System and method for selective heating and cooling

Wells, David N.

Patent Application Summary

U.S. patent application number 11/120946 was filed with the patent office on 2005-09-08 for system and method for selective heating and cooling. Invention is credited to Wells, David N..

Application Number20050193758 11/120946
Document ID /
Family ID46304508
Filed Date2005-09-08

United States Patent Application 20050193758
Kind Code A1
Wells, David N. September 8, 2005

System and method for selective heating and cooling

Abstract

A combined heating/cooling system and method is provided wherein an absorption tank (20) houses a refrigerant and absorbant mixture composition. A boiler (50) heats the pressurized mixture composition and vaporizes the refrigerant. Heated absorbant is passed back through a heat exchanger (40) to be delivered back into absorption tank (20) and the vaporized refrigerant is directed to a closed-loop thermal exchange system for selectively heating and cooling ambient air. The mixture may be a composition of NMP as the absorbant and HFC-245fa as the refrigerant. When such a composition is employed, pressure may be reduced such that less expensive construction materials, such as aluminum, may be incorporated into the boiler fluid circuit, such as in the heat exchanger (40).


Inventors: Wells, David N.; (Silver Spring, MD)
Correspondence Address:
    ROSENBERG, KLEIN & LEE
    3458 ELLICOTT CENTER DRIVE-SUITE 101
    ELLICOTT CITY
    MD
    21043
    US
Family ID: 46304508
Appl. No.: 11/120946
Filed: May 4, 2005

Related U.S. Patent Documents

Application Number Filing Date Patent Number
11120946 May 4, 2005
10910294 Aug 4, 2004
60543929 Feb 13, 2004
60571938 May 18, 2004
60562546 Apr 16, 2004
60523679 Nov 21, 2003
60513999 Oct 27, 2003

Current U.S. Class: 62/324.2 ; 62/222; 62/476; 62/513
Current CPC Class: F25B 15/02 20130101; Y02A 30/27 20180101; F25B 25/02 20130101; F25B 2400/141 20130101; Y02A 30/277 20180101; F25B 2315/006 20130101; Y02B 30/62 20130101
Class at Publication: 062/324.2 ; 062/476; 062/513; 062/222
International Class: F25B 041/04; F25B 043/04; F25B 013/00; F25B 015/00; F25B 041/00

Claims



What is claimed is:

1. A combined heating/cooling system comprising: (a) an absorption tank for containing a refrigerant and an absorbant mixture composition, (b) a pump in fluid communication with said absorption tank for pressurizing said mixture composition to produce a high pressure mixture composition; (c) a heat exchanger fluidly coupled to said pump for passing said high pressure mixture composition therethrough; (d) a boiler for heating said high pressure mixture composition, said boiler vaporizing said refrigerant and egressing on a first boiler conduit line, said heated absorbant being passed to said heat exchanger on a second boiler conduit line for insert into said absorption tank; (e) a closed-loop thermal exchange system for selectively heating and cooling ambient air.

2. The combined heating/cooling system as recited in claim 1 further comprising an expansion valve being positioned between said heat exchanger and said absorption tank, whereby said heated absorbant passes through said expansion valve prior to reinsertion in said absorbant tank.

3. The combined heating/cooling system as recited in claim 1 wherein said closed-loop thermal exchange system comprises: (a) a first selector valve for diverting the vaporized refrigerant from said scroll expander through (1) a cooling cycle or (2) a heating cycle; (b) a first liquid-vapor converter fluidly coupled to said first converter valve for (1) converting said refrigerant vapor to a liquid in said cooling cycle and (2) converting said liquid refrigerant to a vapor in the heating cycle; (c) a second liquid-vapor converter fluidly coupled to said first liquid vapor converter for (1) converting said liquid refrigerant to a vapor in the cooling cycle and (2) converting the vapor refrigerant to a liquid refrigerant in the heating cycle; (d) a second selector valve fluidly coupled to said second liquid-vapor converter for (1) receiving refrigerant vapor in said cooling cycle and directing said refrigerant vapor into said absorption tank, and (2) diverting said refrigerant vapor from said first selector valve to said second liquid-vapor converter in said heating cycle; (e) a first air to liquid contactor member for receiving (1) a heated brine solution from said first liquid-vapor connector and expelling heated air in cooling cycle and (2) a cooled brine solution from said first liquid-vapor converter and expelling cooled air, said brine solution being heated in the heating cycle; (f) a second heat exchanger coupled to said first air to liquid contactor and said liquid-vapor converter for (1) cooling said brine solution in said cooling cycle and (2) heating said brine solution in said heating cycle; and, (g) a second air to liquid contactor fluidly coupled to said second liquid-vapor converter for (1) inputting cooled brine solution and expelling cooling air in the cooling cycle and (2) inputting heated brine solution and expelling heated air.

4. The combined heating/cooling system as recited in claim 3 further comprising a first expansion valve being positioned between said heat exchanger and said absorption tank, whereby said heated absorbant passes through said expansion valve prior to reinsertion in said absorbant tank.

5. The combined heating/cooling system as recited in claim 3 wherein a second expansion valve is fluidly connected between said first liquid-vapor converter and said second liquid-vapor converter.

6. The combined heating/cooling system as recited in claim 3 further comprising a pump for driving brine solution through said second liquid-vapor converter.

7. The combined heating/cooling system as recited in claim 1 wherein said refrigerant and absorbant mixture composition has a refrigerant concentration in the range of 30 to 50%.

8. The combined heating/cooling system as recited in claim 1 wherein said heat exchanger heats said refrigerant and absorbant mixture composition to approximately 100.degree. C.

9. The combined heating/cooling system as recited in claim 1 wherein said vaporized refrigerant is super-heated by said boiler to a temperature in the range of 20 to 30.degree. C. above the saturation temperature of said vaporized refrigerant.

10. The combined heating/cooling system as recited in claim 3 wherein said brine solution comprises a salt dissolved in water.

11. The combined heating/cooling system as recited in claim 10 wherein said salt is selected from the group consisting of: lithium chloride, lithium bromide, magnesium chloride, calcium chloride and glycol.

12. The combined heating/cooling system as recited in claim 3 wherein said first and second air to liquid contactor members are formed of honeycombed absorptive material.

13. The combined heating/cooling system as recited in claim 1 wherein said refrigerant is an HFC-245fa.

14. The combined heating/cooling system as recited in claim 1 wherein said absorbant includes NMP.

15. The combined heating/cooling system as recited in claim 14 wherein said absorbant further includes at least one stabilizer.

16. The combined heating/cooling system as recited in claim 1 further comprising: (a) a scroll expander fluidly coupled to said boiler for receiving said vaporized refrigerant; and, (b) an induction generator rotationally coupled to said scroll expander for producing electrical power.

17. The combined heating/cooling system as recited in claim 3 further comprising: (a) a scroll expander fluidly coupled to said boiler for receiving said vaporized refrigerant; and, (b) an induction generator rotationally coupled to said scroll expander for producing electrical power.

18. The combined heating/cooling system as recited in claim 15 wherein said at least one stabilizer is selected from the group consisting of: microalkanes and phosphates.

19. The combined heating/cooling system as recited in claim 1, wherein both of said high pressure mixture composition and said heated absorbant passing through said heat exchanger is maintained at a pressure of below 100 psi.

20. The combined heating/cooling system as recited in claim 19, wherein said absorbant includes NMP and said refrigerant includes HFC-245fa.

21. The combined heating/cooling system as recited in claim 20, wherein said heat exchanger is constructed from aluminum.

22. The combined heating/cooling system as recited in claim 21, wherein said aluminum has been treated by etching and passivation.

23. The combined heating/cooling system as recited in claim 22, wherein said aluminum was passivated through the application of one of the group consisting of a chromic acid, a non-chromic acid, nitric acid, and fluorine gas.

24. The combined heating/cooling system as recited in claim 22, wherein said passivated surface is sealed by one of the group consisting of a saline surface treatment, a sol-gel, and a paint.

25. A method of heating/cooling including the steps of: (a) providing a mixture of a refrigerant composition and an absorbant; (b) heating said refrigerant and absorbant mixture; (c) vaporizing said refrigerant composition; (d) selectively passing said vaporized refrigerant through (1) a cooling cycle for exiting cooled air, and (2) a heating cycle for exiting heated air.

26. The method of heating/cooling as recited in claim 20 further comprising the steps of: (a) providing a first liquid-vapor converter; (b) converting said (1) refrigerant vapor to a liquid in said cooling cycle within said first liquid-vapor converter, and (2) liquid refrigerant to a vapor in the heating cycle within said first liquid-vapor converter; (c) providing a second liquid-vapor converter; (d) converting said (1) liquid refrigerant to a vapor in the cooling cycle within said second liquid-vapor converter, and (2) refrigerant vapor to a liquid refrigerant in the heating cycle within said second liquid-vapor converter; (e) directing (1) said refrigerant vapor into said heated refrigerant and absorbant mixture in said cooling cycle, and (2) said refrigerant vapor to said second liquid-vapor converter in said heating cycle; (f) providing first and second air to liquid contactor members; (g) providing a brine solution; (h) passing said brine solution through said first air to liquid contactor member, (1) heated air being expelled in said cooling cycle, and (2) cooled air being expelled in said heating cycle; (i) (1) cooling said brine solution in said cooling cycle, and (2) heating said brine solution in said heating cycle; (j) passing (1) cooled brine solution through said second air to liquid contactor member in said cooling cycle and expelling cooled air, and (2) heated brine solution through said second air to liquid contactor member in said heating cycle and expelling heated air.

27. The method of heating/cooling as recited in claim 25 wherein, following said step of vaporizing said refrigerant composition, said absorbant is collected.

28. The method of heating/cooling as recited in claim 27 wherein, prior to collection of said absorbant, said absorbant is depressurized.

29. The method of heating/cooling as recited in claim 26 further comprising the step of providing a fluid pump.

30. The method of heating/cooling as recited in claim 29 wherein said brine solution is charged by said fluid pump and directed through said second liquid-vapor converter.

31. The method of heating/cooling as recited in claim 26 further comprising the step of providing an expansion valve fluidly connected to said first and second liquid-vapor converters.

32. The method of heating/cooling as recited in claim 31 wherein said expansion valve depressurizes said liquid refrigerant flowing therethrough.

33. The method of heating/cooling as recited in claim 25 further comprising the steps of: (a) following the step of vaporizing said refrigerant composition, passing said vaporized refrigerant composition through a scroll expander; and, (b) generating electrical power from a generator connected to said scroll expander.

34. The method of heating/cooling as recited in claim 26 further comprising the steps of: (a) following the step of vaporizing said refrigerant composition, passing said vaporized refrigerant composition through a scroll expander; and, (b) generating electrical power from a generator connected to said scroll expander.

35. The method of heating/cooling as recited in claim 25 where said mixture providing step includes the step of providing HFC-245fa to said refrigerant composition and NMP to said absorbant.

36. The method of heating/cooling as recited in claim 35 further including the steps of: providing a heat exchanger; and preheating said refrigerant and absorbant mixture in said heat exchanger prior to said refrigerant and absorbant mixture heating step.

37. The method of heating/cooling as recited in claim 36 where said heat exchanger providing step includes the step of constructing said heat exchanger from aluminum.

38. The method of heating/cooling as recited in claim 37 where said heat exchanger construction step includes the steps of etching and passivating exposed surfaces of the aluminum.

39. The method of heating/cooling as recited in claim 38 where said passivating step includes the step of applying one of the group consisting of chromic acid, non-chromic acid, nitric acid and fluorine gas.

40. The method of heating/cooling as recited in claim 38 further including the step of sealing said passivated aluminum by one of the group consisting of silane surface treatment, sol-gel treatment and painting.

41. A combined heating/cooling system comprising: (a) an absorption tank for containing a refrigerant and an absorbant mixture composition, (b) a pump in fluid communication with said absorption tank for pressurizing said mixture composition to produce a high pressure mixture composition; (c) a heat exchanger fluidly coupled to said pump for passing said high pressure mixture composition therethrough; (d) a boiler for heating said high pressure mixture composition, said boiler vaporizing said refrigerant and egressing on a first boiler conduit line, said heated absorbant being passed to said heat exchanger on a second boiler conduit line for insert into said absorption tank, said refrigerant and said absorbant both passing back through said boiler prior exiting said boiler, said absorbant and said refrigerant releasing thermal energy within said boiler; (e) a condenser for receiving said vaporized refrigerant and condensing said vaporized refrigerant into a liquid refrigerant, ambient air passing through said condenser and removing thermal energy released during the condensation of said refrigerant; (f) an expansion valve for receiving said liquid refrigerant, said expansion valve depressurizing said liquid refrigerant and creating a mixture of vaporized refrigerant and liquid refrigerant; (g) an evaporator for receiving said mixture of vaporized refrigerant and liquid refrigerant, said evaporator converting said mixture into pure vaporized refrigerant, ambient air passing through said evaporator, said ambient air being cooled by said conversion into said pure vaporized refrigerant, said evaporator expelling cooled air into the environment, said pure vaporized refrigerant being delivered back into said absorption tank.

42. The combined heating/cooling system as recited in claim 41 wherein said refrigerant is an HFC-245fa.

43. The combined heating/cooling system as recited in claim 41 wherein said absorbant includes NMP.

44. The combined heating/cooling system as recited in claim 43 wherein said absorbant further includes at least one stabilizer.

45. The combined heating/cooling system as recited in claim 43 wherein said at least one stabilizer is selected from the group consisting of: nitroalkanes and phosphates.

46. The combined heating/cooling system as recited in claim 41, wherein both of said high pressure mixture composition in said heated absorbant passing through said heat exchanger is maintained at a pressure of below 100 psi.

47. The combined heating/cooling system as recited in claim 46, wherein said absorbant includes NMP and said refrigerant includes HFC-245fa.

48. The combined heating/cooling system as recited in claim 47, wherein said heat exchanger is constructed from aluminum.

49. The combined heating/cooling system as recited in claim 47, wherein said aluminum has been treated by etching and passivation.

50. The combined heating/cooling system as recited in claim 49, wherein said aluminum was passivated by the application of one of the group consisting of chromic acid, non-chromic acid, nitric acid and fluorine gas.

51. The combined heating/cooling system as recited in claim 49, wherein said passivated surface is sealed by one of the group consisting of a silane surface treatment, a sol-gel, and a paint.

52. A combined heating/cooling system comprising: (a) an absorption tank for containing a refrigerant and an absorbant mixture composition, (b) a pump in fluid communication with said absorption tank for pressurizing said mixture composition to produce a high pressure mixture composition; (c) a heat exchanger fluidly coupled to said pump for passing said high pressure mixture composition therethrough; (d) a boiler for heating said high pressure mixture composition, said boiler vaporizing said refrigerant and egressing on a first boiler conduit line, said heated absorbant being passed to said heat exchanger on a second boiler conduit line for insert into said absorption tank; (e) a scroll expander for receiving said vaporized refrigerant, said vaporized refrigerant driving said scroll expander; (f) a compressor mechanically driven by said scroll expander, said compressor pressurizing said vaporized refrigerant; (g) a condenser for receiving said pressurized vaporized refrigerant output by said compressor, said condenser condensing said pressurized vaporized refrigerant to form liquid refrigerant; (h) an expansion valve for receiving said liquid refrigerant, said expansion valve reducing pressure of said liquid refrigerant; (i) an evaporator for receiving said liquid refrigerant and vaporizing said liquid refrigerant, said evaporator expelling vaporized refrigerant which is driven back to said compressor.

53. The combined heating/cooling system as recited in claim 52 further comprising: (a) a first selector valve for receiving said vaporized refrigerant from said scroll expander, said first selector valve directing said vaporized refrigerant to said condenser, said condenser converting said vaporized refrigerant into liquid refrigerant; (b) a second expansion valve for receiving said liquid refrigerant from said condenser, said second expansion valve decreasing pressure of said liquid refrigerant and directing said liquid refrigerant to said evaporator, said evaporator vaporizing said liquid refrigerant and delivering said vaporized refrigerant to said absorption tank.

54. The combined heating/cooling system as recited in claim 52 wherein said refrigerant is HFC-245fa.

55. The combined heating/cooling system as recited in claim 52 wherein said absorbant includes NMP.

56. The combined heating/cooling system as recited in claim 55 wherein said absorbant further includes at least one stabilizer.

57. The combined heating/cooling system as recited in claim 56 wherein said at least one stabilizer is selected from the group consisting of: nitroalkanes and phosphates.

58. The combined heating/cooling system as recited in claim 52, wherein said absorbant includes NMP and said refrigerant includes HFC-245fa.

59. The combined heating/cooling system as recited in claim 58, wherein said heat exchanger is constructed from aluminum.

60. The combined heating/cooling system as recited in claim 59, wherein said aluminum is treated by etching and passivation.

61. The combined heating/cooling system as recited in claim 60, wherein said aluminum has been passivated by the application of one of the group consisting of chromic acid, non-chromic acid, nitric acid and fluorine gas.

62. The combined heating/cooling system as recited in claim 60, wherein said passivated surface is sealed by one of the group consisting of a silane treatment, a sol-gel, and a paint.

63. A cooling and power generation system comprising: (a) an absorption tank for containing a refrigerant and an absorbant mixture composition, (b) a pump in fluid communication with said absorption tank for pressurizing said mixture composition to produce a high pressure mixture composition; (c) a heat exchanger fluidly coupled to said pump for passing said high pressure mixture composition therethrough; (d) a boiler for heating said high pressure mixture composition, said boiler vaporizing said refrigerant and egressing on a first boiler conduit line, said heated absorbant being passed to said heat exchanger on a second boiler conduit line for insert into said absorption tank; (e) a scroll expander fluidly coupled to said boiler for receiving said vaporized refrigerant; (f) an induction generator rotationally coupled to said scroll expander for producing electrical power; (g) a condenser for receiving said vaporized refrigerant, said condenser converting said vaporized refrigerant to liquid refrigerant; (h) an evaporator for receiving said liquid refrigerant, said evaporator converting said liquid refrigerant back to said vaporized refrigerant, said conversion of said liquid refrigerant to said vaporized refrigerant drawing thermal energy from the environment, said vaporized refrigerant being returned to said absorption tank to remix with said absorbant.

64. The cooling and power generation system as recited in claim 63 wherein said absorption tank includes an air-to-liquid contactor member for drawing thermal energy from said absorption tank.

65. The cooling and power generation system as recited in claim 63 wherein a portion of said liquid absorbant released by said boiler is routed to said scroll expander for lubricating and cooling said scroll expander.

66. The cooling and power generation system as recited in claim 63 wherein an expansion valve is positioned between said heat exchanger and said absorption tank to depressurize said absorbant prior to re-insert in said absorption tank.

67. The cooling and power generation system as recited in claim 63 wherein an expansion valve is positioned between said condenser and said evaporator to depressurize said liquid refrigerant prior to entry in said evaporator.

68. The cooling and power generation system as recited in claim 63 wherein said refrigerant is HFC-245fa.

69. The cooling and power generation system as recited in claim 63 wherein said absorbant includes NMP.

70. The cooling and power generation system as recited in claim 69 wherein said absorbant further includes at least one stabilizer.

71. The cooling and power generation system as recited in claim 70 wherein said at least one stabilizer is selected from the group consisting of: nitroalkanes and phosphates.

72. The cooling and power generation system as recited in claim 63, wherein said absorbant includes NMP and said refrigerant includes HFC-245fa.

73. The cooling and power generation system as recited in claim 72, wherein said heat exchanger is constructed from aluminum.

74. The cooling and power generation system as recited in claim 73, wherein said aluminum is treated by etching and passivation.

75. The cooling and power generation system as recited in claim 74, wherein said aluminum has been passivated by the application of one of the group consisting of chromic acid, non-chromic acid, nitric acid and fluorine gas.

76. The cooling and power generation system as recited in claim 74, wherein said passivated surface is sealed by one of the group consisting of a silane treatment, a sol-gel, and a paint.
Description



REFERENCE TO RELATED APPLICATIONS

[0001] This patent application is a Continuation-in-part Application of application Ser. No. 10/910,294, filed on 4 Aug. 2004, currently pending, which is based on Provisional Applications Ser. No. 60/543,929, filed on 13 Feb. 2004; Ser. No. 60/571,938, filed 18 May 2004; Ser. No. 60/562,546, filed 16 Apr. 2004; Ser. No. 60/523,679 filed 21 Nov. 2003; and Ser. No. 60/513,999 filed on 27 Oct. 2003.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The subject invention relates to a system and method for selective heating and cooling. In particular, the present invention directs itself to a system utilizing a refrigerant and absorbant mixture composition held within an absorption tank. More particularly, a boiler is provided for heating the mixture composition such that the boiler vaporizes the refrigerant and the liquid absorbant is delivered back into the absorption tank for reuse. Further, the vaporized refrigerant is delivered to a closed-loop thermal exchange system for selectively heating and cooling ambient air.

[0004] The present invention system and method further directs itself to providing a novel mixture of refrigerants and an absorbant composition allowing the system to act as both a heating and cooling system. More particularly, the mixture of refrigerants and the absorbant provide an environmentally friendly composition, which further allows the system to be hermetically sealed. Additionally, the heating and cooling system may further be utilized as a power generation system.

[0005] Furthermore, the inventive mixture of refrigerants have pressure and corrosion characteristics that advantageously allow the utilization of lower-cost aluminum heat exchangers. The aluminum heat exchangers may also be surface-treated, such as by anodization or passivation, particularly on those surfaces exposed to the refrigerant mixture to further protect the heat exchanger and thereby extend the usable lifetime thereof. The use of aluminum components in the boiler fluid circuit of the present invention is a clear advantage of the present invention over existing high-pressure ammonia-water absorption systems.

[0006] The system and method of the present invention is further directed to the use of a refrigerant consisting of substantially pure 1, 1, 1, 3, 3 pentafluoropropane (HFC-245fa) and an absorption material consisting of substantially pure n-methyl, 2-pyrrolidone (NMP) with small amounts (ranging within 0.1-1% by volume) of one or more stabilizers selected from the group of nitroalkanes such as nitromethane, phosphates such as tributyl phosphate, zinc dithiophosphate, or other stabilizers. Furthermore, the present system employs the additional steps 1) passivation and 2) silicone sealing of the aluminum system components to make these stabilizers even more effective.

[0007] 2. Brief Description of the Prior Art

[0008] Heating and cooling systems are well-known in the art. In general, such prior art systems generally utilize two different sets of heating and cooling sub-systems. The system of the subject patent application, however, provides for a single closed-loop thermal exchange system allowing selection of a heating cycle or a cooling cycle, where both cycles involve common system components in their respective executions. The system is sealed and utilizes heating/cooling solution mixtures which may be reused in the heating and cooling cycles.

[0009] Given present thermal exchange systems, a need exists in the market for a system that produces a heat pump or cooling effect, or producing both electric power and a cooling effect utilizing heat input. The system should be both efficient and inexpensive. Such a system would preferably use substantially "off-the-shelf" components. For example, stock automotive fuel pumps might act as a system liquid pump. Stock air conditioning electric refrigeration compressors, particularly of the scroll type, might act as the system expander/power producing element if the scroll compressor were modified by simply removing the check valve that is installed in typical air conditioning service. The present inventive system concept is directed to utilizing such "off-the-shelf" components and, in particular, is directed at a novel and unique selection of working fluid and absorption materials which are compatible with the system components.

[0010] Systems utilizing isoparaffins as absorption materials for use with butane refrigerants are well-known in the art. The present system provides an improvement over prior art systems in that it employs working fluid refrigerants, which are both non-flammable and non-toxic, and absorption materials which have an advantageously high boiling point. The refrigerant and absorption materials are chemically non-reactive with lower-cost construction materials designed for medium-pressure systems, such as lightweight aluminum heat exchangers. The ability to incorporate lower-cost materials such as aluminum into the boiler fluid circuit of the present invention is a significant advancement over similar systems of the prior art. Moreover, as the refrigerants utilized by the present system are non-flammable and operate at only moderate pressure, operational safety is enhanced.

[0011] Systems implementing scroll compressors which are run in reverse as expansion engines are known. Among the many advantageous features of the present system is the use of such an expansion engine to drive an electric power generation system. Thus, some of the energy dissipated to the surrounding environment during expansion by prior art systems is converted by the inventive system into electric power.

SUMMARY OF THE INVENTION

[0012] The present invention provides for a combined heating/cooling system. The heating/cooling system utilizes a refrigerant and absorbant mixture composition held, initially, in an absorption tank. A pump in fluid communication with the absorption tank pressurizes the mixture composition and delivers it to a first heat exchanger. A boiler is provided for receiving the high pressure mixture composition, with the boiler vaporizing the refrigerant and delivering the liquid absorbant back into the absorption tank for later reuse. The vaporized refrigerant is delivered to a closed-loop thermal exchange system for selective heating and cooling of ambient air.

[0013] It is a principal objective of the subject heating/cooling system to provide an optimized refrigerant and absorbant mixture composition.

[0014] It is a further objective of the subject heating/cooling system to provide a boiler for heating a high pressure mixture composition in order to vaporize the refrigerant component of the mixture.

[0015] It is a further objective of the subject invention to provide means for retrieving the liquid absorbant from the boiler in order to reuse the absorbant in the absorbant/refrigerant mixture.

[0016] It is yet a further objective of the present invention to provide a closed-loop thermal exchange system for selectively heating and cooling ambient air.

[0017] It is a further objective of the present invention to provide a closed-loop thermal exchange system utilizing HFC-245fa as a refrigerant.

[0018] It is another objective of the present invention system to provide NMP as an absorption material.

[0019] It is yet a further objective of the present invention system to provide improved compatibility of the working fluid mixtures to aluminum component parts, such as aluminum heat exchangers, by providing relatively low corrosion characteristics and lower operating pressure. It is a further objective of the present invention to subject the aluminum components to surface treatments to extend system lifetime over that of untreated aluminum components alone.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIG. 1 is a schematic representation of the preferred embodiment of the subject heating/cooling and power generation system;

[0021] FIG. 2 is a schematic representation of an alternative embodiment of the subject heating/cooling system in a cooling cycle;

[0022] FIG. 3 is a schematic diagram of an alternative embodiment of the subject heating/cooling system in a heating cycle;

[0023] FIG. 4 is a schematic diagram of an alternative embodiment of the heating/cooling system utilizing a single-effect absorption cycle; and,

[0024] FIG. 5 is an alternative embodiment of the subject heating/cooling system utilizing a mechanical compressor.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0025] I. Overview

[0026] Referring to FIGS. 2 and 3 of the Drawings, there is shown a system for combined heating/cooling of an edifice. The basic system 10 includes an absorption tank 20 for containing a mixture composed of a refrigerant and an absorbant. The refrigerant and absorbant materials themselves will be discussed in greater detail below. The refrigerant and absorbant mixture composition is drawn from absorption tank 20 by pump 30 and is delivered to first heat exchanger 40. Pump 30 drives the high pressure mixture through heat exchanger 40 in order to pre-heat the mixture in the manner typical of heat-exchangers. The pre-heated mixture flows from heat exchanger 40 into boiler 50. In boiler 50, the refrigerant is vaporized and is drawn off in gaseous form (represented by the dashed line in the Figure). The liquid absorbant is removed from boiler 50 and drawn back into heat exchanger 40 where it is cooled. The liquid absorbant then passes through an expansion valve 60, where it is depressurized and lowered in temperature, and then flows back into absorption tank 20.

[0027] The vaporized refrigerant may pass into a power generation sub-system 70. In power generation sub-system 70, the vaporized refrigerant flows into a scroll expander 80, causing the scroll expander 80 to rotate and drive generator 90 via the rotation of shaft 100. The power generation sub-system 70 is optional and may be bypassed, with the vaporized refrigerant passing directly into a closed-loop thermal exchange system for selectively heating or cooling ambient air. The closed-loop thermal exchange system will be discussed, for both a heating cycle and a cooling cycle, in greater detail below.

[0028] II. Exemplary Embodiment for Hybrid Organic Absorption/Rankine Scroll Electric System Based on HFC-245fa and NMP

[0029] The thermal exchange system 500 shown in FIG. 1 includes an absorption tank 510 for containing a mixture of a refrigerant and an absorbant composition. In certain advantageous embodiments, the refrigerant consists of substantially pure 1,1,1,3,3 pentafluoropropane (HFC-245fa). The refrigerant may also consist of 1,1,1,2 tetrafluoroethane (HFC-134a) in combination with HFC-245fa. The refrigerant may also be a chlorinated alkane such as 1-chloro, 1,2,2, 2-tetrafluoroethane, also known as HCFC-124. The refrigerant may further be methylene chloride, also known as dichloromethane, or mixtures of these, or further other HCFC, HFC compositions or chloroalkanes.

[0030] The absorption material and refrigerant mixture, in certain beneficial embodiments, consists substantially of pure n-methyl, 2-pyrrolidone (NMP) with small amounts (in the range of 0.1-1% by volume) of one or more stabilizers selected from the group of nitroalkanes, such as nitromethane, phosphates such as tributyl phosphite, zinc dithiophosphate, or other suitable stabilizer.

[0031] As an alternative, a polyglycol dibutyl ether, such as Genosorb.RTM. 1843, may be utilized as the absorbant. An advantageous characteristic of Genosorb.RTM.1843 is that it physically absorbs non-polar compounds, such as aromatics and hydrocarbons. The specific compositions for the absorbant and refrigerant are further discussed in Section V of the application, related to the specific compositions.

[0032] Referring to FIG. 1, a pump 520 pumps the mixture of absorbant and refrigerant from absorption tank 510, with the mixture being pressurized to a pressure of approximately 30-70 psia.

[0033] The mixture is delivered to a counter-flow liquid-liquid heat exchanger 530, where the mixture is pre-heated. When the mixture exits heat exchanger 530, the mixture has a temperature of approximately 90.degree. C.

[0034] The mixture is delivered to boiler 540, which boils the mixture of refrigerant and absorbant at a pressure of approximately 30-70 psia. Because the HFC-245fa is dissolved in the NMP, it is maintained at a pressure lower than that of pure HFC-245fa at the same temperature. As HFC-245fa is removed from the mixture by evaporation, the solution must be heated to a higher temperature in order to continue to drive the HFC-245fa out. Optimally, the liquid mixture exiting the boiler contains HFC-245fa in a concentration of approximately 10-20%. As shown in FIG. 1, the liquid is then delivered back into the heat exchanger 530 in counter-flow to the mixture pumped from the absorption tank 510. Some of the energy of the heated mixture is transferred in heat exchanger 530 to the pumped mixture in known fashion for heat exchangers.

[0035] Superheated dry HFC-245fa vapor exits the boiler 540 and is delivered to the scroll expander 550. The superheated HFC-245fa enters the scroll expander and expands with a volumetric expansion ratio of approximately 3. Due to the properties of HFC-245fa, the pressure ratio achieved is approximately 3.0.

[0036] The HFC-245fa temperature upon exit from the scroll expander 550 has dropped, at this point in the cycle, to approximately 70.degree. C. The lower temperature HFC-245fa vapor may be used, in certain embodiments of the invention, to cool the windings of electric generator 560, which is coupled to scroll expander 550 by shaft 570. The shaft-driven generator 560 may be used to generate electrical power. The generator 560 is, in certain embodiments, cooled by the ambient air in which it is operated.

[0037] In order to improve the lifetime of system 500, a portion of the cooled NMP absorption composition, which has exited boiler 540 and re-entered heat exchanger 530, is routed through a regulator valve 580 so as to meter out a small portion of the composition material into scroll expander 550, thereby providing lubrication thereto.

[0038] NMP is chosen as a preferred absorbant in certain embodiments because NMP compositions exhibit exceptional thermally stability. However, NMP also has a relatively high electrical conductivity. As a result, scroll expander 550 is preferably coupled to electrical generator while separated from the system working fluids via a hermetic shaft seal. The shaft seal may be constructed of either silicone rubber or butyl rubber, both of which show excellent resistance to both the NMP and the HFC-245fa.

[0039] The thermal stability of the absorbant/refrigerant mixture can be substantially improved by adding certain well-known chemical additives. For example, the additive may be a phosphate, a phosphite, a borate, or a zinc dialkyldithiophosphate (ZDDP) compound, such as OLOA 262, manufactured by the Chevron Corporation. The additives may also be any of the many well-known oil anti-oxidants. These oil additives act to coat surfaces of metal and reduce the tendency of the metal surfaces to catalyze the reaction of the decomposition of the adsorption material and the refrigerant.

[0040] The performance of such additives described above, particularly when aluminum is employed, is dramatically enhanced by first pre-treating the aluminum surfaces, such as by chromate conversion with, for example, well-known Alodine.RTM. treatment, by anodization, or by passivation techniques including, but not limited to: fluorine treatment, ozone treatment, nitric acid treatment, vanadate treatment, or sol-gel surface treatment. Surface treatment of system components is discussed further below in Section VIII.

[0041] Returning to the system 500 of FIG. 1, a larger portion of the concentrated NMP material exiting heat exchanger 530 enters a second pressure reduction valve 590, where the pressure is stepped down to the pressure of the HFC-245fa cooler/evaporator 620, further described below.

[0042] Returning to the scroll expander 550, HFC-245fa vapor exits the scroll expander 550 at approximately 2-6 atmospheres of pressure. This relatively moderate pressure allows the main condenser 600 to be compact. The condenser may be cooled by air or water, shown by arrow 650. The refrigerant vapor exits the scroll expander 550 and enters condenser 600, where the refrigerant is converted to a liquid by the cooling action of condenser 600. The cooled and condensed liquid HFC-245fa exits the condenser and is directed to a refrigeration expansion valve 610, where the liquid steps down in pressure to approximately 0.5-2.5 atmospheres. The depressurized liquid exits the expansion valve 610 and enters evaporator 620. Evaporator 620 converts the liquid refrigerant to a vaporized refrigerant. The vaporization process is endothermic thereby effecting a cooling of the air or water flowing through evaporator 620, as illustrated by the arrows 640. The cooled air or liquid 640 exiting evaporator 620 can be routed through a home, building, or other edifice, thus providing a cooling effect.

[0043] The absorption tank 510 may be provided with an air-cooled contactor to allow intimate mixing of the HFC-245fa vapor and the cool, concentrated NMP absorption solution. The vaporized refrigerant is drawn from evaporator 620 back into the absorption tank 510, containing the air-cooled contactor. The absorption tank 510 further holds the liquid absorbant drawn from the boiler 540 and through valve 590.

[0044] The adsorption process of the vaporized refrigerant mixing with the liquid absorbant produces heat, and a fluid material such as air or water flows through the contactor, illustrated by the arrows 630, in order to remove this excess thermal energy. Typically, the contactor performance is improved by operating at as low a temperature as possible. Thus, the air or other fluid 630 entering the contactor within absorption tank 510 is preferably cooled first by, for example, a wick-type water evaporation cooler.

[0045] After entering the contactor, the NMP material and HFC-245fa have formed the original mixture, which began the cooling cycle, and the mixture, once again, exits the contactor to enter pump 520, thus restarting the cycle.

[0046] Due to the fact that the HFC-245fa is superheated and expanded at a pressure ratio of approximately 3, the thermodynamic efficiency of the scroll Rankine cycle is expected to be between 7 and 10%. Higher efficiency results if the condenser 600 is operated on a cool day.

[0047] As an absorption system, the expected coefficient of performance of system 500 is similar to any other efficient single-effect absorption unit, i.e., approximately 0.6-0.9.

[0048] If the electric power produced by generator 560 is produced at an efficiency of approximately 7 to 9%, and is coupled to an electric compressor and used with conventional equipment with an electrical-to-cooling coefficient of performance (COP) of approximately 3.0, the net effect of the overall system in terms of COP is the sum of the absorption unit, 0.6, and the Rankine/electric unit, 0.4, thus giving a net system COP of approximately 1.0.

[0049] It should be noted that the boiler temperature of system 500 is substantially higher than would be required of the system operating with only pure HFC-245fa as the working fluid.

[0050] Pump 520 may be a chemically compatible centrifugal pump, such as a polypropylene magnetically-coupled pump. Furthermore, the centrifugal pump may be operated in an intermittent mode by providing a check valve after the pump, and a hydraulic accumulator on the high-pressure side of the system.

[0051] III. Cooling Cycle

[0052] FIG. 2 illustrates an exemplary cooling cycle as implemented by certain embodiments of the heating/cooling system 10. As shown in FIG. 2, following the vaporization of the refrigerant in boiler 50, the vaporized refrigerant is passed through a first selector valve 110. In the cooling cycle of FIG. 2, the selector valve 110 diverts the vaporized refrigerant into a first liquid-vapor converter 130. The liquid-vapor converter acts, essentially, as a condenser and condenses the vaporized refrigerant into a liquid.

[0053] The liquid refrigerant is passed through a second expansion valve 140 where the pressure of the liquid refrigerant is dropped to slightly below atmospheric pressure. The depressurized liquid refrigerant passes from the second expansion valve 140 into a second liquid-vapor converter 150. The second liquid-vapor converter 150 re-vaporizes the liquid refrigerant and passes the vaporized refrigerant through a second selector valve 120, which in the cooling cycle, passes the vaporized refrigerant back into absorption tank 20 to form the refrigerant and absorbant mixture composition.

[0054] A salt or brine solution is provided with the brine solution passing through liquid-vapor converter 130. When the vaporized refrigerant condenses into the liquid refrigerant within liquid-vapor converter 130, the heat of the vaporized refrigerant is released. This heat is used to heat the brine solution. This heated brine solution then passes into a first air-to-liquid contactor member 170.

[0055] When the cooling/heating system 10 is installed in a home or other edifice, the first air-to-liquid contactor member 170 is positioned external to the edifice. Ambient or environmental air is drawn into the first air-to-liquid contactor member 170 and the heated brine solution causes the ambient air to be heated, with the air-to-liquid contactor member 170 expelling heated air into the environment. A fan or blower (not shown) may be used to force air through air-to-liquid contact member 170.

[0056] The now-cooled brine solution is driven through second heat exchanger 160 by fluid pump 180. The second heat exchanger 160 further cools the brine solution as it is being drawn therethrough by pump 180. The cooled brine solution is then passed into second liquid-vapor converter 150.

[0057] The second liquid-vapor converter 150 vaporizes the liquid refrigerant, thus requiring thermal energy to be added thereto. This thermal energy comes from the brine solution driven by pump 180, the transfer of which causes the brine solution to be further cooled as it passes through second liquid-vapor converter 150.

[0058] This cooled brine solution is then driven through second air-to-liquid contactor 190. When the cooling/heating system 10 is installed in a home or other edifice, the second air-to-liquid contactor 190 is installed within the home or edifice and draws in ambient air. The ambient air is cooled by the now-cooled brine solution passing through contactor 190, thus allowing the second air-to-liquid contactor 190 to provide cooled air to home or edifice. Again, as was indicated for air-to-liquid contactor member 170, a fan or blower (not shown) may be installed adjacent to contactor 190 to force air therethrough.

[0059] The brine solution passes from the second air-to-liquid contactor 190 through absorption tank 20, thus heating the brine solution, where it can then be passed through second heat exchanger 160 in order to start the cycle over again.

[0060] The heat of condensation of the vapor is transferred to the brine solution passing through condenser 130. As the brine enters the condenser 130, the brine is somewhat water-saturated, and that water-saturated brine is heated by the action of the condenser. When the brine exits condenser 130, it is heated and enters the liquid contactor 170. The air-to-liquid contactor 170 may be constructed of a honeycomb absorptive paper or other similar kind of pad material. Since the brine, at this point, is heated, the brine loses water to the ambient air such that the air exiting the contactor 170 is saturated with water vapor and is further heated. Thus, brine solution exiting contactor 170 is substantially depleted of water and has a far higher concentration of salt. Upon entering the heat exchanger 160, the brine solution transfers its remaining thermal energy to the incoming water-rich brine solution, thus pre-heating the water-rich brine within heat exchanger 160.

[0061] When the water is depleted, brine solution exits heat exchanger 160 in a near ambient-temperature state, where upon it enters brine pump 180. Brine pump 180 directs the brine solution into liquid-vapor converter 150 and as the refrigerant is evaporated, the brine is cooled well below room temperature so that the brine exits on the right-hand side of 150 (in FIG. 2) in a somewhat cold state and is depleted of any moisture.

[0062] When the brine solution enters contactor 190, which is located within the building or edifice, the air from the building is blown over the high concentration salt water brine and the air from the building gives up its moisture to the cold brine solution, thus effecting both dehumidification and cooling on the air going through the contactor 190.

[0063] Upon exiting contactor 190, the brine solution is slightly cooled and water-rich, where it is then directed to the absorption tank 20. The heat of absorption is removed by the brine solution in the absorption tank 20, and the brine solution exits absorption tank 20 at a temperature of approximately 100.degree. F. The brine solution then flows back into heat exchanger 160 to start the cycle over again.

[0064] IV. Heating Cycle

[0065] An exemplary heating cycle of certain embodiments of cooling/heating system 10 is shown diagrammatically in FIG. 3. As shown in FIG. 3, the vaporized refrigerant, having been vaporized in boiler 50, is passed through first selector valve 110. In the heating cycle, the first selector valve 110 diverts the flow of the vaporized refrigerant through second selector valve 120.

[0066] The second selector valve 120 directs the vaporized refrigerant through liquid-vapor converter 150. The second liquid-vapor converter 150 acts, essentially, as a condenser and converts the vaporized refrigerant to a liquid refrigerant. The liquid refrigerant is then passed through the second expansion valve 140 where it is depressurized.

[0067] The newly-depressurized liquid refrigerant is then driven through the first liquid-vapor converter 130 where the refrigerant is re-vaporized. The re-vaporized refrigerant then passes back through first selector valve 110 where it is directed to second selector valve 120. Second selector valve 120 passes the vaporized refrigerant back into absorption tank 20, where it mixes with the absorbant to form the refrigerant and absorbant mixture composition.

[0068] When the liquid refrigerant passes through the first liquid-vapor converter 130, thereby vaporizing the liquid refrigerant, an addition of thermal energy is required. This energy is provided by the brine solution as it passes through the liquid-vapor converter 130.

[0069] The now-cooled brine solution passes through the first air-to-liquid contactor member 170. When the cooling/heating system 10 is installed in a home or other edifice, the first air-to-liquid contactor member 170 is positioned external to the home or edifice. Ambient air is drawn through the first air-to-liquid contactor member 170 and the cooled brine solution causes the air-to-liquid contactor member 170 to expel cooled air, thereby heating the brine solution.

[0070] The now-heated brine solution is passed through second heat exchanger 160, which heats the brine solution. The heated brine solution is driven by pump 14 into second liquid-vapor converter 150. As the vaporized refrigerant passes through second liquid-vapor converter 150, converting the vaporized refrigerant into a liquid, thermal energy is transferred to the brine solution, which is then driven into second air-to-liquid contactor member 190.

[0071] When the cooling/heating system 10 is installed in a home or other edifice, the second air-to-liquid contactor member 190 may be installed therein. The heated brine solution in the second air-to-liquid contactor 190 heats the air drawn therethrough. The heated air is then provided to the home or edifice.

[0072] From the contactor member 190, the brine solution passes back through absorption tank 20, where it is further cooled. The brine solution is transferred back to heat exchanger 160 whereupon a new cycle may begin.

[0073] In the heating cycle, the condensing vapor in liquid-vapor converter 150 gives up its heat to the water-rich brine entering the converter 150. The water-rich brine is heated at this point. Similarly, the evaporator 130 of the heating cycle chills the concentrated brine solution. The concentrated brine at this point is quite cold and exits the liquid-vapor converter 130, flowing into the ambient air-to-liquid contactor 170 (similar to the flow of the cooling cycle) in its cold state and, further, depleted of water. Ambient air in the air contactor 170 flows over the cold and water-depleted brine solution, allowing the brine solution to absorb heat and absorb water vapor from the ambient air, thus resulting in a heated brine solution with an increased water content.

[0074] The brine solution exits the contactor 170 and enters heat exchanger 160, which acts to pre-heat the brine solution as it is pumped from the upper left-hand side (referring to FIG. 3) to the bottom left-hand side of heat exchanger 160 by pump 180. Pump 180 forces the brine solution into condenser 150, where the brine is heated even further by the condensation of the water vapor, thus allowing heated water-rich brine to exit the liquid-vapor converter 150. This heated water-rich brine solution passes to contactor 190 where the ambient air receives the heat of the brine solution. The air is also humidified by the water-rich brine solution, and humidified warm air may then be provided to the building or edifice. The brine solution then follows a return path through the absorption tank 20, similar to that of the cooling cycle.

[0075] V. Specific Compositions of Absorbant and Refrigerant

[0076] The absorbant, in certain embodiments, consists substantially of pure NMP with small amounts (ranging from 0.1-1% by volume) of one or more stabilizers selected from the group of nitroalkanes, such as nitromethane, phosphates such as tributyl phosphate, zinc dithiophosphate, or other stabilizers. The absorbant may, in the alternative, be a liquid polymer containing triethylene glycol dibutyl ether. A polyglycol dibutyl ether, such as Genosorb.RTM. 1843 may also be utilized. Genosorb.RTM. 1843 is hydrophobic and contains a stabilizer and is used to physically absorb nonpolar compounds, such as aromatics and hydrocarbons. Genosorb.RTM. 1843 is a product of the Clariant Corporation of Mount Holly, N.C.

[0077] The refrigerant may be a hydrofluorocarbon or a hydrochlorofluorocarbon refrigerant composition. The refrigerant may consist of HFC134a, HFC245fa, or a combination of the two. In certain embodiments, the refrigerant is substantially pure HFC-245fa. Further, the refrigerant may be any of the following compounds: trichlorofluoromethane, dichlorodifluoromethane, chlorodifluoro-methane, difluoromethane, 1,1,2-trichlorotrifluoroethane, 1,2-dichlorotetra-fluoro- ethane, chloropentafluoroethane, 1,1,1,2-tetrafluoroethane, 1,1-dichloro-1-fluoroethane, 1,1-difluoroethane, and methylene chloride.

[0078] When the absorbent is not NMP, the refrigerant may be selected from the above group based upon the refrigerant's affinity for the selected absorbant. For example, the substances chlorodifluoromethane, difluoromethane, and methylene chloride are non-NMP refrigerants having the highest affinities for Genosorb.RTM. 1843.

[0079] The refrigerant may further be a mixture of 10% 1,1-difluoroethane (R152a) and 90% 1, 1, 1, 3, 3-pentafluoropropane (R245fa).

[0080] The ozone depletion potential (ODP) and global warming potential (GWP) of various refrigerants is a key issue of concern. R245fa may be used as a low ODP working fluid in a Rankine power cycle. However, R245fa has a substantial GWP of around 990 in comparison to carbon dioxide. Additionally, R245fa is non-flammable. Thus, the possibility exists for using R245fa as a refrigerant, but it has a boiling point of around 15.degree. C., which is generally considered to be too high for most air conditioning applications, where the typical evaporation temperature is desired to be around 10.degree. C.

[0081] R152a, or HFC 152a, has the advantage of having zero ODP and a GWP of 140. However, HFC 152a is a flammable gas. A container of pure HFC 152a can easily be ignited and the product of ignition is the hazardous material hydrogen fluoride, which is harmful to humans and is also corrosive. Pure R152a has low toxicity and its OSHA limit of exposure is equal to other non-toxic Freon gases; i.e., approximately 1000 ppm. However, in a mixture ratio of approximately 5% to 25% of R152a with approximately 95% to 75% R245fa, with the most preferable ratio being approximately 10% R152a and 90% R245fa, the mixture of R152a and R245fa produces an optimal refrigerant mixture. The mixture is essentially non-flammable, i.e., far less flammable than R152a on its own, and the mixture has a substantially lower boiling point than R245fa on its own. In the ratio described above, the mixture has a boiling point of approximately 2.degree. to 4.degree. C. Additionally, the vapor pressure of the mixture is slightly above atmospheric pressure, over the "glide" range, of approximately 30 to approximately 10.degree. C. Moreover, both R152a and R245fa are absorbed efficiently by the Genosorb.RTM. 1843.

[0082] The GWP of the mixture is substantially lower than the GWP of pure R245fa and when used in conjunction with Genosorb.RTM. 1843, the resulting system pressure is slightly below atmospheric pressure during times when the system is not in operation. Thus, the loss of the mixture is essentially zero during the time of non-operation, which represents the vast majority of hours over the life of a typical air conditioning system.

[0083] The vapor pressure of the refrigerant mixture is higher than the vapor pressure of pure R245fa, thereby increasing the mechanical output power of the expander device 80 of system 10. This results in a lower cost of generated electrical power by generator 90 and thus a more economical system.

[0084] The proportions of the refrigerant mixture can be optimized for particular locations. For example, in cold climates, the ratio of R152a may be increased to approximately 13% to 20%. In warm climates, the optimal mixture will have a lower concentration of R152a, typically from approximately 3% to 9%. It should be apparent that such "tuning" of the refrigerant would be impossible in systems utilizing only a single pure material, such as R245fa or R152a alone.

[0085] Another advantage of using the refrigerant mixture is that the toxicity thereof is lower than the toxicity of pure R245fa. The mixture is further particularly advantageous for systems where a vapor ejector is used as the device for converting the expansion energy. This is because the average molecular weight of the hot vapor is nearly equal to the molecular weight of pure R245fa, while the average molecular weight of the "pumped gas" can be arranged to be closer to the molecular weight of R152a. A prudently selected absorption material, such as Genosorb.RTM. 1843, will have a higher affinity for R245fa than for R152a, and as a result, the working mixture in the lower pressure environment of the evaporator will have a higher concentration of R152a than of R245fa. The molecular weight of R152a is only 33, while the molecular weight of R245fa is 134, and the large difference in molecular weight results in highly efficient pumping of R152a refrigerant by the motive gas consisting primarily of R245fa.

[0086] Additionally, the change in entropy of the mixture as a function of pressure change is such that entropy decreases as pressure decreases. This means that the mixture is "dry" as it expands in either the scroll expander or a vapor jet pump.

[0087] As a further advantage, the mixture of R245fa, R152a, and Genosorb.RTM. 1843 is completely compatible with all materials of construction of the system 10. Therefore, the system can be entirely hermetically sealed. The specific characteristics of a polyglycol dibutyl ether such as Genosorb.RTM.1843 and those of the refrigerants include very low electrical conductivity, and no tendency to attack materials such as wires, insulation, bearings, etc.

[0088] In one embodiment, chlorotetrafluoroethane (HCFC 124) is used as the refrigerant. Though HCF 245fa may be utilized, as described above, in combination with Genosorb.RTM. 1843, HFC 245fa has a poor attraction to the Genosorb.RTM. 1843 molecule. Neither the HFC 152a nor the HFC 245fa have chlorine molecules in their molecular make-up.

[0089] Chloride-containing refrigerant molecules result in far greater attraction between a refrigerant and other molecules because the hydrogen bond is stronger. Thus, HFC 124a will provide a stronger attraction, and thus better refrigerant qualities in the mixture, with Genosorb.RTM. 1843. Additionally, compounds such as phosphites and zinc compounds may be utilized as additives in order to reduce interaction between the refrigerant and absorption compounds.

[0090] With regard to the brine solution, the brine solution may be a salt dissolved in water. The salt may be lithium chloride, lithium bromide, magnesium chloride, calcium chloride, or glycol.

[0091] In the certain embodiments utilizing HFC-245fa as a refrigerant and NMP as an absorption material, lower temperatures may be produced than are produced by the alternate compositions described above. The HFC-245fa/NMP working pair further has desirable properties such as low ozone depletion potential, high thermal conductivity, stability, virtually zero loss of refrigerant during shut-down mode and low production costs.

[0092] VI. Single-Effect Absorption Cycle

[0093] FIG. 4 illustrates an alternative embodiment of the inventive cooling system utilizing the specific absorbant and refrigerant compounds discussed above in Section V. As shown in FIG. 4, the absorbant and refrigerant mixture is pressurized by a pump 230, similar to the pump used in system 10 of FIGS. 2 and 3. The initial pumping occurs at essentially constant temperature (approximately 40.degree. C.) and enthalpy. The mixture is held at a pressure of approximately 4 atmospheres absolute, or approximately 3 atmospheres "gage" pressure, which is approximately 45 psig.

[0094] The mixture is passed through heat exchanger 240 into boiler 250. Once in the boiler 250, the refrigerant described above in Section V, is driven off from the absorption fluid. The concentration of the refrigerant is reduced from approximately 40% refrigerant to approximately 12.5% refrigerant. This process requires considerably higher temperature than the temperature required for boiling pure fluid, because the refrigerant concentration is only present in a relatively small fraction (one part in 1.5, at the start, and about one part in 9 at the end of the process).

[0095] As an approximation, the "activity" of the refrigerant is about 1.0. To produce an absolute pressure of 4 atmospheres with a concentration of 40%, the refrigerant must be heated to a temperature where the pure material is (1/0.4).times.4 atm=10 atm. These conditions occur at a temperature of approximately 75.degree. C. The refrigerant at this temperature begins to give off refrigerant vapor at 4 atmospheres of pressure. At the end of the boiling process, the effective temperature must be such that the effective pure refrigerant has a vapor pressure of (1/0.125).times.4 atm=32 atm. This occurs when the pure refrigerant temperature is approximately 135.degree. C.

[0096] As shown in FIG. 4, boiler 250 is constructed such that the exiting hot vapor loops back through the boiler, allowing the hot vapor to cool and give up its heat to the boiler process. Similarly, the liquid exiting at the hot end of the boiler also gives up its heat by looping back through the boiler 250.

[0097] Upon exiting the boiler, the refrigerant vapor is superheated to approximately 80.degree. C. Superheated vapor exits the boiler and enters the condenser device 260, which is similar in construction to the liquid-vapor converter 130 of the embodiment of FIGS. 2 and 3. The liquid absorbant is drawn from boiler 250 back through the heat exchanger 240 and through expansion valve 270 in order to return to the absorption tank 220, in a similar process to that shown in FIGS. 2 and 3.

[0098] Once in the liquid-vapor converter or condenser 260, the vapor is condensed and heat is given up to the environment by air flowing through the condenser 260. Exiting the condenser, the liquid refrigerant mix expands adiabatically and at constant enthalpy in expansion valve 280.

[0099] The vapor mixture is now at a state between liquid and vapor. The "quality" of this mixture is estimated to be approximately 80% liquid and 20% vapor at a temperature of approximately 2.degree. C. and at a pressure of 1 atmosphere. The cool mixture evaporates completely with an evaporator 290, which is similar to the second liquid-vapor converter 150 of the embodiment shown in FIGS. 2 and 3. The pressure of the evaporant remains at 1 atmosphere.

[0100] The refrigerant reaches a total vapor state after its temperature is increased from approximately 2.degree. C. to approximately 10.degree. C. This expansion process absorbs heat, thus creating a cooling effect for air passing through the evaporator 290. The vapor mixture at this point is at approximately 1 atmosphere of pressure and approximately 10.degree. C., and has a "quality" of 100%.

[0101] The vapor is then directed back into the absorption tank 220, where it mixes with the NMP, which is also at a pressure of approximately 1 atmosphere, and at near room temperature.

[0102] The NMP, at this point, has been depleted to approximately 10% refrigerant by the boiling process. The NMP then absorbs the refrigerant, releasing heat. The final concentration of the refrigerant in the NMP material is approximately 40%. The mixture of refrigerant and NMP is then pressurized by the pump 230 from approximately 1 atmosphere to about 4 atmospheres, and the process is repeated.

[0103] VII. Shaft-Coupled Mechanical Compressor System

[0104] In the embodiment shown in FIGS. 2 and 3, a scroll expander 80 is coupled to an induction generator 90 by shaft 100. In the alternative embodiment shown in FIG. 5, the mechanical output of a scroll compressor is used to drive a mechanical compressor, which may be of the scroll type.

[0105] In a cooling mode, a mixture of refrigerant and absorbant, as described above with regard to FIGS. 2 and 3, and in the embodiment of FIG. 4, is held within an absorption tank 320. The mixture is driven by pump 330 through a heat exchanger 340. The mixture is then delivered to a boiler unit 350 where the refrigerant is vaporized and the liquid absorbant is driven back through heat exchanger 340, through expansion valve 360 and back into the absorption tank 320. This process is the same as in the embodiments of FIGS. 2 and 3, and in the embodiment of FIG. 4.

[0106] In the embodiment of FIG. 5, the vaporized refrigerant is delivered to a scroll expander 370 which drives a compressor 380 via shaft 450. The compressor 380 elevates the pressure from approximately 1 atmosphere to about 2 to 4 atmospheres, and gaseous refrigerant is transported by compressor 380 to condenser 410, which is similar to the liquid-vapor converter 130 of the embodiment shown in FIGS. 2 and 3. The condenser 410 liquefies the vaporized refrigerant, thus releasing heat into ambient air circulating over condenser 410. The condensed refrigerant is then directed to an expansion valve 420 where the pressure is decreased to approximately 1 atmosphere. The refrigerant passes from the expansion valve 420 to an evaporator 430, which is similar to the second liquid-vapor converter 150 of the embodiment shown in FIGS. 2 and 3. In the evaporator 430, the liquid refrigerant evaporates and absorbs heat. The vapor exits the evaporator 430 and is returned to compressor 380 to begin the cycle over again.

[0107] Gaseous refrigerant exiting scroll expander 370 is directed, through first selector valve 390 into condenser 410. As in the embodiment shown in FIGS. 2 and 3, through use of the selector valves 390 and 400, the system can be switched between a heating and cooling mode.

[0108] Liquid refrigerant exiting the condenser 410 enters an expansion valve 440, where the liquid refrigerant is depressurized from approximately 4 atmospheres to approximately 1 atmosphere. The liquid refrigerant evaporates within evaporator 430, producing gaseous or vaporized refrigerant.

[0109] The vaporized refrigerant then passes through the second selector valve 400 to be input back into the absorbant tank 320, where it is mixed with the absorbant to form the mixture of refrigerant and absorbant.

[0110] Following the process of this embodiment, mechanical power is produced, representing approximately 10% of the input heat energy. A typical mechanical compressor using a scroll-type design operates with a mechanical coefficient of performance (COP) of approximately 4 to 6. Thus, in considering the effective refrigeration output vs. heat input, the mechanical "Rankine" cycle portion operates with an effective COP of approximately 0.5.

[0111] In addition to the cooling effect produced by the mechanical compressor, cooling is produced in the absorption section. As shown in FIG. 5, air is passed through an air-to-liquid contactor member 460 in communication with the absorption tank 320, in order to produce cooled air. In the heating mode, it is understood that this would produce a heated air effect.

[0112] VIII. Alternative Construction Materials

[0113] As previously stated, the implementation of various components through lower-cost materials is among the many beneficial features the present invention. For example, the utilization of NMP as an absorbant in combination with a refrigerant containing HFC-245fa allows boiler fluid operating pressures below 100 psi. At such moderate pressures, certain components in the boiler fluid circuit, such as the heat exchanger, may be constructed from a lighter material, such as aluminum. It should be apparent to the skilled artisan that significant savings in construction costs may be secured by the use of alternative materials such as aluminum.

[0114] In certain embodiments of the present invention, the components constructed from lower-cost materials may be treated on the surface thereof to further protect the component from corrosion by exposure to the absorbant/refrigerant mixture. For example, where aluminum is used, the surface of components may be treated by processes that include one or more of the steps of: etching, passivation and sealing. Such processes are well-known and an exemplary treatment of aluminum is provided in U.S. Pat. No. 6,579,472, issued to Chung, et al.

[0115] In certain embodiments, aluminum components, such as heat exchangers and boiler fluid tubing, are etched by an etchant, such as phosphoric acid. The etchant is rinsed off and the components are subjected to passivation. The surface of the components are passivated by a chromic acid based conversion coating such as Alodine.RTM. 1200, (Alodine is a registered trademark of the American Chemical Paint Company). Alternatively, the component may be treated by a non-chromic conversion coating, such as Alodine.RTM. 5200. The aluminum components may be passivated, also, by nitric acid, fluorine gas or other chemicals known in the art that are compatible for use with the absorbant/refrigerant mixture.

[0116] Once the surface conversion treatment has been completed, the surface of the components may be sealed using, for example: a silane surface treatment, such as Z-6040 manufactured by Dow Corning.RTM., a sol-gel, such as that disclosed in the above-referenced U.S. patent issued to Chung, et al., or a paint, such as a silicon based paint.

[0117] It should be noted that it is not required that all components of the inventive system be surface treated in the same way, i.e., components having different surface characteristics may be incorporated in any given system. This allows flexibility for particular field installations. Furthermore, it should be noted that the list of exemplary surface treatments provided above is not exhaustive. Other treatments are, and will be available that are compatible with a particular absorbent/refrigerant mixture of the present invention.

[0118] Although this invention has been described in connection with specific forms and embodiments thereof, it will be appreciated that various modifications other than those discussed above may be resorted to without departing from the spirit or scope of the invention. For example, functionally equivalent elements may be substituted for those specifically shown and described, proportional quantities of the elements shown and described may be varied, and in the method steps described, particular steps may be reversed or interposed, all without departing from the spirit or scope of the invention as defined in the appended claims.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed