Notch

Lamb; Jonathan Robert ;   et al.

Patent Application Summary

U.S. patent application number 11/022478 was filed with the patent office on 2006-02-16 for notch. This patent application is currently assigned to Lorantis Limited. Invention is credited to Margaret Jane Dallman, Gerard Francis Hoyne, Jonathan Robert Lamb.

Application Number20060034857 11/022478
Document ID /
Family ID33458905
Filed Date2006-02-16

United States Patent Application 20060034857
Kind Code A1
Lamb; Jonathan Robert ;   et al. February 16, 2006

Notch

Abstract

The present invention relates to the use of therapeutic compounds in the modification of T-cell, T-cell antigen presenting cell (APC) interactions and the interactions between pathogenic organisms and immunocompetent cells of a host. In particular it relates to the use of these compounds in the modulation of the interaction between Notch proteins and their ligand and to the use of such compounds in the therapy of conditions such as graft rejection, autoimmunity, allergy, and asthma and infectious diseases.


Inventors: Lamb; Jonathan Robert; (Edinburgh, GB) ; Dallman; Margaret Jane; (London, GB) ; Hoyne; Gerard Francis; (Mussellburgh, GB)
Correspondence Address:
    FROMMER LAWRENCE & HAUG
    745 FIFTH AVENUE- 10TH FL.
    NEW YORK
    NY
    10151
    US
Assignee: Lorantis Limited

Family ID: 33458905
Appl. No.: 11/022478
Filed: December 22, 2004

Related U.S. Patent Documents

Application Number Filing Date Patent Number
09310685 May 4, 1999 6887475
11022478 Dec 22, 2004
PCT/GB97/03058 Nov 6, 1997
09310685 May 4, 1999

Current U.S. Class: 424/185.1 ; 530/350
Current CPC Class: Y10S 424/81 20130101; C07K 2319/00 20130101; A61K 2039/5154 20130101; Y02A 50/412 20180101; Y02A 50/30 20180101; C07K 14/705 20130101; G01N 33/505 20130101; C12N 2799/027 20130101; A61K 38/00 20130101
Class at Publication: 424/185.1 ; 530/350
International Class: A61K 39/00 20060101 A61K039/00; C07K 14/705 20060101 C07K014/705

Foreign Application Data

Date Code Application Number
Nov 7, 1996 GB 9623236.8
Jul 24, 1997 GB 9715674.9
Sep 11, 1997 GB 9719350.2

Claims



1-26. (canceled)

27. A method of reducing T-cell activation comprising administering a composition comprising an isolated polynucleotide encoding a Notch ligand comprising a DSL domain to a cell of a patient in need thereof, wherein the Notch ligand is expressed and interacts with a Notch receptor, thereby reducing T-cell activation.

28. The method of claim 27 wherein the Notch ligand comprises Serrate.

29. The method of claim 27 wherein the Notch ligand comprises Delta.

30. The method of any one of claims 27-29, wherein the T-cell activation occurs with allergy, graft rejection, autoimmunity or any of allergy, graft rejection and autoimmunity in combination.

31. The method of claim of claim 30, wherein the T-cell activation occurs with allergy.

32. The method of claim 30, wherein the T-cell activation occurs with graft rejection.

33. The method of claims 30, wherein the T-cell activation occurs with autoimmunity.

34. The method of claim 30, wherein the method comprises administering the composition to the patient.
Description



[0001] The present invention relates to use of therapeutic compounds in the modification of T-cell activation. In particular it relates to their use in modulating the interaction between Notch protein family members and their ligands and to the use of such compounds in the therapy of conditions such as graft rejection, autoimmunity, allergy, asthma, infectious diseases and tumours.

[0002] The controlled interaction between T cells and between antigen presenting cells (APC) and T cells is vital to the function of the human immune system. However in certain pathological states it may be therapeutically beneficial to modify, positively or negatively, such interactions. For example, in conditions such as autoimmunity, allergy and graft rejection it is desirable to induce the downregulation of an immune response by stimulation of negative T cell or T cell-APC interaction. Models of "infectious tolerance" and "linked suppression" suggest that tolerance may be induced in a small number of T cells and that these T cells then transmit this tolerance to other T cells thus preventing an effective immunological attack. In other pathological conditions such as tumour induced immunosuppression, parasitic viral or bacterial infections, immunosuppression is a common feature. In such circumstances it would therefore be desirable to inhibit the T cell interactions passing on the infectious tolerance.

[0003] However until now the mechanisms underlying such T cell and T cell-APC interactions have not been understood.

[0004] WO 92/19734 purports to disclose the nucleotide sequences of the human Notch and Delta genes and amino acid sequences of their encoded proteins. The disclosure shows that the Notch gene family has been well characterised as essential to the correct embryological cell lineage development of insects such as Drosophila.

[0005] Proteins belonging to the Notch family are transmembrane receptors that contain several conserved peptide motifs. Each protein within the family displays characteristic extracellular EGF (epidermal growth factor)-like repeats and a juxtamembrane Lin-12/Notch motif. In addition each protein has 6-8 ankyrin repeat motifs on the cytoplasmic tail together with a PEST sequence. The Notch ligands have a diagnostic DSL domain (D. Delta, S, Serrate, L, Lag2) comprising 20-22 amino acids at the amino terminus of the protein and between 3-8 EGF-like repeats on the extracellular surface. The proteins have a short cytoplasmic tail with no conserved functional domains.

[0006] Recent evidence suggests that Notch signalling contributes to lineage commitment of immature T cells in the thymus, biasing thymocyte development towards the CD8+ lineage which is independent of MHC recognition (Robey E, et al. Cell 1996, 87:483-492). During maturation in the thymus, T cells acquire the ability to distinguish self antigens from those that are non-self, a process termed self tolerance (von Boehmer H, et al. Ann Rev Immunol. 1990;8:531). Mechanisms also exist in the periphery for the induction and maintenance of tolerance and in many respects their importance is under estimated. There are many experimental models of graft rejection, autoimmune disease and specific responses to allergens that clearly illustrate the ability to induce a state of specific unresponsiveness (tolerance or anergy) in the recipient by immunisation with an antigen. From these systems two important findings arise. Firstly, immunisation with a peptide fragment of antigen under selected conditions may inhibit specific responses not only to itself but to other regions in the same molecule provided the intact protein is used for the challenge immunisation (linked suppression; Hoyne G F, et al. J. Exp Med. 1993; 178:183. and Metzler B, Wraith D C. Int. Immunol. 1993;5:1159). Secondly, as best described in experimental models of transplantation is the phenomenon of "infectious tolerance" where it is postulated that immunocompetent cells made tolerant to a specific antigen are able to inhibit other cells from responding and further, that this second population of cells becomes regulatory and tolerant (Qin S X, et al. Science 1993;258:974). The immunological mechanisms underlying these phenomena have not so far been characterised.

[0007] The present invention arises from the discovery that the Notch receptor family and its ligands, Delta and Serrate, are expressed on the cell surface of normal adult cells of the peripheral immune system.

[0008] Hence there is provided according to the present invention, the use of a Notch-ligand in the manufacture of a medicament for use in immunotherapy.

[0009] The expression pattern of the Notch family of receptors and their ligands in the normal peripheral adult immune system has not previously been described but the present inventors have shown that T cells express Notch 1 mRNA constitutively, while Delta expression is limited to only a subset of T cells in the peripheral lymphoid tissues. Serrate expression appears restricted to a subset of antigen presenting cells (APCs) in the periphery (FIG. 1). Hence this receptor ligand family may continue to regulate cell fate decisions in the immune system as has been shown in other tissues, beyond embryonic development (Ellisen L W, et al. Cell 1991;66:649). Notch signalling may play a central role in the induction of peripheral unresponsiveness (tolerance or anergy) and may provide a physical explanation for linked suppression and infectious tolerance.

[0010] The present invention further relates to the use of a Notch-ligand in the treatment of a T cell mediated reaction. Thus, it has been observed that by exposing a population of naive T cells to a Notch-ligand expressed by an APC in the presence of an allergen or antigen, the Notch-ligand is capable of making the T cell population tolerant to said allergen or antigen. Furthermore, this T cell population, when subsequently exposed to a second population of naive T cells is capable of rendering the second population tolerant to said allergen or antigen.

[0011] Thus, the invention also relates to the use of a Notch-ligand in affecting linked tolerance and/or bystander tolerance (also known in the art as infectious tolerance).

[0012] A further embodiment of the invention relates to the use of a Notch-ligand in the modulation of the expression of a functional Notch-protein or Notch signalling pathways.

[0013] In the above described embodiments of the present invention, the Notch-ligand may be exposed to the T cells by incubating/mixing the T cells with antigen presenting cells (APCs) or the like, that express or overexpress a Notch-ligand in the presence of an allergen or antigen. The (over)expression of the Notch-ligand gene may be brought about by the APCs being transfected with a gene capable of expressing a Notch-ligand or by the APCs being exposed to an agent capable of up-regulating expression of endogenous Notch-ligand gene(s). Suitable agents that influence expression of Notch-ligands include agents that affect the expression of Delta and/or Serrate genes. For instance, for Delta expression, binding of extracellular BMPs (bone morphogenetic proteins, Wilson, P. A. and Hemmati-Brivanlou A. 1997 Neuron 18: 699-710, Hemmati-Brivanlou, A and Melton, D. 1997 Cell 88:13-17) to their receptors leads to down-regulated Delta transcription due to the inhibition of the expression of the Achaete/Scute Complex transcription factor. This complex is believed to be directly involved in the regulation of Delta expression. Thus, any agent that inhibits the binding of BMPs to their receptors is capable of producing an increase in the expression of Delta and/or Serrate. Such agents include Noggin, Chordin, Follistatin, Xnr3, FGFs, Fringe and derivatives and variants thereof (see references for noggin-Smith W. C. and Harland, R. M Cell 70:829-840, chordin-Sasai, Yet al., 1994 Cell 79: 779-790). Noggin and Chordin bind to BMPs thereby preventing activation of their signalling cascade which leads to decreased Delta transcription.

[0014] In some disease states, the body may be immuno-compromised and it may be desirable to downregulate the expression of Delta and/or Serrate in order to overcome the imposed immunosuppression. Agents that inhibit the expression of Delta and/or Serrate may be used in such circumstances. An example of agents that inhibit the expression of Delta and/or Serrate include the Toll protein (Medzhitov, R. et al., 1997 Nature 388: 394-397) BMPs and other agents that decrease or interfere with the production of Noggin, Chordin, Follistatin, Xnr3, FGFs and Fringe. Thus, the invention further relates to the use of an agent capable of downregulating the expression of Delta or Serrate proteins in the manufacture of a medicament for use in reversing bacteria infection or tumour-induced immunosuppression.

[0015] As discussed above, the invention also relates to the modification of Notch-protein expression or presentation on the cell membrane or signalling pathways. These have been shown to be involved in T-cell mediated responses that participate in the induction of tolerance (linked and/or bystander). Agents that enhance the presentation of a fully functional Notch-protein on the cell surface include matrix metalloproteinases such as the product of the Kuzbanian gene of Drosophila (Dkuz, Pan, D and Rubin, G. M. 1997 Cell 90: 271-280) and other ADAMALYSIN gene family members. Agents that reduce or interfere with its presentation as a fully functional cell membrane protein may include MMP inhibitors such as hydroxymate-based inhibitors.

[0016] The term "antigen presenting cell or the like" as used herein, is not intended to be limited to APCs. The skilled man will understand that any vehicle capable of presenting the desired Notch-ligand to the T cell population may be used for the sake of convenience the term APCs is used to refer to all these. Thus examples of suitable APCs include dendritic cells. L cells, hybridomas, lymphomas, macrophages, B cells or synthetic APCs such as lipid membranes.

[0017] When the APCs are transfected with a gene capable of expressing a Notch-ligand, the transfection may be brought about by a virus such as a retrovirus or adenovirus, or by any other vehicle or method capable of delivering a gene to the cells. These include any vehicles or methods shown to be effective in gene therapy and include retroviruses, liposomes, electroporation, other viruses such as adenovirus, adeno-associated virus, herpes virus, vaccinia, calcium phosphate precipitated DNA, DEAE dextran assisted transfection, microinjection, polyethylene glycol, protein-DNA complexes.

[0018] Using such vehicles or methods alone or in combination it is possible to site-direct the gene delivery to a particular population of cells, thus enabling the method of the present invention to be performed in vivo. For example, a virus may be used in combination with liposomes in order to increase the efficiency of DNA uptake. The site specificity of the delivery may be achieved by the inclusion of specific proteins (eg a single chain antibody reactive with CD11c for dendritic cells/macrophages) in the viral coat or liposome.

[0019] Preferably, constructs through which expression of the the gene (eg serrate) is linked to antigen expression would be used. APCs (over)expressing Serrate would therefore also express high levels of the relevant antigen and so preferentially interact with T cells of the appropriate specificity.

[0020] A further embodiment of the present invention relates to a molecule comprising a Notch-ligand moiety operably linked to a T cell allergen or antigen moiety such that upon exposure to T cells both moieties are capable of binding to their respective sites. Such a molecule is capable of rendering an antigen/allergen specific T cell tolerant to the allergen or antigen upon which the allergen or antigen moiety is based, as the specificity required of the Notch-ligand moiety is provided by the close proximity of the allergen or antigen moiety.

[0021] The antigen or allergen moiety may be, for example, a synthetic MHC-peptide complex. That is a fragment of the MHC molecule bearing the antigen groove bearing an element of the antigen. Such complexes have been described in Altman J D et al Science 1996 274: 94-6.

[0022] In a further preferred embodiment, the compound is a fusion protein comprising a segment of Notch or Notch ligand extracellular domain and an immunoglobulin F.sub.c segment, preferably IgGF.sub.c or IgMF.sub.c.

[0023] In all the above described embodiments of the present invention, it is preferable that the Notch-ligand is of the Serrate family of proteins or Delta family of proteins, derivatives, fragments or analogs thereof.

[0024] Diseased or infectious states that may be described as being mediated by T cells include any one or more of asthma, allergy, graft rejection, autoimmunity, tumour induced abberations to the T cell system and infectious diseases such as those caused by Plasmodium species, Microfilariae, Helminths, Mycobacteria, HIV, Cytomegalovirus, Pseudomonas, Toxoplasma, Echinococcus, Haemophilus influenza type B, measles, Hepatitis C or Toxicara. Thus, with use of the appropriate allergen or antigen, a Notch-ligand may be used in accordance with the present invention to treat the said disease or infection.

[0025] The invention also provides a method for detecting immune suppression induced by an invading organism. Such organisms may generate soluble forms of family members of Serrate, Notch and/or Delta or derivatives thereof or proteins that affect their expression in vivo, thus inducing infectious tolerance immunosuppression. The method comprises an assay for the presence of in vivo non-membrane bound Serrate, Delta, Notch or derivatives thereof and preferably comprises an antibody to Serrate, Delta or Notch or their derivatives.

[0026] Methods of use in screening assays for the detection of increased or decreased Notch, Delta/Serrate expression and/or processing include:

[0027] 1. Delta/Serrate, Notch and Fringe expression being assessed following exposure of isolated cells to test compounds in culture using for example:

[0028] (a) at the protein level by specific antibody staining using immunohistochemistry or flow cytometry.

[0029] (b) at the RNA level by quantitative-reverse transcriptase-polymerase chain reaction (RT-PCR). RT-PCR may be performed using a control plasmid with in-built standards for measuring endogenous gene expression with primers specific for Notch 1 and Notch 2, Serrate 1 and Serrate 2, Delta 1 and Delta 2, Delta 3 and Fringe. This construct may be modified as new ligand members are identified.

[0030] (c) at the functional level in cell adhesion assays.

[0031] Increased Delta/Serrate or Notch expression should lead to increased adhesion between cells expressing Notch and its ligands Delta/Serrate.Test cells will be exposed to a particular treatment in culture and radiolabelled or flourescein labelled target cells (transfected with Notch/Delta/Serrate protein) will be overlayed. Cell mixtures will be incubated at 37 degrees C for 2 hr. Nonadherent cells will be washed away and the level of adherence measured by the level of radioactivity/immunofluorescence at the plate surface.

[0032] Using such methods it is possible to detect compounds or Notch-ligands that affect the expression or processing of a Notch-protein or Notch-ligand. The invention also relates to compounds, or Notch-ligands detectable by these assay methods.

[0033] The invention also includes an assay method comprising contacting (a) Notch protein and a ligand capable of binding to the Notch protein with (b) a compound: and determining if the compound affects binding of the ligand to the Notch protein preferably wherein the Notch protein is associated with a T cell.

[0034] The Notch-ligands of use in the present invention are preferably Delta or Serrate family member proteins or polypeptides or derivatives thereof. These are preferably obtained using standard techniques of recombinant technology well known to the person skilled in the art. Appropriate gene sequences for use to generate such compounds of the present invention may be obtained from publications such as WO97/01571, WO 96/27610 and WO 92/19734. The invention is not however in any way limited by the Notch, Delta and Serrate invention is not however in any way limited by the Notch, Delta and Serrate sequences disclosed in these publications. More preferably, such Notch, Delta or Serrate or family members, proteins or polypeptides or derivatives therefrom are fragments of the extracellular domains of Notch, Delta or Serrate, or family members or are derivatives of such fragments. As used herein, the term "Notch ligand" further includes any ligand or ligand family member that interacts with a Notch protein family member and includes the group of proteins referred to as "toporythmic proteins" i.e. the protein product of the Delta, Serrate, Deltex and Enhancer of split genes as well as other members of this gene family identifiable by virtue of the ability of their gene sequences to hybridize to, or their homology with Notch, Delta or Serrate proteins, or the ability of their genes to display phenotypic interactions.

[0035] Notch, Delta and Serrate were first described in Drosophila and therefore represent prototypic proteins of the Notch receptor and Notch-ligand family members respectively. Multiple Notch proteins and ligands have now been described in many invertebrate and vertebrate species but their nomenclature may differ from that used in the fly. For example Notch is a homolog of Lin 12 and Glp 1, Serrate/Delta are homologs of Jagged, Apx1 and Lag-2.

[0036] Pharmaceutical formulations of the present invention may be formulated according to principles well known in the art. Thus the nature of the excipient and the amount of activity will depend upon the compound of the present invention which is to be formulated.

[0037] Preferably the pharmaceutical compositions are in unit dosage form.

[0038] Dosages of compounds of the present invention, to be administered to a patient in the form of a pharmaceutical formulation, could be determined by a suitable physician.

[0039] The preferred administration route of a formulation of the present invention is any one of the usual methods of administration including intramuscular and intra-peritoneal, intravenous injection, intranasal inhalation, lung inhalation subcutaneous, intradermal, intra-articular, intrathecal, topical, and via the alimentary tract (for example, via the Peyers patches).

[0040] The term "derivative" as used herein, in relation to proteins or polypeptides of the present invention includes any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) amino acid residues from or to the sequence providing that the resultant protein on polypeptide possesses the capability of modulating Notch-Notch ligand interactions.

[0041] The term "variant" as used herein, in relation to proteins or polypeptides of the present invention includes any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) amino acid residues from or to the sequence providing that the resultant protein on polypeptide possesses the capability of modulating Notch-Notch ligand interactions.

[0042] The term "analog" as used herein, in relation to proteins or polypeptides of the present invention includes any peptidomimetic, that is, a chemical compound that possesses the capability of modulating Notch-Notch ligand interactions in a similar manner to the parent protein or polypeptide. These include compounds that may agonise or antagonise the expression or activity of a Notch-protein or Notch-ligand.

[0043] A compound may be considered to modulate Notch-Notch ligand interactions if it is capable of either inhibiting or enhancing the interaction of Notch with its ligands, preferably to an extent sufficient to provide therapeutic efficacy.

[0044] The expression "Notch-Notch ligand" as used herein means the interaction between a Notch family member and a ligand capable of binding to one or more such member.

[0045] The term therapy as used herein should be taken to encompass diagnostic and prophylactic applications.

[0046] The term "medical" includes human and veterinary applications.

[0047] As used herein, the terms protein and polypeptide may be assumed to be synonymous, protein merely being used in a general sense to indicate a relatively longer amino acid sequence than that present in a polypeptide.

[0048] The present invention will now be described by way of non-limiting example, with reference to the accompanying drawings, in which:

[0049] FIG. 1 shows the results of in situ hybridisations carried out as described in Example 1 herein;

[0050] FIG. 2 shows the results of the experiment described in Example 4.

[0051] FIG. 3 shows the results of the experiment described in Example 5.

[0052] FIG. 4 shows the results of the experiment described in Example 6.

[0053] FIG. 5 shows the results of the experiment described in Example 7.

[0054] FIG. 6 shows the results of the experiment described in Example 8.

[0055] FIG. 7 shows the results of the experiment described in Example 9.

[0056] FIGS. 8a and 8b show the results of the experiment described in Example 10.

[0057] FIG. 9 shows the results of the experiment described in Example 11.

EXAMPLE 1

Notch, Delta and Serrate Are Expressed in the Peripheral Immune System

[0058] Antisense RNA probes specific for Notch 1, Delta 1 and Serrate 1 were synthesized and incorporated with digoxigenin labelled-UTP. Each probe was dissolved in hybridisation buffer, heated to 70.degree. C. for 5-10 minutes and added to TESPA coated slides containing 10 mm sections of spleen or thymus that had been previously fixed with 4% paraformaldehyde+PBS. Slides were hybridized overnight at 65.degree. C. The following day, slides were washed twice at 65.degree. C. and twice at room temperature (RT) with 1.times.SSC/50% Formamide/0.1% Tween 20. Slides were washed twice with 0.1M maleic acid/0.15M NaCl/0.1% tween 20 pH 7.5 (MABT) buffer at RT and then blocked for 2 h with MABT+20% goat serum+296 Boehringer blocking reagent (BBR). Slides were incubated overnight at RT with anti-digoxidenin F.sub.ab fragments. After four washes with MABT slides were washed a further two times in alkaline substrate buffer. The presence of bound anti-sense RNA probes was detected by incubating slides in substrate buffer containing NBT+BCIP in the dark. Slides were conterstained with haemotoxylin and mounted in Depx mounting medium.

[0059] Results: The results of these hybridisations are shown in FIG. 1, that shows that in a spleen from a 3 month old mouse, Delta and Serrate are expressed by isolated cells in the periarteriolar sheath and not in the germinal centre (gc). Notch is expressed in many cells again in the periarteriolar sheath.

EXAMPLE 2

Production of Delta-Fc Fusion Protein

[0060] The pIG-1 [D. Simmons, "Cloning cell surface molecules by transient surface expression in mammalian cells" pp 93-128, Cellular Interactions in Development Ed. D. Hartley, pub. Ox. Uni. Press (1993)] expression vector allows production of a fusion protein that contains the extracellular portion of Delta 1 linked to the human IgG1-F.sub.c domain. A restriction enzyme fragment that contained only the extracellular domain of the Delta 1 protein was cloned into the pIG-1 vector. The resultant plasmid was tranformed into E. Coli MC 1061, and grown in SOB containing 10 .mu.g/ml tetracycline/ampicillin. Purified vector was used to transfect COS cells in vitro. COS cells were grown to 50-75% confluency and transfected with 10 .mu.g of plasmid DNA per dish by DEAE-dextran method. At 24 h post transfection the culture medium was replaced with culture medium containing 1% FCS and cells were cultured for a further 3-6 days in vitro. Cells were spun for 5 mins/5000 rpm to pellet cells and debris, the supernatant was removed and stored until required. The Delta-Fc fusion was purified from culture supernatants by adding 2 ml of 50% slurry of protein a Sepharose (Phamacia) and rotated overnight at 4.degree. C. Sepharose beads were isolated by passing culture supernatants through a 0.45 mm filter, washed and transferred to a 10 ml plastic column. The Delta-Fc fusion construct was eluted with 2 ml of elution buffer pH 4.0. The eluate was neutralised by the addition of 1M Tris base.

EXAMPLE 3

Examples of Models In Which the Notch-ligand Signalling Pathway May Be Investigated

[0061] Peripheral tolerance to self antigens can be analysed in T cell receptor (TCR) transgenic mice in which the TCR ligand is expressed as a self antigen only in the periphery. Peripheral tolerance to transplantation antigens can be induced in several ways including recipient pre-treatment with T cell antibodies or blockade of costimulation. It is thereby possible to demonstrate both linked suppression and infectious tolerance. Peripheral tolerance to allergens may be induced by the intranasal delivery of allergen derived peptides. The expression of Notch-Notch ligands is measured on cells recruited into the airways and/or lymphoid tissues following allergen inhalation and modifications in tolerance demonstrated. Furthermore, in experimental models of infections with infectious agents, the expression of Notch-Notch ligands can be measured on the organism (pathogen) and immunocompetent cells in the host.

EXAMPLE 4

Delta Expressing Hybridomas Can Inhibit the Responses of Antigen Primed Lymphoytes

[0062] Mice were immunised with a synthetic peptide containing an immunodominant epitope of the house dust mite allergen (HDM), Der p1 (p110-31), or with ovalbumin (OVA, hen egg white protein). One week later the lymph node cells (LNCs) were removed and cell suspensions made. Lymph nodes from animals immunised with different antigens were kept separate. These cells are referred to as primed LNCs.

[0063] T cell hybridomas were transfected with either full length Delta or a control plasmid, such that delta was expressed as a membrane protein. After two days in culture the hybridomas were irradiated to prevent them from proliferating or from producing cytokines. Therefore, the only response which was measured in the assay comes from the lymph node cells alone.

[0064] The irradiated hybridomas were added in increasing numbers to cultures containing the primed LNCs. The appropriate antigen (i.e. p110-131 or OVA) was added and the cells cultured for 24 hours. Supernatent fluids were then collected and assayed for IL-2 (a major T cell growth factor) content. Proliferative responses of the lymph node cells after 72 hours were also measured.

[0065] Results: Lymph node cells cultured in the presence of irradiated hybridomas that expressed a control plasmid still proliferated as shown in FIG. 2 and secreted IL-2 when stimulated in culture with the appropriate antigen. Their responsiveness was maintained at a ratio of 1:1 LNC:hybridoma. In contrast, the proliferative response and production of IL-2 by lymph node cells was reduced by at least 88% when cultured in the presence of hybridomas expressing full length Delta (at a ratio of 1:1) with the appropriate antigen. Hybridomas transfected with control virus (open circles), delta virus (open squares). FIG. 2 shows the data presented as counts per minute (cpm) .sup.3H-Tdr incorporation 72 hours after the beginning of culture. Cpm of lymph node cells (LNC) cultured with hybridomas expressing delta or control constructs. Total numbers of cells/well=4.times.10.sup.5 (i.e the number of LNCs varies according to the ratio of hybridomas to LNC, so the cpm will vary). p110-131 LNC are cells primed with Der p1 (p110-131), OVA LNC are cells primed with OVA. 2BB11 and 2BC3 are two different Der p1 reactive hybridomas.

[0066] These data show that inhibition of responses by Delta expressing T cells can be delivered in trans. Although in this culture system Delta expressing T hybridomas specific for Derp 1 were able to inhibit the response of OVA primed T cells, this apparent lack of specificity appears to be due to the close proximity of cells forced by the culture system. Indeed, the data shown in FIGS. 8a and 8b show that in animals the delta expressing hybridoma must share antigen specificity with the immunogen for there to be an modulating effect on the immune response to that immunogen. In this case it appears that the delta expressing T cells can only be brought into proximity with the responding T cells if they recognise the same antigen on the same APC.

EXAMPLE 5

Serrate Expressing Dendritic Cells Prevent Antigen Priming of T Lymphocytes

[0067] Dendritic cells (DCs) are the primary antigen presenting cell in the immune system and are critical for stimulating T cell responses. DCs were obtained from the spleen and transfected with either a retrovirus allowing expression of the full length Serrate protein or a control retrovirus. The DCs were also pulsed with the HDM peptide p110-131 for 3 hours in vitro at 37.degree. C. The DCs were then washed and used to immunise naive mice subcutaneously using 10.sup.5 cells/mouse. After 7 days the draining LNCs were recovered and restimulated in culture with peptide at 4.times.10.sup.5 cells/well. Since the mice were only immunised with peptide-pulsed DCs this gives us a measure of the ability of these cells to prime an immune response.

[0068] Results: FIG. 3 shows the data presented as cpm of LNCs 72 hours after culture from animals immunised with control transfected (open circles) or serrated transfected (open squares) dendritic cells (DCs).

[0069] Immunisation of mice with DCs expressing Serrate resulted in a 10 fold decrease in the number of cells recovered from lymph nodes when compared to immunisation with control DCs. We further found that LNCs from mice immunised with DCs+Serrate failed to proliferate (93% reduction on control values, FIG. 3) or secrete IL-2 when compared to cells from mice immunised with control DCs.

EXAMPLE 6

Delta Expressing T Cell Hybridomas Are Able to Inhibit the Development of Immunity to Der p 1 Antigen in Animals

[0070] T cell hybridomas (reactive with Der p 1) were transfected with a retrovirus containing mouse Delta such that Delta was expressed on the cell surface or with a control retrovirus. C57 BL mice were injected with 10 million irradiated hybridomas i.p. and immunised with 50 microgram Der p 1 emulsified in Complete Freunds Adjuvant (CFA) sub-cutaneously. After 7 days the draining lymph node cells were collected and cultured at 4.times.10.sup.5 cells/well with Der p 1 (10 microgram/ml), peptide 110-131 of Der p 1 (10 microgram/ml), or peptide 81-102 of Der p 1 (10 microgram/ml). Cultures were incubated at 37.degree. C. for 72 hours and tritiated thymidine added for the final 8 hours of culture. Results of proliferation assays of cells from animals injected with control transfected (puro) or Delta transfected (Delta-FL) are shown in FIG. 4.

[0071] Results: LNC from animals injected with control virus transfected hybridomas produced high levels of IL-2 and proliferated in culture in the presence of Der p 1, peptide 110-131 or peptide 81-102. In contrast, cells from animals injected with Delta expressing hybridomas made no response to any of the Der p 1 antigens (FIG. 4).

EXAMPLE 7

Delta Expressing Human T Cells Can Block the Response of Normal T Cells

[0072] An influenza-reactive human T cell clone (HA1.7) was transfected with mouse Delta using a retroviral construct to allow cell surface expression of the Delta protein. Mixing of this cell population with normal HA1.7 prevented subsequent reactivity of these normal HA1.7 with peptide HA306-318 and antigen presenting cells. 5.times.10.sup.5 HA1.7 were mixed with 1.times.10.sup.6 irradiated DRB1*0101 pripheral blood mononuclear cells (PBMC)+1 microgram HA306-318 and cultured at 37.degree. C. 6 hours later 5% lymphocult (IL-2 containing medium) was added in a total volume of 1 ml. 24 hours after the initiation of culture Delta or control retrovirus or nothing was added. 7 days after the start of culture, cells were harvested, washed and the transfected cells irradiated. The transfected cells were mixed at a ratio of 2:1 with untreated HA1.7 and cultured for 2 days. Mixed cultures were then harvested, washed and plated out using 2.times.10.sup.4 viable cells/well together with

[0073] a) 2.5.times.10.sup.4 DRB1*0101 PBMCs (medium)

[0074] b) 2.5.times.10.sup.4 DRB1*0101 PBMCs+peptide (Ag+APC)

[0075] c) 5% lymphocult (IL-2)

[0076] Cells were harvested after 68 hours with the addition of tritiated thymidine for the final 8 hours. The results are shown in FIG. 5.

[0077] Results: Following culture alone or with control virus transfected HA1.7, untreated HA1.7 responds well to peptide+antigen presenting cells. Incubation with Delta transfected irradiated HA1.7 completely prevents the response of untreated HA1.7 to antigen+APC. However, such cells respond as well as untreated or control virus incubated HA1.7 to IL-2, indicating that they are not simply unable to proliferate (FIG. 5).

EXAMPLE 8

Serrate Expression by Antigen Presenting Cells Prevents T Cell Responses

[0078] Clone HA1.7 was mixed with peptide HA306-318 (1.0 microgram/ml) in the presence of L cells expressing HLA-DRB1*0101 (as antigen presenting cells), using 2.times.10.sup.4 of each cell type. The L cells were transfected with either control (puro) or serrate (serrate L cells) expressing retrovirus. The proliferative response was measured after 72 hours following addition of tritiated thymidine for the last 8 hours of culture. Results are shown in FIG. 6 for HA1.7 cultures:

[0079] a) alone

[0080] b) +IL-2

[0081] c) +peptide+DRB1*0101-L cells

[0082] d) +peptide+DRB1*0101-L cells transfected with control virus

[0083] e) +peptide+DRB1*0101-L cells transfected with serrate virus

[0084] Results: HA1.7 stimulated by serrate expressing L cells responded poorly to antigen when compared with those stimulated by control transfected L cells (FIG. 6).

EXAMPLE 9

Serrate Expressing Antigen Presenting Cells Induce Regulatory T Cells

[0085] Clone HA1.7 was mixed with peptide HA306-318 and L cells (expressing DRB1*0101 as antigen presenting cells) in the presence of 2% IL-2. The L cells were transfected with either control or serrate expressing retrovirus. After 7 days in culture, the HA1.7 were harvested washed and irradiated before being mixed with fresh HA1.7 (using 2.times.10.sup.4 each population). Cells were cultured for a further 2 days before being stimulated with peptide (1.0 microgram/ml)+normal antigen presenting cells (DRB1*0101 PBMCs). The proliferative response was measured after 72 hours following addition of tritiated thymidine for the last 8 hours of culture. The results are shown in FIG. 7 for fresh HA1.7 cultured:

[0086] a) alone

[0087] b) +IL-2

[0088] c) +control virus induced HA1.7, then peptide+DRB1*0101 PBMC

[0089] d) +serrate virus induced HA1.7, then peptide+DRB1*0101 PBMC

[0090] Results: HA1.7 induced by serrate expressing L cells (Serrate induced HA1.7) prevented the response of normal HA1.7 to a normal antigenic stimulus (FIG. 7). This shows the ability of cells tolerised by exposure to serrate, to pass on their tolerance to a naive cell population (infectious/bystander tolerance).

EXAMPLE 10

The Regulation Induced by Delta Expressing T Cells is Antigen Specific

[0091] Mice were injected with 10.sup.7 T cell hybridoma cells transduced with either delta or control retrovirus. The hybridoma was 2BC3 which has specificity for peptide 110-131 of Der p1. At the same time, animals received either Der p1 or ovalbumin emulsified in complete Freund's adjuvant. 7 days later, lymph node cells were removed and 4.times.10.sup.5 cells were cultured in the presence of Der p1 or ovalbumin (using the same antigen that they had already been immunised with). The production of IL-2 was measured 24 hours after the start of culture. Stimulation indexes for IL-2 production are shown in FIGS. 8a (responses of animals immunised with Der p1) and 8b (responses of animals immunised with OVA) for animals injected with hybridomas transfected with control (puro) or Delta (delta) retrovirus.

[0092] Results: The response to Der p1 in animals injected with delta expressing 2BC3 hybridomas was virtually completely abolished whereas the response to ovalbumin was unaffected. These data are shown in FIGS. 8a and 8b where each dot represents the IL-2 production by an individual mouse to antigen as a stimulation index (SI) of control responses (no antigen added).

EXAMPLE 11

Delta is Expressed on T Cells During the Induction of Tolerance

[0093] HA1.7 was cultured in the presence of peptide HA306-318 (50 .mu.g/ml) in the absence of APCs. Such conditions result in a state of tolerance in the HA1.7. After 0, 30, 120, 240 or 360 minutes, cells (1.5.times.10.sup.6) were harvested, pelleted and frozen. RNA was prepared from cell pellets by homogenisation in guanidium thiocyanate solution followed by CsCl density centrifugation. 1 .mu.g RNA was converted into cDNA using an oligo dT primer. Of the resultant cDNA, 1/20th was used in PCR (40 cycles) using primers specific for the human delta homolog. PCR samples were analysed by gel electrophoresis (FIG. 9) wherein lane 1, marker, lane 2, t=0, lane 3, t30 min, lane 4, t=120 min, lane 5, t=240 min, lane 6, t=360 min and lane 7 is the negative control.

[0094] Results: Resting HA1.7 did not express Delta mRNA, but transcripts appeared within 2 hours of initiation of the tolerisation protocol.

EXAMPLE 12

Analysis of Notch 1, Serrate 1 and Delta 1 Expression During the Induction of Tolerance by Immunohistology and In Site Hybridisation.

[0095] C57 BL/6J mice were treated intranasally with either 100 microgram Der p1 peptide 110-131 or a control solution (phosphate buffered saline, PBS) on three consecutive days. Intranasal adminstration of antigen in this way is known to induce tolerance to the antigen. Some animals were then rested for 2 weeks before being rechallenged with antigen by injection of 50 .mu.g Der p1/CFA subcutaneously into the base of the tail. The superficial lymph nodes and spleens of animals were harvested at various time points thereafter (d0 being the first day of intranasal treatment or antigen rechallenge) and processed for immunohistology or in situ hybridisation. For immunohistology, tissues were frozen and 3 .mu.m sections cut, fixed in ice cold acetone and stained with polyclonal antibodies specific for Notch 1 and Serrate 1. Bound antibody was detected using a horseradish peroxidase conjugated goat anti-rabbit antibody developed with diaminobenzidine as the substrate. Delta 1 specific antibodies were not available for the study. For in situ hybridisation, frozen tissues were sectioned and fixed in 4% paraformaldehyde. Sections were hybridised with digoxigenin coupled antisense RNA probes specific for Notch 1, Serrate 1 and Delta 1 at 65.degree. C. Bound probe was detected by alkaline phosphatase conjugated goat anti-digoxigenin antibody developed using NBT and BCIP as the substrate. Data shown in tables 1 and 2 are for immunohistology and in situ hybridisation respectively. Data represent the analysis of tissues from 5 separate mice after intranasal peptide alone (PBS/p 110-131 primary) or intranasal and subcutaneous antigen (PBS/p110-131 rechallenge.

[0096] + weak staining, ++ moderate staining, +++ stong staining.

Results:

[0097] Basal levels of Notch, Delta and Serrate are expressed in control mice receiving only PBS. Mice dosed intranasally with PBS and subcutaneously with antigen showed a moderate increase in expression of all three molecules within 8 days of rechallenge. Animals given either intranasal peptide alone or intranasal peptide followed by antigen rechallenge showed the same pattern of increased expression of Notch Delta and Serrate which was more rapid and greater than in control mice. TABLE-US-00001 TABLE 1 Expression of Notch and Serrate proteins during the induction of tolerance treatment day 0 day 1 day 4 day 8 day 12 Notch 1 PBS primary + + + + + PBS rechallenge + + + +/+ +/+ p110-131 primary + + ++ +++ +++ p110-131 rechallenge + + ++ +++ +++ Senate 1 PBS primary + + + + + PBS rechallenge + + + +/+ +/+ p110-131 primary + + ++ +++ +++ p110-131 rechallenge + + ++ +++ +++

[0098] TABLE-US-00002 TABLE 2 Expression of Notch,Delta and Serrate transcripts during the induction of tolerance treatment day 0 day 1 day 4 day 8 day 12 Notch 1 PBS primary + + + + + PBS rechallenge + + + +/+ +/+ p110-131 primary + + ++ +++ +++ p110-131 rechallenge + + ++ +++ +++ Senate 1 PBS primary + + + + + PBS rechallenge + + + +/+ +/+ p110-131 primary + + ++ +++ +++ p110-131 rechallenge + + ++ +++ +++ Delta 1 PBS primary + + + + + PBS rechallenge + + + +/+ +/+ p110-131 primary + + ++ +++ +++ p110-131 rechallenge + + ++ +++ +++

[0099] Other modifications of the present invention will be apparent to those skilled in the present art.

Sequence CWU 0

0

SEQUENCE LISTING <160> NUMBER OF SEQ ID NOS: 32 <210> SEQ ID NO 1 <211> LENGTH: 2892 <212> TYPE: DNA <213> ORGANISM: Drosophila sp. <400> SEQUENCE: 1 gaattcggag gaattattca aaacataaac acaataaaca atttgagtag ttgccgcaca 60 cacacacaca cacagcccgt ggattattac actaaaagcg acactcaatc caaaaaatca 120 gcaacaaaaa catcaataaa catgcattgg attaaatgtt tattaacagc attcatttgc 180 ttcacagtca tcgtgcaggt tcacagttcc ggcagctttg agttgcgcct gaagtacttc 240 agcaacgatc acgggcggga caacgagggt cgctgctgca gcggggagtc ggacggagcg 300 acgggcaagt gcctgggcag ctgcaagacg cggtttcgcg tctgcctaaa gcactaccag 360 gccaccatcg acaccacctc ccagtgcacc tacggggacg tgatcacgcc cattctcggc 420 gagaactcgg tcaatctgac cgacgcccag cgcttccaga acaagggctt cacgaatccc 480 atccagttcc ccttctcgtt ctcatggccg ggtaccttct cgctgatcgt cgaggcctgg 540 catgatacga acaatagcgg caatgcgcga accaacaagc tcctcatcca gcgactcttg 600 gtgcagcagg tactggaggt gtcctccgaa tggaagacga acaagtcgga atcgcagtac 660 acgtcgctgg agtacgattt ccgtgtcacc tgcgatctca actactacgg atccggctgt 720 gccaagttct gccggccccg cgacgattca tttggacact cgacttgctc ggagacgggc 780 gaaattatct gtttgaccgg atggcagggc gattactgtc acatacccaa atgcgccaaa 840 ggctgtgaac atggacattg cgacaaacgc aatcaatgcg tttgccaact gggctggaag 900 ggagccttgt gcaacgagtg cgttctggaa ccgaactgca tccatggcac ctgcaacaaa 960 ccctggactt gcatctgcaa cgagggttgg ggaggcttgt actgcaacca ggatctgaac 1020 tactgcacca accacagacc ctgcaagaat ggcggaacct gcttcaacac cggcgaggga 1080 ttgtacacat gcaaatgcgc tccaggatac agtggtgatg attgcgaaaa tgagatctac 1140 tcctgcgatg ccgatgtcaa tccctgccag aatggtggta cctgcatcga tgagccgcac 1200 acaaaaaccg gctacaagtg tcattgcgcc aacggctgga gcggaaagat gtgcgaggag 1260 aaagtgctca cgtgttcgga caaaccctgt catcagggaa tctgccgcaa cgttcgtcct 1320 ggcttgggaa gcaagggtca gggctaccag tgcgaatgtc ccattggcta cagcggaccc 1380 aactgcgatc tccagctgga caactgcagt ccgaatccat gcataaacgg tggaagctgt 1440 cagccgagcg gaaagtgtat ttgcccagcg ggattttcgg gaacgagatg cgagaccaac 1500 attgacgatt gtcttggcca ccagtgcgag aacggaggca cctgcataga tatggtcaac 1560 caatatcgct gccaatgcgt tcccggtttc catggcaccc actgtagtag caaagttgac 1620 ttgtgcctca tcagaccgtg tgccaatgga ggaacctgct tgaatctcaa caacgattac 1680 cagtgcacct gtcgtgcggg atttactggc aaggattgct ctgtggacat cgatgagtgc 1740 agcagtggac cctgtcataa cggcggcact tgcatgaacc gcgtcaattc gttcgaatgc 1800 gtgtgtgcca atggtttcag gggcaagcag tgcgatgagg agtcctacga ttcggtgacc 1860 ttcgatgccc accaatatgg agcgaccaca caagcgagag ccgatggttt gaccaatgcc 1920 caggtagtcc taattgctgt tttctccgtt gcgatgcctt tggtggcggt tattgcggcg 1980 tgcgtggtct tctgcatgaa gcgcaagcgt aagcgtgctc aggaaaagga cgacgcggag 2040 gccaggaagc agaacgaaca gaatgcggtg gccacaatgc atcacaatgg cagtggggtg 2100 ggtgtagctt tggcttcagc ctctctgggc ggcaaaactg gcagcaacag cggtctcacc 2160 ttcgatggcg gcaacccgaa tatcatcaaa aacacctggg acaagtcggt caacaacatt 2220 tgtgcctcag cagcagcagc ggcggcggcg gcagcagcgg cggacgagtg tctcatgtac 2280 ggcggatatg tggcctcggt ggcggataac aacaatgcca actcatactt ttgtgtggct 2340 ccgctacaaa gagccaagtc gcaaaagcaa ctcaacaccg atcccacgct catgcaccgc 2400 ggttcgccgg caggcagctc agccaaggga gcgtctggcg gaggaccggg agcggcggag 2460 ggcaagagga tctctgtttt aggcgagggt tcctactgta gccagcgttg gccctcgttg 2520 gcggcggcgg gagtggccgg agcctgttca tcccagctaa tggctgcagc ttcggcagcg 2580 ggcagcggag cggggacggc gcaacagcag cgatccgtgg tctgcggcac tccgcatatg 2640 taactccaaa aatccggaag ggctcctggt aaatccggag aaatccgcat ggaggagctg 2700 acagcacata cacaaagaaa agactgggtt gggttcaaaa tgtgagagag acgccaaaat 2760 gttgttgttg attgaagcag tttagtcgtc acgaaaaatg aaaaatctgt aacaggcata 2820 actcgtaaac tccctaaaaa atttgtatag taattagcaa agctgtgacc cagccgtttc 2880 gatcccgaat tc 2892 <210> SEQ ID NO 2 <211> LENGTH: 833 <212> TYPE: PRT <213> ORGANISM: Drosophila sp. <400> SEQUENCE: 2 Met His Trp Ile Lys Cys Leu Leu Thr Ala Phe Ile Cys Phe Thr Val 1 5 10 15 Ile Val Gln Val His Ser Ser Gly Ser Phe Glu Leu Arg Leu Lys Tyr 20 25 30 Phe Ser Asn Asp His Gly Arg Asp Asn Glu Gly Arg Cys Cys Ser Gly 35 40 45 Glu Ser Asp Gly Ala Thr Gly Lys Cys Leu Gly Ser Cys Lys Thr Arg 50 55 60 Phe Arg Val Cys Leu Lys His Tyr Gln Ala Thr Ile Asp Thr Thr Ser 65 70 75 80 Gln Cys Thr Tyr Gly Asp Val Ile Thr Pro Ile Leu Gly Glu Asn Ser 85 90 95 Val Asn Leu Thr Asp Ala Gln Arg Phe Gln Asn Lys Gly Phe Thr Asn 100 105 110 Pro Ile Gln Phe Pro Phe Ser Phe Ser Trp Pro Gly Thr Phe Ser Leu 115 120 125 Ile Val Glu Ala Trp His Asp Thr Asn Asn Ser Gly Asn Ala Arg Thr 130 135 140 Asn Lys Leu Leu Ile Gln Arg Leu Leu Val Gln Gln Val Leu Glu Val 145 150 155 160 Ser Ser Glu Trp Lys Thr Asn Lys Ser Glu Ser Gln Tyr Thr Ser Leu 165 170 175 Glu Tyr Asp Phe Arg Val Thr Cys Asp Leu Asn Tyr Tyr Gly Ser Gly 180 185 190 Cys Ala Lys Phe Cys Arg Pro Arg Asp Asp Ser Phe Gly His Ser Thr 195 200 205 Cys Ser Glu Thr Gly Glu Ile Ile Cys Leu Thr Gly Trp Gln Gly Asp 210 215 220 Tyr Cys His Ile Pro Lys Cys Ala Lys Gly Cys Glu His Gly His Cys 225 230 235 240 Asp Lys Arg Asn Gln Cys Val Cys Gln Leu Gly Trp Lys Gly Ala Leu 245 250 255 Cys Asn Glu Cys Val Leu Glu Pro Asn Cys Ile His Gly Thr Cys Asn 260 265 270 Lys Pro Trp Thr Cys Ile Cys Asn Glu Gly Trp Gly Gly Leu Tyr Cys 275 280 285 Asn Gln Asp Leu Asn Tyr Cys Thr Asn His Arg Pro Cys Lys Asn Gly 290 295 300 Gly Thr Cys Phe Asn Thr Gly Glu Gly Leu Tyr Thr Cys Lys Cys Ala 305 310 315 320 Pro Gly Tyr Ser Gly Asp Asp Cys Glu Asn Glu Ile Tyr Ser Cys Asp 325 330 335 Ala Asp Val Asn Pro Cys Gln Asn Gly Gly Thr Cys Ile Asp Glu Pro 340 345 350 His Thr Lys Thr Gly Tyr Lys Cys His Cys Ala Asn Gly Trp Ser Gly 355 360 365 Lys Met Cys Glu Glu Lys Val Leu Thr Cys Ser Asp Lys Pro Cys His 370 375 380 Gln Gly Ile Cys Arg Asn Val Arg Pro Gly Leu Gly Ser Lys Gly Gln 385 390 395 400 Gly Tyr Gln Cys Glu Cys Pro Ile Gly Tyr Ser Gly Pro Asn Cys Asp 405 410 415 Leu Gln Leu Asp Asn Cys Ser Pro Asn Pro Cys Ile Asn Gly Gly Ser 420 425 430 Cys Gln Pro Ser Gly Lys Cys Ile Cys Pro Ala Gly Phe Ser Gly Thr 435 440 445 Arg Cys Glu Thr Asn Ile Asp Asp Cys Leu Gly His Gln Cys Glu Asn 450 455 460 Gly Gly Thr Cys Ile Asp Met Val Asn Gln Tyr Arg Cys Gln Cys Val 465 470 475 480 Pro Gly Phe His Gly Thr His Cys Ser Ser Lys Val Asp Leu Cys Leu 485 490 495 Ile Arg Pro Cys Ala Asn Gly Gly Thr Cys Leu Asn Leu Asn Asn Asp 500 505 510 Tyr Gln Cys Thr Cys Arg Ala Gly Phe Thr Gly Lys Asp Cys Ser Val 515 520 525 Asp Ile Asp Glu Cys Ser Ser Gly Pro Cys His Asn Gly Gly Thr Cys 530 535 540 Met Asn Arg Val Asn Ser Phe Glu Cys Val Cys Ala Asn Gly Phe Arg 545 550 555 560 Gly Lys Gln Cys Asp Glu Glu Ser Tyr Asp Ser Val Thr Phe Asp Ala 565 570 575 His Gln Tyr Gly Ala Thr Thr Gln Ala Arg Ala Asp Gly Leu Thr Asn 580 585 590 Ala Gln Val Val Leu Ile Ala Val Phe Ser Val Ala Met Pro Leu Val 595 600 605 Ala Val Ile Ala Ala Cys Val Val Phe Cys Met Lys Arg Lys Arg Lys 610 615 620 Arg Ala Gln Glu Lys Asp Asp Ala Glu Ala Arg Lys Gln Asn Glu Gln 625 630 635 640 Asn Ala Val Ala Thr Met His His Asn Gly Ser Gly Val Gly Val Ala 645 650 655 Leu Ala Ser Ala Ser Leu Gly Gly Lys Thr Gly Ser Asn Ser Gly Leu 660 665 670 Thr Phe Asp Gly Gly Asn Pro Asn Ile Ile Lys Asn Thr Trp Asp Lys 675 680 685

Ser Val Asn Asn Ile Cys Ala Ser Ala Ala Ala Ala Ala Ala Ala Ala 690 695 700 Ala Ala Ala Asp Glu Cys Leu Met Tyr Gly Gly Tyr Val Ala Ser Val 705 710 715 720 Ala Asp Asn Asn Asn Ala Asn Ser Tyr Phe Cys Val Ala Pro Leu Gln 725 730 735 Arg Ala Lys Ser Gln Lys Gln Leu Asn Thr Asp Pro Thr Leu Met His 740 745 750 Arg Gly Ser Pro Ala Gly Ser Ser Ala Lys Gly Ala Ser Gly Gly Gly 755 760 765 Pro Gly Ala Ala Glu Gly Lys Arg Ile Ser Val Leu Gly Glu Gly Ser 770 775 780 Tyr Cys Ser Gln Arg Trp Pro Ser Leu Ala Ala Ala Gly Val Ala Gly 785 790 795 800 Ala Cys Ser Ser Gln Leu Met Ala Ala Ala Ser Ala Ala Gly Ser Gly 805 810 815 Ala Gly Thr Ala Gln Gln Gln Arg Ser Val Val Cys Gly Thr Pro His 820 825 830 Met <210> SEQ ID NO 3 <211> LENGTH: 6464 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 3 gaattcccct cccccctttt tccatgcagc tgatctaaaa gggaataaaa ggctgcgcat 60 aatcataata ataaaagaag gggagcgcga gagaaggaaa gaaagccggg aggtggaaga 120 ggagggggag cgtctcaaag aagcgatcag aataataaaa ggaggccggg ctctttgcct 180 tctggaacgg gccgctcttg aaagggcttt tgaaaagtgg tgttgttttc cagtcgtgca 240 tgctccaatc ggcggagtat attagagccg ggacgcggcc gcaggggcag cggcgacggc 300 agcaccggcg gcagcaccag cgcgaacagc agcggcggcg tcccgagtgc ccgcggcggc 360 gcgcgcagcg atgcgttccc cacggacacg cggccggtcc gggcgccccc taagcctcct 420 gctcgccctg ctctgtgccc tgcgagccaa ggtgtgtggg gcctcgggtc agttcgagtt 480 ggagatcctg tccatgcaga acgtgaacgg ggagctgcag aacgggaact gctgcggcgg 540 cgcccggaac ccgggagacc gcaagtgcac ccgcgacgag tgtgacacat acttcaaagt 600 gtgcctcaag gagtatcagt cccgcgtcac ggccgggggg ccctgcagct tcggctcagg 660 gtccacgcct gtcatcgggg gcaacacctt caacctcaag gccagccgcg gcaacgaccc 720 gaaccgcatc gtgctgcctt tcagtttcgc ctggccgagg tcctatacgt tgcttgtgga 780 ggcgtgggat tccagtaatg acaccgttca acctgacagt attattgaaa aggcttctca 840 ctcgggcatg atcaacccca gccggcagtg gcagacgctg aagcagaaca cgggcgttgc 900 ccactttgag tatcagatcc gcgtgacctg tgatgactac tactatggct ttggctgtaa 960 taagttctgc cgccccagag atgacttctt tggacactat gcctgtgacc agaatggcaa 1020 caaaacttgc atggaaggct ggatgggccc cgaatgtaac agagctattt gccgacaagg 1080 ctgcagtcct aagcatgggt cttgcaaact cccaggtgac tgcaggtgcc agtacggctg 1140 gcaaggcctg tactgtgata agtgcatccc acacccggga tgcgtccacg gcatctgtaa 1200 tgagccctgg cagtgcctct gtgagaccaa ctggggcggc cagctctgtg acaaagatct 1260 caattactgt gggactcatc agccgtgtct caacggggga acttgtagca acacaggccc 1320 tgacaaatat cagtgttcct gccctgaggg gtattcagga cccaactgtg aaattgctga 1380 gcacgcctgc ctctctgatc cctgtcacaa cagaggcagc tgtaaggaga cctccctggg 1440 ctttgagtgt gagtgttccc caggctggac cggccccaca tgctctacaa acattgatga 1500 ctgttctcct aataactgtt cccacggggg cacctgccag gacctggtta acggatttaa 1560 gtgtgtgtgc cccccacagt ggactgggaa aacgtgccag ttagatgcaa atgaatgtga 1620 ggccaaacct tgtgtaaacg ccaaatcctg taagaatctc attgccagct actactgcga 1680 ctgtcttccc ggctggatgg gtcagaattg tgacataaat attaatgact gccttggcca 1740 gtgtcagaat gacgcctcct gtcgggattt ggttaatggt tatcgctgta tctgtccacc 1800 tggctatgca ggcgatcact gtgagagaga catcgatgaa tgtgccagca acccctgttt 1860 gaatgggggt cactgtcaga atgaaatcaa cagattccag tgtctgtgtc ccactggttt 1920 ctctggaaac ctctgtcagc tggacatcga ttattgtgag cctaatccct gccagaacgg 1980 tgcccagtgc tacaaccgtg ccagtgacta tttctgcaag tgccccgagg actatgaggg 2040 caagaactgc tcacacctga aagaccactg ccgcacgacc ccctgtgaag tgattgacag 2100 ctgcacagtg gccatggctt ccaacgacac acctgaaggg gtgcggtata tttcctccaa 2160 cgtctgtggt cctcacggga agtgcaagag tcagtcggga ggcaaattca cctgtgactg 2220 taacaaaggc ttcacgggaa catactgcca tgaaaatatt aatgactgtg agagcaaccc 2280 ttgtagaaac ggtggcactt gcatcgatgg tgtcaactcc tacaagtgca tctgtagtga 2340 cggctgggag ggggcctact gtgaaaccaa tattaatgac tgcagccaga acccctgcca 2400 caatgggggc acgtgtcgcg acctggtcaa tgacttctac tgtgactgta aaaatgggtg 2460 gaaaggaaag acctgccact cacgtgacag tcagtgtgat gaggccacgt gcaacaacgg 2520 tggcacctgc tatgatgagg gggatgcttt taagtgcatg tgtcctggcg gctgggaagg 2580 aacaacctgt aacatagccc gaaacagtag ctgcctgccc aacccctgcc ataatggggg 2640 cacatgtgtg gtcaacggcg agtcctttac gtgcgtctgc aaggaaggct gggaggggcc 2700 catctgtgct cagaatacca atgactgcag ccctcatccc tgttacaaca gcggcacctg 2760 tgtggatgga gacaactggt accggtgcga atgtgccccg ggttttgctg ggcccgactg 2820 cagaataaac atcaatgaat gccagtcttc accttgtgcc tttggagcga cctgtgtgga 2880 tgagatcaat ggctaccggt gtgtctgccc tccagggcac agtggtgcca agtgccagga 2940 agtttcaggg agaccttgca tcaccatggg gagtgtgata ccagatgggg ccaaatggga 3000 tgatgactgt aatacctgcc agtgcctgaa tggacggatc gcctgctcaa aggtctggtg 3060 tggccctcga ccttgcctgc tccacaaagg gcacagcgag tgccccagcg ggcagagctg 3120 catccccatc ctggacgacc agtgcttcgt ccacccctgc actggtgtgg gcgagtgtcg 3180 gtcttccagt ctccagccgg tgaagacaaa gtgcacctct gactcctatt accaggataa 3240 ctgtgcgaac atcacattta cctttaacaa ggagatgatg tcaccaggtc ttactacgga 3300 gcacatttgc agtgaattga ggaatttgaa tattttgaag aatgtttccg ctgaatattc 3360 aatctacatc gcttgcgagc cttccccttc agcgaacaat gaaatacatg tggccatttc 3420 tgctgaagat atacgggatg atgggaaccc gatcaaggaa atcactgaca aaataatcga 3480 tcttgttact aaacgtgatg gaaacagctc gctgattgct gccgttgaag aagtaagagt 3540 tcagaggcgg cctctgaaga acagaacaga tttccttgtt cccttgctga gctctgtctt 3600 aactgtggct tggatctgtt gcttggtgac ggccttctac tggtgcctgc ggaagcggcg 3660 gaagccgggc agccacacac actcagcctc tgaggacaac accaccaaca acgtgcggga 3720 gcagctgaac cagatcaaaa accccattga gaaacatggg gccaacacgg tccccatcaa 3780 ggattacgag aacaagaact ccaaaatgtc taaaataagg acacacaatt ctgaagtaga 3840 agaggacgac atggacaaac accagcagaa agcccggttt gccaagcagc cggcgtacac 3900 gctggtagac agagaagaga agccccccaa cggcacgccg acaaaacacc caaactggac 3960 aaacaaacag gacaacagag acttggaaag tgcccagagc ttaaaccgaa tggagtacat 4020 cgtatagcag accgcgggca ctgccgccgc taggtagagt ctgagggctt gtagttcttt 4080 aaactgtcgt gtcatactcg agtctgaggc cgttgctgac ttagaatccc tgtgttaatt 4140 tagtttgaca agctggctta cactggcaat ggtagttctg tggttggctg ggaaatcgag 4200 tggcgcatct cacagctatg caaaaagcta gtcaacagta cccctggttg tgtgtcccct 4260 tgcagccgac acggtctcgg atcaggctcc caggagctgc ccagccccct ggtactttga 4320 gctcccactt ctgccagatg tctaatggtg atgcagtctt agatcatagt tttatttata 4380 tttattgact cttgagttgt ttttgtatat tggttttatg atgacgtaca agtagttctg 4440 tatttgaaag tgcctttgca gctcagaacc acagcaacga tcacaaatga ctttattatt 4500 tatttttttt aattgtattt ttgttgttgg gggaggggag actttgatgt cagcagttgc 4560 tggtaaaatg aagaatttaa agaaaaaatg tccaaaagta gaactttgta tagttatgta 4620 aataattctt ttttattaat cactgtgtat atttgattta ttaacttaat aatcaagagc 4680 cttaaaacat cattcctttt tatttatatg tatgtgttta gaattgaagg tttttgatag 4740 cattgtaagc gtatggcttt atttttttga actcttctca ttacttgttg cctataagcc 4800 aaaaaggaaa gggtgttttg aaaatagttt attttaaaac aataggatgg gctacacgta 4860 cataggtaaa taatagcacc gtactggtta tgatgatgaa aataactgga aacttgaaag 4920 cttgtggtaa tggcagataa agatggttca cctgggaaat taaaacttga atggttgtac 4980 agaaaagcac agagtggaat gcacatcaat gacagtaagg gagttagttc taggaacagc 5040 tcctgaacag taagattccc gcaatagtct ccgcctcgtt cgtctatggt atgcatccca 5100 ttcattttct tcttctgatt attgtcatct ttccctttgc caaatgggca gttattgttt 5160 cagggagaga agctgctcat tggccaatca ttctggtgtg cagtgctcca tcggattcta 5220 catgtccaac aaggcatgtc tggatgatgc aatgtctgtc tgacccccgg aattccgtgc 5280 agagacaaca ttctagacag atatacactt tttattatta acaaactttg gccacaacct 5340 ttgatgtata aattgccgga tttccccagt cctttcattg tggctttgga caggagcagg 5400 ctcacttgtc tgcttcaggc tgcctttctc ttgggttgca cctcagttct tacttattta 5460 tttattttga gtggagcata ggggcctctt ccaaaatggg tagagctcag gggctttctt 5520 attgaaatgg tcacatgata aaaacgggct gaaaaaggag agttccagga gaaaagccca 5580 gaaaaggccc ctcctcagaa gacagccttt aagcctcttg cttactgaag gaagccccac 5640 cttctagcac tgaggccggg tctgatcttc cagaggagtt ggaggagtcc atgagaatgg 5700 ccaccattct tgcttgctgc tgctgatgtt gcagttttga gagaacagcg ggatccttgt 5760 tgtcctctag agacttgagt ctgtcactga cattttttca gttcctttgc tcatagacca 5820 tacgaggaat tagtgatgtg tcagttgaga gttcacaatc tcattgttca tttaattcac 5880 tttaaagttg tcaatttctg tgtgagtaac ctgtaaaaga cacctttcca gaagagtttt 5940 gccgtctgtt tgaaaaaaaa atctttataa actttcctaa gtatctggat ttggattcct 6000 tatttggaga gaaaatgtac cctgtctcca ccaaaaatac aaaaattagc caggcttggt 6060 ggtgcacacc ggtaatccca gcaactctgg agactaaggc aggaagaatc gcttgaccca 6120 ggagggtcga ggctacaatg agttgaaacc gcgccactgc actccagcct gggcgacagt 6180 gcgaggccct gtctcaaaaa taaaataaaa taaataaata aattagccag atactgtgtg 6240 cacgcctgca gtcccagcta ttctggaagc tgaggtggga agatggttaa gcctgagagg 6300 acaaagctgc agtgagtcat gtttgcatca ctgcactcca gcctgggtga cagagcaaga 6360 ccctgtctaa aaaacaaaaa caggccgggt gtggtggctc atgcctgcca tcccagtgct 6420

ttgggaggca gaggttggca taatcccagc gctctgggaa ttcc 6464 <210> SEQ ID NO 4 <211> LENGTH: 1218 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 4 Met Arg Ser Pro Arg Thr Arg Gly Arg Ser Gly Arg Pro Leu Ser Leu 1 5 10 15 Leu Leu Ala Leu Leu Cys Ala Leu Arg Ala Lys Val Cys Gly Ala Ser 20 25 30 Gly Gln Phe Glu Leu Glu Ile Leu Ser Met Gln Asn Val Asn Gly Glu 35 40 45 Leu Gln Asn Gly Asn Cys Cys Gly Gly Ala Arg Asn Pro Gly Asp Arg 50 55 60 Lys Cys Thr Arg Asp Glu Cys Asp Thr Tyr Phe Lys Val Cys Leu Lys 65 70 75 80 Glu Tyr Gln Ser Arg Val Thr Ala Gly Gly Pro Cys Ser Phe Gly Ser 85 90 95 Gly Ser Thr Pro Val Ile Gly Gly Asn Thr Phe Asn Leu Lys Ala Ser 100 105 110 Arg Gly Asn Asp Pro Asn Arg Ile Val Leu Pro Phe Ser Phe Ala Trp 115 120 125 Pro Arg Ser Tyr Thr Leu Leu Val Glu Ala Trp Asp Ser Ser Asn Asp 130 135 140 Thr Val Gln Pro Asp Ser Ile Ile Glu Lys Ala Ser His Ser Gly Met 145 150 155 160 Ile Asn Pro Ser Arg Gln Trp Gln Thr Leu Lys Gln Asn Thr Gly Val 165 170 175 Ala His Phe Glu Tyr Gln Ile Arg Val Thr Cys Asp Asp Tyr Tyr Tyr 180 185 190 Gly Phe Gly Cys Asn Lys Phe Cys Arg Pro Arg Asp Asp Phe Phe Gly 195 200 205 His Tyr Ala Cys Asp Gln Asn Gly Asn Lys Thr Cys Met Glu Gly Trp 210 215 220 Met Gly Pro Glu Cys Asn Arg Ala Ile Cys Arg Gln Gly Cys Ser Pro 225 230 235 240 Lys His Gly Ser Cys Lys Leu Pro Gly Asp Cys Arg Cys Gln Tyr Gly 245 250 255 Trp Gln Gly Leu Tyr Cys Asp Lys Cys Ile Pro His Pro Gly Cys Val 260 265 270 His Gly Ile Cys Asn Glu Pro Trp Gln Cys Leu Cys Glu Thr Asn Trp 275 280 285 Gly Gly Gln Leu Cys Asp Lys Asp Leu Asn Tyr Cys Gly Thr His Gln 290 295 300 Pro Cys Leu Asn Gly Gly Thr Cys Ser Asn Thr Gly Pro Asp Lys Tyr 305 310 315 320 Gln Cys Ser Cys Pro Glu Gly Tyr Ser Gly Pro Asn Cys Glu Ile Ala 325 330 335 Glu His Ala Cys Leu Ser Asp Pro Cys His Asn Arg Gly Ser Cys Lys 340 345 350 Glu Thr Ser Leu Gly Phe Glu Cys Glu Cys Ser Pro Gly Trp Thr Gly 355 360 365 Pro Thr Cys Ser Thr Asn Ile Asp Asp Cys Ser Pro Asn Asn Cys Ser 370 375 380 His Gly Gly Thr Cys Gln Asp Leu Val Asn Gly Phe Lys Cys Val Cys 385 390 395 400 Pro Pro Gln Trp Thr Gly Lys Thr Cys Gln Leu Asp Ala Asn Glu Cys 405 410 415 Glu Ala Lys Pro Cys Val Asn Ala Lys Ser Cys Lys Asn Leu Ile Ala 420 425 430 Ser Tyr Tyr Cys Asp Cys Leu Pro Gly Trp Met Gly Gln Asn Cys Asp 435 440 445 Ile Asn Ile Asn Asp Cys Leu Gly Gln Cys Gln Asn Asp Ala Ser Cys 450 455 460 Arg Asp Leu Val Asn Gly Tyr Arg Cys Ile Cys Pro Pro Gly Tyr Ala 465 470 475 480 Gly Asp His Cys Glu Arg Asp Ile Asp Glu Cys Ala Ser Asn Pro Cys 485 490 495 Leu Asn Gly Gly His Cys Gln Asn Glu Ile Asn Arg Phe Gln Cys Leu 500 505 510 Cys Pro Thr Gly Phe Ser Gly Asn Leu Cys Gln Leu Asp Ile Asp Tyr 515 520 525 Cys Glu Pro Asn Pro Cys Gln Asn Gly Ala Gln Cys Tyr Asn Arg Ala 530 535 540 Ser Asp Tyr Phe Cys Lys Cys Pro Glu Asp Tyr Glu Gly Lys Asn Cys 545 550 555 560 Ser His Leu Lys Asp His Cys Arg Thr Thr Pro Cys Glu Val Ile Asp 565 570 575 Ser Cys Thr Val Ala Met Ala Ser Asn Asp Thr Pro Glu Gly Val Arg 580 585 590 Tyr Ile Ser Ser Asn Val Cys Gly Pro His Gly Lys Cys Lys Ser Gln 595 600 605 Ser Gly Gly Lys Phe Thr Cys Asp Cys Asn Lys Gly Phe Thr Gly Thr 610 615 620 Tyr Cys His Glu Asn Ile Asn Asp Cys Glu Ser Asn Pro Cys Arg Asn 625 630 635 640 Gly Gly Thr Cys Ile Asp Gly Val Asn Ser Tyr Lys Cys Ile Cys Ser 645 650 655 Asp Gly Trp Glu Gly Ala Tyr Cys Glu Thr Asn Ile Asn Asp Cys Ser 660 665 670 Gln Asn Pro Cys His Asn Gly Gly Thr Cys Arg Asp Leu Val Asn Asp 675 680 685 Phe Tyr Cys Asp Cys Lys Asn Gly Trp Lys Gly Lys Thr Cys His Ser 690 695 700 Arg Asp Ser Gln Cys Asp Glu Ala Thr Cys Asn Asn Gly Gly Thr Cys 705 710 715 720 Tyr Asp Glu Gly Asp Ala Phe Lys Cys Met Cys Pro Gly Gly Trp Glu 725 730 735 Gly Thr Thr Cys Asn Ile Ala Arg Asn Ser Ser Cys Leu Pro Asn Pro 740 745 750 Cys His Asn Gly Gly Thr Cys Val Val Asn Gly Glu Ser Phe Thr Cys 755 760 765 Val Cys Lys Glu Gly Trp Glu Gly Pro Ile Cys Ala Gln Asn Thr Asn 770 775 780 Asp Cys Ser Pro His Pro Cys Tyr Asn Ser Gly Thr Cys Val Asp Gly 785 790 795 800 Asp Asn Trp Tyr Arg Cys Glu Cys Ala Pro Gly Phe Ala Gly Pro Asp 805 810 815 Cys Arg Ile Asn Ile Asn Glu Cys Gln Ser Ser Pro Cys Ala Phe Gly 820 825 830 Ala Thr Cys Val Asp Glu Ile Asn Gly Tyr Arg Cys Val Cys Pro Pro 835 840 845 Gly His Ser Gly Ala Lys Cys Gln Glu Val Ser Gly Arg Pro Cys Ile 850 855 860 Thr Met Gly Ser Val Ile Pro Asp Gly Ala Lys Trp Asp Asp Asp Cys 865 870 875 880 Asn Thr Cys Gln Cys Leu Asn Gly Arg Ile Ala Cys Ser Lys Val Trp 885 890 895 Cys Gly Pro Arg Pro Cys Leu Leu His Lys Gly His Ser Glu Cys Pro 900 905 910 Ser Gly Gln Ser Cys Ile Pro Ile Leu Asp Asp Gln Cys Phe Val His 915 920 925 Pro Cys Thr Gly Val Gly Glu Cys Arg Ser Ser Ser Leu Gln Pro Val 930 935 940 Lys Thr Lys Cys Thr Ser Asp Ser Tyr Tyr Gln Asp Asn Cys Ala Asn 945 950 955 960 Ile Thr Phe Thr Phe Asn Lys Glu Met Met Ser Pro Gly Leu Thr Thr 965 970 975 Glu His Ile Cys Ser Glu Leu Arg Asn Leu Asn Ile Leu Lys Asn Val 980 985 990 Ser Ala Glu Tyr Ser Ile Tyr Ile Ala Cys Glu Pro Ser Pro Ser Ala 995 1000 1005 Asn Asn Glu Ile His Val Ala Ile Ser Ala Glu Asp Ile Arg Asp 1010 1015 1020 Asp Gly Asn Pro Ile Lys Glu Ile Thr Asp Lys Ile Ile Asp Leu 1025 1030 1035 Val Thr Lys Arg Asp Gly Asn Ser Ser Leu Ile Ala Ala Val Glu 1040 1045 1050 Glu Val Arg Val Gln Arg Arg Pro Leu Lys Asn Arg Thr Asp Phe 1055 1060 1065 Leu Val Pro Leu Leu Ser Ser Val Leu Thr Val Ala Trp Ile Cys 1070 1075 1080 Cys Leu Val Thr Ala Phe Tyr Trp Cys Leu Arg Lys Arg Arg Lys 1085 1090 1095 Pro Gly Ser His Thr His Ser Ala Ser Glu Asp Asn Thr Thr Asn 1100 1105 1110 Asn Val Arg Glu Gln Leu Asn Gln Ile Lys Asn Pro Ile Glu Lys 1115 1120 1125 His Gly Ala Asn Thr Val Pro Ile Lys Asp Tyr Glu Asn Lys Asn 1130 1135 1140 Ser Lys Met Ser Lys Ile Arg Thr His Asn Ser Glu Val Glu Glu 1145 1150 1155 Asp Asp Met Asp Lys His Gln Gln Lys Ala Arg Phe Ala Lys Gln 1160 1165 1170 Pro Ala Tyr Thr Leu Val Asp Arg Glu Glu Lys Pro Pro Asn Gly 1175 1180 1185 Thr Pro Thr Lys His Pro Asn Trp Thr Asn Lys Gln Asp Asn Arg 1190 1195 1200 Asp Leu Glu Ser Ala Gln Ser Leu Asn Arg Met Glu Tyr Ile Val 1205 1210 1215 <210> SEQ ID NO 5 <211> LENGTH: 4483 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 5 ggccggggcc gggcgggcgg gtcgcggggg caatgcgggc gcagggccgg gggcgccttc 60

cccggcggct gctgctgctg ctggcgctct gggtgcaggc ggcgcggccc atgggctatt 120 tcgagctgca gctgagcgcg ctgcggaacg tgaacgggga gctgctgagc ggcgcctgct 180 gtgacggcga cggccggaca acgcgcgcgg ggggctgcgg ccacgacgag tgcgacaccg 240 ctcctttacc ctcatcgtgg aggcctggga ctgggacaac gataccaccc cgaatgagga 300 gctgctgatc gagcgagtgt cgcatgccgg catgatcaac ccggaggacc gctggaagag 360 cctgcacttc agcggccacg tggcgcacct ggagctgcag atccgcgtgc gctgcgacga 420 gaactactac agcgccactt gcaacaagtt ctgccggccc cgcaatgact ttttcggcca 480 ctacacctgc gaccagtacg gcaacaaggc ctgcatggac ggctggatgg gcaaggagtg 540 caaggaagct gtgtgtaaac aagggtgtaa tttgctccac gggggatgca ccgtgcctgg 600 ggagtgcagg tgcagctacg gctggcaagg gaggttctgc gatgagtgtg tcccctaccc 660 cggctgcgtg catggcagtt gtgtggagcc ctggcagtgc aactgtgaga ccaactgggg 720 cggcctgctc tgtgacaaag acctgaacta ctgtggcagc caccacccct gcaccaacgg 780 aggcacgtgc atcaacgccg agcctgacca gtaccgctgc acctgccctg acggctactc 840 gggcaggaac tgtgagaagg ctgagcacgc ctgcacctcc aacccgtgtg ccaacggggg 900 ctcttgccat gaggtgccgt ccggcttcga atgccactgc ccatcgggct ggagcgggcc 960 cacctgtgcc cttgacatcg atgagtgtgc ttcgaacccg tgtgcggccg gtggcacctg 1020 tgtggaccag gtggacggct ttgagtgcat ctgccccgag cagtgggtgg gggccacctg 1080 ccagctggac gccaatgagt gtgaagggaa gccatgcctt aacgcttttt cttgcaaaaa 1140 cctgattggc ggctattact gtgattgcat cccgggctgg aagggcatca actgccatat 1200 caacgtcaac gactgtcgcg ggcagtgtca gcatgggggc acctgcaagg acctggtgaa 1260 cgggtaccag tgtgtgtgcc cacggggctt cggaggccgg cattgcgagc tggaacgaga 1320 caagtgtgcc agcagcccct gccacagcgg cggcctctgc gaggacctgg ccgacggctt 1380 ccactgccac tgcccccagg gcttctccgg gcctctctgt gaggtggatg tcgacctttg 1440 tgagccaagc ccctgccgga acggcgctcg ctgctataac ctggagggtg actattactg 1500 cgcctgccct gatgactttg gtggcaagaa ctgctccgtg ccccgcgagc cgtgccctgg 1560 cggggcctgc agagtgatcg atggctgcgg gtcagacgcg gggcctggga tgcctggcac 1620 agcagcctcc ggcgtgtgtg gcccccatgg acgctgcgtc agccagccag ggggcaactt 1680 ttcctgcatc tgtgacagtg gctttactgg cacctactgc catgagaaca ttgacgactg 1740 cctgggccag ccctgccgca atgggggcac atgcatcgat gaggtggacg ccttccgctg 1800 cttctgcccc agcggttggg agggcgagct ctgcgacacc aatcccaacg actgccttcc 1860 cgatccctgc cacagccgcg gccgctgcta cgacctggtc aatgacttct actgtgcgtg 1920 cgacgacggc tggaagggca agacctgcca ctcacgcgag ttccagtgcg atgcctacac 1980 ctgcagcaac ggtggcacct gctacgacag cggcgacacc ttccgctgcg cctgcccccc 2040 cggctggaag ggcagcacct gcgccgtcgc caagaacagc agctgcctgc ccaacccctg 2100 tgtgaatggt ggcacctgcg tgggcagcgg ggcctccttc tcctgcatct gccgggacgg 2160 ctgggagggt cgtacttgca ctcacaatac caacgactgc aaccctctgc cttgctacaa 2220 tggtggcatc tgtgttgacg gcgtcaactg gttccgctgc gagtgtgcac ctggcttcgc 2280 ggggcctgac tgccgcatca acatcgacga gtgccagtcc tcgccctgtg cctacggggc 2340 cacgtgtgtg gatgagatca acgggtatcg ctgtagctgc ccacccggcc gagccggccc 2400 ccggtgccag gaagtgatcg ggttcgggag atcctgctgg tcccggggca ctccgttccc 2460 acacggaagc tcctgggtgg aagactgcaa cagctgccgc tgcctggatg gccgccgtga 2520 ctgcagcaag gtgtggtgcg gatggaagcc ttgtctgctg gccggccagc ccgaggccct 2580 gagcgcccag tgcccactgg ggcaaaggtg cctggagaag gccccaggcc agtgtctgcg 2640 accaccctgt gaggcctggg gggagtgcgg cgcagaagag ccaccgagca ccccctgcct 2700 gccacgctcc ggccacctgg acaataactg tgcccgcctc accttgcatt tcaaccgtga 2760 ccacgtgccc cagggcacca cggtgggcgc catttgctcc gggatccgct ccctgccagc 2820 cacaagggct gtggcacggg accgcctgct ggtgttgctt tgcgaccggg cgtcctcggg 2880 ggccagtgct gtggaggtgg ccgtgtcctt cagccctgcc agggacctgc ctgacagcag 2940 cctgatccag ggcgcggccc acgccatcgt ggccgccatc acccagcggg ggaacagctc 3000 actgctcctg gctgtcaccg aggtcaaggt ggagacggtt gttacgggcg gctcttccac 3060 aggtctgctg gtgcctgtgc tgtgtggtgc cttcagcgtg ctgtggctgg cgtgcgtggt 3120 cctgtgcgtg tggtggacac gcaagcgcag gaaagagcgg gagaggagcc ggctgccgcg 3180 ggaggagagc gccaacaacc agtgggcccc gctcaacccc atccgcaacc ccattgagcg 3240 gccggggggg cacaaggacg tgctctacca gtgcaagaac ttcactccac cgccgcgcag 3300 gcgctgcccg ggccggccgg ccacgcggcc gtcagggagg atgaggagga cgaggatctt 3360 ggccgcggtg aggaggactc cctggaggcg gagaagttcc tctcacacaa attcaccaaa 3420 gatcctggcc gctcgccggg gaggccggcc cactgggcct caggccccaa agtggacaac 3480 cgcgcggtca ggagcatcaa tgaggcccgc tacgtcggca agggaagtag ggcggctgca 3540 gctgggccgg gacccagggc cctcggtggg agccatgccg tctgccggac ccggaggccg 3600 aggccatgtg catagtttct ttattttgtg taaaaaaacc accaaaaaca aaaaccaaat 3660 gtttattttc tacgtttctt taaccttgta taaattattc agtaactgtc aggctgaaaa 3720 caatggagta ttctcggata gttgctattt ttgtaaagta gccgtgcgtg gcactcgctg 3780 tatgaaagga gagagcaaag ggtgtctgcg tcgtcaccaa atcgtcgcgt ttgttaccag 3840 aggttgtgca ctgtttacag aatcttcctt ttattcctca ctcgggtttc tctgtgctcc 3900 aggccaaagt gccggtgaga cccatggctg tgttggtgtg gcccatggct gttggtggga 3960 cccgtggctg atggtgtggc ctgtggctgt cggtgggact cgtggctgtc aatgggacct 4020 gtggctgtcg gtgggaccta cggtggtcgg tgggaccctg gttattgatg tggccctggc 4080 tgccggcacg gcccgtggct gttgacgcac ctgtggttgt tagtggggcc tgaggtcatc 4140 ggcgtggccc aaggccggca ggtcaacctc gcgcttgctg gccagtccac cctgcctgcc 4200 gtctgtgctt cctcctgccc agaacgcccg ctccagcgat ctctccactg tgctttcaga 4260 agtgcccttc ctgctgcgca gttctcccat cctgggacgg cggcagtatt gaagctcgtg 4320 acaagtgcct tcacacagac ccctcgcaac tgtccacgcg tgccgtggca ccaggcgctg 4380 cccacctgcc ggccccggcc gcccctcctc gtgaaagtgc atttttgtaa atgtgtacat 4440 attaaaggaa gcactctgta taaaaaaaaa aaaccggaat tcc 4483 <210> SEQ ID NO 6 <211> LENGTH: 1257 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 6 Met Ile Asn Pro Glu Asp Arg Trp Lys Ser Leu His Phe Ser Gly His 1 5 10 15 Val Ala His Leu Glu Leu Gln Ile Arg Val Arg Cys Asp Glu Asn Tyr 20 25 30 Tyr Ser Ala Thr Cys Asn Lys Phe Cys Arg Pro Arg Asn Asp Phe Phe 35 40 45 Gly His Tyr Thr Cys Asp Gln Tyr Gly Asn Lys Ala Cys Met Asp Gly 50 55 60 Trp Met Gly Lys Glu Cys Lys Glu Ala Val Cys Lys Gln Gly Cys Asn 65 70 75 80 Leu Leu His Gly Gly Cys Thr Val Pro Gly Glu Cys Arg Cys Ser Tyr 85 90 95 Gly Trp Gln Gly Arg Phe Cys Asp Glu Cys Val Pro Tyr Pro Gly Cys 100 105 110 Val His Gly Ser Cys Val Glu Pro Trp Gln Cys Asn Cys Glu Thr Asn 115 120 125 Trp Gly Gly Leu Leu Cys Asp Lys Asp Leu Asn Tyr Cys Gly Ser His 130 135 140 His Pro Cys Thr Asn Gly Gly Thr Cys Ile Asn Ala Glu Pro Asp Gln 145 150 155 160 Tyr Arg Cys Thr Cys Pro Asp Gly Tyr Ser Gly Arg Asn Cys Glu Lys 165 170 175 Ala Glu His Ala Cys Thr Ser Asn Pro Cys Ala Asn Gly Gly Ser Cys 180 185 190 His Glu Val Pro Ser Gly Phe Glu Cys His Cys Pro Ser Gly Trp Ser 195 200 205 Gly Pro Thr Cys Ala Leu Asp Ile Asp Glu Cys Ala Ser Asn Pro Cys 210 215 220 Ala Ala Gly Gly Thr Cys Val Asp Gln Val Asp Gly Phe Glu Cys Ile 225 230 235 240 Cys Pro Glu Gln Trp Val Gly Ala Thr Cys Gln Leu Asp Ala Asn Glu 245 250 255 Cys Glu Gly Lys Pro Cys Leu Asn Ala Phe Ser Cys Lys Asn Leu Ile 260 265 270 Gly Gly Tyr Tyr Cys Asp Cys Ile Pro Gly Trp Lys Gly Ile Asn Cys 275 280 285 His Ile Asn Val Asn Asp Cys Arg Gly Gln Cys Gln His Gly Gly Thr 290 295 300 Cys Lys Asp Leu Val Asn Gly Tyr Gln Cys Val Cys Pro Arg Gly Phe 305 310 315 320 Gly Gly Arg His Cys Glu Leu Glu Arg Asp Lys Cys Ala Ser Ser Pro 325 330 335 Cys His Ser Gly Gly Leu Cys Glu Asp Leu Ala Asp Gly Phe His Cys 340 345 350 His Cys Pro Gln Gly Phe Ser Gly Pro Leu Cys Glu Val Asp Val Asp 355 360 365 Leu Cys Glu Pro Ser Pro Cys Arg Asn Gly Ala Arg Cys Tyr Asn Leu 370 375 380 Glu Gly Asp Tyr Tyr Cys Ala Cys Pro Asp Asp Phe Gly Gly Lys Asn 385 390 395 400 Cys Ser Val Pro Arg Glu Pro Cys Pro Gly Gly Ala Cys Arg Val Ile 405 410 415 Asp Gly Cys Gly Ser Asp Ala Gly Pro Gly Met Pro Gly Thr Ala Ala 420 425 430 Ser Gly Val Cys Gly Pro His Gly Arg Cys Val Ser Gln Pro Gly Gly 435 440 445 Asn Phe Ser Cys Ile Cys Asp Ser Gly Phe Thr Gly Thr Tyr Cys His 450 455 460 Glu Asn Ile Asp Asp Cys Leu Gly Gln Pro Cys Arg Asn Gly Gly Thr 465 470 475 480 Cys Ile Asp Glu Val Asp Ala Phe Arg Cys Phe Cys Pro Ser Gly Trp 485 490 495 Glu Gly Glu Leu Cys Asp Thr Asn Pro Asn Asp Cys Leu Pro Asp Pro 500 505 510

Cys His Ser Arg Gly Arg Cys Tyr Asp Leu Val Asn Asp Phe Tyr Cys 515 520 525 Ala Cys Asp Asp Gly Trp Lys Gly Lys Thr Cys His Ser Arg Glu Phe 530 535 540 Gln Cys Asp Ala Tyr Thr Cys Ser Asn Gly Gly Thr Cys Tyr Asp Ser 545 550 555 560 Gly Asp Thr Phe Arg Cys Ala Cys Pro Pro Gly Trp Lys Gly Ser Thr 565 570 575 Cys Ala Val Ala Lys Asn Ser Ser Cys Leu Pro Asn Pro Cys Val Asn 580 585 590 Gly Gly Thr Cys Val Gly Ser Gly Ala Ser Phe Ser Cys Ile Cys Arg 595 600 605 Asp Gly Trp Glu Gly Arg Thr Cys Thr His Asn Thr Asn Asp Cys Asn 610 615 620 Pro Leu Pro Cys Tyr Asn Gly Gly Ile Cys Val Asp Gly Val Asn Trp 625 630 635 640 Phe Arg Cys Glu Cys Ala Pro Gly Phe Ala Gly Pro Asp Cys Arg Ile 645 650 655 Asn Ile Asp Glu Cys Gln Ser Ser Pro Cys Ala Tyr Gly Ala Thr Cys 660 665 670 Val Asp Glu Ile Asn Gly Tyr Arg Cys Ser Cys Pro Pro Gly Arg Ala 675 680 685 Gly Pro Arg Cys Gln Glu Val Ile Gly Phe Gly Arg Ser Cys Trp Ser 690 695 700 Arg Gly Thr Pro Phe Pro His Gly Ser Ser Trp Val Glu Asp Cys Asn 705 710 715 720 Ser Cys Arg Cys Leu Asp Gly Arg Arg Asp Cys Ser Lys Val Trp Cys 725 730 735 Gly Trp Lys Pro Cys Leu Leu Ala Gly Gln Pro Glu Ala Leu Ser Ala 740 745 750 Gln Cys Pro Leu Gly Gln Arg Cys Leu Glu Lys Ala Pro Gly Gln Cys 755 760 765 Leu Arg Pro Pro Cys Glu Ala Trp Gly Glu Cys Gly Ala Glu Glu Pro 770 775 780 Pro Ser Thr Pro Cys Leu Pro Arg Ser Gly His Leu Asp Asn Asn Cys 785 790 795 800 Ala Arg Leu Thr Leu His Phe Asn Arg Asp His Val Pro Gln Gly Thr 805 810 815 Thr Val Gly Ala Ile Cys Ser Gly Ile Arg Ser Leu Pro Ala Thr Arg 820 825 830 Ala Val Ala Arg Asp Arg Leu Leu Val Leu Leu Cys Asp Arg Ala Ser 835 840 845 Ser Gly Ala Ser Ala Val Glu Val Ala Val Ser Phe Ser Pro Ala Arg 850 855 860 Asp Leu Pro Asp Ser Ser Leu Ile Gln Gly Ala Ala His Ala Ile Val 865 870 875 880 Ala Ala Ile Thr Gln Arg Gly Asn Ser Ser Leu Leu Leu Ala Val Thr 885 890 895 Glu Val Lys Val Glu Thr Val Val Thr Gly Gly Ser Ser Thr Gly Leu 900 905 910 Leu Val Pro Val Leu Cys Gly Ala Phe Ser Val Leu Trp Leu Ala Cys 915 920 925 Val Val Leu Cys Val Trp Trp Thr Arg Lys Arg Arg Lys Glu Arg Glu 930 935 940 Arg Ser Arg Leu Pro Arg Glu Glu Ser Ala Asn Asn Gln Trp Ala Pro 945 950 955 960 Leu Asn Pro Ile Arg Asn Pro Ile Glu Arg Pro Gly Gly His Lys Asp 965 970 975 Val Leu Tyr Gln Cys Lys Asn Phe Thr Pro Pro Pro Arg Arg Arg Cys 980 985 990 Pro Gly Arg Pro Ala Thr Arg Pro Ser Gly Arg Met Arg Arg Thr Arg 995 1000 1005 Ile Leu Ala Ala Val Arg Arg Thr Pro Trp Arg Arg Arg Ser Ser 1010 1015 1020 Ser His Thr Asn Ser Pro Lys Ile Leu Ala Ala Arg Arg Gly Gly 1025 1030 1035 Arg Pro Thr Gly Pro Gln Ala Pro Lys Trp Thr Thr Ala Arg Ser 1040 1045 1050 Gly Ala Ser Met Arg Pro Ala Thr Ser Ala Arg Glu Val Gly Arg 1055 1060 1065 Leu Gln Leu Gly Arg Asp Pro Gly Pro Ser Val Gly Ala Met Pro 1070 1075 1080 Ser Ala Gly Pro Gly Gly Arg Gly His Val His Ser Phe Phe Ile 1085 1090 1095 Leu Cys Lys Lys Thr Thr Lys Asn Lys Asn Gln Met Phe Ile Phe 1100 1105 1110 Tyr Val Ser Leu Thr Leu Tyr Lys Leu Phe Ser Asn Cys Gln Ala 1115 1120 1125 Glu Asn Asn Gly Val Phe Ser Asp Ser Cys Tyr Phe Cys Lys Val 1130 1135 1140 Ala Val Arg Gly Thr Arg Cys Met Lys Gly Glu Ser Lys Gly Cys 1145 1150 1155 Leu Arg Arg His Gln Ile Val Ala Phe Val Thr Arg Gly Cys Ala 1160 1165 1170 Leu Phe Thr Glu Ser Ser Phe Tyr Ser Ser Leu Gly Phe Leu Cys 1175 1180 1185 Ala Pro Gly Gln Ser Ala Gly Glu Thr His Gly Cys Val Gly Val 1190 1195 1200 Ala His Gly Cys Trp Trp Asp Pro Trp Leu Met Val Trp Pro Val 1205 1210 1215 Ala Val Gly Gly Thr Arg Gly Cys Gln Trp Asp Leu Trp Leu Ser 1220 1225 1230 Val Gly Pro Thr Val Val Gly Gly Thr Leu Val Ile Asp Val Ala 1235 1240 1245 Leu Ala Ala Gly Thr Ala Arg Gly Cys 1250 1255 <210> SEQ ID NO 7 <211> LENGTH: 3582 <212> TYPE: DNA <213> ORGANISM: Gallus sp. <400> SEQUENCE: 7 caggtggcgt cagcatcggg acagttcgag ctggagatct tatccgtgca gaatgtgaac 60 ggcgtgctgc agaacgggaa ctgctgcgac ggcactcgaa accccggaga taaaaagtgc 120 accagagatg agtgtgacac ctactttaaa gtttgcctga aggagtacca gtcgcgggtc 180 actgctggcg gcccttgcag cttcggatcc aaatccaccc ctgtcatcgg cgggaatacc 240 ttcaatttaa agtacagccg gaataatgaa aagaaccgga ttgttatccc tttcacgttc 300 gcctggccga gatcctacac gttgcttgtt gaggcatggg attacaatga taactctact 360 aatcccgatc gcataattga gaaggcatcc cactctggca tgatcaatcc aagccgtcag 420 tggcagacgt tgaaacataa cacaggagct gcccactttg agtatcaaat ccgtgtgact 480 tgcgcagaac attactatgg ctttggatgc aacaagtttt gtcgaccgag agatgacttc 540 ttcactcacc atacctgtga ccagaatggc aacaaaacct gcttggaagg ctggacggga 600 ccagaatgca acaaagctat ttgtcgtcag ggatgtagcc ccaagcatgg ttcttgcaca 660 gttccaggag agtgcaggtg tcagtatgga tggcaaggcc agtactgtga taagtgcatt 720 ccacacccgg gatgtgtcca tggcacttgc attgaaccat ggcagtgcct ctgtgaaacc 780 aactggggtg gtcagctctg tgacaaagac ctgaactact gtggaaccca cccaccctgt 840 ttgaatggtg gtacctgcag caacactggc cccgataaat accagtgttc ctgccctgag 900 ggttactcag gacagaactg tgaaatagcg gagcatgcgt gcctctctga tccgtgccac 960 aacggaggaa gctgcctaga aacgtctaca ggatttgaat gtgtgtgtgc acctggctgg 1020 gctggaccaa cttgcactga taatattgat gattgttctc caaatccctg tggtcatgga 1080 ggaacttgcc aagatctagt tgatggattt aagtgtattt gcccacctca gtggactggc 1140 aaaacatgcc agctagatgc gaatgaatgt gagggcaaac cctgtgtcaa tgccaactcc 1200 tgcaggaact tgattggcag ctactattgt gactgcatta ctggctggtc tggccacaac 1260 tgtgatataa atattaatga ttgtcgtgga caatgtcaga atggaggatc ctgtcgggac 1320 ttggttaatg gttatcggtg catctgttca cctggctatg caggagatca ctgtgagaaa 1380 gacatcaatg aatgtgcaag taacccttgc atgaatgggg gtcactgcca ggatgaaatc 1440 aatggattcc aatgtctgtg tcctgctggt ttctcaggaa acctctgtca gctggatata 1500 gactactgtg agccaaaccc ttgccagaac ggtgcccagt gcttcaatct tgctatggac 1560 tatttctgta actgccctga agattacgaa ggcaagaact gctcccacct gaaagatcac 1620 tgccgcacaa ctccttgtga agtaatcgac agctgtacag tggcagtggc ttctaacagc 1680 acaccagaag gagttcgtta catttcttca aatgtctgtg gtcctcatgg aaaatgcaag 1740 agccaagcag gtggaaaatt cacctgtgaa tgcaacaaag gattcactgg cacctactgt 1800 catgagaata tcaatgactg tgagagcaac ccctgtaaaa atggtggcac ttgtattgac 1860 ggtgtaaact cctacaaatg tatttgtagt gatggatggg aaggaacata ttgtgaaaca 1920 aatattaatg actgcagtaa aaacccctgc cacaatggag gaacttgccg agacttggtc 1980 aatgacttct tctgtgaatg taaaaatggg tggaaaggaa aaacttgcca ctctcgtgac 2040 agccagtgtg atgaggcaac atgcaataat ggaggaacat gttatgatga gggggacact 2100 ttcaagtgca tgtgtcctgc aggatgggaa ggagccactt gtaatatagc aaggaacagc 2160 agctgcctgc caaacccctg tcacaatggt ggtacctgtg tagttagtgg ggattctttc 2220 acttgtgtct gcaaggaggg ctgggaagga ccgacatgta ctcagaacac aaatgactgc 2280 agtcctcatc cttgttacaa cagtggtact tgtgtggatg gagacaactg gtaccgctgt 2340 gagtgcgctc ccggcttcgc aggtcccgac tgtaggatca acatcaatga atgtcagtct 2400 tcaccctgtg cctttggggc tacttgtgtg gatgaaatta atgggtaccg ttgcatttgt 2460 ccaccgggtc gcagtggtcc aggatgccag gaagttacag ggaggccttg ctttaccagt 2520 attcgagtaa tgccagacgg tgctaagtgg gatgatgact gtaatacttg tcagtgtttg 2580 aatggaaaag tcacctgttc taaggtttgg tgtggtcctc gaccttgtat aatacatgcc 2640 aaaggtcata atgaatgccc agctggacac gcttgtgttc ctgttaaaga agaccattgt 2700 ttcactcatc cttgtgctgc agtgggtgaa tgctggcctt ctaatcagca gcctgtgaag 2760 accaaatgca attctgattc ttattaccaa gataattgtg ccaacatcac cttcaccttt 2820 aataaggaaa tgatggcacc aggccttacc acggagcaca tttgcagtga attgaggaat 2880 ctgaatatcc tgaagaatgt ttctgctgaa tattccatct atattacctg tgagccttca 2940

cacttggcaa ataatgaaat acatgttgct atttctgctg aagatatagg agaagatgaa 3000 aacccaatca aggaaatcac agataagatt attgaccttg tcagtaagcg tgatggaaac 3060 aacacactaa ttgctgcagt cgcagaagtc agagtacaaa ggcgaccagt taagaacaaa 3120 acagatttct tggtgccatt actgagctca gtcttaacag tagcctggat ctgctgtctg 3180 gtaactgttt tctattggtg cattcaaaag cgcagaaagc agagcagcca tactcacaca 3240 gcatctgatg acaacaccac caacaacgta agggagcagc tgaatcagat taaaaacccc 3300 atagagaaac acggagcaaa tactgttcca attaaagact atgaaaacaa aaactctaaa 3360 atcgccaaaa taaggacgca caattcagaa gtggaggaag atgacatgga caaacaccag 3420 caaaaggccc ggtttgccaa gcagccagcg tacactttgg tagacagaga tgaaaagcca 3480 cccaacagca cacccacaaa acacccaaac tggacaaata aacaggacaa cagagacttg 3540 gaaagtgcac aaagtttaaa tagaatggag tacattgtat ag 3582 <210> SEQ ID NO 8 <211> LENGTH: 1193 <212> TYPE: PRT <213> ORGANISM: Gallus sp. <400> SEQUENCE: 8 Gln Val Ala Ser Ala Ser Gly Gln Phe Glu Leu Glu Ile Leu Ser Val 1 5 10 15 Gln Asn Val Asn Gly Val Leu Gln Asn Gly Asn Cys Cys Asp Gly Thr 20 25 30 Arg Asn Pro Gly Asp Lys Lys Cys Thr Arg Asp Glu Cys Asp Thr Tyr 35 40 45 Phe Lys Val Cys Leu Lys Glu Tyr Gln Ser Arg Val Thr Ala Gly Gly 50 55 60 Pro Cys Ser Phe Gly Ser Lys Ser Thr Pro Val Ile Gly Gly Asn Thr 65 70 75 80 Phe Asn Leu Lys Tyr Ser Arg Asn Asn Glu Lys Asn Arg Ile Val Ile 85 90 95 Pro Phe Thr Phe Ala Trp Pro Arg Ser Tyr Thr Leu Leu Val Glu Ala 100 105 110 Trp Asp Tyr Asn Asp Asn Ser Thr Asn Pro Asp Arg Ile Ile Glu Lys 115 120 125 Ala Ser His Ser Gly Met Ile Asn Pro Ser Arg Gln Trp Gln Thr Leu 130 135 140 Lys His Asn Thr Gly Ala Ala His Phe Glu Tyr Gln Ile Arg Val Thr 145 150 155 160 Cys Ala Glu His Tyr Tyr Gly Phe Gly Cys Asn Lys Phe Cys Arg Pro 165 170 175 Arg Asp Asp Phe Phe Thr His His Thr Cys Asp Gln Asn Gly Asn Lys 180 185 190 Thr Cys Leu Glu Gly Trp Thr Gly Pro Glu Cys Asn Lys Ala Ile Cys 195 200 205 Arg Gln Gly Cys Ser Pro Lys His Gly Ser Cys Thr Val Pro Gly Glu 210 215 220 Cys Arg Cys Gln Tyr Gly Trp Gln Gly Gln Tyr Cys Asp Lys Cys Ile 225 230 235 240 Pro His Pro Gly Cys Val His Gly Thr Cys Ile Glu Pro Trp Gln Cys 245 250 255 Leu Cys Glu Thr Asn Trp Gly Gly Gln Leu Cys Asp Lys Asp Leu Asn 260 265 270 Tyr Cys Gly Thr His Pro Pro Cys Leu Asn Gly Gly Thr Cys Ser Asn 275 280 285 Thr Gly Pro Asp Lys Tyr Gln Cys Ser Cys Pro Glu Gly Tyr Ser Gly 290 295 300 Gln Asn Cys Glu Ile Ala Glu His Ala Cys Leu Ser Asp Pro Cys His 305 310 315 320 Asn Gly Gly Ser Cys Leu Glu Thr Ser Thr Gly Phe Glu Cys Val Cys 325 330 335 Ala Pro Gly Trp Ala Gly Pro Thr Cys Thr Asp Asn Ile Asp Asp Cys 340 345 350 Ser Pro Asn Pro Cys Gly His Gly Gly Thr Cys Gln Asp Leu Val Asp 355 360 365 Gly Phe Lys Cys Ile Cys Pro Pro Gln Trp Thr Gly Lys Thr Cys Gln 370 375 380 Leu Asp Ala Asn Glu Cys Glu Gly Lys Pro Cys Val Asn Ala Asn Ser 385 390 395 400 Cys Arg Asn Leu Ile Gly Ser Tyr Tyr Cys Asp Cys Ile Thr Gly Trp 405 410 415 Ser Gly His Asn Cys Asp Ile Asn Ile Asn Asp Cys Arg Gly Gln Cys 420 425 430 Gln Asn Gly Gly Ser Cys Arg Asp Leu Val Asn Gly Tyr Arg Cys Ile 435 440 445 Cys Ser Pro Gly Tyr Ala Gly Asp His Cys Glu Lys Asp Ile Asn Glu 450 455 460 Cys Ala Ser Asn Pro Cys Met Asn Gly Gly His Cys Gln Asp Glu Ile 465 470 475 480 Asn Gly Phe Gln Cys Leu Cys Pro Ala Gly Phe Ser Gly Asn Leu Cys 485 490 495 Gln Leu Asp Ile Asp Tyr Cys Glu Pro Asn Pro Cys Gln Asn Gly Ala 500 505 510 Gln Cys Phe Asn Leu Ala Met Asp Tyr Phe Cys Asn Cys Pro Glu Asp 515 520 525 Tyr Glu Gly Lys Asn Cys Ser His Leu Lys Asp His Cys Arg Thr Thr 530 535 540 Pro Cys Glu Val Ile Asp Ser Cys Thr Val Ala Val Ala Ser Asn Ser 545 550 555 560 Thr Pro Glu Gly Val Arg Tyr Ile Ser Ser Asn Val Cys Gly Pro His 565 570 575 Gly Lys Cys Lys Ser Gln Ala Gly Gly Lys Phe Thr Cys Glu Cys Asn 580 585 590 Lys Gly Phe Thr Gly Thr Tyr Cys His Glu Asn Ile Asn Asp Cys Glu 595 600 605 Ser Asn Pro Cys Lys Asn Gly Gly Thr Cys Ile Asp Gly Val Asn Ser 610 615 620 Tyr Lys Cys Ile Cys Ser Asp Gly Trp Glu Gly Thr Tyr Cys Glu Thr 625 630 635 640 Asn Ile Asn Asp Cys Ser Lys Asn Pro Cys His Asn Gly Gly Thr Cys 645 650 655 Arg Asp Leu Val Asn Asp Phe Phe Cys Glu Cys Lys Asn Gly Trp Lys 660 665 670 Gly Lys Thr Cys His Ser Arg Asp Ser Gln Cys Asp Glu Ala Thr Cys 675 680 685 Asn Asn Gly Gly Thr Cys Tyr Asp Glu Gly Asp Thr Phe Lys Cys Met 690 695 700 Cys Pro Ala Gly Trp Glu Gly Ala Thr Cys Asn Ile Ala Arg Asn Ser 705 710 715 720 Ser Cys Leu Pro Asn Pro Cys His Asn Gly Gly Thr Cys Val Val Ser 725 730 735 Gly Asp Ser Phe Thr Cys Val Cys Lys Glu Gly Trp Glu Gly Pro Thr 740 745 750 Cys Thr Gln Asn Thr Asn Asp Cys Ser Pro His Pro Cys Tyr Asn Ser 755 760 765 Gly Thr Cys Val Asp Gly Asp Asn Trp Tyr Arg Cys Glu Cys Ala Pro 770 775 780 Gly Phe Ala Gly Pro Asp Cys Arg Ile Asn Ile Asn Glu Cys Gln Ser 785 790 795 800 Ser Pro Cys Ala Phe Gly Ala Thr Cys Val Asp Glu Ile Asn Gly Tyr 805 810 815 Arg Cys Ile Cys Pro Pro Gly Arg Ser Gly Pro Gly Cys Gln Glu Val 820 825 830 Thr Gly Arg Pro Cys Phe Thr Ser Ile Arg Val Met Pro Asp Gly Ala 835 840 845 Lys Trp Asp Asp Asp Cys Asn Thr Cys Gln Cys Leu Asn Gly Lys Val 850 855 860 Thr Cys Ser Lys Val Trp Cys Gly Pro Arg Pro Cys Ile Ile His Ala 865 870 875 880 Lys Gly His Asn Glu Cys Pro Ala Gly His Ala Cys Val Pro Val Lys 885 890 895 Glu Asp His Cys Phe Thr His Pro Cys Ala Ala Val Gly Glu Cys Trp 900 905 910 Pro Ser Asn Gln Gln Pro Val Lys Thr Lys Cys Asn Ser Asp Ser Tyr 915 920 925 Tyr Gln Asp Asn Cys Ala Asn Ile Thr Phe Thr Phe Asn Lys Glu Met 930 935 940 Met Ala Pro Gly Leu Thr Thr Glu His Ile Cys Ser Glu Leu Arg Asn 945 950 955 960 Leu Asn Ile Leu Lys Asn Val Ser Ala Glu Tyr Ser Ile Tyr Ile Thr 965 970 975 Cys Glu Pro Ser His Leu Ala Asn Asn Glu Ile His Val Ala Ile Ser 980 985 990 Ala Glu Asp Ile Gly Glu Asp Glu Asn Pro Ile Lys Glu Ile Thr Asp 995 1000 1005 Lys Ile Ile Asp Leu Val Ser Lys Arg Asp Gly Asn Asn Thr Leu 1010 1015 1020 Ile Ala Ala Val Ala Glu Val Arg Val Gln Arg Arg Pro Val Lys 1025 1030 1035 Asn Lys Thr Asp Phe Leu Val Pro Leu Leu Ser Ser Val Leu Thr 1040 1045 1050 Val Ala Trp Ile Cys Cys Leu Val Thr Val Phe Tyr Trp Cys Ile 1055 1060 1065 Gln Lys Arg Arg Lys Gln Ser Ser His Thr His Thr Ala Ser Asp 1070 1075 1080 Asp Asn Thr Thr Asn Asn Val Arg Glu Gln Leu Asn Gln Ile Lys 1085 1090 1095 Asn Pro Ile Glu Lys His Gly Ala Asn Thr Val Pro Ile Lys Asp 1100 1105 1110 Tyr Glu Asn Lys Asn Ser Lys Ile Ala Lys Ile Arg Thr His Asn 1115 1120 1125 Ser Glu Val Glu Glu Asp Asp Met Asp Lys His Gln Gln Lys Ala 1130 1135 1140 Arg Phe Ala Lys Gln Pro Ala Tyr Thr Leu Val Asp Arg Asp Glu 1145 1150 1155 Lys Pro Pro Asn Ser Thr Pro Thr Lys His Pro Asn Trp Thr Asn 1160 1165 1170

Lys Gln Asp Asn Arg Asp Leu Glu Ser Ala Gln Ser Leu Asn Arg 1175 1180 1185 Met Glu Tyr Ile Val 1190 <210> SEQ ID NO 9 <211> LENGTH: 2088 <212> TYPE: DNA <213> ORGANISM: Gallus sp. <400> SEQUENCE: 9 gaattcggca cgaggttttt tttttttttt ttcccctctt ttctttcttt tccttttgcc 60 atccgaaaga gctgtcagcc gccgccgggc tgcacctaaa ggcgtcggta gggggataac 120 agtcagagac cctcctgaaa gcaggagacg ggacggtacc cctccggctc tgcggggcgg 180 ctgcggcccc tccgttcttt ccccctcccc gagagacact cttcctttcc ccccacgaag 240 acacaggggc aggaacgcga gcgctgcccc tccgccatgg gaggccgctt cctgctgacg 300 ctcgccctcc tctcggcgct gctgtgccgc tgccaggttg acggctccgg ggtgttcgag 360 ctgaagctgc aggagtttgt caacaagaag gggctgctca gcaaccgcaa ctgctgccgg 420 gggggcggcc ccggaggcgc cgggcagcag cagtgcgact gcaagacctt cttccgcgtc 480 tgcctgaagc actaccaggc cagcgtctcc cccgagccgc cctgcaccta cggcagcgcc 540 atcacccccg tcctcggcgc caactccttc agcgtccccg acggcgcggg cggcgccgac 600 cccgccttca gcaaccccat ccgcttcccc ttcggcttca cctggcccgg caccttctcg 660 ctcatcatcg aggctctgca caccgactcc cccgacgacc tcaccacaga aaaccccgag 720 cgcctcatca gccgcctggc cacccagagg cacctggcgg tgggcgagga gtggtcccag 780 gacctgcaca gcagcggccg caccgacctc aagtactcct atcgctttgt gtgtgatgag 840 cactactacg gggaaggctg ctctgtcttc tgccggcccc gtgacgaccg cttcggtcac 900 ttcacctgtg gagagcgtgg cgagaaggtc tgcaacccag gctggaaggg ccagtactgc 960 actgagccga tttgcttgcc tgggtgtgac gagcagcacg gcttctgcga caaacctggg 1020 gaatgcaagt gcagagtggg ttggcagggg cggtactgtg acgagtgcat ccgataccca 1080 ggctgcctgc acggtacctg tcagcagcca tggcagtgca actgccagga aggctggggc 1140 ggccttttct gcaaccagga cctgaactac tgcactcacc acaagccatg caagaatggt 1200 cggtgtacgt ggttgtggcc agtcccctcg atgtgaacaa gaacggctgg acccatgtgt 1260 ggctccagct gcgagattga aatcaacgaa tgtgatgcca acccttgcaa gaatggtgga 1320 agctgcacgg atctcgagaa cagctattcc tgtacctgcc ccccaggctt ctatggtaaa 1380 aactgtgagc tgagtgcaat gacttgtgct gatggaccgt gcttcaatgg agggcgatgc 1440 actgacaacc ctgatggtgg atacagctgc cgctgcccac tgggttattc tgggttcaac 1500 tgtgaaaaga aaatcgatta ctgcagttcc agcccttgtg ctaatggagc ccagtgcgtt 1560 gacctgggga actcctacat atgccagtgc caggctggct tcactggcag gcactgtgac 1620 gacaacgtgg acgattgcgc ctccttcccc tgcgtcaatg gagggacctg tcaggatggg 1680 gtcaacgact actcctgcac ctgccccccg ggatacaacg ggaagaactg cagcacgccg 1740 gtgagcagat gcgagcacaa cccctgccac aatggggcca cctgccacga gagaagcaac 1800 cgctacgtgt gcgagtgcgc tcggggctac ggcggcctca actgccagtt cctgctcccc 1860 gagccacctc aggggccggt catcgttgac ttcaccgaga agtacacaga gggccagaac 1920 agccagtttc cctggatcgc agtgtgcgcc gggattattc tggtcctcat gctgctgctg 1980 taccagtcgg tgtacgtcat atcagaagag aaagatgagt gcatcatagc aactgaggtg 2040 taaaacagac gtgacgtggc aaagcttatc gataccgtca tcaagctt 2088 <210> SEQ ID NO 10 <211> LENGTH: 2883 <212> TYPE: DNA <213> ORGANISM: Gallus sp. <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (829)..(830) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 10 gaattcggca cgaggttttt tttttttttt ttcccctctt ttctttcttt tccttttgcc 60 atccgaaaga gctgtcagcc gccgccgggc tgcacctaaa ggcgtcggta gggggataac 120 agtcagagac cctcctgaaa gcaggagacg ggacggtacc cctccggctc tgcggggcgg 180 ctgcggcccc tccgttcttt ccccctcccc gagagacact cttcctttcc ccccacgaag 240 acacaggggc aggaacgcga gcgctgcccc tccgccatgg gaggccgctt cctgctgacg 300 ctcgccctcc tctcggcgct gctgtgccgc tgccaggttg acggctccgg ggtgttcgag 360 ctgaagctgc aggagtttgt caacaagaag gggctgctca gcaaccgcaa ctgctgccgg 420 gggggcggcc ccggaggcgc cgggcagcag cagtgcgact gcaagacctt cttccgcgtc 480 tgcctgaagc actaccaggc cagcgtctcc cccgagccgc cctgcaccta cggcagcgcc 540 atcacccccg tcctcggcgc caactccttc agcgtccccg acggcgcggg cggcgccgac 600 cccgccttca gcaaccccat ccgcttcccc ttcggcttca cctggcccgg caccttctcg 660 ctcatcatcg aggctctgca caccgactcc cccgacgacc tcaccacaga aaaccccgag 720 cgcctcatca gccgcctggc cacccagagg cacctggcgg tgggcgagga gtggtcccag 780 gacctgcaca gcagcggccg caccgacctc aagtactcct atcgctttnn gtgtgatgag 840 cactactacg gggaaggctg ctctgtcttc tgccggcccc gtgacgaccg cttcggtcac 900 ttcacctgtg gagagcgtgg cgagaaggtc tgcaacccag gctggaaggg ccagtactgc 960 actgagccga tttgcttgcc tgggtgtgac gagcagcacg gcttctgcga caaacctggg 1020 gaatgcaagt gcagagtggg ttggcagggg cggtactgtg acgagtgcat ccgataccca 1080 ggctgcctgc acggtacctg tcagcagcca tggcagtgca actgccagga aggctggggc 1140 ggccttttct gcaaccagga cctgaactac tgcactcacc acaagccatg caagaatggt 1200 gccacatgca ccaacaccgg tcaggggagc tacacttgtt cttgccgacc tgggtacaca 1260 ggctccagct gcgagattga aatcaacgaa tgtgatgcca acccttgcaa gaatggtgga 1320 agctgcacgg atctcgagaa cagctattcc tgtacctgcc ccccaggctt ctatggtaaa 1380 aactgtgagc tgagtgcaat gacttgtgct gatggaccgt gcttcaatgg agggcgatgc 1440 actgacaacc ctgatggtgg atacagctgc cgctgcccac tgggttattc tgggttcaac 1500 tgtgaaaaga aaatcgatta ctgcagttcc agcccttgtg ctaatggagc ccagtgcgtt 1560 gacctgggga actcctacat atgccagtgc caggctggct tcactggcag gcactgtgac 1620 gacaacgtgg acgattgcgc ctccttcccc tgcgtcaatg gagggacctg tcaggatggg 1680 gtcaacgact actcctgcac ctgccccccg ggatacaacg ggaagaactg cagcacgccg 1740 gtgagcagat gcgagcacaa cccctgccac aatggggcca cctgccacga gagaagcaac 1800 cgctacgtgt gcgagtgcgc tcggggctac ggcggcctca actgccagtt cctgctcccc 1860 gagccacctc aggggccggt catcgttgac ttcaccgaga agtacacaga gggccagaac 1920 agccagtttc cctggatcgc agtgtgcgcc gggattattc tggtcctcat gctgctgctg 1980 ggttgcgccg ccatcgtcgt ctgcgtcagg ctgaaggtgc agaagaggca ccaccagccc 2040 gaggcctgca ggagtgaaac ggagaccatg aacaacctgg cgaactgcca gcgcgagaag 2100 gacatctcca tcagcgtcat cggtgccact cagattaaaa acacaaataa gaaagtagac 2160 tttcacagcg ataactccga taaaaacggc tacaaagtta gatacccatc agtggattac 2220 aatttggtgc atgaactcaa gaatgaggac tctgtgaaag aggagcatgg caaatgcgaa 2280 gccaagtgtg aaacgtatga ttcagaggca gaagagaaaa gcgcagtaca gctaaaaagt 2340 agtgacactt ctgaaagaaa acggccagat tcagtatatt ccacttcaaa ggacacaaag 2400 taccagtcgg tgtacgtcat atcagaagag aaagatgagt gcatcatagc aactgaggtt 2460 agtatcccac ctggcagtcg gacaagtctt ggtgtgtgat tcccatccag cgcaggtcag 2520 ggcggccaaa ccattctacc tgctgccaca gtcatctgta cccaatgaaa actggccacc 2580 ttcagtctgt ggcactgcag acgttgaaaa aacttgttgt ggattaacat aagctccagt 2640 gggggttaca gggacagcaa tttttgcagg caagggtata actgtagtgc agttgtagct 2700 tactaaccct actgactcat tctttcgtgt gcttcctgca gagcctgttt ttgcttggca 2760 ttgaggtgaa gtcctgaccc tctgcatcct catagtcctc tgctttcttt ttattaacct 2820 cttctggtct ctgcttgtgt tttctctcaa caggtgtaaa acagacgtga cgtggcaaag 2880 ctt 2883 <210> SEQ ID NO 11 <211> LENGTH: 728 <212> TYPE: PRT <213> ORGANISM: Gallus sp. <400> SEQUENCE: 11 Met Gly Gly Arg Phe Leu Leu Thr Leu Ala Leu Leu Ser Ala Leu Leu 1 5 10 15 Cys Arg Cys Gln Val Asp Gly Ser Gly Val Phe Glu Leu Lys Leu Gln 20 25 30 Glu Phe Val Asn Lys Lys Gly Leu Leu Ser Asn Arg Asn Cys Cys Arg 35 40 45 Gly Gly Gly Pro Gly Gly Ala Gly Gln Gln Gln Cys Asp Cys Lys Thr 50 55 60 Phe Phe Arg Val Cys Leu Lys His Tyr Gln Ala Ser Val Ser Pro Glu 65 70 75 80 Pro Pro Cys Thr Tyr Gly Ser Ala Ile Thr Pro Val Leu Gly Ala Asn 85 90 95 Ser Phe Ser Val Pro Asp Gly Ala Gly Gly Ala Asp Pro Ala Phe Ser 100 105 110 Asn Pro Ile Arg Phe Pro Phe Gly Phe Thr Trp Pro Gly Thr Phe Ser 115 120 125 Leu Ile Ile Glu Ala Leu His Thr Asp Ser Pro Asp Asp Leu Thr Thr 130 135 140 Glu Asn Pro Glu Arg Leu Ile Ser Arg Leu Ala Thr Gln Arg His Leu 145 150 155 160 Ala Val Gly Glu Glu Trp Ser Gln Asp Leu His Ser Ser Gly Arg Thr 165 170 175 Asp Leu Lys Tyr Ser Tyr Arg Phe Val Cys Asp Glu His Tyr Tyr Gly 180 185 190 Glu Gly Cys Ser Val Phe Cys Arg Pro Arg Asp Asp Arg Phe Gly His 195 200 205 Phe Thr Cys Gly Glu Arg Gly Glu Lys Val Cys Asn Pro Gly Trp Lys 210 215 220 Gly Gln Tyr Cys Thr Glu Pro Ile Cys Leu Pro Gly Cys Asp Glu Gln 225 230 235 240 His Gly Phe Cys Asp Lys Pro Gly Glu Cys Lys Cys Arg Val Gly Trp 245 250 255

Gln Gly Arg Tyr Cys Asp Glu Cys Ile Arg Tyr Pro Gly Cys Leu His 260 265 270 Gly Thr Cys Gln Gln Pro Trp Gln Cys Asn Cys Gln Glu Gly Trp Gly 275 280 285 Gly Leu Phe Cys Asn Gln Asp Leu Asn Tyr Cys Thr His His Lys Pro 290 295 300 Cys Lys Asn Gly Ala Thr Cys Thr Asn Thr Gly Gln Gly Ser Tyr Thr 305 310 315 320 Cys Ser Cys Arg Pro Gly Tyr Thr Gly Ser Ser Cys Glu Ile Glu Ile 325 330 335 Asn Glu Cys Asp Ala Asn Pro Cys Lys Asn Gly Gly Ser Cys Thr Asp 340 345 350 Leu Glu Asn Ser Tyr Ser Cys Thr Cys Pro Pro Gly Phe Tyr Gly Lys 355 360 365 Asn Cys Glu Leu Ser Ala Met Thr Cys Ala Asp Gly Pro Cys Phe Asn 370 375 380 Gly Gly Arg Cys Thr Asp Asn Pro Asp Gly Gly Tyr Ser Cys Arg Cys 385 390 395 400 Pro Leu Gly Tyr Ser Gly Phe Asn Cys Glu Lys Lys Ile Asp Tyr Cys 405 410 415 Ser Ser Ser Pro Cys Ala Asn Gly Ala Gln Cys Val Asp Leu Gly Asn 420 425 430 Ser Tyr Ile Cys Gln Cys Gln Ala Gly Phe Thr Gly Arg His Cys Asp 435 440 445 Asp Asn Val Asp Asp Cys Ala Ser Phe Pro Cys Val Asn Gly Gly Thr 450 455 460 Cys Gln Asp Gly Val Asn Asp Tyr Ser Cys Thr Cys Pro Pro Gly Tyr 465 470 475 480 Asn Gly Lys Asn Cys Ser Thr Pro Val Ser Arg Cys Glu His Asn Pro 485 490 495 Cys His Asn Gly Ala Thr Cys His Glu Arg Ser Asn Arg Tyr Val Cys 500 505 510 Glu Cys Ala Arg Gly Tyr Gly Gly Leu Asn Cys Gln Phe Leu Leu Pro 515 520 525 Glu Pro Pro Gln Gly Pro Val Ile Val Asp Phe Thr Glu Lys Tyr Thr 530 535 540 Glu Gly Gln Asn Ser Gln Phe Pro Trp Ile Ala Val Cys Ala Gly Ile 545 550 555 560 Ile Leu Val Leu Met Leu Leu Leu Gly Cys Ala Ala Ile Val Val Cys 565 570 575 Val Arg Leu Lys Val Gln Lys Arg Lys Lys Gln Pro Glu Ala Cys Arg 580 585 590 Ser Glu Thr Glu Thr Met Asn Asn Leu Ala Asn Cys Gln Arg Glu Lys 595 600 605 Asp Ile Ser Ile Ser Val Ile Gly Ala Thr Gln Ile Lys Asn Thr Asn 610 615 620 Lys Lys Val Asp Phe His Ser Asp Asn Ser Asp Lys Asn Gly Tyr Lys 625 630 635 640 Val Arg Tyr Pro Ser Val Asp Tyr Asn Leu Val His Glu Leu Lys Asn 645 650 655 Glu Asp Ser Val Lys Glu Glu His Gly Lys Cys Glu Ala Lys Cys Glu 660 665 670 Thr Tyr Asp Ser Glu Ala Glu Glu Lys Ser Ala Val Gln Leu Lys Ser 675 680 685 Ser Asp Thr Ser Glu Arg Lys Arg Pro Asp Ser Val Tyr Ser Thr Ser 690 695 700 Lys Asp Thr Lys Tyr Gln Ser Val Tyr Val Ile Ser Glu Glu Lys Asp 705 710 715 720 Glu Cys Ile Ile Ala Thr Glu Val 725 <210> SEQ ID NO 12 <211> LENGTH: 721 <212> TYPE: PRT <213> ORGANISM: Xenopus sp. <400> SEQUENCE: 12 Met Gly Gln Gln Arg Met Leu Thr Leu Leu Val Leu Ser Ala Val Leu 1 5 10 15 Cys Gln Ile Ser Cys Ser Gly Leu Phe Glu Leu Arg Leu Gln Glu Phe 20 25 30 Val Asn Lys Lys Gly Leu Leu Gly Asn Met Asn Cys Cys Arg Pro Gly 35 40 45 Ser Leu Ala Ser Leu Gln Arg Cys Glu Cys Lys Thr Phe Phe Arg Ile 50 55 60 Cys Leu Lys His Tyr Gln Ser Asn Val Ser Pro Glu Pro Pro Cys Thr 65 70 75 80 Tyr Gly Gly Ala Val Thr Pro Val Leu Gly Thr Asn Ser Phe Val Val 85 90 95 Pro Glu Ser Ser Asn Ala Asp Pro Thr Phe Ser Asn Pro Ile Arg Phe 100 105 110 Pro Phe Gly Phe Thr Trp Pro Gly Thr Phe Ser Leu Ile Ile Glu Ala 115 120 125 Ile His Ala Asp Ser Ala Asp Asp Leu Asn Thr Glu Asn Pro Glu Arg 130 135 140 Leu Ile Ser Arg Leu Ala Thr Gln Arg His Leu Thr Val Gly Glu Gln 145 150 155 160 Trp Ser Gln Asp Leu His Ser Ser Asp Arg Thr Glu Leu Lys Tyr Ser 165 170 175 Tyr Arg Phe Val Cys Asp Glu Tyr Tyr Tyr Gly Glu Gly Cys Ser Asp 180 185 190 Tyr Cys Arg Pro Arg Asp Asp Ala Phe Gly His Phe Ser Cys Gly Glu 195 200 205 Lys Gly Glu Lys Leu Cys Asn Pro Gly Trp Lys Gly Leu Tyr Cys Thr 210 215 220 Glu Pro Ile Cys Leu Pro Gly Cys Asp Glu His His Gly Tyr Cys Asp 225 230 235 240 Lys Pro Gly Glu Cys Lys Cys Arg Val Gly Trp Gln Gly Arg Tyr Cys 245 250 255 Asp Glu Cys Ile Arg Tyr Pro Gly Cys Leu His Gly Thr Cys Gln Gln 260 265 270 Pro Trp Gln Cys Asn Cys Gln Glu Gly Trp Gly Gly Leu Phe Cys Asn 275 280 285 Gln Asp Leu Asn Tyr Cys Thr His His Lys Pro Cys Glu Asn Gly Ala 290 295 300 Thr Cys Thr Asn Thr Gly Gln Gly Ser Tyr Thr Cys Ser Cys Arg Pro 305 310 315 320 Gly Tyr Thr Gly Ser Asn Cys Glu Ile Glu Val Asn Glu Cys Asp Ala 325 330 335 Asn Pro Cys Lys Asn Gly Gly Ser Cys Ser Asp Leu Glu Asn Ser Tyr 340 345 350 Thr Cys Ser Cys Pro Pro Gly Phe Tyr Gly Lys Asn Cys Glu Leu Ser 355 360 365 Ala Met Thr Cys Ala Asp Gly Pro Cys Phe Asn Gly Gly Arg Cys Ala 370 375 380 Asp Asn Pro Asp Gly Gly Tyr Ile Cys Phe Cys Pro Gly Val Tyr Ser 385 390 395 400 Gly Phe Asn Cys Glu Lys Lys Ile Asp Tyr Cys Ser Ser Asn Pro Cys 405 410 415 Ala Asn Gly Ala Arg Cys Glu Asp Leu Gly Asn Ser Tyr Ile Cys Gln 420 425 430 Cys Gln Glu Gly Phe Ser Gly Arg Asn Cys Asp Asp Asn Leu Asp Asp 435 440 445 Cys Thr Ser Phe Pro Cys Gln Asn Gly Gly Thr Cys Gln Asp Gly Ile 450 455 460 Asn Asp Tyr Ser Cys Thr Cys Pro Pro Gly Tyr Ile Gly Lys Asn Cys 465 470 475 480 Ser Met Pro Ile Thr Lys Cys Glu His Asn Pro Cys His Asn Gly Ala 485 490 495 Thr Cys His Glu Arg Asn Asn Arg Tyr Val Cys Gln Cys Ala Arg Gly 500 505 510 Tyr Gly Gly Asn Asn Cys Gln Phe Leu Leu Pro Glu Glu Lys Pro Val 515 520 525 Val Val Asp Leu Thr Glu Lys Tyr Thr Glu Gly Gln Ser Gly Gln Phe 530 535 540 Pro Trp Ile Ala Val Cys Ala Gly Ile Val Leu Val Leu Met Leu Leu 545 550 555 560 Leu Gly Cys Ala Ala Val Val Val Cys Val Arg Val Arg Val Gln Lys 565 570 575 Arg Arg His Gln Pro Glu Ala Cys Arg Gly Glu Ser Lys Thr Met Asn 580 585 590 Asn Leu Ala Asn Cys Gln Arg Glu Lys Asp Ile Ser Val Ser Phe Ile 595 600 605 Gly Thr Thr Gln Ile Lys Asn Thr Asn Lys Lys Ile Asp Phe Leu Ser 610 615 620 Glu Ser Asn Asn Glu Lys Asn Gly Tyr Lys Pro Arg Tyr Pro Ser Val 625 630 635 640 Asp Tyr Asn Leu Val His Glu Leu Lys Asn Glu Asp Ser Pro Lys Glu 645 650 655 Glu Arg Ser Lys Cys Glu Ala Lys Cys Ser Ser Asn Asp Ser Asp Ser 660 665 670 Glu Asp Val Asn Ser Val His Ser Lys Arg Asp Ser Ser Glu Arg Arg 675 680 685 Arg Pro Asp Ser Ala Tyr Ser Thr Ser Lys Asp Thr Lys Tyr Gln Ser 690 695 700 Val Tyr Val Ile Ser Asp Glu Lys Asp Glu Cys Ile Ile Ala Thr Glu 705 710 715 720 Val <210> SEQ ID NO 13 <211> LENGTH: 2692 <212> TYPE: DNA <213> ORGANISM: Mus sp. <400> SEQUENCE: 13 ctgcaggaat tcsmycgcat gctcccggcc gccatgggcc gtcggagcgc gctagccctt 60 gccgtggtct ctgccctgct gtgccaggtc tggagctccg gcgtatttga gctgaagctg 120 caggagttcg tcaacaagaa ggggctgctg gggaaccgca actgctgccg cgggggctct 180 ggcccgcctt gcgcctgcag gaccttcttt cgcgtatgcc tcaagcacta ccaggccagc 240

gtgtcaccgg agccaccctg cacctacggc agtgccgtca cgccagtgct gggtgtcgac 300 tccttcagcc tgcctgatgg cgcaggcatc gaccccgcct tcagcaaccc catccgattc 360 cccttcggct tcacctggcc aggtaccttc tctctgatca ttgaagccct ccatacagac 420 tctcccgatg acctcgcaac agaaaaccca gaaagactca tcagccgcct gaccacacag 480 aggcacctca ctgtgggaga agaatggtct caggaccttc acagtagcgg ccgcacagac 540 ctccggtact cttaccggtt tgtgtgtgac gagcactact acggagaagg ttgctctgtg 600 ttctgccgac ctcgggatga cgcctttggc cacttcacct gcggggacag aggggagaag 660 atgtgcgacc ctggctggaa aggccagtac tgcactgacc caatctgtct gccagggtgt 720 gatgaccaac atggatactg tgacaaacca ggggagtgca agtgcagagt tggctggcag 780 ggccgctact gcgatgagtg catccgatac ccaggttgtc tccatggcac ctgccagcaa 840 ccctggcagt gtaactgcca ggaaggctgg gggggccttt tctgcaacca agacctgaac 900 tactgtactc accataagcc gtgcaggaat ggagccacct gcaccaacac gggccagggg 960 agctacacat gttcctgccg acctgggtat acaggtgcca actgtgagct ggaagtagat 1020 gagtgtgctc ctagcccctg caagaacgga gcgagctgca cggaccttga ggacagcttc 1080 tcttgcacct gccctcccgg cttctatggc aaggtctgtg agctgagcgc catgacctgt 1140 gcagatggcc cttgcttcaa tggaggacga tgttcagata accctgacgg aggctacacc 1200 tgccattgcc ccttgggctt ctctggcttc aactgtgaga agaagatgga tctctgcggc 1260 tcttcccctt gttctaacgg tgccaagtgt gtggacctcg gcaactctta cctgtgccgg 1320 tgccaggctg gcttctccgg gaggtactgc gaggacaatg tggatgactg tgcctcctcc 1380 ccgtgtgcaa atgggggcac ctgccgggac agtgtgaacg acttctcctg tacctgccca 1440 cctggctaca cgggcaagaa ctgcagcgcc cctgtcagca ggtgtgagca tgcaccctgc 1500 cataatgggg ccacctgcca ccagaggggc cagcgctaca tgtgtgagtg cgcccagggc 1560 tatggcggcc ccaactgcca gtttctgctc cctgagccac caccagggcc catggtggtg 1620 gacctcagtg agaggcatat ggagagccag ggcgggccct tcccctgggt ggccgtgtgt 1680 gccggggtgg tgcttgtcct cctgctgctg ctgggctgtg ctgctgtggt ggtctgcgtc 1740 cggctgaagc tacagaaaca ccagcctcca cctgaaccct gtgggggaga gacagaaacc 1800 atgaacaacc tagccaattg ccagcgcgag aaggacgttt ctgttagcat cattggggct 1860 acccagatca agaacaccaa caagaaggcg gactttcacg gggaccatgg agccgagaag 1920 agcagcttta aggtccgata ccccactgtg gactataacc tcgttcgaga cctcaaggga 1980 gatgaagcca cggtcaggga tacacacagc aaacgtgaca ccaagtgcca gtcacagagc 2040 tctgcaggag aagagaagat cgccccaaca cttaggggtg gggagattcc tgacagaaaa 2100 aggccagagt ctgtctactc tacttcaaag gacaccaagt accagtcggt gtatgttctg 2160 tctgcagaaa aggatgagtg tgttatagcg actgaggtgt aagatggaag cgatgtggca 2220 aaattcccat ttctcttaaa taaaattcca aggatatagc cccgatgaat gctgctgaga 2280 gaggaaggga gaggaaaccc agggactgct gctgagaacc aggttcaggc gaacgtggtt 2340 ctctcagagt tagcagaggc gcccgacact gccagcctag gctttggctg ccgctggact 2400 gcctgctggt tgttcccatt gcactatgga cagttgcttt gaagagtata tatttaaatg 2460 gacgagtgac ttgattcata taggaagcac gcactgccca cacgtctatc ttggattact 2520 atgagccagt ctttccttga actagaaaca caactgcctt tattgtcctt tttgatactg 2580 agatgtgttt tttttttttc ctagacggga aaaagaaaac gtgtgttatt ttttttggga 2640 tttgtaaaaa tatttttcat gattatggga gagctcccaa cgcgttggag gt 2692 <210> SEQ ID NO 14 <211> LENGTH: 722 <212> TYPE: PRT <213> ORGANISM: Mus sp. <400> SEQUENCE: 14 Met Gly Arg Arg Ser Ala Leu Ala Leu Ala Val Val Ser Ala Leu Leu 1 5 10 15 Cys Gln Val Trp Ser Ser Gly Val Phe Glu Leu Lys Leu Gln Glu Phe 20 25 30 Val Asn Lys Lys Gly Leu Leu Gly Asn Arg Asn Cys Cys Arg Gly Gly 35 40 45 Ser Gly Pro Pro Cys Ala Cys Arg Thr Phe Phe Arg Val Cys Leu Lys 50 55 60 His Tyr Gln Ala Ser Val Ser Pro Glu Pro Pro Cys Thr Tyr Gly Ser 65 70 75 80 Ala Val Thr Pro Val Leu Gly Val Asp Ser Phe Ser Leu Pro Asp Gly 85 90 95 Ala Gly Ile Asp Pro Ala Phe Ser Asn Pro Ile Arg Phe Pro Phe Gly 100 105 110 Phe Thr Trp Pro Gly Thr Phe Ser Leu Ile Ile Glu Ala Leu His Thr 115 120 125 Asp Ser Pro Asp Asp Leu Ala Thr Glu Asn Pro Glu Arg Leu Ile Ser 130 135 140 Arg Leu Thr Thr Gln Arg His Leu Thr Val Gly Glu Glu Trp Ser Gln 145 150 155 160 Asp Leu His Ser Ser Gly Arg Thr Asp Leu Arg Tyr Ser Tyr Arg Phe 165 170 175 Val Cys Asp Glu His Tyr Tyr Gly Glu Gly Cys Ser Val Phe Cys Arg 180 185 190 Pro Arg Asp Asp Ala Phe Gly His Phe Thr Cys Gly Asp Arg Gly Glu 195 200 205 Lys Met Cys Asp Pro Gly Trp Lys Gly Gln Tyr Cys Thr Asp Pro Ile 210 215 220 Cys Leu Pro Gly Cys Asp Asp Gln His Gly Tyr Cys Asp Lys Pro Gly 225 230 235 240 Glu Cys Lys Cys Arg Val Gly Trp Gln Gly Arg Tyr Cys Asp Glu Cys 245 250 255 Ile Arg Tyr Pro Gly Cys Leu His Gly Thr Cys Gln Gln Pro Trp Gln 260 265 270 Cys Asn Cys Gln Glu Gly Trp Gly Gly Leu Phe Cys Asn Gln Asp Leu 275 280 285 Asn Tyr Cys Thr His His Lys Pro Cys Arg Asn Gly Ala Thr Cys Thr 290 295 300 Asn Thr Gly Gln Gly Ser Tyr Thr Cys Ser Cys Arg Pro Gly Tyr Thr 305 310 315 320 Gly Ala Asn Cys Glu Leu Glu Val Asp Glu Cys Ala Pro Ser Pro Cys 325 330 335 Lys Asn Gly Ala Ser Cys Thr Asp Leu Glu Asp Ser Phe Ser Cys Thr 340 345 350 Cys Pro Pro Gly Phe Tyr Gly Lys Val Cys Glu Leu Ser Ala Met Thr 355 360 365 Cys Ala Asp Gly Pro Cys Phe Asn Gly Gly Arg Cys Ser Asp Asn Pro 370 375 380 Asp Gly Gly Tyr Thr Cys His Cys Pro Leu Gly Phe Ser Gly Phe Asn 385 390 395 400 Cys Glu Lys Lys Met Asp Leu Cys Gly Ser Ser Pro Cys Ser Asn Gly 405 410 415 Ala Lys Cys Val Asp Leu Gly Asn Ser Tyr Leu Cys Arg Cys Gln Ala 420 425 430 Gly Phe Ser Gly Arg Tyr Cys Glu Asp Asn Val Asp Asp Cys Ala Ser 435 440 445 Ser Pro Cys Ala Asn Gly Gly Thr Cys Arg Asp Ser Val Asn Asp Phe 450 455 460 Ser Cys Thr Cys Pro Pro Gly Tyr Thr Gly Lys Asn Cys Ser Ala Pro 465 470 475 480 Val Ser Arg Cys Glu His Ala Pro Cys His Asn Gly Ala Thr Cys His 485 490 495 Gln Arg Gly Gln Arg Tyr Met Cys Glu Cys Ala Gln Gly Tyr Gly Gly 500 505 510 Pro Asn Cys Gln Phe Leu Leu Pro Glu Pro Pro Pro Gly Pro Met Val 515 520 525 Val Asp Leu Ser Glu Arg His Met Glu Ser Gln Gly Gly Pro Phe Pro 530 535 540 Trp Val Ala Val Cys Ala Gly Val Val Leu Val Leu Leu Leu Leu Leu 545 550 555 560 Gly Cys Ala Ala Val Val Val Cys Val Arg Leu Lys Leu Gln Lys His 565 570 575 Gln Pro Pro Pro Glu Pro Cys Gly Gly Glu Thr Glu Thr Met Asn Asn 580 585 590 Leu Ala Asn Cys Gln Arg Glu Lys Asp Val Ser Val Ser Ile Ile Gly 595 600 605 Ala Thr Gln Ile Lys Asn Thr Asn Lys Lys Ala Asp Phe His Gly Asp 610 615 620 His Gly Ala Glu Lys Ser Ser Phe Lys Val Arg Tyr Pro Thr Val Asp 625 630 635 640 Tyr Asn Leu Val Arg Asp Leu Lys Gly Asp Glu Ala Thr Val Arg Asp 645 650 655 Thr His Ser Lys Arg Asp Thr Lys Cys Gln Ser Gln Ser Ser Ala Gly 660 665 670 Glu Glu Lys Ile Ala Pro Thr Leu Arg Gly Gly Glu Ile Pro Asp Arg 675 680 685 Lys Arg Pro Glu Ser Val Tyr Ser Thr Ser Lys Asp Thr Lys Tyr Gln 690 695 700 Ser Val Tyr Val Leu Ser Ala Glu Lys Asp Glu Cys Val Ile Ala Thr 705 710 715 720 Glu Val <210> SEQ ID NO 15 <211> LENGTH: 525 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 15 tacgatgaay aacctggcga actgccagcg tcagaaggac atctcagtca gcatcatcgg 60 ggcyacgtca gatcargaac accaacaaga aggcggactt ymcascgggg gaccasagcg 120 tccgacaaga atggmtttca aggccygcta ccccagcgtg gactataact cgtgcaggac 180 ctcaagggtg acgacaccgc cgtcaggacg tcgcacagca agcgtgacac caagtgccag 240 tccccaggct cctcagggag gagaagggga ccccgaccac actcaggggk tgcgtgctgc 300 gggccgggct caggaggggg tacctggggg gtgtcttcct ggaaccactg ctccgtttct 360 cttcccaaat gttctcatgc attcattgtg gattttctct attttccttt tagtggagaa 420 gcatctgaaa gaaaaaggcc ggactcgggc tgttcaactt caaaagacac caagtaccag 480

tcggtgtacg tcatatccga ggagaaggac gagtgcgtca tcgca 525 <210> SEQ ID NO 16 <211> LENGTH: 1981 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (559)..(559) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (678)..(678) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (689)..(689) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1246)..(1246) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1287)..(1287) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1492)..(1492) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1524)..(1524) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1569)..(1569) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1621)..(1621) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1656)..(1656) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1738)..(1738) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1857)..(1857) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1861)..(1861) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1876)..(1876) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1888)..(1888) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1899)..(1899) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1917)..(1917) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1925)..(1925) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1931)..(1931) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1935)..(1935) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1942)..(1943) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1952)..(1954) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1968)..(1968) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 16 cattgggtac gggcccccct cgaggtcgac ggtatcgata agcttgatat cgaattccgg 60 cttcacctgg ccgggcacct tctctctgat tattgaagct ctccacacag attctcctga 120 tgacctcgca acagaaaacc cagaaagact catcagccgc ctggccaccc agaggcacct 180 gacggtgggc gaggagtggt cccaggacct gcacagcagc ggccgcacgg acctcaagta 240 ctcctaccgc ttcgtgtgtg acgaacacta ctacggagag ggctgctccg ttttctgccg 300 tccccgggac gatgccttcg gccacttcac ctgtggggag cgtggggaga aagtgtgcaa 360 ccctggctgg aaagggccct actgcacaga gccgatctgc ctgcctggat gtgatgagca 420 gcatggattt tgtgacaaac cagcccaatg caagtgcaga gtgggctggc agggccggta 480 ctgtgacgag tgtatccgct atccaggctg tctccatggc acctgccagc agccctggca 540 gtgcaactgc caggaaggnt gggggggcct tttctgcaac caggacctga actactgcac 600 acaccataag ccctgcaaga atcgagccac ctgcaacaaa cacgggccag ggggagctac 660 acttggtctt tggccggnct ggggtacana gggtgccacc tgcgaagctt ggggattgga 720 cgagttgttg accccagccc ttggtaagaa cggagggagc ttgacggatc ttcggagaac 780 agctactcct gtacctgccc acccggcttc tacggcaaaa tctgtgaatt gagtgccatg 840 acctgtgcgg acggcccttg ctttaacggg ggtcggtgct cagacagccc cgatggaggg 900 tacagctgcc gctgccccgt gggctactcc ggcttcaact gtgagaagaa aattgactac 960 tgcagctctt caccctgttc taatggtgcc aagtgtgtgg acctcggtga tgcctacctg 1020 tgccgctgcc aggccggctt ctcggggagg cactgtgacg acaacgtgga cgactgcgcc 1080 tcctccccgt gcgccaacgg gggcacctgc cgggatggcg tgaacgactt ctcctgcacc 1140 tgcccgcctg gctacacggg caggaactgc agtgcccccg ccagcaggtg cgagcacgca 1200 ccctgccaca atggggccac ctgccacgag aggggccacc gctatntgtg cgagtgtgcc 1260 cgaagctacg ggggtcccaa ctgccanttc ctgctccccg aaactgcccc cccggcccca 1320 cggtggtgga aactccccta aaaaaaccta aaagggccgg ggggggccca tccccttggt 1380 ggacgtgtgc gccggggtca tccttgtcct catgctgctg ctgggctgtc ccgctgtggt 1440 ggtctgcgtc cggctgaggc tgcagaagca ccggccccca gccgacccct gncgggggga 1500 gacggagacc atgaacaacc tggncaactg ccagcgtgag aaggacatct cagtcagcat 1560 catcggggnc acgcagatca agaacaccaa caagaaggcg gacttccacg gggaccacag 1620 ngccgacaag aatggcttca aggcccgcta cccagnggtg gactataacc tcgtgcagga 1680 cctcaagggt gacgacaccg ccgtcaggga cgcgcacagc aagcgtgaca ccaagtgnca 1740 gccccagggc tcctcagggg aggagaaggg gacccccgac ccacactcag ggggtggagg 1800 aagcatcttg aaagaaaaag gccggacttc gggcttgttc aactttcaaa agacaancaa 1860 ngtacaagtc ggtgtncgtc atttccgnag gaggaaggnt gactgcgtca taggaanttg 1920 aggtngtaaa ntggnagttg annttggaaa gnnntccccc gattcccntt tcaaagtttt 1980 t 1981 <210> SEQ ID NO 17 <211> LENGTH: 192 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 17 Gly Phe Thr Trp Pro Gly Thr Phe Ser Leu Ile Ile Glu Ala Leu His 1 5 10 15 Thr Asp Ser Pro Asp Asp Leu Ala Thr Glu Asn Pro Glu Arg Leu Ile 20 25 30 Ser Arg Leu Ala Thr Gln Arg His Leu Thr Val Gly Glu Glu Trp Ser 35 40 45 Gln Asp Leu His Ser Ser Gly Arg Thr Asp Leu Lys Tyr Ser Tyr Arg 50 55 60 Phe Val Cys Asp Glu His Tyr Tyr Gly Glu Gly Cys Ser Val Phe Cys 65 70 75 80 Arg Pro Arg Asp Asp Ala Phe Gly His Phe Thr Cys Gly Glu Arg Gly 85 90 95 Glu Lys Val Cys Asn Pro Gly Trp Lys Gly Pro Tyr Cys Thr Glu Pro 100 105 110 Ile Cys Leu Pro Gly Cys Asp Glu Gln His Gly Phe Cys Asp Lys Pro 115 120 125 Gly Glu Cys Lys Cys Arg Val Gly Trp Gln Gly Arg Tyr Cys Asp Glu 130 135 140 Cys Ile Arg Tyr Pro Gly Cys Leu His Gly Thr Cys Gln Gln Pro Trp 145 150 155 160 Gln Cys Asn Cys Gln Glu Gly Trp Gly Gly Leu Phe Cys Asn Gln Asp 165 170 175 Leu Asn Tyr Cys Thr His His Lys Pro Cys Lys Asn Gly Ala Thr Cys 180 185 190 <210> SEQ ID NO 18 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <300> PUBLICATION INFORMATION: <310> PATENT DOCUMENT NUMBER: WO 9701571 Fig 14 <312> PUBLICATION DATE: 1997-01-16 <400> SEQUENCE: 18 Thr Asn Thr Gly Gln Gly 1 5 <210> SEQ ID NO 19 <211> LENGTH: 9 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 19 Lys Asn Gly Gly Ser Leu Thr Asp Leu 1 5 <210> SEQ ID NO 20 <211> LENGTH: 157 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 20 Glu Asn Ser Tyr Ser Cys Thr Cys Pro Pro Gly Phe Tyr Gly Lys Ile 1 5 10 15 Cys Glu Leu Ser Ala Met Thr Cys Ala Asp Gly Pro Cys Phe Asn Gly

20 25 30 Gly Arg Cys Ser Asp Ser Pro Asp Gly Gly Tyr Ser Cys Arg Cys Pro 35 40 45 Val Gly Tyr Ser Gly Phe Asn Cys Glu Lys Lys Ile Asp Tyr Cys Ser 50 55 60 Ser Ser Pro Cys Ser Asn Gly Ala Lys Cys Val Asp Leu Gly Asp Ala 65 70 75 80 Tyr Leu Cys Arg Cys Gln Ala Gly Phe Ser Gly Arg His Cys Asp Asp 85 90 95 Asn Val Asp Asp Cys Ala Ser Ser Pro Cys Ala Asn Gly Gly Thr Cys 100 105 110 Arg Asp Gly Val Asn Asp Phe Ser Cys Thr Cys Pro Pro Gly Tyr Thr 115 120 125 Gly Arg Asn Cys Ser Ala Pro Ala Ser Arg Cys Glu His Ala Pro Cys 130 135 140 His Asn Gly Ala Thr Cys His Glu Arg Gly His Arg Tyr 145 150 155 <210> SEQ ID NO 21 <211> LENGTH: 12 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 21 Cys Glu Cys Ala Arg Ser Tyr Gly Gly Pro Asn Cys 1 5 10 <210> SEQ ID NO 22 <211> LENGTH: 5 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 22 Phe Leu Leu Pro Glu 1 5 <210> SEQ ID NO 23 <211> LENGTH: 4 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 23 Pro Pro Gly Pro 1 <210> SEQ ID NO 24 <211> LENGTH: 25 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 24 Leu Leu Leu Gly Cys Ala Ala Val Val Val Cys Val Arg Leu Arg Leu 1 5 10 15 Gln Lys His Arg Pro Pro Ala Asp Pro 20 25 <210> SEQ ID NO 25 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 25 Arg Gly Glu Thr Glu Thr Met Asn Asn Leu 1 5 10 <210> SEQ ID NO 26 <211> LENGTH: 14 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 26 Asn Cys Gln Arg Glu Lys Asp Ile Ser Val Ser Ile Ile Gly 1 5 10 <210> SEQ ID NO 27 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 27 Thr Gln Ile Lys Asn Thr Asn Lys Lys Ala Asp Phe His Gly Asp His 1 5 10 15 <210> SEQ ID NO 28 <211> LENGTH: 11 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 28 Ala Asp Lys Asn Gly Phe Lys Ala Arg Tyr Pro 1 5 10 <210> SEQ ID NO 29 <211> LENGTH: 26 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 29 Val Asp Tyr Asn Leu Val Gln Asp Leu Lys Gly Asp Asp Thr Ala Val 1 5 10 15 Arg Asp Ala His Ser Lys Arg Asp Thr Lys 20 25 <210> SEQ ID NO 30 <211> LENGTH: 13 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 30 Gln Pro Gln Gly Ser Ser Gly Glu Glu Lys Gly Thr Pro 1 5 10 <210> SEQ ID NO 31 <211> LENGTH: 4 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 31 Pro Thr Leu Arg 1 <210> SEQ ID NO 32 <211> LENGTH: 4 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 32 Arg Lys Arg Pro 1

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed