Aluminum oxide ceramics with hydroxyapatite

Andersch; Hans ;   et al.

Patent Application Summary

U.S. patent application number 11/252377 was filed with the patent office on 2006-05-25 for aluminum oxide ceramics with hydroxyapatite. Invention is credited to Hans Andersch, Wolfgang Burger, Gert Richter, Herbert Richter.

Application Number20060110607 11/252377
Document ID /
Family ID7933740
Filed Date2006-05-25

United States Patent Application 20060110607
Kind Code A1
Andersch; Hans ;   et al. May 25, 2006

Aluminum oxide ceramics with hydroxyapatite

Abstract

The invention relates to a method for producing hydroxyapatite coated ceramics components. In a first step of the inventive method the ceramic component is provided with a Ti coating and in a second step a hydroxyapatite is applied to the Ti coating. The invention further relates to hydroxyapatite coated ceramic components produced according to the inventive method.


Inventors: Andersch; Hans; (Heiningen, DE) ; Burger; Wolfgang; (Plochingen, DE) ; Richter; Herbert; (Kongen, DE) ; Richter; Gert; (Remchingen, DE)
Correspondence Address:
    FULBRIGHT & JAWORSKI, LLP
    666 FIFTH AVE
    NEW YORK
    NY
    10103-3198
    US
Family ID: 7933740
Appl. No.: 11/252377
Filed: October 18, 2005

Related U.S. Patent Documents

Application Number Filing Date Patent Number
10168414 Nov 13, 2002
PCT/EP00/13109 Dec 21, 2000
11252377 Oct 18, 2005

Current U.S. Class: 428/432 ; 427/2.1; 427/248.1; 427/402; 427/421.1; 427/569
Current CPC Class: C04B 41/52 20130101; C23C 14/14 20130101; A61L 27/42 20130101; C04B 35/10 20130101; A61L 27/105 20130101; A61L 27/105 20130101; C04B 41/5133 20130101; C04B 41/4529 20130101; C04B 41/5048 20130101; C04B 41/4527 20130101; A61L 27/32 20130101; C04B 41/89 20130101; C04B 41/53 20130101; B05D 3/12 20130101; A61L 27/32 20130101; C04B 41/009 20130101; A61L 27/42 20130101; C04B 2111/00836 20130101; A61F 2310/00796 20130101; A61L 27/105 20130101; A61L 27/32 20130101; C04B 41/009 20130101; C04B 41/52 20130101; C04B 41/52 20130101
Class at Publication: 428/432 ; 427/402; 427/002.1; 427/248.1; 427/421.1; 427/569
International Class: B32B 17/06 20060101 B32B017/06; H05H 1/24 20060101 H05H001/24

Foreign Application Data

Date Code Application Number
Dec 21, 1999 DE 199 61 917.4

Claims



1-14. (canceled)

15. A method for the manufacture of an hydroxyapatite coated ceramic component, comprising coating a ceramic component with a titanium coating comprising at least one of titanium or TiAl6V4 alloy and applying hydroxyapatite to the titanium coating to produce the hydroxyapatite coated ceramic component, wherein the titanium coating is from 1 to 5 microns thick.

16. A method according to claim 15, further comprising roughening a surface of the ceramic component before coating with titanium.

17. A method according to claim 15, wherein said titanium coating is rough.

18. A method according to claim 15, wherein said titanium coating is adjusted to a roughness of R.sub.a.apprxeq.40 to 50 .mu.m.

19. A method according to claim 15, wherein said titanium coating is deposited onto a surface of the ceramic component by a PVD process.

20. A method according to claim 15, wherein said titanium coating comprises TiAl6V4 alloy and is applied to said ceramic component by a PVD process.

21. A method according to claim 15, wherein said titanium coating is 5 micron thick.

22. A method according to claim 15, wherein said hydroxyapatite is applied onto the Ti or TiAl6V4 coating by spraying

23. A method according to claim 15, wherein said hydroxyapatite is applied to the Ti or TiAl6V4 coating by plasma coating.

24. A method according to claim 15, wherein said ceramic component is an aluminum oxide ceramic.

25. A method according to claim 15, wherein said ceramic component is for medical use.

26. A method according to claim 15, wherein said ceramic component is a prosthesis.

27. A method according to claim 15, wherein said titanium coating is 1 micron thick.

28. A hydroxyapatite coated ceramic component prepared according to the method of claim 15.
Description



BACKGROUND AND SUMMARY OF THE INVENTION

[0001] The subject of the present invention is a method for the manufacture of ceramic components coated with hydroxyapatite, as well as the ceramic components which can be manufactured by this method.

[0002] It is known that prostheses which have a hydroxyapatite coating display an especially good ingrowth activity. Care must be taken, however, to see that the hydroxyapatite coating firmly adheres to the prosthesis. In the coating of titanium shafts with hydroxyapatite an especially great strength of adherence can be achieved when the metal surface is given a roughness of R.sub.a.apprxeq.40-50 .mu.m.

[0003] The adhesive strength of hydroxyapatite apatite on ceramic surfaces, especially on Al.sub.2O.sub.3 ceramics, is not sufficient for the desired use. Thus any direct coating of an aluminum oxide ceramic with hydroxyapatite, such as would be very advantageous for the direct fixation of the femur part of a knee prosthesis, is impossible. Even if the surface roughness is made similar to the roughness of the titanium shafts, the strength of the adhesion of hydroxyapatite is not assured. This has been proven in experiments in which ground and sand-blasted samples were used. In comparison with titanium materials the surface roughness of ceramic base materials thus treated is substantially lower. Coating tests with the standard parameters for titanium shafts resulted in no strength of adhesion between hydroxyapatite and aluminum oxide ceramic. Inasmuch as no coating adhered to aluminum oxide bodies under standard conditions, the spray parameters was also modified in the plasma coating apparatus. But even the modified process parameters did not lead to success. The cause of the poor strength of adhesion was determined to be the differences in roughness between the metal and the ceramic. A surface roughness of R.sub.a.apprxeq.30 .mu.m cannot be achieved by conventional abrasive methods.

[0004] Even methods which lead to increased depth of roughness did not bring the desired success. To produce a greater defined surface roughness, similar specimens were prepared for laser machining under various settings. In this manner it was possible to produce a lasting effect on the surfaces of the Al.sub.2O.sub.3 ceramic. While in the case of normal grinding a raw depth of no more than 1 .mu.m could be achieved, the laser treatment succeeded in producing a raw depth of R.sub.a.apprxeq.9 .mu.m. FIG. 3 shows the typical surface after the laser treatment. The lasered surface of the aluminum oxide ceramic was then subjected to plasma coating with hydroxyapatite. For the first time a few placed on this surface were detected, on which the hydroxyapatite coating could be detected. Of course, it was not possible even by this preliminary treatment to apply a continuous coating. FIGS. 4 and 5 show the surfaces of the lasered and hydroxyapatite (HA) coated specimens.

[0005] Even though it was possible for the first time to prove the deposition of hydroxyapatite on the roughened surfaces of the aluminum oxide ceramic, the strength of adhesion of the coating was very poor. Quantification of the strength of adhesion was impossible, as was the preparation of a transverse section; the coating fell off immediately. Again, when the raw depth was analyzed it was compared with that of metal materials. With an R.sub.a of 9 .mu.m the raw depth of the TiAl6V4-1 alloy (R.sub.a.apprxeq.40 .mu.m) could not be achieved. It was necessary to refrain from any further roughening of the surface in the ceramic substrate, since the aluminum oxide ceramic, unless metallic materials, has an absolute cleavage fracture tendency. If a "predamage" of 40 .mu.m is induced, this "flaw" can trigger breakage. Thus, any further increase of the roughness is impossible from the viewpoint of fracture mechanics.

[0006] The present invention is addressed to the problem of making available a method by which ceramic components can reliably be provided with a hydroxyapatite coating.

[0007] The problem to which the invention is addressed has been solved by a method with the features of the principal claim. Preferred embodiments are described in the subclaims.

BRIEF DESCRIPTION OF THE FIGURES

[0008] FIG. 1 is an SEM showing a typical surface after laser treatment.

[0009] FIG. 2 and 3 are SEMs showing the surfaces of the lasered and hydroxyapatite coated specimens.

[0010] FIGS. 4 and 5 are SEMs showing the transverse section of a lasered end and hydroxyapatite coated specimens.

[0011] FIG. 6 is an SEM showing the transverse section of a coated specimen.

[0012] FIGS. 7 and 8 are SEMs showing transverse sections of a hydroxyapatite layer.

[0013] FIG. 9 shows a typical building of layers in the preparation of transverse sections.

DETAILED DESCRIPTION

[0014] FIG. 1 shows the typical surface after the laser treatment. The entire surface of the aluminum oxide ceramic was then subjected to plasma coating with hydroxyl apatite. For the first time it was possible to detect on this surface a few spots on which the hydroxyl apatite coating could be detected. Nevertheless it was not possible even after this preliminary treatment to apply a continuous coating. FIGS. 2 and 3 show the surfaces of the lasered and hydroxyl apatite (HA) coated specimens.

[0015] Surprisingly it was possible according to the invention to coat a ceramic component, preferably a component made of aluminum oxide ceramic, with hydroxyapatite if the surface of the ceramic component is coated with a titanium layer. By the method of the invention it is surprisingly possible for the first time to deposit hydroapatic on the surface of a ceramic component, with sufficient strength of adhesion.

[0016] According to the invention, first ceramic components are provided with a thin titanium coating, for example by PVD (physical vapor deposition). According to the invention, the surface of the ceramic component can be previously roughened,--ground or lasered, for example. The thickness of the titanium layer was about 1 .mu.m; a coating 5 .mu.m thick also led to success. FIG. 6 shows the transverse section of a specimen coated in this manner.

[0017] The hydroxyapatite layer was sprayed onto this intermediate layer. The transverse section of this built-up coating is represented in FIGS. 7 and 8 at different enlargements.

[0018] Preferably, before the hydroxyapatite is applied by plasma coating, for example, the titanium intermediate layer is subjected also to a sand blasting process to improve adhesion. An especially high strength of adhesion is achieved if the titanium coating is given a roughness of R.sub.a.apprxeq.40-50 .mu.m.

[0019] A scratch test on the hydroxyapatite coating confirmed the outstanding strength of adhesion of the coating. Preparation of a transverse section was possible without problems. The measurement of the strength of adhesion was made on five different specimens. The individual values are summarized in Table 1. TABLE-US-00001 TABLE 1 Strength of adhesion of hydroxyapatite on Al.sub.2O.sub.3 with titanium primer Specimen Force [N] Tension [MPa] 1 718 2.3 2 1203 3.8 3 932 3 4 1490 4.7 5 390 1.2

[0020] From the values obtained by the strength-of-adhesion measurements it can be seen that tensions are surprisingly achieved which are in the range of that of hydroxyapatite coatings on TiAl6V4 alloys.

[0021] According to the invention, it is also possible, instead of the conventional titanium intermediate coating, an intermediate coating of the TiAl6V4 alloy can be deposited, for example by the PVD method.

[0022] FIG. 9 shows the typical building of layers in the preparation of transverse sections. The corresponding strengths of adhesion are listed in Table 2. TABLE-US-00002 Specimen Force [N] Tension [MPa] 1 582 1.9 2 700 2.2 3 400 1.3 4 498 1.6

[0023] A ceramic component in the form of a cylindrical test specimen was used in the tests. The cylinders, with a diameter of 20 mm and a thickness of 2 mm, were made by the conventional press-turn manufacture as greenbodies, subjected to hot isostatic pressure and annealed. The sintered bodies were then machined with diamond tools to achieve final shape. Other methods for the manufacture of ceramic components can, of course, also be used. Used as the material was a known aluminum oxide material, such as the one known as Biolox.RTM. material, for example.

[0024] With the present invention it is thus for the first time possible by providing a titanium intermediate coating to deposit hydroxyapatite directly onto ceramic components. The ceramic components that can be made by the method of the invention are also subject matter of the present invention.

[0025] Thus, according to the invention, ceramic components can for the first time be made, which can be used for medical purposes, for example as prostheses. Such prostheses display an improved ingrowth characteristic.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed