGACGAGCG CATCATGGCCCTGCCGCGTGGCTACGACAGCGTGCCGGGACGCGACCTGCAACTGTCCGGCGGCGAA CTGCAACGACTGGCCCTGGCCCGTGCGCTGCTATCGCCGGCGAGCCTGTTGCTGCTCGACGAGCCAA CCTCGGCGCTGGATCCGCAGACCGCCCGGCAGGTCCTGCGCAACCTGCGCGAACGCGGCGGTGGCCG GACCCGGGTGATCGTCGCCATCGTCTGGCCGAAGTCAGCCGATGCCGACCTGATCCTGGTGCTGGTC GCTGGCCGTCTGGTCGAACGCGGCGAGCACGCGGCGCTGTTGGCGGCGGACGGCGCCTATGCGCGCT TGTGGCGTGAACAGAACGGCGCGGAGGTGGCGGCATGA

[0067] The VIR17 protein (SEQ ID NO:34) encoded by SEQ ID NO:33 is presented using the one-letter amino acid code in Table 19B. TABLE-US-00036 TABLE 19B Encoded VIR10 protein sequence (SEQ ID NO: 34) MTPVLWRLLRTYRWRLAAAMGLQALAGLCSLLPWMLLAWLAEPLARGQAQPALLALVLLAVLAWL GCQALAAHLAHRVDADLCNDLRLRLLAHLQRLPLDWFGRQGPDGVARLVEQDVRALHQLIAHAPN DLSNLLVVPLVALLWLAWLHPWLLLFCLLPLVLAAAGFLLLRSARYRDLVLRRNAALERLSADYG EFAHNLLLARQYPGAGIQQGAEASAAAFGEAFGAWVKRVGHLAALVYVQLSTPWLLAWVLLGALA LDALGVPLALGQACAFLLLLRALAAPVQALGHGGDALLGARAAAERLQQVFDQAPLAEGRSTREP VDGAVALHGLGHAYEGVEVLADIDLELEDGSLVALVGPSGSGKSTLLHLLARYMDAQRGELEVGG LALKDMPDAVRHRHIALVGQQAAALEISLADNIALFRPDADLQEIRQAARDACLDERIMALPRGY DSVPGRDLQLSGGELQRLALARALLSPASLLLLDEPTSALDPQTARQVLRNLRERGGGRTRVIVA HRLAEVSDADLILVLVAGRLVERGEHAALLAADGAYARLWREQNGAEVAA

[0068] The role of VIR17 in virulence was confirmed using phage to retransduce this mutation into the wild-type PT894 strain where attenuated virulence was again observed in the Dictyostelium growth assay compared to an isogenic bacterial strain.

MUT18

[0069] A Pseudomonas bacterial mutant (MUT18) was made by transposon insertion in a P. aeruginosa wild-type strain PT894. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding the putative ATP-binding component of ABC transporter, pchI (PA4222). This gene encodes the VIR18 nucleic acid (SEQ ID NO:35) shown in Table 20A. TABLE-US-00037 TABLE 20A VIR18 Nucleotide Sequence (SEQ ID NO: 35) ATGACCCTGTTCGAACGAATGCGTGCGCTGCCCGAAGACTGCCGTGCCGCGTTGCGCCGGGCGAGCG CCTGGGCGGTCCTGGCGGCGCTGCTGGACGCCGCTTGCGGCGTATTGCTGGTGCCGTTGGTCGAGGC CTGGTTCGCCGAAGGCGCGTTGCCCTGGCGCTGGGTCGCCGCGTTGCTCGGCTTGAGCCTGGCGCAG GCGCTGTTGCAGTACCTGGCCCTGCGTCGCGGTTTCGCCGCCGGCGGCTCGCTGGCGGCTGGACTGG TGCGCAGCCTGGTGGCGCGCTTGCCGCGCCTGGCGCCGCCGGCGCTGCGCCGGGTCGCGCCGGCCGA AGGCCTGCTGCGCGGCCCGGTGATGCAGGCGATGGGCATTCCGGCGCACCTGCTGGGGCCGCTGATC GCCGCGTTGGTGACGCCGCTCGGGGTGATCCTCGGGCTGTTCCTGATCGACCCGTCCATCGCCCTCG GCCTGCTCCTTGCTGGTGCCTTCCTCGCCGCGCTGTTGCGCTGGAGCGGGCGGCGCAATCTGGCGGC GGAGGATGCCCGGCTGGCCGCCGAGCGCGACGCCGCACGGCAGTTGCAGGCGTTCGCCGAACGCCAG CCACTGCTGCGCGCGGCGCAGCGCGAAAGCGTCGCCCGCCAGGGGCTGGAAGAGGCCTTGCGCAGTC TCCACCGCAGCACCCTGGATCTGTTGCGGCGCAGCCTGCCCAGCGGCCTCGGCTTCGCCCTGGCGGT GCAGGCGGCGTTCGCCTTCGCCCTGCTCGGCGGCGCCTGGGCGGTGGAGCGGCAATGGCTGGACCGC GCTCGGCTGGTGGCCGTGCTGGTGCTGCTGGTGCGCTTCATCGAGCCGCTGGCCCAGCTCACCCATC TCGACCAGGCGTTGCGCGGCGCCTGGCAGGCGCTGGATACCCTGCTGCGGGTTTTCGCCCTGGCTCC GCTGCGCAGCCCCGAGCCGGGCGAGCGGCCGCACGACGCCAGCCTGGCGGCCGAGGCCGTGGAATTG CGCCTGGAAGATGGCCGCGCCTTGCTCGAGGACATTTCCCTGAGGCTGGAGCCGGGTTCGCTGAACG TCCTCGTCGGACCCTCCGGGGCCGGCAAGAGCAGCCTGCTGGCGCTGCTCGGGCGGCTCTACGACGT CGATGCCGGGCGTGTCCTGCTGGGTGGCGTGGATATCCGCCGGTTGAGCGAAACGACCCTCGCCGCC AGTCGTAACCTGGTGTTCCAGGACAACGGCCTGTTCCGCGGCAGCGTTGCCTGGAACCTGCGCATGG CGCGAGCGGACGCCGATCTCGAAGCGCTGCGCGAGGCGGCGCGGGCGGTTGGCCTGCTGGAAGAGAT CGAGGCCTGGCCGCAGGGCTGGGACAGCGACGTCGGTCCCGGCGGCGCGCTGCTGTCCGGCGGCCAG CGGCAACGCCTGTGCCTGGCTCGCGGGCTGCTCTCGACGGCGCCGTTGCTGCTGCTCGACGAGCCCA CCGCCAGCCTCGACGCCGCCAGCGAGGCGCAGGTGCTGCGCAGCCTGCTCGGGTTGCGCGGCCGGCG CACCCTGCTGGTAGTGACCCACCGCCCGGCGCTGGCGCGTCAGGCCGACCAGGTACTGCTGCTGGAG GAGGGGCGCCTGCGCCTCACCGGACTTCACGCCGATCTGCTCGTCCGGGACGACTGGTATGCCGGTT TCGTCGGGCTGGCGGGCGAGGAAAGTTCCGCGACGGTCGTGGATCGATAG

[0070] The VIR18 protein (SEQ ID NO:36) encoded by SEQ ID NO:37 is presented using the one-letter amino acid code in Table 20B. TABLE-US-00038 TABLE 20B Encoded VIR18 protein sequence (SEQ ID NO: 36) MTLFERMRALPEDCRAALRRASAWAVLAALLDAACGVLLVPLVEAWFAEGALPWRWVAALLGLSL AQALLQYLALRRGFAAGGSLAAGLVRSLVARLPRLAPPALRRVAPAEGLLRGPVMQAMGIPAHLL GPLIAALVTPLGVILGLFLIDPSIALGLLLAGAFLAALLRWSGRRNLAAEDARLAAERDAARQLQ AFAERQPLLRAAQRESVARQGLEEALRSLHRSTLDLLRRSLPSGLGFALAVQAAFAFALLGGAWA VERQWLDGARLVAVLVLLVRFIEPLAQLTHLDQALRGAWQALDTLLRVFALAPLRSPEPGERPHD ASLAAEAVELRLEDGRALLEDISLRLEPGSLNVLVGPSGAGKSSLLALLGRLYDVDAGRVLLGGV DIRRLSETTLAASRNLVFQDNGLFRGSVAWNLRMARADADLEALREAARAVGLLEEIEAWPQGWD SDVGPGGALLSGGQRQRLCLARGLLSTAPLLLLDEPTASLDAASEAQVLRSLLGLRGRRTLLVVT HRPALARQADQVLLLEEGRLRLSGLHADLLVRDDWYAGFVGLAGEESSATVVDR

[0071] The role of VIR18 in virulence was confirmed using phage to retransduce this mutation into the wild-type PT894 strain where attenuated virulence was again observed in the Dictyostelium growth assay compared to an isogenic bacterial strain.

MUT19

[0072] A Pseudomonas bacterial mutant (MUT19) was made by transposon insertion in a P. aeruginosa wild-type strain PT894. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as a gene cluster encoding the P. aeruginosa serotype 09 putative O-antigen biosynthesis pathway (VIR19). The insertion site nucleic acid sequence identifying the VIR19 gene in MUT19 is shown in Table 21. TABLE-US-00039 TABLE 21 MUT19 Transposon insertion Site (SEQ ID NO: 37) CTCTTTCAGCCGCACGCGGCGCACCTCGTGTGTGATCAGTGAGTGGTTTGCAACTGCGGGTCAAG GATCTGGATTTCCCTCACANGTNCGATCATCGTGCGGGAGGGCAAGGGCTCCAAGGATCGGGCCT TGATGTTACCCGAGAGCTTGGCACCCAGCCTGCGCGAGCAGGGNNAATTGATCCGGTGGATGACC TTTTGAATGACCTTTAATAGATTATATTACTAATTAATTGGGGACCCTANAGGTCCCCTTTTTTA TTTTAAAAATTTTTTCACAAAACGGTTTATTTNCATAAAGCTTGCTCAATCAATCACCNTATCCN CGGGAATTCGGCCTAGGCGGCCAGATCTGATCAAGAGACAGACCTCCAGCTTTGCATCCGGAGCG ACCACACGAGCGAGGTCAGTCACTTTCATCGAAGGAATTTTCTTGACATAGATCTCACCACCTTC CATGTCCTCAAAGGCATGCCACACTAACTCGACGCCCTCCTCCAAAGAAATCATGAACCGGGTCA TCCGCTCATCAGTGATAGGCAAGACGCCCTTGTCCTTG

[0073] The role of this cluster in virulence was confirmed using phage to retransduce this mutation into the wild-type PT894 strain where attenuated virulence was again observed in the Dictyostelium growth assay compared to an isogenic bacterial strain.

[0074] B. Attenuated Klebsiella Mutants

MUT20

[0075] A Klebsiella bacterial mutant (MUT20) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding a hypothetical transcriptional regulator in met G-dld intergenic region (VIR20). The insertion site nucleic acid sequence identifying the VIR20 gene in MUT20 is shown in Table 22. TABLE-US-00040 TABLE 22 MUT20 Transposon Insertion Site (SEQ ID NO: 38) ACGCAGGATATCTTCTTCATCAAATTGTCGATGCCCGCCTTCGCTACGCTGCGGTTTCAGTAGACCG TAACGACGCTGCCAGGCGCGCAGTGTGACCGGATTGATTCCGCAACGTTCGGCGACTTCACCGATAC TGTAAAACGCCATAGCAGCCTCACATCAACCTGATACCTTAATACCTAAACTAACGAATTCAGGCAT CCTGTACAACTCTATTTTCTTGTACAGATAAAGATATCAGGTTGCGGCTCACAGCGCCCGGGAAAAA AGATGAAAAAATGTTTAGCTGATTTCGCGGTGGTTCATTTTTTCTCCGGCCATGCGACGGCGGGTAG GCCCCCCAGGCGCGCGCTGGCGAACAAATTGCCCTGAAACTGTGAAATACCGGCTGATTCCAGCCAC ATCCACTCTTCAGCACGCTCAACGCCGACGGCTGAGACCGCAATCTCCAGAGAAGTACAGCATTTGA TAATCGCCTG

MUT21

[0076] A Klebsiella bacterial mutant (MUT21) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding .cndot.-cystathionase (VIR21). The insertion site nucleic acid sequence identifying the VIR21 gene in MUT21 is shown in Table 23. TABLE-US-00041 TABLE 23 MUT21 Transposon Insertion Site (SEQ ID NO: 39) GACCATGTGCTGATGACCAATACCGCCTATGAGCCAAGCCAGGACTTTTGTACCAAAATTCTCGCCA AACTCGGCGTCACCACCAGCTGGTTCGATCCCTTAATCGGCGCCGATATCGCCCGTCTGGTTCGCCC TGAGACCCGCGTGGTGTTCCTCGAATCGCCCGGCTCGATCACCATGGAAGTGCACGATGTGCCGGCG ATAGTCGCCGCCGTGCGTCAGGTCGCCCCGGAAGCGATTATCATGATCGATAACACCTGGGCGGCGG GGATCCTGTTTAAAGCCCTGGATTTTGGCATTGATATTTCCATTCAGGCAGGCACCAAATACCTGAT CGGCCATTCCGACGCCATGGTGGGCACCGCGGTGGCGAACGCGCGCTGCTGGCCGCAGCTGCGTGAA AATGCCTACCTGATGGGGCAAATGCTGGACGCCGATACTGCCTATATGACCAGCCGCGGCCTGCGAA CCCTGGGCGTGCGCCTGCGTCAGCATCATGAAAGCAGCCTGCGCATC

MUT22

[0077] A Klebsiella bacterial mutant (MUT22) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as ribosome binding factor A (VIR22). The insertion site nucleic acid sequence identifying the VIR22 gene in MUT22 is shown in Table 24. TABLE-US-00042 TABLE 24 MUT22 Transposon Insertion Site (SEQ ID NO: 40) CTTTTGGCCCCTTTTTTGTCTTTATTCTGGAGAACTTATTATGGCGAAAGAATTTGGTCGCCCGCAG CGTGTGGCCCAGGAGATGCAAAAAGAGATTGCCATCATCCTGCAGCGTGAAATTAAAGATCCGCGTC TGGGCATGATGACCACCGTTTCCGGTGTGGAAATGTCCCGTGACCTGGCCTATGCCAAGGTGTATGT CACCTTCCTTAACGACAAAGATGAAGCCGCGGTGAAAGCGGGCATCAAAGCGCTGCAGGAAGCTTCT GGCTTTATCCGCTCTCTGCTGGGGAAAGCGATGCGTCTGCGCATCGTACCGGAACTGACTTTCTTCT ACGACAACTCACTGGTGGAAGGGATGCGTATGTCCAACCTGG

MUT23

[0078] A Klebsiella bacterial mutant (MUT23) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding aspartokinase/homoserine dehydrogenase (VIR23). The insertion site nucleic acid sequence identifying the VIR23 gene in MUT23 is shown in Table 25. TABLE-US-00043 TABLE 25 MUT23 Transposon Insertion Site (SEQ ID NO: 41) GCCCAGCCCGCTTTCCCGCTTGCCCAGTTAAAAGCCTTCGTGGAGCAGGAATTTGCTCAGATTAAGC ATGTTCTGCACGGCATCAGCCTGCTGGGTCAGTGCCCGGACAGCGTCAATGCCGCGCTGATCTGCCG CGGCGAAAAGCTCTCCATCGCCATCATGGCGGGTCTGCTGGAAGCCCGTGGACACAAAGTCAGTGTC ATTAACCCGGTCGAAAAACTGCTCGCCGTGGGTCACTATCTGGAATCCACCGTCGATATCGCCGAAT CCACCCGCCGCATTGCCGCCAGCCAGATCCCGGCAGACCATATGATCCTGATGGCCGGGTTTACCGC CGGCAATGAGAAAGGCGAGCTGGTGGTGCTGGGGCGTAACGGCTCCGACTACTCGGCTGCGGTACTG GCCGCCTGCCTGCGCGCTGACTGCTGCGAAATCTGGACCGATGTCGACGGAGTGTACACCTGCGATC CGCGTCAGGTGCCGGATGCGCGCCTGCTGAAATCGATGTCTTATCAGGAGGCGATGGAGCTCTCCTA CTTTGGCGCGAAAGTGCTGCACCCGCGCACCATTGCCCCTATCGCCCAGTTCCAAATCCCATGCCTG ATTAAAAATACCGGCAACCCCC

MUT24

[0079] A Klebsiella bacterial mutant (MUT24) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding cystathione .cndot.-synthetase (VIR24). The insertion site nucleic acid sequence identifying the VIR24 gene in MUT24 is shown in Table 26. TABLE-US-00044 TABLE 26 MUT24 Transposon Insertion Site (SEQ ID NO: 42) GGCGCAGCGTCTGCTCGTCACCGTCAAGCTCGAAGCTTAACATTGCGCCAAAACCTTTTTGCTGACG CGCCGCAATTTCATGCCCCTGGTTTTCCGGCAGCGATGGATGATACAGCTTTTTCACCAGCGGCTGG GTTTTCAGATACTCAACGATCGCCAGGGCATTTCGCTGCGCCACTTCCATCCGTGGAGACAGCGTCC GCAGCCCGCGCAACAGCAGATAGCTGTCGAAGGCGCTGCCGGTGACGCCAATATTATTCGCCCACCA TGCCAGTTCGGTGACAGTTGCCGGATCTTTGGCAATCACCACCCCGGCCACCACATCGGAGTGACCA TTGAGGTATTTGGTACAGGA

MUT25

[0080] A Klebsiella bacterial mutant (MUT25) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding phosphoribosylformylglycinamidine synthase (VIR25). The insertion site nucleic acid sequence identifying the VIR25 gene in MUT25 is shown in Table 27. TABLE-US-00045 TABLE 27 MUT25 Transposon Insertion Site (SEQ ID NO: 43) GTTGCGTCCCAGGCGCGTAAACGCATCCTGCAGGTAGTCAATTTCGTCGTCGGCCAGCGCCAGACCC AGACGGAGGTTGGCGTCAATCAGCGCCTGACGCCCTTCGCCCAGCAGGTCGACGCTGGTGACCGGCG TCGGCTGATGGTGAGCGAACAGCTTCTCGCCCGCTTCCAGCTCGTCGAAGACGCTCTCCATCATGCG GTCATGCAGCTCCGCCGCCACCGCGGCCCACTGCGCTTCGGTCAGGGTTGAGGCTTCAACGTAATAC GCCACGCCGCGCTCAAGACGCACAACCTGCGCCAGACCGCAGTTGTGAGCGATATCGGTAGCTTTAG AAGACCAGGGAGAGATGGTGCCAGGGCGAGGGGTCACGAGCAGTAATTTACCGGTCGGGGTATGGCT GCTTAAGCTCGGGCCATACTGAAGCAGTCGCGCCAGGCGCTCGCGATCGTCAGCGCTCAGCGGGCCG TTCAGATCGGCAAAATGAATATATTCGGCAT

MUT26

[0081] A Klebsiella bacterial mutant (MUT26) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding homoserine transsuccinylase (VIR26). The insertion site nucleic acid sequence identifying the VIR26 gene in MUT26 is shown in Table 28. TABLE-US-00046 TABLE 28 MUT26 Transposon Insertion Site (SEQ ID NO: 44) GTATTGGCATCGTACTCCTGGGCTGGCCGGTGACAAAGGCGATGCGCTTATCTTTGCTGGCGAACAA ATACGCATCGCCCTCTTCCGTCTCCGCGAGGATCTCGAGATCGGTATAGTCGCGAATAAGTCCGGCC GGAAAATCAGCATAGCGTGAGTGCGGGGCCAGGAAAGAGTCGTCGAAACCGCGGGTCAGTAAGGCGT GCGGATGAAGAATATGGTGTTCATAGACGCCGGAAATCTTTTCGGCGCGGGTCTGCTTGGGAATGCC GTACAGAATGTTCAGCGCGGCCTGAACCGCCCAACAGACGAACAGCGTCGAAGTGACGTGATCCTTG GCCCACTCCAGCACCTGTTTGATCTGCGGCCAGTAAGCAACATCGTTAAACTCAACCAGGCCTAAAG GAGCGCCGGTAACAATCAGGCCGTCAAAGTTCTGATC

MUT27

[0082] A Klebsiella bacterial mutant (MUT27) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding 3'-phosphoadenosine 5'-phosphosulfate reductase (VIR27). The insertion site nucleic acid sequence identifying the VIR27 gene in MUT27 is shown in Table 29. TABLE-US-00047 TABLE 29 MUT27 Transposon Insertion Site (SEQ ID NO: 45) GAGGTTCATATGTCCGTACTCGATCTAAACGCGCTTAATGCATTGCCGAAAGTGGAACGCATTCTGG CACTCGCGGAAACCAACGCCCAACTGGAAAAGCTTGACGCCGAAGGGCGTGTGGCGTGGGCGCTGGA AAATCTGCCGGGAAACTATGTGCTGTCGTCGAGCTTTGGCATTCAGGCGGCGGTAAGTTTGCATCTG GTGAATCAGATCCGCCCGGACATTCCGGTGATCCTCACCGATACCGGCTACCTGTTCCCGGAAACCT ATCAGTTTATTGACGAGCTGACGGACAAG

MUT28

[0083] A Klebsiella bacterial mutant (MUT28) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding Sfi protein (VIR28). The insertion site nucleic acid sequence identifying the VIR28 gene in MUT28 is shown in Table 30. TABLE-US-00048 TABLE 30 MUT28 Transposon Insertion Site (SEQ ID NO: 46) TGTTAAAGCGTGCGTTCTACAGCCTGTTAGTCCTGCTCGGCCTGCTGCTGTTGACCGTGCTGGGCCT TGACCGCTGGATGAGCTGGAAAACCGCGCCCTATATCTATGATGAACTGCAGGACCTGCCCTACCGT CAGGTCGGTGTGGTGCTGGGCACCGCCAAATATTACCGCACCGGCGTCATCAATCAGTATTACCGTT ACCGCATCCAGGGTGCGCTGAACGCCTACAACAGCGGCAAGGTCAACTATCTCCTGCTGAGCGGCGA TAATGCTCTGCAAAGCTACAATGAACCGATGACCATGCGTCGGGACCTGATTAAAGGCGGCGTCGAT CCCGCGGATATCGTACTGGACTATGCCGGTTTCCGTACCCTCGACTCGATCGTCCGTACCCGGAAAG TGTTCGACACCAACGACTTCATTATCATCACCCAGCGCTTCCACTGCGAACGGGCGCTGTTTATCGC CCTGCATATGGGGATCCAGGCCCAGTGCTACGC

MUT29

[0084] A Klebsiella bacterial mutant (MUT29) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding transcriptional activator protein LysR (VIR29). The insertion site nucleic acid sequence identifying the VIR29 gene in MUT29 is shown in Table 31. TABLE-US-00049 TABLE 31 MUT29 Transposon Insertion Site (SEQ ID NO: 47) CGCTGAACCTCCTCAAACAAACGCAGGCCCTGCACCTGTCGGCTGCAGGCGACCAGCGTGGATCCGC TCAAACAGCTGCAGGCCGAGCACCTTCTCAAAGCGCGCCAGCTCGCGGCTGACCGTGGGTTGCGAGG TGTGCAGCATCCGCGCCGCTTCGGTCAGGTTGCCGGTGGTCATCACCGCGTGAAAGATTTCGATATG ACGCAAATTGACGGCTGGCATGCGGTCTCCGTGAGGCTCGGCTGGAACCATATCATTTTTGCATAGA GTCGCGATAAAACGATATTTTTTATTCGTCTGTCACTGTGGCGTAATCAGAAAAAACAGCGACCAAC ACACGCACTGCACCGGAGTTCTTATGCCACACTCGCTTTACGCCACCGATACTGACCTGACCGCGGA CAACCTGCTGCGCCTGCCGGCGGAATTTGGCTGCCCGGTCTGGGTCTATGATGCGCAGATTATTCGC CGCCAGATAGCCCAGCTCAGCCAGTTTCGAC

MUT30

[0085] A Klebsiella bacterial mutant (MUT30) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding TrpD (VIR30). The insertion site nucleic acid sequence identifying the VIR30 gene in MUT30 is shown in Table 32. TABLE-US-00050 TABLE 32 MUT30 Transposon Insertion Site (SEQ ID NO: 48) GGCTTCCACCCAAATCGCTTTGTCGGCAACGATTTTTGCTAAAACGGCTTTGCATTCTTTACCCTCT TGCCCGCTAAGTGTCGGTCACTCTGTCATAGGCCGCGCGCTGCTGCAGCACATCCAGTACCTGCTGA GCGTTAGCTTTCAGATCTTCATGCCCGTGTAAACGCATCAATATGGCGACGTTGGCGGCGACGGCGG CTTCGTGAGCGGCTTCACCTTTACCTTG

MUT31

[0086] A Klebsiella bacterial mutant (MUT31) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding N-acetylglucosamine-6-phosphate deacetylase (VIR31). The insertion site nucleic acid sequence identifying the VIR31 gene in MUT31 is shown in Table 33. TABLE-US-00051 TABLE 33 MUT31 Transposon Insertion Site (SEQ ID NO: 49) TGGCTCAACGCTGCTCAGTGGTGCGAGGTGTCACTTTGGTGATCACATCGGCGTTGTCTGCACAGTG AAATCAGATCCAGCGCCGCGTCCGGTTTTACGCACGTAGTCCGGATTGTGGGTGCCTTTCTTAACGA TATTCAGCCACGGCCCTTCGAGATGCAGGCCCAGCGCCTGGTTCGGATGTTTTTGCAGATATTCGCG CATCACGCGCACGCCTTGCTTCATCAGATCGTCGCTGGAGGTAATCAGCGTCGGCAGGAAGCTGGTG CAGCCTGAGCGTTCGTTGGCCTTCTGCATGATCTCCAGCGTTTCGACAGTGACCGCCTCTGGGCTGT CGTTAAACTGCACGCCGCCGCAGCCGTTGAGCTGGACGTCGATAAAACCGGGGGCGATTATTGCGCC GTTGACTGAGCGCTGCTCGATGTCAGACGGCAAATCTGCCAGCGGACAAAGACGTTCGATAAAG

MUT32

[0087] A Klebsiella bacterial mutant (MUT32) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding WaaQ (VIR32; Regue et al. J. Bacteriol. 183(12): 3564-73, 2001). The insertion site nucleic acid sequence identifying the VIR32 gene in MUT32 is shown in Table 34. TABLE-US-00052 TABLE 34 MUT32 Transposon Insertion Site (SEQ ID NO: 50) TTAAGCACCATATCGTACCGCTGCTGGCGCAGCGTCTGAATGAGCTGCCATTGCATCTTCAGCTGAT ACCTTTTTCCCTGGCTTTTTCCAGCGGCGATCGAGACCATAAATATGGTGGATATCGGGGTTGGCTG CGAGCATATCCCGGGTCTCTTCATACAACAGGACATCCACGCTGGCGGCGGGGTACTGCTGTTTCAG CGCGTGAATAAGCGGCGTGATCAGCAGCATGTCGCCATGATGGCGCAGCTTAATGACCAGGATCCGC GCCGGGTTCAACGGGCCGCGGGAGAGGGTTTCAGGCGTCATACTCTGTTCTTCATCCAGGATAAGGG TTCCGATTCTAGGGGATCAGACAGATTGAGAGAAGCGTTGTATTGCTCTACCATGACCCGATACGTA TGGCCTGAGGACGTTTTCGTGCACAATCCCGCAATTTTCTCATCACGAT

MUT33

[0088] A Klebsiella bacterial mutant (MUT33) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding 2-isopropylmalate synthase (VIR33). The insertion site nucleic acid sequence identifying the VIR33 gene in MUT33 is shown in Table 35. TABLE-US-00053 TABLE 35 MUT33 Transposon Insertion Site (SEQ ID NO: 51) CACTCAGGCTTGCCTGTAACGCTTGTTCGCCATCACGTAAGGTCGTATCGAAAATAATGACTTGCTG GCTCATGGTTTGGATCCTTAGTCTGTGTCCTGGCGCCTTGTTGACGAGCATAAAAAAACCCGCGCCA AGGCGCGGGTTTTATAGTCTTGCTGGAAGATGACTTAACGCTGAACGTCGCCCAACAGCCTACCGAG CAAATGGCATGCGTTTAGTAGTAGTAGGCTGGTGATACGAGCGGTGCGAATCATTGCGTCAAACTCC AGATGAAATCGTTATGCTTTTAGAGTTACTGGATAGCCGTTTTAAAGTCAACCCCTGGCATGGAAAA AGCGTTTTGGGCTGACTAAATGAATTAGCAAAATGTGCTGATGTAAGCCCCATTTTGCCGAAGATCC TATTTTGGACCGAAGGCGGTTTATCCCCAATTTGTTTCATTTGAAAAA

MUT34

[0089] A Klebsiella bacterial mutant (MUT34) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding histidinol dehydrogenase (VIR34). The insertion site nucleic acid sequence identifying the VIR34 gene in MUT34 is shown in Table 36. TABLE-US-00054 TABLE 36 MUT34 Transposon Insertion Site (SEQ ID NO: 52) CGCTGAACCGCTATCCGGAGCCGCAGCCGAAGTGCCGTGATTGAGAGCTACGCCCGCTACGCCGAGG TCAAACCGGAGCAGGTGCTGGTCAGCCGCGGCGCCGACGAAGGCATCGAGCTGCTGATCCGCGCCTT CTGTGAGCCCGGCGAAGACGCGGTGCTCTACTGCCCGCCGACCTACGGCATGTACAGCGTCAGCGCC GAGACCATCGGCGTCGAGTGCCGCACCGTGCCGACGCTGGCCAGCTGGCAGCTCGACCTGCCGGGCA TCGAAGCGCGGCTGGACGGCGTGAAGGTGGTGTTTGTCTGCAGCCCGAACAACCCGACCGGGCAGAT TATCGACCCGCAGTCGATGCGCGACCTGCTGGAGATGACCCGCGGCAAAGCCATCGTGGTGGCCGAC GAAGCCTATATTGAATTCTGCCCGCAGGCGACGCTCGCCGGCTGGCTCAGCGACTATCCGCACCTGG TGGTGCTGCGCACGCTGTCCAAAGCCTTCGCCCTCGCCGGCCTGCGCTGCGGCTTCACCCTCGCCAA CGCCGAGGTGATTAACGTGCTGCTGAAAGTGATCGCCCC

MUT35

[0090] A Klebsiella bacterial mutant (MUT35) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding UDP-galactopyranose mutase (VIR35; Clarke et al., J. Bacteriol., 177: 5411-18, 1995). The insertion site nucleic acid sequence identifying the VIR35 gene in MUT35 is shown in Table 37. TABLE-US-00055 TABLE 37 MUT35 Transposon Insertion Site (SEQ ID NO: 53) CGTATATTTCATCGTACAGAAACCGTAAACACAGGCATTGGCTGATTTTCAGTGAGTGAATTTAAAT AGACTTCTGCCGTTTTCAATGCTTCGGCGATGGTCACATCCATATCAAGGTAACGGTAGGTTCCAAG ACGACCGACAAAAGTGATGTTGGTTTCATTCTCGGCCAATGACAAATATTTTTCAAGAAGAGCCATT TCTCCCATCTGGCGAATAGGATAGTAAGGAATATCATTTTCTTCACAAGCACGGCTATACTCTTTAT AACAAACAGAGCCGTCGTGTTGTTCCCAGGGAGAAAAATATTTATGTTCAGTGATGCGAGTATAGGG CACATCCACAGAACAGTAGTTCATCACTGCGCATCCCTGG

MUT36

[0091] A Klebsiella bacterial mutant (MUT36) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the scene encoding O-antigen export system permease protein rfba (VIR36; Bronner et al., Mol. Microbiol., 14: 505-19, 1994). The insertion site nucleic acid sequence identifying the VIR36 gene in MUT36 is shown in Table 38. TABLE-US-00056 TABLE 38 MUT36 Transposon Insertion Site (SEQ ID NO: 54) GTACGCCGATTTTATATGCGTCTGATATGATTCCGGAAAAATTTAGCTGGATAATTACCTACAATCC GCTAGCGAGTATGATTCTTAGTTGGCGTGATTTATTCATGAATGGGACTCTTAATTTTGAGTATATT TCTATACTCTATTTTACGGGAATTATTTTGACGGTTGTCGGTTTGTCTATTTTCAATAAATTAAAAT ATCGATTTGCAGAGATCTAAAAGTGCGCTATAAGAGCAGCATGCTAGGCTATTTATGGTCAGTAGCA AATCCATTGCTTTTTGCCATGATTTACTATTTTATATTTAAGCTGGTAATGAGAGTACAAATTCCAA ATTATACAGTTTTCCTCATTACCGGCTTGTTTCCGTGGCAATGGTTTGCCAGTTCGGCCACTAAC

MUT37

[0092] A Klebsiella bacterial mutant (MUT37) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding uridyltransferase (VIR37). The insertion site nucleic acid sequence identifying the VIR37 gene in MUT37 is shown in Table 39. TABLE-US-00057 TABLE 39 MUT37 Transposon Insertion Site (SEQ ID NO: 55) CGAGCCACCCACTGTAGCGTATGGATATCGCGCAAGCCGCCGGGGCTGCTTTTCACGTCCGGCTCGA GGTTATAGCTGGTGCCATGATAGCGCTGATGACGGACGTTCTGCTCTTCGACCTTGGCGGCGAAGAA CTTTTCCGATGGCCAGAAGCCGTCGCTAAAAATATGTTTTTGCAGTTCAAGGAACAGCGCGACGTCG CCGATCAGCAGGCGCGATTCGATTAAGTTGGTGGCAACGGTCAGATCCGAGAGACCTTCCAGCAGGC ACTCTTCGAGGGTGCGTACGCTGTGGCCCACCTCCAGCTTGACGTCCCACAGCAGGGTGAGCAGTTC GCCGACTTTTTGCGCCTGGTCGTCCGGCAGTTTTTTACGACTGAGGATCAGCAGATCGACGTCTGAG AGCGGGTGCAG

MUT38

[0093] A Klebsiella bacterial mutant (MUT38) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding pyridoxine phosphate biosynthetic protein PdxJ-PdxA (VIR38). The insertion site nucleic acid sequence identifying the VIR38 gene in MUT38 is shown in Table 40. TABLE-US-00058 TABLE 40 MUT38 Transposon Insertion Site (SEQ ID NO: 56) CTTAACCCGCACGCTGGCGAAGGCGGCCATATGGGAACAGAAGAGATAGACACCATCATTCCGGTGC TGGAAGAGATGCGCGCAAAGGGGATGAACCTCAGCGGTCCGCTGCCGGCAGACACTCTCTTTCAGCC GAAATATCTTGATCATGCCGATGCGGTACTCGCGATGTACCACGATCAGGGCCTGCCCGTGCTAAAA TACCAGGGCTTTGGCCGCCGCGTGAACATTACGCTCGGTTTACCTTTTATTCGTACCTCCGTCGACC ACGGCACCGCACTGGAATTAGCGGGCCAGGGAAAAGCGGACGTCGGCAGTTTTATCACGGCGCTTAA TCTCGCCATCAAAATGATTGTTAATACCCAATGAATAATCGAGTCCATCAGGGCCATTTAGCCCGCA AACGCTTCGGGCAGAACTTCCTCAACGATCAGTTTGTGATCGACAGCATCGTCTCGGCGATTAACCC GCAGAAAGGCCAGGCGATCGTTGAAATCGGC

MUT39

[0094] A Klebsiella bacterial mutant (MUT39) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding triose phosphate isomerase (VIR39). The insertion site nucleic acid sequence identifying the VIR39 gene in MUT39 is shown in Table 41. TABLE-US-00059 TABLE 41 MUT39 Transposon Insertion Site (SEQ ID NO: 57) GGGTCTGACCCCGGTTCTGTGCATCGGTGAAACCGAAGCCGAAAACGAAGCGGGCAAAACGGAAGAA GTTTGCGCACGTCAGATCGACGCCGTGCTGAAAACCCAGGGCGCTGCCGCTTTCGAAGGCGTGGTTA TCGCTTACGAACCAGTATGGGCTATCGGTACCGGCAAATCAGCGACCCCGGCTCAGGCGCAGGCGGT GCACAAATTCATCCGTGACCACATTGCTAAAGCTGACGCCAAAATCGCTGAGCAAGTGATCATCCAG TACGGCGGTTCCGTTAACGCTGGCAACGCCGCAGAGCTGTTCACCCAGCCGGACATCGACGGCGCGC TGGTTGGCGGCGCCTCCCTGAAAGCTGACGCTTTCGCGGTGATCGTTAAAGCAGCAGAAGCAGCGAA AAAAGCGTAATTCGCTTTTCCCGGTGGCGACACGCGACCGGGTTGACTGACAAAACGTGGGAGCCCG GCCT

MUT40

[0095] A Klebsiella bacterial mutant (MUT40) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding aldehyde dehydrogenase (VIR40). The insertion site nucleic acid sequence identifying the VIR40 gene in MUT40 is shown in Table 42. TABLE-US-00060 TABLE 42 MUT40 Transposon Insertion Site (SEQ ID NO: 58) GGTGGCGCACCCTGGCGTCGTTTGTGTAGAAATTATGAATATTAATACCAGGAAAATTCCTAATTTT TGTGTACGCTCTGACGAGCGCACAATAAAACAAGACGAATTTTTGAACAATTGTCTTTAAATTTGTT AATTGAATTGATCTGTTGTTGTTTAAAGGTATTTGAATTTCTTTTGTATAGATATGTAAATTAACAT TGAAAAGCCATTTCAAAAATTAAATATATGGCGAACATAGCTATTAACTTATAGTTAACATCTTCCC GGGTTGCCTTTTGATACTTCGGGTAATATATTTATTTCGCACATCAAAATAACTCTTTTTTCTTCTG TTTGTTATTCATGGCCATCTATTGGCGAAATAAGGCAGAGTAGAGGGGGATGTGCCTAATATCCTGC GGAAGGAACGCAATGTACATTTACAGGGAGGAGCTGACGAGCCGTTTCGCGATAGCTTTAG

MUT41

[0096] A Klebsiella bacterial mutant (MUT41) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding galacosyl transferase (VIR41; Clarke et al., J. Bacteriol., 177: 5411-18, 1995). The insertion site nucleic acid sequence identifying the VIR41 gene in MUT41 is shown in Table 43. TABLE-US-00061 TABLE 43 MUT41 Transposon Insertion Site (SEQ ID NO: 59) TTGGTGGTGTGCTCGCGAAGAAATTTAATCTGCCGGTCATCGTAAGTTTTGTTGGGCTTGGAAGAGT ATTTTCTTCTGACAGCATGCCTTTAAAATTATTGCGGCAGTTTACTATTGCTGCATATAAATATATT GCCAGTAATAAGCGCTGTATATTTATGTTTGAACATGACCGCGACAGAAAAAAACTGGCTAAGTTGG TTGGACTCGAAGAACAACAGACTATTGTTATTGATGGTGCAGGCATTAATCCAGAGATATACAAATA TTCTCTTGAACAGGATCACGATGTCCCTGTTGTATTGTTTGCCAGCCGTATGTTGTGGAGTAAAGGA CTGGGCGACTTAATTGAAGCGAAGAAAATATTACGCAGTAAGAATATTCACTTTACTTTGAATGTTG CTGGAATTCTGGTCGAAAATGATAAAGATGCAATTTCCCTTCAGGGTCATTGAAAATTGGCATCAGC AAGGATTAATTAACTGGTTAGGTCGTTCGAATAATGTTTGCGATCTTATTGAGCAAT

MUT42

[0097] A Klebsiella bacterial mutant (MUT42) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding siroheme synthetase (VIR42; Kolko et al., J. Bacteriol., 183: 328-35, 2001). The insertion site nucleic acid sequence identifying the VIR42 gene in MUT42 is shown in Table 44. TABLE-US-00062 TABLE 44 MUT42 Transposon Insertion Site (SEQ ID NO: 60) TTACTTGCCCCTTTTTGCCGAACTGAAACAAAGGCCCGTGCTGGTGATCGGCGGCGGCGAGATTGCT GAACGTAAGATCAAGTTCCTGCTGCGCGCCCAGGCGCAGGTGCAGGTGGTCGCTGAAACGCTGTCAC CGGCGCTGGCCGATCTGGCTGCGCGCCAGGCACTCAGCTGGCGGGCGACGGCATTCAGCGACTCGCT GGTGGATGATGTCTTTCTGGTGATTGCGGCCACCGAGGATGAGGCGCTTAACCAGCGGGTGTTTGCG GCAGCTAACGCGCGCTACCGGTTGGTCAACGTGGTGGATAACCAGGCGCTGTGCTCGTTTGTTTTCC CTTCTATCGTCGACCGTTCGCCGCTGCTGGTGGCGATCTCCTCCAGCGGTAAAGCGCCGGTGTTGTC GCGCATTCTGCGTGAAAAAATCGAAGCGCTGCTGCCGACGAATCTCGGTCGGCTGGCGCAATCAGCA AGCT

MUT43

[0098] A Klebsiella bacterial mutant (MUT43) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase (VIR43). The insertion site nucleic acid sequence identifying the VIR43 gene in MUT43 is shown in Table 45. TABLE-US-00063 TABLE 45 MUT43 Transposon Insertion Site (SEQ ID NO: 61) AGCAGGGCAATGGTGGTCGGTTTCATAACATTTCCTGATGATGAAAGTCATATTAACCGCCATTCTA ACAGCAGCATTCAGAGGGGCAATGATTTTGGGCAACCGATTACGACGATCGCCGCAAATGCTAAAAA AGGGAGAGGGGATTACCAGCTGGCGGGCTTTTCCGCGCCGAGATTATCCAGCACGGCGCGCAGCGCC AGGCCGTCAGGAAAGTGAAGGTCCGGGGCGATCTCGAACAGCGGCCAGAGCATAAAGCCGCGGTTTT TCATATCGTAGTGCGGAACGGTCAGGCGCTCGCTGTTAATGACAGCATCGCCAAACAGCATGATATC GAGGTCCAGCGTGCGCGGCCCCCAGCGTTCGGCTTTGCGCACTCGCCCCTGCTGCAGTTCGATGCGC TGAGTATGATCGAGCAGCGTCTCGGGGGGCAGGGCGGTTTCCAGCGCAA

MUT44

[0099] A Klebsiella bacterial mutant (MUT44) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding glucose-6-phosphate isomerase (VIR44). The insertion site nucleic acid sequence identifying the VIR44 gene in MUT44 is shown in Table 46. TABLE-US-00064 TABLE 46 MUT44 Transposon Insertion Site (SEQ ID NO: 62) GGCTTAACGCCAGCTATGTCAACGCTGCGGTTATGCGGATTTTTCATGCCTCTGCGGCTAACAGAAA AAAGCCTTATGATAGCTATACTAATGGGGCTTTTTACTCCGTTTTGACCCGATTCCTGACCGGCGTC AGGGTCAAGTCACAAAAATCATCACAATTTTCCGTCACCGGCGCTACAATCGACCGAAGTCACAATC TCAAATCAGAAGAGTATTGCTAATGAAAAACATCAACCCAACGCAGACCTCTGCCTGGCAGGCATTA CAGAAACACTTCGACGAAATGAAAGATGTCACTATCAGCGAGCTTTTCGCCAAAGATAGCGACCGTT TTTCTAAATTTTCCGCGACGTTCGACGATCTGATGCTGGTGGACTTCTCCAAAAACCGCATCACTGA AGAGACGCTGGCTAAACTGCAGGATCTGGCGAAAGAGACTGACCTGGCGGGCGCTATCAAGTCGATG TTCTCAGGTGAGAAGATCAACCGCACCGAAGACCGCGCGGTACTGCACGTCGCGCT

MUT45

[0100] A Klebsiella bacterial mutant (MUT45) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding DNA methylase (VIR45). The insertion site nucleic acid sequence identifying the VIR45 gene in MUT45 is shown in Table 47. TABLE-US-00065 TABLE 47 MUT45 Transposon Insertion Site (SEQ ID NO: 63) TGCTTCATCCGCATCTCCTTGAAATTTATTTGGTCTTAGGCGGACGGTAGAGCGCTAATAGCTCGTC CACCTTTTTACGCGTACCACCGTTGCTGCTGATGCTGCGCCGCACCTTCACAATATGCGTTTCTGCC GCGTTTTTATACCATTCCTGCGTCAGCGGCGTGCGGTGGTTGGAAATCAGCACCGGGATGCGCTTTT TCATCAGCGATTCCGCCTTTTGCGCCAGCAGTACCTGTTGTTCCAGGTTGAAACTGTTGGTGTGGTA GGCGGTAAAGTTCGCCGTCGCCGTTAGCGGCGCATAGGGCGGATCGCAATACACCACTGTGCGGCTA TCCGCACGTTGCATGCACTCTTCGTAAGATTCGCAGTAAAACTCGGCGTTTTGCGCCTTCTCGGCGA AATGATAGAGCTCAGCTTCGGGGAAATAGGGCTTTTTATAACGGCCAAACGGCACATTGAACTCGCC GCGCAG

MUT46

[0101] A Klebsiella bacterial mutant (MUT46) was made by transposon insertion in a Klebsiella sp. wild-type strain. In the Dictyostelium growth assay, the mutated microorganism was less virulent compared to an isogenic bacterial strain. The nucleotide sequence immediately following the transposon insertion was cloned and identified as the gene encoding a putative inner membrane protein (VIR46). The insertion site nucleic acid sequence identifying the VIR46 gene in MUT46 is shown in Table 48. TABLE-US-00066 TABLE 48 MUT46 Transposon Insertion Site (SEQ ID NO: 64) TGTCAATGCGCAATTTGGTTAAATATGTCGGTATTGGCCTGCTGGTGATGGGGCTTGCCGCCTGCGA TAACAGCGATTCAAAAGCGCCAACCGTTGGCGCAGCAGCGGAGAGCAATGCCAGCGGCCAGGCAATC AGCCTGCTGGATGGCAAGCTGAGCTTCACCCTGCCTGCGGGCATGGCCGACCAGAGCGGCAAACTGG GTACCCAGGCGAACAATATGCACGTCTACTCTGACGCTACCGGCCAGAAAGCGGTCATCGTCATCGT CGGCGACAGCACCAATGA

IV. Suitable Target Pathogens

[0102] Other Pseudomonas sp. and Klebsiella sp. and many other microbes, including gram-negative bacterial strains, are likely to include virulence genes encoding VIRX-related peptides or proteins having amino acid sequence identity or similarity to those identified herein. Suitable bacterial pathogens may include, but are not limited to, Pneumococci sp., Klebsiella, sp., Pseudomonas, e.g., P. aeruginosa, Salmonella, e.g., Salmonella typhimurium, Legionella, e.g., Legionella pneumophilia, Escherichia, e.g., Escherichia coli, Listeria, e.g., Listeria monocytogenes, Staphylococcus, e.g., Staphylococcus aureus, Streptococci sp., Vibrio, e.g., Vibrio cholerae. Pathogenic mycobacteria of the present invention may include e.g., Mycobacterium tuberculosis. Pathogenic fungi of the present invention may include, e.g., Candida albicans. Pathogenic unicellular eukaryotic organisms of the present invention may include, e.g., Leishmania donovani.

[0103] Having identified VIRX genes according to the invention, it is possible to use the gene sequence to search for related genes or peptides in other microorganisms. This may be carried out by searching in existing databases, e.g., EMBL or GenBank. The levels of identity between gene sequences and levels of identity or similarity between, amino acid sequences can be calculated using known methods. In relation to the present invention, publicly available computer based methods for determining identity and similarity include the BLASTP, BLASTN and FASTA (Atschul et al., J. Molec. Biol., 1990; 215:403-410), the BLASTX program available from NCBI, and the Gap program from Genetics Computer Group, Madison Wis.

[0104] Preferably, the peptides that may be useful in the various aspects of the invention have greater than a 40% similarity with the peptides identified herein. More preferably, the peptides have greater than 60% sequence similarity. Most preferably, the peptides have greater than 80% sequence similarity, e.g., 95% similarity. With regard to the polynucleotide sequences identified herein, related polynucleotides that may be useful in the various aspects of the invention may have greater than 40% identity with the sequences identified herein. More preferably, the polynucleotide sequences have greater than 60% sequence identity. Most preferably, the polynucleotide sequences have greater than 80% sequence identity, e.g., 95% identity.

[0105] In addition to related molecules from other microorganisms, the invention encompasses modifications made to the peptides and polynucleotides identified herein which do not significantly alter the biological function. It will be apparent to the artisan that the degeneracy of the genetic code can result in polynucleotides with minor base changes from those specified herein, but which nevertheless encode the same peptides. Complementary polynucleotides are also within the invention. Conservative replacements at the amino acid level are also envisaged, i.e., different acidic or basic amino acids may be substituted without substantial loss of function.

[0106] It is recognized in the art that highly refined mechanisms that regulate transcription have evolved and are present in bacteria. Most bacterial genes are organized into operons, which are groups of genes coding for related proteins. Operons can either be repressed or induced thus regulating those genes. An operon consists of an operator, promoter, regulator, and structural genes. The regulator gene codes for a repressor protein that binds to the operator, obstructing the promoter (thus, transcription) of the structural genes. The regulator does not have to be adjacent to other genes in the operon. If the repressor protein is removed, transcription may occur.

[0107] Transposon mutagenesis usually inactivates the gene in which the transposon is inserted, as well as any gene downstream in the same operon. If the VIRX gene is a structural gene in an operon, inactivation of the MAX gene disrupts the expression of other structural genes in the same operon and positioned downstream of the inactivated VIRX gene. For example, an insertion in pchE gene also inactivates pchF, pchG, pchH, and pchI genes because they all reside within the pchEFGHI operon and are downstream of the inactivated pchE gene. Accordingly, the present invention includes attenuation of virulence due to alteration of a VIRX gene residing in an operon as well as alterations to nucleic acid yielding loss of expression of structural genes located in the same operon and located downstream of the VIRX gene. In one embodiment, the present invention is an alteration inactivating the first gene of an operon carrying a VIRX gene of the invention. The alteration of nucleic acids of VIRX genes and VIRX-containing operons may be insertional inactivation or gene deletion. It is preferred that the alteration of nucleic acids of VIRX genes and VIRX-containing operons be insertional inactivation.

[0108] The present invention also provides for a bacterial strain comprising an operon encoding a gene selected from the group consisting of VIR1, VIR2, VIR3, VIR4. VIR5, VIR6, VIR7, VIR8, VIR9, VIR10, VIR11, VIR12, VIR13, VIR14, VIR15, VIR16, VIR17, VIR18, VIR19, VIR20, VIR21, VIR22, VIR23, VIR24, VIR25, VIR26, VIR27, VIR28, VIR29, VIR30, VIR31, VIR32, VIR33, VIR34, VIR35, VIR36, VIR37, VIR38, VIR39, VIR40, VIR41, VIR42, VIR44, VIR45, and VIR46, wherein the bacterial strain includes a mutation that reduces expression of the VIRX gene relative to an isogenic bacterial strain lacking the mutation. In one embodiment, the mutation reduces inhibition of Dictyostelium amoeba growth when compared to the growth of Dictyostelium amoeba in the presence of an isogenic bacterial strain lacking the mutation. In another embodiment, the attenuated bacterial strain has more than one mutation of an operon containing a VIRX gene when compared to an isogenic bacterial strain.

V. VIRX Nucleic Acids and Polypeptides Can Be Used to Identify Antimicrobial Drugs

[0109] A. Screening

[0110] In a separate embodiment, the VIRX genes, or their polynucleotide or polypeptide products disclosed herein is used in screening assays for the identification of potential antimicrobial drugs. Routine screening assays are known to those skilled in the art, and can be adapted using the VIRX products of the invention in the appropriate way. For example, the products of the invention can be used as the target for a potential drug, with the ability of the drug to inactivate or bind to the tar-get indicating its potential antimicrobial activity. In the methods of the present invention, one or more test compounds may be present or produced in the assay mixture. Preferably one compound is present, or produced, in the assay mixture.

[0111] B. Character of Antimicrobial Candidate Compositions

[0112] VIRX nucleic acids and polypeptides may be used to identify drugs or therapeutics in a candidate composition useful in the prevention or treatment of pathogen-associated disease or infection. A candidate composition can include one or more molecules for analysis in a screening assay and can be a synthetic or semi-synthetic molecules. Such molecules include inorganic as well as organic chemical molecules. The molecules may be less than about 500 Daltons or more than 500 Daltons. The molecules may be naturally occurring. Naturally occurring molecules may include, e.g., saccharides, lipids, peptides, proteins, nucleic acids, or combinations thereof, e.g., aminoglycosides, glycolipids, lipopolysaccharides, or macrolides. Proteins may be immunoglobulins, e.g., polyclonal or monoclonal antibodies. Nucleic acids may be DNA or RNA, e.g., small interfering RNA (siRNA). The precise source of the molecule is not critical to the method of the present invention. The molecule might be derived from e.g., synthetic compounds libraries that are commercially available, e.g., Sigma-Aldrich (Milwaukee, Wis.), or libraries of natural occurring molecules in the form of bacterial, fungal, plant, and animal extracts such as those available from Xenova (Slough, UK). The synthetic (or semi-synthetic) or natural occurring molecules might be modified using standard chemical, physical, or biochemical methods known in the art.

VI. VIRX Nucleic Acids and Polypeptides Can Be Used to Detect the Degree of Virulence of Pathogens

[0113] A diagnostic test can assist physicians in determining the type of disease and appropriate associated therapy. As such, a separate embodiment of this invention provides for the use of VIRX genes or their polynucleotides or nucleic acid products as virulence markers for detecting the presence of a pathogen, a pathogen-associated disease, or the virulence of a pathogen. There are many diagnostic assay approaches known to the artisan. Generally, the diagnostic method used would comprise the steps of (a) obtaining a sample from a potentially diseased subject or a diseased subject; (b) measuring the level of at least one polypeptide or polynucleotide virulence marker in the sample; and (c) comparing the amount of the virulence marker in the sample of step (a) to the amount of the virulence marker present in a control sample from a second subject known not to have the presence of the pathogen, where an alteration in the expression level of the virulence marker in the first subject as compared to the control sample indicates the presence of a pathogen, a pathogen-associated disease, or the virulence of a pathogen. Preferably, the subject is a mammal. More preferred is that the subject is a human. The person of skill will recognize that diagnostic tests may be performed in an array-type format wherein, e.g., the presence of two or more VIRX genes or gene products indicate the presence of a pathogen, a pathogen-associated disease, or the virulence of a pathogen.

VII. Attenuated Organisms of the Present Invention Can Be Used in Vaccine Preparation

[0114] In another embodiment, the invention provides for the use of the attenuated organisms described herein in vaccine preparation. The preparation of vaccines based on attenuated microorganisms is known to those skilled in the art. Vaccine compositions can be formulated with suitable carriers or adjuvants, e.g., alum, as necessary or desired, to provide effective immunization against infection. The preparation of vaccine formulations will be apparent to the artisan. The attenuated microorganisms may be prepared with a mutation that disrupts the expression of any of the VIRX genes identified herein. The artisan will be aware of methods for disrupting expression of particular VIRX genes. Techniques that may be used include, but are not limited to, insertional inactivation, or gene deletion techniques. Attenuated microorganisms according to the invention may also comprise additional mutations in other genes, for example in a second gene identified herein or in a separate gene required for growth of the microorganism, e.g., an Aro mutation. Attenuated microorganisms may also be used as carrier systems for the delivery of heterologous antigens, therapeutic proteins or nucleic acids (DNA or RNA). In this embodiment, the attenuated microorganisms are used to deliver a heterologous antigen, protein or nucleic acid to a particular site in vivo. Introduction of a heterologous antigen, peptide or nucleic acid into an attenuated microorganism can be carried out by conventional techniques, including the use of recombinant constructs, e.g., vectors, which comprise polynucleotides that express the heterologous antigen or therapeutic protein, and also include suitable promoter sequences. Alternatively, the gene that encodes the heterologous antigen or protein may be incorporated into the genome of the organism and the endogenous promoters used to control expression. In the vaccines of the present invention, the pharmaceutically effective dosage of the mutants of the present invention to be administered may vary depending on the age, weight and sex of the subject, and the mode of administration. The subject can be, e.g., a human, a non-human primate (such as an ape, gorilla, or chimpanzee), cow, horse, pig, sheep, dog, cat, or rodent (including mouse or rat).

VIII. Definitions

[0115] As used herein, each of the following terms has the meaning associated with it in this section.

[0116] The term "pathogen," as used herein, is intended to include an agent that causes disease, especially a living microorganism such as a bacterium or fungus. The terms "agent" and "factor" are used interchangeably herein to describe pathogens or toxins useful in the methods of the present invention. Pathogens may include any bacteria, mycobacteria, fungi and unicellular eukaryotic organism, including wild types and mutants thereof, which causes disease or brings about damage or harm to a host organism. Pathogens may also be a poisonous substance, e.g., toxin, which is produced by living cells or organisms and is capable of causing disease when introduced to a host.

[0117] The term, "pathogenic," as used herein, is defined as an agent's ability to cause disease, damage or harm to a host organism.

[0118] The term, "attenuated," as used herein, means an organism made less virulent relative to an isogenic pathogenic organism.

[0119] The term, "virulence," as used herein, is a measure of the degree of pathogenicity of an agent to a host organism. Virulence is usually expressed as the dose of an agent or cell number of a pathogen that will elicit a pathological response in the host organism within a given time period. "Reducing the virulence" as used herein is defined as the ability of a compound to attenuate, diminish, decrease, suppress, or arrest the development of, or the progression of disease, damage or harm to a host organism mediated by a pathogen.

[0120] The term, "host organism," as used herein, is intended to include any living organism. Preferably the host organism is a eukaryote, e.g., vertebrate. More preferably the host organism is a mammal. It is most preferred that the host organism be a human.

[0121] The term, "mutant," as used herein, an organism carrying a specific mutation of a gene that is expressed in the organism's phenotype.

[0122] The term, "mutation," as used herein, is an alteration of one or more nucleic acids of a polynucleotide sequence encoding a gene. A mutation may include the insertion of additional nucleic acids to a polynucleotide sequence encoding a gene, e.g., insertional inactivation of a gene. Alternatively, a mutation may include, but is not limited to, deletion of one or more nulceic acids of a polynucleotide sequence encoding a gene.

[0123] The term, "operon," as used herein, is a unit of bacterial gene expression and regulation comprising several genes usually with complementary functions. Typically an operon includes nucleic acid and control elements in the nucleic acid that may be recognized by regulators of gene products. Insertion in a gene in an operon interferes with the function of this gene and of other genes located downstream or upstream in the operon. It is understood herein that the function attributed to a gene refers to its function and/or that of any gene located downstream or upstream in the same operon.

[0124] The term, "pharmaceutically effective dosage," as used herein, means that amount necessary at least partly to attain the desired effect, or to delay the onset of, inhibit the progression of, or halt altogether, the onset or progression of the particular condition being treated.

[0125] The terms "similarity" and "identity" are known in the art. The use of the term "identity" refers to a sequence comparison based on identical matches between correspondingly identical positions in the sequences being compared. The term "similarity" refers to a comparison between amino acid sequences, and takes into account not only identical amino acids in corresponding positions, but also functionally similar amino acids in corresponding positions. Thus similarity between polypeptide sequences indicates functional similarity, in addition to sequence similarity.

EQUIVALENTS

[0126] From the foregoing detailed description of the specific embodiments of the invention, it should be apparent that bacterial genes have been identified and assigned a new role in virulence. Further, these genes and their products are useful in the identification of antimicrobial agents, the diagnosis of pathogen-associated disease or infection as well as the preparation of vaccines. Although particular embodiments have been disclosed herein in detail, this has been done by way of example for purposes of illustration only, and is not intended to be limiting with respect to the scope of the appended claims that follow. In particular, it is contemplated by the inventor that various substitutions, alterations, and modifications may be made to the invention without departing from the spirit and scope of the invention as defined by the claims. For instance, the choice of the particular pathogen, or combination of pathogens selected for assay or vaccination, the test conditions used in diagnostic assays utilizing the pathogens of this invention, or the method of mutagenesis used to derive the attenuated mutants is believed to be a matter of routine for a person of ordinary skill in the art with knowledge of the embodiments described herein.

EXAMPLES

[0127] This Example is provided for the purpose of illustration only and the invention should in no way be construed as being limited to these Example, but rather should be construed to encompass any and all variations which become evident as a result of the teaching provided.

Example 1

Strains and Culture Conditions Used to Screen for Attenuated Viurlence in Test Bacterial Mutants

[0128] The D. discoideum wild-type strain DH1-10 used in these studies is a subclone of DH1 (Cornillon et al., J. Biol. Chem., 275(44):34287-92, 2000). Cells were grown at 21.degree. C. in HL5 medium (14.3 g/l peptone (Oxoid), 7.15 g/l yeast extract, 18 g/l maltose, 0.64 g/l Na.sub.2HPO.sub.4.2H.sub.2O, 0.49 g/l KH.sub.2PO.sub.4, pH 6.7) (Cornillon et al., J. Cell. Sci., 107 (Pt 10):2691-704, 1994) and subcultured twice a week.

[0129] Bacteria were grown overnight at 37.degree. C. on Luria-Bertani (LB) agar. Single colonies were inoculated into 5 ml PB (2% (wt/vol) peptone, 0.3% (wt/vol) MgCl.sub.2.6H.sub.2O, 1% (wt/vol) K.sub.2SO.sub.4) (Essar et al., J. Bacteriol., 172(2):884-900,1990) in a 50 ml flask and grown at 37.degree. C. for 8 hr prior to use. The growth of various strains was tested in rich medium (PB) by measuring the optical density (600 nm) of a culture at different times after inoculation and was found to be comparable for all strains used. Under these conditions, similar OD.sub.600s were obtained for each strain and the induction of quorum sensing was maximal. Minimal Inhibitory Concentrations (MICs) were determined in Mueller-Hinton broth by the microdilution method (Thornsberry et al., NCCLS, 3: 48-56, 1983). Mutations yielding reduced virulence were identified where the growth of the Dictyostelium test host organism exposed to the mutant pathogen was greater than the Dictyostelium test host organism exposed to wild-type pathogen. Specific genetic mutations in pathogens displaying reduced virulence were identified and characterized by techniques well know in the art.

Sequence CWU 1

1

64 1 1050 DNA Pseudomonas aeruginosa 1 atggatatca agggagccct caatcgcatc gtcaaccagc tcgacctgac caccgaggaa 60 atgcaggcgg tcatgcgcca gatcatgacc gggcagtgca ccgacgcgca gatcggcgcc 120 ttcctgatgg gcatgcggat gaagagcgaa accatcgacg agatcgtcgg cgcggtggcg 180 gtgatgcgcg aactggccga cggcgtgcag ttgcctacgc tgaagcatgt ggtcgacgtg 240 gtcggcaccg gcggcgatgg cgcgaacatc ttcaacgtgt cctcggcggc gtccttcgtg 300 gtcgccgccg ctggcggcaa ggtcgccaaa cacggtaacc gcgcggtctc cggcaagagc 360 ggcagcgccg acttgctgga agccgccggc atctacctgg agctgacctc cgaacaggtg 420 gcgcgttgca tcgacaccgt cggcgtcggg ttcatgttcg cccaggtcca ccacaaggcg 480 atgaagtacg ccgccggtcc gcgccgcgag ctgggcttgc ggactctgtt caacatgctt 540 ggcccactga ccaacccggc gggagtcagg caccaggtgg tcggggtgtt cacccaggaa 600 ctgtgcaagc cgctggctga agtgctcaag cgtctcggca gcgagcatgt gctggtggtg 660 cattcgcgcg acgggctgga cgagttcagt ctggccgcgg cgacccacat tgccgagttg 720 aaggacggcg aggtacgcga gtacgaagtg cgtcccgagg acttcgggat caagagccag 780 accctgatgg ggctggaggt cgacagtccg caggcctcgc tggaactgat ccgcgacgct 840 ttggggcggc gcaagaccga ggctgggcag aaggccgccg agctgatcgt gatgaatgcc 900 ggcccggcac tgtacgctgc cgatctggcg accagcctgc acgagggcat tcaactggcc 960 cacgatgccc tgcacaccgg gctggcacgg gagaagatgg acgaactggt ggccttcacc 1020 gccgtttaca gagaggagaa cgcacagtga 1050 2 349 PRT Pseudomonas aeruginosa 2 Met Asp Ile Lys Gly Ala Leu Asn Arg Ile Val Asn Gln Leu Asp Leu 1 5 10 15 Thr Thr Glu Glu Met Gln Ala Val Met Arg Gln Ile Met Thr Gly Gln 20 25 30 Cys Thr Asp Ala Gln Ile Gly Ala Phe Leu Met Gly Met Arg Met Lys 35 40 45 Ser Glu Thr Ile Asp Glu Ile Val Gly Ala Val Ala Val Met Arg Glu 50 55 60 Leu Ala Asp Gly Val Gln Leu Pro Thr Leu Lys His Val Val Asp Val 65 70 75 80 Val Gly Thr Gly Gly Asp Gly Ala Asn Ile Phe Asn Val Ser Ser Ala 85 90 95 Ala Ser Phe Val Val Ala Ala Ala Gly Gly Lys Val Ala Lys His Gly 100 105 110 Asn Arg Ala Val Ser Gly Lys Ser Gly Ser Ala Asp Leu Leu Glu Ala 115 120 125 Ala Gly Ile Tyr Leu Glu Leu Thr Ser Glu Gln Val Ala Arg Cys Ile 130 135 140 Asp Thr Val Gly Val Gly Phe Met Phe Ala Gln Val His His Lys Ala 145 150 155 160 Met Lys Tyr Ala Ala Gly Pro Arg Arg Glu Leu Gly Leu Arg Thr Leu 165 170 175 Phe Asn Met Leu Gly Pro Leu Thr Asn Pro Ala Gly Val Arg His Gln 180 185 190 Val Val Gly Val Phe Thr Gln Glu Leu Cys Lys Pro Leu Ala Glu Val 195 200 205 Leu Lys Arg Leu Gly Ser Glu His Val Leu Val Val His Ser Arg Asp 210 215 220 Gly Leu Asp Glu Phe Ser Leu Ala Ala Ala Thr His Ile Ala Glu Leu 225 230 235 240 Lys Asp Gly Glu Val Arg Glu Tyr Glu Val Arg Pro Glu Asp Phe Gly 245 250 255 Ile Lys Ser Gln Thr Leu Met Gly Leu Glu Val Asp Ser Pro Gln Ala 260 265 270 Ser Leu Glu Leu Ile Arg Asp Ala Leu Gly Arg Arg Lys Thr Glu Ala 275 280 285 Gly Gln Lys Ala Ala Glu Leu Ile Val Met Asn Ala Gly Pro Ala Leu 290 295 300 Tyr Ala Ala Asp Leu Ala Thr Ser Leu His Glu Gly Ile Gln Leu Ala 305 310 315 320 His Asp Ala Leu His Thr Gly Leu Ala Arg Glu Lys Met Asp Glu Leu 325 330 335 Val Ala Phe Thr Ala Val Tyr Arg Glu Glu Asn Ala Gln 340 345 3 918 DNA Pseudomonas aeruginosa 3 atggtcgaca aactgacgca cctgaaacag ctggaggcgg aaagcatcca catcatccgc 60 gaggtggccg ccgagttcga taacccggtg atgctgtact cgatcggcaa ggattccgcg 120 gtcatgctgc acctggcccg caaggccttc ttccccggca agctgccctt cccggtgatg 180 cacgtggaca cccgctggaa attccaggag atgtacaggt tccgtgatcg gatggtcgag 240 gaaatgggcc tggatctgat cacccacgtc aacccggacg gcgtcgccca gggcatcaac 300 ccgttcaccc acggcagcgc caagcacacc gacgtgatga agaccgaggg actcaagcag 360 gccctggaca agtacggttt cgacgctgcc ttcggcggtg cgcgccgcga cgaggagaag 420 tcgcgggcca aggaacgggt ctattcgttc cgcgacagca agcaccgctg ggacccgaag 480 aaccagcgtc ccgagctgtg gaacatctac aacggcaagg tgaagaaggg cgagtcgatc 540 cgcgtcttcc cgctgtccaa ctggaccgag ctggacatct ggcaatacat ctacctggaa 600 ggcatcccga tcgtcccgct gtacttcgcc gccgagcgcg aggtcatcga gaagaatggc 660 acattgatca tgatcgacga cgagcgcatc ctcgagcatc tctctgacga agagaaagcc 720 cgcatcgaga agcgcatggt gcgcttccgt accctcggct gctacccgct caccggcgcg 780 gtcgagtcca gcgccaccac gctgccggaa atcatccagg aaatgctcct gacgcgtact 840 tccgaacgcc agggccgggt catcgaccat gaccaggccg gttcgatgga agaaaagaaa 900 cgtcagggct atttctga 918 4 305 PRT Pseudomonas aeruginosa 4 Met Val Asp Lys Leu Thr His Leu Lys Gln Leu Glu Ala Glu Ser Ile 1 5 10 15 His Ile Ile Arg Glu Val Ala Ala Glu Phe Asp Asn Pro Val Met Leu 20 25 30 Tyr Ser Ile Gly Lys Asp Ser Ala Val Met Leu His Leu Ala Arg Lys 35 40 45 Ala Phe Phe Pro Gly Lys Leu Pro Phe Pro Val Met His Val Asp Thr 50 55 60 Arg Trp Lys Phe Gln Glu Met Tyr Arg Phe Arg Asp Arg Met Val Glu 65 70 75 80 Glu Met Gly Leu Asp Leu Ile Thr His Val Asn Pro Asp Gly Val Ala 85 90 95 Gln Gly Ile Asn Pro Phe Thr His Gly Ser Ala Lys His Thr Asp Val 100 105 110 Met Lys Thr Glu Gly Leu Lys Gln Ala Leu Asp Lys Tyr Gly Phe Asp 115 120 125 Ala Ala Phe Gly Gly Ala Arg Arg Asp Glu Glu Lys Ser Arg Ala Lys 130 135 140 Glu Arg Val Tyr Ser Phe Arg Asp Ser Lys His Arg Trp Asp Pro Lys 145 150 155 160 Asn Gln Arg Pro Glu Leu Trp Asn Ile Tyr Asn Gly Lys Val Lys Lys 165 170 175 Gly Glu Ser Ile Arg Val Phe Pro Leu Ser Asn Trp Thr Glu Leu Asp 180 185 190 Ile Trp Gln Tyr Ile Tyr Leu Glu Gly Ile Pro Ile Val Pro Leu Tyr 195 200 205 Phe Ala Ala Glu Arg Glu Val Ile Glu Lys Asn Gly Thr Leu Ile Met 210 215 220 Ile Asp Asp Glu Arg Ile Leu Glu His Leu Ser Asp Glu Glu Lys Ala 225 230 235 240 Arg Ile Glu Lys Arg Met Val Arg Phe Arg Thr Leu Gly Cys Tyr Pro 245 250 255 Leu Thr Gly Ala Val Glu Ser Ser Ala Thr Thr Leu Pro Glu Ile Ile 260 265 270 Gln Glu Met Leu Leu Thr Arg Thr Ser Glu Arg Gln Gly Arg Val Ile 275 280 285 Asp His Asp Gln Ala Gly Ser Met Glu Glu Lys Lys Arg Gln Gly Tyr 290 295 300 Phe 305 5 822 DNA Pseudomonas aeruginosa 5 atgaggccgg tgccttgggg cgaattggtg gcgctggtgc ggcgcgccgg cgaggcgatc 60 ctgccgcact ggcgcgccga cgtggtggtg cgctcgaagg ccgacgaatc gccggtgact 120 gccgccgacc tggccgcgca ccatatattg gaggcgggat tgcgggcgct ggcgccggac 180 attccggtgc tttccgaaga ggattgcgag ataccgctga gcgagcgcgg ccactggcgg 240 cgctggtggc tggtggaccc gctggacggc accaaggagt tcatctccgg tagcgaggag 300 ttcaccgtca acgtggccct ggtcgaggat ggccgggtgc tgttcggcct ggtcggcgtg 360 ccggtgagcg gccgctgcta ctacggtggc gccggtctcg gtgcctggcg cgaggaggcc 420 gatggccgcg cgcaaccgat cagtgtgcgc ctggagcccg aggaggcctt caccgtggtg 480 gccagcaagc gccatggcag cccggcccag gagcgcctgc tggatggctt gagcgagcgc 540 ttcggcgacc tgcggcgagc cagcatcggc agttcgctga agttctgcct gctggccgag 600 ggcgctgccg actgctatcc gcgcctgacg ccaacctcgc aatgggacac ggccgccgcc 660 cagggtgtgc tggaaggcgc cggcggcgag gtgctcgacc tgcatggtgc gccattcacc 720 tacgagccgc gcgaggatta cctcaacggc tccttcctgg ccctgccgcg cgccgccgag 780 tggcgcagcg agctgatcca actggcgcgc gcgctgcact ga 822 6 273 PRT Pseudomonas aeruginosa 6 Met Arg Pro Val Pro Trp Gly Glu Leu Val Ala Leu Val Arg Arg Ala 1 5 10 15 Gly Glu Ala Ile Leu Pro His Trp Arg Ala Asp Val Val Val Arg Ser 20 25 30 Lys Ala Asp Glu Ser Pro Val Thr Ala Ala Asp Leu Ala Ala His His 35 40 45 Ile Leu Glu Ala Gly Leu Arg Ala Leu Ala Pro Asp Ile Pro Val Leu 50 55 60 Ser Glu Glu Asp Cys Glu Ile Pro Leu Ser Glu Arg Gly His Trp Arg 65 70 75 80 Arg Trp Trp Leu Val Asp Pro Leu Asp Gly Thr Lys Glu Phe Ile Ser 85 90 95 Gly Ser Glu Glu Phe Thr Val Asn Val Ala Leu Val Glu Asp Gly Arg 100 105 110 Val Leu Phe Gly Leu Val Gly Val Pro Val Ser Gly Arg Cys Tyr Tyr 115 120 125 Gly Gly Ala Gly Leu Gly Ala Trp Arg Glu Glu Ala Asp Gly Arg Ala 130 135 140 Gln Pro Ile Ser Val Arg Leu Glu Pro Glu Glu Ala Phe Thr Val Val 145 150 155 160 Ala Ser Lys Arg His Gly Ser Pro Ala Gln Glu Arg Leu Leu Asp Gly 165 170 175 Leu Ser Glu Arg Phe Gly Asp Leu Arg Arg Ala Ser Ile Gly Ser Ser 180 185 190 Leu Lys Phe Cys Leu Leu Ala Glu Gly Ala Ala Asp Cys Tyr Pro Arg 195 200 205 Leu Thr Pro Thr Ser Gln Trp Asp Thr Ala Ala Ala Gln Gly Val Leu 210 215 220 Glu Gly Ala Gly Gly Glu Val Leu Asp Leu His Gly Ala Pro Phe Thr 225 230 235 240 Tyr Glu Pro Arg Glu Asp Tyr Leu Asn Gly Ser Phe Leu Ala Leu Pro 245 250 255 Arg Ala Ala Glu Trp Arg Ser Glu Leu Ile Gln Leu Ala Arg Ala Leu 260 265 270 His 7 1299 DNA Pseudomonas aeruginosa 7 atgcgagttc tggtccttgg cagcggtgtc atcggtaccg ccagtgcgta ttacctggcc 60 cgtgccgggt tcgaggtggt ggtggtcgac cgtcaggacg gtcccgcgct ggaaaccagc 120 ttcgccaacg ccggccaggt gtctcccggc tacgcttcgc cctgggcagc cccgggcatt 180 cccctgaagg ccatgaagtg gctgctggaa aagcacgcgc cgctggccat caagctcacc 240 tccgatccca gccagtacgc ctggatgctg cagatgctgc gcaactgcac cgccgagcgc 300 tacgccgtga acaaggagcg catggtccgc ctgtccgagt acagccgcga ttgcctcgac 360 gaactgcgcg ccgagaccgg catcgcctac gagggccgca ccctcggcac cacccaactg 420 ttccgcaccc aggcgcagct ggacgccgcc ggcaaggaca tcgccgtgct cgagcgctcc 480 ggcgtgccct acgaggttct cgaccgcgac ggcatcgccc gcgtagagcc ggctttggcc 540 aaggtcgccg acaagctggt cggcgccttg cgcctgccca acgaccagac cggcgactgc 600 cagctgttca ccacccgcct ggcggaaatg gccaagggcc tgggcgtgga gttccgcttc 660 ggccagaaca tcgagcgcct ggacttcgcc ggcgaccgca tcaacggcgt gctggtcaac 720 ggcgaattgc tcaccgccga ccactacgtg ctggccctgg gcagctactc gccgcaactg 780 ctcaagccgc tgggtatcaa ggctccggtc tatccgctga agggttattc gctgaccgtg 840 ccgatcacca acccggagat ggcgccgacc tcgaccatcc tcgacgagac ctacaaggtg 900 gcgatcaccc gcttcgacca gcgcatccgc gtcggcggca tggcggaaat cgccggcttc 960 gacctgtcgc tgaacccgcg ccgccgcgag accctggaaa tgatcaccac cgacctctat 1020 cccgagggcg gcgatatcag ccaggcgacc ttctggaccg gcctgcgccc ggcgaccccg 1080 gatggcaccc cgatcgtcgg cgccacccgc taccgcaacc tgttcctcaa taccggccac 1140 ggcaccctgg gttggaccat ggcctgcggg tcgggtcgct acctggccga cctgatggcg 1200 aagaagcgcc cgcagatcag taccgaaggc ctggatattt cccgctacag caattccccg 1260 gagaacgcca agaatgccca tccagcgcca gcacactaa 1299 8 432 PRT Pseudomonas aeruginosa 8 Met Arg Val Leu Val Leu Gly Ser Gly Val Ile Gly Thr Ala Ser Ala 1 5 10 15 Tyr Tyr Leu Ala Arg Ala Gly Phe Glu Val Val Val Val Asp Arg Gln 20 25 30 Asp Gly Pro Ala Leu Glu Thr Ser Phe Ala Asn Ala Gly Gln Val Ser 35 40 45 Pro Gly Tyr Ala Ser Pro Trp Ala Ala Pro Gly Ile Pro Leu Lys Ala 50 55 60 Met Lys Trp Leu Leu Glu Lys His Ala Pro Leu Ala Ile Lys Leu Thr 65 70 75 80 Ser Asp Pro Ser Gln Tyr Ala Trp Met Leu Gln Met Leu Arg Asn Cys 85 90 95 Thr Ala Glu Arg Tyr Ala Val Asn Lys Glu Arg Met Val Arg Leu Ser 100 105 110 Glu Tyr Ser Arg Asp Cys Leu Asp Glu Leu Arg Ala Glu Thr Gly Ile 115 120 125 Ala Tyr Glu Gly Arg Thr Leu Gly Thr Thr Gln Leu Phe Arg Thr Gln 130 135 140 Ala Gln Leu Asp Ala Ala Gly Lys Asp Ile Ala Val Leu Glu Arg Ser 145 150 155 160 Gly Val Pro Tyr Glu Val Leu Asp Arg Asp Gly Ile Ala Arg Val Glu 165 170 175 Pro Ala Leu Ala Lys Val Ala Asp Lys Leu Val Gly Ala Leu Arg Leu 180 185 190 Pro Asn Asp Gln Thr Gly Asp Cys Gln Leu Phe Thr Thr Arg Leu Ala 195 200 205 Glu Met Ala Lys Gly Leu Gly Val Glu Phe Arg Phe Gly Gln Asn Ile 210 215 220 Glu Arg Leu Asp Phe Ala Gly Asp Arg Ile Asn Gly Val Leu Val Asn 225 230 235 240 Gly Glu Leu Leu Thr Ala Asp His Tyr Val Leu Ala Leu Gly Ser Tyr 245 250 255 Ser Pro Gln Leu Leu Lys Pro Leu Gly Ile Lys Ala Pro Val Tyr Pro 260 265 270 Leu Lys Gly Tyr Ser Leu Thr Val Pro Ile Thr Asn Pro Glu Met Ala 275 280 285 Pro Thr Ser Thr Ile Leu Asp Glu Thr Tyr Lys Val Ala Ile Thr Arg 290 295 300 Phe Asp Gln Arg Ile Arg Val Gly Gly Met Ala Glu Ile Ala Gly Phe 305 310 315 320 Asp Leu Ser Leu Asn Pro Arg Arg Arg Glu Thr Leu Glu Met Ile Thr 325 330 335 Thr Asp Leu Tyr Pro Glu Gly Gly Asp Ile Ser Gln Ala Thr Phe Trp 340 345 350 Thr Gly Leu Arg Pro Ala Thr Pro Asp Gly Thr Pro Ile Val Gly Ala 355 360 365 Thr Arg Tyr Arg Asn Leu Phe Leu Asn Thr Gly His Gly Thr Leu Gly 370 375 380 Trp Thr Met Ala Cys Gly Ser Gly Arg Tyr Leu Ala Asp Leu Met Ala 385 390 395 400 Lys Lys Arg Pro Gln Ile Ser Thr Glu Gly Leu Asp Ile Ser Arg Tyr 405 410 415 Ser Asn Ser Pro Glu Asn Ala Lys Asn Ala His Pro Ala Pro Ala His 420 425 430 9 771 DNA Pseudomonas seruginosa 9 atggcactgg caaaacgcat catcccctgc ctcgacgtgg acaacggccg agtggtcaag 60 ggcgtcaagt tcgagaacat ccgcgacgcc ggcgacccgg tcgagatcgc tcgccgctac 120 gacgagcagg gtgccgacga gatcaccttc ctcgatatca ccgccagcgt cgacgggcgc 180 gacaccaccc tgcataccgt cgagcgcatg gctagccagg tgttcattcc gctgaccgtg 240 ggcggcggcg tacgcagcgt gcaggacatc cgcaacctgt tgaatgccgg cgcggacaag 300 gtctcgatca acaccgccgc ggtgttcaac cccgagttcg tcggtgaggc cgccgaccgc 360 ttcggctcgc agtgcatcgt ggtcgccatc gacgcgaaga aggtttccgc cccgggcgag 420 gcgccgcgct gggaaatctt cacccatggc gggcgcaagc ccaccgggct ggatgccgtg 480 ctctgggcga agaagatgga agacttgggc gctggcgaga ttctcctgac cagcatggac 540 caggacggcg tgaagagcgg ttacgacctg ggcgtgaccc gcgccatcag cgaggcggtg 600 aacgtgccgg tgatcgcttc cggcggcgtc ggcaacctgg agcacctggc cgccggcatc 660 ctcgagggca aggccgacgc ggtgctcgcg gcgagcatct tccacttcgg cgagtacacc 720 gtgccggaag ccaaggccta cctggccagc cgcggtatcg tggtgcgctg a 771 10 256 PRT Pseudomonas aeruginosa 10 Met Ala Leu Ala Lys Arg Ile Ile Pro Cys Leu Asp Val Asp Asn Gly 1 5 10 15 Arg Val Val Lys Gly Val Lys Phe Glu Asn Ile Arg Asp Ala Gly Asp 20 25 30 Pro Val Glu Ile Ala Arg Arg Tyr Asp Glu Gln Gly Ala Asp Glu Ile 35 40 45 Thr Phe Leu Asp Ile Thr Ala Ser Val Asp Gly Arg Asp Thr Thr Leu 50 55 60 His Thr Val Glu Arg Met Ala Ser Gln Val Phe Ile Pro Leu Thr Val 65 70 75 80 Gly Gly Gly Val Arg Ser Val Gln Asp Ile Arg Asn Leu Leu Asn Ala 85 90 95 Gly Ala Asp Lys Val Ser Ile Asn Thr Ala Ala Val Phe Asn Pro Glu 100 105 110 Phe Val Gly Glu Ala Ala Asp Arg Phe Gly Ser Gln Cys Ile Val Val 115 120 125 Ala Ile Asp Ala Lys Lys Val Ser Ala Pro Gly Glu Ala Pro Arg Trp 130 135 140 Glu Ile Phe Thr His Gly Gly Arg Lys Pro Thr Gly Leu Asp Ala Val 145 150 155 160 Leu Trp Ala Lys Lys Met Glu Asp Leu Gly Ala Gly Glu Ile Leu Leu 165 170 175 Thr Ser Met Asp Gln Asp Gly Val Lys Ser Gly Tyr Asp Leu Gly Val 180 185 190 Thr Arg Ala Ile Ser Glu Ala Val Asn Val Pro Val Ile Ala Ser Gly 195 200 205 Gly Val Gly Asn Leu Glu His Leu Ala Ala Gly Ile Leu Glu Gly Lys 210 215 220 Ala Asp Ala Val Leu Ala Ala Ser Ile Phe His Phe Gly Glu Tyr Thr 225 230

235 240 Val Pro Glu Ala Lys Ala Tyr Leu Ala Ser Arg Gly Ile Val Val Arg 245 250 255 11 1035 DNA Pseudomonas aeruginosa 11 atgatcaagg tcggcatcgt tggcggtacg ggttatacgg gcgtggaact gctgcgcctg 60 ctggcgcagc atccgcaggc ccgggtggaa gtgatcactt cgcgttccga ggcgggggtg 120 aaggtcgccg acatgtaccc gaacctgcga ggtcattatg acgacctgca gttcagcgtg 180 ccggacgcgc agcgcctcgg cgcctgcgac gtggtgttct tcgccacgcc gcacggcgtg 240 gcgcacgcgc tggctggcga actgctggac gccgggaccc gggtcatcga tctgtccgct 300 gacttccgcc tggcggacgc cgaggagtgg gcgcgctggt acggccagcc gcatggcgct 360 ccggcgctgc tcgacgaggc tgtctacggc ctgccggaag tgaaccgcga gaagatccgc 420 caggcccgcc tgatcgccgt gccgggctgc tacccgaccg cgacccagct gggcctgatc 480 ccgctgctgg aagccggcct ggccgacgcc tcgcggctga tcgccgattg caagtccggg 540 gtcagcggtg ccggtcgggg cgccaaggtt ggctcgctgt tctgcgaggc gggcgaaagc 600 atgatggcct acgcggtcaa agggcatcgg catctcccgg aaatcagcca gggcctgcgt 660 cgggcctccg gcggcgacgt cgggctgacg ttcgtaccgc acctgacgcc aatgatccgc 720 ggtatccatg caaccctcta tgcccatgtc gcggatcgct cggtcgacct ccaggcgttg 780 ttcgagaagc gctacgccga cgaacccttc gtcgacgtga tgccggccgg cagccatccg 840 gagacccgca gcgtgcgtgg cgccaatgtc tgccgaatcg ccgtgcatcg cccccagggc 900 ggcgacctgg tggtggtgct gtcggtgatc gacaacctgg tcaagggcgc ctcgggtcag 960 gcgctccaga acatgaacat cctgttcggg ctggacgagc gcctgggcct ctcgcatgcg 1020 gccctgctcc cctga 1035 12 344 PRT Pseudomonas aeruginosa 12 Met Ile Lys Val Gly Ile Val Gly Gly Thr Gly Tyr Thr Gly Val Glu 1 5 10 15 Leu Leu Arg Leu Leu Ala Gln His Pro Gln Ala Arg Val Glu Val Ile 20 25 30 Thr Ser Arg Ser Glu Ala Gly Val Lys Val Ala Asp Met Tyr Pro Asn 35 40 45 Leu Arg Gly His Tyr Asp Asp Leu Gln Phe Ser Val Pro Asp Ala Gln 50 55 60 Arg Leu Gly Ala Cys Asp Val Val Phe Phe Ala Thr Pro His Gly Val 65 70 75 80 Ala His Ala Leu Ala Gly Glu Leu Leu Asp Ala Gly Thr Arg Val Ile 85 90 95 Asp Leu Ser Ala Asp Phe Arg Leu Ala Asp Ala Glu Glu Trp Ala Arg 100 105 110 Trp Tyr Gly Gln Pro His Gly Ala Pro Ala Leu Leu Asp Glu Ala Val 115 120 125 Tyr Gly Leu Pro Glu Val Asn Arg Glu Lys Ile Arg Gln Ala Arg Leu 130 135 140 Ile Ala Val Pro Gly Cys Tyr Pro Thr Ala Thr Gln Leu Gly Leu Ile 145 150 155 160 Pro Leu Leu Glu Ala Gly Leu Ala Asp Ala Ser Arg Leu Ile Ala Asp 165 170 175 Cys Lys Ser Gly Val Ser Gly Ala Gly Arg Gly Ala Lys Val Gly Ser 180 185 190 Leu Phe Cys Glu Ala Gly Glu Ser Met Met Ala Tyr Ala Val Lys Gly 195 200 205 His Arg His Leu Pro Glu Ile Ser Gln Gly Leu Arg Arg Ala Ser Gly 210 215 220 Gly Asp Val Gly Leu Thr Phe Val Pro His Leu Thr Pro Met Ile Arg 225 230 235 240 Gly Ile His Ala Thr Leu Tyr Ala His Val Ala Asp Arg Ser Val Asp 245 250 255 Leu Gln Ala Leu Phe Glu Lys Arg Tyr Ala Asp Glu Pro Phe Val Asp 260 265 270 Val Met Pro Ala Gly Ser His Pro Glu Thr Arg Ser Val Arg Gly Ala 275 280 285 Asn Val Cys Arg Ile Ala Val His Arg Pro Gln Gly Gly Asp Leu Val 290 295 300 Val Val Leu Ser Val Ile Asp Asn Leu Val Lys Gly Ala Ser Gly Gln 305 310 315 320 Ala Leu Gln Asn Met Asn Ile Leu Phe Gly Leu Asp Glu Arg Leu Gly 325 330 335 Leu Ser His Ala Ala Leu Leu Pro 340 13 1644 DNA Pseudomonas aeruginosa 13 gtgagcgaac tcattcgcgt acccgacatc ggcaacggtg agggtgaagt catcgagctg 60 ctggtcaagc ccggcgacaa ggtcgaggcc gatcagagcc tgctgaccct ggaatccgac 120 aaggccagca tggaaatccc cagtcccaag gccggggtag tgaaaagcat caaggcgaag 180 gtcggcgaca ccttgaaaga aggtgacgaa atcctcgagc tggaagtgga aggcggcgaa 240 cagcctgccg aagccaaggc cgaggcagcg cccgcccaac cggaagcgcc gaaagccgaa 300 gcgcctgctc ccgccccgag cgagagcaag ccggccgccc ccgccgcggc cagcgtccag 360 gacatcaagg tcccggacat cggctcggcc ggcaaggcca acgtcatcga agtgatggtc 420 aaggccggcg acacggtcga ggccgaccag tcgctgatca ccctggaatc cgacaaggcc 480 agcatggaga tcccctcgcc ggcctccggg gtggtggaaa gcgtctcgat caaggtcggt 540 gacgaagtcg gcaccggcga cctgatcctc aagctgaagg tggaaggcgc cgctccggca 600 gccgaagagc aaccggcagc cgctccggcc caggccgcgg cgcccgccgc cgagcagaag 660 cccgccgcgg cggcccctgc gccagccaag gccgataccc cggctccggt cggcgcaccc 720 agccgcgacg gcgccaaggt ccacgccggc ccggcggtgc gcatgctggc gcgcgagttc 780 ggcgtcgagc tgagcgaagt gaaagccagc ggtcccaagg gtcgcatcct caaggaagac 840 gtccaggtct tcgtcaagga gcaactgcag cgcgccaagt ccggcggtgc cggcgccacc 900 ggcggagccg gcatcccgcc gatcccggaa gtcgacttca gcaagttcgg cgaagtggaa 960 gaagtggcga tgacccgcct gatgcaggtc ggcgccgcca acctgcatcg cagctggctg 1020 aacgtgccgc acgtgaccca gttcgaccag tcggacatca ccgacatgga agccttccgc 1080 gttgcccaga aggccgcggc ggagaaggcc ggggtcaagc tgaccgtact gccgatcctg 1140 ctcaaggcct gcgcccacct gctcaaggaa ctgccggact tcaacagttc gctggccccc 1200 agcggcaagg cgctgatccg caagaagtac gtacacatcg gcttcgccgt ggacactccg 1260 gacggcctgc tggtcccggt gatccgcgat gtcgaccgga agagcctcct gcaactggcc 1320 gccgaggccg ccgacctggc cgacaaggcc cgcaacaaga agctctcggc cgatgccatg 1380 cagggcgcct gcttcaccat ctccagtctc ggccacatcg gcggcaccgg cttcacgccg 1440 atcgtcaacg cgccggaagt ggcgatcctc ggtgtgtcca aggcgaccat gcagccggta 1500 tgggacggca aggccttcca gccgcgcctg atgctgccgc tgtcgctgtc ctacgaccat 1560 cgcgtgatca acggtgccgc cgcggcgcgc ttcaccaagc gcctgggcga gctgctggcg 1620 gacatccgca ccctgctcct gtaa 1644 14 547 PRT Pseudomonas aeruginosa 14 Met Ser Glu Leu Ile Arg Val Pro Asp Ile Gly Asn Gly Glu Gly Glu 1 5 10 15 Val Ile Glu Leu Leu Val Lys Pro Gly Asp Lys Val Glu Ala Asp Gln 20 25 30 Ser Leu Leu Thr Leu Glu Ser Asp Lys Ala Ser Met Glu Ile Pro Ser 35 40 45 Pro Lys Ala Gly Val Val Lys Ser Ile Lys Ala Lys Val Gly Asp Thr 50 55 60 Leu Lys Glu Gly Asp Glu Ile Leu Glu Leu Glu Val Glu Gly Gly Glu 65 70 75 80 Gln Pro Ala Glu Ala Lys Ala Glu Ala Ala Pro Ala Gln Pro Glu Ala 85 90 95 Pro Lys Ala Glu Ala Pro Ala Pro Ala Pro Ser Glu Ser Lys Pro Ala 100 105 110 Ala Pro Ala Ala Ala Ser Val Gln Asp Ile Lys Val Pro Asp Ile Gly 115 120 125 Ser Ala Gly Lys Ala Asn Val Ile Glu Val Met Val Lys Ala Gly Asp 130 135 140 Thr Val Glu Ala Asp Gln Ser Leu Ile Thr Leu Glu Ser Asp Lys Ala 145 150 155 160 Ser Met Glu Ile Pro Ser Pro Ala Ser Gly Val Val Glu Ser Val Ser 165 170 175 Ile Lys Val Gly Asp Glu Val Gly Thr Gly Asp Leu Ile Leu Lys Leu 180 185 190 Lys Val Glu Gly Ala Ala Pro Ala Ala Glu Glu Gln Pro Ala Ala Ala 195 200 205 Pro Ala Gln Ala Ala Ala Pro Ala Ala Glu Gln Lys Pro Ala Ala Ala 210 215 220 Ala Pro Ala Pro Ala Lys Ala Asp Thr Pro Ala Pro Val Gly Ala Pro 225 230 235 240 Ser Arg Asp Gly Ala Lys Val His Ala Gly Pro Ala Val Arg Met Leu 245 250 255 Ala Arg Glu Phe Gly Val Glu Leu Ser Glu Val Lys Ala Ser Gly Pro 260 265 270 Lys Gly Arg Ile Leu Lys Glu Asp Val Gln Val Phe Val Lys Glu Gln 275 280 285 Leu Gln Arg Ala Lys Ser Gly Gly Ala Gly Ala Thr Gly Gly Ala Gly 290 295 300 Ile Pro Pro Ile Pro Glu Val Asp Phe Ser Lys Phe Gly Glu Val Glu 305 310 315 320 Glu Val Ala Met Thr Arg Leu Met Gln Val Gly Ala Ala Asn Leu His 325 330 335 Arg Ser Trp Leu Asn Val Pro His Val Thr Gln Phe Asp Gln Ser Asp 340 345 350 Ile Thr Asp Met Glu Ala Phe Arg Val Ala Gln Lys Ala Ala Ala Glu 355 360 365 Lys Ala Gly Val Lys Leu Thr Val Leu Pro Ile Leu Leu Lys Ala Cys 370 375 380 Ala His Leu Leu Lys Glu Leu Pro Asp Phe Asn Ser Ser Leu Ala Pro 385 390 395 400 Ser Gly Lys Ala Leu Ile Arg Lys Lys Tyr Val His Ile Gly Phe Ala 405 410 415 Val Asp Thr Pro Asp Gly Leu Leu Val Pro Val Ile Arg Asp Val Asp 420 425 430 Arg Lys Ser Leu Leu Gln Leu Ala Ala Glu Ala Ala Asp Leu Ala Asp 435 440 445 Lys Ala Arg Asn Lys Lys Leu Ser Ala Asp Ala Met Gln Gly Ala Cys 450 455 460 Phe Thr Ile Ser Ser Leu Gly His Ile Gly Gly Thr Gly Phe Thr Pro 465 470 475 480 Ile Val Asn Ala Pro Glu Val Ala Ile Leu Gly Val Ser Lys Ala Thr 485 490 495 Met Gln Pro Val Trp Asp Gly Lys Ala Phe Gln Pro Arg Leu Met Leu 500 505 510 Pro Leu Ser Leu Ser Tyr Asp His Arg Val Ile Asn Gly Ala Ala Ala 515 520 525 Ala Arg Phe Thr Lys Arg Leu Gly Glu Leu Leu Ala Asp Ile Arg Thr 530 535 540 Leu Leu Leu 545 15 996 DNA Pseudomonas aeruginosa 15 atgagttggc tgactcccgc tctggtcacc atcatcctca ccgtggtcaa ggccatcgtg 60 gtgctgctcg ccgtggtcat ctgcggcgcc ctgctaagct gggtcgagcg ccgcctgctc 120 ggcctctggc aggaccgcta cggccccaac cgggtcggtc cgttcggtgc gttccagctc 180 ggcgcggaca tggtcaagat gttcttcaag gaggactgga ccccgccgtt cgccgacaag 240 atgatcttca ccctggcccc ggtaatcgcg atgggcgccc tgctcgtcgc cttcgccatc 300 gtgccgatca cccccacctg gggcgtggcg gacctgaaca tcggcatcct gttcttcttc 360 gccatggccg gcctgacggt gtacgccgtg ctgttcgccg gctggtcgag caacaacaag 420 ttcgccctgc tcggcagcct gcgcgcctcg gcccagacca tctcctacga ggtgttcctg 480 gccctgtcgc tgatgggcat cgtcgcccag gtcggctcgt tcaacatgcg cgacatcgtc 540 cagtaccaga tcgacaacgt ctggttcatc attccgcagt tcttcggctt ctgcaccttc 600 atcatcgccg gcgtcgccgt gacccaccgt cacccgttcg accagccgga agcggagcag 660 gaactggcgg acggctacca catcgagtac gccgggatga aatggggcat gttcttcgtc 720 ggcgagtaca tcggcatcgt actggtctcg gcgctgctgg cgaccctgtt cttcggcggc 780 tggcacggtc cgttcctgga caccctgccc tggctgtcgt tcttctactt cgccgccaag 840 accggcttct tcatcatgct cttcatcctg atccgcgcct cgctgccgcg tccgcgctat 900 gaccaggtga tggcgttcag ctggaaggtg tgcctgccgc tgaccctgat caacctgctg 960 gtgaccggcg cgctcgtgct ggccgcggcc cagtaa 996 16 331 PRT Pseudomonas aeruginosa 16 Met Ser Trp Leu Thr Pro Ala Leu Val Thr Ile Ile Leu Thr Val Val 1 5 10 15 Lys Ala Ile Val Val Leu Leu Ala Val Val Ile Cys Gly Ala Leu Leu 20 25 30 Ser Trp Val Glu Arg Arg Leu Leu Gly Leu Trp Gln Asp Arg Tyr Gly 35 40 45 Pro Asn Arg Val Gly Pro Phe Gly Ala Phe Gln Leu Gly Ala Asp Met 50 55 60 Val Lys Met Phe Phe Lys Glu Asp Trp Thr Pro Pro Phe Ala Asp Lys 65 70 75 80 Met Ile Phe Thr Leu Ala Pro Val Ile Ala Met Gly Ala Leu Leu Val 85 90 95 Ala Phe Ala Ile Val Pro Ile Thr Pro Thr Trp Gly Val Ala Asp Leu 100 105 110 Asn Ile Gly Ile Leu Phe Phe Phe Ala Met Ala Gly Leu Thr Val Tyr 115 120 125 Ala Val Leu Phe Ala Gly Trp Ser Ser Asn Asn Lys Phe Ala Leu Leu 130 135 140 Gly Ser Leu Arg Ala Ser Ala Gln Thr Ile Ser Tyr Glu Val Phe Leu 145 150 155 160 Ala Leu Ser Leu Met Gly Ile Val Ala Gln Val Gly Ser Phe Asn Met 165 170 175 Arg Asp Ile Val Gln Tyr Gln Ile Asp Asn Val Trp Phe Ile Ile Pro 180 185 190 Gln Phe Phe Gly Phe Cys Thr Phe Ile Ile Ala Gly Val Ala Val Thr 195 200 205 His Arg His Pro Phe Asp Gln Pro Glu Ala Glu Gln Glu Leu Ala Asp 210 215 220 Gly Tyr His Ile Glu Tyr Ala Gly Met Lys Trp Gly Met Phe Phe Val 225 230 235 240 Gly Glu Tyr Ile Gly Ile Val Leu Val Ser Ala Leu Leu Ala Thr Leu 245 250 255 Phe Phe Gly Gly Trp His Gly Pro Phe Leu Asp Thr Leu Pro Trp Leu 260 265 270 Ser Phe Phe Tyr Phe Ala Ala Lys Thr Gly Phe Phe Ile Met Leu Phe 275 280 285 Ile Leu Ile Arg Ala Ser Leu Pro Arg Pro Arg Tyr Asp Gln Val Met 290 295 300 Ala Phe Ser Trp Lys Val Cys Leu Pro Leu Thr Leu Ile Asn Leu Leu 305 310 315 320 Val Thr Gly Ala Leu Val Leu Ala Ala Ala Gln 325 330 17 7347 DNA Pseudomonas aeruginosa 17 gtgcaagcac tcatagagaa ggtgggctcc ctttcccccc aggaaaggaa ggcattggct 60 gtcctgctca agcagcaagg tgtcaatctc ttcgagatcg cgccagtgtt caagcgccag 120 gacggcgagc ccctgcggct ctcctatgcc caggagcgac agtggtttct ctggcaactg 180 gagccggaaa gcgcggccta ccatatcccg agtgtcttgc gtctacgtgg gcggctggac 240 ctggatgccc tgcaacgcag cttcgacagc ctggttgcgc ggcacgagac cctacgcacc 300 cgttttcgcc tcgacggcga cgaggcgcgc caggagatcg ccgcatccat ggcattgccg 360 ttggatatcg tcgcgttggg gccgctcgag gagggcgccc tcgctcggca ggtcgagacg 420 acgatcgcgc ggccgttcga cctggagcgt gggccgctgc tgcgggtgag cctgttgcgg 480 ctggccgagg acgaccatgt gctggtgctg gtccagcatc acatcgtgtc cgacggttgg 540 tcgatgcagg tgatggtcga ggaactggtc cagctctatg ccgcctatag tcgagggctc 600 gaggtagcgc tgccggcttt gccgatccag tacgcggact acgccctgtg gcagcgcagc 660 tggatggagg ccggggaaaa ggagcgccag ttggcgtact ggaccggcct gctgggcggc 720 gagcagccgg tgctggagtt gccgttcgac cggccgcgcc cggttcggca aagccatcgt 780 ggtgcccagt tcatcctgga actggatatt gatctgtccc aggcgctcag gcgcgtggcc 840 cagcaggagg gggctactgc cttcgccctg ttgctggctt cgttccaggc gctgctgtat 900 cgctacagcg ggcaggcgga tatccgtgtc ggcgtgccga tcgccaatcg caaccgcgtg 960 gagaccgagc ggctgatcgg cttcttcgtc aacacccagg tgctcaaggc cgacctggac 1020 ggtcggatgg gcttcgacga gctgctggcc caggcccgcc aacgcgcgct ggaggcccag 1080 gcgcaccagg acctgccgtt cgagcaactg gtggaggcct tgcagccgga gcgcagtctt 1140 agccacaacc cgctgttcca ggtgctgttc aactaccaga gcgaagcccg tggcaacggc 1200 caggcattcc gcttcgacga gttacagatg gaaagcgtgc agttcgacag ccggacggcg 1260 cagttcgact tgacgttgga cctgacggac gaagagcagc gtttttgcgc cgttttcgac 1320 tacgccaccg acctgttcga cgcctccacc gtggaacgcc tggccggcca ttggcgcaac 1380 ctgttgcgcg gcatcgtcgc caacccacga cagcggctcg gcgagttgcc gctgctggat 1440 gcgccggagc gccggcagac cctctccgaa tggaacccgg cccagcgcga gtgcgcggtg 1500 cagggcacct tgcagcagcg tttcgaggaa caggcgcggc aacggccaca ggcggttgcg 1560 ctgatcctcg acgaacaacg gttgagctac ggcgaactga atgcgcgggc caatcgcctg 1620 gcgcactgcc tgatcgcccg tggcgttggc gcggacgtgc cggtcgggct ggcgctggag 1680 cgttcgctgg acatgctggt cggcttgctg gcgatcctca aggccggcgg cgcctacctg 1740 ccgttggacc cggcggcgcc agaggagcgc ctggcgcata tcctcgacga cagtggggta 1800 cggctgctgc tgacccaggg gcatctgctc gagcgcctgc cacggcaggc gggggtggag 1860 gtgctggcca tcgacggact ggtgctggac ggctacgccg agagcgatcc gctcccgacg 1920 ctatcggcgg acaacctggc ctacgtgatc tatacctcgg gctcgaccgg caagcccaag 1980 ggcacattgc tcacccaccg caacgcgctg cgcctgttca gcgccaccga ggcctggttc 2040 ggcttcgacg agcgggacgt gtggacattg ttccattcct acgccttcga tttctcggtc 2100 tgggaaatct tcggcgcgct gctctatggc gggtgcctgg tgattgtgcc gcaatgggtg 2160 agccgttcgc cggaagactt ctaccgtctg ctgtgccgcg aaggcgtgac ggtgctcaac 2220 cagacgccgt cggcgttcaa gcaactgatg gcggtggcct gttccgccga catggcgacg 2280 cagcagccgg cgctgcgcta cgtgatcttc ggtggcgagg cgctggatct gcagagcctg 2340 cggccgtggt tccagcgctt cggcgatcgc cagccgcaac tggtgaacat gtacggcatc 2400 accgagacca cggtgcacgt aacctaccgt ccggtgagcg aggccgacct ggaaggtggc 2460 ctggtcagtc cgattggcgg gaccatcccg gacctgtcct ggtacatcct cgaccgtgac 2520 ctgaacccgg tgccgcgcgg cgcggtgggc gagctgtaca tcggtcgcgc cgggctggcg 2580 cgcggctacc tgaggcggcc cgggttgagt gccacccgct tcgtgccgaa cccgttcccc 2640 ggcggcgccg gcgagcggct gtaccgtacc ggcgacctgg cacggttcca ggcggatggc 2700 aatatcgagt acatcgggcg tatcgaccac caggtgaagg ttcgcggctt ccgtatcgaa 2760 ctgggcgaga tcgaagcggc gctcgccggt ctggccgggg tacgcgatgc cgtggtgctg 2820 gcccatgacg gagtcggcgg cacgcaactg gtgggatacg tggtggcgga ctcggcggag 2880 gatgccgagc gtctgcggga gtcgctgcgg gagtcgctga agcggcacct gccggactac 2940 atggtgccgg cgcacctgat gctgctggag cggatgccgc tgacggtcaa tggcaagctc 3000 gaccggcagg cgttgccgca accggatgcg agcctgtcgc aacaggccta tcgagcgccc 3060 ggtagcgagc tggagcagcg catcgcagcg atctggtcgg agatcctggg agtggaacgg 3120 gtcggcctgg acgacaactt cttcgaactg ggcggtcatt cgttgctggc tacccgggtg 3180 atttctcggg ttcgccagga gcagcagttg gacgcaagcc tgaaggcgtt gttcgagcgg 3240 ccggttctgg aagcgttcgc ccagggattg gaacgcacga cggatgcggt ctcgacgata 3300 ccgcttgccg atcggcagca accgttggca ctgtccttcg ctcaggagcg tcagtggttc 3360 ctctggcaac tggagccgga aagcgcggcc taccatattc cgagtgcctt gcgcctacgc 3420

gggcggctgg acgtggatgc cttgcaacgc agcttcgaca gcctggtcgc gcggcatgaa 3480 accttgcgta cccgcttccg gctggaggga gggcgttcgt accagcaggt acaacctgcg 3540 gttagcgttt ccatcgagcg ggaacagttc ggtgaagaag gcctgatcga acggatacag 3600 gccatcgttg tgcagccatt cgacctggaa cgggggccgc tgctgcgggt gaacctgttg 3660 caactggccg aggacgacca tgtactggtg ctggtccagc accacatcgt gtccgatggt 3720 tggtcgatgc aggtgatggt cgaggaactg gtccagctct atgccgccta tagccaaggg 3780 ctcgacgtgg tgttgccagc cctgccgatc cagtacgcgg actacgccct gtggcagcgc 3840 agctggatgg aggcggggga aaaggagcgc cagttggcgt actggaccgg cctgctgggc 3900 ggcgagcagc cggtgctgga gttgccgttc gatcggccgc gtccggcccg gcagagccat 3960 cgtggcgcgc agttgggttt cgagctatcg cgggaactgg tcgaggccgt gagagccttg 4020 gcccagcgtg aaggcgccag tagtttcatg ctgttgctgg cctcgttcca ggcgctgttg 4080 tatcgctaca gcgggcaggc ggatatccgt gtcggtgtgc cgatcgccaa tcgcaaccgc 4140 gtggagaccg agcggctgat cggcttcttc gtcaacaccc aggtgctcaa ggccgacctg 4200 gacggtcgga tgggcttcga cgagctgctg gcccaggccc gccaacgcgc gctggaggcc 4260 caggcgcacc aggacctgcc gttcgagcaa ctggtggaag ccttgcagcc ggagcgcaat 4320 gccagccaca acccactgtt ccaggtgctg ttcaaccatc agagcgagat acgctcggtg 4380 acgcccgagg ttcagttgga ggacctgcgt ctggaaggcc tggcctggga cggccagact 4440 gcgcagttcg acctgacgct ggatattcag gaagacgaaa acggcatctg ggcctccttc 4500 gactatgcca ccgatctgtt cgacgcctcc accgtggaac gcctggccgg ccattggcgc 4560 aacctgttgc gcggcatcgt cgccaaccca cgacagcggc tcggcgagtt gccgctgctg 4620 gatgcgccgg agcgccggca gaccctctcc gaatggaacc cggcccagcg cgagtgcgcg 4680 gtgcagggca ccttgcagca gcgtttcgag gagcaggcgc ggcaacggcc acaggcggtt 4740 gcgctgatcc tcgacgaaca acggttgagc tacggcgaac tgaatgcgcg ggccaatcgc 4800 ctggcgcact gcctgatcgc tcgcggcgtt ggcgcggacg tgccggtcgg gctggcgctg 4860 gagcgttcgc tggacatgct ggtcggcttg ctggcgatcc tcaaggccgg cggcgcctac 4920 ctgccgttgg acccggcggc gccagaggag cgcctggcgc atatcctcga cgacagtggg 4980 gtacggctgc tgctgaccca ggggcatctg ctcgagcgcc tgccgcggca ggcgggggtg 5040 gaggtgctgg ccatcgacgg actggtgctg gacggctacg ccgagagcga tccgctcccg 5100 acgctatcgg cggacaacct ggcctacgtg atctatacct cgggctcgac cggcaagccc 5160 aagggcacgt tgctcaccca ccgcaacgcg ctgcgcctgt tcagcgccac cgaggcctgg 5220 ttcggcttcg acgagcggga cgtgtggacg ttgttccatt cctacgcctt cgatttctcg 5280 gtctgggaaa tcttcggcgc gctgctctat ggcgggcgcc tggtgatcgt gccgcaatgg 5340 gtgagccgtt cgccggaaga cttctaccgt ctgctgtgcc gcgaaggcgt gacggtgctc 5400 aaccagacgc cgtcggcgtt caagcaactg atggcggtgg cctgttccgc cgacatggcg 5460 acgcagcagc cggcgctgcg ctacgtgatc ttcggtggcg aggcgctgga tctgcagagc 5520 ctgcggccgt ggttccagcg ctttggcgat cgccagccgc aactggtgaa catgtacggc 5580 atcaccgaga ccacggtaca cgtaacctac cgtccggtga gcgaagccga cctgaagggt 5640 ggcctggtca gtccgatcgg cgggaccatc ccggacctgt cctggtacat cctcgaccgt 5700 gacctgaacc cggtgccgcg cggcgcggtg ggcgagctgt acatcggtcg cgccggtctg 5760 gcgcgcggct acctgaggcg gcccgggttg agtgccaccc gcttcgtgcc gaacccgttc 5820 cccggcggtg ccggcgagcg gctgtaccgt accggcgacc tggcacggtt ccaggcggat 5880 ggcaatatcg agtacatcgg gcgtatcgac caccaggtga aggttcgcgg cttccgtatc 5940 gaactgggtg agatcgaagc ggcgctcgcc ggtctggccg gggtacgcga tgccgtggtg 6000 ctggcccatg acggggtcgg cggcacgcaa ctggtgggat acgtggtggc ggactcggcg 6060 gaggatgccg agcgtctgcg ggagtcgctg cgggagtcgc tgaagcggca cctgccggac 6120 tacatggtgc cggcgcacct gatgctgctg gagcggatgc cgctgacggt caatggcaag 6180 ctcgaccggc aggcgttgcc gcaaccggat gcgagcttgt cgcagcaggc ctatcgagcg 6240 cccggtagcg agctggagca gcgcatcgca gcgatctggg cggagatcct gggagtggaa 6300 cgggtcggcc tggacgacaa cttcttcgaa ctgggcggtc actcattgtt gctgctgatg 6360 ctcaaggagc ggatcggcga tacctgccag gctacgctga gcatcagcca actgatgacc 6420 catgccagcg tcgcggaaca ggcggcatgc atcgaggggc aggcgcgtga gtcgttgctg 6480 gtgccgctca acggcaggcg cgaaggttcg ccgctgttca tgttccatcc gagtttcggc 6540 tctgtgcact gttacaagac cctcgccatg gcgctgcggg atcgtcatcc ggtcaagggt 6600 gttgtctgcc gtgccctgct gggcgctggt cgcgaggtgc cggagtggga cgatatggtt 6660 gcggaatacg ccgagcaatt gctgcaggag caccccgaag gggttttcaa cctggcggga 6720 tggtcgctcg gcggcaacct ggcgatggat gtcgcggccc ggctggagca gcgtgggcgg 6780 caggtggctt tcgtcggctg gatcgatgca ccggcaccgg tcagggtcga agcgttctgg 6840 aacgagatcg ggccgacgcc ggaggcagtc ccgaacctat ccgtgggcga gatgcgggtg 6900 gaactgctcg gtgtcatgtt tccggagcgg gccgagcata tcgaacgggc ctggtcatcg 6960 atctgctccg ccacgacgga cgatgagcag cgctggacga ggatgagcga ctgggcggaa 7020 gcggagatcg gcgccgagtt cgcgacactg cgcagcgaaa tcgcacagag caacgaactg 7080 gaagtgtcct gggagttgaa acagatcctc gacgagcgcc tgaaagcgat ggattacccg 7140 cgtctgacgg cgaaggtcag cctctggtgg gccgcgcgca gcaccaatgc catccagcgg 7200 agcgcggtgg agcgctcgat ggccgaggcg atcggggctg agcgtgtcga accggtgcgg 7260 gtgctggata cccggcacga caagatcatc gaccaccctg agtttgtgca gagcttccgg 7320 gccgccctgg agcgtgccgg gcgctga 7347 18 2448 PRT Pseudomonas aeruginosa 18 Met Gln Ala Leu Ile Glu Lys Val Gly Ser Leu Ser Pro Gln Glu Arg 1 5 10 15 Lys Ala Leu Ala Val Leu Leu Lys Gln Gln Gly Val Asn Leu Phe Glu 20 25 30 Ile Ala Pro Val Phe Lys Arg Gln Asp Gly Glu Pro Leu Arg Leu Ser 35 40 45 Tyr Ala Gln Glu Arg Gln Trp Phe Leu Trp Gln Leu Glu Pro Glu Ser 50 55 60 Ala Ala Tyr His Ile Pro Ser Val Leu Arg Leu Arg Gly Arg Leu Asp 65 70 75 80 Leu Asp Ala Leu Gln Arg Ser Phe Asp Ser Leu Val Ala Arg His Glu 85 90 95 Thr Leu Arg Thr Arg Phe Arg Leu Asp Gly Asp Glu Ala Arg Gln Glu 100 105 110 Ile Ala Ala Ser Met Ala Leu Pro Leu Asp Ile Val Ala Leu Gly Pro 115 120 125 Leu Glu Glu Gly Ala Leu Ala Arg Gln Val Glu Thr Thr Ile Ala Arg 130 135 140 Pro Phe Asp Leu Glu Arg Gly Pro Leu Leu Arg Val Ser Leu Leu Arg 145 150 155 160 Leu Ala Glu Asp Asp His Val Leu Val Leu Val Gln His His Ile Val 165 170 175 Ser Asp Gly Trp Ser Met Gln Val Met Val Glu Glu Leu Val Gln Leu 180 185 190 Tyr Ala Ala Tyr Ser Arg Gly Leu Glu Val Ala Leu Pro Ala Leu Pro 195 200 205 Ile Gln Tyr Ala Asp Tyr Ala Leu Trp Gln Arg Ser Trp Met Glu Ala 210 215 220 Gly Glu Lys Glu Arg Gln Leu Ala Tyr Trp Thr Gly Leu Leu Gly Gly 225 230 235 240 Glu Gln Pro Val Leu Glu Leu Pro Phe Asp Arg Pro Arg Pro Val Arg 245 250 255 Gln Ser His Arg Gly Ala Gln Phe Ile Leu Glu Leu Asp Ile Asp Leu 260 265 270 Ser Gln Ala Leu Arg Arg Val Ala Gln Gln Glu Gly Ala Thr Ala Phe 275 280 285 Ala Leu Leu Leu Ala Ser Phe Gln Ala Leu Leu Tyr Arg Tyr Ser Gly 290 295 300 Gln Ala Asp Ile Arg Val Gly Val Pro Ile Ala Asn Arg Asn Arg Val 305 310 315 320 Glu Thr Glu Arg Leu Ile Gly Phe Phe Val Asn Thr Gln Val Leu Lys 325 330 335 Ala Asp Leu Asp Gly Arg Met Gly Phe Asp Glu Leu Leu Ala Gln Ala 340 345 350 Arg Gln Arg Ala Leu Glu Ala Gln Ala His Gln Asp Leu Pro Phe Glu 355 360 365 Gln Leu Val Glu Ala Leu Gln Pro Glu Arg Ser Leu Ser His Asn Pro 370 375 380 Leu Phe Gln Val Leu Phe Asn Tyr Gln Ser Glu Ala Arg Gly Asn Gly 385 390 395 400 Gln Ala Phe Arg Phe Asp Glu Leu Gln Met Glu Ser Val Gln Phe Asp 405 410 415 Ser Arg Thr Ala Gln Phe Asp Leu Thr Leu Asp Leu Thr Asp Glu Glu 420 425 430 Gln Arg Phe Cys Ala Val Phe Asp Tyr Ala Thr Asp Leu Phe Asp Ala 435 440 445 Ser Thr Val Glu Arg Leu Ala Gly His Trp Arg Asn Leu Leu Arg Gly 450 455 460 Ile Val Ala Asn Pro Arg Gln Arg Leu Gly Glu Leu Pro Leu Leu Asp 465 470 475 480 Ala Pro Glu Arg Arg Gln Thr Leu Ser Glu Trp Asn Pro Ala Gln Arg 485 490 495 Glu Cys Ala Val Gln Gly Thr Leu Gln Gln Arg Phe Glu Glu Gln Ala 500 505 510 Arg Gln Arg Pro Gln Ala Val Ala Leu Ile Leu Asp Glu Gln Arg Leu 515 520 525 Ser Tyr Gly Glu Leu Asn Ala Arg Ala Asn Arg Leu Ala His Cys Leu 530 535 540 Ile Ala Arg Gly Val Gly Ala Asp Val Pro Val Gly Leu Ala Leu Glu 545 550 555 560 Arg Ser Leu Asp Met Leu Val Gly Leu Leu Ala Ile Leu Lys Ala Gly 565 570 575 Gly Ala Tyr Leu Pro Leu Asp Pro Ala Ala Pro Glu Glu Arg Leu Ala 580 585 590 His Ile Leu Asp Asp Ser Gly Val Arg Leu Leu Leu Thr Gln Gly His 595 600 605 Leu Leu Glu Arg Leu Pro Arg Gln Ala Gly Val Glu Val Leu Ala Ile 610 615 620 Asp Gly Leu Val Leu Asp Gly Tyr Ala Glu Ser Asp Pro Leu Pro Thr 625 630 635 640 Leu Ser Ala Asp Asn Leu Ala Tyr Val Ile Tyr Thr Ser Gly Ser Thr 645 650 655 Gly Lys Pro Lys Gly Thr Leu Leu Thr His Arg Asn Ala Leu Arg Leu 660 665 670 Phe Ser Ala Thr Glu Ala Trp Phe Gly Phe Asp Glu Arg Asp Val Trp 675 680 685 Thr Leu Phe His Ser Tyr Ala Phe Asp Phe Ser Val Trp Glu Ile Phe 690 695 700 Gly Ala Leu Leu Tyr Gly Gly Cys Leu Val Ile Val Pro Gln Trp Val 705 710 715 720 Ser Arg Ser Pro Glu Asp Phe Tyr Arg Leu Leu Cys Arg Glu Gly Val 725 730 735 Thr Val Leu Asn Gln Thr Pro Ser Ala Phe Lys Gln Leu Met Ala Val 740 745 750 Ala Cys Ser Ala Asp Met Ala Thr Gln Gln Pro Ala Leu Arg Tyr Val 755 760 765 Ile Phe Gly Gly Glu Ala Leu Asp Leu Gln Ser Leu Arg Pro Trp Phe 770 775 780 Gln Arg Phe Gly Asp Arg Gln Pro Gln Leu Val Asn Met Tyr Gly Ile 785 790 795 800 Thr Glu Thr Thr Val His Val Thr Tyr Arg Pro Val Ser Glu Ala Asp 805 810 815 Leu Glu Gly Gly Leu Val Ser Pro Ile Gly Gly Thr Ile Pro Asp Leu 820 825 830 Ser Trp Tyr Ile Leu Asp Arg Asp Leu Asn Pro Val Pro Arg Gly Ala 835 840 845 Val Gly Glu Leu Tyr Ile Gly Arg Ala Gly Leu Ala Arg Gly Tyr Leu 850 855 860 Arg Arg Pro Gly Leu Ser Ala Thr Arg Phe Val Pro Asn Pro Phe Pro 865 870 875 880 Gly Gly Ala Gly Glu Arg Leu Tyr Arg Thr Gly Asp Leu Ala Arg Phe 885 890 895 Gln Ala Asp Gly Asn Ile Glu Tyr Ile Gly Arg Ile Asp His Gln Val 900 905 910 Lys Val Arg Gly Phe Arg Ile Glu Leu Gly Glu Ile Glu Ala Ala Leu 915 920 925 Ala Gly Leu Ala Gly Val Arg Asp Ala Val Val Leu Ala His Asp Gly 930 935 940 Val Gly Gly Thr Gln Leu Val Gly Tyr Val Val Ala Asp Ser Ala Glu 945 950 955 960 Asp Ala Glu Arg Leu Arg Glu Ser Leu Arg Glu Ser Leu Lys Arg His 965 970 975 Leu Pro Asp Tyr Met Val Pro Ala His Leu Met Leu Leu Glu Arg Met 980 985 990 Pro Leu Thr Val Asn Gly Lys Leu Asp Arg Gln Ala Leu Pro Gln Pro 995 1000 1005 Asp Ala Ser Leu Ser Gln Gln Ala Tyr Arg Ala Pro Gly Ser Glu 1010 1015 1020 Leu Glu Gln Arg Ile Ala Ala Ile Trp Ser Glu Ile Leu Gly Val 1025 1030 1035 Glu Arg Val Gly Leu Asp Asp Asn Phe Phe Glu Leu Gly Gly His 1040 1045 1050 Ser Leu Leu Ala Thr Arg Val Ile Ser Arg Val Arg Gln Glu Gln 1055 1060 1065 Gln Leu Asp Ala Ser Leu Lys Ala Leu Phe Glu Arg Pro Val Leu 1070 1075 1080 Glu Ala Phe Ala Gln Gly Leu Glu Arg Thr Thr Asp Ala Val Ser 1085 1090 1095 Thr Ile Pro Leu Ala Asp Arg Gln Gln Pro Leu Ala Leu Ser Phe 1100 1105 1110 Ala Gln Glu Arg Gln Trp Phe Leu Trp Gln Leu Glu Pro Glu Ser 1115 1120 1125 Ala Ala Tyr His Ile Pro Ser Ala Leu Arg Leu Arg Gly Arg Leu 1130 1135 1140 Asp Val Asp Ala Leu Gln Arg Ser Phe Asp Ser Leu Val Ala Arg 1145 1150 1155 His Glu Thr Leu Arg Thr Arg Phe Arg Leu Glu Gly Gly Arg Ser 1160 1165 1170 Tyr Gln Gln Val Gln Pro Ala Val Ser Val Ser Ile Glu Arg Glu 1175 1180 1185 Gln Phe Gly Glu Glu Gly Leu Ile Glu Arg Ile Gln Ala Ile Val 1190 1195 1200 Val Gln Pro Phe Asp Leu Glu Arg Gly Pro Leu Leu Arg Val Asn 1205 1210 1215 Leu Leu Gln Leu Ala Glu Asp Asp His Val Leu Val Leu Val Gln 1220 1225 1230 His His Ile Val Ser Asp Gly Trp Ser Met Gln Val Met Val Glu 1235 1240 1245 Glu Leu Val Gln Leu Tyr Ala Ala Tyr Ser Gln Gly Leu Asp Val 1250 1255 1260 Val Leu Pro Ala Leu Pro Ile Gln Tyr Ala Asp Tyr Ala Leu Trp 1265 1270 1275 Gln Arg Ser Trp Met Glu Ala Gly Glu Lys Glu Arg Gln Leu Ala 1280 1285 1290 Tyr Trp Thr Gly Leu Leu Gly Gly Glu Gln Pro Val Leu Glu Leu 1295 1300 1305 Pro Phe Asp Arg Pro Arg Pro Ala Arg Gln Ser His Arg Gly Ala 1310 1315 1320 Gln Leu Gly Phe Glu Leu Ser Arg Glu Leu Val Glu Ala Val Arg 1325 1330 1335 Ala Leu Ala Gln Arg Glu Gly Ala Ser Ser Phe Met Leu Leu Leu 1340 1345 1350 Ala Ser Phe Gln Ala Leu Leu Tyr Arg Tyr Ser Gly Gln Ala Asp 1355 1360 1365 Ile Arg Val Gly Val Pro Ile Ala Asn Arg Asn Arg Val Glu Thr 1370 1375 1380 Glu Arg Leu Ile Gly Phe Phe Val Asn Thr Gln Val Leu Lys Ala 1385 1390 1395 Asp Leu Asp Gly Arg Met Gly Phe Asp Glu Leu Leu Ala Gln Ala 1400 1405 1410 Arg Gln Arg Ala Leu Glu Ala Gln Ala His Gln Asp Leu Pro Phe 1415 1420 1425 Glu Gln Leu Val Glu Ala Leu Gln Pro Glu Arg Asn Ala Ser His 1430 1435 1440 Asn Pro Leu Phe Gln Val Leu Phe Asn His Gln Ser Glu Ile Arg 1445 1450 1455 Ser Val Thr Pro Glu Val Gln Leu Glu Asp Leu Arg Leu Glu Gly 1460 1465 1470 Leu Ala Trp Asp Gly Gln Thr Ala Gln Phe Asp Leu Thr Leu Asp 1475 1480 1485 Ile Gln Glu Asp Glu Asn Gly Ile Trp Ala Ser Phe Asp Tyr Ala 1490 1495 1500 Thr Asp Leu Phe Asp Ala Ser Thr Val Glu Arg Leu Ala Gly His 1505 1510 1515 Trp Arg Asn Leu Leu Arg Gly Ile Val Ala Asn Pro Arg Gln Arg 1520 1525 1530 Leu Gly Glu Leu Pro Leu Leu Asp Ala Pro Glu Arg Arg Gln Thr 1535 1540 1545 Leu Ser Glu Trp Asn Pro Ala Gln Arg Glu Cys Ala Val Gln Gly 1550 1555 1560 Thr Leu Gln Gln Arg Phe Glu Glu Gln Ala Arg Gln Arg Pro Gln 1565 1570 1575 Ala Val Ala Leu Ile Leu Asp Glu Gln Arg Leu Ser Tyr Gly Glu 1580 1585 1590 Leu Asn Ala Arg Ala Asn Arg Leu Ala His Cys Leu Ile Ala Arg 1595 1600 1605 Gly Val Gly Ala Asp Val Pro Val Gly Leu Ala Leu Glu Arg Ser 1610 1615 1620 Leu Asp Met Leu Val Gly Leu Leu Ala Ile Leu Lys Ala Gly Gly 1625 1630 1635 Ala Tyr Leu Pro Leu Asp Pro Ala Ala Pro Glu Glu Arg Leu Ala 1640 1645 1650 His Ile Leu Asp Asp Ser Gly Val Arg Leu Leu Leu Thr Gln Gly 1655 1660 1665 His Leu Leu Glu Arg Leu Pro Arg Gln Ala Gly Val Glu Val Leu 1670 1675 1680 Ala Ile Asp Gly Leu Val Leu Asp Gly Tyr Ala Glu Ser Asp Pro 1685 1690 1695 Leu Pro Thr Leu Ser Ala Asp Asn Leu Ala Tyr Val Ile Tyr Thr 1700 1705 1710 Ser Gly Ser Thr Gly Lys Pro Lys Gly Thr Leu Leu Thr His Arg 1715 1720 1725 Asn Ala Leu Arg Leu Phe Ser Ala Thr Glu Ala Trp Phe Gly Phe 1730 1735 1740 Asp Glu Arg Asp Val Trp Thr Leu Phe His Ser Tyr Ala Phe Asp 1745 1750 1755 Phe Ser Val Trp Glu Ile Phe Gly Ala Leu Leu Tyr Gly Gly Arg 1760 1765 1770 Leu Val Ile Val Pro Gln Trp Val Ser Arg Ser Pro Glu Asp Phe 1775

1780 1785 Tyr Arg Leu Leu Cys Arg Glu Gly Val Thr Val Leu Asn Gln Thr 1790 1795 1800 Pro Ser Ala Phe Lys Gln Leu Met Ala Val Ala Cys Ser Ala Asp 1805 1810 1815 Met Ala Thr Gln Gln Pro Ala Leu Arg Tyr Val Ile Phe Gly Gly 1820 1825 1830 Glu Ala Leu Asp Leu Gln Ser Leu Arg Pro Trp Phe Gln Arg Phe 1835 1840 1845 Gly Asp Arg Gln Pro Gln Leu Val Asn Met Tyr Gly Ile Thr Glu 1850 1855 1860 Thr Thr Val His Val Thr Tyr Arg Pro Val Ser Glu Ala Asp Leu 1865 1870 1875 Lys Gly Gly Leu Val Ser Pro Ile Gly Gly Thr Ile Pro Asp Leu 1880 1885 1890 Ser Trp Tyr Ile Leu Asp Arg Asp Leu Asn Pro Val Pro Arg Gly 1895 1900 1905 Ala Val Gly Glu Leu Tyr Ile Gly Arg Ala Gly Leu Ala Arg Gly 1910 1915 1920 Tyr Leu Arg Arg Pro Gly Leu Ser Ala Thr Arg Phe Val Pro Asn 1925 1930 1935 Pro Phe Pro Gly Gly Ala Gly Glu Arg Leu Tyr Arg Thr Gly Asp 1940 1945 1950 Leu Ala Arg Phe Gln Ala Asp Gly Asn Ile Glu Tyr Ile Gly Arg 1955 1960 1965 Ile Asp His Gln Val Lys Val Arg Gly Phe Arg Ile Glu Leu Gly 1970 1975 1980 Glu Ile Glu Ala Ala Leu Ala Gly Leu Ala Gly Val Arg Asp Ala 1985 1990 1995 Val Val Leu Ala His Asp Gly Val Gly Gly Thr Gln Leu Val Gly 2000 2005 2010 Tyr Val Val Ala Asp Ser Ala Glu Asp Ala Glu Arg Leu Arg Glu 2015 2020 2025 Ser Leu Arg Glu Ser Leu Lys Arg His Leu Pro Asp Tyr Met Val 2030 2035 2040 Pro Ala His Leu Met Leu Leu Glu Arg Met Pro Leu Thr Val Asn 2045 2050 2055 Gly Lys Leu Asp Arg Gln Ala Leu Pro Gln Pro Asp Ala Ser Leu 2060 2065 2070 Ser Gln Gln Ala Tyr Arg Ala Pro Gly Ser Glu Leu Glu Gln Arg 2075 2080 2085 Ile Ala Ala Ile Trp Ala Glu Ile Leu Gly Val Glu Arg Val Gly 2090 2095 2100 Leu Asp Asp Asn Phe Phe Glu Leu Gly Gly His Ser Leu Leu Leu 2105 2110 2115 Leu Met Leu Lys Glu Arg Ile Gly Asp Thr Cys Gln Ala Thr Leu 2120 2125 2130 Ser Ile Ser Gln Leu Met Thr His Ala Ser Val Ala Glu Gln Ala 2135 2140 2145 Ala Cys Ile Glu Gly Gln Ala Arg Glu Ser Leu Leu Val Pro Leu 2150 2155 2160 Asn Gly Arg Arg Glu Gly Ser Pro Leu Phe Met Phe His Pro Ser 2165 2170 2175 Phe Gly Ser Val His Cys Tyr Lys Thr Leu Ala Met Ala Leu Arg 2180 2185 2190 Asp Arg His Pro Val Lys Gly Val Val Cys Arg Ala Leu Leu Gly 2195 2200 2205 Ala Gly Arg Glu Val Pro Glu Trp Asp Asp Met Val Ala Glu Tyr 2210 2215 2220 Ala Glu Gln Leu Leu Gln Glu His Pro Glu Gly Val Phe Asn Leu 2225 2230 2235 Ala Gly Trp Ser Leu Gly Gly Asn Leu Ala Met Asp Val Ala Ala 2240 2245 2250 Arg Leu Glu Gln Arg Gly Arg Gln Val Ala Phe Val Gly Trp Ile 2255 2260 2265 Asp Ala Pro Ala Pro Val Arg Val Glu Ala Phe Trp Asn Glu Ile 2270 2275 2280 Gly Pro Thr Pro Glu Ala Val Pro Asn Leu Ser Val Gly Glu Met 2285 2290 2295 Arg Val Glu Leu Leu Gly Val Met Phe Pro Glu Arg Ala Glu His 2300 2305 2310 Ile Glu Arg Ala Trp Ser Ser Ile Cys Ser Ala Thr Thr Asp Asp 2315 2320 2325 Glu Gln Arg Trp Thr Arg Met Ser Asp Trp Ala Glu Ala Glu Ile 2330 2335 2340 Gly Ala Glu Phe Ala Thr Leu Arg Ser Glu Ile Ala Gln Ser Asn 2345 2350 2355 Glu Leu Glu Val Ser Trp Glu Leu Lys Gln Ile Leu Asp Glu Arg 2360 2365 2370 Leu Lys Ala Met Asp Tyr Pro Arg Leu Thr Ala Lys Val Ser Leu 2375 2380 2385 Trp Trp Ala Ala Arg Ser Thr Asn Ala Ile Gln Arg Ser Ala Val 2390 2395 2400 Glu Arg Ser Met Ala Glu Ala Ile Gly Ala Glu Arg Val Glu Pro 2405 2410 2415 Val Arg Val Leu Asp Thr Arg His Asp Lys Ile Ile Asp His Pro 2420 2425 2430 Glu Phe Val Gln Ser Phe Arg Ala Ala Leu Glu Arg Ala Gly Arg 2435 2440 2445 19 3132 DNA Pseudomonas aeruginosa 19 atgtccgaat tcttcatcaa gcggccgaac ttcgcctggg tggtggccct gttcatctcc 60 ctggccggcc tgctggtcat ttccaaattg ccggtagcgc agtaccccaa tgtcgcgccg 120 ccacagatca ccatcaccgc cacctatccc ggcgcctcgg cgaaggtgct ggtggactcc 180 gtcaccagtg tgctcgagga gtcgctgaac ggcgccaagg gcctgctcta cttcgagtcg 240 accaacaact ccaacggcac cgccgagatc gtcgtcacct tcgagccggg caccgatccg 300 gacctggccc aggtggacgt gcagaaccgc ctgaagaaag ccgaggcgcg catgccgcag 360 gcggtgctga cccagggcct gcaggtcgag cagaccagcg ccggtttcct gctgatctat 420 gcgctcagct acaaggaagg cgctcagcgc agcgacacca ccgccctcgg cgactacgcc 480 gcgcgcaata tcaacaacga gctgcggcgc ctgccgggcg tcggcaagct gcaattcttc 540 tcttccgagg cggccatgcg ggtctggatc gatccgcaga agctggtggg cttcggcctc 600 tccatcgacg acgtgagcaa tgccatccgc gggcagaacg tgcaggtgcc ggccggcgcc 660 ttcggcagcg caccgggcag ttccgcgcag gagctgacgg cgaccctggc ggtgaagggc 720 accctggacg atccgcagga gttcggccag gtagtgctgc gcgccaacga ggacggctcg 780 ctggtccggc tcgccgatgt cgcgcgcctg gaactcggca aggagagcta caacatttcc 840 tcgcgactga acggcacgcc caccgtgggc ggggctatcc agctgtcgcc cggggccaac 900 gcgatccaga ccgctaccct ggtgaaacag cgtctcgccg aactgtcggc gttcttcccc 960 gaggacatgc agtacagcgt gccctacgac acctcgcgct tcgtcgacgt ggccatcgag 1020 aaggtgatcc acaccctgat cgaagcgatg gtcctggtgt tcctggtgat gttcctgttc 1080 ctgcagaacg tccgctacac cctgatcccg tccatcgtgg tgccggtgtg cctgctgggt 1140 acgctgatgg tgatgtacct gctggggttc tcggtgaaca tgatgaccat gttcggcatg 1200 gtcctggcga tcggcatcct ggtggacgac gccatcgtgg tggtggagaa cgtcgagcgg 1260 atcatggcgg aggaggggat ttccccggcc gaggccacgg tcaaggcgat gaagcaggta 1320 tccggcgcca tcgtcggcat caccctggtg ctctcggcgg tgttcctgcc gctggctttc 1380 atggccggtt cggtgggggt gatctaccag cagttctcgg tgtcgctggc ggtctcgatc 1440 ctgttctccg gcttcctcgc cctgaccttc accccggcgc tgtgcgccac gctgctcaag 1500 cccattcccg aagggcacca cgagaagcgc ggcttcttcg gcgccttcaa ccgtggcttc 1560 gcccgcgtca ccgagcgcta ttcgctgctc aactcgaagc tggtggcgcg cgccggacgc 1620 ttcatgctgg tgtacgccgg cctggtggcc atgctcggct acttctacct gcgcctgccg 1680 gaagccttcg tgccggcgga agacctcggc tacatggtgg tcgacgtgca actgccgcct 1740 ggcgcttcgc gcgtgcgcac cgatgccacc ggcgaggagc tcgagcgctt cctcaagtcc 1800 cgcgaggcgg tggcttcggt gttcctgatc tcgggcttca gcttctccgg ccagggcgac 1860 aatgccgcgc tggccttccc aaccttcaag gactggtccg agcgaggcgc cgagcagtcg 1920 gccgccgccg agatcgccgc gctgaacgag catttcgcgc tgcccgacga tggcacggtc 1980 atggccgtgt cgccgccacc gatcaacggt ctgggtaact ccggcggctt cgcattgcgc 2040 ctgatggacc gtagcggggt cggccgcgaa gcgctgctgc aggctcgcga tactcttctt 2100 ggcgagatcc agaccaaccc gaaattcctt tacgcgatga tggaaggact ggccgaagcg 2160 ccgcaactgc gcctgttgat cgaccgggag aaggcccgtg ccctgggggt gagcttcgag 2220 accatcagcg gcacgctgtc cgctgccttc ggctcggagg tgatcaacga cttcaccaat 2280 gcggggcgcc aacagcgggt ggtgatccag gccgaacagg gcaaccggat gaccccggaa 2340 agcgtgctcg agctatacgt gcctaacgct gctggcaacc tggtaccgct cagcgccttc 2400 gtcagcgtga aatgggaaga gggaccggtg caattggtgc gctataacgg ctacccgtcg 2460 atccgcatcg tcggtgacgc cgcgcccggc ttcagtaccg gcgaagccat ggcggaaatg 2520 gagcgcctgg cctcgcagct gccggccggc atcggctacg agtggaccgg cctgtcctat 2580 caggagaagg tctccgccgg gcaggccacc agcctgttcg ccctcgccat cctggtggtg 2640 ttcctgttgc tggtggcgct ctacgagagc tggtcgatcc cgctgtcggt gatgctgatc 2700 gtgccgatcg gcgccatcgg cgcggtgctc gcggtgatgg tcagcggtat gtccaacgac 2760 gtgtatttca aggtcggcct gatcaccatc atcggtcttt cggcgaagaa cgcgatcctc 2820 atcgtcgagt tcgccaagga actctgggag caggggcata gcctgcgcga cgccgccatc 2880 gaggccgcgc gcctgcgctt ccggccgatc atcatgactt ccatggcgtt catcctcggc 2940 gtgatacccc tggccctggc cagcggtgcc ggcgcggcga gccagcgtgc catcggcacc 3000 ggagtgatcg gcgggatgct cagcgccacc ttcctcggcg tgctgttcgt acctatctgt 3060 ttcgtctggc tgctgtcgct gctgcgcagc aagccggcac ccatcgaaca ggccgcttcg 3120 gccggggagt ga 3132 20 1043 PRT Pseudomonas aeruginosa 20 Met Ser Glu Phe Phe Ile Lys Arg Pro Asn Phe Ala Trp Val Val Ala 1 5 10 15 Leu Phe Ile Ser Leu Ala Gly Leu Leu Val Ile Ser Lys Leu Pro Val 20 25 30 Ala Gln Tyr Pro Asn Val Ala Pro Pro Gln Ile Thr Ile Thr Ala Thr 35 40 45 Tyr Pro Gly Ala Ser Ala Lys Val Leu Val Asp Ser Val Thr Ser Val 50 55 60 Leu Glu Glu Ser Leu Asn Gly Ala Lys Gly Leu Leu Tyr Phe Glu Ser 65 70 75 80 Thr Asn Asn Ser Asn Gly Thr Ala Glu Ile Val Val Thr Phe Glu Pro 85 90 95 Gly Thr Asp Pro Asp Leu Ala Gln Val Asp Val Gln Asn Arg Leu Lys 100 105 110 Lys Ala Glu Ala Arg Met Pro Gln Ala Val Leu Thr Gln Gly Leu Gln 115 120 125 Val Glu Gln Thr Ser Ala Gly Phe Leu Leu Ile Tyr Ala Leu Ser Tyr 130 135 140 Lys Glu Gly Ala Gln Arg Ser Asp Thr Thr Ala Leu Gly Asp Tyr Ala 145 150 155 160 Ala Arg Asn Ile Asn Asn Glu Leu Arg Arg Leu Pro Gly Val Gly Lys 165 170 175 Leu Gln Phe Phe Ser Ser Glu Ala Ala Met Arg Val Trp Ile Asp Pro 180 185 190 Gln Lys Leu Val Gly Phe Gly Leu Ser Ile Asp Asp Val Ser Asn Ala 195 200 205 Ile Arg Gly Gln Asn Val Gln Val Pro Ala Gly Ala Phe Gly Ser Ala 210 215 220 Pro Gly Ser Ser Ala Gln Glu Leu Thr Ala Thr Leu Ala Val Lys Gly 225 230 235 240 Thr Leu Asp Asp Pro Gln Glu Phe Gly Gln Val Val Leu Arg Ala Asn 245 250 255 Glu Asp Gly Ser Leu Val Arg Leu Ala Asp Val Ala Arg Leu Glu Leu 260 265 270 Gly Lys Glu Ser Tyr Asn Ile Ser Ser Arg Leu Asn Gly Thr Pro Thr 275 280 285 Val Gly Gly Ala Ile Gln Leu Ser Pro Gly Ala Asn Ala Ile Gln Thr 290 295 300 Ala Thr Leu Val Lys Gln Arg Leu Ala Glu Leu Ser Ala Phe Phe Pro 305 310 315 320 Glu Asp Met Gln Tyr Ser Val Pro Tyr Asp Thr Ser Arg Phe Val Asp 325 330 335 Val Ala Ile Glu Lys Val Ile His Thr Leu Ile Glu Ala Met Val Leu 340 345 350 Val Phe Leu Val Met Phe Leu Phe Leu Gln Asn Val Arg Tyr Thr Leu 355 360 365 Ile Pro Ser Ile Val Val Pro Val Cys Leu Leu Gly Thr Leu Met Val 370 375 380 Met Tyr Leu Leu Gly Phe Ser Val Asn Met Met Thr Met Phe Gly Met 385 390 395 400 Val Leu Ala Ile Gly Ile Leu Val Asp Asp Ala Ile Val Val Val Glu 405 410 415 Asn Val Glu Arg Ile Met Ala Glu Glu Gly Ile Ser Pro Ala Glu Ala 420 425 430 Thr Val Lys Ala Met Lys Gln Val Ser Gly Ala Ile Val Gly Ile Thr 435 440 445 Leu Val Leu Ser Ala Val Phe Leu Pro Leu Ala Phe Met Ala Gly Ser 450 455 460 Val Gly Val Ile Tyr Gln Gln Phe Ser Val Ser Leu Ala Val Ser Ile 465 470 475 480 Leu Phe Ser Gly Phe Leu Ala Leu Thr Phe Thr Pro Ala Leu Cys Ala 485 490 495 Thr Leu Leu Lys Pro Ile Pro Glu Gly His His Glu Lys Arg Gly Phe 500 505 510 Phe Gly Ala Phe Asn Arg Gly Phe Ala Arg Val Thr Glu Arg Tyr Ser 515 520 525 Leu Leu Asn Ser Lys Leu Val Ala Arg Ala Gly Arg Phe Met Leu Val 530 535 540 Tyr Ala Gly Leu Val Ala Met Leu Gly Tyr Phe Tyr Leu Arg Leu Pro 545 550 555 560 Glu Ala Phe Val Pro Ala Glu Asp Leu Gly Tyr Met Val Val Asp Val 565 570 575 Gln Leu Pro Pro Gly Ala Ser Arg Val Arg Thr Asp Ala Thr Gly Glu 580 585 590 Glu Leu Glu Arg Phe Leu Lys Ser Arg Glu Ala Val Ala Ser Val Phe 595 600 605 Leu Ile Ser Gly Phe Ser Phe Ser Gly Gln Gly Asp Asn Ala Ala Leu 610 615 620 Ala Phe Pro Thr Phe Lys Asp Trp Ser Glu Arg Gly Ala Glu Gln Ser 625 630 635 640 Ala Ala Ala Glu Ile Ala Ala Leu Asn Glu His Phe Ala Leu Pro Asp 645 650 655 Asp Gly Thr Val Met Ala Val Ser Pro Pro Pro Ile Asn Gly Leu Gly 660 665 670 Asn Ser Gly Gly Phe Ala Leu Arg Leu Met Asp Arg Ser Gly Val Gly 675 680 685 Arg Glu Ala Leu Leu Gln Ala Arg Asp Thr Leu Leu Gly Glu Ile Gln 690 695 700 Thr Asn Pro Lys Phe Leu Tyr Ala Met Met Glu Gly Leu Ala Glu Ala 705 710 715 720 Pro Gln Leu Arg Leu Leu Ile Asp Arg Glu Lys Ala Arg Ala Leu Gly 725 730 735 Val Ser Phe Glu Thr Ile Ser Gly Thr Leu Ser Ala Ala Phe Gly Ser 740 745 750 Glu Val Ile Asn Asp Phe Thr Asn Ala Gly Arg Gln Gln Arg Val Val 755 760 765 Ile Gln Ala Glu Gln Gly Asn Arg Met Thr Pro Glu Ser Val Leu Glu 770 775 780 Leu Tyr Val Pro Asn Ala Ala Gly Asn Leu Val Pro Leu Ser Ala Phe 785 790 795 800 Val Ser Val Lys Trp Glu Glu Gly Pro Val Gln Leu Val Arg Tyr Asn 805 810 815 Gly Tyr Pro Ser Ile Arg Ile Val Gly Asp Ala Ala Pro Gly Phe Ser 820 825 830 Thr Gly Glu Ala Met Ala Glu Met Glu Arg Leu Ala Ser Gln Leu Pro 835 840 845 Ala Gly Ile Gly Tyr Glu Trp Thr Gly Leu Ser Tyr Gln Glu Lys Val 850 855 860 Ser Ala Gly Gln Ala Thr Ser Leu Phe Ala Leu Ala Ile Leu Val Val 865 870 875 880 Phe Leu Leu Leu Val Ala Leu Tyr Glu Ser Trp Ser Ile Pro Leu Ser 885 890 895 Val Met Leu Ile Val Pro Ile Gly Ala Ile Gly Ala Val Leu Ala Val 900 905 910 Met Val Ser Gly Met Ser Asn Asp Val Tyr Phe Lys Val Gly Leu Ile 915 920 925 Thr Ile Ile Gly Leu Ser Ala Lys Asn Ala Ile Leu Ile Val Glu Phe 930 935 940 Ala Lys Glu Leu Trp Glu Gln Gly His Ser Leu Arg Asp Ala Ala Ile 945 950 955 960 Glu Ala Ala Arg Leu Arg Phe Arg Pro Ile Ile Met Thr Ser Met Ala 965 970 975 Phe Ile Leu Gly Val Ile Pro Leu Ala Leu Ala Ser Gly Ala Gly Ala 980 985 990 Ala Ser Gln Arg Ala Ile Gly Thr Gly Val Ile Gly Gly Met Leu Ser 995 1000 1005 Ala Thr Phe Leu Gly Val Leu Phe Val Pro Ile Cys Phe Val Trp 1010 1015 1020 Leu Leu Ser Leu Leu Arg Ser Lys Pro Ala Pro Ile Glu Gln Ala 1025 1030 1035 Ala Ser Ala Gly Glu 1040 21 642 DNA Pseudomonas aeruginosa 21 atgaacgatg cttctccccg tctgaccgaa cgcggcaggc aacgccgccg cgccatgctc 60 gacgccgcta cccaggcctt tctcgaacac ggtttcgaag gcaccaccct ggacatggtg 120 atagaacggg ccggtggttc acgggggacc ctgtacagct ccttcggcgg caaggagggc 180 ctgttcgccg cggtgatcgc ccacatgatc ggggaaatct tcgacgacag cgccgatcag 240 ccgcgccccg ccgccacgct gagcgccacc ctcgagcatt tcggccggcg ctttctcacc 300 agcctgctcg atccccgctg ccagagcctc tatcgcctgg tggtggcgga atccccgcgg 360 tttccggcga tcggcaagtc cttctacgag caggggccgc agcagagcta tctgctgctc 420 agcgagcgac tggccgcggt cgctcctcac atggacgagg aaacgctcta cgcggtggcc 480 tgccagtttc tcgagatgct caaggccgac ctgttcctca aggccctcag cgtggccgac 540 ttccagccga ccatggcgct gctggaaacc cgcctcaagc tgtcggtgga catcatcgcc 600 tgctacctgg aacacctgtc gcagagcccc gcgcagggct ga 642 22 213 PRT Pseudomonas aeruginosa 22 Met Asn Asp Ala Ser Pro Arg Leu Thr Glu Arg Gly Arg Gln Arg Arg 1 5 10 15 Arg Ala Met Leu Asp Ala Ala Thr Gln Ala Phe Leu Glu His Gly Phe 20 25 30 Glu Gly Thr Thr Leu Asp Met Val Ile Glu Arg Ala Gly Gly Ser Arg 35 40 45 Gly Thr Leu Tyr Ser Ser Phe Gly Gly Lys Glu Gly Leu Phe Ala Ala 50 55 60 Val Ile Ala His Met Ile Gly Glu Ile Phe Asp Asp Ser Ala Asp Gln 65 70 75 80 Pro Arg

Pro Ala Ala Thr Leu Ser Ala Thr Leu Glu His Phe Gly Arg 85 90 95 Arg Phe Leu Thr Ser Leu Leu Asp Pro Arg Cys Gln Ser Leu Tyr Arg 100 105 110 Leu Val Val Ala Glu Ser Pro Arg Phe Pro Ala Ile Gly Lys Ser Phe 115 120 125 Tyr Glu Gln Gly Pro Gln Gln Ser Tyr Leu Leu Leu Ser Glu Arg Leu 130 135 140 Ala Ala Val Ala Pro His Met Asp Glu Glu Thr Leu Tyr Ala Val Ala 145 150 155 160 Cys Gln Phe Leu Glu Met Leu Lys Ala Asp Leu Phe Leu Lys Ala Leu 165 170 175 Ser Val Ala Asp Phe Gln Pro Thr Met Ala Leu Leu Glu Thr Arg Leu 180 185 190 Lys Leu Ser Val Asp Ile Ile Ala Cys Tyr Leu Glu His Leu Ser Gln 195 200 205 Ser Pro Ala Gln Gly 210 23 1017 DNA Pseudomonas aeruginosa 23 atgtctgatg atgcccgttt ccagcagctg aattgctggt tggactcttg tttgcccgag 60 ttgttcgttg ccgaaggttg gggggaagtg ccccccgccg aactgatccc ggccagtagc 120 gacgccagct tccgtcgtta tttccgctgg cagggagggg accgcagcct ggtggtgatg 180 gacgcgccgc cgccccagga agactgccga ccgttcgtca aggtcgccgg actgctcgcc 240 ggagccggcg tgcatgtgcc gaggattctc gcccaggacc tggagaacgg tttcctgctg 300 ctcagtgacc tgggccggca gacctacctc gacgtgcttc atcccgggaa tgccgacgag 360 ctgttcgaac cggccctgga tgcgctgatc gccttccaga aggtcgatgt cgccggtgtc 420 ctgcctgcct acgacgaagc ggtgctgcgc cgcgagctgc agctgttccc cgactggtac 480 ctggcccgcc acctcggcgt ggagctggag ggcgagacgc tggcccgctg gaaacggatc 540 tgcgacctgc tggtacgcag cgcgctggag caaccgcggg tgttcgtcca tcgcgactat 600 atgccgcgca atctgatgct cagcgagccc aacccgggcg tcctcgactt ccaggacgcc 660 ctgcacggcc cggtcaccta cgatgtcacc tgcctgtaca aggacgcctt cgtcagttgg 720 ccggagccgc gcgtgcatgc cgcgctgaac cgttactgga agaaggcgac ctgggccggc 780 atcccgctgc cgccaagctt cgaagacttc ctccgtgcca gcgacctgat gggcgtgcag 840 cgccacctga aggtgattgg catcttcgcc cgtatctgtc accgcgacgg caagccgcgc 900 tacctgggtg acgtgccgcg cttcttccgt tatctggaaa ccgccgtggc gcgccgtccc 960 gagctggccg aactgggcga gctgctggcc tcgctgccgc agggagccga ggcatga 1017 24 338 PRT Pseudomonas aeruginosa 24 Met Ser Asp Asp Ala Arg Phe Gln Gln Leu Asn Cys Trp Leu Asp Ser 1 5 10 15 Cys Leu Pro Glu Leu Phe Val Ala Glu Gly Trp Gly Glu Val Pro Pro 20 25 30 Ala Glu Leu Ile Pro Ala Ser Ser Asp Ala Ser Phe Arg Arg Tyr Phe 35 40 45 Arg Trp Gln Gly Gly Asp Arg Ser Leu Val Val Met Asp Ala Pro Pro 50 55 60 Pro Gln Glu Asp Cys Arg Pro Phe Val Lys Val Ala Gly Leu Leu Ala 65 70 75 80 Gly Ala Gly Val His Val Pro Arg Ile Leu Ala Gln Asp Leu Glu Asn 85 90 95 Gly Phe Leu Leu Leu Ser Asp Leu Gly Arg Gln Thr Tyr Leu Asp Val 100 105 110 Leu His Pro Gly Asn Ala Asp Glu Leu Phe Glu Pro Ala Leu Asp Ala 115 120 125 Leu Ile Ala Phe Gln Lys Val Asp Val Ala Gly Val Leu Pro Ala Tyr 130 135 140 Asp Glu Ala Val Leu Arg Arg Glu Leu Gln Leu Phe Pro Asp Trp Tyr 145 150 155 160 Leu Ala Arg His Leu Gly Val Glu Leu Glu Gly Glu Thr Leu Ala Arg 165 170 175 Trp Lys Arg Ile Cys Asp Leu Leu Val Arg Ser Ala Leu Glu Gln Pro 180 185 190 Arg Val Phe Val His Arg Asp Tyr Met Pro Arg Asn Leu Met Leu Ser 195 200 205 Glu Pro Asn Pro Gly Val Leu Asp Phe Gln Asp Ala Leu His Gly Pro 210 215 220 Val Thr Tyr Asp Val Thr Cys Leu Tyr Lys Asp Ala Phe Val Ser Trp 225 230 235 240 Pro Glu Pro Arg Val His Ala Ala Leu Asn Arg Tyr Trp Lys Lys Ala 245 250 255 Thr Trp Ala Gly Ile Pro Leu Pro Pro Ser Phe Glu Asp Phe Leu Arg 260 265 270 Ala Ser Asp Leu Met Gly Val Gln Arg His Leu Lys Val Ile Gly Ile 275 280 285 Phe Ala Arg Ile Cys His Arg Asp Gly Lys Pro Arg Tyr Leu Gly Asp 290 295 300 Val Pro Arg Phe Phe Arg Tyr Leu Glu Thr Ala Val Ala Arg Arg Pro 305 310 315 320 Glu Leu Ala Glu Leu Gly Glu Leu Leu Ala Ser Leu Pro Gln Gly Ala 325 330 335 Glu Ala 25 3270 DNA Pseudomonas aeruginosa 25 atgagcggat tccaggacca gagtatcgac gaaggcgtgc gcaagcgcac cgcctaccag 60 aacgatcggc gtgcacgact ggcattgaac gtcgagcgac aggacggcgg tatcctgcag 120 attccggtgg ccagcgatat gctcggccat gaggagcacg agcgtatcca gcagaacacc 180 ttcctggctg tgatgccgct ggtccgcctg ccaacgctgg gcaaggccgg ttatggcgac 240 cagctgcccg ccggcgcgct accgcgggcg ggacggatct acctgttcca ggacggcaag 300 ttgtggcgcg aactggaatg tgatggcaag ggcaacctgt tcgaagtcga tctcctgcag 360 gggcgcagcc agcgtgcgga caagcgtccg gccttaggca agacacaagc gctgatcctg 420 gtgccggtgc tggtcaaggg gcagttcgtg atcccacgct acaccatggc ctatagcgaa 480 actccctggc cttggtcgta catcgactgg ctggaggagg acccgcagcg ggtcaaccgg 540 cgctgccagc agatggcgtc cgcttggaac gcctcggtgg ccaaccagca ctggaaagcc 600 tccatccatc aacccgcgct ggtcattgat catcacgccc agggtttgcg acctcgcgac 660 ttcaacgtcg agagcgcgct ggaagacccg gcggaattca cacctgagtt cgccgccttt 720 cgcgaagagt cgctggtgtg ccagttgcag cgacgccagc aggaattggc gcccctgctg 780 aagcaggctc cgccctctgc gctacctact ctggaagccg gagaggacgt actggaaacc 840 ctcaagctgc gtggccatcc caacctcatc gggctgatgc tcgacgactc gctgttcgcc 900 ttgcgccacg ctgcggcgca ggcgcgccac tgcgccgcct acttgcgcag cctcaatgca 960 ctgctgccgc accgtcccaa cggacgctat gcacaggtgc tgagcaacat gctcgacggc 1020 ccgctcgcca agctcagggg cgaggtcgat caggccgaac tggacgaggc gatcttcgcc 1080 gaggagcgac agtcttgccg aatccacctg acgcagcagg tcgagcatct ggttgccctg 1140 ctggaaggcc ccttgcaccc ggtgttgcag gactggaccc accagtgcga cgaagccctg 1200 ctggagccct acagcctgat gagcgaggca ctggctgcgc tgaaccagct tcccgaccgc 1260 tgcgacgcac tgtacagcgg taccgcctac cgggcgctgg cggcacatgt cgagcgggtg 1320 gtcagcacgg ttctgcaggc aagccacccg cttggcgcca tgctcctggc caaggacgaa 1380 ggacaacttc ccgagccggt tcggcgcctg caggcgctgc gcgatagccc gcggacgccg 1440 gaccccgatg caatgggcct cagcacgctg atgctgggag ccagtctgct gggcgaggtc 1500 gaccagccca gcgccggcaa gagcctcgcc tacttcctcg gcgacctgct ggacgtgttc 1560 ggcgccagcg tagtcgagca actcggccgg ctgtcccagg gcgccaccca gatccagctc 1620 gaccgcttgt tcgcaccgac cttcaatact ctgagcgccc tctcggtgaa gatgaaaggt 1680 atccgcctgc tgcccgacag tcaggtgccg ctcgacatgg ttgtcgtcgg cgtgcgcgga 1740 gccggcctgc gcaacggtct gaccgaggtc gagcgccagg agctgaggcg caagagctat 1800 cggcgcgcca tcgttcagga cggtgccggc aatcccctgg ccggcaccag tccccgcgac 1860 accggcatga gtcgcgccaa cctgcgcaac gtcatggtgg tggcggtacc caaggatcac 1920 ccggacctgc ttgcctacac gaaattccgt acgcagttag gcacgttgac ccaggtgatg 1980 gagaacactc gcatcgtgcc gacgatgatg ctggggtttg cgatttataa cttgaatgtg 2040 caggtgcagg catacagtgg ctttgtagac agtggagaaa agcacagagg gacgatcggg 2100 gctgtcggtg cagtaatcga tttaacagcc gctggaggaa gccatgcaaa gctgcttttc 2160 ggaccatcta ctgcaaagta tctagaaacc ccacgtatat cggtagccca aatatcccct 2220 cgatgggcca ggaatctaga agttcaaaca ggcagcccta agttagggtt gctacgtggg 2280 cttggtggcg cagccacact attcggtgca ggcatcagtg tatgggatgg ctaccgagct 2340 ttgaggcagg gagatagcga tgcggctgcg gcctacggtg tggccgcagt gggtgggggc 2400 ctttggggtg cctacgtcct aggatggata gtaaaccctt atgctttgct ggctggtgcg 2460 gttttggcga tcggaggcac tgtggtcgct aatctactga ctgacagcga tgcggaaacc 2520 atcgtaaaga aaggcccctt cggccggcaa ttcgccgagg ctggcctgct cgattcgctg 2580 atgggccagg accagcgctt cgcccatctg aaagacccgc aaacggccta tcgccaattg 2640 ctgggagtcc tcggccatcc gcgggtcttt gtccatcgcc tggaagactg gcgcaaattg 2700 gcgccggcgg cgcatcgatc tgtcttgcag gaagcggaac ggggtcgcca agcggtcagc 2760 cgcactgcgc tatcctgcat cgaccccaag ttgcaggcgc tggaggcaaa cgattgggcc 2820 gtggtgctga gttccccgct cctggccatg ttcgagaatg gccagaaggc gttccgcctg 2880 gtggcccagg agtttctcag cagcttgccg atcgatccgg gcaccctgtt cggcgtcaag 2940 cgctaccatc gggtccccgc gggccccgcc aagctcgaag ccttgccgtt ggatgctgcc 3000 agcgtgctct atgtgctgcc ggccagcctg ccgattccgc agttgtctcc tcgggcccgc 3060 tatagcatgc gcatgaccca gggtttgaag atcagcgcac agttcgaact caatgccgac 3120 cagcctgagc agcggcttgt cctgcctcaa cccagcccga agagttggag tgcattcaca 3180 tccgccaatc ggtaccttcc cccggacgac ttgggccccc atgctgcgcc accttattgg 3240 ttgatagaga acagtgagtt caacgtatga 3270 26 1089 PRT Pseudomonas aeruginosa 26 Met Ser Gly Phe Gln Asp Gln Ser Ile Asp Glu Gly Val Arg Lys Arg 1 5 10 15 Thr Ala Tyr Gln Asn Asp Arg Arg Ala Arg Leu Ala Leu Asn Val Glu 20 25 30 Arg Gln Asp Gly Gly Ile Leu Gln Ile Pro Val Ala Ser Asp Met Leu 35 40 45 Gly His Glu Glu His Glu Arg Ile Gln Gln Asn Thr Phe Leu Ala Val 50 55 60 Met Pro Leu Val Arg Leu Pro Thr Leu Gly Lys Ala Gly Tyr Gly Asp 65 70 75 80 Gln Leu Pro Ala Gly Ala Leu Pro Arg Ala Gly Arg Ile Tyr Leu Phe 85 90 95 Gln Asp Gly Lys Leu Trp Arg Glu Leu Glu Cys Asp Gly Lys Gly Asn 100 105 110 Leu Phe Glu Val Asp Leu Leu Gln Gly Arg Ser Gln Arg Ala Asp Lys 115 120 125 Arg Pro Ala Leu Gly Lys Thr Gln Ala Leu Ile Leu Val Pro Val Leu 130 135 140 Val Lys Gly Gln Phe Val Ile Pro Arg Tyr Thr Met Ala Tyr Ser Glu 145 150 155 160 Thr Pro Trp Pro Trp Ser Tyr Ile Asp Trp Leu Glu Glu Asp Pro Gln 165 170 175 Arg Val Asn Arg Arg Cys Gln Gln Met Ala Ser Ala Trp Asn Ala Ser 180 185 190 Val Ala Asn Gln His Trp Lys Ala Ser Ile His Gln Pro Ala Leu Val 195 200 205 Ile Asp His His Ala Gln Gly Leu Arg Pro Arg Asp Phe Asn Val Glu 210 215 220 Ser Ala Leu Glu Asp Pro Ala Glu Phe Thr Pro Glu Phe Ala Ala Phe 225 230 235 240 Arg Glu Glu Ser Leu Val Cys Gln Leu Gln Arg Arg Gln Gln Glu Leu 245 250 255 Ala Pro Leu Leu Lys Gln Ala Pro Pro Ser Ala Leu Pro Thr Leu Glu 260 265 270 Ala Gly Glu Asp Val Leu Glu Thr Leu Lys Leu Arg Gly His Pro Asn 275 280 285 Leu Ile Gly Leu Met Leu Asp Asp Ser Leu Phe Ala Leu Arg His Ala 290 295 300 Ala Ala Gln Ala Arg His Cys Ala Ala Tyr Leu Arg Ser Leu Asn Ala 305 310 315 320 Leu Leu Pro His Arg Pro Asn Gly Arg Tyr Ala Gln Val Leu Ser Asn 325 330 335 Met Leu Asp Gly Pro Leu Ala Lys Leu Arg Gly Glu Val Asp Gln Ala 340 345 350 Glu Leu Asp Glu Ala Ile Phe Ala Glu Glu Arg Gln Ser Cys Arg Ile 355 360 365 His Leu Thr Gln Gln Val Glu His Leu Val Ala Leu Leu Glu Gly Pro 370 375 380 Leu His Pro Val Leu Gln Asp Trp Thr His Gln Cys Asp Glu Ala Leu 385 390 395 400 Leu Glu Pro Tyr Ser Leu Met Ser Glu Ala Leu Ala Ala Leu Asn Gln 405 410 415 Leu Pro Asp Arg Cys Asp Ala Leu Tyr Ser Gly Thr Ala Tyr Arg Ala 420 425 430 Leu Ala Ala His Val Glu Arg Val Val Ser Thr Val Leu Gln Ala Ser 435 440 445 His Pro Leu Gly Ala Met Leu Leu Ala Lys Asp Glu Gly Gln Leu Pro 450 455 460 Glu Pro Val Arg Arg Leu Gln Ala Leu Arg Asp Ser Pro Arg Thr Pro 465 470 475 480 Asp Pro Asp Ala Met Gly Leu Ser Thr Leu Met Leu Gly Ala Ser Leu 485 490 495 Leu Gly Glu Val Asp Gln Pro Ser Ala Gly Lys Ser Leu Ala Tyr Phe 500 505 510 Leu Gly Asp Leu Leu Asp Val Phe Gly Ala Ser Val Val Glu Gln Leu 515 520 525 Gly Arg Leu Ser Gln Gly Ala Thr Gln Ile Gln Leu Asp Arg Leu Phe 530 535 540 Ala Pro Thr Phe Asn Thr Leu Ser Ala Leu Ser Val Lys Met Lys Gly 545 550 555 560 Ile Arg Leu Leu Pro Asp Ser Gln Val Pro Leu Asp Met Val Val Val 565 570 575 Gly Val Arg Gly Ala Gly Leu Arg Asn Gly Leu Thr Glu Val Glu Arg 580 585 590 Gln Glu Leu Arg Arg Lys Ser Tyr Arg Arg Ala Ile Val Gln Asp Gly 595 600 605 Ala Gly Asn Pro Leu Ala Gly Thr Ser Pro Arg Asp Thr Gly Met Ser 610 615 620 Arg Ala Asn Leu Arg Asn Val Met Val Val Ala Val Pro Lys Asp His 625 630 635 640 Pro Asp Leu Leu Ala Tyr Thr Lys Phe Arg Thr Gln Leu Gly Thr Leu 645 650 655 Thr Gln Val Met Glu Asn Thr Arg Ile Val Pro Thr Met Met Leu Gly 660 665 670 Phe Ala Ile Tyr Asn Leu Asn Val Gln Val Gln Ala Tyr Ser Gly Phe 675 680 685 Val Asp Ser Gly Glu Lys His Arg Gly Thr Ile Gly Ala Val Gly Ala 690 695 700 Val Ile Asp Leu Thr Ala Ala Gly Gly Ser His Ala Lys Leu Leu Phe 705 710 715 720 Gly Pro Ser Thr Ala Lys Tyr Leu Glu Thr Pro Arg Ile Ser Val Ala 725 730 735 Gln Ile Ser Pro Arg Trp Ala Arg Asn Leu Glu Val Gln Thr Gly Ser 740 745 750 Pro Lys Leu Gly Leu Leu Arg Gly Leu Gly Gly Ala Ala Thr Leu Phe 755 760 765 Gly Ala Gly Ile Ser Val Trp Asp Gly Tyr Arg Ala Leu Arg Gln Gly 770 775 780 Asp Ser Asp Ala Ala Ala Ala Tyr Gly Val Ala Ala Val Gly Gly Gly 785 790 795 800 Leu Trp Gly Ala Tyr Val Leu Gly Trp Ile Val Asn Pro Tyr Ala Leu 805 810 815 Leu Ala Gly Ala Val Leu Ala Ile Gly Gly Thr Val Val Ala Asn Leu 820 825 830 Leu Thr Asp Ser Asp Ala Glu Thr Ile Val Lys Lys Gly Pro Phe Gly 835 840 845 Arg Gln Phe Ala Glu Ala Gly Leu Leu Asp Ser Leu Met Gly Gln Asp 850 855 860 Gln Arg Phe Ala His Leu Lys Asp Pro Gln Thr Ala Tyr Arg Gln Leu 865 870 875 880 Leu Gly Val Leu Gly His Pro Arg Val Phe Val His Arg Leu Glu Asp 885 890 895 Trp Arg Lys Leu Ala Pro Ala Ala His Arg Ser Val Leu Gln Glu Ala 900 905 910 Glu Arg Gly Arg Gln Ala Val Ser Arg Thr Ala Leu Ser Cys Ile Asp 915 920 925 Pro Lys Leu Gln Ala Leu Glu Ala Asn Asp Trp Ala Val Val Leu Ser 930 935 940 Ser Pro Leu Leu Ala Met Phe Glu Asn Gly Gln Lys Ala Phe Arg Leu 945 950 955 960 Val Ala Gln Glu Phe Leu Ser Ser Leu Pro Ile Asp Pro Gly Thr Leu 965 970 975 Phe Gly Val Lys Arg Tyr His Arg Val Pro Ala Gly Pro Ala Lys Leu 980 985 990 Glu Ala Leu Pro Leu Asp Ala Ala Ser Val Leu Tyr Val Leu Pro Ala 995 1000 1005 Ser Leu Pro Ile Pro Gln Leu Ser Pro Arg Ala Arg Tyr Ser Met 1010 1015 1020 Arg Met Thr Gln Gly Leu Lys Ile Ser Ala Gln Phe Glu Leu Asn 1025 1030 1035 Ala Asp Gln Pro Glu Gln Arg Leu Val Leu Pro Gln Pro Ser Pro 1040 1045 1050 Lys Ser Trp Ser Ala Phe Thr Ser Ala Asn Arg Tyr Leu Pro Pro 1055 1060 1065 Asp Asp Leu Gly Pro His Ala Ala Pro Pro Tyr Trp Leu Ile Glu 1070 1075 1080 Asn Ser Glu Phe Asn Val 1085 27 756 DNA Pseudomonas aeruginosa 27 atgagcgccg cctgggtccg gccgttccgc ctgacgccga tgccgcgcct gcgcctggcc 60 tgcttccccc atgcaggcgg cagcgccagc ttcttccgta gctggagcga acgcctgccg 120 ccagacatcg acctgcttgc cctgcagtac ccgggtcgcg aggaccgctt caacgaggcg 180 ccggccaccc gcctggagga cctcgccgac ggcgccgccc tcgccctgcg cgatttcgcc 240 gacgcgcccc tggcgctgtt cggccacagt ctcggcgcgg cgctggccta cgaaaccgcc 300 ctgcgcctgg aaagcgccgg cgcgccgctg cgccacctgt tcgtctccgc ccatccggca 360 ccgcaccggc aacgcggcgg cgcgttgcac cgcggcgacg aggcggcgct gctggaggac 420 gtccgccgcc agggtggcgc cagcgagcta ctcgaggacg ccgacctgcg cgcgctgttc 480 ctgccgatcc tgcgcgccga ctaccaggcg atcgagacct accgacgggc gcagcccatc 540 gccctggcct gcgccctcga cgtcctcctc ggcgagcacg acgaggaagt cagcgccgcc 600 gaggcgcagg cctggagcga cgccagccgg actcccgcca ggctgcggcg ctttcctggc 660 ggccacttct acctgagcga ggggcgcgac gcggtgatcg agcacctgct gcgccgcctc 720 gcacatcccg acgccctttc ccgagaggtt gcatga 756 28 251 PRT Pseudomonas aeruginosa 28 Met Ser Ala Ala Trp Val Arg Pro Phe Arg Leu Thr Pro Met Pro Arg 1 5 10 15 Leu Arg Leu Ala Cys Phe Pro His Ala Gly Gly Ser Ala Ser Phe Phe 20

25 30 Arg Ser Trp Ser Glu Arg Leu Pro Pro Asp Ile Asp Leu Leu Ala Leu 35 40 45 Gln Tyr Pro Gly Arg Glu Asp Arg Phe Asn Glu Ala Pro Ala Thr Arg 50 55 60 Leu Glu Asp Leu Ala Asp Gly Ala Ala Leu Ala Leu Arg Asp Phe Ala 65 70 75 80 Asp Ala Pro Leu Ala Leu Phe Gly His Ser Leu Gly Ala Ala Leu Ala 85 90 95 Tyr Glu Thr Ala Leu Arg Leu Glu Ser Ala Gly Ala Pro Leu Arg His 100 105 110 Leu Phe Val Ser Ala His Pro Ala Pro His Arg Gln Arg Gly Gly Ala 115 120 125 Leu His Arg Gly Asp Glu Ala Ala Leu Leu Glu Asp Val Arg Arg Gln 130 135 140 Gly Gly Ala Ser Glu Leu Leu Glu Asp Ala Asp Leu Arg Ala Leu Phe 145 150 155 160 Leu Pro Ile Leu Arg Ala Asp Tyr Gln Ala Ile Glu Thr Tyr Arg Arg 165 170 175 Ala Gln Pro Ile Ala Leu Ala Cys Ala Leu Asp Val Leu Leu Gly Glu 180 185 190 His Asp Glu Glu Val Ser Ala Ala Glu Ala Gln Ala Trp Ser Asp Ala 195 200 205 Ser Arg Thr Pro Ala Arg Leu Arg Arg Phe Pro Gly Gly His Phe Tyr 210 215 220 Leu Ser Glu Gly Arg Asp Ala Val Ile Glu His Leu Leu Arg Arg Leu 225 230 235 240 Ala His Pro Asp Ala Leu Ser Arg Glu Val Ala 245 250 29 4317 DNA Pseudomonas aeruginosa 29 atggatctgc cccccgattc ccgtaccgcc ctgcgcgact ggctgaccga gcagctcgcc 60 gacctgctcg gcgaaccgct tgctgacgtg cgcgccctgg cggacgacga cgacctgctg 120 ggctgcggcc tcgactcgat ccgcctgatg tacctgcagg aacgcctgcg cgcgcgtggc 180 tcgacgctgg acttcgccca gttggcgcag cgcccctgcc tgggggcctg gctcgacctg 240 ctggcctgcg cggaccggct gtccgccccg gcaacggtcg cgctgccgac ggcgcaggat 300 cgcgatcagc cgttcgagct gtcttccgtg cagcaggcct actggctggg acgtggcgcc 360 ggcgaggtgc tgggcaacgt cagctgccat gcctttctgg aattccgcac gcgggatgtc 420 gacccgcagc gcctggccgc ggcggcggag tgcgtgcgtc aacgccaccc gatgttgcgg 480 gcgcgcttcc tcgacggtcg ccagcagatc cttccgacgc cgccgctgtc ctgcttcgac 540 ctgcaggact ggcgcacctt acaggtggac gaggccgagc gcgactggca ggcgctgcgc 600 gactggcgcg cccatgaatg cctggcggtg gagcgcggcc aggtgttcct gctcgggctg 660 gtgcgcatgc cgggcggcga ggatcgcctc tggctgagtc tcgacctgct tgccgccgat 720 gtcgaaagcc tgcgcctgct gctggccgaa ctgggcgttg cctacctggc gccggagcgc 780 ctggcggagc cgccggcgct gcatttcgcc gactacctgg cgcaccgtgc ggcgcaacgc 840 gccgaggccg cggcgcgggc ccgcgactac tggctggaac gcctgccgcg cttgccggac 900 gcgccggccc tgccgttggc ctgcgcgccg gaaagcatcc gccagccgcg cacccggcgc 960 ctggcattcc agctttccgc cggcgagagc cggcgcctgg agcgtcttgc cgcgcagcat 1020 ggcgtgacct tgtccagcgt gttcggctgc gccttcgcgc tggtcctggc gcgctggagc 1080 gaaagcgcgg aatttctcct caacgtgccg ttgttcgatc ggcatgccga cgacccgcgt 1140 atcggcgagg tgatcgccga cttcaccacc ctgttgctgc tggagtgccg gatgcaggcc 1200 ggggtgtcct tcgccgaggc ggtgaagagc ttccagcgca acctccacgg agccatcgac 1260 cacgccgcat tccccgccct ggaggtgctc cgcgaggcgc gccggcaggg ccagccacgc 1320 tcggcgccgg tggtgttcgc cagcaacctg ggcgaggagg gcttcgtccc ggcggccttc 1380 cgcgacgctt tcggcgatct ccacgacatg ctctcgcaga ccccgcaggt ctggctcgac 1440 caccagctct accgggtggg cgacggtatc ctgctggcct gggatagcgt cgtcggcctg 1500 ttccccgaag gtctgccgga aaccatgttc gaagcctacg tggggctgct ccagcgtctc 1560 tgcgacagcg cctgggggca gcccgccgat ctgccgttgc cctgggcgca gcaggcgcgc 1620 cgggccctgc tcaacggcca gccggcatgc gccacggcgc gcaccctgca tcgcgacttc 1680 ttccttcgcg ccgccgaggc gccggatgcc gacgcgctgc tctatcgcga ccaacgtgtc 1740 acccgcggcg aactggccga gcgtgcgctg cgcatcgccg gcggcctgcg cgaagccggg 1800 gtgcgccctg gcgacgcggt cgaggtcagc ctgccgcgcg gaccgcagca ggtcgcggcg 1860 gtattcggcg tgctcgccgc aggcgcctgc tacgtgccgc tggacatcga ccagccgccc 1920 gcacggcggc gcctgatcga agaggccgcc ggggtatgcc tggcgatcac cgaggaggac 1980 gatccgcagg ccttgccgcc gcgcctggat gtccagcgcc tgctgcgcgg cccggcgctg 2040 gccgcccccg tgccgctggc gccgcaggcg agtgcctatg tgatctacac ctcgggctcc 2100 accggggtgc ccaagggcgt cgaggtcagc cacgcggcgg cgatcaatac catcgacgcg 2160 ctgctcgacc tgctgcgggt gaacgcatcg gatcgcttgc tggcggtctc cgcgctggac 2220 ttcgatctgt cggtcttcga cctgttcggc ggcctcggcg ccggtgccag cctggtcctg 2280 ccggcccagg aacaggcgcg cgatgccgct gcctgggcgg aggctatcca gcggcatgcg 2340 gtgagcctgt ggaactcggc gccggccttg ctggagatgg ccctcagcct gccggcgagc 2400 caggccgact atcgcagtct gcgggcggtg ctgctgtccg gcgactgggt ggccctggac 2460 ctgcccggcc gcctgcgccc acgttgtgcc gaaggctgcc gcctgcatgt gctgggtggc 2520 gctaccgaag cgggcatctg gtcgaacctg cagagcgtcg atacggtgcc gccgcactgg 2580 cgttcgattc cctacggccg gccattgccg ggacaggcct accgggtggt cgacacccac 2640 gggcgcgacg tgccggacct ggtggtcggc gagctgtgga tcggcggcgc cagcctggcc 2700 cgcggctatc gcaacgatcc cgaactcagc gcccggcgtt tcgtccacga tgcccagggc 2760 cgctggtatc gcaccggcga tcgcggtcgc tactggggcg acggtaccct ggaattcctc 2820 ggtcgggtcg accagcaggt gaaagtgcgc ggccagcgca tcgagttggg cgaggtggag 2880 gccgcgctgt gcgcccaggc tggcgtggag agcgcctgcg cggcggtgct cggcggtggc 2940 gtggcgagcc tcggcgcggt gctggtaccg cgcctggcgc cacgggccga aggctccatg 3000 gatctaccgg ccgcacagcc cttcgccggc ctggcagagg ccgaggcggt actcacccgg 3060 gaaatcctcg gcgcgctgct ggaggcgccg ctggagctag acgacggttt gcgccggcgc 3120 tggctggact ggctagcgga ctccgccgcc agcgcgctgc cgtcgctcga cgaggcgttg 3180 cgccggctcg gctggcaggc cgcggggctg accgcgatgg gcaacgctct gcgcggcctg 3240 ctcgccggcg aacaggcgcc ggccgcgctg ctcctcgatc cctggctggc gccgcaggcg 3300 gtggccgcgc gcctgccgga cggccgcgag gccctggcgc gcctgctcga agcgctgccg 3360 acgccggctg ccggcgaacg cctgcgggtg gcggtgctgg atacccgcgc cgggctctgg 3420 ctcgaccagg gcatggcctc gctgttgcgc ccagggctgg aactgaccct cttcgaacgc 3480 agccgcgtcc tcctcgacgc cgccgccacc cgcttgccgg aacggatcgt ggtgcaggcg 3540 ctggacgacg gcctgctacc tgccgagcac ctcggtcgct acgaccgggt gatcagcttc 3600 gccgcgctgc acgcctacga ggccagccgc gaaggcctgg cgctggcggc ggcgctgctg 3660 cgcccgcagg gccgcctgtt gctggtggac ctgctatgcg agtcgccact ggcgctgctc 3720 ggtgcggcct tgctcgacga ccggccgctg cgcctggcgg agctgccgag cctgttggcc 3780 gatctcgccg ctgcgggact ggcgccgcgt tgcctgtggc gcagcgagcg gatcgccctg 3840 gtcgaggcgc tggcaccggg actcgggctc gacgccgccg cgctccaggc cggcctggag 3900 caacgcctgc cccaggcgat gcggcccgaa cgcctgtggt gcctgccaag cctgccgttg 3960 aacggcaatg gcaaggtcga tcgtcgccgc ctggccgaga gcatgacccg cgcactcggc 4020 gagtgtcgtc acgagccctc ggcggaggag ccgctggaag cccatgagca agcgctggcc 4080 gagtgctggg aagcggttct caaacgcccg gtgcgtcgtc gcgaggcgag cttcttcagc 4140 ctcggcggcg acagcctgct ggcgacccgc ctgctggccg gcatacgtga gcgtttcggc 4200 gtacgcctgg gcatggccga cttctatcgc cagccgaccc tggccggtct tgcccgccac 4260 ttgcaggtgc agaccgtcga aatcgaggaa acccaactgg aagagggcgt gctatga 4317 30 1438 PRT Pseudomonas aeruginosa 30 Met Asp Leu Pro Pro Asp Ser Arg Thr Ala Leu Arg Asp Trp Leu Thr 1 5 10 15 Glu Gln Leu Ala Asp Leu Leu Gly Glu Pro Leu Ala Asp Val Arg Ala 20 25 30 Leu Ala Asp Asp Asp Asp Leu Leu Gly Cys Gly Leu Asp Ser Ile Arg 35 40 45 Leu Met Tyr Leu Gln Glu Arg Leu Arg Ala Arg Gly Ser Thr Leu Asp 50 55 60 Phe Ala Gln Leu Ala Gln Arg Pro Cys Leu Gly Ala Trp Leu Asp Leu 65 70 75 80 Leu Ala Cys Ala Asp Arg Leu Ser Ala Pro Ala Thr Val Ala Leu Pro 85 90 95 Thr Ala Gln Asp Arg Asp Gln Pro Phe Glu Leu Ser Ser Val Gln Gln 100 105 110 Ala Tyr Trp Leu Gly Arg Gly Ala Gly Glu Val Leu Gly Asn Val Ser 115 120 125 Cys His Ala Phe Leu Glu Phe Arg Thr Arg Asp Val Asp Pro Gln Arg 130 135 140 Leu Ala Ala Ala Ala Glu Cys Val Arg Gln Arg His Pro Met Leu Arg 145 150 155 160 Ala Arg Phe Leu Asp Gly Arg Gln Gln Ile Leu Pro Thr Pro Pro Leu 165 170 175 Ser Cys Phe Asp Leu Gln Asp Trp Arg Thr Leu Gln Val Asp Glu Ala 180 185 190 Glu Arg Asp Trp Gln Ala Leu Arg Asp Trp Arg Ala His Glu Cys Leu 195 200 205 Ala Val Glu Arg Gly Gln Val Phe Leu Leu Gly Leu Val Arg Met Pro 210 215 220 Gly Gly Glu Asp Arg Leu Trp Leu Ser Leu Asp Leu Leu Ala Ala Asp 225 230 235 240 Val Glu Ser Leu Arg Leu Leu Leu Ala Glu Leu Gly Val Ala Tyr Leu 245 250 255 Ala Pro Glu Arg Leu Ala Glu Pro Pro Ala Leu His Phe Ala Asp Tyr 260 265 270 Leu Ala His Arg Ala Ala Gln Arg Ala Glu Ala Ala Ala Arg Ala Arg 275 280 285 Asp Tyr Trp Leu Glu Arg Leu Pro Arg Leu Pro Asp Ala Pro Ala Leu 290 295 300 Pro Leu Ala Cys Ala Pro Glu Ser Ile Arg Gln Pro Arg Thr Arg Arg 305 310 315 320 Leu Ala Phe Gln Leu Ser Ala Gly Glu Ser Arg Arg Leu Glu Arg Leu 325 330 335 Ala Ala Gln His Gly Val Thr Leu Ser Ser Val Phe Gly Cys Ala Phe 340 345 350 Ala Leu Val Leu Ala Arg Trp Ser Glu Ser Ala Glu Phe Leu Leu Asn 355 360 365 Val Pro Leu Phe Asp Arg His Ala Asp Asp Pro Arg Ile Gly Glu Val 370 375 380 Ile Ala Asp Phe Thr Thr Leu Leu Leu Leu Glu Cys Arg Met Gln Ala 385 390 395 400 Gly Val Ser Phe Ala Glu Ala Val Lys Ser Phe Gln Arg Asn Leu His 405 410 415 Gly Ala Ile Asp His Ala Ala Phe Pro Ala Leu Glu Val Leu Arg Glu 420 425 430 Ala Arg Arg Gln Gly Gln Pro Arg Ser Ala Pro Val Val Phe Ala Ser 435 440 445 Asn Leu Gly Glu Glu Gly Phe Val Pro Ala Ala Phe Arg Asp Ala Phe 450 455 460 Gly Asp Leu His Asp Met Leu Ser Gln Thr Pro Gln Val Trp Leu Asp 465 470 475 480 His Gln Leu Tyr Arg Val Gly Asp Gly Ile Leu Leu Ala Trp Asp Ser 485 490 495 Val Val Gly Leu Phe Pro Glu Gly Leu Pro Glu Thr Met Phe Glu Ala 500 505 510 Tyr Val Gly Leu Leu Gln Arg Leu Cys Asp Ser Ala Trp Gly Gln Pro 515 520 525 Ala Asp Leu Pro Leu Pro Trp Ala Gln Gln Ala Arg Arg Ala Leu Leu 530 535 540 Asn Gly Gln Pro Ala Cys Ala Thr Ala Arg Thr Leu His Arg Asp Phe 545 550 555 560 Phe Leu Arg Ala Ala Glu Ala Pro Asp Ala Asp Ala Leu Leu Tyr Arg 565 570 575 Asp Gln Arg Val Thr Arg Gly Glu Leu Ala Glu Arg Ala Leu Arg Ile 580 585 590 Ala Gly Gly Leu Arg Glu Ala Gly Val Arg Pro Gly Asp Ala Val Glu 595 600 605 Val Ser Leu Pro Arg Gly Pro Gln Gln Val Ala Ala Val Phe Gly Val 610 615 620 Leu Ala Ala Gly Ala Cys Tyr Val Pro Leu Asp Ile Asp Gln Pro Pro 625 630 635 640 Ala Arg Arg Arg Leu Ile Glu Glu Ala Ala Gly Val Cys Leu Ala Ile 645 650 655 Thr Glu Glu Asp Asp Pro Gln Ala Leu Pro Pro Arg Leu Asp Val Gln 660 665 670 Arg Leu Leu Arg Gly Pro Ala Leu Ala Ala Pro Val Pro Leu Ala Pro 675 680 685 Gln Ala Ser Ala Tyr Val Ile Tyr Thr Ser Gly Ser Thr Gly Val Pro 690 695 700 Lys Gly Val Glu Val Ser His Ala Ala Ala Ile Asn Thr Ile Asp Ala 705 710 715 720 Leu Leu Asp Leu Leu Arg Val Asn Ala Ser Asp Arg Leu Leu Ala Val 725 730 735 Ser Ala Leu Asp Phe Asp Leu Ser Val Phe Asp Leu Phe Gly Gly Leu 740 745 750 Gly Ala Gly Ala Ser Leu Val Leu Pro Ala Gln Glu Gln Ala Arg Asp 755 760 765 Ala Ala Ala Trp Ala Glu Ala Ile Gln Arg His Ala Val Ser Leu Trp 770 775 780 Asn Ser Ala Pro Ala Leu Leu Glu Met Ala Leu Ser Leu Pro Ala Ser 785 790 795 800 Gln Ala Asp Tyr Arg Ser Leu Arg Ala Val Leu Leu Ser Gly Asp Trp 805 810 815 Val Ala Leu Asp Leu Pro Gly Arg Leu Arg Pro Arg Cys Ala Glu Gly 820 825 830 Cys Arg Leu His Val Leu Gly Gly Ala Thr Glu Ala Gly Ile Trp Ser 835 840 845 Asn Leu Gln Ser Val Asp Thr Val Pro Pro His Trp Arg Ser Ile Pro 850 855 860 Tyr Gly Arg Pro Leu Pro Gly Gln Ala Tyr Arg Val Val Asp Thr His 865 870 875 880 Gly Arg Asp Val Pro Asp Leu Val Val Gly Glu Leu Trp Ile Gly Gly 885 890 895 Ala Ser Leu Ala Arg Gly Tyr Arg Asn Asp Pro Glu Leu Ser Ala Arg 900 905 910 Arg Phe Val His Asp Ala Gln Gly Arg Trp Tyr Arg Thr Gly Asp Arg 915 920 925 Gly Arg Tyr Trp Gly Asp Gly Thr Leu Glu Phe Leu Gly Arg Val Asp 930 935 940 Gln Gln Val Lys Val Arg Gly Gln Arg Ile Glu Leu Gly Glu Val Glu 945 950 955 960 Ala Ala Leu Cys Ala Gln Ala Gly Val Glu Ser Ala Cys Ala Ala Val 965 970 975 Leu Gly Gly Gly Val Ala Ser Leu Gly Ala Val Leu Val Pro Arg Leu 980 985 990 Ala Pro Arg Ala Glu Gly Ser Met Asp Leu Pro Ala Ala Gln Pro Phe 995 1000 1005 Ala Gly Leu Ala Glu Ala Glu Ala Val Leu Thr Arg Glu Ile Leu 1010 1015 1020 Gly Ala Leu Leu Glu Ala Pro Leu Glu Leu Asp Asp Gly Leu Arg 1025 1030 1035 Arg Arg Trp Leu Asp Trp Leu Ala Asp Ser Ala Ala Ser Ala Leu 1040 1045 1050 Pro Ser Leu Asp Glu Ala Leu Arg Arg Leu Gly Trp Gln Ala Ala 1055 1060 1065 Gly Leu Thr Ala Met Gly Asn Ala Leu Arg Gly Leu Leu Ala Gly 1070 1075 1080 Glu Gln Ala Pro Ala Ala Leu Leu Leu Asp Pro Trp Leu Ala Pro 1085 1090 1095 Gln Ala Val Ala Ala Arg Leu Pro Asp Gly Arg Glu Ala Leu Ala 1100 1105 1110 Arg Leu Leu Glu Ala Leu Pro Thr Pro Ala Ala Gly Glu Arg Leu 1115 1120 1125 Arg Val Ala Val Leu Asp Thr Arg Ala Gly Leu Trp Leu Asp Gln 1130 1135 1140 Gly Met Ala Ser Leu Leu Arg Pro Gly Leu Glu Leu Thr Leu Phe 1145 1150 1155 Glu Arg Ser Arg Val Leu Leu Asp Ala Ala Ala Thr Arg Leu Pro 1160 1165 1170 Glu Arg Ile Val Val Gln Ala Leu Asp Asp Gly Leu Leu Pro Ala 1175 1180 1185 Glu His Leu Gly Arg Tyr Asp Arg Val Ile Ser Phe Ala Ala Leu 1190 1195 1200 His Ala Tyr Glu Ala Ser Arg Glu Gly Leu Ala Leu Ala Ala Ala 1205 1210 1215 Leu Leu Arg Pro Gln Gly Arg Leu Leu Leu Val Asp Leu Leu Cys 1220 1225 1230 Glu Ser Pro Leu Ala Leu Leu Gly Ala Ala Leu Leu Asp Asp Arg 1235 1240 1245 Pro Leu Arg Leu Ala Glu Leu Pro Ser Leu Leu Ala Asp Leu Ala 1250 1255 1260 Ala Ala Gly Leu Ala Pro Arg Cys Leu Trp Arg Ser Glu Arg Ile 1265 1270 1275 Ala Leu Val Glu Ala Leu Ala Pro Gly Leu Gly Leu Asp Ala Ala 1280 1285 1290 Ala Leu Gln Ala Gly Leu Glu Gln Arg Leu Pro Gln Ala Met Arg 1295 1300 1305 Pro Glu Arg Leu Trp Cys Leu Pro Ser Leu Pro Leu Asn Gly Asn 1310 1315 1320 Gly Lys Val Asp Arg Arg Arg Leu Ala Glu Ser Met Thr Arg Ala 1325 1330 1335 Leu Gly Glu Cys Arg His Glu Pro Ser Ala Glu Glu Pro Leu Glu 1340 1345 1350 Ala His Glu Gln Ala Leu Ala Glu Cys Trp Glu Ala Val Leu Lys 1355 1360 1365 Arg Pro Val Arg Arg Arg Glu Ala Ser Phe Phe Ser Leu Gly Gly 1370 1375 1380 Asp Ser Leu Leu Ala Thr Arg Leu Leu Ala Gly Ile Arg Glu Arg 1385 1390 1395 Phe Gly Val Arg Leu Gly Met Ala Asp Phe Tyr Arg Gln Pro Thr 1400 1405 1410 Leu Ala Gly Leu Ala Arg His Leu Gln Val Gln Thr Val Glu Ile 1415 1420 1425 Glu Glu Thr Gln Leu Glu Glu Gly Val Leu 1430 1435 31 5430 DNA Pseudomonas aeruginosa 31 atgagcctcg gcgaactgct ggaaacctgc cgcagccggc gcatcgaact ctggagcgag 60 gcgggccgcc tgcgctatcg cgccccccag ggtgccctcg acgccggcct cgccgagcgc 120 ctgcgggccg agcgcgaggc cctgctggaa cacctggaag gcggccctgg ctggcgcgcc 180 gaacccgaca tggcccacca gcgcttcccg ctgaccccgg tgcaggccgc ctacgtgctg 240 ggccgccagg cggccttcga ctacggcggt aacgcctgcc agctgtacgc cgagtacgac 300 tggccggccg acaccgatcc ggcgcgcctg gaggcggcct ggaacgccat ggtcgagcgc 360 cacccgatgc tgcgcgcggt

gatcgaggac aacgcctggc agcgcgtgct gcccgaggtg 420 ccctggcagc ggctgaccgt gcatgcctgc gcggggctcg acgaggccgc tttccaggcg 480 cacctggagc gggtccgcga acgcctcgac cacgcctgcg cggcgctcga ccagtggccg 540 gtcctgcgcc ccgagctgag tatcggccgg gatgcctgcg tactgcactg ctcggtggat 600 ttcaccctgg tcgactacgc cagcctgcaa ttgctgcttg gcgaatggcg ccgccgctat 660 ctcgatccgc aatggacggc ggaaccgctg gaggcgacct tccgcgacta tgtcggcgtc 720 gagcagcgcc gacgccagtc gccagcctgg cagcgcgacc gcgactggtg gctggcgcgt 780 ctcgacgcgc taccggggcg tcccgacctg ccgctgcggg tgcagccgga cacccggtcc 840 acgcgcttcc ggcacttcca cgcgcgcctc gacgaggccg cctggcaggc gctcggcgcg 900 cgcgccggcg aacacggcct gagcgctgcc ggcgtggcct tggcggcctt cgccgagacc 960 atcggtcgct ggagccaggc accggcgttc tgtctcaacc tgacggtact caaccggccg 1020 ccgctgcatc cgcagctggc gcaggtgctc ggtgacttca ccgcgctcag cctgctggca 1080 gtggacagcc gccacggcga cagtttcgtc gagcgtgccc gacgcatcgg cgagcagatg 1140 ttcgacgacc tcgaccaccc gaccttcagc ggcgtcgacc tgctgcgcga actggcgcgc 1200 cggcgtggtc gcggcgccga tctgatgccg gtggtgttca ccagtggcat cggcagcgtg 1260 cagcgcctgc tcggcgatgg cgaggcgccg cgcgcgccac gctacatgat cagccagacc 1320 ccgcaggtct ggctggactg ccaggtcacc gaccagttcg gcggcctgga gatcggctgg 1380 gacgtacgcc tcgggttgtt ccccgagggc caggcggaag ccatgttcga cgacttcgtc 1440 gggctgctcc ggcgcctggc gcagagcccg cgcgcctgga ccgacggcga tgccacggaa 1500 cccgtcgagg cgccgccgca ggcgttgccc ggtagtgccc ggagcatcgc cgccggtttc 1560 gccgagcgtg ccctgctgac ccccgacgcc acggcgatcc acgatgccgc cggcagctac 1620 agctaccgcc aggtcgccca gcacgccagc gccctgcgcc gcgtcctgga agcgcacggc 1680 gcgggccgtg gccggcgggt cgcggtgatg ctgccgaaaa gcgccgcgca attggtcgcg 1740 gtgatcggca tcctccaggc cggcgccgcc tatgtgccgg tggacatccg ccagcctccg 1800 ctgcggcgcc aggcgatcct cgccagcgcc gaagtggtcg cgctggtctg cctggaaagc 1860 gatgtcccgg acgtcggctg cgcctgcgtg gccatcgacc ggctggccgc cgacagcgcc 1920 tggccgccac cgcccgcggc ggaggtggcg gcggacgacc tcgcctacgt gatctacacc 1980 tccggctcca ccggcacgcc aaagggcgtg atgctcagcc atgcggcggt gagcaacacg 2040 ctgctcgaca tcaaccagcg ctacggcgtc gacgccaacg accgcgtcct cggcctcgcc 2100 gagctgagct tcgacctctc ggtctacgac ttcttcggcg ccaccgcggc gggggcccag 2160 gtggtcctcc cggacccggc gcgcggcagc gatccatcgc actgggcgga actgctggaa 2220 cgccacgcca tcaccctgtg gaactcggtg ccggcccaag gccagatgct catcgattac 2280 ctggagagcg agccgcaacg tcacctgccg ggaccgcgct gcgtgctctg gtccggtgac 2340 tggattccgg tcagcctgcc gacccgctgg tggcggcgct ggccggacag cgcgctgttc 2400 agcctgggcg gcgccaccga ggcggcgatc tggtcgatcg agcagccgat ccgcccgcag 2460 cacaccgagc tggccagcat cccttatggc cgtgccctgc gcgggcagag cgtggaagtc 2520 ctggatgccc gcgggcggcg ctgcccgccg ggcgtgcgcg gcgagatcca tatcggcggg 2580 gtgggcctgg cgctcggcta cgccggcgat ccgcagcgca ccgccgaacg cttcgtccgt 2640 caccccgatg gccgtcgcct gtatcgcacc ggcgacctcg gccgctacct ggccgacggc 2700 agcatcgagt tcctcggccg cgaggacgac caggtgaaga ttcgcggcca ccgcatcgaa 2760 ctggccgaac tggacgccgc gctgtgcgct catccgcagg tcaacctggc ggccaccgtg 2820 gtgctcggcg agacccacga gcgcagcctg gccagcttcg tcaccctgca tgcgccggtg 2880 gaggctggcg aggatccgcg tacggcgctc gacgcggtgc gccagcgggc ggcccaggcc 2940 ttgcgccgcg actggggcag cgaggagggc atcgccgcgg cggtggccgc actcgaccgt 3000 gcctgcctcg cctcgttggc cgcctggctg gccggcagcg gtctgttcgc cagtgcgacg 3060 ccgctggact tagccaccct gtgccagcgc ctgggtatcg ccgaggcgcg ccagcgcctg 3120 ctgcgccact ggttgcgcca actggaggag ggcggctacc tgcgcgccga gggcgagggc 3180 tggctgggct gcgccgagcg tcccgcgcag agtccggagg acgcctggac ggcgttcgcc 3240 ggctgcgcgc cggcggcgct ctggccggcc gagctggtcg cctacctgcg tgacagcgcg 3300 caatccctcg gcgagcaact ggccgggcgg atcagcccgg cggcgctgat gttcccgcag 3360 ggctcggcgc gcatcgccga ggccatgtac agccagggcc tgcatgccca ggcgctgcac 3420 gaggccatgg ccgaggccat cgccgccatc gtcgagcgcc agccgcaacg gcgctggcgc 3480 ctgctggagc ttggcgccgg caccgccgcc gccagccgca cggtgatcgc ccggttggcg 3540 ccgctggtgc agcgaggggc ggaggtggac tacctgttca ccgacgtttc cagctacttc 3600 ctcgccgccg cccgcgagcg cttcgccgac cagccgtggg tacgcttcgg ccgcttcgac 3660 atgaacggcg atcttctcga ccagggcgtg gcgccgcact cggtggatat cctgctcagc 3720 tccggggcct tgaacaacgc gctggacacc ccggcgctgc tggccggcct gcgcgagttg 3780 ctgagcgccg acgcctggct ggtgatccag gaactgacgc gcgagcacaa cgagatcagc 3840 gtcagccaga gcctgatgat ggaaaacccg cgcgacctcc gcgacgagcg ccgccaactg 3900 ttcgtccaca ccgggcaatg gctggagtgg ctggcggcac agggtggcga cctggcttgt 3960 ggggtggtgc cgccgggcag cgctctcgac ctgcttggct acgatgtcct gctggctcgc 4020 tgcaagaccg accgcgcccg cctggagccg gccgagctgc tggccttcgt cgaagcgcgg 4080 gtgccgcgct acatgctccc ggcgcagttg cgcgtgctcg aacgcctgcc ggtcaccggc 4140 aacggcaaga tcgaccgcaa ggccctgacc ggctttgccc gccagcccca ggcggacctt 4200 cggcatggcg tcgcgcaggc accggccgac gaactggaga atgcgctgct ggcactctgg 4260 cgggaggtgc tggacaaccc gtcgctgggc gtcgagcaag acttcttcgg ggccggcggc 4320 gactcgctgt tgatcgccca gttgatcgcc cgtttgcgcg aacgactgga aagcgcccgt 4380 cggcatccgt tcgatcgcct gctacgctgg gcgctcagcc agccgacgcc gcgcggcctg 4440 gccgaacgcc tgcgcagcgc gccggaagag ggccgtgggc cagccctggc cgcggcgcgc 4500 ggcgtcgccc cggcgccggc cggcatgtcg cgcgcaccgc tcgccgaggg cgcggtggcg 4560 ctcgacccgc tggtgcgcct ggtgcccggc gagggcgtgc cgcgggtgct ggtccacgaa 4620 ggcctcggca cgctactgcc gtaccgcccg ctgcttcgcg ccctgggtga ggggcggccg 4680 ttgctggggc tggccgtgca tgacagcgac gcctacctgg cgatccccgc cgagcatctc 4740 aacgcctgcc tcggccgccg ctacgccgag gcgctccatc gcgccgggct acgcgaggtc 4800 gacctgctcg gctactgctc cggcgggctg gtcgccctgg agaccgccaa gtccctggtc 4860 cagcgcgggg tgcgcgtgcg ccaactggat atcgtctcca gctaccggat tccctaccgg 4920 gtggacgacg agcgcctgct gttgttcagc ttcgccgcga ccctcggcct ggataccgcg 4980 gcgctcggct tccccgcgcc ggaacgtctc ggccaggcgg tgcaggcggc gctcgcgcag 5040 acaccggagc gcctggtcgc cgaggcgctg gcggggctgc cgggcctggc cgatctcgtc 5100 gccctgcgcg gccgcgtgct acaggcggcc agcggtagcg ccgacgccgt cagcgtcgaa 5160 cgcgacaccc tctaccggct gttctgtcac tcggtgcgtg ccagccaggc cgaggcgccg 5220 gagccctacg tcggcgcgct gcggctgttc gtgccggacg ccggcaaccc attggtgccg 5280 cgctacgccg aggctctgga gacccaatgg cgggccgccg cgcttggcgc gtgcggcatc 5340 cacgaggtgc ccggcgggca cttcgactgc ctgggcgaag ccctggcgca atccttgtcg 5400 aaacccatgc cagaggaggc gagccgatga 5430 32 1809 PRT Pseudomonas aeruginosa 32 Met Ser Leu Gly Glu Leu Leu Glu Thr Cys Arg Ser Arg Arg Ile Glu 1 5 10 15 Leu Trp Ser Glu Ala Gly Arg Leu Arg Tyr Arg Ala Pro Gln Gly Ala 20 25 30 Leu Asp Ala Gly Leu Ala Glu Arg Leu Arg Ala Glu Arg Glu Ala Leu 35 40 45 Leu Glu His Leu Glu Gly Gly Pro Gly Trp Arg Ala Glu Pro Asp Met 50 55 60 Ala His Gln Arg Phe Pro Leu Thr Pro Val Gln Ala Ala Tyr Val Leu 65 70 75 80 Gly Arg Gln Ala Ala Phe Asp Tyr Gly Gly Asn Ala Cys Gln Leu Tyr 85 90 95 Ala Glu Tyr Asp Trp Pro Ala Asp Thr Asp Pro Ala Arg Leu Glu Ala 100 105 110 Ala Trp Asn Ala Met Val Glu Arg His Pro Met Leu Arg Ala Val Ile 115 120 125 Glu Asp Asn Ala Trp Gln Arg Val Leu Pro Glu Val Pro Trp Gln Arg 130 135 140 Leu Thr Val His Ala Cys Ala Gly Leu Asp Glu Ala Ala Phe Gln Ala 145 150 155 160 His Leu Glu Arg Val Arg Glu Arg Leu Asp His Ala Cys Ala Ala Leu 165 170 175 Asp Gln Trp Pro Val Leu Arg Pro Glu Leu Ser Ile Gly Arg Asp Ala 180 185 190 Cys Val Leu His Cys Ser Val Asp Phe Thr Leu Val Asp Tyr Ala Ser 195 200 205 Leu Gln Leu Leu Leu Gly Glu Trp Arg Arg Arg Tyr Leu Asp Pro Gln 210 215 220 Trp Thr Ala Glu Pro Leu Glu Ala Thr Phe Arg Asp Tyr Val Gly Val 225 230 235 240 Glu Gln Arg Arg Arg Gln Ser Pro Ala Trp Gln Arg Asp Arg Asp Trp 245 250 255 Trp Leu Ala Arg Leu Asp Ala Leu Pro Gly Arg Pro Asp Leu Pro Leu 260 265 270 Arg Val Gln Pro Asp Thr Arg Ser Thr Arg Phe Arg His Phe His Ala 275 280 285 Arg Leu Asp Glu Ala Ala Trp Gln Ala Leu Gly Ala Arg Ala Gly Glu 290 295 300 His Gly Leu Ser Ala Ala Gly Val Ala Leu Ala Ala Phe Ala Glu Thr 305 310 315 320 Ile Gly Arg Trp Ser Gln Ala Pro Ala Phe Cys Leu Asn Leu Thr Val 325 330 335 Leu Asn Arg Pro Pro Leu His Pro Gln Leu Ala Gln Val Leu Gly Asp 340 345 350 Phe Thr Ala Leu Ser Leu Leu Ala Val Asp Ser Arg His Gly Asp Ser 355 360 365 Phe Val Glu Arg Ala Arg Arg Ile Gly Glu Gln Met Phe Asp Asp Leu 370 375 380 Asp His Pro Thr Phe Ser Gly Val Asp Leu Leu Arg Glu Leu Ala Arg 385 390 395 400 Arg Arg Gly Arg Gly Ala Asp Leu Met Pro Val Val Phe Thr Ser Gly 405 410 415 Ile Gly Ser Val Gln Arg Leu Leu Gly Asp Gly Glu Ala Pro Arg Ala 420 425 430 Pro Arg Tyr Met Ile Ser Gln Thr Pro Gln Val Trp Leu Asp Cys Gln 435 440 445 Val Thr Asp Gln Phe Gly Gly Leu Glu Ile Gly Trp Asp Val Arg Leu 450 455 460 Gly Leu Phe Pro Glu Gly Gln Ala Glu Ala Met Phe Asp Asp Phe Val 465 470 475 480 Gly Leu Leu Arg Arg Leu Ala Gln Ser Pro Arg Ala Trp Thr Asp Gly 485 490 495 Asp Ala Thr Glu Pro Val Glu Ala Pro Pro Gln Ala Leu Pro Gly Ser 500 505 510 Ala Arg Ser Ile Ala Ala Gly Phe Ala Glu Arg Ala Leu Leu Thr Pro 515 520 525 Asp Ala Thr Ala Ile His Asp Ala Ala Gly Ser Tyr Ser Tyr Arg Gln 530 535 540 Val Ala Gln His Ala Ser Ala Leu Arg Arg Val Leu Glu Ala His Gly 545 550 555 560 Ala Gly Arg Gly Arg Arg Val Ala Val Met Leu Pro Lys Ser Ala Ala 565 570 575 Gln Leu Val Ala Val Ile Gly Ile Leu Gln Ala Gly Ala Ala Tyr Val 580 585 590 Pro Val Asp Ile Arg Gln Pro Pro Leu Arg Arg Gln Ala Ile Leu Ala 595 600 605 Ser Ala Glu Val Val Ala Leu Val Cys Leu Glu Ser Asp Val Pro Asp 610 615 620 Val Gly Cys Ala Cys Val Ala Ile Asp Arg Leu Ala Ala Asp Ser Ala 625 630 635 640 Trp Pro Pro Pro Pro Ala Ala Glu Val Ala Ala Asp Asp Leu Ala Tyr 645 650 655 Val Ile Tyr Thr Ser Gly Ser Thr Gly Thr Pro Lys Gly Val Met Leu 660 665 670 Ser His Ala Ala Val Ser Asn Thr Leu Leu Asp Ile Asn Gln Arg Tyr 675 680 685 Gly Val Asp Ala Asn Asp Arg Val Leu Gly Leu Ala Glu Leu Ser Phe 690 695 700 Asp Leu Ser Val Tyr Asp Phe Phe Gly Ala Thr Ala Ala Gly Ala Gln 705 710 715 720 Val Val Leu Pro Asp Pro Ala Arg Gly Ser Asp Pro Ser His Trp Ala 725 730 735 Glu Leu Leu Glu Arg His Ala Ile Thr Leu Trp Asn Ser Val Pro Ala 740 745 750 Gln Gly Gln Met Leu Ile Asp Tyr Leu Glu Ser Glu Pro Gln Arg His 755 760 765 Leu Pro Gly Pro Arg Cys Val Leu Trp Ser Gly Asp Trp Ile Pro Val 770 775 780 Ser Leu Pro Thr Arg Trp Trp Arg Arg Trp Pro Asp Ser Ala Leu Phe 785 790 795 800 Ser Leu Gly Gly Ala Thr Glu Ala Ala Ile Trp Ser Ile Glu Gln Pro 805 810 815 Ile Arg Pro Gln His Thr Glu Leu Ala Ser Ile Pro Tyr Gly Arg Ala 820 825 830 Leu Arg Gly Gln Ser Val Glu Val Leu Asp Ala Arg Gly Arg Arg Cys 835 840 845 Pro Pro Gly Val Arg Gly Glu Ile His Ile Gly Gly Val Gly Leu Ala 850 855 860 Leu Gly Tyr Ala Gly Asp Pro Gln Arg Thr Ala Glu Arg Phe Val Arg 865 870 875 880 His Pro Asp Gly Arg Arg Leu Tyr Arg Thr Gly Asp Leu Gly Arg Tyr 885 890 895 Leu Ala Asp Gly Ser Ile Glu Phe Leu Gly Arg Glu Asp Asp Gln Val 900 905 910 Lys Ile Arg Gly His Arg Ile Glu Leu Ala Glu Leu Asp Ala Ala Leu 915 920 925 Cys Ala His Pro Gln Val Asn Leu Ala Ala Thr Val Val Leu Gly Glu 930 935 940 Thr His Glu Arg Ser Leu Ala Ser Phe Val Thr Leu His Ala Pro Val 945 950 955 960 Glu Ala Gly Glu Asp Pro Arg Thr Ala Leu Asp Ala Val Arg Gln Arg 965 970 975 Ala Ala Gln Ala Leu Arg Arg Asp Trp Gly Ser Glu Glu Gly Ile Ala 980 985 990 Ala Ala Val Ala Ala Leu Asp Arg Ala Cys Leu Ala Ser Leu Ala Ala 995 1000 1005 Trp Leu Ala Gly Ser Gly Leu Phe Ala Ser Ala Thr Pro Leu Asp 1010 1015 1020 Leu Ala Thr Leu Cys Gln Arg Leu Gly Ile Ala Glu Ala Arg Gln 1025 1030 1035 Arg Leu Leu Arg His Trp Leu Arg Gln Leu Glu Glu Gly Gly Tyr 1040 1045 1050 Leu Arg Ala Glu Gly Glu Gly Trp Leu Gly Cys Ala Glu Arg Pro 1055 1060 1065 Ala Gln Ser Pro Glu Asp Ala Trp Thr Ala Phe Ala Gly Cys Ala 1070 1075 1080 Pro Ala Ala Leu Trp Pro Ala Glu Leu Val Ala Tyr Leu Arg Asp 1085 1090 1095 Ser Ala Gln Ser Leu Gly Glu Gln Leu Ala Gly Arg Ile Ser Pro 1100 1105 1110 Ala Ala Leu Met Phe Pro Gln Gly Ser Ala Arg Ile Ala Glu Ala 1115 1120 1125 Met Tyr Ser Gln Gly Leu His Ala Gln Ala Leu His Glu Ala Met 1130 1135 1140 Ala Glu Ala Ile Ala Ala Ile Val Glu Arg Gln Pro Gln Arg Arg 1145 1150 1155 Trp Arg Leu Leu Glu Leu Gly Ala Gly Thr Ala Ala Ala Ser Arg 1160 1165 1170 Thr Val Ile Ala Arg Leu Ala Pro Leu Val Gln Arg Gly Ala Glu 1175 1180 1185 Val Asp Tyr Leu Phe Thr Asp Val Ser Ser Tyr Phe Leu Ala Ala 1190 1195 1200 Ala Arg Glu Arg Phe Ala Asp Gln Pro Trp Val Arg Phe Gly Arg 1205 1210 1215 Phe Asp Met Asn Gly Asp Leu Leu Asp Gln Gly Val Ala Pro His 1220 1225 1230 Ser Val Asp Ile Leu Leu Ser Ser Gly Ala Leu Asn Asn Ala Leu 1235 1240 1245 Asp Thr Pro Ala Leu Leu Ala Gly Leu Arg Glu Leu Leu Ser Ala 1250 1255 1260 Asp Ala Trp Leu Val Ile Gln Glu Leu Thr Arg Glu His Asn Glu 1265 1270 1275 Ile Ser Val Ser Gln Ser Leu Met Met Glu Asn Pro Arg Asp Leu 1280 1285 1290 Arg Asp Glu Arg Arg Gln Leu Phe Val His Thr Gly Gln Trp Leu 1295 1300 1305 Glu Trp Leu Ala Ala Gln Gly Gly Asp Leu Ala Cys Gly Val Val 1310 1315 1320 Pro Pro Gly Ser Ala Leu Asp Leu Leu Gly Tyr Asp Val Leu Leu 1325 1330 1335 Ala Arg Cys Lys Thr Asp Arg Ala Arg Leu Glu Pro Ala Glu Leu 1340 1345 1350 Leu Ala Phe Val Glu Ala Arg Val Pro Arg Tyr Met Leu Pro Ala 1355 1360 1365 Gln Leu Arg Val Leu Glu Arg Leu Pro Val Thr Gly Asn Gly Lys 1370 1375 1380 Ile Asp Arg Lys Ala Leu Thr Gly Phe Ala Arg Gln Pro Gln Ala 1385 1390 1395 Asp Leu Arg His Gly Val Ala Gln Ala Pro Ala Asp Glu Leu Glu 1400 1405 1410 Asn Ala Leu Leu Ala Leu Trp Arg Glu Val Leu Asp Asn Pro Ser 1415 1420 1425 Leu Gly Val Glu Gln Asp Phe Phe Gly Ala Gly Gly Asp Ser Leu 1430 1435 1440 Leu Ile Ala Gln Leu Ile Ala Arg Leu Arg Glu Arg Leu Glu Ser 1445 1450 1455 Ala Arg Arg His Pro Phe Asp Arg Leu Leu Arg Trp Ala Leu Ser 1460 1465 1470 Gln Pro Thr Pro Arg Gly Leu Ala Glu Arg Leu Arg Ser Ala Pro 1475 1480 1485 Glu Glu Gly Arg Gly Pro Ala Leu Ala Ala Ala Arg Gly Val Ala 1490 1495 1500 Pro Ala Pro Ala Gly Met Ser Arg Ala Pro Leu Ala Glu Gly Ala 1505 1510 1515 Val Ala Leu Asp Pro Leu Val Arg Leu Val Pro Gly Glu Gly Val 1520 1525 1530 Pro Arg Val Leu Val His Glu Gly Leu Gly Thr Leu Leu Pro Tyr 1535 1540 1545 Arg Pro Leu Leu Arg Ala Leu Gly Glu Gly Arg Pro Leu Leu Gly 1550 1555 1560 Leu Ala Val His Asp Ser Asp Ala Tyr Leu Ala Ile Pro Ala Glu 1565 1570 1575 His Leu Asn Ala Cys Leu Gly Arg Arg Tyr Ala Glu Ala Leu His 1580 1585 1590 Arg Ala Gly Leu Arg Glu Val Asp Leu Leu Gly Tyr Cys Ser Gly 1595

1600 1605 Gly Leu Val Ala Leu Glu Thr Ala Lys Ser Leu Val Gln Arg Gly 1610 1615 1620 Val Arg Val Arg Gln Leu Asp Ile Val Ser Ser Tyr Arg Ile Pro 1625 1630 1635 Tyr Arg Val Asp Asp Glu Arg Leu Leu Leu Phe Ser Phe Ala Ala 1640 1645 1650 Thr Leu Gly Leu Asp Thr Ala Ala Leu Gly Phe Pro Ala Pro Glu 1655 1660 1665 Arg Leu Gly Gln Ala Val Gln Ala Ala Leu Ala Gln Thr Pro Glu 1670 1675 1680 Arg Leu Val Ala Glu Ala Leu Ala Gly Leu Pro Gly Leu Ala Asp 1685 1690 1695 Leu Val Ala Leu Arg Gly Arg Val Leu Gln Ala Ala Ser Gly Ser 1700 1705 1710 Ala Asp Ala Val Ser Val Glu Arg Asp Thr Leu Tyr Arg Leu Phe 1715 1720 1725 Cys His Ser Val Arg Ala Ser Gln Ala Glu Ala Pro Glu Pro Tyr 1730 1735 1740 Val Gly Ala Leu Arg Leu Phe Val Pro Asp Ala Gly Asn Pro Leu 1745 1750 1755 Val Pro Arg Tyr Ala Glu Ala Leu Glu Thr Gln Trp Arg Ala Ala 1760 1765 1770 Ala Leu Gly Ala Cys Gly Ile His Glu Val Pro Gly Gly His Phe 1775 1780 1785 Asp Cys Leu Gly Glu Ala Leu Ala Gln Ser Leu Ser Lys Pro Met 1790 1795 1800 Pro Glu Glu Ala Ser Arg 1805 33 1713 DNA Pseudomonas aeruginosa 33 gtgaccccgg tgctgtggcg cctgctgcgc acctatcgct ggcggctggc ggcggccatg 60 gggttgcagg ccctggccgg gctctgctcg ctgttgccct ggatgcttct cgcctggctc 120 gccgagccgc tggcgcgcgg ccaggcgcag ccggccctgc tggccctggt gctgctggcg 180 gtgctggcct ggctgggctg ccaggcgctg gccgcgcacc tggcccaccg ggtcgacgcg 240 gacctctgca acgacctgcg cctgcgcctg ctggcgcacc tgcaacggct gccgctggac 300 tggttcggtc gccagggccc ggacggcgtg gcgcgcctcg tggagcagga cgtgcgggcc 360 ctgcaccaac tgatcgcgca cgctcccaac gatctcagca acctgttggt ggtgccgctc 420 gtcgcgttgc tctggctggc ctggctgcac ccctggctgc tgctgttctg cctgctgccg 480 ctggtgctgg ccgccgccgg cttcctgctg ctgcgctcgg cgcgctaccg cgacctggtg 540 ctgcggcgca acgccgcgct ggaaaggctc tcggcggact atggcgaatt cgcccacaac 600 ctgctgctgg cccgacagta ccccggcgcc ggcatacaac agggcgccga ggcgtcggcg 660 gcggccttcg gcgaagcgtt cggcgcctgg gtgaagcggg tcggccacct cgccgcgctg 720 gtctacgtgc agttgtcgac gccctggctg ctggcctggg tcctgctcgg cgcgctggcc 780 ctggatgccc tcggcgtgcc gctggcgctc ggccaggcct gtgccttcct gctcctgctg 840 cgggccttgg ctgccccggt gcaggcgctc ggccacggcg gcgacgcgct gctgggcgcg 900 cgcgccgccg ccgagcgcct gcagcaggtg ttcgaccagg cgccgctggc cgagggccgc 960 tcgacccgcg agccggtcga tggcgcggtg gcgctgcacg gcctgggcca tgcctatgaa 1020 ggcgtggagg tcctggccga tatcgatctg gagctggagg atggcagcct ggtggccctg 1080 gtcggtccct cgggctccgg caagagcacc ctgctgcacc tgctggcgcg ctacatggac 1140 gcgcagcgcg gcgaactgga ggttggcggc ctggcactga aggacatgcc tgatgccgtg 1200 cgccatcggc atatcgcgct ggtcggccag caggcggcgg cgctggagat atccctggcc 1260 gacaacattg ccctgttccg ccccgatgcc gatctccagg agattcgcca ggcggcccgt 1320 gacgcctgcc tcgacgagcg catcatggcc ctgccgcgtg gctacgacag cgtgccggga 1380 cgcgacctgc aactgtccgg cggcgaactg caacgactgg ccctggcccg tgcgctgcta 1440 tcgccggcga gcctgttgct gctcgacgag ccaacctcgg cgctggatcc gcagaccgcc 1500 cggcaggtcc tgcgcaacct gcgcgaacgc ggcggtggcc ggacccgggt gatcgtcgcc 1560 catcgtctgg ccgaagtcag cgatgccgac ctgatcctgg tgctggtcgc tggccgtctg 1620 gtcgaacgcg gcgagcacgc ggcgctgttg gcggcggacg gcgcctatgc gcgcttgtgg 1680 cgtgaacaga acggcgcgga ggtggcggca tga 1713 34 570 PRT Pseudomonas aeruginosa 34 Met Thr Pro Val Leu Trp Arg Leu Leu Arg Thr Tyr Arg Trp Arg Leu 1 5 10 15 Ala Ala Ala Met Gly Leu Gln Ala Leu Ala Gly Leu Cys Ser Leu Leu 20 25 30 Pro Trp Met Leu Leu Ala Trp Leu Ala Glu Pro Leu Ala Arg Gly Gln 35 40 45 Ala Gln Pro Ala Leu Leu Ala Leu Val Leu Leu Ala Val Leu Ala Trp 50 55 60 Leu Gly Cys Gln Ala Leu Ala Ala His Leu Ala His Arg Val Asp Ala 65 70 75 80 Asp Leu Cys Asn Asp Leu Arg Leu Arg Leu Leu Ala His Leu Gln Arg 85 90 95 Leu Pro Leu Asp Trp Phe Gly Arg Gln Gly Pro Asp Gly Val Ala Arg 100 105 110 Leu Val Glu Gln Asp Val Arg Ala Leu His Gln Leu Ile Ala His Ala 115 120 125 Pro Asn Asp Leu Ser Asn Leu Leu Val Val Pro Leu Val Ala Leu Leu 130 135 140 Trp Leu Ala Trp Leu His Pro Trp Leu Leu Leu Phe Cys Leu Leu Pro 145 150 155 160 Leu Val Leu Ala Ala Ala Gly Phe Leu Leu Leu Arg Ser Ala Arg Tyr 165 170 175 Arg Asp Leu Val Leu Arg Arg Asn Ala Ala Leu Glu Arg Leu Ser Ala 180 185 190 Asp Tyr Gly Glu Phe Ala His Asn Leu Leu Leu Ala Arg Gln Tyr Pro 195 200 205 Gly Ala Gly Ile Gln Gln Gly Ala Glu Ala Ser Ala Ala Ala Phe Gly 210 215 220 Glu Ala Phe Gly Ala Trp Val Lys Arg Val Gly His Leu Ala Ala Leu 225 230 235 240 Val Tyr Val Gln Leu Ser Thr Pro Trp Leu Leu Ala Trp Val Leu Leu 245 250 255 Gly Ala Leu Ala Leu Asp Ala Leu Gly Val Pro Leu Ala Leu Gly Gln 260 265 270 Ala Cys Ala Phe Leu Leu Leu Leu Arg Ala Leu Ala Ala Pro Val Gln 275 280 285 Ala Leu Gly His Gly Gly Asp Ala Leu Leu Gly Ala Arg Ala Ala Ala 290 295 300 Glu Arg Leu Gln Gln Val Phe Asp Gln Ala Pro Leu Ala Glu Gly Arg 305 310 315 320 Ser Thr Arg Glu Pro Val Asp Gly Ala Val Ala Leu His Gly Leu Gly 325 330 335 His Ala Tyr Glu Gly Val Glu Val Leu Ala Asp Ile Asp Leu Glu Leu 340 345 350 Glu Asp Gly Ser Leu Val Ala Leu Val Gly Pro Ser Gly Ser Gly Lys 355 360 365 Ser Thr Leu Leu His Leu Leu Ala Arg Tyr Met Asp Ala Gln Arg Gly 370 375 380 Glu Leu Glu Val Gly Gly Leu Ala Leu Lys Asp Met Pro Asp Ala Val 385 390 395 400 Arg His Arg His Ile Ala Leu Val Gly Gln Gln Ala Ala Ala Leu Glu 405 410 415 Ile Ser Leu Ala Asp Asn Ile Ala Leu Phe Arg Pro Asp Ala Asp Leu 420 425 430 Gln Glu Ile Arg Gln Ala Ala Arg Asp Ala Cys Leu Asp Glu Arg Ile 435 440 445 Met Ala Leu Pro Arg Gly Tyr Asp Ser Val Pro Gly Arg Asp Leu Gln 450 455 460 Leu Ser Gly Gly Glu Leu Gln Arg Leu Ala Leu Ala Arg Ala Leu Leu 465 470 475 480 Ser Pro Ala Ser Leu Leu Leu Leu Asp Glu Pro Thr Ser Ala Leu Asp 485 490 495 Pro Gln Thr Ala Arg Gln Val Leu Arg Asn Leu Arg Glu Arg Gly Gly 500 505 510 Gly Arg Thr Arg Val Ile Val Ala His Arg Leu Ala Glu Val Ser Asp 515 520 525 Ala Asp Leu Ile Leu Val Leu Val Ala Gly Arg Leu Val Glu Arg Gly 530 535 540 Glu His Ala Ala Leu Leu Ala Ala Asp Gly Ala Tyr Ala Arg Leu Trp 545 550 555 560 Arg Glu Gln Asn Gly Ala Glu Val Ala Ala 565 570 35 1725 DNA Pseudomonas aeruginosa 35 atgaccctgt tcgaacgaat gcgtgcgctg cccgaagact gccgtgccgc gttgcgccgg 60 gcgagcgcct gggcggtcct ggcggcgctg ctggacgccg cttgcggcgt attgctggtg 120 ccgttggtcg aggcctggtt cgccgaaggc gcgttgccct ggcgctgggt cgccgcgttg 180 ctcggcttga gcctggcgca ggcgctgttg cagtacctgg ccctgcgtcg cggtttcgcc 240 gccggcggct cgctggcggc tggactggtg cgcagcctgg tggcgcgctt gccgcgcctg 300 gcgccgccgg cgctgcgccg ggtcgcgccg gccgaaggcc tgctgcgcgg cccggtgatg 360 caggcgatgg gcattccggc gcacctgctg gggccgctga tcgccgcgtt ggtgacgccg 420 ctcggggtga tcctcgggct gttcctgatc gacccgtcca tcgccctcgg cctgctcctt 480 gctggtgcct tcctcgccgc gctgttgcgc tggagcgggc ggcgcaatct ggcggcggag 540 gatgcccggc tggccgccga gcgcgacgcc gcacggcagt tgcaggcgtt cgccgaacgc 600 cagccactgc tgcgcgcggc gcagcgcgaa agcgtcgccc gccaggggct ggaagaggcc 660 ttgcgcagtc tccaccgcag caccctggat ctgttgcggc gcagcctgcc cagcggcctc 720 ggcttcgccc tggcggtgca ggcggcgttc gccttcgccc tgctcggcgg cgcctgggcg 780 gtggagcggc aatggctgga cggcgctcgg ctggtggccg tgctggtgct gctggtgcgc 840 ttcatcgagc cgctggccca gctcacccat ctcgaccagg cgttgcgcgg cgcctggcag 900 gcgctggata ccctgctgcg ggttttcgcc ctggctccgc tgcgcagccc cgagccgggc 960 gagcggccgc acgacgccag cctggcggcc gaggccgtgg aattgcgcct ggaagatggc 1020 cgcgccttgc tcgaggacat ttccctgagg ctggagccgg gttcgctgaa cgtcctcgtc 1080 ggaccctccg gggccggcaa gagcagcctg ctggcgctgc tcgggcggct ctacgacgtc 1140 gatgccgggc gtgtcctgct gggtggcgtg gatatccgcc ggttgagcga aacgaccctc 1200 gccgccagtc gtaacctggt gttccaggac aacggcctgt tccgcggcag cgttgcctgg 1260 aacctgcgca tggcgcgagc ggacgccgat ctcgaagcgc tgcgcgaggc ggcgcgggcg 1320 gttggcctgc tggaagagat cgaggcctgg ccgcagggct gggacagcga cgtcggtccc 1380 ggcggcgcgc tgctgtccgg cggccagcgg caacgcctgt gcctggctcg cgggctgctc 1440 tcgacggcgc cgttgctgct gctcgacgag cccaccgcca gcctcgacgc cgccagcgag 1500 gcgcaggtgc tgcgcagcct gctcgggttg cgcggccggc gcaccctgct ggtagtgacc 1560 caccgcccgg cgctggcgcg tcaggccgac caggtactgc tgctggagga ggggcgcctg 1620 cgcctcagcg gacttcacgc cgatctgctc gtccgggacg actggtatgc cggtttcgtc 1680 gggctggcgg gcgaggaaag ttccgcgacg gtcgtggatc gatag 1725 36 574 PRT Pseudomonas aeruginosa 36 Met Thr Leu Phe Glu Arg Met Arg Ala Leu Pro Glu Asp Cys Arg Ala 1 5 10 15 Ala Leu Arg Arg Ala Ser Ala Trp Ala Val Leu Ala Ala Leu Leu Asp 20 25 30 Ala Ala Cys Gly Val Leu Leu Val Pro Leu Val Glu Ala Trp Phe Ala 35 40 45 Glu Gly Ala Leu Pro Trp Arg Trp Val Ala Ala Leu Leu Gly Leu Ser 50 55 60 Leu Ala Gln Ala Leu Leu Gln Tyr Leu Ala Leu Arg Arg Gly Phe Ala 65 70 75 80 Ala Gly Gly Ser Leu Ala Ala Gly Leu Val Arg Ser Leu Val Ala Arg 85 90 95 Leu Pro Arg Leu Ala Pro Pro Ala Leu Arg Arg Val Ala Pro Ala Glu 100 105 110 Gly Leu Leu Arg Gly Pro Val Met Gln Ala Met Gly Ile Pro Ala His 115 120 125 Leu Leu Gly Pro Leu Ile Ala Ala Leu Val Thr Pro Leu Gly Val Ile 130 135 140 Leu Gly Leu Phe Leu Ile Asp Pro Ser Ile Ala Leu Gly Leu Leu Leu 145 150 155 160 Ala Gly Ala Phe Leu Ala Ala Leu Leu Arg Trp Ser Gly Arg Arg Asn 165 170 175 Leu Ala Ala Glu Asp Ala Arg Leu Ala Ala Glu Arg Asp Ala Ala Arg 180 185 190 Gln Leu Gln Ala Phe Ala Glu Arg Gln Pro Leu Leu Arg Ala Ala Gln 195 200 205 Arg Glu Ser Val Ala Arg Gln Gly Leu Glu Glu Ala Leu Arg Ser Leu 210 215 220 His Arg Ser Thr Leu Asp Leu Leu Arg Arg Ser Leu Pro Ser Gly Leu 225 230 235 240 Gly Phe Ala Leu Ala Val Gln Ala Ala Phe Ala Phe Ala Leu Leu Gly 245 250 255 Gly Ala Trp Ala Val Glu Arg Gln Trp Leu Asp Gly Ala Arg Leu Val 260 265 270 Ala Val Leu Val Leu Leu Val Arg Phe Ile Glu Pro Leu Ala Gln Leu 275 280 285 Thr His Leu Asp Gln Ala Leu Arg Gly Ala Trp Gln Ala Leu Asp Thr 290 295 300 Leu Leu Arg Val Phe Ala Leu Ala Pro Leu Arg Ser Pro Glu Pro Gly 305 310 315 320 Glu Arg Pro His Asp Ala Ser Leu Ala Ala Glu Ala Val Glu Leu Arg 325 330 335 Leu Glu Asp Gly Arg Ala Leu Leu Glu Asp Ile Ser Leu Arg Leu Glu 340 345 350 Pro Gly Ser Leu Asn Val Leu Val Gly Pro Ser Gly Ala Gly Lys Ser 355 360 365 Ser Leu Leu Ala Leu Leu Gly Arg Leu Tyr Asp Val Asp Ala Gly Arg 370 375 380 Val Leu Leu Gly Gly Val Asp Ile Arg Arg Leu Ser Glu Thr Thr Leu 385 390 395 400 Ala Ala Ser Arg Asn Leu Val Phe Gln Asp Asn Gly Leu Phe Arg Gly 405 410 415 Ser Val Ala Trp Asn Leu Arg Met Ala Arg Ala Asp Ala Asp Leu Glu 420 425 430 Ala Leu Arg Glu Ala Ala Arg Ala Val Gly Leu Leu Glu Glu Ile Glu 435 440 445 Ala Trp Pro Gln Gly Trp Asp Ser Asp Val Gly Pro Gly Gly Ala Leu 450 455 460 Leu Ser Gly Gly Gln Arg Gln Arg Leu Cys Leu Ala Arg Gly Leu Leu 465 470 475 480 Ser Thr Ala Pro Leu Leu Leu Leu Asp Glu Pro Thr Ala Ser Leu Asp 485 490 495 Ala Ala Ser Glu Ala Gln Val Leu Arg Ser Leu Leu Gly Leu Arg Gly 500 505 510 Arg Arg Thr Leu Leu Val Val Thr His Arg Pro Ala Leu Ala Arg Gln 515 520 525 Ala Asp Gln Val Leu Leu Leu Glu Glu Gly Arg Leu Arg Leu Ser Gly 530 535 540 Leu His Ala Asp Leu Leu Val Arg Asp Asp Trp Tyr Ala Gly Phe Val 545 550 555 560 Gly Leu Ala Gly Glu Glu Ser Ser Ala Thr Val Val Asp Arg 565 570 37 558 DNA Pseudomonas aeruginosa misc_feature (85)..(85) n is a, c, g, or t 37 ctctttcagc cgcacgcggc gcacctcgtg tgtgatcagt gagtggtttg caactgcggg 60 tcaaggatct ggatttccct cacangtncg atcatcgtgc gggagggcaa gggctccaag 120 gatcgggcct tgatgttacc cgagagcttg gcacccagcc tgcgcgagca gggnnaattg 180 atccggtgga tgaccttttg aatgaccttt aatagattat attactaatt aattggggac 240 cctanaggtc ccctttttta ttttaaaaat tttttcacaa aacggtttat ttncataaag 300 cttgctcaat caatcaccnt atccncggga attcggccta ggcggccaga tctgatcaag 360 agacagacct ccagctttgc atccggagcg accacacgag cgaggtcagt cactttcatc 420 gaaggaattt tcttgacata gatctcacca ccttccatgt cctcaaaggc atgccacact 480 aactcgacgc cctcctccaa agaaatcatg aaccgggtca tccgctcatc agtgataggc 540 aagacgccct tgtccttg 558 38 479 DNA Klebsiella sp. 38 acgcaggata tcttcttcat caaattgtcg atgcccgcct tcgctacgct gcggtttcag 60 tagaccgtaa cgacgctgcc aggcgcgcag tgtgaccgga ttgattccgc aacgttcggc 120 gacttcaccg atactgtaaa acgccatagc agcctcacat caacctgata ccttaatacc 180 taaactaacg aattcaggca tcctgtacaa ctctattttc ttgtacagat aaagatatca 240 ggttgcggct cacagcgccc gggaaaaaag atgaaaaaat gtttagctga tttcgcggtg 300 gttcattttt tctccggcca tgcgacggcg ggtaggcccc ccaggcgcgc gctggcgaac 360 aaattgccct gaaactgtga aataccggct gattccagcc acatccactc ttcagcacgc 420 tcaacgccga cggctgagac cgcaatctcc agagaagtac agcatttgat aatcgcctg 479 39 516 DNA Klebsiella sp. 39 gaccatgtgc tgatgaccaa taccgcctat gagccaagcc aggacttttg taccaaaatt 60 ctcgccaaac tcggcgtcac caccagctgg ttcgatccct taatcggcgc cgatatcgcc 120 cgtctggttc gccctgagac ccgcgtggtg ttcctcgaat cgcccggctc gatcaccatg 180 gaagtgcacg atgtgccggc gatagtcgcc gccgtgcgtc aggtcgcccc ggaagcgatt 240 atcatgatcg ataacacctg ggcggcgggg atcctgttta aagccctgga ttttggcatt 300 gatatttcca ttcaggcagg caccaaatac ctgatcggcc attccgacgc catggtgggc 360 accgcggtgg cgaacgcgcg ctgctggccg cagctgcgtg aaaatgccta cctgatgggg 420 caaatgctgg acgccgatac tgcctatatg accagccgcg gcctgcgaac cctgggcgtg 480 cgcctgcgtc agcatcatga aagcagcctg cgcatc 516 40 377 DNA Klebsiella sp. 40 cttttggccc cttttttgtc tttattctgg agaacttatt atggcgaaag aatttggtcg 60 cccgcagcgt gtggcccagg agatgcaaaa agagattgcc atcatcctgc agcgtgaaat 120 taaagatccg cgtctgggca tgatgaccac cgtttccggt gtggaaatgt cccgtgacct 180 ggcctatgcc aaggtgtatg tcaccttcct taacgacaaa gatgaagccg cggtgaaagc 240 gggcatcaaa gcgctgcagg aagcttctgg ctttatccgc tctctgctgg ggaaagcgat 300 gcgtctgcgc atcgtaccgg aactgacttt cttctacgac aactcactgg tggaagggat 360 gcgtatgtcc aacctgg 377 41 625 DNA Klebsiella sp. 41 gcccagcccg ctttcccgct tgcccagtta aaagccttcg tggagcagga atttgctcag 60 attaagcatg ttctgcacgg catcagcctg ctgggtcagt gcccggacag cgtcaatgcc 120 gcgctgatct gccgcggcga aaagctctcc atcgccatca tggcgggtct gctggaagcc 180 cgtggacaca aagtcagtgt cattaacccg gtcgaaaaac tgctcgccgt gggtcactat 240 ctggaatcca ccgtcgatat cgccgaatcc acccgccgca ttgccgccag ccagatcccg 300 gcagaccata tgatcctgat ggccgggttt accgccggca atgagaaagg cgagctggtg 360 gtgctggggc gtaacggctc cgactactcg gctgcggtac tggccgcctg cctgcgcgct 420 gactgctgcg aaatctggac cgatgtcgac ggagtgtaca cctgcgatcc gcgtcaggtg 480 ccggatgcgc gcctgctgaa atcgatgtct tatcaggagg cgatggagct ctcctacttt 540 ggcgcgaaag tgctgcaccc gcgcaccatt gcccctatcg cccagttcca aatcccatgc 600 ctgattaaaa ataccggcaa ccccc 625 42 355 DNA Klebsiella sp. 42 ggcgcagcgt ctgctcgtca ccgtcaagct cgaagcttaa cattgcgcca aaaccttttt 60 gctgacgcgc cgcaatttca tgcccctggt tttccggcag cgatggatga tacagctttt 120 tcaccagcgg ctgggttttc agatactcaa cgatcgccag ggcatttcgc tgcgccactt 180 ccatccgtgg agacagcgtc cgcagcccgc gcaacagcag atagctgtcg aaggcgctgc 240 cggtgacgcc

aatattattc gcccaccatg ccagttcggt gacagttgcc ggatctttgg 300 caatcaccac cccggccacc acatcggagt gaccattgag gtatttggta cagga 355 43 500 DNA Klebsiella sp. 43 gttgcgtccc aggcgggtaa acgcatcctg caggtagtca atttcgtcgt cggccagcgc 60 cagacccaga cggaggttgg cgtcaatcag cgcctgacgc ccttcgccca gcaggtcgac 120 gctggtgacc ggcgtcggct gatggtgagc gaacagcttc tcgcccgctt ccagctcgtc 180 gaagacgctc tccatcatgc ggtcatgcag ctccgccgcc accgcggccc actgcgcttc 240 ggtcagggtt gaggcttcaa cgtaatacgc cacgccgcgc tcaagacgca caacctgcgc 300 cagaccgcag ttgtgagcga tatcggtagc tttagaagac cagggagaga tggtgccagg 360 gcgaggggtc acgagcagta atttaccggt cggggtatgg ctgcttaagc tcgggccata 420 ctgaagcagt cgcgccaggc gctcgcgatc gtcagcgctc agcggggcgt tcagatcggc 480 aaaatgaata tattcggcat 500 44 439 DNA Klebsiella sp. 44 gtattggcat cgtactcctg ggctggccgg tgacaaaggc gatgcgctta tctttgctgg 60 cgaacaaata cgcatcgccc tcttccgtct ccgcgaggat ctcgagatcg gtatagtcgc 120 gaataagtcc ggccggaaaa tcagcatagc gtgagtgcgg ggccaggaaa gagtcgtcga 180 aaccgcgggt cagtaaggcg tgcggatgaa gaatatggtg ttcatagacg ccggaaatct 240 tttcggcgcg ggtctgcttg ggaatgccgt acagaatgtt cagcgcggcc tgaaccgccc 300 aacagacgaa cagcgtcgaa gtgacgtgat ccttggccca ctccagcacc tgtttgatct 360 gcggccagta agcaacatcg ttaaactcaa ccaggcctaa aggagcgccg gtaacaatca 420 ggccgtcaaa gttctgatc 439 45 297 DNA Klebsiella sp. 45 gaggttcata tgtccgtact cgatctaaac gcgcttaatg cattgccgaa agtggaacgc 60 attctggcac tcgcggaaac caacgcccaa ctggaaaagc ttgacgccga agggcgtgtg 120 gcgtgggcgc tggaaaatct gccgggaaac tatgtgctgt cgtcgagctt tggcattcag 180 gcggcggtaa gtttgcatct ggtgaatcag atccgcccgg acattccggt gatcctcacc 240 gataccggct acctgttccc ggaaacctat cagtttattg acgagctgac ggacaag 297 46 502 DNA Klebsiella sp. 46 tgttaaagcg tgcgttctac agcctgttag tcctgctcgg cctgctgctg ttgaccgtgc 60 tgggccttga ccgctggatg agctggaaaa ccgcgcccta tatctatgat gaactgcagg 120 acctgcccta ccgtcaggtc ggtgtggtgc tgggcaccgc caaatattac cgcaccggcg 180 tcatcaatca gtattaccgt taccgcatcc agggtgcgct gaacgcctac aacagcggca 240 aggtcaacta tctcctgctg agcggcgata atgctctgca aagctacaat gaaccgatga 300 ccatgcgtcg ggacctgatt aaaggcggcg tcgatcccgc ggatatcgta ctggactatg 360 ccggtttccg taccctcgac tcgatcgtcc gtacccggaa agtgttcgac accaacgact 420 tcattatcat cacccagcgc ttccactgcg aacgggcgct gtttatcgcc ctgcatatgg 480 ggatccaggc ccagtgctac gc 502 47 500 DNA Klebsiella sp. 47 cgctgaacct cctcaaacaa acgcaggccc tgcacctgtc ggctgcaggc gaccagcgtg 60 gatccgctca aacagctgca ggccgagcac cttctcaaag cgcgccagct cgcggctgac 120 cgtgggttgc gaggtgtgca gcatccgcgc cgcttcggtc aggttgccgg tggtcatcac 180 cgcgtgaaag atttcgatat gacgcaaatt gacggctggc atgcggtctc cgtgaggctc 240 ggctggaacc atatcatttt tgcatagagt cgcgataaaa cgatattttt tattcgtctg 300 tcactgtggc gtaatcagaa aaaacagcga ccaacacacg cactgcaccg gagttcttat 360 gccacactcg ctttacgcca ccgatactga cctgaccgcg gacaacctgc tgcgcctgcc 420 ggcggaattt ggctgcccgg tctgggtcta tgatgcgcag attattcgcc gccagatagc 480 ccagctcagc cagtttcgac 500 48 229 DNA Klebsiella sp. 48 ggcttccacc caaatcgctt tgtcggcaac gatttttgct aaaacggctt tgcattcttt 60 accctcttgc ccgctaagtg cggtcactct gtcataggcc gcgccgctgc tgcagcacat 120 ccagtacctg ctgagcgtta gctttcagat cttcatgccc gtgtaaacgc atcaatatgg 180 cgacgttggc ggcgacggcg gcttcgtgag cggcttcacc tttaccttg 229 49 466 DNA Klebsiella sp. 49 tggctcaacg ctgctcagtg gtgcgaggtg tcactttggt gatcacatcg gcgttgtctg 60 cacagtgaaa tcagatccag cgccgcgtcc ggttttacgc acgtagtccg gattgtgggt 120 gcctttctta acgatattca gccacggccc ttcgagatgc aggcccagcg cctggttcgg 180 atgtttttgc agatattcgc gcatcacgcg cacgccttgc ttcatcagat cgtcgctgga 240 ggtaatcagc gtcggcagga agctggtgca gcctgagcgt tcgttggcct tctgcatgat 300 ctccagcgtt tcgacagtga ccgcctctgg gctgtcgtta aactgcacgc cgccgcagcc 360 gttgagctgg acgtcgataa aaccgggggc gattattgcg ccgttgactg agcgctgctc 420 gatgtcagac ggcaaatctg ccagcggaca aagacgttcg ataaag 466 50 450 DNA Klebsiella sp. 50 ttaagcacca tatcgtaccg ctgctggcgc agcgtctgaa tgagctgcca ttgcatcttc 60 agctgatacc tttttccctg gctttttcca gcggcgatcg agaccataaa tatggtggat 120 atcggggttg gctgcgagca tatcccgggt ctcttcatac aacaggacat ccacgctggc 180 ggcggggtac tgctgtttca gcgcgtgaat aagcggcgtg atcagcagca tgtcgccatg 240 atggcgcagc ttaatgacca ggatccgcgc cgggttcaac gggccgcggg agagggtttc 300 aggcgtcata ctctgttctt catccaggat aagggttccg attctagggg atcagacaga 360 ttgagagaag cgttgtattg ctctaccatg acccgatacg tatggcctga ggacgttttc 420 gtgcacaatc ccgcaatttc tcatcacgat 450 51 450 DNA Klebsiella sp. 51 cactcaggct tgcctgtaac gcttgttcgc catcacgtaa ggtcgtatcg aaaataatga 60 cttgctggct catggtttgg atccttagtc tgtgtcctgg cgccttgttg acgagcataa 120 aaaaacccgc gccaaggcgc gggttttata gtcttgctgg aagatgactt aacgctgaac 180 gtcgcccaac agcctaccga gcaaatggca tgcgtttagt agtagtaggc tggtgatacg 240 agcggtgcga atcattgcgt caaactccag atgaaatcgt tatgctttta gagttactgg 300 atagccgttt taaagtcaac ccctggcatg gaaaaagcgt tttgggctga ctaaatgaat 360 tagcaaaatg tgctgatgta agccccattt tgccgaagat cctattttgg accgaaggcg 420 gtttatcccc aatttgtttc atttgaaaaa 450 52 575 DNA Klebsiella sp. 52 cgctgaaccg ctatccggag ccgcagccga agtgccgtga ttgagagcta cgcccgctac 60 gccgaggtca aaccggagca ggtgctggtc agccgcggcg ccgacgaagg catcgagctg 120 ctgatccgcg ccttctgtga gcccggcgaa gacgcggtgc tctactgccc gccgacctac 180 ggcatgtaca gcgtcagcgc cgagaccatc ggcgtcgagt gccgcaccgt gccgacgctg 240 gccagctggc agctcgacct gccgggcatc gaagcgcggc tggacggcgt gaaggtggtg 300 tttgtctgca gcccgaacaa cccgaccggg cagattatcg acccgcagtc gatgcgcgac 360 ctgctggaga tgacccgcgg caaagccatc gtggtggccg acgaagccta tattgaattc 420 tgcccgcagg cgacgctcgc cggctggctc agcgactatc cgcacctggt ggtgctgcgc 480 acgctgtcca aagccttcgc cctcgccggc ctgcgctgcg gcttcaccct cgccaacgcc 540 gaggtgatta acgtgctgct gaaagtgatc gcccc 575 53 375 DNA Klebsiella sp. 53 cgtatatttc atcgtacaga aaccgtaaac acaggcattg gctgattttc agtgagtgaa 60 tttaaataga cttctgccgt tttcaatgct tcggcgatgg tcacatccat atcaaggtaa 120 cggtaggttc caagacgacc gacaaaagtg atgttggttt cattctcggc caatgacaaa 180 tatttttcaa gaagagccat ttctcccatc tggcgaatag gatagtaagg aatatcattt 240 tcttcacaag cacggctata ctctttataa caaacagagc cgtcgtgttg ttcccaggga 300 gaaaaatatt tatgttcagt gatgcgagta tagggcacat ccacagaaca gtagttcatc 360 actgcgcatc cctgg 375 54 400 DNA Klebsiella sp. 54 gtacgccgat tttatatgcg tctgatatga ttccggaaaa atttagctgg ataattacct 60 acaatccgct agcgagtatg attcttagtt ggcgtgattt attcatgaat gggactctta 120 attttgagta tatttctata ctctatttta cgggaattat tttgacggtt gtcggtttgt 180 ctattttcaa taaattaaaa tatcgatttg cagagatcta aaagtgcgct ataagagcag 240 catgctaggc tatttatggt cagtagcaaa tccattgctt tttgccatga tttactattt 300 tatatttaag ctggtaatga gagtacaaat tccaaattat acagttttcc tcattaccgg 360 cttgtttccg tggcaatggt ttgccagttc ggccactaac 400 55 413 DNA Klebsiella sp. 55 cgagccaccc actgtagcgt atggatatcg cgcaagccgc cggggctgct tttcacgtcc 60 ggctcgaggt tatagctggt gccatgatag cgctgatgac ggacgttctg ctcttcgacc 120 ttggcggcga agaacttttc cgatggccag aagccgtcgc taaaaatatg tttttgcagt 180 tcaaggaaca gcgcgacgtc gccgatcagc aggcgcgatt cgattaagtt ggtggcaacg 240 gtcagatccg agagaccttc cagcaggcac tcttcgaggg tgcgtacgct gtggcccacc 300 tccagcttga cgtcccacag cagggtgagc agttcgccga ctttttgcgc ctggtcgtcc 360 ggcagttttt tacgactgag gatcagcaga tcgacgtctg agagcgggtg cag 413 56 500 DNA Klebsiella sp. 56 cttaacccgc acgctggcga aggcggccat atgggaacag aagagataga caccatcatt 60 ccggtgctgg aagagatgcg cgcaaagggg atgaacctca gcggtccgct gccggcagac 120 actctctttc agccgaaata tcttgatcat gccgatgcgg tactcgcgat gtaccacgat 180 cagggcctgc ccgtgctaaa ataccagggc tttggccgcg gcgtgaacat tacgctcggt 240 ttacctttta ttcgtacctc cgtcgaccac ggcaccgcac tggaattagc gggccaggga 300 aaagcggacg tcggcagttt tatcacggcg cttaatctcg ccatcaaaat gattgttaat 360 acccaatgaa taatcgagtc catcagggcc atttagcccg caaacgcttc gggcagaact 420 tcctcaacga tcagtttgtg atcgacagca tcgtctcggc gattaacccg cagaaaggcc 480 aggcgatggt tgaaatcggc 500 57 473 DNA Klebsiella sp. 57 gggtctgacc ccggttctgt gcatcggtga aaccgaagcc gaaaacgaag cgggcaaaac 60 ggaagaagtt tgcgcacgtc agatcgacgc cgtgctgaaa acccagggcg ctgccgcttt 120 cgaaggcgtg gttatcgctt acgaaccagt atgggctatc ggtaccggca aatcagcgac 180 cccggctcag gcgcaggcgg tgcacaaatt catccgtgac cacattgcta aagctgacgc 240 caaaatcgct gagcaagtga tcatccagta cggcggttcc gttaacgctg gcaacgccgc 300 agagctgttc acccagccgg acatcgacgg cgcgctggtt ggcggcgcct ccctgaaagc 360 tgacgctttc gcggtgatcg ttaaagcagc agaagcagcg aaaaaagcgt aattcgcttt 420 tcccggtggc gacacgcgac cgggttgact gacaaaacgt gggagcccgg cct 473 58 463 DNA Klebsiella sp. 58 ggtggcgcac cctggcgtcg tttgtgtaga aattatgaat attaatacca ggaaaattcc 60 taatttttgt gtacgctctg acgagcgcac aataaaacaa gacgaatttt tgaacaattg 120 tctttaaatt tgttaattga attgatctgt tgttgtttaa aggtatttga atttcttttg 180 tatagatatg taaattaaca ttgaaaagcc atttcaaaaa ttaaatatat ggcgaacata 240 gctattaact tatagttaac atcttcccgg gttgcctttt gatacttcgg gtaatatatt 300 tatttcgcac atcaaaataa ctcttttttc ttctgtttgt tattcatggc catctattgg 360 cgaaataagg cagagtagag ggggatgtgc ctaatatcct gcggaaggaa cgcaatgtac 420 atttacaggg aggagctgac gagccgtttc gcgatagctt tag 463 59 526 DNA Klebsiella sp. 59 ttggtggtgt gctcgcgaag aaatttaatc tgccggtcat cgtaagtttt gttgggcttg 60 gaagagtatt ttcttctgac agcatgcctt taaaattatt gcggcagttt actattgctg 120 catataaata tattgccagt aataagcgct gtatatttat gtttgaacat gaccgcgaca 180 gaaaaaaact ggctaagttg gttggactcg aagaacaaca gactattgtt attgatggtg 240 caggcattaa tccagagata tacaaatatt ctcttgaaca ggatcacgat gtccctgttg 300 tattgtttgc cagccgtatg ttgtggagta aaggactggg cgacttaatt gaagcgaaga 360 aaatattacg cagtaagaat attcacttta ctttgaatgt tgctggaatt ctggtcgaaa 420 atgataaaga tgcaatttcc cttcagggtc attgaaaatt ggcatcagca aggattaatt 480 aactggttag gtcgttcgaa taatgtttgc gatcttattg agcaat 526 60 473 DNA Klebsiella sp. 60 ttacttgccc ctttttgccg aactgaaaca aaggcccgtg ctggtgatcg gcggcggcga 60 gattgctgaa cgtaagatca agttcctgct gcgcgcccag gcgcaggtgc aggtggtcgc 120 tgaaacgctg tcaccggcgc tggccgatct ggctgcgcgc caggcactca gctggcgggc 180 gacggcattc agcgactcgc tggtggatga tgtctttctg gtgattgcgg ccaccgagga 240 tgaggcgctt aaccagcggg tgtttgcggc agctaacgcg cgctaccggt tggtcaacgt 300 ggtggataac caggcgctgt gctcgtttgt tttcccttct atcgtcgacc gttcgccgct 360 gctggtggcg atctcctcca gcggtaaagc gccggtgttg tcgcgcattc tgcgtgaaaa 420 aatcgaagcg ctgctgccga cgaatctcgg tcggctggcg gaatcagcaa gct 473 61 451 DNA Klebsiella sp. 61 agcagggcaa tggtggtcgg tttcataaca tttcctgatg atgaaagtca tattaaccgg 60 cattctaaca gcagcattca gaggggcaat gattttgggc aaccgattac gacgatcgcc 120 gcaaatgcta aaaaagggag aggggattac cagctggcgg gcttttccgc gccgagatta 180 tccagcacgg cgcgcagcgc caggccgtca ggaaagtgaa ggtccggggc gatctcgaac 240 agcggccaga gcataaagcc gcggtttttc atatcgtagt gcggaacggt caggcgctcg 300 ctgttaatga cagcatcgcc aaacagcatg atatcgaggt ccagcgtgcg cggcccccag 360 cgttcggctt tgcgcactcg cccctgctgc agttcgatgc gctgagtatg atcgagcagc 420 gtctcggggg gcagggcggt ttccagcgca a 451 62 525 DNA Klebsiella sp. 62 ggcttaacgc cagctatgtc aacgctgcgg ttatgcggat ttttcatgcc tctgcggcta 60 acagaaaaaa gccttatgat agctatacta atggggcttt ttactccgtt ttgacccgat 120 tcctgaccgg cgtcagggtc aagtcacaaa aatcatcaca attttccgtc accggcgcta 180 caatcgaccg aagtcacaat ctcaaatcag aagagtattg ctaatgaaaa acatcaaccc 240 aacgcagacc tctgcctggc aggcattaca gaaacacttc gacgaaatga aagatgtcac 300 tatcagcgag cttttcgcca aagatagcga ccgtttttct aaattttccg cgacgttcga 360 cgatctgatg ctggtggact tctccaaaaa ccgcatcact gaagagacgc tggctaaact 420 gcaggatctg gcgaaagaga ctgacctggc gggcgctatc aagtcgatgt tctcaggtga 480 gaagatcaac cgcaccgaag accgcgcggt actgcacgtc gcgct 525 63 475 DNA Klebsiella sp. 63 tgcttcatcc gcatctcctt gaaatttatt tggtcttagg cggacggtag agcgctaata 60 gctcgtccac ctttttacgc gtaccaccgt tgctgctgat gctgcgccgc accttcacaa 120 tatgcgtttc tgccgcgttt ttataccatt cctgcgtcag cggcgtgcgg tggttggaaa 180 tcagcaccgg gatgcgcttt ttcatcagcg attccgcctt ttgcgccagc agtacctgtt 240 gttccaggtt gaaactgttg gtgtggtagg cggtaaagtt cgccgtcgcc gttagcggcg 300 catagggcgg atcgcaatac accactgtgc ggctatccgc acgttgcatg cactcttcgt 360 aagattcgca gtaaaactcg gcgttttgcg ccttctcggc gaaatgatag agctcagctt 420 cggggaaata gggcttttta taacggccaa acggcacatt gaactcgccg cgcag 475 64 286 DNA Klebsiella sp. 64 tgtcaatgcg caatttggtt aaatatgtcg gtattggcct gctggtgatg gggcttgccg 60 cctgcgataa cagcgattca aaagcgccaa ccgttggcgc agcagcggag agcaatgcca 120 gcggccaggc aatcagcctg ctggatggca agctgagctt caccctgcct gcgggcatgg 180 ccgaccagag cggcaaactg ggtacccagg cgaacaatat gcacgtctac tctgacgcta 240 ccggccagaa agcggtcatc gtcatcgtcg gcgacagcac caatga 286

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed