Method of Manufacturing Double-Sided Printed Circuit Board

Hsu; Hung-En ;   et al.

Patent Application Summary

U.S. patent application number 11/160067 was filed with the patent office on 2006-03-16 for method of manufacturing double-sided printed circuit board. Invention is credited to Shing-Fun Ho, Hung-En Hsu, Binwei Wang.

Application Number20060054588 11/160067
Document ID /
Family ID36032781
Filed Date2006-03-16

United States Patent Application 20060054588
Kind Code A1
Hsu; Hung-En ;   et al. March 16, 2006

Method of Manufacturing Double-Sided Printed Circuit Board

Abstract

The present invention provides a method of manufacturing a double-sided printed circuit board. An insulation substrate is first formed by creating a plurality of through holes on a Copper Clad Laminate (CCL) whose copper foil surface has been removed. Next, an electro-less copper layer is plated on the substrate for forming a plurality of plated through holes. After a wire pattern is formed on the substrate, a solder preventive layer is formed on top of the wire pattern. Next, a plurality of openings is created in between the solder preventive layer for exposing the contact pads. Finally, a protective layer is plated on top of the contact pads.


Inventors: Hsu; Hung-En; (Taipei City, TW) ; Wang; Binwei; (Taipei City, TW) ; Ho; Shing-Fun; (Taipei City, TW)
Correspondence Address:
    NORTH AMERICA INTELLECTUAL PROPERTY CORPORATION
    P.O. BOX 506
    MERRIFIELD
    VA
    22116
    US
Family ID: 36032781
Appl. No.: 11/160067
Filed: June 7, 2005

Current U.S. Class: 216/13 ; 216/37; 216/41; 29/846
Current CPC Class: H05K 3/108 20130101; H05K 2203/1152 20130101; H05K 3/0032 20130101; H05K 3/426 20130101; H05K 3/181 20130101; H05K 3/28 20130101; Y10T 29/49155 20150115; H05K 3/243 20130101; H05K 3/381 20130101
Class at Publication: 216/013 ; 216/041; 216/037; 029/846
International Class: H01B 13/00 20060101 H01B013/00; C23F 1/00 20060101 C23F001/00; H05K 3/02 20060101 H05K003/02

Foreign Application Data

Date Code Application Number
Sep 10, 2004 TW 093127598

Claims



1. A method of fabricating a double-sided printed circuit board, the method comprising: providing a copper clad laminate (CCL), wherein the CCL comprises an insulating substrate and at least one copper clad disposed on the surface of the insulating substrate; performing an etching process for removing the copper clad on the surface of the insulating substrate; performing a drilling process for forming a plurality of through holes in the insulating substrate; disposing a chemical copper layer on the insulating substrate and the sidewall of the through holes for forming a plurality of plated through holes; forming a wire pattern on the surface of the insulating substrate, wherein the wire pattern includes at least one contact pad; forming a solder resistant layer on the surface of the insulating substrate and forming at least one opening in the solder resistant layer for exposing the contact pad; and coating a protective layer on the surface of the contact pad.

2. The method of claim 1, wherein the drilling process is a laser drilling process.

3. The method of claim 1, wherein a surface treatment is performed on the insulating substrate for increasing the adhesiveness of the insulating substrate and the chemical copper layer before the chemical copper layer is disposed.

4. The method of claim 3, wherein the surface treatment is a surface coarsening process.

5. The method of claim 1, wherein the formation of wire pattern further comprises: transferring a photoresist pattern to the surface of the insulating substrate; forming an electroplating copper layer on the surface of the insulating substrate and the sidewall of the through holes; performing a photoresist removing process; and performing an etching process on the insulating substrate for removing the exposed chemical copper layer.

6. The method of claim 5, wherein the photo removing process is a photo stripping process.

7. The method of claim 1, wherein the protective layer is comprised of nickel (Ni).

8. The method of claim 1, wherein the protective layer is comprised of gold (Au).

9. A method of fabricating a printed circuit board, the method comprising: providing an insulating substrate; performing a drilling process of forming a plurality of through holes in the insulating substrate; disposing a chemical copper layer on the insulating substrate and the sidewall of the through holes for forming a plurality of plated through holes; and forming a wire pattern on the surface of the insulating substrate, wherein the wire pattern includes at least one contact pad.

10. The method of claim 9, wherein the drilling process is a laser drilling process.

11. The method of claim 9, wherein a surface treatment is performed on the insulating substrate for increasing the adhesiveness of the insulating substrate and the chemical copper layer before the chemical copper layer is disposed.

12. The method of claim 11, wherein the surface treatment is a surface coarsening process.

13. The method of claim 9, wherein the formation of wire pattern further comprises: transferring a photoresist pattern to the surface of the insulating substrate; forming an electroplating copper layer on the surface of the insulating substrate and the sidewall of the through holes; performing a photo removing process; and performing an etching process on the insulating substrate for removing the exposed chemical copper layer.

14. The method of claim 13, wherein the photo removing process is a photo stripping process.

15. The method of claim 9 further comprising the following steps after the wire pattern on the surface of the insulating substrate is formed: forming a solder resistant layer on the surface of the insulating substrate and forming at least one opening in the solder resistant layer for exposing the contact pad; and coating a protective layer on the surface of the contact pad.

16. The method of claim 15, wherein the protective layer is comprised of nickel (Ni).

17. The method of claim 15, wherein the protective layer is comprised of gold (Au).

18. The method of claim 9, wherein the insulating substrate is a copper clad laminate (CCL) with copper clad removed.
Description



BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The present invention relates to a method of fabricating a double-sided printed circuit board, and more particularly, to a method of fabricating a double-sided circuit board with superfine circuits and high density circuits.

[0003] 2. Description of the Prior Art

[0004] In recent history, printed circuit boards (PCBs) have been widely used for carrying various electronic components and devices. As there is demand for electronic products to be lighter, smaller, and portable, research and development of printed circuit boards is unavoidably moving toward a direction of miniaturization, higher integration, lower thickness, and the use of multiple layers.

[0005] In general, printed circuit boards having circuit layouts on both sides of the circuit boards have been widely used in numerous electrical apparatuses such as air-conditioners, telephones, and fax machines. Nevertheless, it is essential to have a "bridge", or otherwise referred to as through holes, for communicating between the circuits and electrical wires on both sides of the board. The useable area of a typical double-sided printed circuit board is often twice that of a typical single-sided printed circuit board, and in contrast to a single-sided printed circuit board, the double-sided printed circuit board is more suitable to be used for products with complex circuits.

[0006] Please refer to FIG. 1. FIG. 1 is a perspective diagram showing a double-sided printed circuit board after a laser drilling process is performed according to the prior art. In the past, laser drilling processes have always been performed on a substrate 30 covered with a copper clad 32 (together referred to as a copper clad laminate, CCL). In order to drill through the copper clad 32 and the substrate 30, enormous time and effort have to be spent. Consequently, the drilling will increase the diameters of the through holes 34, thereby reducing the amount of useful space. Moreover, the thickness of the substrate 30 will also increase significantly if additional patterns need to be added. Hence it becomes a major disadvantage for the traditional method to fabricate printed circuit boards with superfine wires and circuits with higher integration.

SUMMARY OF THE INVENTION

[0007] It is therefore an objective of the present invention to provide a method of fabricating a double-sided printed circuit board for obtaining a printed circuit board with superfine circuits and increased circuit density.

[0008] According to the preferred embodiment of the present invention, a method of fabricating a double-sided printed circuit board comprises: providing a copper clad laminate (CCL) with copper clad removed or an insulating substrate; performing a drilling process for forming a plurality of through holes in the insulating substrate; disposing a copper layer on the insulating substrate and the sidewall of the through holes for forming a plurality of plated through holes; forming a wire pattern on the surface of the insulating substrate, wherein the wire pattern includes at least one contact pad; forming a solder resistant layer on the surface of the insulating substrate and forming at least one opening in the solder resistant layer for exposing the contact pad; and coating a protective layer on the surface of the contact pad.

[0009] By performing a drilling process on a CCL with the removed copper clad, the present invention is able to reduce the amount of time and effort required for a typical drilling and etching process, and decrease the diameter of the through holes, thereby producing printed circuit board with superfine wires and increasing the overall wire integration.

[0010] These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 is a perspective diagram showing a double-sided printed circuit board after a laser drilling process is performed according to the prior art.

[0012] FIG. 2 to FIG. 8 are perspective diagrams showing the method of fabricating a double-sided printed circuit board according to the present invention.

DETAILED DESCRIPTION

[0013] Please refer to FIG. 2 to FIG. 8. FIG. 2 to FIG. 8 are perspective diagrams showing the method of fabricating a double-sided printed circuit board according to the present invention. First, a copper clad laminate (CCL) is provided, in which the CCL comprises an insulating substrate and at least one copper clad disposed on the surface of the insulating substrate. As shown in FIG. 2, a copper clad 52 is formed on both top and bottom surface of the insulating substrate 50. Next, an etching process is performed for removing the copper clad 52 on the surface of the insulating substrate 50, as shown in FIG. 3. Alternatively, the CCL can be substituted with an insulating substrate without the additional copper clad layer for saving an extra step of removing the copper clad.

[0014] As shown in FIG. 4, a laser drilling is performed on the insulating substrate 50 for forming a plurality of through holes 54 in the insulating substrate 50. Alternatively, vias can be formed instead for connecting different layers of the printed circuit board.

[0015] As shown in FIG. 5, a coarsening process is performed on the surface of the insulating substrate 50 and the through holes 54 for increasing the surface roughness of the insulating substrate 50 and each through hole 54, thereby increasing the adhesion ability of chemical copper to each surface. Next, a chemical copper layer 56 is disposed on the insulating substrate 50 and the sidewall of each through hole 54 for forming a plurality of plated through holes 57.

[0016] As shown in FIG. 6, a photoresist pattern 58, serving as photo mask, is then transferred to both sides of the insulating substrate 50. Next, an electroplating process is performed for forming an electroplating copper layer 60 on the surface of the insulating layer 50 not covered by the photoresist pattern 58 and the sidewall of each through hole 54. The copper layer 60, also serving as the electrical circuit, comprises at least one contact pad 65.

[0017] As shown in FIG. 7, a photo stripping process is performed for removing the photoresist pattern 58. Next, an etching process is performed on the insulating substrate 50 for removing the exposed chemical copper layer 56. In general, the thickness of the copper clad 52 is approximately 10-12 .mu.m whereas the thickness of the chemical copper layer 56 is only 0.1-1 .mu.m. According to the present invention, the copper clad 52 is first removed, leaving the remaining chemical copper layer 56. As a result, the surface and sidewall of the electroplating copper layer 60 can be etched at the same time during an etching process. In order words, by reducing the thickness of the entire copper layer formed on the surface of the insulating substrate 50, only the remaining chemical copper layer 56, which is much smaller in thickness compared to the copper clad 52, is etched by the etching process, thereby. By decreasing the etching thickness of the electroplating copper layer 60, the process is able to fabricate printed circuit boards that are not only smaller in size, but also with much finer wire layout and higher circuit integration.

[0018] As shown in FIG. 8, a solder resistant layer 62 is then formed on the insulating substrate. Next, an opening 64 is formed in the solder resistant layer 62 directly above the contact pad 65 for exposing the contact pad 65. Eventually, a protective layer 66 is formed on the surface of the contact pad 65, in which the protective layer 66 is comprised of materials including nickel, gold, or organic solder preservative (OSP).

[0019] In addition to the fabrication stated above, the present invention can also be utilized in multilayer printed circuit board fabrication by removing the copper clad from the upper-most layer and the lower-most layer, and stacking the boards on top of one another.

[0020] In contrast to the prior art, the present invention provides a method of fabricating a double-sided printed circuit board by performing a drilling process on a CCL with the removed copper clad or an insulating substrate. By using substrates that are much thinner than the traditional CCL, the present invention is able to reduce the amount of time and effort required for a typical drilling and etching process, decrease the diameter of the through holes, and eventually produce printed circuit boards with superfine wires and increase the overall wire integration.

[0021] Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed