Signal peptide-containing molecules

Lal, Preeti ;   et al.

Patent Application Summary

U.S. patent application number 10/820474 was filed with the patent office on 2005-07-14 for signal peptide-containing molecules. This patent application is currently assigned to Incyte Corporation. Invention is credited to Akerblom, Ingrid E., Au-Young, Janice, Bandman, Olga, Baughn, Mariah R., Corley, Neil C., Gorgone, Gina A., Guegler, Karl J., Hillman, Jennifer L., Lal, Preeti, Patterson, Chandra, Reddy, Roopa, Tang, Y. Tom, Yue, Henry.

Application Number20050155089 10/820474
Document ID /
Family ID27492417
Filed Date2005-07-14

United States Patent Application 20050155089
Kind Code A1
Lal, Preeti ;   et al. July 14, 2005

Signal peptide-containing molecules

Abstract

The invention provides human signal peptide-containing proteins (HSPP) and polynucleotides which identify and encode HSPP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of HSPP.


Inventors: Lal, Preeti; (Santa Clara, CA) ; Tang, Y. Tom; (San Jose, CA) ; Gorgone, Gina A.; (Earleville, MD) ; Corley, Neil C.; (Castro Valley, CA) ; Guegler, Karl J.; (Menlo Park, CA) ; Baughn, Mariah R.; (Los Angeles, CA) ; Akerblom, Ingrid E.; (Lansdale, PA) ; Au-Young, Janice; (Brisbane, CA) ; Yue, Henry; (Sunnyvale, CA) ; Patterson, Chandra; (San Diego, CA) ; Reddy, Roopa; (Fremont, CA) ; Hillman, Jennifer L.; (Santa Cruz, CA) ; Bandman, Olga; (Mountain View, CA)
Correspondence Address:
    FOLEY AND LARDNER
    SUITE 500
    3000 K STREET NW
    WASHINGTON
    DC
    20007
    US
Assignee: Incyte Corporation
Palo Alto
CA

Family ID: 27492417
Appl. No.: 10/820474
Filed: April 7, 2004

Related U.S. Patent Documents

Application Number Filing Date Patent Number
10820474 Apr 7, 2004
09720533 Mar 20, 2001
09720533 Mar 20, 2001
PCT/US99/14484 Jun 25, 1999
60090762 Jun 26, 1998
60094983 Jul 31, 1998
60102686 Oct 1, 1998
60112129 Dec 11, 1998

Current U.S. Class: 800/8 ; 435/320.1; 435/325; 435/6.16; 435/69.1; 530/350; 536/23.5
Current CPC Class: A61K 38/00 20130101; C07K 16/18 20130101; A61K 38/1709 20130101; A61P 9/00 20180101; A61K 39/3955 20130101; A61P 25/00 20180101; C07K 16/40 20130101; A61K 45/06 20130101; G01N 33/57419 20130101; A61P 29/00 20180101; A61P 15/00 20180101; A61P 43/00 20180101; C07K 14/47 20130101; G01N 2333/916 20130101; A61P 35/00 20180101; C07K 2317/76 20130101
Class at Publication: 800/008 ; 435/006; 435/069.1; 435/320.1; 435/325; 530/350; 536/023.5
International Class: A01K 067/00; C12Q 001/68; C07H 021/04; C12N 009/64; C07K 014/47

Claims



1. An isolated polypeptide selected from the group consisting of: a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-134, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-134, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-134, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-134.

2. An isolated polypeptide of claim 1 comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-134.

3-8. (canceled)

9. A method of producing a polypeptide of claim 1, the method comprising: a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and b) recovering the polypeptide so expressed.

10. A method of claim 9, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-134.

11. An isolated antibody which specifically binds to a polypeptide of claim 1.

12-16. (canceled)

17. A composition comprising a polypeptide of claim 1 and a pharmaceutically acceptable excipient.

18. A composition of claim 17, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-134.

19. (canceled)

20. A method of screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising: a) contacting a sample comprising a polypeptide of claim 1 with a compound, and b) detecting agonist activity in the sample.

21-22. (canceled)

23. A method of screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising: a) contacting a sample comprising a polypeptide of claim 1 with a compound, and b) detecting antagonist activity in the sample.

24-25. (canceled)

26. A method of screening for a compound that specifically binds to the polypeptide of claim 1, the method comprising: a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.

27. A method of screening for a compound that modulates the activity of the polypeptide of claim 1, the method comprising: a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1, b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.

28-29. (canceled)

30. A method for a diagnostic test for a condition or disease associated with the expression of HSPP in a biological sample, the method comprising: a) combining the biological sample with an antibody of claim 11, under conditions suitable for the antibody to bind the polypeptide and form an antibody:polypeptide complex, and b) detecting the complex, wherein the presence of the complex correlates with the presence of the polypeptide in the biological sample.

31. The antibody of claim 11, wherein the antibody is: a) a chimeric antibody, b) a single chain antibody, c) a Fab fragment, d) a F(ab').sub.2 fragment, or e) a humanized antibody.

32. A composition comprising an antibody of claim 11 and an acceptable excipient.

33. A method of diagnosing a condition or disease associated with the expression of HSPP in a subject, comprising administering to said subject an effective amount of the composition of claim 32.

34. A composition of claim 32, further comprising a label.

35. A method of diagnosing a condition or disease associated with the expression of HSPP in a subject, comprising administering to said subject an effective amount of the composition of claim 34.

36. A method of preparing a polyclonal antibody with the specificity of the antibody of claim 11, the method comprising: a) immunizing an animal with a polypeptide consisting of an amino acid sequence selected from the group consisting of SEQ ID NO:1-134, or an immunogenic fragment thereof, under conditions to elicit an antibody response, b) isolating antibodies from the animal, and c) screening the isolated antibodies with the polypeptide, thereby identifying a polyclonal antibody which specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-134.

37. A polyclonal antibody produced by a method of claim 36.

38. A composition comprising the polyclonal antibody of claim 37 and a suitable carrier.

39. A method of making a monoclonal antibody with the specificity of the antibody of claim 11, the method comprising: a) immunizing an animal with a polypeptide consisting of an amino acid sequence selected from the group consisting of SEQ ID NO:1-134, or an immunogenic fragment thereof, under conditions to elicit an antibody response, b) isolating antibody producing cells from the animal, c) fusing the antibody producing cells with immortalized cells to form monoclonal antibody-producing hybridoma cells, d) culturing the hybridoma cells, and e) isolating from the culture monoclonal antibody which specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-134.

40-55. (canceled)
Description



[0001] This application is a divisional application of the National Stage application of International Application No. PCT/US99/14484, filed on Jun. 25, 1999, which claims benefit under 35 U.S.C. .sctn. 119(e) and is a continuation-in-part of the following applications: provisional application 60/090,762, filed on Jun. 26, 1998, provisional application 60/094,983, filed on Jul. 31, 1998, provisional application 60/102,686, filed on Oct. 1, 1998, and provisional application 60/112,129, filed on Dec. 11, 1998; all of which applications are hereby incorporated herein by reference.

TECHNICAL FIELD

[0002] This invention relates to nucleic acid and amino acid sequences of human signal peptide-containing proteins and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative disorders including cancer; inflammation; and cardiovascular, neurological, reproductive, and developmental disorders.

BACKGROUND OF THE INVENTION

[0003] Protein transport is essential for cellular function. Transport of a protein may be mediated by a signal peptide located at the amino terminus of the protein itself. The signal peptide is comprised of about ten to twenty hydrophobic amino acids which target the nascent protein from the ribosome to a particular membrane bound compartment such as the endoplasmic reticulum (ER). Proteins targeted to the ER may either proceed through the secretory pathway or remain in any of the secretory organelles such as the ER, Golgi apparatus, or lysosomes. Proteins that transit through the secretory pathway are either secreted into the extracellular space or retained in the plasma membrane. Secreted proteins are often synthesized as inactive precursors that are activated by post-translational processing events during transit through the secretory pathway. Such events include glycosylation, phosphorylation, proteolysis, and removal of the signal peptide by a signal peptidase. Other events that may occur during protein transport include chaperone-dependent unfolding and folding of the nascent protein and interaction of the protein with a receptor or pore complex. Examples of secreted proteins with amino terminal signal peptides are discussed below and include receptors, extracellular matrix molecules, cytokines, hormones, growth and differentiation factors, neuropeptides, vasomediators, phosphokinases, phosphatases, phospholipases, phosphodiesterases, G and Ras-related proteins, ion channels, transporters/pumps, proteases, and transcription factors. (Reviewed in Alberts, B. et al. (1994) Molecular Biology of The Cell, Garland Publishing, New York, N.Y., pp. 557-560, 582-592.)

[0004] G-protein coupled receptors (GPCRs) comprise a superfamily of integral membrane proteins which transduce extracellular signals. GPCRs include receptors for biogenic amines such as dopamine, epinephrine, histamine, glutamate (metabotropic effect), acetylcholine (muscarinic effect), and serotonin; for lipid mediators of inflammation such as prostaglandins, platelet activating factor, and leukotrienes; for peptide hormones such as calcitonin, C5a anaphylatoxin, follicle stimulating hormone, gonadotropin releasing hormone, neurokinin, oxytocin, and thrombin; and for sensory signal mediators such as retinal photopigments and olfactory stimulatory molecules. The structure of these highly conserved receptors consists of seven hydrophobic transmembrane regions, cysteine disulfide bridges between the second and third extracellular loops, an extracellular N-terminus, and a cytoplasmic C-terminus. The N-terminus interacts with ligands, the disulfide bridges interact with agonists and antagonists, and the large third intracellular loop interacts with G proteins to activate second messengers such as cyclic AMP, phospholipase C, inositol triphosphate, or ion channels. (Reviewed in Watson, S. and Arkinstall, S. (1994) The G-protein Linked Receptor Facts Book, Academic Press, San Diego, Calif., pp. 2-6; and Bolander, F. F. (1994) Molecular Endocrinology, Academic Press, San Diego, Calif., pp. 162-176.)

[0005] Other types of receptors include cell surface antigens identified on leukocytic cells of the immune system. These antigens have been identified using systematic, monoclonal antibody (mAb)-based "shot gun" techniques. These techniques have resulted in the production of hundreds of mAbs directed against unknown cell surface leukocytic antigens. These antigens have been grouped into "clusters of differentiation" based on common immunocytochemical localization patterns in various differentiated and undifferentiated leukocytic cell types. Antigens in a given cluster are presumed to identify a single cell surface protein and are assigned a "CD" number. Some of the genes encoding proteins identified by CD antigens have been isolated and characterized as both transmembrane proteins and cell surface proteins anchored to the plasma membrane via covalent attachment to fatty acid-containing glycolipids such as glycosylphosphatidylinositol (GPI). (Reviewed in Barclay, A. N. et al. (1993) The Leucocyte Antigen Facts Book, Academic Press, San Diego, Calif., pp. 144-145; Noel, L. S. et al. (1998) J. Biol. Chem. 273: 3878-3883.)

[0006] Tetraspanins are a superfamily of membrane proteins which facilitate the formation and stability of cell-surface signaling complexes containing lineage-specific proteins, integrins, and other tetraspanins. They are involved in cell activation, proliferation (including cancer), differentiation, adhesion, and motility. These proteins cross the membrane four times, have conserved intracellular--and C-termini and an extracellular, non-conserved hydrophilic domain. Tetraspanins include, e.g., platelet and endothelial cell membrane proteins, leukocyte surface proteins, tissue specific and tumorous antigens, and the retinitis pigmentosa-associated gene peripherin. (Maecker, H. T. et al. (1997) FASEB J. 11: 428-442.)

[0007] Matrix proteins (MPs) are transmembrane and extracellular proteins which function in formation, growth, remodeling, and maintenance of tissues and as important mediators and regulators of the inflammatory response. The expression and balance of MPs may be perturbed by biochemical changes that result from congenital, epigenetic, or infectious diseases. In addition, MPs affect leukocyte migration, proliferation, differentiation, and activation in the immune response. MPs are frequently characterized by the presence of one or more domains which may include collagen-like domains, EGF-like domains, immunoglobulin-like domains, and fibronectin-like domains. In addition, some MPs are heavily glycosylated. MPs include extracellular proteins such as fibronectin, collagen, and galectin and cell adhesion receptors such as cell adhesion molecules (CAMs), cadherins, and integrins. (Reviewed in Ayad, S. et al. (1994) The Extracellular Matrix Facts Book, Academic Press, San Diego, Calif., pp. 2-16; Ruoslahti, E. (1997) Kidney Int. 51: 1413-1417; Sjaastad, M. D. and Nelson, W. J. (1997) BioEssays 19: 47-55.)

[0008] Lectins are proteins characterized by their ability to bind carbohydrates on cell membranes by means of discrete, modular carbohydrate recognition domains, CRDs. (Kishore, U. et al. (1997) Matrix Biol. 15: 583-592.) Certain cytokines and membrane-spanning proteins have CRDs which may enhance interactions with extracellular or intracellular ligands, with proteins in secretory pathways, or with molecules in signal transduction pathways. The lipocalin superfamily constitutes a phylogenetically conserved group of more than forty proteins that function by binding to and transporting a variety of physiologically important ligands. (Tanaka, T. et al. (1997) J. Biol. Chem. 272: 15789-15795; and van't Hof, W. et al. (1997) J. Biol. Chem. 272: 1837-1841.) Selectins are a family of calcium ion-dependent lectins expressed on inflamed vascular endothelium and the surface of some leukocytes. (Rossiter, H. et al. (1997) Mol. Med. Today 3: 214-222.)

[0009] Protein kinases regulate many different cell proliferation, differentiation, and signaling processes by adding phosphate groups to proteins. Reversible protein phosphorylation is a key strategy for controlling protein functional activity in eukaryotic cells. The high energy phosphate which drives this activation is generally transferred from adenosine triphosphate molecules (ATP) to a particular protein by protein kinases and removed from that protein by protein phosphatases. Phosphorylation occurs in response to extracellular signals, cell cycle checkpoints, and environmental or nutritional stresses. Protein kinases may be roughly divided into two groups; protein tyrosine kinases (PTKs) which phosphorylate tyrosine residues, and serine/threonine kinases (STKs) which phosphorylate serine or threonine residues. A few protein kinases have dual specificity. A majority of kinases contain a similar 250-300 amino acid catalytic domain. (Hardie, G. and Hanks, S. (1995) The Protein Kinase Facts Book, Vol I, pp. 7-47, Academic Press, San Diego, Calif.)

[0010] Protein phosphatases remove phosphate groups from molecules previously modified by protein kinases thus participating in cell signaling, proliferation, differentiation, contacts, and oncogenesis. Protein phosphorylation is a key strategy used to control protein functional activity in eukaryotic cells. The high energy phosphate is transferred from ATP to a protein by protein kinases and removed by protein phosphatases. There appear to be three, evolutionarily-distinct protein phosphatase gene families: protein phosphatases (PPs); protein tyrosine phosphatases (PTPs); and acid/alkaline phosphatases (APs). PPs dephosphorylate phosphoserine/threonine residues and are an important regulator of many cAMP mediated, hormone responses in cells. PTPs reverse the effects of protein tyrosine kinases and therefore play a significant role in cell cycle and cell signaling processes. Although APs dephosphorylate substrates in vitro, their role in vivo is not well known. (Charbonneau, H. and Tonks, N. K. (1992) Annu. Rev. Cell Biol. 8: 463-493.)

[0011] Cyclic nucleotides (cAMP and cGMP) function as intracellular second messengers to transduce a variety of extracellular signals, including hormones, light and neurotransmitters. Cyclic nucleotide phosphodiesterases (PDEs) degrade cyclic nucleotides to their corresponding monophosphates, thereby regulating the intracellular concentrations of cyclic nucleotides and their effects on signal transduction. At least seven families of mammalian PDEs have been identified based on substrate specificity and affinity, sensitivity to cofactors and sensitivity to inhibitory drugs. (Beavo, J. A. (1995) Physiological Reviews 75: 725-748.)

[0012] Phospholipases (PLs) are enzymes that catalyze the removal of fatty acid residues from phosphoglycerides. PLs play an important role in transmembrane signal transduction and are named according to the specific ester bond in phosphoglycerides that is hydrolyzed, i.e., A.sub.1, A.sub.2, C or D. PLA.sub.2 cleaves the ester bond at position 2 of the glycerol moiety of membrane phospholipids giving rise to arachidonic acid. Arachidonic acid is the common precursor to four major classes of eicosanoids, namely prostaglandins, prostacyclins, thromboxanes and leukotrienes. Eicosanoids are signaling molecules involved in the contraction of smooth muscle, platelet aggregation, and pain and inflammatory responses. (Alberts, B. et al. (1994) Molecular Biology of The Cell, Garland Publishing, Inc., New York, N.Y., pp. 85, 211, 239-240, 642-645.)

[0013] The nucleotide cyclases, i.e., adenylate and guanylate cyclase, catalyze the synthesis of the cyclic nucleotides, cAMP and cGMP, from ATP and GTP, respectively. They act in concert with phosphodiesterases, which degrade cAMP and cGMP, to regulate the cellular levels of these molecules and their functions. cAMP and cGMP function as intracellular second messengers to transduce a variety of extracellular signals, e.g., hormones, and light and neurotransmitters. (Stryer, L. (1988) Biochemistry W.H. Freeman and Co., New York, pp. 975-980, 1029-1035.).

[0014] Cytokines are produced in response to cell perturbation. Some cytokines are produced as precursor forms, and some form multimers in order to become active. They are produced in groups and in patterns characteristic of the particular stimulus or disease, and the members of the group interact with one another and other molecules to produce an overall biological response. Interleukins, neurotrophins, growth factors, interferons, and chemokines are all families of cytokines which work in conjunction with cellular receptors to regulate cell proliferation and differentiation and to affect such activities as leukocyte migration and function, hematopoietic cell proliferation, temperature regulation, acute response to infections, tissue remodeling, apoptosis, and cell survival. Studies using antibodies or other drugs that modify the activity of a particular cytokine are used to elucidate the roles of individual cytokines in pathology and physiology.

[0015] Chemokines, in particular, are small chemoattractant cytokines involved in inflammation, leukocyte proliferation and migration, angiogenesis and angiostasis, regulation of hematopoiesis, HIV infectivity, and stimulation of cytokine secretion. Chemokines generally contain 70-100 amino acids and are subdivided into four subfamilies based on the presence of conserved cysteine-based motifs. (Callard, R. and Gearing, A. (1994) The Cytokine Facts Book, Academic Press, New York, N.Y., pp. 181-190, 210-213, 223-227.)

[0016] Growth and differentiation factors are secreted proteins which function in intercellular communication. Some factors require oligomerization or association with MPs for activity. Complex interactions among these factors and their receptors trigger intracellular signal transduction pathways that stimulate or inhibit cell division, cell differentiation, cell signaling, and cell motility. Most growth and differentiation factors act on cells in their local environment (paracrine signaling). There are three broad classes of growth and differentiation factors. The first class includes the large polypeptide growth factors such as epidermal growth factor, fibroblast growth factor, transforming growth factor, insulin-like growth factor, and platelet-derived growth factor. The second class includes the hematopoietic growth factors such as the colony stimulating factors (CSFs). Hematopoietic growth factors stimulate the proliferation and differentiation of blood cells such as B-lymphocytes, T-lymphocytes, erythrocytes, platelets, eosinophils, basophils, neutrophils, macrophages, and their stem cell precursors. The third class includes small peptide factors such as bombesin, vasopressin, oxytocin, endothelin, transferrin, angiotensin II, vasoactive intestinal peptide, and bradykinin which function as hormones to regulate cellular functions other than proliferation.

[0017] Growth and differentiation factors play critical roles in neoplastic transformation of cells in vitro and in tumor progression in vivo. Inappropriate expression of growth factors by tumor cells may contribute to vascularization and metastasis of melanotic tumors. During hematopoiesis, growth factor misregulation can result in anemias, leukemias, and lymphomas. Certain growth factors such as interferon are cytotoxic to tumor cells both in vivo and in vitro. Moreover, some growth factors and growth factor receptors are related both structurally and functionally to oncoproteins. In addition, growth factors affect transcriptional regulation of both proto-oncogenes and oncosuppressor genes. (Reviewed in Pimentel, E. (1994) Handbook of Growth Factors, CRC Press, Ann Arbor, Mich., pp. 1-9.)

[0018] Proteolytic enzymes or proteases either activate or deactivate proteins by hydrolyzing peptide bonds. Proteases are found in the cytosol, in membrane-bound compartments, and in the extracellular space. The major families are the zinc, serine, cysteine, thiol, and carboxyl proteases.

[0019] Zinc proteases, e.g., carboxypeptidase A, have a zinc ion bound to the active site. These proteases recognize C-terminal residues that contain an aromatic or bulky aliphatic side chain, and hydrolyze the peptide bond adjacent to the C-terminal residues. Serine proteases have an active site serine residue and include digestive enzymes, e.g., trypsin and chymotrypsin, components of the complement and blood-clotting cascades, and enzymes that control the degradation and turnover of extracellular matrix (ECM) molecules. Cysteine proteases (e.g. cathepsin) are produced by monocytes, macrophages and other immune cells, and are involved in diverse cellular processes ranging from the processing of precursor proteins to intracellular degradation. Overproduction of these enzymes can cause the tissue destruction associated with rheumatoid arthritis and asthma. Thiol proteases, e.g., papain, contain an active site cysteine and are widely distributed within tissues. Carboxyl proteases, e.g., pepsin, are active only under acidic conditions (pH 2 to 3).

[0020] Guanosine triphosphate-binding proteins (G proteins) can be grouped into two major classes: heterotrimeric G proteins and small G proteins. Heterotrimeric G proteins interact with GPCRs that respond to hormones, growth factors, neuromodulators, or other signaling molecules. The interaction between GPCR and G protein allows the G protein to exchange GTP for guanosine diphosphate (GDP). This exchange activates the G protein, allowing it to dissociate from the receptor and interact with the its cognate second messenger-generating protein, e.g., adenylate cyclase, guanylate cyclase, phospholipase C, or ion channels. The hydrolysis of GTP to GDP by the G protein acts as an on-off switch, terminating the action of the G protein and preparing it to interact with another receptor molecule, thus beginning another round of signal transduction.

[0021] The small G proteins consist of single 21-30 kDa polypeptides. They can be classified into five subfamilies: Ras, Rho, Ran, Rab, and ADP-ribosylation factor. These proteins regulate cell growth, cell cycle control, protein secretion, and intracellular vesicle interaction. In particular, the Ras proteins are essential in transducing signals from receptor tyrosine kinases to serine/threonine kinases which control cell growth and differentiation. Mutant Ras proteins, which bind but can not hydrolyze GTP, are permanently activated and cause continuous cell proliferation or cancer. All five subfamilies share common structural features and four conserved motifs. Most of the membrane-bound G proteins require a carboxy terminal isoprenyl group (CAAX), added posttranslationally, for membrane association and biological activity. The G proteins also have a variable effector region, located between motifs I and II, which is characterized as the interaction site for guanine nucleotide exchange factors or GTPase-activating proteins.

[0022] Eukaryotic cells are bound by a membrane and subdivided into membrane-bound compartments. Membranes are impermeable to many ions and polar molecules, therefore transport of these molecules is mediated by ion channels, ion pumps, transport proteins, or pumps. Symporters and antiporters regulate cytosolic pH by transporting ions and small molecules, e.g., amino acids, glucose, and drugs, across membranes; symporters transport small molecules and ions in the same direction, and antiporters, in the opposite direction. Transporter superfamilies include facilitative transporters and active ATP binding cassette transporters involved in multiple-drug resistance and the targeting of antigenic peptides to MHC Class I molecules. These transporters bind to a specific ion or other molecule and undergo conformational changes in order to transfer the ion or molecule across a membrane. Transport can occur by a passive, concentration-dependent mechanism or can be linked to an energy source such as ATP hydrolysis or an ion gradient.

[0023] Ion channels, ion pumps, and transport proteins mediate the transport of molecules across cellular membranes. Symporters and antiporters regulate cytosolic pH by transporting ions and small molecules such as amino acids, glucose, and drugs. Symporters transport small molecules and ions unidirectionally, and antiporters, bidirectionally. Transporter superfamilies include facilitative transporters and active ATP-binding cassette transporters which are involved in multiple-drug resistance and the targeting of antigenic peptides to MHC Class I molecules. These transporters bind to a specific ion or other molecule and undergo a conformational change in order to transfer the ion or molecule across the membrane. Transport can occur by a passive, concentration-dependent mechanism or can be linked to an energy source such as ATP hydrolysis. (Reviewed in Alberts, B. et al. (1994) Molecular Biology of The Cell, Garland Publishing, New York, N.Y., pp. 523-546.)

[0024] Ion channels are formed by transmembrane proteins which create a lined passageway across the membrane through which water and ions, such as Na.sup.+, K.sup.+, Ca.sup.2+, and Cl.sup.-, enter and exit the cell. For example, chloride channels are involved in the regulation of the membrane electric potential as well as absorption and secretion of ions across the membrane. Chloride channels also regulate the internal pH of membrane-bound organelles.

[0025] Ion pumps are ATPases which actively maintain membrane gradients. Ion pumps are classified as P, V, or F according to their structure and function. All have one or more binding sites for ATP in their cytosolic domains. The P-class ion pumps include Ca.sup.2+ ATPase and Na.sup.+/K.sup.+ ATPase and function in transporting H.sup.+, Na.sup.+, K.sup.+, and Ca.sup.2+ ions. P-class pumps consist of two .alpha. and two .beta. transmembrane subunits. The V- and F-class ion pumps have similar structures and but transport only H.sup.+. F class H.sup.+ pumps mediate transport across the membranes of mitochondria and chloroplasts, while V-class H.sup.+ pumps regulate acidity inside lysosomes, endosomes, and plant vacuoles.

[0026] A family of structurally related intrinsic membrane proteins known as facilitative glucose transporters catalyze the movement of glucose and other selected sugars across the plasma membrane. The proteins in this family contain a highly conserved, large transmembrane domain comprised of 12 .alpha.-helices, and several weakly conserved, cytoplasmic and exoplasmic domains (Pessin, J. E., and Bell, G. I. (1992) Annu. Rev. Physiol. 54: 911-930).

[0027] Amino acid transport is mediated by Na.sup.+ dependent amino acid transporters. These transporters are involved in gastrointestinal and renal uptake of dietary and cellular amino acids and in neuronal reuptake of neurotransmitters. Transport of cationic amino acids is mediated by the system y+ family and the cationic amino acid transporter (CAT) family. Members of the CAT family share a high degree of sequence homology, and each contains 12-14 putative transmembrane domains (Ito, K. and Groudine, M. (1997) J. Biol. Chem. 272: 26780-26786).

[0028] Proton-coupled, 12 membrane-spanning domain transporters such as PEPT 1 and PEPT 2 are responsible for gastrointestinal absorption and for renal reabsorbtion of peptides using an electrochemical H.sup.+ gradient as the driving force. A heterodimeric peptide transporter, consisting of TAP 1 and TAP 2, is associated with antigen processing. Peptide antigens are transported across the membrane of the endoplasmic reticulum so they can be presented to the major histocompatibility complex class I molecules. Each TAP protein consists of multiple hydrophobic membrane spanning segments and a highly conserved ATP-binding cassette. (Boll, M. et al. (1996) Proc. Natl. Acad. Sci. 93: 284-289.)

[0029] Hormones are secreted molecules that travel through the circulation and bind to specific receptors on the surface of, or within, target cells. Although they have diverse biochemical compositions and mechanisms of action, hormones can be grouped into two categories. One category consists of small lipophilic hormones that diffuse through the plasma membrane of target cells, bind to cytosolic or nuclear receptors, and form a complex that alters gene expression. Examples of these molecules include retinoic acid, thyroxine, and the cholesterol-derived steroid hormones such as progesterone, estrogen, testosterone, cortisol, and aldosterone. The second category consists of hydrophilic hormones that function by binding to cell surface receptors that transduce signals across the plasma membrane. Examples of such hormones include amino acid derivatives such as catecholamines and peptide hormones such as glucagon, insulin, gastrin, secretin, cholecystokinin, adrenocorticotropic hormone, follicle stimulating hormone, luteinizing hormone, thyroid stimulating hormone, and vasopressin. (See, for example, Lodish et al. (1995) Molecular Cell Biology, Scientific American Books Inc., New York, N.Y., pp. 856-864.)

[0030] Neuropeptides and vasomediators (NP/VM) comprise a large family of endogenous signaling molecules. Included in this family are neuropeptides and neuropeptide hormones such as bombesin, neuropeptide Y, neurotensin, neuromedin N, melanocortins, opioids, galanin, somatostatin, tachykinins, urotensin II and related peptides involved in smooth muscle stimulation, vasopressin, vasoactive intestinal peptide, and circulatory system-borne signaling molecules such as angiotensin, complement, calcitonin, endothelins, formyl-methionyl peptides, glucagon, cholecystokinin and gastrin. NP/VMs can transduce signals directly, modulate the activity or release of other neurotransmitters and hormones, and act as catalytic enzymes in cascades. The effects of NP/VMs range from extremely brief to long-lasting. (Reviewed in Martin, C. R. et al. (1985) Endocrine Physiology, Oxford University Press, New York, N.Y., pp. 57-62.)

[0031] Regulatory molecules turn individual genes or groups of genes on and off in response to various inductive mechanisms of the cell or organism; act as transcription factors by determining whether or not transcription is initiated, enhanced, or repressed; and splice transcripts as dictated in a particular cell or tissue. Although they interact with short stretches of DNA scattered throughout the entire genome, most gene expression is regulated near the site at which transcription starts or within the open reading frame of the gene being expressed. Many of the transcription factors incorporate one of a set of DNA-binding structural motifs, each of which contains either .alpha. helices or .beta. sheets and binds to the major groove of DNA. (Pabo, C. O. and R. T. Sauer (1992) Ann. Rev. Biochem. 61: 1053-95.) Other domains of transcription factors may form crucial contacts with the DNA. In addition, accessory proteins provide important interactions which may convert a particular protein complex to an activator or a repressor or may prevent binding. (Alberts, B. et al. (1994) Molecular Biology of the Cell, Garland Publishing Co, New York, N.Y. pp. 401-474.)

[0032] The discovery of new human signal peptide-containing proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative disorders including cancer; inflammation; and cardiovascular, neurological, reproductive, and developmental disorders.

SUMMARY OF THE INVENTION

[0033] The invention features substantially purified polypeptides, proteins with signal peptides, referred to collectively as "HSPP" and individually as "HSPP-1", "HSPP-2", "HSPP-3", "HSPP-4", "HSPP-5", "HSPP-6", "HSPP-7", "HSPP-8", "HSPP-9", "HSPP-10", "HSPP-11", "HSPP-12", "HSPP-13", "HSPP-14", "HSPP-15", "HSPP-16", "HSPP-17", "HSPP-18", "HSPP-19", "HSPP-20", "HSPP-21", "HSPP-22", "HSPP-23", "HSPP-24", "HSPP-25", "HSPP-26", "HSPP-27", "HSPP-28", "HSPP-29", "HSPP-30", "HSPP-31", "HSPP-32", "HSPP-33", "HSPP-34", "HSPP-35", "HSPP-36", "HSPP-37", "HSPP-38", "HSPP-39", "HSPP-40", "HSPP-41", "HSPP-42", "HSPP-43", "HSPP-44", "HSPP-45", "HSPP-46", "HSPP-47", "HSPP-48", "HSPP-49", "HSPP-50", "HSPP-51", "HSPP-52", "HSPP-53", "HSPP-54", "HSPP-55", "HSPP-56", "HSPP-57", "HSPP-58", "HSPP-59", "HSPP-60", "HSPP-61", "HSPP-62", "HSPP-63", "HSPP-64", "HSPP-65", "HSPP-66", "HSPP-67", "HSPP-68", "HSPP-69", "HSPP-70", "HSPP-71", "HSPP-72", "HSPP-73", "HSPP-74", "HSPP-75", HSPP-76", "HSPP-77", "HSPP-78", "HSPP-79", "HSPP-80", "HSPP-81", "HSPP-82", "HSPP-83", "HSPP-84", "HSPP-85", "HSPP-86", "HSPP-87", "HSPP-88", "HSPP-89", "HSPP-90", "HSPP-91", "HSPP-92", "HSPP-93", "HSPP-94", "HSPP-95", "HSPP-96", "HSPP-97", "HSPP-98", "HSPP-99", "HSPP-100", "HSPP-101", "HSPP-102", "HSPP-103", "HSPP-104", "HSPP-105", "HSPP-106", "HSPP-107", "HSPP-108", "HSPP-109", "HSPP-110", HSPP-111", "HSPP-112", "HSPP-113", "HSPP-114", "HSPP-115", "HSPP-116", "HSPP-117", "HSPP-118", "HSPP-119", "HSPP-120", "HSPP-121", "HSPP-122", "HSPP-123", "HSPP-124", "HSPP-125", "HSPP-126", "HSPP-127", "HSPP-128", "HSPP-129", "HSPP-130", "HSPP-131", "HSPP-132", "HSPP-133", and "HSPP-134". In one aspect, the invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ BD NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ BD NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ BD NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134 (SEQ ID NO:1-134), and fragments thereof.

[0034] The invention further provides a substantially purified variant having at least 90% amino acid identity to at least one of the amino acid sequences selected from the group consisting of SEQ ID NO:1-134, and fragments thereof. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-134, and fragments thereof. The invention also includes an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-134, and fragments thereof.

[0035] Additionally, the invention provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-134, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:1-134, and fragments thereof.

[0036] The invention also provides an isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ BD NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEQ ID NO:182, SEQ ID NO:183, SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ BD NO:198, SEQ BD NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216, SEQ ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:238, SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268 (SEQ ID NO:135-268), and fragments thereof. The invention further provides an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide sequence selected from the group consisting of SEQ ID NO:135-268, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:135-268, and fragments thereof.

[0037] The invention also provides a method for detecting a polynucleotide in a sample containing nucleic acids, the method comprising the steps of (a) hybridizing the complement of the polynucleotide sequence to at least one of the polynucleotides of the sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide in the sample. In one aspect, the method further comprises amplifying the polynucleotide prior to hybridization.

[0038] The invention further provides an expression vector containing at least a fragment of the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-134, and fragments thereof. In another aspect, the expression vector is contained within a host cell.

[0039] The invention also provides a method for producing a polypeptide, the method comprising the steps of: (a) culturing the host cell containing an expression vector containing at least a fragment of a polynucleotide under conditions suitable for the expression of the polypeptide; and (b) recovering the polypeptide from the host cell culture.

[0040] The invention also provides a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-134, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

[0041] The invention further includes a purified antibody which binds to a polypeptide selected from the group consisting of SEQ ID NO:1-134, and fragments thereof. The invention also provides a purified agonist and a purified antagonist to the polypeptide.

[0042] The invention also provides a method for treating or preventing a disorder associated with decreased expression or activity of HSPP, the method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-134, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

[0043] The invention also provides a method for treating or preventing a disorder associated with increased expression or activity of HSPP, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-134, and fragments thereof.

BRIEF DESCRIPTION OF THE TABLES

[0044] Table 1 shows nucleotide and polypeptide sequence identification numbers (SEQ ID NO), clone identification numbers (clone ID), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding HSPP.

[0045] Table 2 shows features of each polypeptide sequence, including predicted signal peptide sequences, and methods and algorithms used for identification of HSPP.

[0046] Table 3 shows the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis, diseases, disorders, or conditions associated with these tissues, and the vector into which each cDNA was cloned.

[0047] Table 4 describes the tissues used to construct the cDNA libraries from which Incyte cDNA clones encoding HSPP were isolated.

[0048] Table 5 shows the programs, their descriptions, references, and threshold parameters used to analyze HSPP.

[0049] Table 6 shows the regions of the full-length nucleotide sequences of HSPP to which cDNA fragments of Table 1 correspond.

DESCRIPTION OF THE INVENTION

[0050] Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

[0051] It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

[0052] Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

[0053] Definitions

[0054] "HSPP" refers to the amino acid sequences of substantially purified HSPP obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and preferably the human species, from any source, whether natural, synthetic, semi-synthetic, or recombinant.

[0055] The term "agonist" refers to a molecule which, when bound to HSPP, increases or prolongs the duration of the effect of HSPP. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to and modulate the effect of HSPP.

[0056] An "allelic variant" is an alternative form of the gene encoding HSPP. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

[0057] "Altered" nucleic acid sequences encoding HSPP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polynucleotide the same as HSPP or a polypeptide with at least one functional characteristic of HSPP. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding HSPP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding HSPP. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent HSPP. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of HSPP is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, positively charged amino acids may include lysine and arginine, and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, and valine; glycine and alanine; asparagine and glutamine; serine and threonine; and phenylalanine and tyrosine.

[0058] The terms "amino acid" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. In this context, "fragments," "immunogenic fragments," or "antigenic fragments" refer to fragments of HSPP which are preferably at least 5 to about 15 amino acids in length, most preferably at least 14 amino acids, and which retain some biological activity or immunological activity of HSPP. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

[0059] "Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

[0060] The term "antagonist" refers to a molecule which, when bound to HSPP, decreases the amount or the duration of the effect of the biological or immunological activity of HSPP. Antagonists may include proteins, nucleic acids, carbohydrates, antibodies, or any other molecules which decrease the effect of HSPP.

[0061] The term "antibody" refers to intact molecules as well as to fragments thereof, such as Fab, F(ab').sub.2, and Fv fragments, which are capable of binding the epitopic determinant. Antibodies that bind HSPP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

[0062] The term "antigenic determinant" refers to that fragment of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (given regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

[0063] The term "antisense" refers to any composition containing a nucleic acid sequence which is complementary to the "sense" strand of a specific nucleic acid sequence. Antisense molecules may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form duplexes and to block either transcription or translation. The designation "negative" can refer to the antisense strand, and the designation "positive" can refer to the sense strand.

[0064] The term "biologically active," refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" refers to the capability of the natural, recombinant, or synthetic HSPP, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

[0065] The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence "5' A-G-T 3'" bonds to the complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules may be "partial," such that only some of the nucleic acids bind, or it may be "complete," such that total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acids strands, and in the design and use of peptide nucleic acid (PNA) molecules.

[0066] A "composition comprising a given polynucleotide sequence" or a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding HSPP or fragments of HSPP may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

[0067] "Consensus sequence"refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using XL-PCR kit (Perkin-Elmer, Norwalk Conn.) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of more than one Incyte Clone using a computer program for fragment assembly, such as the GEL VIEW Fragment Assembly system (GCG, Madison Wis.). Some sequences have been both extended and assembled to produce the consensus sequence.

[0068] The term "correlates with expression of a polynucleotide" indicates that the detection of the presence of nucleic acids, the same or related to a nucleic acid sequence encoding HSPP, by northern analysis is indicative of the presence of nucleic acids encoding HSPP in a sample, and thereby correlates with expression of the transcript from the polynucleotide encoding HSPP.

[0069] A "deletion"refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

[0070] The term "derivative" refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

[0071] The term "similarity" refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity" may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as "substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.

[0072] The phrases "percent identity" or "% identity" refer to the percentage of sequence similarity found in a comparison of two or more amino acid or nucleic acid sequences. Percent identity can be determined electronically, e.g., by using the MEGALIGN program (DNASTAR, Madison Wis.) which creates alignments between two or more sequences according to methods selected by the user, e.g., the clustal method. (See, e.g., Higgins, D. G. and P. M. Sharp (1988) Gene 73: 237-244.) The clustal algorithm groups sequences into clusters by examining the distances between all pairs. The clusters are aligned pairwise and then in groups. The percentage similarity between two amino acid sequences, e.g., sequence A and sequence B, is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A and sequence B, times one hundred. Gaps of low or of no similarity between the two amino acid sequences are not included in determining percentage similarity. Percent identity between nucleic acid sequences can also be counted or calculated by other methods known in the art, e.g., the Jotun Hein method. (See, e.g., Hein, J. (1990) Methods Enzymol. 183: 626-645.) Identity between sequences can also be determined by other methods known in the art, e.g., by varying hybridization conditions.

[0073] "Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance.

[0074] The term "humanized antibody" refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

[0075] "Hybridization" refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing.

[0076] The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C.sub.0t or R.sub.0t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

[0077] The words "insertion" or "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, to the sequence found in the naturally occurring molecule.

[0078] "Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

[0079] The term "microarray" refers to an arrangement of distinct polynucleotides on a substrate.

[0080] The terms "element" or "array element" in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.

[0081] The term "modulate" refers to a change in the activity of HSPP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of HSPP.

[0082] The phrases "nucleic acid" or "nucleic acid sequence," as used herein, refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material. In this context, "fragments" refers to those nucleic acid sequences which, comprise a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:135-268, for example, as distinct from any other sequence in the same genome. For example, a fragment of SEQ ID NO:135-268 is useful in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:135-268 from related polynucleotide sequences. A fragment of SEQ ID NO:135-268 is at least about 15-20 nucleotides in length. The precise length of the fragment of SEQ ID NO:135-268 and the region of SEQ ID NO:135-268 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment. In some cases, a fragment, when translated, would produce polypeptides retaining some functional characteristic, e.g., antigenicity, or structural domain characteristic, e.g., ATP-binding site, of the full-length polypeptide.

[0083] The terms "operably associated" or "operably linked" refer to functionally related nucleic acid sequences. A promoter is operably associated or operably linked with a coding sequence if the promoter controls the translation of the encoded polypeptide. While operably associated or operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements, e.g., repressor genes, are not contiguously linked to the sequence encoding the polypeptide but still bind to operator sequences that control expression of the polypeptide.

[0084] The term "oligonucleotide" refers to a nucleic acid sequence of at least about 6 nucleotides to 60 nucleotides, preferably about 15 to 30 nucleotides, and most preferably about 20 to 25 nucleotides, which can be used in PCR amplification or in a hybridization assay or microarray. "Oligonucleotide" is substantially equivalent to the terms "amplimer," "primer," "oligomer," and "probe," as these terms are commonly defined in the art.

[0085] "Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

[0086] The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding HSPP, or fragments thereof, or HSPP itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

[0087] The terms "specific binding" or "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, or an antagonist. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

[0088] The term "stringent conditions" refers to conditions which permit hybridization between polynucleotides and the claimed polynucleotides. Stringent conditions can be defined by salt concentration, the concentration of organic solvent, e.g., formamide, temperature, and other conditions well known in the art. In particular, stringency can be increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature.

[0089] The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably about 75% free, and most preferably about 90% free from other components with which they are naturally associated.

[0090] A "substitution" refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

[0091] "Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

[0092] "Transformation" describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

[0093] A "variant" of HSPP polypeptides refers to an amino acid sequence that is altered by one or more amino acid residues. The variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties (e.g., replacement of leucine with isoleucine). More rarely, a variant may have "nonconservative" changes (e.g., replacement of glycine with tryptophan). Analogous minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, LASERGENE software (DNASTAR).

[0094] The term "variant," when used in the context of a polynucleotide sequence, may encompass a polynucleotide sequence related to HSPP. This definition may also include, for example, "allelic" (as defined above), "splice," "species," or "polymorphic" variants. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or an absence of domains. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

[0095] The Invention

[0096] The invention is based on the discovery of new human signal peptide-containing proteins (HSPP), the polynucleotides encoding HSPP, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative disorders including cancer; inflammation; and cardiovascular, neurological, reproductive, and developmental disorders.

[0097] Table 1 lists the Incyte Clones used to derive full length nucleotide sequences encoding HSPP. Columns 1 and 2 show the sequence identification numbers (SEQ ID NO) of the amino acid and nucleic acid sequences, respectively. Column 3 shows the Clone ID of the Incyte Clone in which nucleic acids encoding each HSPP were identified, and column 4, the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones, their corresponding cDNA libraries, and shotgun sequences. The clones and shotgun sequences are part of the consensus nucleotide sequence of each HSPP and are useful as fragments in hybridization technologies.

[0098] Table 6 shows the regions of the full-length nucleotide sequences of HSPP to which cDNA fragments of Table 1 correspond. Column 1 lists nucleotide sequence identifiers and column 2 shows the clone ID of the Incyte clone in which nucleic acids encoding each HSPP were identified. Column 3 shows Incyte clones and shotgun sequences which are part of the consensus nucleotide sequence of each HSPP and are useful as fragments in hybridization technologies. Column 4 lists the starting nucleotide position and column 5 the ending nucleotide position of the region of the full-length HSPP to which the cDNA fragment corresponds.

[0099] The columns of Table 2 show various properties of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3, potential phosphorylation sites; column 4, potential glycosylation sites; column 5, the amino acid residues comprising signature sequences and motifs; column 6, the identity of each protein; and column 7, analytical methods used to identify each HSPP as a signal peptide-containing protein. Note that in column 5, the first line of each cell lists the amino acid residues comprising predicted signal peptide sequences. Additional identifying motifs or signatures are also listed in column 5. Of particular note is the presence of a glycosyl hydrolase family 9 active site signature in SEQ ID NO:126, a ribosomal protein S18 signature in SEQ ID NO:127, an adrenodoxin family iron-sulfur binding region signature and a cytochrome c family heme-binding site signature in SEQ ID NO:132, and a urotensin II signature sequence in SEQ ID NO:96.

[0100] Using BLAST, SEQ ID NO:68 (HSPP-68) has been identified as a TWIK-related acid-sensitive K.sup.+ channel, and SEQ ID NO:92 (HSPP-92) has been identified as a tyrosine-specific protein phosphatase. The tyrosine-specific protein phosphatases signature in SEQ ID NO:92 (HSPP-92) from about V328 through about F340 (including the putative active site cysteine residue at C330) was identified using BLOCKS and PRINTS. Also of note is the identification of SEQ ID NO:66 (HSPP-66) as a steroid binding protein using BLAST.

[0101] The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding HSPP. The first column of Table 3 lists the nucleotide sequence identifiers. The second column lists tissue categories which express HSPP as a fraction of total tissue categories expressing HSPP. The third column lists the diseases, disorders, or conditions associated with those tissues expressing HSPP. The fourth column lists the vectors used to subclone the cDNA library. Of particular note is the expression of SEQ ID NO:200, SEQ ID NO:203, and SEQ ID NO:225 in lung tissues; the expression of SEQ ID NO:212, SEQ ID NO:216, and SEQ ID NO:220 in reproductive tissues; the expression of SEQ ID NO:223 in cancerous tissues; the expression of SEQ ID NO:232 in gastrointestinal tissue, specifically the small intestine or colon (fifteen out of sixteen (93.8%) cDNA libraries); and the expression of SEQ ID NO:224 in cancerous and proliferating tissues. Also of particular interest is the tissue-specific expression of SEQ ID NO:252 and SEQ ID NO:257. SEQ ID NO:252 is derived from OVARTUT01, an ovarian tumor cDNA library and is exclusively expressed in reproductive tumor tissue. SEQ ID NO:257 is derived from THP1AZT01, a 5-aza-2'-deoxycytidine treated human promonocyte cDNA library and is exclusively expressed in hematopoietic tissue.

[0102] The following fragments of the nucleotide sequences encoding HSPP are useful in hybridization or amplification technologies to identify SEQ ID NO:135-268 and to distinguish between SEQ ID NO:135-268 and related polynucleotide sequences. The useful fragments are the fragment of SEQ ID NO:230 from about nucleotide 75 to about nucleotide 104; the fragment of SEQ ID NO:231 from about nucleotide 210 to about nucleotide 239; the fragment of SEQ ID NO:232 from about nucleotide 157 to about nucleotide 186; the fragment of SEQ ID NO:233 from about nucleotide 268 to about nucleotide 297; the fragment of SEQ ID NO:234 from about nucleotide 160 to about nucleotide 186; the fragment of SEQ ID NO:235 from about nucleotide 201 to about nucleotide 230; the fragment of SEQ ID NO:236 from about nucleotide 165 to about nucleotide 194; the fragment of SEQ ID NO:237 from about nucleotide 366 to about nucleotide 395; the fragment of SEQ ID NO:238 from about nucleotide 714 to about nucleotide 743; the fragment of SEQ ID NO:239 from about nucleotide 1731 to about nucleotide 1760; the fragment of SEQ ID NO:240 from about nucleotide 419 to about nucleotide 448; the fragment of SEQ ID NO:241 from about nucleotide 494 to about nucleotide 523; the fragment of SEQ ID NO:242 from about nucleotide 100 to about nucleotide 129; the fragment of SEQ ID NO:243 from about nucleotide 104 to about nucleotide 133; the fragment of SEQ ID NO:244 from about nucleotide 136 to about nucleotide 165; the fragment of SEQ ID NO:245 from about nucleotide 140 to about nucleotide 169; the fragment of SEQ ID NO:246 from about nucleotide 125 to about nucleotide 154; the fragment of SEQ ID NO:247 from about nucleotide 687 to about nucleotide 758; the fragment of SEQ ID NO:248 from about nucleotide 327 to about nucleotide 398; the fragment of SEQ ID NO:249 from about nucleotide 741 to about nucleotide 785; the fragment of SEQ ID NO:250 from about nucleotide 184 to about nucleotide 255; the fragment of SEQ ID NO:251 from about nucleotide 165 to about nucleotide 242; the fragment of SEQ ID NO:252 from about nucleotide 271 to about nucleotide 342; the fragment of SEQ ID NO:253 from about nucleotide 1081 to about nucleotide 1152; the fragment of SEQ ID NO:254 from about nucleotide 781 to about nucleotide 852; the fragment of SEQ ID NO:255 from about nucleotide 620 to about nucleotide 691; the fragment of SEQ ID NO:256 from about nucleotide 872 to about nucleotide 916; the fragment of SEQ ID NO:257 from about nucleotide 242 to about nucleotide 313; the fragment of SEQ ID NO:258 from about nucleotide 595 to about nucleotide 648; the fragment of SEQ ID NO:259 from about nucleotide 163 to about nucleotide 216; the fragment of SEQ ID NO:260 from about nucleotide 244 to about nucleotide 315; the fragment of SEQ ID NO:261 from about nucleotide 75 to about nucleotide 128; the fragment of SEQ ID NO:262 from about nucleotide 650 to about nucleotide 703; the fragment of SEQ ID NO:263 from about nucleotide 143 to about nucleotide 214; the fragment of SEQ ID NO:264 from about nucleotide 434 to about nucleotide 487; the fragment of SEQ ID NO:265 from about nucleotide 218 to about nucleotide 271; the fragment of SEQ ID NO:266 from about nucleotide 89 to about nucleotide 145; the fragment of SEQ ID NO:267 from about nucleotide 198 to about nucleotide 254; and the fragment of SEQ ID NO:268 from about nucleotide 10 to about nucleotide 54.

[0103] The invention also encompasses HSPP variants. A preferred HSPP variant is one which has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% amino acid sequence identity to the HSPP amino acid sequence, and which contains at least one functional or structural characteristic of HSPP.

[0104] The invention also encompasses polynucleotides which encode HSPP. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:135-268, which encodes HSPP.

[0105] The invention also encompasses a variant of a polynucleotide sequence encoding HSPP. In particular, such a variant polynucleotide sequence will have at least about 80%, more preferably at least about 90%, and most preferably at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding HSPP. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:135-268 which has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:135-268. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of HSPP.

[0106] It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding HSPP, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring HSPP, and all such variations are to be considered as being specifically disclosed.

[0107] Although nucleotide sequences which encode HSPP and its variants are preferably capable of hybridizing to the nucleotide sequence of the naturally occurring HSPP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding HSPP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding HSPP and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

[0108] The invention also encompasses production of DNA sequences which encode HSPP and HSPP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding HSPP or any fragment thereof.

[0109] Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:135-268 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G. M. and S. L. Berger (1987) Methods Enzymol. 152: 399-407; Kimmel, A. R. (1987) Methods Enzymol. 152: 507-511.) For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and most preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide, and most preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30.degree. C., more preferably of at least about 37.degree. C., and most preferably of at least about 42.degree. C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion of carrier DNA, are well known to those skilled in the art. Various levels of stringency are accomplished by combining these various conditions as needed. In a preferred embodiment, hybridization will occur at 30.degree. C. in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37.degree. C. in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 .mu.g/ml denatured salmon sperm DNA (ssDNA). In a most preferred embodiment, hybridization will occur at 42.degree. C. in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50% formamide, and 200 .mu.g/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.

[0110] The washing steps which follow hybridization can also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can be increased by decreasing salt concentration or by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include temperature of at least about 25.degree. C., more preferably of at least about 42.degree. C., and most preferably of at least about 68.degree. C. In a preferred embodiment, wash steps will occur at 25.degree. C. in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42.degree. C. in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a most preferred embodiment, wash steps will occur at 68.degree. C. in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art.

[0111] Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland Ohio), Taq polymerase (Perkin-Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway N.J.), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg Md.). Preferably, sequence preparation is automated with machines such as the Hamilton MICROLAB 2200 (Hamilton, Reno Nev.), Peltier Thermal Cycler 200 (PTC200; MJ Research, Watertown Mass.) and the ABI CATALYST 800 (Perkin-Elmer). Sequencing is then carried out using either ABI 373 or 377 DNA sequencing systems (Perkin-Elmer) or the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale Calif.). The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F. M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York N.Y., unit 7.7; Meyers, R. A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York N.Y., pp. 856-853.)

[0112] The nucleic acid sequences encoding HSPP may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2: 318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16: 8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1: 111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J. D. et al. (1991) Nucleic Acids Res. 19: 3055-306). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto Calif.) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth Minn.) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68.degree. C. to 72.degree. C.

[0113] When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

[0114] Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin-Elmer), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

[0115] In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode HSPP may be cloned in recombinant DNA molecules that direct expression of HSPP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express HSPP.

[0116] The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter HSPP-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

[0117] In another embodiment, sequences encoding HSPP may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M. H. et al. (1980) Nucl. Acids Res. Symp. Ser. 215-223, and Horn, T. et al. (1980) Nucl. Acids Res. Symp. Ser. 225-232.) Alternatively, HSPP itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J. Y. et al. (1995) Science 269: 202-204.) Automated synthesis may be achieved using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of HSPP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

[0118] The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g, Chiez, R. M. and F. Z. Regnier (1990) Methods Enzymol. 182: 392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York N.Y.)

[0119] In order to express a biologically active HSPP, the nucleotide sequences encoding HSPP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding HSPP. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding HSPP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding HSPP and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20: 125-162.)

[0120] Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding HSPP and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview N.Y., ch. 4, 8, and 16-17; Ausubel, F. M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York N.Y., ch. 9, 13, and 16.)

[0121] A variety of expression vector/host systems may be utilized to contain and express sequences encoding HSPP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.

[0122] In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding HSPP. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding HSPP can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla Calif.) or pSPORT1 plasmid (Life Technologies). Ligation of sequences encoding HSPP into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S. M. Schuster (1989) J. Biol. Chem. 264: 5503-5509.) When large quantities of HSPP are needed, e.g. for the production of antibodies, vectors which direct high level expression of HSPP may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.

[0123] Yeast expression systems may be used for production of HSPP. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Grant et al. (1987) Methods Enzymol. 153: 516-54; and Scorer, C. A. et al. (1994) Bio/Technology 12: 181-184.)

[0124] Plant systems may also be used for expression of HSPP. Transcription of sequences encoding HSPP may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6: 307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3: 1671-1680; Broglie, R. et al. (1984) Science 224: 838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17: 85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York N.Y., pp. 191-196.)

[0125] In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding HSPP may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses HSPP in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. 81: 3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

[0126] Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J. J. et al. (1997) Nat Genet. 15: 345-355.)

[0127] For long term production of recombinant proteins in mammalian systems, stable expression of HSPP in cell lines is preferred. For example, sequences encoding HSPP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

[0128] Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk.sup.- or apr.sup.- cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11: 223-232; Lowy, I. et al. (1980) Cell 22: 817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate; neo confers resistance to the aminoglycosides, neomycin and G-418; and als or pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77: 3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150: 1-14.) Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites. (See, e.g., Hartman, S. C. and R. C. Mulligan (1988) Proc. Natl. Acad. Sci. 85: 8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), .beta. glucuronidase and its substrate .beta.-glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C. A. (1995) Methods Mol. Biol. 55: 121-131.)

[0129] Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding HSPP is inserted within a marker gene sequence, transformed cells containing sequences encoding HSPP can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding HSPP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

[0130] In general, host cells that contain the nucleic acid sequence encoding HSPP and that express HSPP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

[0131] Immunological methods for detecting and measuring the expression of HSPP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on HSPP is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St Paul Minn., Sect. IV; Coligan, J. E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York N.Y.; and Pound, J. D. (1998) Immunochemical Protocols, Humana Press, Totowa N.J.).

[0132] A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding HSPP include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding HSPP, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison Wis.), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

[0133] Host cells transformed with nucleotide sequences encoding HSPP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode HSPP may be designed to contain signal sequences which direct secretion of HSPP through a prokaryotic or eukaryotic cell membrane.

[0134] In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and W138), are available from the American Type Culture Collection (ATCC, Manassas, Va.) and may be chosen to ensure the correct modification and processing of the foreign protein.

[0135] In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding HSPP may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric HSPP protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of HSPP activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the HSPP encoding sequence and the heterologous protein sequence, so that HSPP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

[0136] In a further embodiment of the invention, synthesis of radiolabeled HSPP may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract systems (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, preferably .sup.35S-methionine.

[0137] Fragments of HSPP may be produced not only by recombinant production, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, supra, pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Various fragments of HSPP may be synthesized separately and then combined to produce the full length molecule.

[0138] Therapeutics

[0139] Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of HSPP and signal peptide sequences. In addition, chemical and structural similarity, in the context of sequences and motifs, exists between HSPP-66 and prostatic steriod-binding C3 precursor from rat (GI 206453); between HSPP-68 and TWIK-related acid-sensitive K+channel from human (GI 2465542); and between HSPP-92 and tyrosine specific protein phosphatases (PROSITE PDOC00323). In addition, the expression of HSPP is closely associated with proliferative, cancerous, inflamed, cardiovascular, nervous, reproductive, hematopoietic/immune, and developmental tissue. Therefore, HSPP appears to play a role in cell proliferative disorders including cancer; inflammation; and cardiovascular, neurological, reproductive, and developmental disorders. In the treatment of cell proliferative disorders including cancer; inflammation; and cardiovascular, neurological, reproductive, and developmental disorders associated with increased HSPP expression or activity, it is desirable to decrease the expression or activity of HSPP. In the treatment of the above conditions associated with decreased HSPP expression or activity, it is desirable to increase the expression or activity of HSPP.

[0140] Therefore, in one embodiment, HSPP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HSPP. Examples of such disorders include, but are not limited to, cell proliferative disorders such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; inflammatory disorders, such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyenodocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; cardiovascular disorders including disorders of the blood vessels such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, and vascular tumors; disorders of the heart such as congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, and congenital heart disease; and disorders of the lungs such as congenital lung anomalies, atelectasis, pulmonary congestion and edema, pulmonary embolism, pulmonary hemorrhage, pulmonary infarction, pulmonary hypertension, vascular sclerosis, obstructive pulmonary disease, restrictive pulmonary disease, chronic obstructive pulmonary disease, emphysema, chronic bronchitis, bronchial asthma, bronchiectasis, bacterial pneumonia, viral and mycoplasmal pneumonia, lung abscess, pulmonary tuberculosis, diffuse interstitial diseases, pneumoconioses, sarcoidosis, idiopathic pulmonary fibrosis, desquamative interstitial pneumonitis, hypersensitivity pneumonitis, pulmonary eosinophilia bronchiolitis obliterans-organizing pneumonia, diffuse pulmonary hemorrhage syndromes, Goodpasture's syndromes, idiopathic pulmonary hemosiderosis, pulmonary involvement in collagen-vascular disorders, pulmonary alveolar proteinosis, lung tumors, inflammatory and noninflammatory pleural effusions, pneumothorax, and pleural tumors; neurological disorders such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease; prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome; fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis; inherited, metabolic, endocrine, and toxic myopathies; myasthenia gravis, periodic paralysis; mental disorders including mood, anxiety, and schizophrenic disorders; akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, and Tourette's disorder; reproductive disorders such as disorders of prolactin production; infertility, including tubal disease, ovulatory defects, and endometriosis; disruptions of the estrous cycle, disruptions of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, endometrial and ovarian tumors, uterine fibroids, autoimmune disorders, ectopic pregnancies, and teratogenesis; cancer of the breast, fibrocystic breast disease, and galactorrhea; disruptions of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, carcinoma of the male breast, and gynecomastia; and developmental disorders, such as renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss.

[0141] In another embodiment, a vector capable of expressing HSPP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HSPP including, but not limited to, those described above.

[0142] In a further embodiment, a pharmaceutical composition comprising a substantially purified HSPP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HSPP including, but not limited to, those provided above.

[0143] In still another embodiment, an agonist which modulates the activity of HSPP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HSPP including, but not limited to, those listed above.

[0144] In a further embodiment, an antagonist of HSPP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HSPP. Examples of such disorders include, but are not limited to, those described above. In one aspect, an antibody which specifically binds HSPP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissue which express HSPP.

[0145] In an additional embodiment, a vector expressing the complement of the polynucleotide encoding HSPP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HSPP including, but not limited to, those described above.

[0146] In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

[0147] An antagonist of HSPP may be produced using methods which are generally known in the art. In particular, purified HSPP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind HSPP. Antibodies to HSPP may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are especially preferred for therapeutic use.

[0148] For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with HSPP or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

[0149] It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to HSPP have an amino acid sequence consisting of at least about 5 amino acids, and, more preferably, of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of HSPP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

[0150] Monoclonal antibodies to HSPP may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256: 495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81: 31-42; Cote, R. J. et al. (1983) Proc. Natl. Acad. Sci. 80: 2026-2030; and Cole, S. P. et al. (1984) Mol. Cell Biol. 62: 109-120.)

[0151] In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S. L. et al. (1984) Proc. Natl. Acad. Sci. 81: 6851-6855; Neuberger, M. S. et al. (1984) Nature 312: 604-608; and Takeda, S. et al. (1985) Nature 314: 452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce HSPP-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton D. R. (1991) Proc. Natl. Acad. Sci. 88: 10134-10137.)

[0152] Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. 86: 3833-3837; Winter, G. et al. (1991) Nature 349: 293-299.)

[0153] Antibody fragments which contain specific binding sites for HSPP may also be generated. For example, such fragments include, but are not limited to, F(ab')2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W. D. et al. (1989) Science 246: 1275-1281.)

[0154] Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between HSPP and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering HSPP epitopes is preferred, but a competitive binding assay may also be employed (Pound, supra).

[0155] Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for HSPP. Affinity is expressed as an association constant, K.sub.a, which is defined as the molar concentration of HSPP-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K.sub.a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple HSPP epitopes, represents the average affinity, or avidity, of the antibodies for HSPP. The K.sub.a determined for a preparation of monoclonal antibodies, which are monospecific for a particular HSPP epitope, represents a true measure of affinity. High-affinity antibody preparations with K.sub.a ranging from about 10.sup.9 to 10.sup.12 L/mole are preferred for use in immunoassays in which the HSPP-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K.sub.a ranging from about 10.sup.6 to 10.sup.7 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of HSPP, preferably in active form, from the antibody (Catty, D. (1988) Antibodies. Volume I: A Practical Approach, IRL Press, Washington, D.C.; Liddell, J. E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York N.Y.).

[0156] The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is preferred for use in procedures requiring precipitation of HSPP-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)

[0157] In another embodiment of the invention, the polynucleotides encoding HSPP, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding HSPP may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding HSPP. Thus, complementary molecules or fragments may be used to modulate HSPP activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding HSPP.

[0158] Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding HSPP. (See, e.g., Sambrook, supra; Ausubel, 1995, supra.)

[0159] Genes encoding HSPP can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide, or fragment thereof, encoding HSPP. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector, and may last even longer if appropriate replication elements are part of the vector system.

[0160] As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding HSPP. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J. E. et al. (1994) in Huber, B. E. and B. I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco N.Y., pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

[0161] Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding HSPP.

[0162] Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

[0163] Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding HSPP. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

[0164] RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

[0165] Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C. K. et al. (1997) Nature Biotechnology 15: 462-466.)

[0166] Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

[0167] An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of HSPP, antibodies to HSPP, and mimetics, agonists, antagonists, or inhibitors of HSPP. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.

[0168] The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

[0169] In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton Pa.).

[0170] Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

[0171] Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.

[0172] Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

[0173] Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

[0174] Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

[0175] For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

[0176] The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

[0177] The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acid. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

[0178] After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of HSPP, such labeling would include amount, frequency, and method of administration.

[0179] Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

[0180] For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

[0181] A therapeutically effective dose refers to that amount of active ingredient, for example HSPP or fragments thereof, antibodies of HSPP, and agonists, antagonists or inhibitors of HSPP, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED.sub.50 (the dose therapeutically effective in 50% of the population) or LD.sub.50 (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the LD.sub.50/ED.sub.50 ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED.sub.50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

[0182] The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

[0183] Normal dosage amounts may vary from about 0.1 .mu.g to 100,000 .mu.g, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

[0184] Diagnostics

[0185] In another embodiment, antibodies which specifically bind HSPP may be used for the diagnosis of disorders characterized by expression of HSPP, or in assays to monitor patients being treated with HSPP or agonists, antagonists, or inhibitors of HSPP. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for HSPP include methods which utilize the antibody and a label to detect HSPP in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

[0186] A variety of protocols for measuring HSPP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of HSPP expression. Normal or standard values for HSPP expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to HSPP under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, preferably by photometric means. Quantities of HSPP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

[0187] In another embodiment of the invention, the polynucleotides encoding HSPP may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression of HSPP may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of HSPP, and to monitor regulation of HSPP levels during therapeutic intervention.

[0188] In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding HSPP or closely related molecules may be used to identify nucleic acid sequences which encode HSPP. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification (maximal, high, intermediate, or low), will determine whether the probe identifies only naturally occurring sequences encoding HSPP, allelic variants, or related sequences.

[0189] Probes may also be used for the detection of related sequences, and should preferably have at least 50% sequence identity to any of the HSPP encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:135-268 or from genomic sequences including promoters, enhancers, and introns of the HSPP gene.

[0190] Means for producing specific hybridization probes for DNAs encoding HSPP include the cloning of polynucleotide sequences encoding HSPP or HSPP derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as .sup.32P or .sup.35S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

[0191] Polynucleotide sequences encoding HSPP may be used for the diagnosis of disorders associated with expression of HSPP. Examples of such disorders include, but are not limited to, cell proliferative disorders such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; inflammatory disorders, such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyenodocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; cardiovascular disorders including disorders of the blood vessels such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, and vascular tumors; disorders of the heart such as congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, and congenital heart disease; and disorders of the lungs such as congenital lung anomalies, atelectasis, pulmonary congestion and edema, pulmonary embolism, pulmonary hemorrhage, pulmonary infarction, pulmonary hypertension, vascular sclerosis, obstructive pulmonary disease, restrictive pulmonary disease, chronic obstructive pulmonary disease, emphysema, chronic bronchitis, bronchial asthma, bronchiectasis, bacterial pneumonia, viral and mycoplasmal pneumonia, lung abscess, pulmonary tuberculosis, diffuse interstitial diseases, pneumoconioses, sarcoidosis, idiopathic pulmonary fibrosis, desquamative interstitial pneumonitis, hypersensitivity pneumonitis, pulmonary eosinophilia bronchiolitis obliterans-organizing pneumonia, diffuse pulmonary hemorrhage syndromes, Goodpasture's syndromes, idiopathic pulmonary hemosiderosis, pulmonary involvement in collagen-vascular disorders, pulmonary alveolar proteinosis, lung tumors, inflammatory and noninflammatory pleural effusions, pneumothorax, and pleural tumors; neurological disorders such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease; prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome; fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis; inherited, metabolic, endocrine, and toxic myopathies; myasthenia gravis, periodic paralysis; mental disorders including mood, anxiety, and schizophrenic disorders; akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid. psychoses, postherpetic neuralgia, and Tourette's disorder; reproductive disorders such as disorders of prolactin production; infertility, including tubal disease, ovulatory defects, and endometriosis; disruptions of the estrous cycle, disruptions of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, endometrial and ovarian tumors, uterine fibroids, autoimmune disorders, ectopic pregnancies, and teratogenesis; cancer of the breast, fibrocystic breast disease, and galactorrhea; disruptions of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, carcinoma of the male breast, and gynecomastia; and developmental disorders, such as renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss. The polynucleotide sequences encoding HSPP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered HSPP expression. Such qualitative or quantitative methods are well known in the art.

[0192] In a particular aspect, the nucleotide sequences encoding HSPP may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding HSPP may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantitated and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding HSPP in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

[0193] In order to provide a basis for the diagnosis of a disorder associated with expression of HSPP, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding HSPP, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

[0194] Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

[0195] With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

[0196] Additional diagnostic uses for oligonucleotides designed from the sequences encoding HSPP may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding HSPP, or a fragment of a polynucleotide complementary to the polynucleotide encoding HSPP, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantitation of closely related DNA or RNA sequences.

[0197] Methods which may also be used to quantitate the expression of HSPP include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P. C. et al. (1993) J. Immunol. Methods 159: 235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212: 229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in an ELISA format where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

[0198] In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.

[0199] Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T. M. et al. (1995) U.S. Pat. No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. 93: 10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R. A. et al. (1997) Proc. Natl. Acad. Sci. 94: 2150-2155; and Heller, M. J. et al. (1997) U.S. Pat. No. 5,605,662.)

[0200] In another embodiment of the invention, nucleic acid sequences encoding HSPP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J. J. et al. (1997) Nat Genet. 15: 345-355; Price, C. M. (1993) Blood Rev. 7: 127-134; and Trask, B. J. (1991) Trends Genet. 7: 149-154.)

[0201] Fluorescent in situ hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) site. Correlation between the location of the gene encoding HSPP on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.

[0202] In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R. A. et al. (1988) Nature 336: 577-580.) The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

[0203] In another embodiment of the invention, HSPP, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between HSPP and the agent being tested may be measured.

[0204] Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with HSPP, or fragments thereof, and washed. Bound HSPP is then detected by methods well known in the art. Purified HSPP can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

[0205] In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding HSPP specifically compete with a test compound for binding HSPP. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with HSPP.

[0206] In additional embodiments, the nucleotide sequences which encode HSPP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

[0207] Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

[0208] The disclosures of all applications, patents, and publications, mentioned above and below, in particular U.S. Ser. No. 60/090,762, U.S. Ser. No. 60/094,983, U.S. Ser. No. 60/102,686, and U.S. Ser. No. 60/112,129, are hereby expressly incorporated by reference.

EXAMPLES

[0209] I. Construction of cDNA Libraries

[0210] RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

[0211] Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Valencia Calif.), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin Tex.).

[0212] In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6). Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), or pINCY (Incyte Corporation, Palo Alto Calif.). Recombinant plasmids were transformed into competent E. coli cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5.alpha., DH10B, or ElectroMAX DH10B from Life Technologies.

[0213] II. Isolation of cDNA Clones

[0214] Plasmids were recovered from host cells by in vivo excision, using the UNIZAP vector system (Stratagene) or cell lysis. Plasmids were purified using at least one of the following: a MAGIC or WIZARD minipreps DNA purification system (Promega); an AGTC miniprep purification kit (Edge Biosystems, Gaithersburg Md.); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the REAL Prep 96 plasmid kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4.degree. C.

[0215] Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V. B. (1994) Anal. Biochem. 216: 1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene Oreg.) and a Fluoroskan II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

[0216] III. Sequencing and Analysis

[0217] The cDNAs were prepared for sequencing using the ABI CATALYST 800 (Perkin-Elmer) or the HYDRA microdispenser (Robbins Scientific) or MICROLAB 2200 (Hamilton) systems in combination with the PTC-200 thermal cyclers (MJ Research). The cDNAs were sequenced using the ABI PRISM 373 or 377 sequencing systems (Perkin-Elmer) and standard ABI protocols, base calling software, and kits. In one alternative, cDNAs were sequenced using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics). In another alternative, the cDNAs were amplified and sequenced using the ABI PRISM BIGDYE terminator cycle sequencing ready reaction kit (Perkin-Elmer). In yet another alternative, cDNAs were sequenced using solutions and dyes from Amersham Pharmacia Biotech. Reading frames for the ESTs were determined using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example V.

[0218] The polynucleotide sequences derived from cDNA, extension, and shotgun sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the software programs, descriptions, references, and threshold parameters used. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides a brief description thereof, the third column presents the references which are incorporated by reference herein, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the probability the greater the homology). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco Calif.) and LASERGENE software (DNASTAR).

[0219] The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programing, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS to acquire annotation, using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, Prosite, and Hidden Markov Model (HMM)-based protein family databases such as PFAM. HMM is a probalistic approach which analyzes consensus primary structures of gene families. (See, e.g., Eddy, S. R. (1996) Cur. Opin. Str. Biol. 6: 361-365.)

[0220] The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:135-268. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above.

[0221] IV. Northern Analysis

[0222] Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel, 1995, supra, ch. 4 and 16.)

[0223] Analogous computer techniques applying BLAST were used to search for identical or related molecules in nucleotide databases such as GenBank or LIFESEQ database (Incyte Corporation). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as: 1 % sequence identity .times. % maximum BLAST score 100

[0224] The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.

[0225] The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding HSPP occurred. Analysis involved the categorization of cDNA libraries by organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease/condition categories included cancer, inflammation/trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories. Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table 3.

[0226] V. Extension of HSPP Encoding Polynucleotides

[0227] Full length nucleic acid sequences of SEQ ID NOs:135-229 were produced by extension of the component fragments described in Table 1, column 5, using oligonucleotide primers based on these fragments. For each nucleic acid sequence, one primer was synthesized to initiate extension of an antisense polynucleotide, and the other was synthesized to initiate extension of a sense polynucleotide. Primers were used to facilitate the extension of the known sequence "outward" generating amplicons containing new unknown nucleotide sequence for the region of interest. The initial primers were designed from the cDNA using OLIGO 4.06 (National Biosciences, Plymouth, Minn.), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68.degree. C. to about 72.degree. C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

[0228] Selected human cDNA libraries (GIBCO BRL) were used to extend the sequence. If more than one extension is necessary or desired, additional sets of primers are designed to further extend the known region.

[0229] High fidelity amplification was obtained by following the instructions for the XL-PCR kit (The Perkin-Elmer Corp., Norwalk, Conn.) and thoroughly mixing the enzyme and reaction mix. PCR was performed using the PTC-200 thermal cycler (MJ Research, Inc., Watertown, Mass.), beginning with 40 pmol of each primer and the recommended concentrations of all other components of the kit, with the following parameters:

1 Step 1 94.degree. C. for 1 min (initial denaturation) Step 2 65.degree. C. for 1 min Step 3 68.degree. C. for 6 min Step 4 94.degree. C. for 15 sec Step 5 65.degree. C. for 1 min Step 6 68.degree. C. for 7 min Step 7 Repeat steps 4 through 6 for an additional 15 cycles Step 8 94.degree. C. for 15 sec Step 9 65.degree. C. for 1 min Step 10 68.degree. C. for 7:15 min Step 11 Repeat steps 8 through 10 for an additional 12 cycles Step 12 72.degree. C. for 8 min Step 13 4.degree. C. (and holding)

[0230] A 5 .mu.l to 10 .mu.l aliquot of the reaction mixture was analyzed by electrophoresis on a low concentration (about 0.6% to 0.8%) agarose mini-gel to determine which reactions were successful in extending the sequence. Bands thought to contain the largest products were excised from the gel, purified using QIAQUICK (QIAGEN Inc.), and trimmed of overhangs using Klenow enzyme to facilitate religation and cloning.

[0231] After ethanol precipitation, the products were redissolved in 13 .mu.l of ligation buffer, 1 .mu.l T4-DNA ligase (15 units) and 1 .mu.l T4 polynucleotide kinase were added, and the mixture was incubated at room temperature for 2 to 3 hours, or overnight at 16.degree. C. Competent E. coli cells (in 40 .mu.l of appropriate media) were transformed with 3 .mu.l of ligation mixture and cultured in 80 .mu.l of SOC medium. (See, e.g., Sambrook, supra, Appendix A, p. 2.) After incubation for one hour at 37.degree. C., the E. coli mixture was plated on Luria Bertani (LB) agar (See, e.g., Sambrook, supra, Appendix A, p. 1) containing carbenicillin (2.times. carb). The following day, several colonies were randomly picked from each plate and cultured in 150 .mu.l of liquid LB/2.times. carb medium placed in an individual well of an appropriate commercially-available sterile 96-well microtiter plate. The following day, 5 .mu.l of each overnight culture was transferred into a non-sterile 96-well plate and, after dilution 1:10 with water, 5 .mu.l from each sample was transferred into a PCR array.

[0232] For PCR amplification, 18 .mu.l of concentrated PCR reaction mix (3.3.times.) containing 4 units of rTth DNA polymerase, a vector primer, and one or both of the gene specific primers used for the extension reaction were added to each well. Amplification was performed using the following conditions:

2 Step 1 94.degree. C. for 60 sec Step 2 94.degree. C. for 20 sec Step 3 55.degree. C. for 30 sec Step 4 72.degree. C. for 90 sec Step 5 Repeat steps 2 through 4 for an additional 29 cycles Step 6 72.degree. C. for 180 sec Step 7 4.degree. C. (and holding)

[0233] Aliquots of the PCR reactions were run on agarose gels together with molecular weight markers. The sizes of the PCR products were compared to the original partial cDNAs, and appropriate clones were selected, ligated into plasmid, and sequenced.

[0234] The full length nucleic acid sequences of SEQ ID NO:230-268 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68.degree. C. to about 72.degree. C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

[0235] Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

[0236] High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg.sup.2+, (NH.sub.4).sub.2SO.sub.4, and .beta.-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94.degree. C., 3 min; Step 2: 94.degree. C., 15 sec; Step 3: 60.degree. C., 1 min; Step 4: 68.degree. C., 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68.degree. C., 5 min; Step 7: storage at 4.degree. C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94.degree. C., 3 min; Step 2: 94.degree. C., 15 sec; Step 3: 57.degree. C., 1 min; Step 4: 68.degree. C., 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68.degree. C., 5 min; Step 7: storage at 4.degree. C.

[0237] The concentration of DNA in each well was determined by dispensing 100 .mu.l PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene Oreg.) dissolved in 1.times.TE and 0.5 .mu.l of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton Mass.), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 .mu.l to 10 .mu.l aliquot of the reaction mixture was analyzed by electrophoresis on a 1% agarose mini-gel to determine which reactions were successful in extending the sequence.

[0238] The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison Wis.), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly Mass.) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, individual colonies were picked and cultured overnight at 37.degree. C. in 384-well plates in LB/2.times. carb liquid media.

[0239] The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94.degree. C., 3 min; Step 2: 94.degree. C., 15 sec; Step 3: 60.degree. C., 1 min; Step 4: 72.degree. C., 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72.degree. C., 5 min; Step 7: storage at 4.degree. C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethysulphoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).

[0240] In like manner, the nucleotide sequences of SEQ ID NO:135-268 are used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.

[0241] VI. Labeling and Use of Individual Hybridization Probes

[0242] Hybridization probes derived from SEQ ID NO:135-268 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 .mu.Ci of [.gamma.-.sup.32P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston Mass.). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10.sup.7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bg1 II, Eco RI, Pst I, Xba1, or Pvu II (DuPont NEN).

[0243] The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham N.H.). Hybridization is carried out for 16 hours at 40.degree. C. To remove nonspecific signals, blots are sequentially washed at room temperature under increasingly stringent conditions up to 0.1.times. saline sodium citrate and 0.5% sodium dodecyl sulfate. After XOMAT-AR film (Eastman Kodak, Rochester N.Y.) is exposed to the blots to film for several hours, hybridization patterns are compared visually.

[0244] VII. Microarrays

[0245] A chemical coupling procedure and an ink jet device can be used to synthesize array elements on the surface of a substrate. (See, e.g., Baldeschweiler, supra.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the scanned images.

[0246] Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena, M. et al. (1995) Science 270: 467-470; Shalon, D. et al. (1996) Genome Res. 6: 639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.

[0247] VIII. Complementary Polynucleotides

[0248] Sequences complementary to the HSPP-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring HSPP. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of HSPP. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the HSPP-encoding transcript.

[0249] IX. Expression of HSPP

[0250] Expression and purification of HSPP is achieved using bacterial or virus-based expression systems. For expression of HSPP in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express HSPP upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of HSPP in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding HSPP by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E. K. et al. (1994) Proc. Natl. Acad. Sci. USA 91: 3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7: 1937-1945.)

[0251] In most expression systems, HSPP is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from HSPP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch 10 and 16). Purified HSPP obtained by these methods can be used directly in the following activity assay.

[0252] X. Demonstration of HSPP Activity

[0253] HSPP-68

[0254] HSPP-68 activity is measured by determining the potassium current using voltage clamp analysis on single Xenopus laevis oocytes injected with HSPP-68 cRNA. HSPP-68 cRNA is synthesized in vitro from linearized HSPP-68 encoding plasmids using the T7 RNA polymerase and injected into oocytes. Injected oocytes are used two to four days after injection. In a 0.3 ml perfusion chamber, a single oocyte is impaled with two standard microelectrodes (1-2.5 M.OMEGA.) filled with 3 M KCl. The oocyte is maintained under voltage clamp by using a Dagan TEV 200 amplifier, in buffer containing 96 mM NaCl, 2 mM KCl, 1.8 mM CaCl.sub.2, 2 mM MgCl.sub.2, 5 mM HEPES, pH 7.4 with NaOH. Stimulation of the preparation, data acquisition, and analysis is performed using a computer. All experiments are performed at room temperature (21-22.degree. C.). Following a depolarizing pulse, the characteristics of the resulting potassium current are measured via the recording electrode. The amount of potassium current that flows in response to a unit depolarization is proportional to the activity of HSPP-68 in the cell. (Duprat, F. et al. (1997) EMBO J. 16: 5464-5471.)

[0255] HSPP-92

[0256] HSPP-92 protein phosphatase activity is measured by the hydrolysis of P-nitrophenyl phosphate (PNPP). HSPP-92 is incubated together with PNPP in HEPES buffer pH 7.5, in the presence of 0.1% b-mercaptoethanol at 37.degree. C. for 60 min. The reaction is stopped by the addition of 6 ml of 10 N NaOH and the increase in light absorbance at 410 nm resulting from the hydrolysis of PNPP is measured using a spectrophotometer. The increase in light absorbance is proportional to the activity of PP in the assay. (Diamond R. H. et al (1994) Mol Cell Biol 14: 3752-62.)

[0257] Alternatively, HSPP, or biologically active fragments thereof, are labeled with .sup.125I Bolton-Hunter reagent. (See, e.g., Bolton et al. (1973) Biochem. J. 133: 529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled HSPP, washed, and any wells with labeled HSPP complex are assayed. Data obtained using different concentrations of HSPP are used to calculate values for the number, affinity, and association of HSPP with the candidate molecules.

[0258] Alternatively, an assay for HSPP activity measures the expression of HSPP on the cell surface. cDNA encoding HSPP is subcloned into an appropriate mammalian expression vector suitable for high levels of cDNA expression. The resulting construct is transfected into a nonhuman cell line such as NIH3T3. Cell surface proteins are labeled with biotin using methods known in the art. Immunoprecipitations are performed using HSPP-specific antibodies, and immunoprecipitated samples are analyzed using SDS-PAGE and immunoblotting techniques. The ratio of labeled immunoprecipitant to unlabeled immunoprecipitant is proportional to the amount of HSPP expressed on the cell surface.

[0259] Alternatively, an assay for HSPP activity measures the amount of HSPP in secretory, membrane-bound organelles. Transfected cells as described above are harvested and lysed. The lysate is fractionated using methods known to those of skill in the art, for example, sucrose gradient ultracentrifugation. Such methods allow the isolation of subcellular components such as the Golgi apparatus, ER, small membrane-bound vesicles, and other secretory organelles. Immunoprecipitations from fractionated and total cell lysates are performed using HSPP-specific antibodies, and immunoprecipitated samples are analyzed using SDS-PAGE and immunoblotting techniques. The concentration of HSPP in secretory organelles relative to HSPP in total cell lysate is proportional to the amount of HSPP in transit through the secretory pathway.

[0260] XI. Functional Assays

[0261] HSPP function is assessed by expressing the sequences encoding HSPP at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT (Life Technologies) and pCR3.1 (Invitrogen, Carlsbad Calif.), both of which contain the cytomegalovirus promoter. 5-10 .mu.g of recombinant vector are transiently transfected into a human cell line, preferably of endothelial or hematopoietic origin, using either liposome formulations or electroporation. 1-2 .mu.g of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP, and to evaluate properties, for example, their apoptotic state. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M. G. (1994) Flow Cytometry, Oxford, New York N.Y.

[0262] The influence of HSPP on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding HSPP and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success N.Y.). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding HSPP and other genes of interest can be analyzed by northern analysis or microarray techniques.

[0263] XII. Production of HSPP Specific Antibodies

[0264] HSPP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M. G. (1990) Methods Enzymol. 182: 488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

[0265] Alternatively, the HSPP amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)

[0266] Typically, oligopeptides 15 residues in length are synthesized using an ABI 431A Peptide Synthesizer (Perkin-Elmer) using fmoc-chemistry and coupled to KLH (Sigma-Aldrich, St. Louis Mo.) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide activity by, for example, binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

[0267] XIII. Purification of Naturally Occurring HSPP Using Specific Antibodies

[0268] Naturally occurring or recombinant HSPP is substantially purified by immunoaffinity chromatography using antibodies specific for HSPP. An immunoaffinity column is constructed by covalently coupling anti-HSPP antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

[0269] Media containing HSPP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of HSPP (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/HSPP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and HSPP is collected.

[0270] XIV. Identification of Molecules Which Interact with HSPP

[0271] HSPP, or biologically active fragments thereof, are labeled with .sup.125I Bolton-Hunter reagent. (See, e.g., Bolton et al. (1973) Biochem. J. 133: 529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled HSPP, washed, and any wells with labeled HSPP complex are assayed. Data obtained using different concentrations of HSPP are used to calculate values for the number, affinity, and association of HSPP with the candidate molecules.

[0272] Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

3TABLE 1 Protein Nucleotide SEQ ID NO: SEQ ID NO: Clone ID Library Fragments 1 135 443531 MPHGNOT03 443531H1 (MPHGNOT03), 1406807F6 (LATRTUT02), 443531T6 (MPHGNOT03), SBBA00451F1, SBBA00676F1 2 136 632860 NEUTGMT01 632860H1 (NEUTGMT01), 784715R3 (PROSNOT05), 509590H1 (MPHGNOT03) 3 137 670010 CRBLNOT01 670010H1 (CRBLNOT01), 669971R1 (CRBLNOT01), 1553045F1 (BLADTUT04) 4 138 726498 SYNOOAT01 726498H1 (SYNOOAT01), 726498R6 (SYNOOAT01), 866599R3 (BRAITUT03) 5 139 795064 OVARNOT03 795064H1 (OVARNOT03), 4339458H1 (BRAUNOT02), 937605R3 (CERVNOT01), 2381151F6 (ISLTNOT01), 1466346F6 (PANCTUT02) 6 140 924925 BRAINOT04 924925H1 (BRAINOT04), 3268330H1 (BRAINOT20), 759120R3 (BRAITUT02) 7 141 962390 BRSTTUT03 962390H1 (BRSTTUT03), 1907958F6 (CONNTUT01), 023569F1 (ADENINB01), 167282F1 (LIVRNOT01), 1309211F1 (COLNFET02), SAUA00696F1, SAUA02860F1 8 142 1259405 MENITUT03 1259405H1 (MENITUT03), 2472425H1 (THP1NOT03), 774303R1 (COLNNOT05), 1520779F1 (BLADTUT04), 1693833F6 (COLNNOT23), 1831858T6.comp (THP1AZT01), 1527737T6.comp (UCMCL5T01) 9 143 1297384 BRSTNOT07 1297384H1 (BRSTNOT07), 1269310F6 (BRAINOT09), 1457367F1 (COLNFET02), 415587R1 (BRSTNOT01), SANA02967F1 10 144 1299627 BRSTNOT07 1299627H1 (BRSTNOT07), 1359140F6 (LUNGNOT09), 1349224F1 (LATRTUT02), SBAA01431F1, SBAA02909F1, SBAA01156F1 11 145 1306026 PLACNOT02 1306026H1 (PLACNOT02), 1464088R6 (PANCNOT04), SBAA02496F1, SBAA04305F1 12 146 1316219 BLADTUT02 1316219H1 (BLADTUT02), 2458603F6 (ENDANOT01), 2504756T6 (CONUTUT01) 13 147 1329031 PANCNOT07 1329031H1 (PANCNOT07), 1329031T6 (PANCNOT07), 1329031F6 (PANCNOT07) 14 148 1483050 CORPNOT02 1483050H1 (CORPNOT02), 855049H1 (NGANNOT01), 077017F1 (SYNORAB01), 1483050F6 (CORPNOT02), 1480024T6 (CORPNOT02), 1483050T6 (CORPNOT02), 759486R1 (BRAITUT02) 15 149 1514160 PANCTUT01 1514160H1 (PANCTUT01), 1866765T7 (SKINBIT01), 782676R1 (MYOMNOT01), 008055X4 (HMC1NOT01), 008055X5 (HMC1NOT01), 1866765F6 (SKINBIT01), SAOA03127F1 16 150 1603403 LUNGNOT15 1603403H1 (LUNGNOT15), 372910F1 (LUNGNOT02), 733299R7 (LUNGNOT03) 17 151 1652303 PROSTUT08 1652303H1 (PROSTUT08), 1671806H1 (BLADNOT05), 1341743T1 (COLNTUT03), 3803812H1 (BLADTUT03), 1878546F6 (LEUKNOT03), 1428640F1 (SINTBST01), 2058609R6 (OVARNOT03), 1331621F1 (PANCNOT07), 1306331T1 (PLACNOT02) 18 152 1693358 COLNNOT23 1693358H1 (COLNNOT23), 2498265H1 (ADRETUT05), 1867125F6 (SKINBIT01), 1693358T6 (COLNNOT23), 2245848R6 (HIPONON02) 19 153 1707711 DUODNOT02 1707711H1 (DUODNOT02), 1484609T1 (CORPNOT02), 1707711F6 (DUODNOT02), 1267959F1 (BRAINOT09), 1484609F1 (CORPNOT02), SAJA00930F1, SAJA01300R1, SAJA00999R1 20 154 1738735 COLNNOT22 1738735H1 (COLNNOT22), SAJA00944R1, SAJA00137F1, SAJA03629F1 21 155 1749147 STOMTUT02 1749147H1 (STOMTUT02), 1749147F6 (STOMTUT02), 1749147T6 (STOMTUT02) 22 156 1817722 PROSNOT20 1817722H1 (PROSNOT20), 2011085H1 (TESTNOT03) 23 157 1831290 THP1AZT01 1831290H1 (THP1AZT01), 3473958H1 (LUNGNOT27), 1972268F6 (UCMCL5T01), 1301277F1 (BRSTNOT07), 1521574F1 (BLADTUT04), 1561690T6 (SPLNNOT04), 891461R1 (STOMTUT01) 24 158 1831477 THP1AZT01 1831477H1 (THP1AZT01), 1582867H1 (DUODNOT01), 1336769T1 (COLNNOT13), 1933092H1 (COLNNOT16), 1519909F1 (BLADTUT04), 1220946H1 (NEUTGMT01), 809556T1 (LUNGNOT04), 1217559T1 (NEUTGMT01), 1309225F1 (COLNFET02) 25 159 1841607 COLNNOT07 1841607H1 (COLNNOT07), SBHA03588F1 26 160 1852391 LUNGFET03 1852391H1 (LUNGFET03), 734140H1 (TONSNOT01), 1852391F6 (LUNGFET03) 27 161 1854555 HNT3AZT01 1854555H1 (HNT3AZT01), 2511711H1 (CONUTUT01), 782453R1 (MYOMNOT01), 1854555F6 (HNT3AZT01), 1840675T6 (COLNNOT07), 2109736H1 (BRAITUT03) 28 162 1855755 PROSNOT18 1855755H1 (PROSNOT18), 3040236H1 (BRSTNOT16), 1283207F1 (COLNNOT16), 833763T1 (PROSNOT07), 1920926R6 (BRSTTUT01) 29 163 1861434 PROSNOT19 1861434H1 (PROSNOT19), 980291R1 (TONGTUT01), 1861434T6 (PROSNOT19), SARA01525F1, SARA02548F1 30 164 1872334 LEUKNOT02 1872334H1 (LEUKNOT02), 1872334F6 (LEUKNOT02), SBGA03684F1 31 165 1877230 LEUKNOT03 1877230H1 (LEUKNOT03), 2519841H1 (BRAITUT21), 1877230T6 (LEUKNOT03), 1254693F1 (LUNGFET03), 077020R1 (SYNORAB01), 1232336F1 (LUNGFET03), 1004952R6 (BRSTNOT03), SARA01879F1, SARA02654F1 32 166 1877885 LEUKNOT03 1877885H1 (LEUKNOT03), 508020F1 (TMLR3DT01), 2751126R6 (THP1AZS08), SARA02571F1 33 167 1889269 BLADTUT07 1889269H1 (BLADTUT07), 1915551H1 (PROSTUT04), 629493X12 (KIDNNOT05), 1441289F1 (THYRNOT03), 1215274X34F1 (BRSTTUT01), 1818447F6 (PROSNOT20), 1208463R1 (BRSTNOT02) 34 168 1890243 BLADTUT07 1890243H1 (BLADTUT07), SARA01884F1, SATA00046F1, SARA03294F1, SARA02790F1 35 169 1900433 BLADTUT06 1900433H1 (BLADTUT06), SATA00396F1, SATA02742F1 36 170 1909441 CONNTUT01 1909441H1 (CONNTUT01), 1398811F1 (BRAITUT08), 3039939H1 (BRSTNOT16), 3324740H1 (PTHYNOT03), 1442131F6 (THYRNOT03), 2254056H1 (OVARTUT01), 2199453T6 (SPLNFET02), 1692610F6 (COLNNOT23), 1698531H1 (BLADTUT05) 37 171 1932226 COLNNOT16 1932226H1 (COLNNOT16), 2320569H1 (OVARNOT02), 1932226F6 (COLNNOT16), 2469455T6 (THP1NOT03), 2469455F6 (THP1NOT03), 1907140F6 (OVARNOT07), SATA02592F1 38 172 1932647 COLNNOT16 1932647H1 (COLNNOT16), 1492745T1 (PROSNON01), 1492745H1 (PROSNON01), SASA02355F1, SASA00117F1, SASA00192F1 39 173 2124245 BRSTNOT07 2124245H1 (BRSTNOT07), 1235393F1 (LUNGFET03), 1402264F6 (LATRTUT02), 1303990F1 (PLACNOT02), 1402264T6 (LATRTUT02) 40 174 2132626 OVARNOT03 2132626H1 (OVARNOT03), 1723432T6 (BLADNOT06), 2132626R6 (OVARNOT03), 1736723T6 (COLNNOT22), 1504738F1 (BRAITUT07) 41 175 2280639 PROSNON01 2280639H1 (PROSNON01), 1435330H1 (PANCNOT08), 1377560F6 (LUNGNOT10) 42 176 2292356 BRAINON01 2292356H1 (BRAINON01), 4086827H1 (LIVRNOT06), 1754442F6 (LIVRTUT01), 3571126H1 (HEAPNOT01), 1601305F6 (BLADNOT03) 43 177 2349310 COLSUCT01 2349310H1 (COLSUCT01), 2349310T6 (COLSUCT01) 44 178 2373227 ADRENOT07 2373227H1 (ADRENOT07), 3316444H1 (PROSBPT03), 302685R6 (TESTNOT04), SASA02181F1, SASA01923F1, SASA03516F1 45 179 2457682 ENDANOT01 2457682H1 (ENDANOT01), 2457682F6 (ENDANOT01) 46 180 2480426 SMCANOT01 2480426H1 (SMCANOT01), 2480426F6 (SMCANOT01) 47 181 2503743 CONUTUT01 2503743H1 (CONUTUT01), 1853909H1 (HNT3AZT01), 1517619F1 (PANCTUT01), 1467896F6 (PANCTUT02), 490031F1 (HNT2AGT01), 1208654R1 (BRSTNOT02), 880544R1 (THYRNOT02) 48 182 2537684 BONRTUT01 2537684H1 (BONRTUT01), 2005493H1 (TESTNOT03), 730969H1 (LUNGNOT03), 2537601F6 (BONRTUT01), 916487H1 (BRSTNOT04), 996135R1 (KIDNTUT01), 1920738R6 (BRSTTUT01), 1957710F6 (CONNNOT01) 49 183 2593853 OVARTUT02 2593853H1 (OVARTUT02), 807497H1 (STOMNOT02), 914020R6 (STOMNOT02), 889992R1 (STOMTUT01) 50 184 2622354 KERANOT02 2622354H1 (KERANOT02), 2623992H1 (KERANOT02), 1556510F6 (BLADTUT04) 51 185 2641377 LUNGTUT08 2641377H1 (LUNGTUT08), 4341415H2 (BRAUNOT02), SBCA07049F3 52 186 2674857 KIDNNOT19 2674857H1 (KIDNNOT19), 1872373H1 (LEUKNOT02), 470512R6 (MMLR1DT01), 1728547H1 (PROSNOT14), 3013651F6 (MUSCNOT07), SBCA01366F1, SBCA00694F1 53 187 2758485 THP1AZS08 2758485H1 (THP1AZS08), 3097533H1 (CERVNOT03), 1578959F6 (DUODNOT01) 54 188 2763296 BRSTNOT12 2763296H1 (BRSTNOT12), 3486025F6 (KIDNNOT31), SBDA07002F3 55 189 2779436 OVARTUT03 2779436H1 (OVARTUT03), 2779436F6 (OVARTUT03), SBDA07009F3 56 190 2808528 BLADTUT08 2808528H1 (BLADTUT08), 2611513F6 (THYMNOT04), SBDA07021T3 57 191 2809230 BLADTUT08 2809230H1 (BLADTUT08), 2213849H1 (SINTFET03), 711706R6 (SYNORAT04), 958323R1 (KIDNNOT05), 030732F1 (THP1NOB01) 58 192 2816821 BRSTNOT14 2816821H1 (BRSTNOT14), 3746964H1 (THYMNOT08), 2816821F6 (BRSTNOT14), 948722T6 (PANCNOT05), 807947R6 (STOMNOT02) 59 193 2817268 BRSTNOT14 2817268H1 (BRSTNOT14), 3591308H1 (293TF5T01), 419522R1 (BRSTNOT01), 2073028F6 (ISLTNOT01), 1308781F6 (COLNFET02) 60 194 2923165 SININOT04 2923165H1 (SININOT04), 2011630H1 (TESTNOT03), 1457250F1 (COLNFET02), 754668R1 (BRAITUT02), 1406510F6 (LATRTUT02) 61 195 2949822 KIDNFET01 2949822H1 (KIDNFET01), SBDA07078F3 62 196 2992192 KIDNFET02 2992192H1 (KIDNFET02), 2534324H2 (BRAINOT18), 2815255T6 (OVARNOT10), 1551107T6 (PROSNOT06), 1551107R6 (PROSNOT06) 63 197 2992458 KIDNFET02 2992458H1 (KIDNFET02), 2618951H1 (GBLANOT01), 1479252F1 (CORPNOT02), 1879054H1 (LEUKNOT03), 1879054F6 (LEUKNOT03), 2215240H1 (SINTFET03), 1535968T1 (SPLNNOT04) 64 198 3044710 HEAANOT01 3044710H1 (HEAANOT01), 3741773H1 (MENTNOT01), 859906X42C1 (BRAITUT03), 1534347F1 (SPLNNOT04), 1421122F1 (KIDNNOT09), 1303865F1 (PLACNOT02), 1704452F6 (DUODNOT02), 1251642F1 (LUNGFET03), 1781694R6 (PGANNON02) 65 199 3120415 LUNGTUT13 3120415H1 (LUNGTUT13), 1360123T1 (LUNGNOT12), 1375015H1 (LUNGNOT10) 66 200 126758 LUNGNOT01 126758H1 (LUNGNOT01), 126758X11 (LUNGNOT01), 811864T1 (LUNGNOT04) 67 201 674760 CRBLNOT01 674760H1 (CRBLNOT01), 3253976H1 (OVARTUN01), SAUA03387F1 68 202 1229438 BRAITUT01 1229438H1 (BRAITUT01), 1230616H1 (BRAITUT01), 1461187R1 (PANCNOT04), 2493039H1 (ADRETUT05), 2891628H1 (LUNGFET04) 69 203 1236935 LUNGFET03 1236935H1 (LUNGFET03), SBAA00983F1, SBAA02057F1, SBAA00170F1 70 204 1359283 LUNGNOT12 1359283H1 (LUNGNOT12), SBAA01213F1, SBAA03934F1 71 205 1450703 PENITUT01 551298F1 (BEPINOT01), 551298R1 (BEPINOT01), 1450703H1 (PENITUT01), 2748715H1 (LUNGTUT11) 72 206 1910668 CONNTUT01 1269346H1 (BRAINOT09), 1380872F1 (BRAITUT08), 1910668F6 (CONNTUT01), 1910668H1 (CONNTUT01), SATA02800F1, SATA03799F1, SARA02035F1 73 207 1955143 CONNNOT01 1955143F6 (CONNNOT01), 1955143H1 (CONNNOT01) 74 208 1961637 BRSTNOT04 867025H1 (BRAITUT03), 1961637H1 (BRSTNOT04), 2809064T6 (BLADTUT08), 2938714H1 (THYMFET02), 2956402H1 (KIDNFET01), 3808735T6 (CONTTUT01) 75 209 1990762 CORPNOT02 1990762H1 (CORPNOT02), 1990762T3 (CORPNOT02), SBGA04911F1, SBGA01201F1, SBGA02205F1 76 210 1994131 CORPNOT02 1994131H1 (CORPNOT02), 2645984F6 (OVARTUT04) 77 211 1997745 BRSTTUT03 1752307F6 (LIVRTUT01), 1853730H1 (HNT3AZT01), 1997745H1 (BRSTTUT03), SAZA00953F1 78 212 2009035 TESTNOT03 2009035H1 (TESTNOT03), 2009035R6 (TESTNOT03) 79 213 2009152 TESTNOT03 2009152H1 (TESTNOT03), 2009152R6 (TESTNOT03), 2783263H1 (BRSTNOT13) 80 214 2061752 OVARNOT03 2061752H1 (OVARNOT03), 2061752T6 (OVARNOT03), 2732805H1 (OVARTUT04), SAZA01310F1, SAZA00830F1 81 215 2061933 OVARNOT03 046580R1 (CORNNOT01), 746061R1 (BRAITUT01), 826996R1 (PROSNOT06), 2061933H1 (OVARNOT03) 82 216 2081422 UTRSNOT08 2081422F6 (UTRSNOT08), 2081422H1 (UTRSNOT08), SBCA04793F1, SBCA05657F1, SBDA00065F1 83 217 2101278 BRAITUT02 2101278H1 (BRAITUT02), SAXA00399F1, SAXA01284F1, SAXA01227F1 84 218 2121353 BRSTNOT07 341437H1 (NEUTFMT01), 687136H1 (UTRSNOT02), 2121353H1 (BRSTNOT07), SASA01311F1 85 219 2241736 PANCTUT02 833263H1 (PROSTUT04), 2241736H1 (PANCTUT02), SAZA01148F1, SASA03299F1, SASA01349F1 86 220 2271935 PROSNON01 2271935H1 (PROSNON01), 2276774H1 (PROSNON01), 2760171T6 (THP1AZS08) 87 221 2295344 BRSTNOT05 2295344H1 (BRSTNOT05), 3288561F6 (BONRFET01), SBGA01801F1 88 222 2303994 BRSTNOT05 905482T1 (COLNNOT08), 1858636F6 (PROSNOT18), 2303994H1 (BRSTNOT05) 89 223 2497805 ADRETUT05 2497805F6 (ADRETUT05), 2497805H1 (ADRETUT05) 90 224 2646362 LUNGTUT11 1754702H1 (LIVRTUT01), 2640776T6 (LUNGTUT08), 2646362H1 (LUNGTUT11), 3356773H1 (PROSTUT16) 91 225 2657146 LUNGTUT09 2657146F6 (LUNGTUT09), 2657146H1 (LUNGTUT09) 92 226 2755786 THP1AZS08 288436R1 (EOSIHET02), 1252824F6 (LUNGFET03), 1305549H1 (PLACNOT02), 1364975R1 (SCORNON02), 2018293H1 (THP1NOT01), 2047320H1 (THP1T7T01), 2184537F6 (SININOT01), 2755786H1 (THP1AZS08), 4111022H1 (PROSBPT07) 93 227 2831245 TLYMNOT03 2831245H1 (TLYMNOT03), SBMA01396F1 94 228 3116250 LUNGTUT13 126263F1 (LUNGNOT01), 2729942H1 (OVARTUT04), 3116250H1 (LUNGTUT13) 95 229 3129630 LUNGTUT12 3129630F6 (LUNGTUT12), 3129630H1 (LUNGTUT12), SBDA06436F1 96 230 007632 HMC1NOT01 007632H1 (HMC1NOT01), 007632R6 (HMC1NOT01), 007632T6 (HMC1NOT01) 97 231 1236968 LUNGFET03 1236968H1 (LUNGFET03), SBAA02713F1, SBAA03203F1, SBAA04196F1 98 232 1334153 COLNNOT13 776410R1 (COLNNOT05), 1334153H1 (COLNNOT13), 1334153T1 (COLNNOT13), 1800085F6 (COLNNOT27), 2701948H1 (OVARTUT10) 99 233 1396975 BRAITUT08 864113H1 (BRAITUT03), 876139R1 (LUNGAST01), 1268313F1 (BRAINOT09), 1351348T1 (LATRTUT02), 1396975H1 (BRAITUT08), 1485768F6 (CORPNOT02), 1815364F6 (PROSNOT20) 100 234 1501749 SINTBST01 079080R1 (SYNORAB01), 1501749H1 (SINTBST01), 1724970H1 (PROSNOT14) 101 235 1575240 LNODNOT03 081858R1 (SYNORAB01), 1575240H1 (LNODNOT03), 3451462R6 (UTRSNON03) 102 236 1647884 PROSTUT09 1647884H1 (PROSTUT09), 1647884T6 (PROSTUT09), 3998922R6 (HNT2AZS07) 103 237 1661144 BRSTNOT09 720941X17 (SYNOOAT01), 1661144H1 (BRSTNOT09), 2181782H1 (SININOT01) 104 238 1685409 PROSNOT15 755203R1 (BRAITUT02), 1226185T1 (COLNNOT01), 1300837F1 (BRSTNOT07), 1685409H1 (PROSNOT15), 1705256H1 (DUODNOT02) 105 239 1731419 BRSTTUT08 1731419H1 (BRSTTUT08), 1731419X319T3 (BRSTTUT08), 1731419X322F1 (BRSTTUT08), 1731419X326F1 (BRSTTUT08), 1731419X329F1 (BRSTTUT08), 1733786F6 (BRSTTUT08), SZAH01494F1 106 240 2650265 BRSTNOT14 1680316T6 (STOMFET01), 2650265H1 (BRSTNOT14), 2650265T6 (BRSTNOT14), 2760588R6 (BRAINOS12) 107 241 2677129 KIDNNOT19 1592129H1 (CARGNOT01), 2645962H1 (OVARTUT04), 2677129F6 (KIDNNOT19), 2677129H1 (KIDNNOT19), 2910973H1 (KIDNTUT15), 4571722H1 (PROSTMT02), 4906791H2 (TLYMNOT08) 108 242 3151073 ADRENON04 3150857T6 (ADRENON04), 3151073H1 (ADRENON04), 3151073R6 (ADRENON04) 109 243 3170095 BRSTNOT18 3170095F6 (BRSTNOT18), 3170095H1 (BRSTNOT18) 110 244 3475168 LUNGNOT27 079680F1 (SYNORAB01), 443811T6 (MPHGNOT03), 1509356T6 (LUNGNOT14), 1873596F6 (LEUKNOT02), 2440867H1 (EOSITXT01), 3475168H1 (LUNGNOT27) 111 245 3836893 DENDTNT01 446637H1 (MPHGNOT03), 1219376R6 (NEUTGMT01), 3735467F6 (SMCCNOS01), 3735467T6 (SMCCNOS01), 3836893H1 (DENDTNT01) 112 246 4072159 KIDNNOT26 2129415T6 (KIDNNOT05), 4072159F6 (KIDNNOT26), 4072159H1 (KIDNNOT26) 113 247 1003916 BRSTNOT03 620937R6 (PGANNOT01), 1003916H1 and 1003916R6 (BRSTNOT03), 1413623H1 (BRAINOT12), 1435945F1 (PANCNOT08), 1479127F1 (CORPNOT02), 1969146R6 (BRSTNOT04), 2517587F6 (BRAITUT21), 2967848H1 (SCORNOT04) 114 248 2093492 PANCNOT04 489651H1 (HNT2AGT01), 1265353T1 (SYNORAT05), 1431505R6 (BEPINON01), 1605237F6 (LUNGNOT15), 2093492H1 and 2093492T6 (PANCNOT04), 4195560H1 (COLITUT02) 115 249 2108789 BRAITUT03 2108789H1 and 2108789R6 (BRAITUT03), 2182008T6 (SININOT01), 3255751R6 and 3255751T6 (OVARTUN01) 116 250 2171401 ENDCNOT03 037241F1 (HUVENOB01), 1821492F6 (GBLATUT01), 2055814T6 (BEPINOT01), 2171401F6 and 2171401H1 (ENDCNOT03), 2668952F6 (ESOGTUT02), 3140313H1 and 3140313T6 (SMCCNOT02), 5031775H1 (EPIBTXT01) 117 251 2212530 SINTFET03 187596R6 and 187596T6 (CARDNOT01), 919634R6 (RATRNOT02), 1992331H1 (CORPNOT02), 2062034H1 (OVARNOT03), 2212530F6 and 2212530H1 (SINTFET03), 2520479H1 (BRAITUT21), 2878284F6 (THYRNOT10), 2992354H1 (KIDNFET02), 4020719F6 (BRAXNOT02) 118 252 2253036 OVARTUT01 2253036H1 and 2253036R6 (OVARTUT01) 119 253 2280161 PROSNON01 482326H1 (HNT2RAT01), 934345H1 (CERVNOT01), 1379358F1 and 1379358T1 (LUNGNOT10), 1438562T1 (PANCNOT08), 1467511F6 (PANCTUT02), 1568138F1 (UTRSNOT05), 1636106T6 (UTRSNOT06), 2134534F6 (ENDCNOT01), 2280161H1 and 2280161X19F1 (PROSNON01), 2789845F6 (COLNTUT16), 3096938H1 (CERVNOT03), 3774621F6 (BRSTNOT25), 4222971H1 (PANCNOT07), 5111983H1 (ENDITXT01), 5324177H1 (FIBPFEN06) 120 254 2287485 BRAINON01 1454588F1 (PENITUT01), 1593332F6 (BRAINOT14), 2287485H1 and 2287485R6 (BRAINON01), 3765992H1 (BRSTNOT24), 4374293H1 (CONFNOT03), 4937931H1 (PROSTUS18), SBCA01722F1 121 255 2380344 ISLTNOT01 2380344F6 and 2380344H1 (ISLTNOT01), 2888536T3 (LUNGFET04), SASA03644F1, SASA03689F1 122 256 2383171 ISLTNOT01 956296R1 (KIDNNOT05), 1342250F1 (COLNTUT03), 1468046F1

and 1468046T1 (PANCTUT02), 2383171H1 (ISLTNOT01), SBYA05452U1, SBYA01369U1 123 257 2396046 THP1AZT01 2396046F6, 2396046H1 and 2396118T6 (THP1AZT01) 124 258 2456587 ENDANOT01 2456587H1 and 2456587T6 (ENDANOT01), 2872569H1 (THYRNOT10), SBCA03778F1, SBDA00115F1, SBCA02401F1, SBCA03351F1, SBCA05164F1, SBCA04783F1, SBCA00155F1, SBCA04141F1 125 259 2484813 BONRTUT01 1234970T1 (LUNGFET03), 1338090F6 (COLNNOT13), 2484813H1 (BONRTUT01), SBCA00053F1, SBCA02064F1, SBCA02151F1, SBCA03770F1, SBCA04866F1, SBCA03406F1 126 260 2493851 ADRETUT05 2493851H1 (ADRETUT05), 3805916F6 (BLADTUT03), 4500439H1 and 4500748H1 (BRAVTXT02), 5120601H1 (SMCBUNT01) 127 261 2495719 ADRETUT05 603447R1 (BRSTTUT01), 2495719H1 (ADRETUT05), 2917493F6 (THYMFET03), 4647103H1 (PROSTUT20), SBRA04984D1 128 262 2614153 GBLANOT01 1833135R6 (BRAINON01), 1966515R6 (BRSTNOT04), 2331103R6 (COLNNOT11), 2614153H1 (GBLANOT01), 2656691F6 (LUNGTUT09), 3951176H1 (DRGCNOT01) 129 263 2655184 THYMNOT04 2655184H1 (THYMNOT04), SBDA05215F1, SBDA05213F1, SBDA01516F1 130 264 2848362 BRSTTUT13 1297974F1 and 1297974T6 (BRSTNOT07), 2630138F6 (COLNTUT15), 2848362H1 (BRSTTUT13) 131 265 2849906 BRSTTUT13 1541617R1 and 1541617T1 (SINTTUT01), 2684504F6 and 2684504T6 (LUNGNOT23), 2796805H1 (NPOLNOT01), 2849906H1 (BRSTTUT13) 132 266 2899137 DRGCNOT01 2899137H1 (DRGCNOT01), 3026490F6 and 3026490T6 (HEARFET02), 3483359H1 (KIDNNOT31) 133 267 2986229 CARGDIT01 1740227T6 (HIPONON01), 2986229H1 (CARGDIT01) 134 268 3222081 COLNNON03 1754079F6 (LIVRTUT01), 3222081H1 (COLNNON03), 4053813T6 (SPLNNOT13), 4230282H1 (BRAMDIT01), SBDA07029F3

[0273]

4TABLE 2 Amino Potential Potential Protein Acid Phosphorylation Glycosylation Signature Analytical SEQ ID NO: Residues Sites Sites Sequences Identification Methods 1 88 T83 S38 T76 M1-A21 Signal Peptide HMM 2 128 S30 S40 T47 T119 M1-F28 Signal Peptide W125 HMM 3 111 T70 M1-T18 Signal Peptide HMM 4 110 S32 T64 N58 M1-A29 Signal Peptide HMM 5 78 T27 S39 S39 S44 M1-R24 Signal Peptide S22 T27 S28 S57 HMM 6 88 T55 S30 S40 T55 N34 M1-N21 Signal Peptide HMM 7 227 S220 S70 S83 T131 N100 M1-Q20 Signal Peptide S134 S141 T158 HMM Y123 8 198 S62 T123 S142 N60 M1-A28 Signal Peptide S189 S62 T100 HMM Y85 9 65 T48 M1-A29 Signal Peptide HMM 10 154 M1-A29 Signal Peptide HMM 11 237 T116 T26 T79 T85 N128 M1-A19 Signal Peptide T182 T188 T194 HMM T206 S60 S123 S176 S213 12 225 T158 S128 N166 M1-G27 Signal Peptide HMM 13 117 S41 M1-A23 Signal Peptide HMM 14 253 S49 T63 S92 T110 N42 N47 N72 M1-T20 Signal Peptide S127 T239 N207 HMM 15 171 S43 S94 T114 M88-R112 Signal Peptide HMM 16 78 S38 S43 N37 M1-G19 Signal Peptide HMM 17 71 T64 T67 M1-C19 Signal Peptide HMM 18 188 S36 T58 T133 Y31 N121 N171 M1-A21 Signal Peptide HMM 19 80 S76 M1-C19 Signal Peptide HMM 20 80 M1-G25 Signal Peptide HMM 21 84 S39 S53 S60 M1-G21 Signal Peptide HMM 22 171 S41 T150 M3-A21 Signal Peptide HMM 23 243 S3 S44 T75 S86 N97 M1-C25 Signal Peptide S183 S223 S36 S92 HMM S205 Y40 Y110 24 311 T5 S76 T82 T93 N49 N91 N108 M1-A32 Signal Peptide T109 S121 T137 N128 N135 HMM T170 S184 S11 T53 N190 S75 S84 T132 S223 S274 Y69 25 57 M1-L29 Signal Peptide HMM 26 82 S46 Y26 M1-S18 Signal Peptide HMM 27 115 M1-G34 Signal Peptide HMM 28 327 S93 S50 S167 S233 N138 N206 M1-E25 Signal Peptide S89 T105 T214 HMM S302 T318 29 133 S63 N105 M1-E29 Signal Peptide HMM 30 129 S21 S65 T93 M1-G20 Signal Peptide HMM 31 472 S164 T32 S42 T141 N61 N179 N353 M1-G20 hematopoietic lineage Signal Peptide T154 S155 T235 N356 N396 switch 2 (g3169729) HMM T262 T271 T334 BLAST-GenBank T376 S402 S421 S435 T441 S19 S29 T327 S378 32 93 T21 M1-A18 Signal Peptide HMM 33 92 S57 S5 M1-G47 SPScan 34 143 T6 T14 T135 M9-G40 Signal Peptide HMM 35 89 T15 S58 S66 M1-A19 Signal Peptide HMM 36 560 T7 T76 S150 T224 N163 N184 M1-E34 SPScan S228 S257 S358 N379 S474 S529 S539 T186 S219 S368 Y523 37 197 T80 S163 M1-G28 Signal Peptide HMM 38 437 T47 T146 S233 S391 N46 N189 N382 M1-A21 Signal Peptide S403 T43 S130 S273 HMM S339 S364 39 330 S197 T49 T150 S193 N46 N64 N166 M1-G28 Signal Peptide T214 T215 T49 S111 N191 HMM S237 40 148 T73 S141 N29 N58 N71 M1-R24 receptor-activity- Signal Peptide N103 modifying protein HMM (RAMP; g4165368) BLAST-GenBank 41 188 S49 M1-V25 Signal Peptide HMM 42 222 S89 S165 T174 T182 M1-S24 Signal Peptide T83 S155 HMM 43 111 S54 S29 S98 S50 M1-T23 Signal Peptide S57 T104 HMM 44 341 T29 S106 T120 S161 M1-G22 Signal Peptide S195 S37 S47 T51 HMM S136 S223 S230 S281 45 148 S21 T63 T63 A146 N40 M1-G23 Signal Peptide HMM 46 87 S65 M1-P18 Signal Peptide HMM 47 383 T77 S95 S108 S280 N93 N207 M1-P23 Signal Peptide S351 S121 S124 HMM S153 T187 48 109 S25 S22 M1-L18 Signal Peptide HMM 49 185 S62 M1-A20 Signal Peptide HMM 50 110 T100 T73 S97 Y48 N71 M1-C21 Signal Peptide HMM 51 126 S17 S110 M1-G18 Signal Peptide HMM 52 488 S205 T31 S86 T236 N250 N321 M1-L25 putative involvement Signal Peptide S7 T447 N463 in cell wall structure HMM or biosynthesis (g3738170) BLAST-GenBank 53 197 T55 S34 S46 S69 M1-A26 Signal Peptide T98 S108 T119 T167 HMM S194 S2 S34 T153 54 84 S65 S36 T41 S51 N39 M1-G25 Signal Peptide S69 S81 HMM 55 97 S56 M1-A22 Signal Peptide HMM 56 140 S29 M1-P23 Signal Peptide HMM 57 285 S53 S108 T216 N153 M1-A25 Signal Peptide S253 S277 HMM 58 262 S62 T166 S62 S71 N190 M1-G28 3-acylating enzyme Signal Peptide Y246 (Q44449) HMM BLAST-GENESEQ 59 189 S120 T154 T34 T37 M1-C22 Signal Peptide S174 HMM 60 257 S98 T136 T67 S112 M55-E84.beta. SPScan S234 S237 61 82 T68 N67 M1-G18 Signal Peptide HMM 62 202 T21 S117 S120 M1-G27 Signal Peptide HMM 63 450 S107 S97 S146 M1-G18 Signal Peptide S339 S440 S245 HMM T303 S304 S399 64 322 T145 T214 T16 S24 N53 N130 N289 M1-G23 Signal Peptide S35 S45 T145 T269 HMM S297 T300 T314 Y87 65 104 S38 S25 S75 M1-A18 Signal Peptide HMM 66 93 M1 through about S18 SPscan Transmembrane: HMM M1 through about Y17 67 71 S23 S64 M1 through about A24 SPscan HMM MOTIFS 68 394 S392 S393 S31 N53 M1 through about S31 SPScan S127 S179 S334 Transmembrane: HMM T338 S358 T383 about M159 through MOTIFS Y323 about F178 about F109 through about S127 about F225 through about V243 69 72 S59 N69 M1 through about S23 SPscan Transmembrane: HMM M1 through about L16 MOTIFS 70 71 S11 T26 M1 through about Q18 SPscan HMM MOTIFS 71 247 S41 T79 M1 through about S25 SPscan HMM MOTIFS 72 73 S56 M1 through about G27 SPscan HMM MOTIFS 73 70 M1 through about G20 SPscan HMM 74 67 M1 through about G30 SPscan HMM 75 91 M1 through about G26 SPScan 76 56 T29 S46 T51 M1 through about S19 SPscan HMM MOTIFS 77 112 S62 S65 M1 through about G27 SPscan Transmembrane: HMM about W79 through MOTIFS about H97 78 54 N48 M1 through about N34 SPscan HMM MOTIFS 79 57 T33 R55 M1 through about C18 SPscan HMM MOTIFS 80 52 S34 M1 through about S30 SPscan HMM MOTIFS 81 64 T43 Y27 M1 through about S41 SPscan HMM MOTIFS 82 65 S45 M1 through about A31 SPscan Transmembrane: HMM about L38 through MOTIFS about F55 83 56 M1 through about E23 SPscan HMM 84 120 S69 S109 N89 N95 M1 through about A38 SPscan Transmembrane: about HMM L23 through about T41 MOTIFS 85 67 S28 M1 through about K30 SPscan Microbodies C-terminal HMM targetting signal: MOTIFS A65KV 86 62 S29 S42 S46 N40 M1 through about S29 SPscan HMM MOTIFS 87 75 S25 S46 M1 through about L19 SPscan Transmembrane: HMM about I3 through MOTIFS about G20 88 80 T28 M1 through about A20 SPscan HMM MOTIFS 89 50 S11 M1 through about C48 SPscan HMM MOTIFS 90 116 S38 M1 through about G22 SPscan HMM MOTIFS 91 67 S43 M1 through about P21 SPscan HMM MOTIFS 92 538 S415 S52 T77 S97 N226 M1 through about S18 SPScan T178 T228 S282 Tyrosine specific BLOCKS S320 S332 S384 protein phosphatases PRINTS T401 T424 S483 signature: about V328 MOTIFS S207 S230 S357 through about F340 T410 Y263 Y365 93 58 M1 through about S25 SPscan HMM 94 119 S39 M1 through about S22 SPscan Transmembrane: HMM about V3 through MOTIFS about S21 95 128 S91 M1 through about G31 SPscan Transmembrane: HMM about F108 through MOTIFS about L126 96 124 T115 T43 S91 M1-S20 P116-V124 SPScan (urotensin II HMM signature) Motifs BLOCKS BLAST 97 182 S28 T70 S172 M1-S23, M1-S25 SPScan S25 S32 S48 HMM S108 S131 Motifs 98 237 S55 S88 S121 N45 N73 N107 M1-A16, M1-S21 C40-C198 SPScan S135 N118 N132 (cysteine spacing HMM N172 N175 pattern similar Motifs N185 to that of RoBo-1) BLAST 99 160 S36 S59 T143 M1-A27 SPScan HMM Motifs 100 148 T76 S64 Y103 M1-S30, M1-G31 SPScan HMM Motifs 101 170 S78 T4 T30 S130 M1-A23, M1-L28 SPScan S25 S29 T122 HMM Motifs 102 150 S50 S78 S91 M1-A26, M1-S28 SPScan HMM Motifs 103 142 T57 T80 M1-A25, M1-G26 SPScan HMM Motifs 104 110 T3 M1-G18, M1-T25 SPScan HMM Motifs 105 120 T29 S40 S72 M1-G22, M1-A20 SPScan HMM Motifs 106 135 T115 S38 T41 N32 N101 M1-G26, M1-C25 SPScan HMM Motifs 107 301 S53 S217 S240 M1-A22 SPScan S283 T224 HMM Motifs 108 103 S88 T73 S84 M1-P19, M1-L22 SPScan HMM Motifs 109 95 T82 S52 S77 N50 M1-T15, M1-P19 SPScan HMM Motifs 110 113 T84 S4 M1-P19, M1-A24 SPScan HMM Motifs 111 234 S179 S184 S51 N146 N191 M1-A20 NK cell activating SPScan T70 T158 S168 N194 receptor (g4493702) HMM T228 Y29 Motifs BLAST-GenBank 112 119 S39 T61 M1-G30, M1-G27 SPScan HMM Motifs 113 200 S51 T46 S191 M1-G26 Signal Signal Peptide SPScan Peptide Containing Protein, Motifs Homology with KIAA0206 BLAST 114 225 M1-Q29 Signal Signal Peptide SPScan Peptide Containing Protein 115 155 S29 M1-A20 Signal Signal Peptide HMM Peptide Containing Protein Motifs 116 468 S143 T156 T227 N280 N384 M1-G23 Signal Signal Peptide SPScan S235 T271 T293 Peptide Containing Protein Motifs T436 S453 S117 T148 T213 S263 S417 Y73 117 403 S19 S320 S69 N87 M1-A24 Signal Signal Peptide HMM S151 T171 T97 S393 Peptide Containing Protein Motifs Y193 Y378 118 131 T131 S24 T79 T118 N116 M1-G25 Signal Signal Peptide SPScan T123 T127 Peptide Containing Protein Motifs 119 556 T176 S192 S196 N62 N79 N127 M1-P21 Signal Signal Peptide SPScan T220 S344 S369 N157 N160 Peptide L226-W244, Containing Protein, Motifs S476 T501 S529 Y402-W422, V375- Weakly similar to HMM S541 T548 T553 L392 and Y355-I376 Putative Transmembrane BLAST S48 S115 S121 Transmembrane Domains Protein (PTM1) T386 T424 S500 Precursor Y104 120 514 T457 T80 S86 T141 N100 N168 M1-G24 Signal Signal Peptide SPScan T372 T420 S447 N319 Peptide Containing Protein, Motifs S94 T102 S112 T240 S297 S353 S470 121 109 T46 S78 T12 M1-S15 Signal Signal Peptide SPScan Peptide Containing Protein MotifS 122 431 S57 T320 S339 M1-L25 Signal Signal Peptide SPScan S396 S100 S239 Peptide Containing Protein, Motifs Weakly similar to BLAST OXA1L 123 142 M1-W16 Signal Signal Peptide SPScan Peptide Containing Protein 124 643 T8 S28 S77 T169 N251 M1-S28 Signal Signal Peptide SPScan T199 T235 S252 Peptide, D37-C81, Containing Protein, Motifs T320 S402 T413 W380-C437, W440- Thrombospondin Type Pfam S414 S558 S22 T25 C492 and F526-C583 1 Protein BLAST S56 S62 S120 T184 Thrombospondin Type S329 T423 S475 1 Domains S574 Y226 125 568 S510 T24 T80 S91 N322 M1-T19 Signal Signal Peptide SPScan T153 T165 S232 Peptide Containing Protein Motifs S248 S262 T300 T334 S380 S446 S16 T19 T60 S127 S273 T436 T531 S554 T564 Y135 Y489 126 125 T62 S27 T36 M1-R32 Signal Signal Peptide SPScan Peptide, V4-L53 Containing Protein, Motifs Glycosyl Hydrolase Glycosyl Hydrolase PROFILE- Family 9 Active Site Protein SCAN Signature 127 196 T105 T47 T56 S158 M1-S26 Signal Signal Peptide SPScan Peptide, H79-H123 Containing Protein, Motifs Ribosomal Protein Ribosomal Protein BLAST S18 Signature S18 Pfam PROFILE- SCAN 128 214 S112 S131 N37 N92 M1-S35 Signal Signal Peptide SPScan Peptide Containing Protein, Motifs Homology with GTP BLAST Binding Protein 129 88 M1-S24 Signal Signal Peptide HMM Peptide Containing Protein 130 260 S146 S179 S192 N50 N109 M1-A48 Signal Signal Peptide SPScan S239 S70 T126 T150 Peptide, G59-S142 Containing Protein, Motifs Immunoglobulin Immunoglobulin Pfam Domain Superfamily Protein 131 295 T176 T56 S72 S179 M1-A30 Signal Signal Peptide SPScan S256 S87 Peptide Containing Protein Motifs 132 183 S11 T41 T42 S83 M1-W24 Signal Signal Peptide HMM Peptide, E131-K168 Containing Protein, Motifs and C105-H115 Adrenodoxin Family BLOCKS Adrenodoxin Iron- Iron-Sulfur PRINTS Sulfur Binding Binding Protein, and Pfam Signature, C111-V116 Cytochrome C Family Cytochrome C Heme Heme Binding Protein Binding Signature, N69-A162 Iron- Sulfur Cluster Binding Domain 133 113 S93 T89 Y9 M1-G30 Signal Signal Peptide SPScan Peptide, V28-L74 Containing Protein, Motifs PF00646 F-Box PF00646 F-Box Protein Pfam Domain 134 160 T46 T55 S65 S124 M1-A27 Signal Signal Peptide SPScan T125 T46 Peptide Containing Protein, Motifs F45G2.10 and Yhr122wp BLAST Homology

[0274]

5TABLE 3 Nucleotide Disease/Condition-Specific Expression SEQ ID NO: Tissue Expression (Fraction of Total) (Total of Fraction) Vector 135 Hematopoietic/Immune (1.000) Inflammation (1.000) pBLUESCRIPT 136 Hematopoietic/Immune (0.750) Cardiovascular (0.250) Inflammation (0.750) Cancer (0.250) pSPORT1 137 Nervous (1.000) Trauma (1.000) pSPORT1 138 Musculoskeletal (1.000) Inflammation (1.000) pSPORT1 139 Gastrointestinal (0.714) Cardiovascular (0.143) Cancer (0.714) Trauma (0.143) pSPORT1 Reproductive (0.143) 140 Nervous (1.000) Neurological (0.500) Trauma (0.500) pSPORT1 141 Reproductive (0.293) Gastrointestinal (0.146) Cancer (0.524) Inflammation (0.256) pSPORT1 Hematopoietic/Immune (0.146) Fetal (0.146) 142 Reproductive (0.266) Gastrointestinal (0.170) Cancer (0.479) Inflammation (0.277) pINCY Nervous (0.138) Fetal (0.181) 143 Reproductive (0.417) Nervous (0.292) Cancer (0.417) Inflammation (0.250) pINCY Developmental (0.125) Fetal (0.167) 144 Reproductive (0.321) Cardiovascular (0.143) Cancer (0.464) Fetal (0.214) pINCY Developmental (0.143) Inflammation (0.143) 145 Reproductive (0.600) Gastrointestinal (0.400) Cancer (0.400) Trauma (0.400) pINCY Inflammation (0.200) 146 Cardiovascular (0.400) Dermatologic (0.200) Cancer (0.600) Fetal (0.600) pINCY Nervous (0.200) 147 Developmental (0.667) Gastrointestinal (0.333) Fetal (0.667) Cancer (0.333) pINCY 148 Reproductive (0.256) Nervous (0.248) Cancer (0.479) Inflammation (0.214) pINCY Cardiovascular (0.137) Fetal (0.145) 149 Reproductive (0.244) Nervous (0.178) Cancer (0.433) Inflammation (0.322) pINCY Hematopoietic/Immune (0.167) Fetal (0.156) 150 Cardiovascular (0.923) Developmental (0.077) Cancer (0.692) Fetal (0.154) pINCY Inflammation (0.154) 151 Reproductive (0.215) Nervous (0.190) Cancer (0.494) Inflammation (0.278) pINCY Gastrointestinal (0.177) Trauma (0.152) 152 Reproductive (0.200) Nervous (0.171) Inflammation (0.371) Cancer (0.229) pINCY Hematopoietic/Immune (0.143) Fetal (0.200) 153 Reproductive (0.333) Nervous (0.157) Cancer (0.549) Inflammation (0.176) pINCY Hematopoietic/Immune (0.137) Fetal (0.137) 154 Gastrointestinal (0.500) Urologic (0.167) Inflammation (0.667) Cancer (0.167) pINCY Trauma (0.167) 155 Gastrointestinal (0.429) Reproductive (0.286) Inflammation (0.429) Cancer (0.286) pINCY Nervous (0.143) Trauma (0.143) 156 Reproductive (1.000) Cancer (0.500) Inflammation (0.500) pINCY 157 Hematopoietic/Immune (0.346) Reproductive (0.154) Cancer (0.404) Inflammation (0.404) pINCY Gastrointestinal (0.115) Fetal (0.212) 158 Reproductive (0.236) Hematopoietic/Immune (0.217) Cancer (0.415) Inflammation (0.358) pINCY Gastrointestinal (0.132) Fetal (0.142) 159 Gastrointestinal (1.000) Cancer (1.000) pSPORT1 160 Developmental (0.500) Hematopoietic/Immune (0.250) Fetal (0.500) Inflammation (0.250) pINCY Nervous (0.250) Trauma (0.250) 161 Hematopoietic/Immune (0.250) Reproductive (0.250) Cancer (0.583) Fetal (0.292) pINCY Nervous (0.208) Inflammation (0.250) 162 Gastrointestinal (0.412) Reproductive (0.412) Cancer (0.735) Inflammation (0.176) pINCY Cardiovascular (0.088) Fetal (0.029) 163 Reproductive (0.298) Cardiovascular (0.170) Nervous Cancer (0.532) Inflammation (0.213) pINCY (0.149) Fetal (0.191) 164 Gastrointestinal (0.333) Hematopoietic/Immune (0.333) Cancer (0.667) Inflammation (0.333) pINCY Reproductive (0.333) 165 Reproductive (0.295) Gastrointestinal (0.159) Cancer (0.534) Inflammation (0.284) pINCY Nervous (0.148) Fetal (0.091) 166 Hematopoietic/Immune (0.538) Cardiovascular (0.077) Inflammation (0.731) Cancer (0.154) pINCY Reproductive (0.077) Fetal (0.154) 167 Reproductive (0.483) Gastrointestinal (0.121) Cancer (0.672) Inflammation (0.155) pINCY Nervous (0.103) 168 Gastrointestinal (0.222) Hematopoietic/Immune (0.222) Cancer (0.519) Inflammation (0.370) pINCY Nervous (0.148) Fetal (0.259) 169 Urologic (1.000) Cancer (0.333) Fetal (0.333) pINCY Inflammation (0.333) 170 Reproductive (0.214) Gastrointestinal (0.179) Cancer (0.643) Inflammation (0.143) pINCY Nervous (0.143) Fetal (0.107) 171 Reproductive (0.261) Developmental (0.174) Cancer (0.391) Fetal (0.304) pINCY Nervous (0.174) Inflammation (0.217) 172 Reproductive (0.357) Gastrointestinal (0.321) Cancer (0.571) Inflammation (0.286) pINCY Cardiovascular (0.071) Fetal (0.107) 173 Reproductive (0.306) Nervous (0.161) Cancer (0.387) Inflammation (0.323) pINCY Cardiovascular (0.129) Fetal (0.226) 174 Reproductive (0.229) Nervous (0.188) Cancer (0.521) Inflammation (0.312) pSPORT1 Cardiovascular (0.167) Trauma (0.146) 175 Reproductive (0.444) Developmental (0.167) Cancer (0.556) Fetal (0.278) pSPORT1 Cardiovascular (0.111) Trauma (0.111) 176 Reproductive (0.294) Gastrointestinal (0.176) Cancer (0.765) Fetal (0.118) pSPORT1 Cardiovascular (0.118) Inflammation (0.118) 177 Gastrointestinal (1.000) Cancer (0.667) Inflammation (0.333) pINCY 178 Reproductive (0.385) Nervous (0.231) Cancer (0.385) Inflammation (0.385) pINCY Gastrointestinal (0.154) 179 Reproductive (0.500) Cardiovascular (0.167) Cancer (0.667) Fetal (0.167) pBLUESCRIPT Gastrointestinal (0.167) Inflammation (0.167) 180 Cardiovascular (0.231) Reproductive (0.231) Cancer (0.615) Inflammation (0.308) pINCY Gastrointestinal (0.154) Fetal (0.154) 181 Reproductive (0.324) Gastrointestinal (0.176) Cancer (0.519) Inflammation (0.222) pINCY Cardiovascular (0.130) Fetal (0.157) 182 Reproductive (0.320) Nervous (0.180) Cancer (0.580) Inflammation (0.160) pINCY Gastrointestinal (0.120) Fetal (0.100) 183 Gastrointestinal (0.667) Reproductive (0.333) Cancer (1.000) pINCY 184 Urologic (0.667) Dermatologic (0.333) Cancer (0.667) Fetal (0.333) pSPORT1 185 Cardiovascular (0.500) Reproductive (0.500) Cancer (1.000) pINCY 186 Reproductive (0.393) Developmental (0.107) Cancer (0.607) Fetal (0.179) pINCY Urologic (0.107) Inflammation (0.107) 187 Cardiovascular (0.400) Reproductive (0.333) Inflammation (0.467) Cancer (0.267) pSPORT1 Gastrointestinal (0.133) Fetal (0.267) 188 Nervous (0.318) Reproductive (0.227) Urologic (0.136) Cancer (0.636) Inflammation (0.136) pINCY Trauma (0.091) 189 Cardiovascular (0.500) Reproductive (0.500) Cancer (1.000) pINCY 190 Reproductive (0.318) Nervous (0.227) Cancer (0.500) Fetal (0.227) pINCY Hematopoietic/Immune (0.136) Inflammation (0.227) 191 Reproductive (0.253) Cardiovascular (0.158) Cancer (0.463) Inflammation (0.232) pINCY Gastrointestinal (0.147) Fetal (0.200) 192 Reproductive (0.333) Gastrointestinal (0.286) Cancer (0.571) Inflammation (0.333) pINCY Cardiovascular (0.095) Fetal (0.095) 193 Reproductive (0.304) Cardiovascular (0.217) Cancer (0.435) Inflammation (0.391) pINCY Gastrointestinal (0.130) Fetal (0.174) 194 Reproductive (0.312) Nervous (0.188) Cancer (0.438) Inflammation (0.250) pINCY Cardiovascular (0.125) Fetal (0.188) 195 Developmental (1.000) Fetal (1.000) pINCY 196 Reproductive (0.233) Cardiovascular (0.209) Cancer (0.605) Fetal (0.186) pINCY Nervous (0.140) Inflammation (0.116) 197 Reproductive (0.182) Gastrointestinal (0.136) Cancer (0.477) Inflammation (0.341) pINCY Hematopoietic/Immune (0.136) Fetal (0.182) 198 Gastrointestinal (0.205) Reproductive (0.205) Inflammation (0.341) Cancer (0.250) pINCY Cardiovascular (0.114) Fetal (0.227) 199 Cardiovascular (0.520) Reproductive (0.280) Cancer (0.720) Fetal (0.200) pINCY Developmental (0.160) Inflammation (0.080) 200 Lung (0.958) Developmental (0.25) Cancer (0.583) Fetal or Proliferating pBLUESCRIPT Musculoskeletal (0.042) (0.292) Inflammation (0.167) 201 Reproductive (0.571) Musculoskeletal (0.143) Cancer (0.429) Inflammation (0.571) pSPORT1 Nervous (0.143) Urologic (0.143) 202 Endocrine (0.250) Nervous (0.250) Cardiovascular (0.125) Cancer (0.375) Inflammation (0.625) pSPORT1 Developmental (0.125) Gastrointestinal (0.125) Fetal or Proliferating (0.125) Reproductive (0.125) 203 Lung (1.000) Fetal or Proliferating (1.000) pINCY 204 Lung (0.500) Penis (0.500) Cancer (0.500) pINCY 205 Cardiovascular (0.231) Dermatologic (0.231) Fetal or Proliferating (0.385) pINCY Reproductive (0.231) Cancer (0.308) 206 Nervous (0.596) Reproductive (0.154) Cancer (0.442) Neurological (0.192) pINCY Gastrointestinal (0.077) Inflammation (0.231) 207 Gastrointestinal (1.000) Inflammation (1.000) pINCY 208 Reproductive (0.300) Hematopoietic/Immune (0.200) Cancer (0.450) Inflammation (0.400) pSPORT1 Nervous (0.150) Fetal or Proliferating (0.250) 209 Heart (0.500) Brain (0.500) Neurological (0.500) Inflammation pINCY (0.500) 210 Nervous (0.625) Reproductive (0.250) Cancer (0.750) Fetal or Proliferating pINCY Musculoskeletal (0.125) (0.250) Neurological (0.125) 211 Nervous (0.261) Reproductive (0.304) Cancer (0.522) Fetal or Proliferating pSPORT1 Gastrointestinal (0.174) (0.174) Inflammation (0.130) 212 Testis (1.000) Inflammation (1.000) pBLUESCRIPT 213 Nervous (0.400) Reproductive (0.400) Cancer (0.400) Inflammation (0.400) pBLUESCRIPT Gastrointestinal (0.200) Neurological (0.200) 214 Reproductive (0.476) Gastrointestinal (0.286) Cancer (0.714) Inflammation (0.286) pSPORT1 Cardiovascular (0.095) Neurological (0.048) 215 Reproductive (0.284) Gastrointestinal (0.216) Cancer (0.486) Inflammation (0.351) pSPORT1 Nervous (0.176) Hematopoietic/Immune (0.108) Fetal or Proliferating (0.122) Cardiovascular (0.108) 216 Uterus (0.500) Prostate (0.500) Cancer (0.500) Inflammation (0.500) pINCY 217 Nervous (0.429) Cardiovascular (0.143) Cancer (0.571) Inflammation (0.429) pSPORT1 Gastrointestinal (0.143) Hematopoietic/Immune (0.143) Fetal or Proliferating (0.285) Reproductive (0.143) 218 Reproductive (0.450) Hematopoietic/Immune (0.200) Cancer (0.650) Inflammation (0.200) pINCY Nervous (0.100) Gastrointestinal (0.100) Fetal or Proliferating (0.050) 219 Reproductive (0.364) Cardiovascular (0.182) Cancer (0.636) Fetal or Proliferating pINCY Nervous (0.182) (0.182) Inflammation (0.273) 220 Prostate (1.000) Inflammation (1.000) pSPORT1 221 Developmental (0.333) Nervous (0.333) Cancer (0.667) Fetal or Proliferating pSPORT1 Reproductive (0.333) (0.667) 222 Reproductive (0.393) Hematopoietic/Immune (0.180) Cancer (0.508) Inflammation (0.344) pSPORT1 Nervous (0.098) Cardiovascular (0.098) Fetal or Proliferating (0.066) 223 Endocrine (0.333) Gastrointestinal (0.333) Cancer (1.000) pINCY Reproductive (0.333) 224 Cardiovascular (0.200) Developmental (0.200) Cancer (0.800) Fetal or Proliferating pINCY Gastrointestinal (0.200) Reproductive (0.200) (0.200) Urologic (0.200) 225 Lung (1.000) Cancer (1.000) pINCY 226 Reproductive (0.302) Hematopoietic/Immune (0.254) Cancer (0.381) Inflammation (0.381) pSPORT1 Cardiovascular (0.111) Fetal or Proliferating (0.286) 227 Lymphocytes (1.000) Inflammation (1.000) pINCY 228 Cardiovascular (0.531) Reproductive (0.250) Cancer (0.656) Inflammation (0.250) pINCY Urologic (0.094) Fetal or Proliferating (0.094) 229 Reproductive (0.333) Cardiovascular (0.167) Cancer (0.500) Fetal or Proliferating pINCY Gastrointestinal (0.167) Endocrine (0.167) (0.167) Inflammation (0.333) Hematopoietic/Immune (0.167) 230 Hematopoietic/Immune (0.500) Reproductive (0.500) Cell Proliferation (0.500) pBLUESCRIPT Inflammation (0.500) 231 Cardiovascular (0.333) Nervous (0.333) Cancer (0.500) Cell Proliferation pINCY Developmental (0.167) (0.333) Inflammation (0.167) 232 Gastrointestinal (0.938) Reproductive (0.062) Cancer (0.500) Inflammation (0.500) pINCY 233 Nervous (0.324) Reproductive (0.235) Cancer (0.456) Inflammation (0.235) pINCY Hematopoietic/Immune (0.118) Trauma (0.147) 234 Nervous (0.255) Reproductive (0.255) Cancer (0.545) Inflammation (0.255) pINCY Musculoskeletal (0.182) Trauma (0.109) 235 Musculoskeletal (0.308) Reproductive (0.231) Cancer (0.538) Inflammation (0.231) pINCY Gastrointestinal (0.154) Trauma (0.154) 236 Nervous (1.000) Cancer (1.000) pINCY 237 Gastrointestinal (0.429) Cancer (0.571) Cell Proliferation pINCY Hematopoietic/Immune (0.143) Nervous (0.143) (0.143) Trauma (0.143) 238 Reproductive (0.254) Gastrointestinal (0.160) Cancer (0.453) Inflammation (0.241) pINCY Nervous (0.128) Cell Proliferation (0.175) 239 Nervous (0.333) Dermatologic (0.167) Trauma (0.333) Cancer (0.167) pINCY Endocrine (0.167) Cell Proliferation (0.167) 240 Nervous (0.273) Reproductive (0.227) Cancer (0.545) Cell Proliferation pINCY Endocrine (0.136) (0.182) Inflammation (0.182) 241 Reproductive (0.273) Cancer (0.455) Cell Proliferation pINCY Hematopoietic/Immune (0.182) Urologic (0.182) (0.273) Inflammation (0.273) 242 Endocrine (1.000) Trauma (1.000) pSPORT1 243 Reproductive (1.000) Cancer (1.000) pINCY 244 Hematopoietic/Immune (0.545) Inflammation (0.636) Trauma (0.182) pINCY Musculoskeletal (0.182) Cardiovascular (0.091) Cancer (0.091) 245 Hematopoietic/Immune (0.400) Inflammation (0.650) Cancer (0.300) pINCY Musculoskeletal (0.300) Cardiovascular (0.150) 246 Urologic (1.000) Cancer (0.500) Cell Proliferation pINCY (0.500) 247 Nervous (0.292) Reproductive (0.222) Cell Proliferation (0.625) pSPORT1 Musculoskeletal (0.125) Inflammation/Trauma (0.181) 248 Reproductive (0.211) Developmental (0.132) Cell Proliferation (0.658) pSPORT1 Nervous (0.132) Inflammation/Trauma (0.184) 249 Nervous (0.500) Gastrointestinal (0.300) Cell Proliferation (0.900) pSPORT1 Hematopoietic/Immune (0.100) Inflammation/Trauma (0.300) 250 Cardiovascular (0.209) Gastrointestinal (0.140) Cell Proliferation (0.605) pINCY Hematopoietic/Immune (0.140) Inflammation/Trauma (0.256) 251 Nervous (0.308) Cardiovascular (0.154) Cell Proliferation (0.616) pINCY Gastrointestinal (0.154) Inflammation/Trauma (0.269) 252 Reproductive (1.000) Cell Proliferation (1.000) pSPORT1 253 Reproductive (0.324) Nervous (0.162) Cell Proliferation (0.641) pSPORT1 Gastrointestinal (0.113) Inflammation/Trauma (0.197) 254 Reproductive (0.315) Nervous (0.296) Cell Proliferation (0.630) pSPORT1 Developmental (0.093) Inflammation/Trauma (0.278) 255 Nervous (0.211) Reproductive (0.211) Cell Proliferation (0.579) pINCY Gastrointestinal (0.158) Inflammation/Trauma (0.298) 256 Reproductive (0.250) Gastrointestinal (0.148) Cell Proliferation (0.705) pINCY Hematopoietic/Immune (0.148) Inflammation/Trauma (0.193) 257 Hematopoietic/Immune (1.000) Cell Proliferation (0.400) pINCY Inflammation/Trauma (0.600) 258 Cardiovascular (0.333) Reproductive (0.333) Cell Proliferation (0.833) pBLUESCRIPT Developmental (0.167) Inflammation/Trauma (0.333) 259 Cardiovascular (0.333) Reproductive (0.250) Cell Proliferation (0.625) pINCY Developmental (0.167) Inflammation/Trauma (0.208) 260 Endocrine (0.500) Cardiovascular (0.250) Nervous (0.250) Cell Proliferation (0.750) pINCY Inflammation/Trauma (0.500) 261 Reproductive (0.252) Cardiovascular (0.155) Cell Proliferation (0.728) pINCY Hematopoietic/Immune (0.136) Inflammation/Trauma (0.194) 262 Reproductive (0.274) Cardiovascular (0.177) Cell Proliferation (0.742) pINCY Nervous (0.145) Inflammation/Trauma (0.210) 263 Reproductive (0.267) Cardiovascular (0.160) Cell Proliferation (0.654) pINCY Hematopoietic/Immune (0.127) Inflammation/Trauma (0.193) 264 Nervous (0.229) Hematopoietic/Immune (0.200) Cell Proliferation (0.743) pINCY Reproductive (0.200) Inflammation/Trauma (0.286) 265 Hematopoietic/Immune (0.333) Gastrointestinal (0.167) Cell Proliferation (0.600) pINCY Nervous (0.133) Inflammation/Trauma (0.333) 266 Nervous (0.290) Reproductive (0.258) Cell Proliferation (0.677) pINCY Cardiovascular (0.129) Inflammation/Trauma (0.194) 267 Reproductive (0.261) Hematopoietic/Immune (0.217) Cell Proliferation (0.652) pINCY Cardiovascular (0.087) Inflammation/Trauma (0.391) 268 Gastrointestinal (0.227) Reproductive (0.193) Cell Proliferation (0.731) pSPORT1 Hematopoietie/Immune (0.168)

Inflammation/Trauma (0.227)

[0275]

6TABLE 4 Polynucleotide SEQ ID NO: Clone ID Library Library Description 135 443531 MPHGNOT03 The library was constructed using RNA isolated from plastic adherent mononuclear cells isolated from buffy coat units obtained from unrelated male and female donors. 136 632860 NEUTGMT01 The library was constructed using RNA isolated from peripheral blood granulocytes collected by density gradient centrifugation through Ficoll-Hypaque. The cells were isolated from buffy coat units obtained from 20 unrelated male and female donors. Cells were cultured in 10 nM GM-CSF for 1 hour before washing and harvesting for RNA preparation. 137 670010 CRBLNOT01 The library was constructed using RNA isolated from the cerebellum tissue of a 69-year-old Caucasian male who died from chronic obstructive pulmonary disease. Patient history included myocardial infarction, hypertension, and osteoarthritis. osteoarthritis. 138 726498 SYNOOAT01 The library was constructed using RNA isolated from the knee synovial membrane tissue of an 82-year-old female with osteoarthritis. 139 795064 OVARNOT03 The library was constructed using RNA isolated from ovarian tissue removed from a 43-year-old Caucasian female during removal of the fallopian tubes and ovaries. Pathology for the associated tumor tissue indicated grade 2 mucinous cystadenocarcinoma. Patient history included mitral valve disorder, pneumonia, and viral hepatitis. Family history included atherosclerotic coronary artery disease, pancreatic cancer, cerebrovascular disease, breast cancer, and uterine cancer. 140 924925 BRAINOT04 The library was constructed using RNA isolated from the brain tissue of a 44-year-old Caucasian male with a cerebral hemorrhage. The tissue, which contained coagulated blood, came from the choroid plexus of the right anterior temporal lobe. Family history included coronary artery disease and myocardial infarction. 141 962390 BRSTTUT03 The library was constructed using RNA isolated from breast tumor tissue removed from a 58-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated multicentric invasive grade 4 lobular carcinoma. The mass was identified in the upper outer quadrant, and three separate nodules were found in the lower outer quadrant of the left breast. Patient history included skin cancer, rheumatic heart disease, osteoarthritis, and tuberculosis. Family history included cerebrovascular disease, coronary artery aneurysm, breast cancer, prostate cancer, atherosclerotic coronary artery disease, and type I diabetes. 142 1259405 MENITUT03 The library was constructed using RNA isolated from brain meningioma tissue removed from a 35-year-old Caucasian female during excision of a cerebral meningeal lesion. Pathology indicated a benign neoplasm in the right cerebellopontine angle of the brain. Patient history included hypothyroidism. Family history included myocardial infarction and breast cancer. 143 1297384 BRSTNOT07 The library was constructed using RNA isolated from diseased breast tissue removed from a 43-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated mildly proliferative fibrocystic changes with epithelial hyperplasia, papillomatosis, and duct ectasia. Pathology for the associated tumor tissue indicated invasive grade 4, nuclear grade 3 mammary adenocarcinoma with extensive comedo necrosis. Family history included epilepsy, atherosclerotic coronary artery disease, and type II diabetes. 144 1299627 BRSTNOT07 The library was constructed using RNA isolated from diseased breast tissue removed from a 43-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated mildly proliferative fibrocystic changes with epithelial hyperplasia, papillomatosis, and duct ectasia. Pathology for the associated tumor tissue indicated invasive grade 4, nuclear grade 3 mammary adenocarcinoma with extensive comedo necrosis. Family history included epilepsy, atherosclerotic coronary artery disease, and type II diabetes. 145 1306026 PLACNOT02 The library was constructed using RNA isolated from the placental tissue of a Hispanic female fetus, who was prematurely delivered at 21 weeks' gestation. Serologies of the mother's blood were positive for CMV (cytomegalovirus). 146 1316219 BLADTUT02 The library was constructed using RNA isolated from bladder tumor tissue removed from an 80-year-old Caucasian female during a radical cystectomy and lymph node excision. Pathology indicated grade 3 invasive transitional cell carcinoma. Family history included osteoarthritis and atherosclerosis. 147 1329031 PANCNOT07 The library was constructed using RNA isolated from the pancreatic tissue of a Caucasian male fetus, who died at 23 weeks' gestation. 148 1483050 CORPNOT02 The library was constructed using RNA isolated from diseased corpus callosum tissue removed from the brain of a 74-year- old Caucasian male who died from Alzheimer's disease. 149 1514160 PANCTUT01 The library was constructed using RNA isolated from pancreatic tumor tissue removed from a 65-year-old Caucasian female during radical subtotal pancreatectomy. Pathology indicated an invasive grade 2 adenocarcinoma. Patient history included type II diabetes, osteoarthritis, cardiovascular disease, benign neoplasm in the large bowel, and a cataract. Family history included cardiovascular disease, type II diabetes, and stomach cancer. 150 1603403 LUNGNOT15 The library was constructed using RNA isolated from lung tissue removed from a 69-year-old Caucasian male during a segmental lung resection. Pathology for the associated tumor tissue indicated residual grade 3 invasive squamous cell carcinoma. Patient history included acute myocardial infarction, prostatic hyperplasia, and malignant skin neoplasm. Family history included cerebrovascular disease, type I diabetes, acute myocardial infarction, and arteriosclerotic coronary disease. 151 1652303 PROSTUT08 The library was constructed using RNA isolated from prostate tumor tissue removed from a 60-year-old Caucasian male during radical prostatectomy and regional lymph node excision. Pathology indicated an adenocarcinoma (Gleason grade 3 + 4). Adenofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA). Patient history included a kidney cyst. Family history included tuberculosis, cerebrovascular disease, and arteriosclerotic coronary artery disease. 152 1693358 COLNNOT23 The library was constructed using RNA isolated from diseased colon tissue removed from a 16-year-old Caucasian male during a total colectomy with abdominal/perineal resection. Pathology indicated gastritis and pancolonitis consistent with the acute phase of ulcerative colitis. There was only mild involvement of the ascending and sigmoid colon, and no significant involvement of the cecum, rectum, or terminal ileum. Family history included irritable bowel syndrome. 153 1707711 DUODNOT02 The library was constructed using RNA isolated from duodenal tissue of a 8-year-old Caucasian female, who died from head trauma. Serology was positive for cytomegalovirus (CMV). 154 1738735 COLNNOT22 The library was constructed using RNA isolated from colon tissue removed from a 56-year-old Caucasian female with Crohn's disease during a partial resection of the small intestine. Pathology indicated Crohn's disease of the ileum and ileal-colonic anastomosis, causing a fistula at the anastomotic site that extended into pericolonic fat. The ileal mucosa showed linear and puncture ulcers with intervening normal tissue. Previous surgeries included a partial ileal resection and permanent ileostomy. Family history included irritable bowel syndrome. 155 1749147 STOMTUT02 The library was constructed using RNA isolated from stomach tumor tissue obtained from a 68-year-old Caucasian female during a partial gastrectomy. Pathology indicated a malignant lymphoma of diffuse large-cell type. Patient history included thalassemia. Family history included acute leukemia, malignant neoplasm of the esophagus, malignant stomach neoplasm, and atherosclerotic coronary artery disease. 156 1817722 PROSNOT20 The library was constructed using RNA isolated from diseased prostate tissue removed from a 65-year-old Caucasian male during a radical prostatectomy. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated an adenocarcinoma. 157 1831290 THP1AZT01 The library was constructed using 1 microgram of polyA RNA isolated from THP-1 promonocyte cells treated for three days with 0.8 micromolar 5-aza-2'-deoxycytidine. THP-1 (ATCC TIB 202) is a human promonocyte line derived from peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia. 158 1831477 THP1AZT01 The library was constructed using 1 microgram of polyA RNA isolated from THP-1 promonocyte cells treated for three days with 0.8 micromolar 5-aza-2'-deoxycytidine. THP-1 (ATCC TIB 202) is a human promonocyte line derived from peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia. 159 1841607 COLNNOT07 The library was constructed using RNA isolated from colon tissue removed from a 60-year-old Caucasian male during a left hemicolectomy. 160 1852391 LUNGFET03 The library was constructed using RNA isolated from lung tissue removed from a Caucasian female fetus, who died at 20 weeks' gestation. 161 1854555 HNT3AZT01 Library was constructed using RNA isolated from the hNT2 cell line (derived from a human teratocarcinoma that exhibited properties characteristic of a committed neuronal precursor). Cells were treated for three days with 0.35 micromolar 5-aza-2'-deoxycytidine (AZT). 162 1855755 PROSNOT18 The library was constructed using RNA isolated from diseased prostate tissue removed from a 58- year-old Caucasian male during a radical cystectomy, radical prostatectomy, and gastrostomy. Pathology indicated adenofibromatous hyperplasia. This tissue was associated with a grade 3 transitional cell carcinoma. Patient history included angina and emphysema. Family history included acute myocardial infarction, atherosclerotic coronary artery disease, and type II diabetes. 163 1861434 PROSNOT19 The library was constructed using RNA isolated from diseased prostate tissue removed from a 59- year-old Caucasian male during a radical prostatectomy with regional lymph node excision. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated an adenocarcinoma (Gleason grade 3 + 3). The patient presented with elevated prostate- specific antigen (PSA). Patient history included colon diverticuli and thrombophlebitis. Family history included benign hypertension, multiple myeloma, hyperlipidemia and rheumatoid arthritis. 164 1872334 LEUKNOT02 The library was constructed using RNA isolated from white blood cells of a 45-year-old female with blood type O+. The donor tested positive for cytomegalovirus (CMV). 165 1877230 LEUKNOT03 The library was constructed using RNA isolated from white blood cells of a 27-year-old female with blood type A+. The donor tested negative for cytomegalovirus (CMV). 166 1877885 LEUKNOT03 The library was constructed using RNA isolated from white blood cells of a 27-year-old female with blood type A+. The donor tested negative for cytomegalovirus (CMV). 167 1889269 BLADTUT07 The library was constructed using RNA isolated from bladder tumor tissue removed from the anterior bladder wall of a 58-year-old Caucasian male during a radical cystectomy, radical prostatectomy, and gastrostomy. Pathology indicated a grade 3 transitional cell carcinoma in the left lateral bladder. Patient history included angina and emphysema. Family history included acute myocardial infarction, atherosclerotic coronary artery disease, and type II diabetes. 168 1890243 BLADTUT07 The library was constructed using RNA isolated from bladder tumor tissue removed from the anterior bladder wall of a 58-year-old Caucasian male during a radical cystectomy, radical prostatectomy, and gastrostomy. Pathology indicated a grade 3 transitional cell carcinoma in the left lateral bladder. Patient history included angina and emphysema. Family history included acute myocardial infarction, atherosclerotic coronary artery disease, and type II diabetes. 169 1900433 BLADTUT06 The library was constructed using RNA isolated from bladder tumor tissue removed from the posterior bladder wall of a 58-year-old Caucasian male during a radical cystectomy, radical prostatectomy, and gastrostomy. Pathology indicated grade 3 transitional cell carcinoma in the left lateral bladder wall. Patient history included angina and emphysema. Family history included acute myocardial infarction, atherosclerotic coronary artery disease, and type II diabetes. 170 1909441 CONNTUT01 The library was constructed using RNA isolated from a soft tissue tumor removed from the clival area of the skull of a 30-year-old Caucasian female. Pathology indicated chondroid chordoma with neoplastic cells reactive for keratin. 171 1932226 COLNNOT16 The library was constructed using RNA isolated from sigmoid colon tissue removed from a 62- year-old Caucasian male during a sigmoidectomy and permanent colostomy. 172 1932647 COLNNOT16 The library was constructed using RNA isolated from sigmoid colon tissue removed from a 62- year-old Caucasian male during a sigmoidectomy and permanent colostomy. 173 2124245 BRSTNOT07 The library was constructed using RNA isolated from diseased breast tissue removed from a 43- year-old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated mildly proliferative fibrocystic changes with epithelial hyperplasia, papillomatosis, and duct ectasia. Pathology for the associated tumor tissue indicated invasive grade 4, nuclear grade 3 mammary adenocarcinoma with extensive comedo necrosis. Family history included epilepsy, atherosclerotic coronary artery disease, and type II diabetes. 174 2132626 OVARNOT03 The library was constructed using RNA isolated from ovarian tissue removed from a 43-year-old Caucasian female during removal of the fallopian tubes and ovaries. Pathology for the associated tumor tissue indicated grade 2 mucinous cystadeno- carcinoma. Patient history included mitral valve disorder, pneumonia, and viral hepatitis. Family history included atherosclerotic coronary artery disease, pancreatic cancer, cerebrovascular disease, breast cancer, and uterine cancer. 175 2280639 PROSNON01 The library was constructed and normalized from 4.4 million independent clones from the PROSNOT11 library. Starting RNA was made from prostate tissue removed from a 28-year-old Caucasian male who died from a gunshot wound. The normalization and hybridization conditions were adapted from Soares, M. B. et al. (1994) Proc. Natl. Acad. Sci. USA 91: 9228-9232, using a longer (19 hour) reannealing hybridization period. 176 2292356 BRAINON01 The library was constructed and normalized from 4.88 million independent clones

from the BRAINOT03 library. Starting RNA was made from brain tissue removed from a 26-year-old Caucasian male during cranioplasty and excision of a cerebral meningeal lesion. Pathology for the associated tumor tissue indicated a grade 4 oligoastrocytoma in the right fronto-parietal part of the brain. 177 2349310 COLSUCT01 The library was constructed using RNA isolated from diseased sigmoid colon tissue obtained from a 70-year-old Caucasian male during colectomy with permanent ileostomy. Pathology indicated chronic ulcerative colitis. Patient history included benign neoplasm of the colon. Family history included atherosclerotic coronary artery disease and myocardial infarctions. 178 2373227 ADRENOT07 The library was constructed using RNA isolated from adrenal tissue removed from a 61-year-old female during a bilateral adrenalectomy. Patient history included an unspecified disorder of the adrenal glands. 179 2457682 ENDANOT01 The library was constructed using RNA isolated from aortic endothelial cell tissue from an explanted heart removed from a male during a heart transplant. 180 2480426 SMCANOT01 The library was constructed using RNA isolated from an aortic smooth muscle cell line derived from the explanted heart of a male during a heart transplant. 181 2503743 CONUTUT01 The library was constructed using RNA isolated from sigmoid mesentery tumor tissue obtained from a 61-year-old female during a total abdominal hysterectomy and bilateral salpingo-oophorectomy with regional lymph node excision. Pathology indicated a metastatic grade 4 malignant mixed mullerian tumor present in the sigmoid mesentery at two sites. 182 2537684 BONRTUT01 The library was constructed using RNA isolated from rib tumor tissue removed from a 16-year-old Caucasian male during a rib osteotomy and a wedge resection of the lung. Pathology indicated a metastatic grade 3 (of 4) osteosarcoma, forming a mass involving the chest wall. 183 2593853 OVARTUT02 The library was constructed using RNA isolated from ovarian tumor tissue removed from a 51- year-old Caucasian female during an exploratory laparotomy, total abdominal hysterectomy, salpingo-oophorectomy, and an incidental appendectomy. Pathology indicated mucinous cystadenoma presenting as a multiloculated neoplasm involving the entire left ovary. The right ovary contained a follicular cyst and a hemorrhagic corpus luteum. The uterus showed proliferative endometrium and a single intramural leiomyoma. The peritoneal biopsy indicated benign glandular inclusions consistent with endosalpingiosis. Family history included atherosclerotic coronary artery disease, benign hypertension, breast cancer, and uterine cancer. 184 2622354 KERANOT02 The library was constructed using RNA isolated from epidermal breast keratinocytes (NHEK). NHEK (Clontech #CC-2501) is a human breast keratinocyte cell line derived from a 30-year-old black female during breast-reduction surgery. 185 2641377 LUNGTUT08 The library was constructed using RNA isolated from lung tumor tissue removed from a 63-year- old Caucasian male during a right upper lobectomy with fiberoptic bronchoscopy. Pathology indicated a grade 3 adenocarcinoma. Patient history included atherosclerotic coronary artery disease, an acute myocardial infarction, rectal cancer, an asymptomatic abdominal aortic aneurysm, and cardiac dysrhythmia. Family history included congestive heart failure, stomach cancer, and lung cancer, type II diabetes, atherosclerotic coronary artery disease, and an acute myocardial infarction. 186 2674857 KIDNNOT19 The library was constructed using RNA isolated from kidney tissue removed a 65-year-old Caucasian male during an exploratory laparotomy and nephroureterectomy. Pathology for the associated tumor tissue indicated a grade 1 renal cell carcinoma within the upper pole of the left kidney. Patient history included malignant melanoma of the abdominal skin, benign neoplasm of colon, cerebrovascular disease, and umbilical hernia. Family history included myocardial infarction, atherosclerotic coronary artery disease, cerebrovascular disease, prostate cancer, myocardial infarction, and atherosclerotic coronary artery disease. 187 2758485 THP1AZS08 The subtracted THP-1 promonocyte cell line library was constructed using 5.76 million clones from a 5-aza-2'-deoxycytidine (AZT) treated THP-1 cell library. Starting RNA was made from THP-1 promonocyte cells treated for three days with 0.8 micromolar AZT. The library was oligo(dT)- primed, and cDNAs were cloned directionally into the pSPORT1 vectoring system using Sal1 (5') and NotI (3'). The hybridization probe for subtraction was derived from a similarly constructed library, made from 1 microgram of polyA RNA isolated from untreated THP-1 cells. 5.76 million clones from the AZ-treated THP-1 cell library were then subjected to two rounds of subtractive hybridization with 5 million clones from the untreated THP-1 cell library. Subtractive hybridization conditions were based on the methodologies of Swaroop et al. (Nucl. Acids Res. (1991) 19: 1954) and Bonaldo et al. (Genome Res (1996) 6: 791-806). 188 2763296 BRSTNOT12 The library was constructed using RNA isolated from diseased breast tissue removed from a 32- year-old Caucasian female during a bilateral reduction mammoplasty. Pathology indicated nonproliferative fibrocystic disease. Family history included benign hypertension and atherosclerotic coronary artery disease. 189 2779436 OVARTUT03 The library was constructed using RNA isolated from ovarian tumor tissue removed from the left ovary of a 52-year-old mixed ethnicity female during a total abdominal hysterectomy, bilateral salpingo-oophorectomy, peritoneal and lymphatic structure biopsy, regional lymph node excision, and peritoneal tissue destruction. Pathology indicated an invasive grade 3 (of 4) seroanaplastic carcinoma forming a mass in the left ovary. The endometrium was atrophic. Multiple (2) leiomyomata were identified, one subserosal and 1 intramural. Pathology also indicated a metastatic grade 3 seroanaplastic carcinoma involving the omentum, cul-de-sac peritoneum, left broad ligament peritoneum, and mesentery colon. Patient history included breast cancer, chronic peptic ulcer, and joint pain. Family history included colon cancer, cerebrovascular disease, breast cancer, type II diabetes, esophagus cancer, and depressive disorder. 190 2808528 BLADTUT08 The library was constructed using RNA isolated from bladder tumor tissue removed from a 72- year-old Caucasian male during a radical cystectomy and prostatectomy. Pathology indicated an invasive grade 3 (of 3) transitional cell carcinoma in the right bladder base. Family history included myocardial infarction, cerebrovascular disease, brain cancer, and myocardial infarction. 191 2809230 BLADTUT08 The library was constructed using RNA isolated from bladder tumor tissue removed from a 72- year-old Caucasian male during a radical cystectomy and prostatectomy. Pathology indicated an invasive grade 3 (of 3) transitional cell carcinoma in the right bladder base. Patient history included pure hypercholesterolemia and tobacco abuse. Family history included myocardial infarction, cerebrovascular disease, brain cancer, and myocardial infarction. 192 2816821 BRSTNOT14 The library was constructed using RNA isolated from breast tissue removed from a 62-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated an invasive grade 3 (of 4), nuclear grade 3 (of 3) adenocarcinoma, ductal type. Ductal carcinoma in situ, comedo type, comprised 60% of the tumor mass. Metastatic adenocarcinoma was identified in one (of 14) axillary lymph nodes with no perinodal extension. The tumor cells were strongly positive for estrogen receptors and weakly positive for progesterone receptors. Patient history included a benign colon neoplasm, hyperlipidemia, and cardiac dysrhythmia. Family history included atherosclerotic coronary artery disease, myocardial infarction, colon cancer, ovarian cancer, lung cancer, and cerebrovascular disease. 193 2817268 BRSTNOT14 The library was constructed using RNA isolated from breast tissue removed from a 62-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated an invasive grade 3 (of 4), nuclear grade 3 (of 3) adenocarcinoma, ductal type. Ductal carcinoma in situ, comedo type, comprised 60% of the tumor mass. Metastatic adenocarcinoma was identified in one (of 14) axillary lymph nodes with no perinodal extension. The tumor cells were strongly positive for estrogen receptors and weakly positive for progesterone receptors. Patient history included a benign colon neoplasm, hyperlipidemia, and cardiac dysrhythmia. Family history included atherosclerotic coronary artery disease, myocardial infarction, colon cancer, ovarian cancer, lung cancer, and cerebrovascular disease. 194 2923165 SININOT04 The library was constructed using RNA isolated from diseased ileum tissue obtained from a 26- year-old Caucasian male during a partial colectomy, permanent colostomy, and an incidental appendectomy. Pathology indicated moderately to severely active Crohn's disease. Family history included enteritis of the small intestine. 195 2949822 KIDNFET01 The library was constructed using RNA isolated from kidney tissue removed from a Caucasian female fetus, who died at 17 weeks' gestation from anencephalus. 196 2992192 KTDNFET02 The library was constructed using RNA isolated from kidney tissue removed from a Caucasian male fetus, who was stillborn with a hypoplastic left heart and died at 23 weeks' gestation. 197 2992458 KIDNFET02 The library was constructed using RNA isolated from kidney tissue removed from a Caucasian male fetus, who was stillborn with a hypoplastic left heart and died at 23 weeks' gestation. 198 3044710 HEAANOT01 The library was constructed using RNA isolated from right coronary and right circumflex coronary artery tissue removed from the explanted heart of a 46-year-old Caucasian male during a heart transplantation. Patient history included myocardial infarction from total occlusion of the left anterior descending coronary artery, atherosclerotic coronary artery disease, hyperlipidemia, myocardial ischemia, dilated cardiomyopathy, and left ventricular dysfunction. Previous surgeries included cardiac catheterization. Family history included atherosclerotic coronary artery disease. 199 3120415 LUNGTUT13 The library was constructed using RNA isolated from tumorous lung tissue removed from the right upper lobe of a 47-year-old Caucasian male during a segmental lung resection. Pathology indicated invasive grade 3 (of 4) adenocarcinoma. Family history included atherosclerotic coronary artery disease, and type II diabetes. 200 126758 LUNGNOT01 The library was constructed at Stratagene using RNA isolated from the lung tissue of a 72-year-old male. 201 674760 CRBLNOT01 The library was constructed using RNA isolated from the cerebellum tissue of a 69-year-old Caucasian male who died from chronic obstructive pulmonary disease. Patient history included myocardial infarction, hypertension, and osteoarthritis. 202 1229438 BRAITUT01 The library was constructed using RNA isolated from brain tumor tissue removed from a 50-year- old Caucasian female during a frontal lobectomy. Pathology indicated recurrent grade 3 oligoastrocytoma with focal necrosis and extensive calcification. Patient history included a speech disturbance and epilepsy. The patient's brain had also been irradiated with a total dose of 5,082 cyg (Fraction 8). Family history included a brain tumor. 203 1236935 LUNGFET03 The library was constructed using RNA isolated from lung tissue removed from a Caucasian female fetus who died at 20 weeks' gestation. 204 1359283 LUNGNOT12 The library was constructed using RNA isolated from lung tissue removed from a 78-year-old Caucasian male during a segmental lung resection and regional lymph node resection. Pathology indicated fibrosis pleura was puckered, but not invaded. Pathology for the associated tumor tissue indicated an invasive pulmonary grade 3 adenocarcinoma. Patient history included cerebrovascular disease, arteriosclerotic coronary artery disease, thrombophlebitis, chronic obstructive pulmonary disease, and asthma. Family history included intracranial hematoma, cerebrovascular disease, arteriosclerotic coronary artery disease, and type I diabetes. 205 1450703 PENITUT01 The library was constructed using RNA isolated from tumor tissue removed from the penis of a 64- year-old Caucasian male during penile amputation. Pathology indicated a fungating invasive grade 4 squamous cell carcinoma involving the inner wall of the foreskin and extending onto the glans penis. Patient history included benign neoplasm of the large bowel, atherosclerotic coronary artery disease, angina pectoris, gout, and obesity. Family history included malignant pharyngeal neoplasm, chronic lymphocytic leukemia, and chronic liver disease. 206 1910668 CONNTUT01 The library was constructed using RNA isolated from a soft tissue tumor removed from the clival area of the skull of a 30-year-old Caucasian female. Pathology indicated chondroid chordoma with neoplastic cells reactive for keratin. 207 1955143 CONNNOT01 The library was constructed using RNA isolated from mesentery fat tissue obtained from a 71-year- old Caucasian male during a partial colectomy and permanent colostomy. Family history included atherosclerotic coronary artery disease, myocardial infarction, and extrinsic asthma. 208 1961637 BRSTNOT04 The library was constructed using RNA isolated from breast tissue removed from a 62-year-old East Indian female during a unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated an invasive grade 3 ductal carcinoma. Patient history included benign hypertension, hyperlipidemia, and hematuria. Family history included cerebrovascular and cardiovascular disease, hyperlipidemia, and liver cancer. 209 1990762 CORPNOT02 The library was constructed using RNA isolated from diseased corpus callosum tissue removed from the brain of a 74-year-old Caucasian male who died from Alzheimer's disease. 210 1994131 CORPNOT02 The library was constructed using RNA isolated from diseased corpus callosum tissue removed from the brain of a 74-year-old Caucasian male who died from Alzheimer's disease. 211 1997745 BRSTTUT03 The library was constructed using RNA isolated from breast tumor tissue removed from a 58-year- old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated multicentric invasive grade 4 lobular carcinoma. The mass was identified in the upper outer quadrant, and three separate nodules were found in the lower outer

quadrant of the left breast. Patient history included skin cancer, rheumatic heart disease, osteoarthritis, and tuberculosis. Family history included cerebrovascular disease, coronary artery aneurysm, breast cancer, prostate cancer, atherosclerotic coronary artery disease, and type I diabetes. 212 2009035 TESTNOT03 The library was constructed using polyA RNA isolated from testicular tissue removed from a 37- year-old Caucasian male who died from liver disease. Patient history included cirrhosis, jaundice, and liver failure. 213 2009152 TESTNOT03 The library was constructed using polyA RNA isolated from testicular tissue removed from a 37- year-old Caucasian male who died from liver disease. Patient history included cirrhosis, jaundice, and liver failure. 214 2061752 OVARNOT03 The library was constructed using RNA isolated from ovarian tissue removed from a 43-year-old Caucasian female during removal of the fallopian tubes and ovaries. Pathology for the associated tumor tissue indicated grade 2 mucinous cystadenocarcinoma. Patient history included mitral valve disorder, pneumonia, and viral hepatitis. Family history included atherosclerotic coronary artery disease, pancreatic cancer, stress reaction, cerebrovascular disease, breast cancer, and uterine cancer. 215 2061933 OVARNOT03 The library was constructed using RNA isolated from ovarian tissue removed from a 43-year-old Caucasian female during removal of the fallopian tubes and ovaries. Pathology for the associated tumor tissue indicated grade 2 mucinous cystadenocarcinoma. Patient history included mitral valve disorder, pneumonia, and viral hepatitis. Family history included atherosclerotic coronary artery disease, pancreatic cancer, stress reaction, cerebrovascular disease, breast cancer, and uterine cancer. 216 2081422 UTRSNOT08 The library was constructed using RNA isolated from uterine tissue removed from a 35-year-old Caucasian female during a vaginal hysterectomy with dilation and curettage. Pathology indicated that the endometrium was secretory phase with a benign endometrial polyp 1 cm in diameter. The cervix showed mild chronic cervicitis. Family history included atherosclerotic coronary artery disease and type II diabetes. 217 2101278 BRAITUT02 The library was constructed using RNA isolated from brain tumor tissue removed from the frontal lobe of a 58-year-old Caucasian male during excision of a cerebral meningeal lesion. Pathology indicated a grade 2 metastatic hypernephroma. Patient history included a grade 2 renal cell carcinoma, insomnia, and chronic airway obstruction. Family history included a malignant neoplasm of the kidney. 218 2121353 BRSTNOT07 The library was constructed using RNA isolated from diseased breast tissue removed from a 43- year-old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated mildly proliferative fibrocystic changes with epithelial hyperplasia, papillomatosis, and duct ectasia. Pathology for the associated tumor tissue indicated invasive grade 4, nuclear grade 3 mammary adenocarcinoma with extensive comedo necrosis. Family history included epilepsy, cardiovascular disease, and type II diabetes. 219 2241736 PANCTUT02 The library was constructed using RNA isolated from pancreatic tumor tissue removed from a 45- year-old Caucasian female during radical pancreaticoduodenectomy. Pathology indicated a grade 4 anaplastic carcinoma. Family history included benign hypertension, hyperlipidemia and atherosclerotic coronary artery disease. 220 2271935 PROSNON01 This normalized prostate library was constructed from 4.4 M independent clones from the PROSNOT11 library. Starting RNA was made from prostate tissue removed from a 28-year-old Caucasian male who died from a self-inflicted gunshot wound. The normalization and hybridization conditions were adapted from Soares, M. B. et al. (1994) Proc. Natl. Acad. Sci. USA 91: 9228-9232, using a longer (19 hour) reannealing hybridization period. 221 2295344 BRSTNOT05 The library was constructed using RNA isolated from breast tissue removed from a 58-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated multicentric invasive grade 4 lobular carcinoma. Patient history included skin cancer, rheumatic heart disease, osteoarthritis, and tuberculosis. Family history included cerebrovascular and cardiovascular disease, breast and prostate cancer, and type I diabetes. 222 2303994 BRSTNOT05 The library was constructed using RNA isolated from breast tissue removed from a 58-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated multicentric invasive grade 4 lobular carcinoma. Patient history included skin cancer, rheumatic heart disease, osteoarthritis, and tuberculosis. Family history included cerebrovascular and cardiovascular disease, breast and prostate cancer, and type I diabetes. 223 2497805 ADRETUT05 The library was constructed RNA isolated from adrenal tumor tissue removed from a 52-year-old Caucasian female during a unilateral adrenalectomy. Pathology indicated a pheochromocytoma. 224 2646362 LUNGTUT11 The library was constructed using RNA isolated from lung tumor tissue removed from the right lower lobe a 57-year-old Caucasian male during a segmental lung resection. Pathology indicated an infiltrating grade 4 squamous cell carcinoma. Multiple intrapulmonary peribronchial lymph nodes showed metastatic squamous cell carcinoma. Patient history included a benign brain neoplasm and tobacco abuse. Family history included spinal cord cancer, type II diabetes, cerebrovascular disease, and malignant prostate neoplasm. 225 2657146 LUNGTUT09 The library was constructed using RNA isolated from lung tumor tissue removed from a 68-year- old Caucasian male during segmental lung resection. Pathology indicated invasive grade 3 squamous cell carcinoma and a metastatic tumor. Patient history included type II diabetes, thyroid disorder, depressive disorder, hyperlipidemia, esophageal ulcer, and tobacco use. 226 2755786 THP1AZS08 This subtracted THP-1 promonocyte cell line library was constructed using 5.76 million clones from a 5-aza-2'-deoxycytidine (AZ) treated THP-1 cell library. Starting RNA was made from THP- 1 promonocyte cells treated for three days with 0.8 micromolar AZ. The hybridization probe for subtraction was derived from a similarly constructed library, made from RNA isolated from untreated THP-1 cells. 5.76 million clones from the AZ-treated THP-1 cell library were then subjected to two rounds of subtractive hybridization with 5 million clones from the untreated THP-1 cell library. Subtractive hybridization conditions were based on the methodologies of Swaroop et al., NAR (1991) 19: 1954, and Bonaldo et al., Genome Research (1996) 6: 791. THP-1 (ATCC TIB 202) is a human promonocyte line derived from peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia. 227 2831245 TLYMNOT03 The library was constructed using RNA isolated from nonactivated Th1 cells. These cells were differentiated from umbilical cord CD4 T cells with IL-12 and B7-transfected COS cells. 228 3116250 LUNGTUT13 The library was constructed using RNA isolated from tumorous lung tissue removed from the right upper lobe of a 47-year-old Caucasian male during a segmental lung resection. Pathology indicated invasive grade 3 (of 4) adenocarcinoma. Family history included atherosclerotic coronary artery disease, and type II diabetes. 229 3129630 LUNGTUT12 The library was constructed using RNA isolated from tumorous lung tissue removed from a 70- year-old Caucasian female during a lung lobectomy of the left upper lobe. Pathology indicated grade 3 (of 4) adenocarcinoma and vascular invasion. Patient history included tobacco abuse, depressive disorder, anxiety state, and skin cancer. Family history included cerebrovascular disease, congestive heart failure, colon cancer, depressive disorder, and primary liver. 230 007632 HMC1NOT01 The library was constructed using RNA isolated from the HMC-1 human mast cell line derived from a 52-year-old female. Patient history included mast cell leukemia. 231 1236968 LUNGFET03 The library was constructed using RNA isolated from lung tissue removed from a Caucasian female fetus who died at 20 weeks' gestation. 232 1334153 COLNNOT13 The library was constructed using RNA isolated from ascending colon tissue of a 28-year-old Caucasian male with moderate chronic ulcerative colitis. 233 1396975 BRAITUT08 The library was constructed using RNA isolated from brain tumor tissue removed from the left frontal lobe of a 47-year-old Caucasian male during excision of cerebral meningeal tissue. Pathology indicated grade 4 fibrillary astrocytoma with focal tumoral radionecrosis. Patient history included cerebrovascular disease, deficiency anemia, hyperlipidemia, epilepsy, and tobacco use. Family history included cerebrovascular disease and malignant prostate neoplasm. 234 1501749 SINTBST01 The library was constructed using RNA isolated from ileum tissue removed from an 18-year-old Caucasian female during bowel anastomosis. Pathology indicated Crohn's disease of the ileum. Family history included cerebrovascular disease and atherosclerotic coronary artery disease. 235 1575240 LNODNOT03 The library was constructed using RNA isolated from lymph node tissue removed from a 67-year- old Caucasian male during a segmental lung resection and bronchoscopy. This tissue was extensively necrotic with 10% viable tumor. Pathology for the associated tumor tissue indicated invasive grade 3-4 squamous cell carcinoma. Patient history included hemangioma. Family history included atherosclerotic coronary artery disease, benign hypertension, and congestive heart failure. 236 1647884 PROSTUT09 The library was constructed using RNA isolated from prostate tumor tissue removed from a 66- year-old Caucasian male during a radical prostatectomy, radical cystectomy, and urinary diversion. Pathology indicated grade 3 transitional cell carcinoma. Patient history included lung neoplasm, and benign hypertension. Family history included malignant breast neoplasm, tuberculosis, cerebrovascular disease, atherosclerotic coronary artery disease, and lung cancer. 237 1661144 BRSTNOT09 The library was constructed using RNA isolated from breast tissue removed from a 45-year-old Caucasian female during unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated invasive nuclear grade 2-3 adenocarcinoma. Patient history included valvuloplasty of mitral valve and rheumatic heart disease. Family history included cardiovascular disease and type II diabetes. 238 1685409 PROSNOT15 The library was constructed using RNA isolated from diseased prostate tissue removed from a 66- year-old Caucasian male during radical prostatectomy and regional lymph node excision. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated adenocarcinoma (Gleason grade 2 + 3). The patient presented with elevated prostate specific antigen (PSA). Family history included prostate cancer, secondary bone cancer, and benign hypertension. 239 1731419 BRSTTUT08 The library was constructed using RNA isolated from breast tumor tissue removed from a 45-year- old Caucasian female during unilateral extended simple mastectomy. Pathology indicated invasive nuclear grade 2-3 adenocarcinoma. Patient history included valvuloplasty of mitral valve and rheumatic heart disease. Family history included cardiovascular disease and type II diabetes. 240 2650265 BRSTNOT14 The library was constructed using RNA isolated from breast tissue removed from a 62-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated an invasive grade 3 (of 4), nuclear grade 3 (of 3) adenocarcinoma. Patient history included a benign colon neoplasm, hyperlipidemia, cardiac dysrhythmia, and obesity. Family history included cardiovascular and cerebrovascular disease and colon, ovary and lung cancer. 241 2677129 KIDNNOT19 The library was constructed using RNA isolated from kidney tissue removed a 65-year-old Caucasian male during an exploratory laparotomy and nephroureterectomy. Pathology for the associated tumor tissue indicated grade 1 renal cell carcinoma within the upper pole of the left kidney. Patient history included malignant melanoma of the abdominal skin, benign neoplasm of colon, cerebrovascular disease, and umbilical hernia. Family history included myocardial infarction, atherosclerotic coronary artery disease, cerebrovascular disease, and prostate cancer. 242 3151073 ADRENON04 The normalized adrenal gland library was constructed from 1.36 .times. 1e6 independent clones from an adrenal tissue library. Starting RNA was made from adrenal gland tissue removed from a 20-year- old Caucasian male who died from head trauma. The library was normalized in two rounds using conditions adapted from Soares et al. (PNAS (1994) 91: 9228-9232) and Bonaldo et al. (Genome Res (1996) 6: 791-806) using a significantly longer (48-hours/round) reannealing hybridization period. 243 3170095 BRSTNOT18 The library was constructed using RNA isolated from diseased breast tissue removed from a 57- year-old Caucasian female during a unilateral simple extended mastectomy. Pathology indicated mildly proliferative breast disease. Patient history included breast cancer and osteoarthritis. Family history included type II diabetes, gallbladder and breast cancer, and chronic lymphocytic leukemia. 244 3475168 LUNGNOT27 The library was constructed using RNA isolated from lung tissue removed from a 17-year-old Hispanic female. 245 3836893 DENDTNT01 The library was constructed using RNA isolated from treated dendritic cells from peripheral blood. 246 4072159 KIDNNOT26 The library was constructed using RNA isolated from left kidney medulla and cortex tissue removed from a 53-year-old Caucasian female during a nephroureterectomy. Pathology for the associated tumor tissue indicated grade 2 renal cell carcinoma involving the lower pole of the kidney. Patient history included hyperlipidemia, cardiac dysrhythmia, menorrhagia, cerebrovascular disease, atherosclerotic coronary artery disease, and tobacco abuse. Family history included cerebrovascular disease and atherosclerotic coronary artery disease. 247 1003916 BRSTNOT03 The library was constructed using RNA isolated from diseased breast tissue removed from a 54- year-old Caucasian female during a bilateral radical mastectomy. Pathology for the associated tumor tissue indicated residual invasive grade

3 mammary ductal adenocarcinoma. Patient history included kidney infection and condyloma acuminatum. Family history included benign hypertension, hyperlipidemia and a malignant neoplasm of the colon. 248 2093492 PANCNOT04 The library was constructed using RNA isolated from the pancreatic tissue of a 5-year-old Caucasian male who died in a motor vehicle accident. 249 2108789 BRAITUT03 The library was constructed using RNA isolated from brain tumor tissue removed from the left frontal lobe a 17-year-old Caucasian female during excision of a cerebral meningeal lesion. Pathology indicated a grade 4 fibrillary giant and small-cell astrocytoma. Family history included benign hypertension and cerebrovascular disease. 250 2171401 ENDCNOT03 The library was constructed using RNA isolated from dermal microvascular endothelial cells removed from a neonatal Caucasian male. 251 2212530 SINTFET03 The library was constructed using RNA isolated from small intestine tissue removed from a Caucasian female fetus, who died at 20 weeks' gestation. 252 2253036 OVARTUT01 The library was constructed using RNA isolated from ovarian tumor tissue removed from a 43- year-old Caucasian female during removal of the fallopian tubes and ovaries. Pathology indicated grade 2 mucinous cystadenocarcinoma involving the entire left ovary. Patient history included mitral valve disorder, pneumonia, and viral hepatitis. Family history included atherosclerotic coronary artery disease, pancreatic cancer, stress reaction, cerebrovascular disease, breast cancer, and uterine cancer. 253 2280161 PROSNON01 The normalized prostate library was constructed from 4.4 M independent clones from the PROSNOT11 library. Starting RNA was made from prostate tissue removed from a 28-year-old Caucasian male who died from a self-inflicted gunshot wound. The normalization and hybridization conditions were adapted from Soares, M. B. et al. (1994) Proc. Natl. Acad. Sci. USA 91: 9228-9232, using a longer (19 hour) reannealing hybridization period. 254 2287485 BRAINON01 The library was constructed and normalized from 4.88 million independent clones from the BRAINOT03 library. RNA was made from brain tissue removed from a 26-year-old Caucasian male during cranioplasty and excision of a cerebral meningeal lesion. Pathology for the associated tumor tissue indicated a grade 4 oligoastrocytoma in the right fronto-parietal part of the brain. 255 2380344 ISLTNOT01 The library was constructed using RNA isolated from a pooled collection of pancreatic islet cells. 256 2383171 ISLTNOT01 The library was constructed using RNA isolated from a pooled collection of pancreatic islet cells. 257 2396046 THP1AZT01 The library was constructed using RNA isolated from THP-1 promonocyte cells treated for three days with 0.8 micromolar 5-aza-2'-deoxycytidine. THP-1 (ATCC TIB 202)is a human promonocyte line derived from peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia. 258 2456587 ENDANOT01 The library was constructed using RNA isolated from aortic endothelial cell tissue from an explanted heart removed from a male during a heart transplant. 259 2484813 BONRTUT01 The library was constructed using RNA isolated from rib tumor tissue removed from a 16-year-old Caucasian male during a rib osteotomy and a wedge resection of the lung. Pathology indicated a metastatic grade 3 (of 4) osteosarcoma, forming a mass involving the chest wall. 260 2493851 ADRETUT05 The library was constructed RNA isolated from adrenal tumor tissue removed from a 52-year-old Caucasian female during a unilateral adrenalectomy. Pathology indicated a pheochromocytoma. 261 2495719 ADRETUT05 The library was constructed RNA isolated from adrenal tumor tissue removed from a 52-year-old Caucasian female during a unilateral adrenalectomy. Pathology indicated a pheochromocytoma. 262 2614153 GBLANOT01 The library was constructed using RNA isolated from diseased gallbladder tissue removed from a 53-year-old Caucasian female during a cholecystectomy. Pathology indicated mild chronic cholecystitis and cholelithiasis with approximately 150 mixed gallstones. Family history included benign hypertension. 263 2655184 THYMNOT04 The library was constructed using RNA isolated from thymus tissue removed from a 3-year-old Caucasian male, who died from anoxia. Serologies were negative. The patient was not taking any medications. 264 2848362 BRSTTUT13 The library was constructed using RNA isolated from breast tumor tissue removed from the right breast of a 46-year-old Caucasian female during a unilateral extended simple mastectomy with breast reconstruction. Pathology indicated an invasive grade 3 adenocarcinoma, ductal type with apocrine features and greater than 50% intraductal component. Patient history included breast cancer. 265 2849906 BRSTTUT13 The library was constructed using RNA isolated from breast tumor tissue removed from the right breast of a 46-year-old Caucasian female during a unilateral extended simple mastectomy with breast reconstruction. Pathology indicated an invasive grade 3 adenocarcinoma, ductal type with apocrine features and greater than 50% intraductal component. Patient history included breast cancer. 266 2899137 DRGCNOT01 The library was constructed using RNA isolated from dorsal root ganglion tissue removed from the cervical spine of a 32-year-old Caucasian male who died from acute pulmonary edema and bronchopneumonia, bilateral pleural and pericardial effusions, and malignant lymphoma (natural killer cell type). Patient history included probable cytomegalovirus, infection, hepatic congestion and steatosis, splenomegaly, hemorrhagic cystitis, thyroid hemorrhage, and Bell's palsy. Surgeries included colonoscopy, large intestine biopsy, adenotonsillectomy, and nasopharyngeal endoscopy and biopsy; treatment included radiation therapy. 267 2986229 CARGDIT01 The library was constructed using RNA isolated from diseased cartilage tissue. Patient history included osteoarthritis. 268 3222081 COLNNON03 The normalized colon library was constructed from 2.84 .times. 10.sup.6 independent clones from the COLNNOT07 library. Starting RNA was made from colon tissue removed from a 60-year-old Caucasian male during a left hemicolectomy. The normalization and hybridization conditions were adapted from Soares et al. (PNAS (1994) 91: 9228-9232), Swaroop et al. (Nucl. Acids Res. (1991) 19: 1954) and Bonaldo et al. (Genome Res (1996) 6: 791-806), using a significantly longer (48 hour) reannealing hybridization period.

[0276]

7TABLE 5 Program Description Reference Parameter Threshold ABI FACTURA A program that removes vector Perkin-Elmer Applied sequences and masks ambiguous Biosystems, Foster City, CA. bases in nucleic acid sequences. ABI/PARACEL FDF A Fast Data Finder useful in Perkin-Elmer Applied Mismatch <50% comparing and annotating Biosystems, Foster City, CA; amino acid or nucleic acid Paracel Inc., Pasadena, CA. sequences. ABI AutoAssembler A program that assembles Perkin-Elmer Applied nucleic acid sequences. Biosystems, Foster City, CA. BLAST A Basic Local Alignment Altschul, S. F. et al. (1990) ESTs: Probability value = Search Tool useful in sequence J. Mol. Biol. 215: 403-410; 1.0E-8 or less similarity search for amino Altschul, S. F. et al. (1997) Full Length sequences: acid and nucleic acid sequences. Nucleic Acids Res. 25: Probability value = BLAST includes five functions: 3389-3402. 1.0E-10 or less blastp, blastn, blastx, tblastn, and tblastx. FASTA A Pearson and Lipman algorithm Pearson, W. R. and D. J. ESTs: fasta E value = that searches for similarity Lipman (1988) Proc. Natl. 1.06E-6 between a query sequence and a Acad Sci. 85: 2444-2448; Assembled ESTs: fasta group of sequences of the same Pearson, W. R. (1990) Methods Identity = 95% or greater type. FASTA comprises as least Enzymol. 183: 63-98; and Match length = 200 five functions: fasta, tfasta, and Smith, T. F. and M. S. bases or greater; fastx, tfastx, and ssearch. Waterman (1981) Adv. Appl. fastx E value = 1.0E-8 Math. 2: 482-489. or less Full Length sequences: fastx score = 100 or greater BLIMPS A BLocks IMProved Searcher that Henikoff, S and J. G. Henikoff, Score = 1000 or greater; matches a sequence against those Nucl. Acid Res., 19: 6565-72, Ratio of Score/Strength = in BLOCKS, PRINTS, DOMO, PRODOM, 1991. J. G. Henikoff and S. 0.75 or larger; and, if and PFAM databases to search for Henikoff (1996) Methods applicable, Probability gene families, sequence homology, Enzymol. 266: 88-105; and value = 1.0E-3 or less and structural fingerprint regions. Attwood, T. K. et al. (1997) J. Chem. Inf. Comput. Sci. 37: 417-424. PFAM An algorithm for searching a query Krogh, A. et al. (1994) Score = 10-50 bits for sequence against hidden Markov model J. Mol. Biol., 235: 1501-1531; PFAM hits, depending on (HMM)-based databases of protein Sonnhammer, E. L. L. et individual protein families family consensus sequences, such as PFAM. al. (1988) Nucleic Acids Res. 26: 320-322. ProfileScan An algorithm that searches for Gribskov, M. et al. (1988) Score = 4.0 or greater structural and sequence motifs CABIOS 4: 61-66; Gribskov, in protein sequences that match et al. (1989) Methods Enzymol. sequence patterns defined in 183: 146-159; Bairoch, A. Prosite. et al. (1997) Nucleic Acids Res. 25: 217-221. Phred A base-calling algorithm that Ewing, B. et al. (1998) examines automated sequencer Genome Res. 8: 175-185; traces with high sensitivity Ewing, B. and P. Green (1998) and probability. Genome Res. 8: 186-194. Phrap A Phils Revised Assembly Program Smith, T. F. and M. S. Score = 120 or greater; including SWAT and CrossMatch, Waterman (1981) Adv. Appl. Match length = 56 or programs based on efficient Math. 2: 482-489; Smith, greater implementation of the Smith- T. F. and M. S. Waterman Waterman algorithm, useful in (1981) J. Mol. Biol. 147: searching sequence homology 195-197; and Green, P., and assembling DNA sequences. University of Washington, Seattle, WA. Consed A graphical tool for viewing Gordon, D. et al. (1998) and editing Phrap assemblies Genome Res. 8: 195-202. SPScan A weight matrix analysis program Nielson, H. et al. (1997) Score = 5 or greater that scans protein sequences for Protein Engineering 10: 1-6; the presence of secretory signal Claverie, J. M. and S. Audic peptides. (1997) CABIOS 12: 431-439. Motifs A program that searches amino Bairoch et al. supra; acid sequences for patterns Wisconsin Package Program that matched those defined in Manual, version 9, page M51-59, Prosite. Genetics Computer Group, Madison, WI.

[0277]

8TABLE 6 Starting Ending Nucleotide Clone Fragment of Nucleotide Nucleotide SEQ ID NO: ID SEQ ID NO of Fragment of Fragment 135 443531 443531H1 1 253 1406807F6 152 336 443531T6 847 355 SBBA00451F1 396 856 SBBA00676F1 546 865 136 632860 632860H1 13 253 784715R3 17 666 509590H1 455 706 137 670010 670010H1 1 263 669971R1 1 633 138 726498 726498H1 13 263 726498R6 13 489 866599R3 7 660 139 795064 795064H1 86 323 4339458H1 4 284 937605R3 86 505 2381151F6 592 1057 1466346F6 857 1241 140 924925 924925H1 111 412 3268330H1 2 239 759120R3 111 629 141 962390 1907958F6 1 478 023569F1 1122 470 167282F1 1216 543 1309211F1 911 1224 142 1259405 1259405H1 46 277 2472425H1 331 354 774303R1 190 743 1520779F1 418 1001 1693833F6 914 1467 1831858T6.comp 1336 1742 1527737T6.comp 1386 1829 143 1297384 1297384H1 402 641 1269310F6 1 492 1457367F1 792 1380 415587R1 1358 1712 SANA02967F1 1143 614 144 1299627 1299627H1 1 250 1359140F6 1004 1573 1349224F1 1330 1731 SBAA01431F1 46 397 SBAA02909F1 868 262 SBAA01156F1 901 1266 145 1306026 1306026H1 1 223 1464088R6 302 829 SBAA02496F1 92 568 SBAA04305F1 366 883 146 1316219 1316219H1 246 491 2458603F6 1 402 2504756T6 980 380 147 1329031 1329031H1 1 264 1329031T6 505 1 1329031F6 1 523 148 1483050 1483050H1 722 931 855049H1 1 267 077017F1 1069 679 1483050F6 722 1215 1480024T6 2063 1315 1483050T6 2068 1535 759486R1 1762 2089 149 1514160 1514160H1 1640 1838 1866765T7 2383 2210 782676R1 1652 1875 008055X4 1090 1804 008055X5 1316 1952 1866765F6 2209 2391 SAOA03127F1 2129 1703 150 1603403 1603403H1 7 224 372910F1 420 44 733299R7 219 420 151 1652303 1652303H1 4 256 1671806H1 1 224 1341743T1 2069 1900 3803812H1 389 697 1878546F6 747 1344 1428640F1 1081 1664 2058609R6 1715 2098 1331621F1 1780 2096 1306331T1 1897 2098 152 1693358 1693358H1 41 125 2498265H1 1 252 1867125F6 205 373 1693358T6 1094 416 2245848R6 737 1103 153 1707711 1707711H1 408 626 1484609T1 2165 1855 1707711F6 408 987 1267959F1 1721 2182 1484609F1 1855 2178 SAJA00930F1 544 1132 SAJA01300R1 1675 1212 SAJA00999R1 1675 1142 154 1738735 1738735H1 7 236 SAJA00944R1 393 5 SAJA00137F1 913 685 SAJA03629F1 435 42 155 1749147 1749147H1 1 276 155 1749147F6 47 457 155 1749147T6 479 1 156 1817722 1817722H1 1 268 2011085H1 344 545 157 1831290 1831290H1 10 257 3473958H1 70 242 1972268F6 163 617 1301277F1 413 852 1521574F1 1024 1602 1561690T6 1729 1058 891461R1 1261 1738 158 1831477 1831477H1 59 337 1582867H1 1 199 1336769T1 1986 1639 1933092H1 525 789 1519909F1 841 1296 1220946H1 1061 1318 809556T1 1983 1687 1217559T1 2002 1445 1309225F1 1747 2001 159 1841607 1841607H1 13 192 SBHA03588F1 13 172 160 1852391 1852391H1 98 367 734140H1 1 225 1852391F6 98 542 161 1854555 1854555H1 1 265 2511711H1 37 58 782453R1 223 712 1854555F6 1 346 1840675T6 1046 860 2109736H1 938 1054 162 1855755 1855755H1 17 224 3040236H1 1 179 1283207F1 306 816 833763T1 1148 835 1920926R6 854 1161 163 1861434 1861434H1 13 253 1861434T6 872 261 SARA01525F1 426 808 SARA02548F1 587 889 164 1872334 1872334H1 1 229 1872334F6 1 424 SBGA03684F1 358 425 165 1877230 1877230H1 1405 1677 2519841H1 1 251 1877230T6 1903 1405 1254693F1 335 716 077020R1 682 1414 1232336F1 906 1507 1004952R6 1451 1904 SARA01879F1 1545 1921 SARA02654F1 1545 1923 166 1877885 1877885H1 68 323 508020F1 499 51 2751126R6 219 516 SARA02571F1 407 499 167 1889269 1889269H1 757 1020 1915551H1 1 191 629493X12 481 865 1441289F1 693 865 1215274X34F1 1106 1631 1818447F6 1307 1540 1208463R1 1372 1493 168 1890243 1890243H1 9 268 SARA01884F1 521 168 SATA00046F1 1057 851 SARA03294F1 1329 910 SARA02790F1 1138 1535 169 1900433 1900433H1 1 242 SATA00396F1 409 124 SATA02742F1 1 294 170 1909441 1909441H1 786 1048 1398811F1 1 550 3039939H1 607 876 3324740H1 685 944 1442131F6 787 1232 2254056H1 1423 1522 2199453T6 1955 1351 1698531H1 1968 1796 171 1932226 1932226H1 294 510 2320569H1 1 266 1932226F6 294 685 2469455T6 1475 1071 2469455F6 1034 1492 1907140F6 1158 1482 SATA02592F1 857 518 172 1932647 1932647H1 17 246 1492745T1 1582 1418 1492745H1 1418 1599 SASA02355F1 386 19 SASA00117F1 250 569 SASA00192F1 515 816 173 2124245 2124245H1 45 190 1235393F1 495 895 1402264F6 323 925 1303990F1 682 1240 1402264T6 1613 950 174 2132626 2132626H1 406 651 1723432T6 1299 746 2132626R6 406 904 1736723T6 1292 857 1504738F1 868 1320 175 2280639 2280639H1 28 303 1377560F6 261 777 176 2292356 2292356H1 717 968 4086827H1 1 275 1754442F6 232 577 3571126H1 497 808 1601305F6 808 1464 177 2349310 2349310H1 1 236 2349310T6 682 2 178 2373227 2373227H1 298 524 3316444H1 801 1053 302685R6 1141 1496 SASA02181F1 577 1 SASA01923F1 963 466 SASA03516F1 1102 1249 179 2457682 2457682H1 1 226 2457682F6 1 554 180 2480426 2480426H1 1 213 2480426F6 1 501 181 2503743 2503743H1 6 222 1853909H1 1 272 1517619F1 172 830 1467896F6 540 1112 490031F1 1647 1068 1208654R1 1382 1633 880544R1 1450 1648 182 2537684 2537684H1 434 682 2005493H1 1 194 730969H1 307 547 916487H1 723 989 996135R1 997 1598 1920738R6 1306 1692 1957710F6 1472 1692 183 2593853 2593853H1 1 252 807497H1 2 217 914020R6 284 740 889992R1 416 729 184 2622354 2622354H1 3 266 2623992H1 1 246 1556510F6 81 258 185 2641377 2641377H1 126 369 4341415H2 10 345 SBCA07049F3 126 599 186 2674857 2674857H1 139 393 1872373H1 1 270 470512R6 1486 1502 1728547H1 1285 1508 3013651F6 1423 1987 SBCA01366F1 819 385 SBCA00694F1 973 1198 187 2758485 2758485H1 20 267 3097533H1 1 158 1578959F6 291 771 188 2763296 2763296H1 63 301 3486025F6 1 130 SBDA07002F3 63 687 189 2779436 2779436H1 1 233 2779436F6 1 577 SBDA07009F3 1 608 190 2808528 2808528H1 25 335 2611513F6 2 489 SBDA07021T3 1058 443 191 2809230 2809230H1 409 630 2213849H1 1 133 711706R6 396 691 958323R1 407 800 030732F1 1366 623 192 2816821 2816821H1 210 501 3746964H1 1 307 2816821F6 210 682 948722T6 959 527 193 2817268 2817268H1 42 282 3591308H1 13 264 419522R1 179 808 2073028F6 446 924 1308781F6 869 1112 194 2923165 2923165H1 8 295 2011630H1 18 238 1457250F1 268 856 754668R1 327 878 1406510F6 558 901 195 2949822 2949822H1 1 280 SBDA07078F3 1 606 196 2992192 2992192H1 25 321 2534324H2 1 240 2815255T6 690 219 1551107T6 893 471 1551107R6 471 690 197 2992458 2992458H1 48 362 2618951H1 1 247 1479252F1 163 610 1879054H1 563 840 1879054F6 563 1096 2215240H1 951 1202 1535968T1 1729 1173 198 3044710 3044710H1 652 952 3741773H1 1 283 859906X42C1 94 192 1534347F1 90 268 1421122F1 830 1392 1303865F1 1033 1487 1704452F6 1432 1934 1251642F1 2006 1544 1781694R6 1894 2017 199 3120415 3120415H1 72 363 1360123T1 523 141 1375015H1 380 526

[0278]

Sequence CWU 1

1

269 1 88 PRT Homo sapiens misc_feature Incyte Clone No 443531 1 Met Ser Trp Trp Leu Cys Leu Pro Leu Gly Leu Phe Gly Ser Cys Leu 1 5 10 15 Ala Pro Ala Ala Ala Ala Ala Leu Ser Glu Phe Thr Gln Glu Gln His 20 25 30 Asp Gly Ala Gln Pro Ser Pro Lys Cys Leu Ala Glu Glu Leu Gly Asp 35 40 45 Ala Trp Thr Ile Gln Ile Glu Ala Asn Trp Lys Tyr Arg Ala Val Asn 50 55 60 Thr Asn Gln Arg Gly Lys Leu Leu Ala Ser Glu Thr Trp Lys Gly Arg 65 70 75 80 Arg Asn Thr Phe Phe Phe Leu Pro 85 2 128 PRT Homo sapiens misc_feature Incyte Clone No 632860 2 Met Trp Pro Ala Gly Leu Gly Arg Ser Leu Leu Ala Gln Pro Ala Leu 1 5 10 15 Cys Ser Phe Met Gly Pro Gln Trp Ile Leu Gln Phe Cys Ser Trp Leu 20 25 30 Glu Pro Arg Gln Leu Arg Trp Ser Trp Thr Glu Pro Pro Phe Thr Leu 35 40 45 Leu Asp Ser Leu Gly Leu Arg Ala Ala Gln Asp Ser Cys Ser Phe Thr 50 55 60 Thr Leu Val Pro Leu Thr Leu Asp Ser Ser Phe Met Thr Val Asn Val 65 70 75 80 Val Pro Phe Val Trp Thr Ser Ser Phe Phe Arg Ala Phe Gln Tyr Pro 85 90 95 Val Thr Ser Pro Cys Arg Thr Lys Asn Thr Pro Leu Leu Ile Asp Gly 100 105 110 Val Thr Arg Ile Gln Ala Thr Trp Pro Glu Ala Arg Ser Gln His Glu 115 120 125 3 111 PRT Homo sapiens misc_feature Incyte Clone No 670010 3 Met Gly Leu Leu Leu Leu Val Leu Phe Leu Ser Leu Leu Pro Val Ala 1 5 10 15 Tyr Thr Ile Met Ser Leu Pro Pro Ser Phe Asp Cys Gly Pro Phe Arg 20 25 30 Cys Arg Val Ser Val Ala Arg Glu His Leu Pro Ser Arg Gly Ser Leu 35 40 45 Leu Arg Gly Pro Arg Pro Arg Ile Pro Val Leu Val Ser Cys Gln Pro 50 55 60 Val Lys Gly His Gly Thr Leu Gly Glu Ser Pro Met Pro Phe Lys Arg 65 70 75 80 Val Phe Cys Gln Asp Gly Asn Val Arg Ser Phe Cys Val Cys Ala Val 85 90 95 His Phe Ser Ser His Gln Pro Pro Val Ala Val Glu Cys Leu Lys 100 105 110 4 110 PRT Homo sapiens misc_feature Incyte Clone No 726498 4 Met Trp Arg Leu Arg Arg Asn Leu Ala Leu Pro Pro Gly Lys Leu Ala 1 5 10 15 Trp Leu Tyr Leu Ser Val Phe Ser Gln Gly Ser Arg Ala Met Met Ser 20 25 30 Leu Thr Glu Ile Arg Leu Lys His Met Leu Glu Ile Trp His Gly Arg 35 40 45 Gln Ala Arg Ala Cys Glu Asn Leu Arg Asn Gln Thr Arg Val Ala Thr 50 55 60 Lys Val Glu Pro Gln Lys Gly Arg Ser Thr Glu Ile Cys Cys Leu Ala 65 70 75 80 Val Val Pro Leu Asn Glu Val Val Gln Ser Ser Ile Leu Trp Trp Val 85 90 95 Trp Ser Cys Cys Gln His Gln Glu Asp Lys Leu Gly Ala Lys 100 105 110 5 78 PRT Homo sapiens misc_feature Incyte Clone No 795064 5 Met Ala Glu Ser Gly Leu Thr Ser Leu Pro Gly Thr Ala Ser Trp Phe 1 5 10 15 Cys Phe Leu Pro Val Ser Gln Arg Lys Ala Thr Ser Lys Lys Leu Leu 20 25 30 Leu Lys Ala Arg Lys Lys Ser Gly Phe Glu Leu Ser Val Thr Asp Ser 35 40 45 Ser Glu Cys Phe Arg Val Thr Ala Ser Val Arg Gly Met Lys Asn Arg 50 55 60 His Ala Lys Gly Asn Gly Cys Thr Arg Asp Pro Cys Phe Gly 65 70 75 6 88 PRT Homo sapiens misc_feature Incyte Clone No 924925 6 Met Trp Pro Ser Gln Val Pro Leu Leu Ala Phe Cys Phe Leu Leu Val 1 5 10 15 Lys Ser Thr Ser Asn Ile Asn Leu Pro Thr Pro Pro Pro Ser Ser Leu 20 25 30 Glu Asn Ser Ser Phe Val Val Ser Gln Arg Gly Asn Leu Ile Val Phe 35 40 45 Gly Gly Gln Lys Lys Ala Thr Phe Arg Tyr His Phe Tyr Leu Asp Arg 50 55 60 Met Pro Phe Tyr Ser Gln Ile Ser Val Tyr Phe Val Asn Gly Phe Arg 65 70 75 80 Val Asn Gly Tyr Leu Cys Asn Asn 85 7 227 PRT Homo sapiens misc_feature Incyte Clone No 962390 7 Met Gly Arg Pro Leu Leu Leu Pro Leu Leu Leu Leu Leu Gln Pro Pro 1 5 10 15 Ala Phe Leu Gln Pro Gly Gly Ser Thr Gly Ser Gly Pro Ser Tyr Leu 20 25 30 Tyr Gly Val Thr Gln Pro Lys His Leu Ser Ala Ser Met Gly Gly Ser 35 40 45 Val Glu Ile Pro Phe Ser Phe Tyr Tyr Pro Trp Glu Leu Ala Ile Val 50 55 60 Pro Asn Val Arg Ile Ser Trp Arg Arg Gly His Phe His Gly Gln Ser 65 70 75 80 Phe Tyr Ser Thr Arg Pro Pro Ser Ile His Lys Asp Tyr Val Asn Arg 85 90 95 Leu Phe Leu Asn Trp Thr Glu Gly Gln Glu Ser Gly Phe Leu Arg Ile 100 105 110 Ser Asn Leu Arg Lys Glu Asp Gln Ser Val Tyr Phe Cys Arg Val Glu 115 120 125 Leu Asp Thr Arg Arg Ser Gly Arg Gln Gln Leu Gln Ser Ile Lys Gly 130 135 140 Thr Lys Leu Thr Ile Thr Gln Ala Val Thr Thr Thr Thr Thr Trp Arg 145 150 155 160 Pro Ser Ser Thr Thr Thr Ile Ala Gly Leu Arg Val Thr Glu Ser Lys 165 170 175 Gly His Ser Glu Ser Trp His Leu Ser Leu Asp Thr Ala Ile Arg Val 180 185 190 Ala Leu Ala Val Ala Val Leu Lys Thr Val Ile Leu Gly Leu Leu Cys 195 200 205 Leu Leu Leu Leu Trp Trp Arg Arg Arg Lys Gly Ser Arg Ala Pro Ser 210 215 220 Ser Asp Phe 225 8 198 PRT Homo sapiens misc_feature Incyte Clone No 1259405 8 Met Ala Thr Leu Trp Gly Gly Leu Leu Arg Leu Gly Ser Leu Leu Ser 1 5 10 15 Leu Ser Cys Leu Ala Leu Ser Val Leu Leu Leu Ala Gln Leu Ser Asp 20 25 30 Ala Ala Lys Asn Phe Glu Asp Val Arg Cys Lys Cys Ile Cys Pro Pro 35 40 45 Tyr Lys Glu Asn Ser Gly His Ile Tyr Asn Lys Asn Ile Ser Gln Lys 50 55 60 Asp Cys Asp Cys Leu His Val Val Glu Pro Met Pro Val Arg Gly Pro 65 70 75 80 Asp Val Glu Ala Tyr Cys Leu Arg Cys Glu Cys Lys Tyr Glu Glu Arg 85 90 95 Ser Ser Val Thr Ile Lys Val Thr Ile Ile Ile Tyr Leu Ser Ile Leu 100 105 110 Gly Leu Leu Leu Leu Tyr Met Val Tyr Leu Thr Leu Val Glu Pro Ile 115 120 125 Leu Lys Arg Arg Leu Phe Gly His Ala Gln Leu Ile Gln Ser Asp Asp 130 135 140 Asp Ile Gly Asp His Gln Pro Phe Ala Asn Ala His Asp Val Leu Ala 145 150 155 160 Arg Ser Arg Ser Arg Ala Asn Val Leu Asn Lys Val Glu Tyr Ala Gln 165 170 175 Gln Arg Trp Lys Leu Gln Val Gln Glu Gln Arg Lys Ser Val Phe Asp 180 185 190 Arg His Val Val Leu Ser 195 9 65 PRT Homo sapiens misc_feature Incyte Clone No 1297384 9 Met Met Pro Arg Leu Leu Gly Leu Gly Gly Leu Phe Ser Phe Gly Gly 1 5 10 15 Leu Pro Leu Leu Leu Leu Phe Phe Gln Arg Ser Arg Ala Ser Leu Ala 20 25 30 Ser Ser Ser Thr Gly Leu Trp Ile Asn Gln Leu Pro Lys Gly Cys Thr 35 40 45 Cys Arg Val Val Trp Ala Cys Ile Pro Asp Val Leu Glu Tyr Ala Trp 50 55 60 Met 65 10 154 PRT Homo sapiens misc_feature Incyte Clone No 1299627 10 Met Asp Ala Pro Arg Leu Pro Val Arg Pro Gly Val Leu Leu Pro Lys 1 5 10 15 Leu Val Leu Leu Phe Val Tyr Ala Asp Asp Cys Leu Ala Gln Cys Gly 20 25 30 Lys Asp Cys Lys Ser Tyr Cys Cys Asp Gly Thr Thr Pro Tyr Cys Cys 35 40 45 Ser Tyr Tyr Ala Tyr Ile Gly Asn Ile Leu Ser Gly Thr Ala Ile Ala 50 55 60 Gly Ile Val Phe Gly Ile Val Phe Ile Met Gly Val Ile Ala Gly Ile 65 70 75 80 Ala Ile Cys Ile Cys Met Cys Met Lys Asn His Arg Ala Thr Arg Val 85 90 95 Gly Ile Leu Arg Thr Thr His Ile Asn Thr Val Ser Ser Tyr Pro Gly 100 105 110 Pro Pro Pro Tyr Gly His Asp His Glu Met Glu Tyr Cys Ala Asp Leu 115 120 125 Pro Pro Pro Tyr Ser Pro Thr Pro Gln Gly Pro Ala Gln Arg Ser Pro 130 135 140 Pro Pro Pro Tyr Pro Gly Asn Ala Arg Lys 145 150 11 237 PRT Homo sapiens misc_feature Incyte Clone No 1306026 11 Met Lys Pro Leu Val Leu Leu Val Ala Leu Leu Leu Trp Pro Ser Ser 1 5 10 15 Val Pro Ala Tyr Pro Ser Ile Thr Val Thr Pro Asp Glu Glu Gln Asn 20 25 30 Leu Asn His Tyr Ile Gln Val Leu Glu Asn Leu Val Arg Ser Val Pro 35 40 45 Ser Gly Glu Pro Gly Arg Glu Lys Lys Ser Asn Ser Pro Lys His Val 50 55 60 Tyr Ser Ile Ala Ser Lys Gly Ser Lys Phe Lys Glu Leu Val Thr His 65 70 75 80 Gly Asp Ala Ser Thr Glu Asn Asp Val Leu Thr Asn Pro Ile Ser Glu 85 90 95 Glu Thr Thr Thr Phe Pro Thr Gly Gly Phe Thr Pro Glu Ile Gly Lys 100 105 110 Lys Lys His Thr Glu Ser Thr Pro Phe Trp Ser Ile Lys Pro Asn Asn 115 120 125 Val Ser Ile Val Leu His Ala Glu Glu Pro Tyr Ile Glu Asn Glu Glu 130 135 140 Pro Glu Pro Glu Pro Glu Pro Ala Ala Lys Gln Thr Glu Ala Pro Arg 145 150 155 160 Met Leu Pro Val Val Thr Glu Ser Ser Thr Ser Pro Tyr Val Thr Ser 165 170 175 Tyr Lys Ser Pro Val Thr Thr Leu Asp Lys Ser Thr Gly Ile Glu Ile 180 185 190 Ser Thr Glu Ser Glu Asp Val Pro Gln Leu Ser Gly Glu Thr Ala Ile 195 200 205 Glu Lys Pro Glu Ser Trp Lys His Gln Arg Val Gly Tyr Asp Ala Phe 210 215 220 Glu Lys Asn Leu Val Leu Ile Thr Met His Arg His Phe 225 230 235 12 225 PRT Homo sapiens misc_feature Incyte Clone No 1316219 12 Met Thr Pro Glu Gly Val Gly Leu Thr Thr Ala Leu Arg Val Leu Cys 1 5 10 15 Asn Val Ala Cys Pro Pro Pro Pro Val Glu Gly Gln Gln Lys Asp Leu 20 25 30 Lys Trp Asn Leu Ala Val Ile Gln Leu Phe Ser Ala Glu Gly Met Asp 35 40 45 Thr Phe Ile Arg Val Leu Gln Lys Leu Asn Ser Ile Leu Thr Gln Pro 50 55 60 Trp Arg Leu His Val Asn Met Gly Thr Thr Leu His Arg Val Thr Thr 65 70 75 80 Ile Ser Met Ala Arg Cys Thr Leu Thr Leu Leu Lys Thr Met Leu Thr 85 90 95 Glu Leu Leu Arg Gly Gly Ser Phe Glu Phe Lys Asp Met Arg Val Pro 100 105 110 Ser Ala Leu Val Thr Leu His Met Leu Leu Cys Ser Ile Pro Leu Ser 115 120 125 Gly Arg Leu Asp Ser Asp Glu Gln Lys Ile Gln Asn Asp Ile Ile Asp 130 135 140 Ile Leu Leu Thr Phe Thr Gln Gly Val Asn Glu Lys Leu Thr Ile Ser 145 150 155 160 Glu Glu Thr Leu Ala Asn Asn Thr Trp Ser Leu Met Leu Lys Glu Val 165 170 175 Leu Ser Ser Ile Leu Lys Val Pro Glu Gly Phe Phe Ser Gly Leu Ile 180 185 190 Leu Leu Ser Glu Leu Leu Pro Leu Pro Leu Pro Met Gln Thr Thr Gln 195 200 205 Val Ser Leu Pro Tyr Asn Met His Leu Ile Asn Asp Cys Ser Asn Thr 210 215 220 Phe 225 13 117 PRT Homo sapiens misc_feature Incyte Clone No 1329031 13 Met Pro Ser Pro Gly Thr Val Cys Ser Leu Leu Leu Leu Gly Met Leu 1 5 10 15 Trp Leu Asp Leu Ala Met Ala Gly Ser Ser Phe Leu Ser Pro Glu His 20 25 30 Gln Arg Val Gln Gln Arg Lys Glu Ser Lys Lys Pro Pro Ala Lys Leu 35 40 45 Gln Pro Arg Ala Leu Ala Gly Trp Leu Arg Pro Glu Asp Gly Gly Gln 50 55 60 Ala Glu Gly Ala Glu Asp Glu Leu Glu Val Arg Phe Asn Ala Pro Phe 65 70 75 80 Asp Val Gly Ile Lys Leu Ser Gly Val Gln Tyr Gln Gln His Ser Gln 85 90 95 Ala Leu Gly Lys Phe Leu Gln Asp Ile Leu Trp Glu Glu Ala Lys Glu 100 105 110 Ala Pro Ala Asp Lys 115 14 253 PRT Homo sapiens misc_feature Incyte Clone No 1483050 14 Met Asp Asn Arg Phe Ala Thr Ala Phe Val Ile Ala Cys Val Leu Ser 1 5 10 15 Leu Ile Ser Thr Ile Tyr Met Ala Ala Ser Ile Gly Thr Asp Phe Trp 20 25 30 Tyr Glu Tyr Arg Ser Pro Val Gln Glu Asn Ser Ser Asp Leu Asn Lys 35 40 45 Ser Ile Trp Asp Glu Phe Ile Ser Asp Glu Ala Asp Glu Lys Thr Tyr 50 55 60 Asn Asp Ala Leu Phe Arg Tyr Asn Gly Thr Val Gly Leu Trp Arg Arg 65 70 75 80 Cys Ile Thr Ile Pro Lys Asn Met His Trp Tyr Ser Pro Pro Glu Arg 85 90 95 Thr Glu Ser Phe Asp Val Val Thr Lys Cys Val Ser Phe Thr Leu Thr 100 105 110 Glu Gln Phe Met Glu Lys Phe Val Asp Pro Gly Asn His Asn Ser Gly 115 120 125 Ile Asp Leu Leu Arg Thr Tyr Leu Trp Arg Cys Gln Phe Leu Leu Pro 130 135 140 Phe Val Ser Leu Gly Leu Met Cys Phe Gly Ala Leu Ile Gly Leu Cys 145 150 155 160 Ala Cys Ile Cys Arg Ser Leu Tyr Pro Thr Ile Ala Thr Gly Ile Leu 165 170 175 His Leu Leu Ala Gly Leu Cys Thr Leu Gly Ser Val Ser Cys Tyr Val 180 185 190 Ala Gly Ile Glu Leu Leu His Gln Lys Leu Glu Leu Pro Asp Asn Val 195 200 205 Ser Gly Glu Phe Gly Trp Ser Phe Cys Leu Ala Cys Val Ser Ala Pro 210 215 220 Leu Gln Phe Met Ala Ser Ala Leu Phe Ile Trp Ala Ala His Thr Asn 225 230 235 240 Arg Lys Glu Tyr Thr Leu Met Lys Ala Tyr Arg Val Ala 245 250 15 171 PRT Homo sapiens misc_feature Incyte Clone No 1514160 15 Met Ser Leu Pro Ile Pro Trp Leu Ser Leu Pro Pro Cys Pro Ile Leu 1 5 10 15 Gly Gln Pro Ala Gly Leu Leu Leu Trp Leu Phe Arg Pro Phe Ser Gln 20 25 30 Cys Cys Gln Cys Pro Trp Glu Gly Arg Ala Ser Leu Arg His Pro Asn 35 40 45 Gly Pro Ser Gly Cys Arg Glu Ala Glu Ala Trp Pro Gln Arg Ser Leu 50 55 60 Leu Arg Gln Gln Leu Gln Gln Ala His Pro Leu Pro Thr Leu Pro Thr 65 70 75 80 Pro Glu Arg Leu Pro Glu Gln Met Leu Phe Pro Ser Ser Ser Ser Lys 85 90 95 Pro Phe Ser Leu Leu Ser Leu Thr Ile Trp Ala Arg Leu Val Gly Arg 100 105 110 Leu Thr Asn Arg Ile Cys Pro Val Pro Pro Gly Ser Val Ala Ser Ser 115 120 125 Met Ser Leu Gln Ala Gly Arg Cys Gly Asn Pro Val Val Leu Pro Gln 130 135 140 Pro Met Pro Pro Gly Leu Leu Cys Met Asn Glu Cys Ser Leu Val Pro 145 150 155 160 Gly Leu Gly Arg Gly Gln Val Asn Ser Arg Val 165 170 16 78 PRT Homo sapiens misc_feature Incyte Clone No 1603403 16 Met Gly Ser Gly Leu Pro Leu Val Leu Leu Leu Thr Leu Leu Gly Ser 1 5 10 15 Ser His Gly Thr Gly Pro Gly Met Thr Leu Gln Leu Lys Leu Lys Glu 20 25 30 Ser Phe Leu Thr Asn Ser Ser Tyr Glu Ser Ser Phe Leu Glu Leu Leu 35 40 45 Glu Lys Leu Cys Leu Leu Leu His Leu Pro Ser Gly Thr Ser Val Thr 50 55 60 Leu His His Ala Arg Ser Gln His His Val Val Cys Asn Thr 65 70 75 17

71 PRT Homo sapiens misc_feature Incyte Clone No 1652303 17 Met Lys Leu Leu Ser Cys Leu Leu Phe Leu Lys Ala Pro Leu Tyr Pro 1 5 10 15 Thr Leu Cys Ser Lys Asp Pro Arg Ala Gly His Ser Leu Ile Cys Gly 20 25 30 Gln Ala Gly Gln Ile Pro Glu Ala Gln Leu Gly Phe Ser Ser Asp Phe 35 40 45 Lys Leu Cys Trp Cys Trp Asp Gln Gln Lys Ala Asn Val Gln Pro Thr 50 55 60 His Arg Thr Val Arg Gly Leu 65 70 18 188 PRT Homo sapiens misc_feature Incyte Clone No 1693358 18 Met Val Pro Gly Ala Ala Gly Trp Cys Cys Leu Val Leu Trp Leu Pro 1 5 10 15 Ala Cys Val Ala Ala His Gly Phe Arg Ile His Asp Tyr Leu Tyr Phe 20 25 30 Gln Val Leu Ser Pro Gly Asp Ile Arg Tyr Ile Phe Thr Ala Thr Pro 35 40 45 Ala Lys Asp Phe Gly Gly Ile Phe His Thr Arg Tyr Glu Gln Ile His 50 55 60 Leu Val Pro Ala Glu Pro Pro Glu Ala Cys Gly Glu Leu Ser Asn Gly 65 70 75 80 Phe Phe Ile Gln Asp Gln Ile Ala Leu Val Glu Arg Gly Gly Cys Ser 85 90 95 Phe Leu Ser Lys Thr Arg Val Val Gln Glu His Gly Gly Arg Ala Val 100 105 110 Ile Ile Ser Asp Asn Ala Val Asp Asn Asp Ser Phe Tyr Val Glu Met 115 120 125 Ile Gln Asp Ser Thr Gln Arg Thr Ala Asp Ile Pro Ala Leu Phe Leu 130 135 140 Leu Gly Arg Asp Gly Tyr Met Ile Arg Arg Ser Leu Glu Gln His Gly 145 150 155 160 Leu Pro Trp Ala Ile Ile Ser Ile Pro Val Asn Val Thr Ser Ile Pro 165 170 175 Thr Phe Glu Leu Leu Gln Pro Pro Trp Thr Phe Trp 180 185 19 80 PRT Homo sapiens misc_feature Incyte Clone No 1707711 19 Met Lys Ala Gln Pro Leu Glu Ala Leu Leu Leu Val Ala Leu Val Leu 1 5 10 15 Ser Phe Cys Gly Val Trp Phe Glu Asp Trp Leu Ser Lys Trp Arg Phe 20 25 30 Gln Cys Ile Phe Gln Leu Ala His Gln Pro Ala Leu Val Asn Ile Gln 35 40 45 Phe Arg Gly Thr Val Leu Gly Ser Glu Thr Phe Leu Gly Ala Glu Glu 50 55 60 Asn Ser Ala Asp Val Arg Ser Trp Gln Thr Leu Ser Tyr Phe Glu Leu 65 70 75 80 20 80 PRT Homo sapiens misc_feature Incyte Clone No 1738735 20 Met Ile Asp Leu Trp Leu Pro Ala Leu Phe Val Leu Val Ala Leu Glu 1 5 10 15 Ser Leu Leu Leu Ser Pro Cys Pro Gly Thr Ser Ser Thr Leu Thr Arg 20 25 30 Thr Phe Phe Pro Ser Leu Val Ser Cys Val Gln Val Pro Phe Ser Trp 35 40 45 Ile Pro Cys Leu Glu Cys Phe Leu Ile Tyr Phe Leu Ile Leu Ala Glu 50 55 60 Asp Val Leu Gln Leu Phe Ser Gly Asn Ala Asn Met Gln Val Asn Gln 65 70 75 80 21 84 PRT Homo sapiens misc_feature Incyte Clone No 1749147 21 Met Gln Arg Pro Phe Leu Ser Val Pro Cys Leu Leu Leu Leu Pro Ala 1 5 10 15 Arg Val Val Trp Gly Cys Trp Cys Phe Leu Pro Gly Glu Asp Gly Gly 20 25 30 Gly Cys Pro Thr Pro Ser Ser Gly Arg Ile Lys Leu Leu Gln Gln Cys 35 40 45 Leu Leu His Pro Ser Leu Arg Ser Ile Thr Val Ser Arg Arg Ser Ala 50 55 60 Gln Leu Leu Cys Arg Leu Lys Leu Gln Asn His Ile Pro Lys Val Pro 65 70 75 80 Gly Lys Asn Val 22 171 PRT Homo sapiens misc_feature Incyte Clone No 1817722 22 Met His Met Ile Leu Lys Val Leu Thr Thr Ala Leu Leu Leu Gln Ala 1 5 10 15 Ala Ser Ala Leu Ala Asn Tyr Ile His Phe Ser Ser Tyr Ser Lys Asp 20 25 30 Gly Ile Gly Val Pro Phe Met Gly Ser Leu Ala Glu Phe Phe Asp Ile 35 40 45 Ala Ser Gln Ile Gln Met Leu Tyr Leu Leu Leu Ser Leu Cys Met Gly 50 55 60 Trp Thr Ile Val Arg Met Lys Lys Ser Gln Ser Arg Pro Leu Gln Trp 65 70 75 80 Asp Ser Thr Pro Ala Ser Thr Gly Ile Ala Val Phe Ile Val Met Thr 85 90 95 Gln Ser Val Leu Leu Leu Trp Glu Gln Phe Glu Asp Ile Ser His His 100 105 110 Ser Tyr His Ser His His Asn Leu Ala Gly Ile Leu Leu Ile Val Leu 115 120 125 Arg Ile Cys Leu Ala Leu Ser Leu Gly Cys Gly Leu Tyr Gln Ile Ile 130 135 140 Thr Val Glu Arg Ser Thr Leu Lys Arg Glu Phe Tyr Ile Thr Phe Ala 145 150 155 160 Lys Val Trp Val Trp Lys Glu Asn Gly Leu Phe 165 170 23 243 PRT Homo sapiens misc_feature Incyte Clone No 1831290 23 Met Ser Ser Gly Thr Glu Leu Leu Trp Pro Gly Ala Ala Leu Leu Val 1 5 10 15 Leu Leu Gly Val Ala Ala Ser Leu Cys Val Arg Cys Ser Arg Pro Gly 20 25 30 Ala Lys Arg Ser Glu Lys Ile Tyr Gln Gln Arg Ser Leu Arg Glu Asp 35 40 45 Gln Gln Ser Phe Thr Gly Ser Arg Thr Tyr Ser Leu Val Gly Gln Ala 50 55 60 Trp Pro Gly Pro Leu Ala Asp Met Ala Pro Thr Arg Lys Asp Lys Leu 65 70 75 80 Leu Gln Phe Tyr Pro Ser Leu Glu Asp Pro Ala Ser Ser Arg Tyr Gln 85 90 95 Asn Phe Ser Lys Gly Ser Arg His Gly Ser Glu Glu Ala Tyr Ile Asp 100 105 110 Pro Ile Ala Met Glu Tyr Tyr Asn Trp Gly Arg Phe Ser Lys Pro Pro 115 120 125 Glu Asp Asp Asp Ala Asn Ser Tyr Glu Asn Val Leu Ile Cys Lys Gln 130 135 140 Lys Thr Thr Glu Thr Gly Ala Gln Gln Glu Gly Ile Gly Gly Leu Cys 145 150 155 160 Arg Gly Asp Leu Ser Leu Ser Leu Ala Leu Lys Thr Gly Pro Thr Ser 165 170 175 Gly Leu Cys Pro Ser Ala Ser Pro Glu Glu Asp Glu Glu Ser Glu Asp 180 185 190 Tyr Gln Asn Ser Ala Ser Ile His Gln Trp Arg Glu Ser Arg Lys Val 195 200 205 Met Gly Gln Leu Gln Arg Glu Ala Ser Pro Gly Pro Val Gly Ser Pro 210 215 220 Asp Glu Glu Asp Gly Glu Pro Asp Tyr Val Asn Gly Glu Val Ala Ala 225 230 235 240 Thr Glu Ala 24 311 PRT Homo sapiens misc_feature Incyte Clone No 1831477 24 Met Gly Val Pro Thr Ala Pro Glu Ala Gly Ser Trp Arg Trp Gly Ser 1 5 10 15 Leu Leu Phe Ala Leu Phe Leu Ala Ala Ser Leu Gly Pro Val Ala Ala 20 25 30 Phe Lys Val Ala Thr Pro Tyr Ser Leu Tyr Val Cys Pro Glu Gly Gln 35 40 45 Asn Val Thr Leu Thr Cys Arg Leu Leu Gly Pro Val Asp Lys Gly His 50 55 60 Asp Val Thr Phe Tyr Lys Thr Trp Tyr Arg Ser Ser Arg Gly Glu Val 65 70 75 80 Gln Thr Cys Ser Glu Arg Arg Pro Ile Arg Asn Leu Thr Phe Gln Asp 85 90 95 Leu His Leu His His Gly Gly His Gln Ala Ala Asn Thr Ser His Asp 100 105 110 Leu Ala Gln Arg His Gly Leu Glu Ser Ala Ser Asp His His Gly Asn 115 120 125 Phe Ser Ile Thr Met Arg Asn Leu Thr Leu Leu Asp Ser Gly Leu Tyr 130 135 140 Cys Cys Leu Val Val Glu Ile Arg His His His Ser Glu His Arg Val 145 150 155 160 His Gly Ala Met Glu Leu Gln Val Gln Thr Gly Lys Asp Ala Pro Ser 165 170 175 Asn Cys Val Val Tyr Pro Ser Ser Ser Gln Glu Ser Glu Asn Ile Thr 180 185 190 Ala Ala Ala Leu Ala Thr Gly Ala Cys Ile Val Gly Ile Leu Cys Leu 195 200 205 Pro Leu Ile Leu Leu Leu Val Tyr Lys Gln Arg Gln Ala Ala Ser Asn 210 215 220 Arg Arg Ala Gln Glu Leu Val Arg Met Asp Ser Asn Ile Gln Gly Ile 225 230 235 240 Glu Asn Pro Gly Phe Glu Ala Ser Pro Pro Ala Gln Gly Ile Pro Glu 245 250 255 Ala Lys Val Arg His Pro Leu Ser Tyr Val Ala Gln Arg Gln Pro Ser 260 265 270 Glu Ser Gly Arg His Leu Leu Ser Glu Pro Ser Thr Pro Leu Ser Pro 275 280 285 Pro Gly Pro Gly Asp Val Phe Phe Pro Ser Leu Asp Pro Val Pro Asp 290 295 300 Ser Pro Asn Phe Glu Val Ile 305 310 25 57 PRT Homo sapiens misc_feature Incyte Clone No 1841607 25 Met Ala Ser Ser Cys Phe Ser Leu Ser Phe Pro Pro Leu Ser Leu Ala 1 5 10 15 Gly Ser Leu Ala Leu Trp Gly His Cys Cys Val Arg Leu Gly Cys Ser 20 25 30 Phe Trp Ser Val Ser Ala Met Ala Gln Arg Leu Pro Ser Gln Asn Thr 35 40 45 Tyr Asn Pro Pro Leu Cys Trp Ala Trp 50 55 26 82 PRT Homo sapiens misc_feature Incyte Clone No 1852391 26 Met Phe Ser Leu Phe Ser Cys Leu Leu Ala Cys Leu Leu Asp Leu Leu 1 5 10 15 Leu Ser Arg Val Ala Asp Glu Ala Phe Tyr Lys Gln Pro Phe Ala Asp 20 25 30 Val Ile Gly Tyr Val Tyr Val Ala Lys Leu Ile Pro Phe Ser Thr Ser 35 40 45 Asp Ser Phe Tyr Phe Cys Leu Glu Leu Met Leu Leu Leu Cys His Gln 50 55 60 Leu Leu Cys Phe Leu Asn Tyr Phe Lys Leu Ala Leu Trp Gly Leu Pro 65 70 75 80 Lys Asn 27 115 PRT Homo sapiens misc_feature Incyte Clone No 1854555 27 Met Ala Gly Thr Val Leu Gly Val Gly Ala Gly Val Phe Ile Leu Ala 1 5 10 15 Leu Leu Trp Val Ala Val Leu Leu Leu Cys Val Leu Leu Ser Arg Ala 20 25 30 Ser Gly Ala Ala Arg Phe Ser Val Ile Phe Leu Phe Phe Gly Ala Val 35 40 45 Ile Ile Thr Ser Val Leu Leu Leu Phe Pro Arg Ala Gly Glu Phe Pro 50 55 60 Ala Pro Glu Val Glu Val Lys Ile Val Asp Asp Phe Phe Ile Gly Arg 65 70 75 80 Tyr Val Leu Leu Ala Phe Leu Ser Ala Ile Phe Leu Gly Gly Leu Phe 85 90 95 Leu Val Leu Ile His Tyr Val Leu Glu Pro Ile Tyr Ala Lys Pro Leu 100 105 110 His Ser Tyr 115 28 327 PRT Homo sapiens misc_feature Incyte Clone No 1855755 28 Met Ala Glu Leu Pro Gly Pro Phe Leu Cys Gly Ala Leu Leu Gly Phe 1 5 10 15 Leu Cys Leu Ser Gly Leu Ala Val Glu Val Lys Val Pro Thr Glu Pro 20 25 30 Leu Ser Thr Pro Leu Gly Lys Thr Ala Glu Leu Thr Cys Thr Tyr Ser 35 40 45 Thr Ser Val Gly Asp Ser Phe Ala Leu Glu Trp Ser Phe Val Gln Pro 50 55 60 Gly Lys Pro Ile Ser Glu Ser His Pro Ile Leu Tyr Phe Thr Asn Gly 65 70 75 80 His Leu Tyr Pro Thr Gly Ser Lys Ser Lys Arg Val Ser Leu Leu Gln 85 90 95 Asn Pro Pro Thr Val Gly Val Ala Thr Leu Lys Leu Thr Asp Val His 100 105 110 Pro Ser Asp Thr Gly Thr Tyr Leu Cys Gln Val Asn Asn Pro Pro Asp 115 120 125 Phe Tyr Thr Asn Gly Leu Gly Leu Ile Asn Leu Thr Val Leu Val Pro 130 135 140 Pro Ser Asn Pro Leu Cys Ser Gln Ser Gly Gln Thr Ser Val Gly Gly 145 150 155 160 Ser Thr Ala Leu Arg Cys Ser Ser Ser Glu Gly Ala Pro Lys Pro Val 165 170 175 Tyr Asn Trp Val Arg Leu Gly Thr Phe Pro Thr Pro Ser Pro Gly Ser 180 185 190 Met Val Gln Asp Glu Val Ser Gly Gln Leu Ile Leu Thr Asn Leu Ser 195 200 205 Leu Thr Ser Ser Gly Thr Tyr Arg Cys Val Ala Thr Asn Gln Met Gly 210 215 220 Ser Ala Ser Cys Glu Leu Thr Leu Ser Val Thr Glu Pro Ser Gln Gly 225 230 235 240 Arg Val Ala Gly Ala Leu Ile Gly Val Leu Leu Gly Val Leu Leu Leu 245 250 255 Ser Val Ala Ala Phe Cys Leu Val Arg Phe Gln Lys Glu Arg Gly Lys 260 265 270 Lys Pro Lys Glu Thr Tyr Gly Gly Ser Asp Leu Arg Glu Asp Ala Ile 275 280 285 Ala Pro Gly Ile Ser Glu His Thr Cys Met Arg Ala Asp Ser Ser Lys 290 295 300 Gly Phe Leu Glu Arg Pro Ser Ser Ala Ser Thr Val Thr Thr Thr Lys 305 310 315 320 Ser Lys Leu Pro Met Val Val 325 29 133 PRT Homo sapiens misc_feature Incyte Clone No 1861434 29 Met Arg Met Ser Leu Ala Gln Arg Val Leu Leu Thr Trp Leu Phe Thr 1 5 10 15 Leu Leu Phe Leu Ile Met Leu Val Leu Lys Leu Asp Glu Lys Ala Pro 20 25 30 Trp Asn Trp Phe Leu Ile Phe Ile Pro Val Trp Ile Phe Asp Thr Ile 35 40 45 Leu Leu Val Leu Leu Ile Val Lys Met Ala Gly Arg Cys Lys Ser Gly 50 55 60 Phe Asp Pro Arg His Gly Ser His Asn Ile Lys Lys Lys Ala Trp Tyr 65 70 75 80 Leu Ile Ala Met Leu Leu Lys Leu Ala Phe Cys Leu Ala Leu Cys Ala 85 90 95 Lys Leu Glu Gln Phe Thr Thr Met Asn Leu Ser Tyr Val Phe Ile Pro 100 105 110 Leu Trp Ala Leu Leu Ala Gly Ala Leu Thr Glu Leu Gly Tyr Asn Val 115 120 125 Phe Phe Val Arg Asp 130 30 129 PRT Homo sapiens misc_feature Incyte Clone No 1872334 30 Met Gly Leu Thr Leu Leu Leu Leu Leu Leu Leu Gly Leu Glu Gly Gln 1 5 10 15 Gly Ile Val Gly Ser Leu Pro Glu Val Leu Gln Ala Pro Val Gly Ser 20 25 30 Ser Ile Leu Val Gln Cys His Tyr Arg Leu Gln Asp Val Lys Ala Gln 35 40 45 Lys Val Trp Cys Arg Phe Leu Pro Glu Gly Cys Gln Pro Leu Val Ser 50 55 60 Ser Ala Val Asp Arg Arg Ala Pro Ala Gly Arg Arg Thr Phe Leu Thr 65 70 75 80 Asp Leu Gly Gly Gly Leu Leu Gln Val Glu Met Val Thr Leu Gln Glu 85 90 95 Glu Asp Ala Gly Glu Tyr Gly Cys Met Val Asp Gly Ala Arg Gly Pro 100 105 110 Gln Ile Leu His Arg Val Ser Leu Asn Ile Leu Pro Pro Gly Glu Leu 115 120 125 Ser 31 472 PRT Homo sapiens misc_feature Incyte Clone No 1877230 31 Met Lys Phe Leu Ile Phe Ala Phe Phe Gly Gly Val His Leu Leu Ser 1 5 10 15 Leu Cys Ser Gly Lys Ala Ile Cys Lys Asn Gly Ile Ser Lys Arg Thr 20 25 30 Phe Glu Glu Ile Lys Glu Glu Ile Ala Ser Cys Gly Asp Val Ala Lys 35 40 45 Ala Ile Ile Asn Leu Ala Val Tyr Gly Lys Ala Gln Asn Arg Ser Tyr 50 55 60 Glu Arg Leu Ala Leu Leu Val Asp Thr Val Gly Pro Arg Leu Ser Gly 65 70 75 80 Ser Lys Asn Leu Glu Lys Ala Ile Gln Ile Met Tyr Gln Asn Leu Gln 85 90 95 Gln Asp Gly Leu Glu Lys Val His Leu Glu Pro Val Arg Ile Pro His 100 105 110 Trp Glu Arg Gly Glu Glu Ser Ala Val Met Leu Glu Pro Arg Ile His 115 120 125 Lys Ile Ala Ile Leu Gly Leu Gly Ser Ser Ile Gly Thr Pro Pro Glu 130 135 140 Gly Ile Thr Ala Glu Val Leu Val Val Thr Ser Phe Asp Glu Leu Gln 145 150 155 160 Arg Arg Ala Ser Glu Ala Arg Gly Lys Ile Val Val Tyr Asn Gln Pro 165 170 175 Tyr Ile Asn Tyr Ser Arg Thr Val Gln Tyr Arg Thr Gln Gly Ala Val 180 185 190 Glu Ala Ala Lys Val Gly Ala Leu Ala Ser Leu Ile Arg Ser Val Ala 195 200 205 Ser Phe Ser Ile Tyr Ser Pro His Thr Gly Ile Gln Glu Tyr Gln Asp 210 215 220 Gly Val Pro Lys Ile Pro Thr Ala Cys Ile Thr Val Glu Asp Ala Glu 225 230 235 240 Met Met Ser Arg Met Ala Ser His Gly Ile Lys Ile Val Ile Gln Leu 245 250 255 Lys Met Gly Ala Lys Thr Tyr Pro Asp Thr Asp Ser Phe Asn Thr Val 260 265

270 Ala Glu Ile Thr Gly Ser Lys Tyr Pro Glu Gln Val Val Leu Val Ser 275 280 285 Gly His Leu Asp Ser Trp Asp Val Gly Gln Gly Ala Met Asp Asp Gly 290 295 300 Gly Gly Ala Phe Ile Ser Trp Glu Ala Leu Ser Leu Ile Lys Asp Leu 305 310 315 320 Gly Leu Arg Pro Lys Arg Thr Leu Arg Leu Val Leu Trp Thr Ala Glu 325 330 335 Glu Gln Gly Gly Val Gly Ala Phe Gln Tyr Tyr Gln Leu His Lys Val 340 345 350 Asn Ile Ser Asn Tyr Ser Leu Val Met Glu Ser Asp Ala Gly Thr Phe 355 360 365 Leu Pro Thr Gly Leu Gln Phe Thr Gly Ser Glu Lys Ala Arg Ala Ile 370 375 380 Met Glu Glu Val Met Ser Leu Leu Gln Pro Leu Asn Ile Thr Gln Val 385 390 395 400 Leu Ser His Gly Glu Gly Thr Asp Ile Asn Phe Trp Ile Gln Ala Gly 405 410 415 Val Pro Gly Ala Ser Leu Leu Asp Asp Leu Tyr Lys Tyr Phe Phe Phe 420 425 430 His His Ser His Gly Asp Thr Met Thr Val Met Asp Pro Lys Gln Met 435 440 445 Asn Val Ala Ala Ala Val Trp Ala Val Val Ser Tyr Val Val Ala Asp 450 455 460 Met Glu Glu Met Leu Pro Arg Ser 465 470 32 93 PRT Homo sapiens misc_feature Incyte Clone No 1877885 32 Met Ile His Leu Gly His Ile Leu Phe Leu Leu Leu Leu Pro Val Ala 1 5 10 15 Ala Ala Gln Thr Thr Pro Gly Glu Arg Ser Ser Leu Pro Ala Phe Tyr 20 25 30 Pro Gly Thr Ser Gly Ser Cys Ser Gly Cys Gly Ser Leu Ser Leu Pro 35 40 45 Leu Leu Ala Gly Leu Val Ala Ala Asp Ala Val Ala Ser Leu Leu Ile 50 55 60 Val Gly Ala Val Phe Leu Cys Ala Arg Pro Arg Arg Ser Pro Ala Gln 65 70 75 80 Glu Asp Gly Lys Val Tyr Ile Asn Met Pro Gly Arg Gly 85 90 33 92 PRT Homo sapiens misc_feature Incyte Clone No 1889269 33 Met Asn Arg Pro Ser Ala Arg Asn Ala Leu Gly Asn Val Phe Val Ser 1 5 10 15 Glu Leu Leu Glu Thr Leu Ala Gln Leu Arg Glu Asp Arg Gln Val Arg 20 25 30 Val Leu Leu Phe Arg Ser Gly Val Lys Gly Val Phe Cys Ala Gly Ala 35 40 45 Asp Leu Lys Glu Arg Glu Gln Met Ser Glu Ala Glu Val Gly Val Phe 50 55 60 Val Gln Arg Leu Arg Gly Leu Met Asn Asp Ile Gly Glu Asp Leu Gly 65 70 75 80 Val Gly Trp Arg Arg Gly Phe Gly Gly Pro Cys Arg 85 90 34 143 PRT Homo sapiens misc_feature Incyte Clone No 1890243 34 Met Trp Ile Lys Gly Thr Met Lys Met Arg Gly Gly Lys Thr Ser Arg 1 5 10 15 Ser Ala Val Leu Pro Val Ala Gln Leu Thr Leu Ile Ala Ser Cys Phe 20 25 30 Pro Asn Ser Gln Thr Val Leu Gly Thr Glu Gly Thr Leu Asp Val Glu 35 40 45 Ser Ser Pro Leu Ala Leu Leu Thr Gly Leu Trp Ala Ser Pro Glu Ser 50 55 60 Leu Ser Leu Tyr Leu Val Thr Leu Leu Cys Val Cys Pro Ala Leu Gln 65 70 75 80 Ser Cys Gln Gly Gln Gln Ala Asp Val Thr Leu Ala Pro Cys Glu Ile 85 90 95 Phe Ile Pro Gln Thr Leu Ala Cys Glu Pro Phe Pro Ser Gln Trp Arg 100 105 110 Ala Leu Lys Gly Ala Ser Leu Glu Ser Ser Ser Val Leu Trp Val Ala 115 120 125 Pro Cys Arg Trp Pro Leu Thr Leu Arg Cys Ser Arg Val His Leu 130 135 140 35 89 PRT Homo sapiens misc_feature Incyte Clone No 1900433 35 Met Glu Arg Val Thr Leu Ala Leu Leu Leu Leu Ala Gly Leu Thr Ala 1 5 10 15 Leu Glu Ala Asn Asp Pro Phe Ala Asn Lys Asp Asp Pro Phe Tyr Tyr 20 25 30 Asp Trp Lys Asn Leu Gln Leu Ser Gly Leu Ile Cys Gly Gly Leu Leu 35 40 45 Ala Ile Ala Gly Ile Ala Ala Val Leu Ser Gly Lys Cys Lys Tyr Lys 50 55 60 Ser Ser Gln Lys Gln His Ser Pro Val Pro Glu Lys Ala Ile Pro Leu 65 70 75 80 Ile Thr Pro Gly Ser Ala Thr Thr Cys 85 36 560 PRT Homo sapiens misc_feature Incyte Clone No 1909441 36 Met Ala Lys Lys Lys Leu Thr Glu Met Ile Pro Leu Cys Asn His Pro 1 5 10 15 Ala Ser Phe Val Lys Leu Phe Val Ala Leu Gly Pro Ile Ala Gly Pro 20 25 30 Glu Glu Lys Lys Gln Leu Lys Ser Thr Met Leu Leu Met Ser Glu Asp 35 40 45 Leu Thr Gly Glu Gln Ala Leu Ala Val Leu Gly Ala Met Gly Asp Met 50 55 60 Glu Ser Arg Asn Ser Cys Leu Ile Lys Arg Val Thr Ser Val Leu His 65 70 75 80 Lys His Leu Asp Gly Tyr Lys Pro Leu Glu Leu Leu Lys Ile Thr Gln 85 90 95 Glu Leu Thr Phe Leu His Phe Gln Arg Lys Glu Phe Phe Ala Lys Leu 100 105 110 Arg Glu Leu Leu Leu Ser Tyr Leu Lys Asn Ser Phe Ile Pro Thr Glu 115 120 125 Val Ser Val Leu Val Arg Ala Ile Ser Leu Leu Pro Ser Pro His Leu 130 135 140 Asp Glu Val Gly Ile Ser Arg Ile Glu Ala Val Leu Pro Gln Cys Asp 145 150 155 160 Leu Asn Asn Leu Ser Ser Phe Ala Thr Ser Val Leu Arg Trp Ile Gln 165 170 175 His Asp His Met Tyr Leu Asp Asn Met Thr Ala Lys Gln Leu Lys Leu 180 185 190 Leu Gln Lys Leu Asp His Tyr Gly Arg Gln Arg Leu Gln His Ser Asn 195 200 205 Ser Leu Asp Leu Leu Arg Lys Glu Leu Lys Ser Leu Lys Gly Asn Thr 210 215 220 Phe Pro Glu Ser Leu Leu Glu Glu Met Ile Ala Thr Leu Gln His Phe 225 230 235 240 Met Asp Asp Ile Asn Tyr Ile Asn Val Gly Glu Ile Ala Ser Phe Ile 245 250 255 Ser Ser Thr Asp Tyr Leu Ser Thr Leu Leu Leu Asp Arg Ile Ala Ser 260 265 270 Val Ala Val Gln Gln Ile Glu Lys Ile His Pro Phe Thr Ile Pro Ala 275 280 285 Ile Ile Arg Pro Phe Ser Val Leu Asn Tyr Asp Pro Pro Gln Arg Asp 290 295 300 Glu Phe Leu Gly Thr Cys Val Gln His Leu Asn Ser Tyr Leu Gly Ile 305 310 315 320 Leu Asp Pro Phe Ile Leu Val Phe Leu Gly Phe Ser Leu Ala Thr Leu 325 330 335 Glu Tyr Phe Pro Glu Asp Leu Leu Lys Ala Ile Phe Asn Ile Lys Phe 340 345 350 Leu Ala Arg Leu Asp Ser Gln Leu Glu Ile Leu Ser Pro Ser Arg Ser 355 360 365 Ala Arg Val Gln Phe His Leu Met Glu Leu Asn Arg Ser Val Cys Leu 370 375 380 Glu Cys Pro Glu Phe Gln Ile Pro Trp Phe His Asp Arg Phe Cys Gln 385 390 395 400 Gln Tyr Asn Lys Gly Ile Gly Gly Met Asp Gly Thr Gln Gln Gln Ile 405 410 415 Phe Lys Met Leu Ala Glu Val Leu Gly Gly Ile Asn Cys Val Lys Ala 420 425 430 Ser Val Leu Thr Pro Tyr Tyr His Lys Val Asp Phe Glu Cys Ile Leu 435 440 445 Asp Lys Arg Lys Lys Pro Leu Pro Tyr Gly Ser His Asn Ile Ala Leu 450 455 460 Gly Gln Leu Pro Glu Met Pro Trp Glu Ser Asn Ile Glu Ile Val Gly 465 470 475 480 Ser Arg Leu Pro Pro Gly Ala Glu Arg Ile Ala Leu Glu Phe Leu Asp 485 490 495 Ser Lys Ala Leu Cys Arg Asn Ile Pro His Met Lys Gly Lys Ser Ala 500 505 510 Met Lys Lys Arg His Leu Glu Ile Leu Gly Tyr Arg Val Ile Gln Ile 515 520 525 Ser Gln Phe Glu Trp Asn Ser Met Ala Leu Ser Thr Lys Asp Ala Arg 530 535 540 Met Asp Tyr Leu Arg Glu Cys Ile Phe Gly Glu Val Lys Ser Cys Leu 545 550 555 560 37 197 PRT Homo sapiens misc_feature Incyte Clone No 1932226 37 Met Gly Val Pro Leu Gly Leu Gly Ala Ala Trp Leu Leu Ala Trp Pro 1 5 10 15 Gly Leu Ala Leu Pro Leu Val Ala Met Ala Ala Gly Gly Arg Trp Val 20 25 30 Arg Gln Gln Gly Pro Arg Val Arg Arg Gly Ile Ser Arg Leu Trp Leu 35 40 45 Arg Val Leu Leu Arg Leu Ser Pro Met Ala Phe Arg Ala Leu Gln Gly 50 55 60 Cys Gly Ala Val Gly Asp Arg Gly Leu Phe Ala Leu Tyr Pro Lys Thr 65 70 75 80 Asn Lys Asp Gly Phe Arg Ser Arg Leu Pro Val Pro Gly Pro Arg Arg 85 90 95 Arg Asn Pro Arg Thr Thr Gln His Pro Leu Ala Leu Leu Ala Arg Val 100 105 110 Trp Val Leu Cys Lys Gly Trp Asn Trp Arg Leu Ala Arg Ala Ser Gln 115 120 125 Gly Leu Ala Ser His Leu Pro Pro Trp Ala Ile His Thr Leu Ala Ser 130 135 140 Trp Gly Leu Leu Arg Gly Glu Arg Pro Thr Arg Ile Pro Arg Leu Leu 145 150 155 160 Pro Arg Ser Gln Arg Gln Leu Gly Pro Pro Ala Ser Arg Gln Pro Leu 165 170 175 Pro Gly Thr Leu Ala Gly Arg Arg Ser Arg Thr Arg Gln Ser Arg Ala 180 185 190 Leu Pro Pro Trp Arg 195 38 437 PRT Homo sapiens misc_feature Incyte Clone No 1932647 38 Met Ser Ala Val Leu Leu Leu Ala Leu Leu Gly Phe Ile Leu Pro Leu 1 5 10 15 Pro Gly Val Gln Ala Leu Leu Cys Gln Phe Gly Thr Val Gln His Val 20 25 30 Trp Lys Val Ser Asp Leu Pro Arg Gln Trp Thr Pro Lys Asn Thr Ser 35 40 45 Cys Asp Ser Gly Leu Gly Cys Gln Asp Thr Leu Met Leu Ile Glu Ser 50 55 60 Gly Pro Gln Val Ser Leu Val Leu Ser Lys Gly Cys Thr Glu Ala Lys 65 70 75 80 Asp Gln Glu Pro Arg Val Thr Glu His Arg Met Gly Pro Gly Leu Ser 85 90 95 Leu Ile Ser Tyr Thr Phe Val Cys Arg Gln Glu Asp Phe Cys Asn Asn 100 105 110 Leu Val Asn Ser Leu Pro Leu Trp Ala Pro Gln Pro Pro Ala Asp Pro 115 120 125 Gly Ser Leu Arg Cys Pro Val Cys Leu Ser Met Glu Gly Cys Leu Glu 130 135 140 Gly Thr Thr Glu Glu Ile Cys Pro Lys Gly Thr Thr His Cys Tyr Asp 145 150 155 160 Gly Leu Leu Arg Leu Arg Gly Gly Gly Ile Phe Ser Asn Leu Arg Val 165 170 175 Gln Gly Cys Met Pro Gln Pro Gly Cys Asn Leu Leu Asn Gly Thr Gln 180 185 190 Glu Ile Gly Pro Val Gly Met Thr Glu Asn Cys Asn Arg Lys Asp Phe 195 200 205 Leu Thr Cys His Arg Gly Thr Thr Ile Met Thr His Gly Asn Leu Ala 210 215 220 Gln Glu Pro Thr Asp Trp Thr Thr Ser Asn Thr Glu Met Cys Glu Val 225 230 235 240 Gly Gln Val Cys Gln Glu Thr Leu Leu Leu Ile Asp Val Gly Leu Thr 245 250 255 Ser Thr Leu Val Gly Thr Lys Gly Cys Ser Thr Val Gly Ala Gln Asn 260 265 270 Ser Gln Lys Thr Thr Ile His Ser Ala Pro Pro Gly Val Leu Val Ala 275 280 285 Ser Tyr Thr His Phe Cys Ser Ser Asp Leu Cys Asn Ser Ala Ser Ser 290 295 300 Ser Ser Val Leu Leu Asn Ser Leu Pro Pro Gln Ala Ala Pro Val Pro 305 310 315 320 Gly Asp Arg Gln Cys Pro Thr Cys Val Gln Pro Leu Gly Thr Cys Ser 325 330 335 Ser Gly Ser Pro Arg Met Thr Cys Pro Arg Gly Ala Thr His Cys Tyr 340 345 350 Asp Gly Tyr Ile His Leu Ser Gly Gly Gly Leu Ser Thr Lys Met Ser 355 360 365 Ile Gln Gly Cys Val Ala Gln Pro Ser Ser Phe Leu Leu Asn His Thr 370 375 380 Arg Gln Ile Gly Ile Phe Ser Ala Arg Glu Lys Arg Asp Val Gln Pro 385 390 395 400 Pro Ala Ser Gln His Glu Gly Gly Gly Ala Glu Gly Leu Glu Ser Leu 405 410 415 Thr Trp Gly Val Gly Leu Ala Leu Ala Pro Ala Leu Trp Trp Gly Val 420 425 430 Val Cys Pro Ser Cys 435 39 330 PRT Homo sapiens misc_feature Incyte Clone No 2124245 39 Met Glu Gly Ala Pro Pro Gly Ser Leu Ala Leu Arg Leu Leu Leu Phe 1 5 10 15 Val Ala Leu Pro Ala Ser Gly Trp Leu Thr Thr Gly Ala Pro Glu Pro 20 25 30 Pro Pro Leu Ser Gly Ala Pro Gln Asp Gly Ile Arg Ile Asn Val Thr 35 40 45 Thr Leu Lys Asp Asp Gly Asp Ile Ser Lys Gln Gln Val Val Leu Asn 50 55 60 Ile Thr Tyr Glu Ser Gly Gln Val Tyr Val Asn Asp Leu Pro Val Asn 65 70 75 80 Ser Gly Val Thr Arg Ile Ser Cys Gln Thr Leu Ile Val Lys Asn Glu 85 90 95 Asn Leu Glu Asn Leu Glu Glu Lys Glu Tyr Phe Gly Ile Val Ser Val 100 105 110 Arg Ile Leu Val His Glu Trp Pro Met Thr Ser Gly Ser Ser Leu Gln 115 120 125 Leu Ile Val Ile Gln Glu Glu Val Val Glu Ile Asp Gly Lys Gln Val 130 135 140 Gln Gln Lys Asp Val Thr Glu Ile Asp Ile Leu Val Lys Asn Arg Gly 145 150 155 160 Val Leu Arg His Ser Asn Tyr Thr Leu Pro Leu Glu Glu Ser Met Leu 165 170 175 Tyr Ser Ile Ser Arg Asp Ser Asp Ile Leu Phe Thr Leu Pro Asn Leu 180 185 190 Ser Lys Lys Glu Ser Val Ser Ser Leu Gln Thr Thr Ser Gln Tyr Leu 195 200 205 Ile Arg Asn Val Glu Thr Thr Val Asp Glu Asp Val Leu Pro Gly Lys 210 215 220 Leu Pro Glu Thr Pro Leu Arg Ala Glu Pro Pro Ser Ser Tyr Lys Val 225 230 235 240 Met Cys Gln Trp Met Glu Lys Phe Arg Lys Asp Leu Cys Arg Phe Trp 245 250 255 Ser Asn Val Phe Pro Val Phe Phe Gln Phe Leu Asn Ile Met Val Val 260 265 270 Gly Ile Thr Gly Ala Ala Val Val Ile Thr Ile Leu Lys Val Phe Phe 275 280 285 Pro Val Ser Glu Tyr Lys Gly Ile Leu Gln Leu Asp Lys Val Asp Val 290 295 300 Ile Pro Val Thr Ala Ile Asn Leu Tyr Pro Asp Gly Pro Glu Lys Arg 305 310 315 320 Ala Glu Asn Leu Glu Asp Lys Thr Cys Ile 325 330 40 148 PRT Homo sapiens misc_feature Incyte Clone No 2132626 40 Met Glu Thr Gly Ala Leu Arg Arg Pro Gln Leu Leu Pro Leu Leu Leu 1 5 10 15 Leu Leu Cys Gly Gly Cys Pro Arg Ala Gly Gly Cys Asn Glu Thr Gly 20 25 30 Met Leu Glu Arg Leu Pro Leu Cys Gly Lys Ala Phe Ala Asp Met Met 35 40 45 Gly Lys Val Asp Val Trp Lys Trp Cys Asn Leu Ser Glu Phe Ile Val 50 55 60 Tyr Tyr Glu Ser Phe Thr Asn Cys Thr Glu Met Glu Ala Asn Val Val 65 70 75 80 Gly Cys Tyr Trp Pro Asn Pro Leu Ala Gln Gly Phe Ile Thr Gly Ile 85 90 95 His Arg Gln Phe Phe Ser Asn Cys Thr Val Asp Arg Val His Leu Glu 100 105 110 Asp Pro Pro Asp Glu Val Leu Ile Pro Leu Ile Val Ile Pro Val Val 115 120 125 Leu Thr Val Ala Met Ala Gly Leu Val Val Trp Arg Ser Lys Arg Thr 130 135 140 Asp Thr Leu Leu 145 41 188 PRT Homo sapiens misc_feature Incyte Clone No 2280639 41 Met Ala Pro Pro Pro Pro Ser Pro Gln Leu Leu Leu Leu Ala Ala Leu 1 5 10 15 Ala Arg Leu Leu Gly Pro Ser Glu Val Met Ala Gly Pro Ala Glu Glu 20 25 30 Ala Gly Ala His Cys Pro Glu Ser Leu Trp Pro Leu Pro Pro Gln Val 35 40 45 Ser Pro Arg Val Thr Tyr Thr Arg Val Ser Pro Gly Gln Ala Glu Asp 50 55 60 Val Thr Phe Leu Tyr His Pro Cys Ala His Pro Trp Leu Lys Leu Gln 65 70 75 80 Leu Ala Leu Leu Ala Tyr Ala Cys Met Ala

Asn Pro Ser Leu Thr Pro 85 90 95 Asp Phe Ser Leu Thr Gln Asp Arg Pro Leu Val Leu Thr Ala Trp Gly 100 105 110 Leu Ala Leu Glu Met Ala Trp Val Glu Pro Ala Trp Ala Ala His Trp 115 120 125 Leu Met Arg Arg Arg Arg Arg Lys Gln Arg Lys Lys Lys Ala Trp Ile 130 135 140 Tyr Cys Glu Ser Leu Ser Gly Pro Ala Pro Ser Glu Pro Thr Pro Gly 145 150 155 160 Arg Gly Arg Leu Cys Arg Arg Gly Cys Val Gln Ala Leu Ala Leu Ala 165 170 175 Phe Ala Leu Arg Thr Gly Gly Pro Leu Ala Gln Arg 180 185 42 222 PRT Homo sapiens misc_feature Incyte Clone No 2292356 42 Met Ala Ala Ala Ala Leu Thr Ser Leu Ser Thr Ser Pro Leu Leu Leu 1 5 10 15 Gly Ala Pro Val Ala Ala Phe Ser Pro Glu Pro Gly Leu Glu Pro Trp 20 25 30 Lys Glu Ala Leu Val Arg Pro Pro Gly Ser Tyr Ser Ser Ser Ser Asn 35 40 45 Ser Gly Asp Trp Gly Trp Asp Leu Ala Ser Asp Gln Ser Ser Pro Ser 50 55 60 Thr Pro Ser Pro Pro Leu Pro Pro Glu Ala Ala His Phe Leu Phe Gly 65 70 75 80 Glu Pro Thr Leu Arg Lys Arg Lys Ser Pro Ala Gln Val Met Phe Gln 85 90 95 Cys Leu Trp Lys Ser Cys Gly Lys Val Leu Ser Thr Ala Ser Ala Met 100 105 110 Gln Arg His Ile Arg Leu Val His Leu Gly Cys Gly Gly Ala Trp Gly 115 120 125 Ala Ala Gly Pro Ala Gly Trp Leu Gly Leu Leu Gly Pro Ala Arg Pro 130 135 140 Pro Leu Gln Leu Pro Leu Ala Gly Cys Val Ser Arg Arg Arg Gln Ala 145 150 155 160 Glu Pro Glu Gln Ser Asp Gly Glu Glu Asp Phe Tyr Tyr Thr Glu Leu 165 170 175 Asp Val Gly Val Asp Thr Leu Thr Asp Gly Leu Ser Ser Leu Thr Pro 180 185 190 Val Phe Pro Glu Gly Phe His Ala Ser Leu Pro Ser Pro Ala Leu Lys 195 200 205 Leu Arg Arg Leu Gly Gly Thr Arg Gln Pro Arg Gln Tyr Pro 210 215 220 43 111 PRT Homo sapiens misc_feature Incyte Clone No 2349310 43 Met Gly Pro Ser Ser Cys Leu Leu Leu Ile Leu Ile Pro Leu Leu Gln 1 5 10 15 Leu Ile Asn Leu Gly Ser Thr Gln Cys Ser Leu Asp Ser Val Met Asp 20 25 30 Lys Lys Ile Lys Asp Val Leu Asn Ser Leu Glu Tyr Ser Pro Ser Pro 35 40 45 Ile Ser Lys Lys Leu Ser Cys Ala Ser Val Lys Ser Gln Gly Arg Pro 50 55 60 Ser Ser Cys Pro Ala Gly Met Ala Val Thr Gly Cys Ala Cys Gly Tyr 65 70 75 80 Gly Cys Gly Ser Trp Asp Val Gln Leu Glu Thr Thr Cys His Cys Gln 85 90 95 Cys Ser Val Val Asp Trp Thr Thr Ala Arg Cys Cys His Leu Thr 100 105 110 44 341 PRT Homo sapiens misc_feature Incyte Clone No 2373227 44 Met Val Pro Ala Ala Gly Ala Leu Leu Trp Val Leu Leu Leu Asn Leu 1 5 10 15 Gly Pro Arg Ala Ala Gly Ala Gln Gly Leu Thr Gln Thr Pro Thr Glu 20 25 30 Met Gln Arg Val Ser Leu Arg Phe Gly Gly Pro Met Thr Arg Ser Tyr 35 40 45 Arg Ser Thr Ala Arg Thr Gly Leu Pro Arg Lys Thr Arg Ile Ile Leu 50 55 60 Glu Asp Glu Asn Asp Ala Met Ala Asp Ala Asp Arg Leu Ala Gly Pro 65 70 75 80 Ala Ala Ala Glu Leu Leu Ala Ala Thr Val Ser Thr Gly Phe Ser Arg 85 90 95 Ser Ser Ala Ile Asn Glu Glu Asp Gly Ser Ser Glu Glu Gly Val Val 100 105 110 Ile Asn Ala Gly Lys Asp Ser Thr Ser Arg Glu Leu Pro Ser Ala Thr 115 120 125 Pro Asn Thr Ala Gly Ser Ser Ser Thr Arg Phe Ile Ala Asn Ser Gln 130 135 140 Glu Pro Glu Ile Arg Leu Thr Ser Ser Leu Pro Arg Ser Pro Gly Arg 145 150 155 160 Ser Thr Glu Asp Leu Pro Gly Ser Gln Ala Thr Leu Ser Gln Trp Ser 165 170 175 Thr Pro Gly Ser Thr Pro Ser Arg Trp Pro Ser Pro Ser Pro Thr Ala 180 185 190 Met Pro Ser Pro Glu Asp Leu Arg Leu Val Leu Met Pro Trp Gly Pro 195 200 205 Trp His Cys His Cys Lys Ser Gly Thr Met Ser Arg Ser Arg Ser Gly 210 215 220 Lys Leu His Gly Leu Ser Gly Arg Leu Arg Val Gly Ala Leu Ser Gln 225 230 235 240 Leu Arg Thr Glu His Lys Pro Cys Thr Tyr Gln Gln Cys Pro Cys Asn 245 250 255 Arg Leu Arg Glu Glu Cys Pro Leu Asp Thr Ser Leu Cys Thr Asp Thr 260 265 270 Asn Cys Ala Ser Gln Ser Thr Thr Ser Thr Arg Thr Thr Thr Thr Pro 275 280 285 Phe Pro Thr Ile His Leu Arg Ser Ser Pro Ser Leu Pro Pro Ala Ser 290 295 300 Pro Cys Pro Ala Leu Ala Phe Trp Lys Arg Val Arg Ile Gly Leu Glu 305 310 315 320 Asp Ile Trp Asn Ser Leu Ser Ser Val Phe Thr Glu Met Gln Pro Ile 325 330 335 Asp Arg Asn Gln Arg 340 45 148 PRT Homo sapiens misc_feature Incyte Clone No 2457682 45 Met Ala Gly Leu Ala Ala Arg Leu Val Leu Leu Ala Gly Ala Ala Ala 1 5 10 15 Leu Ala Ser Gly Ser Gln Gly Asp Arg Glu Pro Val Tyr Arg Asp Cys 20 25 30 Val Leu Gln Cys Glu Glu Gln Asn Cys Ser Gly Gly Ala Leu Asn His 35 40 45 Phe Arg Ser Arg Gln Pro Ile Tyr Met Ser Leu Ala Gly Trp Thr Cys 50 55 60 Arg Asp Asp Cys Lys Tyr Glu Cys Met Trp Val Thr Val Gly Leu Tyr 65 70 75 80 Leu Gln Glu Gly His Lys Val Pro Gln Phe His Gly Lys Trp Pro Phe 85 90 95 Ser Arg Phe Leu Phe Phe Gln Glu Pro Ala Ser Ala Val Ala Ser Phe 100 105 110 Leu Asn Gly Leu Ala Ser Leu Val Met Leu Cys Arg Tyr Arg Thr Phe 115 120 125 Val Pro Ala Ser Ser Pro Met Tyr His Thr Cys Val Ala Phe Ala Trp 130 135 140 Leu Ser Gly Arg 145 46 87 PRT Homo sapiens misc_feature Incyte Clone No 2480426 46 Met Arg Pro Leu Leu Val Leu Leu Leu Leu Gly Leu Ala Ala Gly Ser 1 5 10 15 Pro Pro Leu Asp Asp Asn Lys Ile Pro Ser Leu Cys Pro Gly Leu Pro 20 25 30 Gly Pro Arg Gly Asp Pro Gly Pro Arg Gly Glu Ala Gly Pro Ala Gly 35 40 45 Pro Thr Gly Leu Ala Gly Glu Cys Ser Val Pro Pro Arg Ser Ala Phe 50 55 60 Ser Ala Lys Arg Ser Glu Ile Arg Val Pro Pro Leu Ser Asp Ala Pro 65 70 75 80 Leu Pro Ser Thr Ala Cys Trp 85 47 383 PRT Homo sapiens misc_feature Incyte Clone No 2503743 47 Met Ala Gly Ile Pro Gly Leu Leu Phe Leu Leu Phe Phe Leu Leu Cys 1 5 10 15 Ala Val Gly Gln Val Ser Pro Tyr Ser Ala Pro Trp Lys Pro Thr Trp 20 25 30 Pro Ala Tyr Arg Leu Pro Val Val Leu Pro Gln Ser Thr Leu Asn Leu 35 40 45 Ala Lys Pro Asp Phe Gly Ala Glu Ala Lys Leu Glu Val Ser Ser Ser 50 55 60 Cys Gly Pro Gln Cys His Lys Gly Thr Pro Leu Pro Thr Tyr Glu Glu 65 70 75 80 Ala Lys Gln Tyr Leu Ser Tyr Glu Thr Leu Tyr Ala Asn Gly Ser Arg 85 90 95 Thr Glu Thr Gln Val Gly Ile Tyr Ile Leu Ser Ser Ser Gly Asp Gly 100 105 110 Ala Gln His Arg Asp Ser Gly Ser Ser Gly Lys Ser Arg Arg Lys Arg 115 120 125 Gln Ile Tyr Gly Tyr Asp Ser Arg Phe Ser Ile Phe Gly Lys Asp Phe 130 135 140 Leu Leu Asn Tyr Pro Phe Ser Thr Ser Val Lys Leu Ser Thr Gly Cys 145 150 155 160 Thr Gly Thr Leu Val Ala Glu Lys His Val Leu Thr Ala Ala His Cys 165 170 175 Ile His Asp Gly Lys Thr Tyr Val Lys Gly Thr Gln Lys Leu Arg Val 180 185 190 Gly Phe Leu Lys Pro Lys Phe Lys Asp Gly Gly Arg Gly Ala Asn Asp 195 200 205 Ser Thr Ser Ala Met Pro Glu Gln Met Lys Phe Gln Trp Ile Arg Val 210 215 220 Lys Arg Thr His Val Pro Lys Gly Trp Ile Lys Gly Asn Ala Asn Asp 225 230 235 240 Ile Gly Met Asp Tyr Asp Tyr Ala Leu Leu Glu Leu Lys Lys Pro His 245 250 255 Lys Arg Lys Phe Met Lys Ile Gly Val Ser Pro Pro Ala Lys Gln Leu 260 265 270 Pro Gly Gly Arg Ile His Phe Ser Gly Tyr Asp Asn Asp Arg Pro Gly 275 280 285 Asn Leu Val Tyr Arg Phe Cys Asp Val Lys Asp Glu Thr Tyr Asp Leu 290 295 300 Leu Tyr Gln Gln Cys Asp Ala Gln Pro Gly Ala Ser Gly Ser Gly Val 305 310 315 320 Tyr Val Arg Met Trp Lys Arg Gln Gln Gln Lys Trp Glu Arg Lys Ile 325 330 335 Ile Gly Ile Phe Ser Gly His Gln Trp Val Asp Met Asn Gly Ser Pro 340 345 350 Gln Asp Phe Asn Val Ala Val Arg Ile Thr Pro Leu Lys Tyr Ala Gln 355 360 365 Ile Cys Tyr Trp Ile Lys Gly Asn Tyr Leu Asp Cys Arg Glu Gly 370 375 380 48 109 PRT Homo sapiens misc_feature Incyte Clone No 2537684 48 Met Leu Leu Pro Ala Leu Cys Ala Trp Leu Leu Trp Val Pro Trp Cys 1 5 10 15 Leu Leu Val Ala Gly Ser Gly Arg Ser Gly Gly Glu Leu Cys Cys Ser 20 25 30 Ser Tyr Gly Val Ser Val Ile Ser Val Trp Ser Lys Cys Ser Val Cys 35 40 45 Arg Cys Leu Met Gly Ser Val Pro Arg Ile Phe Phe Ala Phe Tyr Pro 50 55 60 Ile Ala Trp Leu Pro Leu Pro Gly Ser Gln Gly Cys Trp Ser Arg Ser 65 70 75 80 Trp Glu Trp Pro Leu Val Glu Pro Ala Ser Cys Leu Val Cys Leu Cys 85 90 95 Phe Thr Phe Gly Val Leu Ser Gly Val Val Ala Val Lys 100 105 49 185 PRT Homo sapiens misc_feature Incyte Clone No 2593853 49 Met Lys Phe Thr Ile Val Phe Ala Gly Leu Leu Gly Val Phe Leu Ala 1 5 10 15 Pro Ala Leu Ala Asn Tyr Asn Ile Asn Val Asn Asp Asp Asn Asn Asn 20 25 30 Ala Gly Ser Gly Gln Gln Ser Val Ser Val Asn Asn Glu His Asn Val 35 40 45 Ala Asn Val Asp Asn Asn Asn Gly Trp Asp Ser Trp Asn Ser Ile Trp 50 55 60 Asp Tyr Gly Asn Gly Phe Ala Ala Thr Arg Leu Phe Gln Lys Lys Thr 65 70 75 80 Cys Ile Val His Lys Met Asn Lys Glu Val Met Pro Ser Ile Gln Ser 85 90 95 Leu Asp Ala Leu Val Lys Glu Lys Lys Leu Gln Gly Lys Gly Pro Gly 100 105 110 Gly Pro Pro Pro Lys Gly Leu Met Tyr Ser Val Asn Pro Asn Lys Val 115 120 125 Asp Asp Leu Ser Lys Phe Gly Lys Asn Ile Ala Asn Met Cys Arg Gly 130 135 140 Ile Pro Thr Tyr Met Ala Glu Glu Met Gln Glu Ala Ser Leu Phe Phe 145 150 155 160 Tyr Ser Gly Thr Cys Tyr Thr Thr Ser Val Leu Trp Ile Val Asp Ile 165 170 175 Ser Phe Cys Gly Asp Thr Val Glu Asn 180 185 50 110 PRT Homo sapiens misc_feature Incyte Clone No 2622354 50 Met Ala Pro Arg Gly Cys Ile Val Ala Val Phe Ala Ile Phe Cys Ile 1 5 10 15 Ser Arg Leu Leu Cys Ser His Gly Ala Pro Val Ala Pro Met Thr Pro 20 25 30 Tyr Leu Met Leu Cys Gln Pro His Lys Arg Cys Gly Asp Lys Phe Tyr 35 40 45 Asp Pro Leu Gln His Cys Cys Tyr Asp Asp Ala Val Val Pro Leu Ala 50 55 60 Arg Thr Gln Thr Cys Gly Asn Cys Thr Phe Arg Val Cys Phe Glu Gln 65 70 75 80 Cys Cys Pro Trp Thr Phe Met Val Lys Leu Ile Asn Gln Asn Cys Asp 85 90 95 Ser Ala Arg Thr Ser Asp Asp Arg Leu Cys Arg Ser Val Ser 100 105 110 51 126 PRT Homo sapiens misc_feature Incyte Clone No 2641377 51 Met Trp Leu Gly Ser Trp Leu Thr Ser Leu Leu Leu Ser Pro Tyr Gly 1 5 10 15 Ser Gly Trp Glu Lys Val Pro Cys Cys Val Thr Gly His Leu Arg Ser 20 25 30 Cys Ser Cys Cys Leu Leu Gly Leu Ala Gly Val Gln Ser Asp His Phe 35 40 45 Ser Glu Gly Phe Phe Ser Glu Tyr Ser Ser Asp Val Leu Pro Trp Gly 50 55 60 Arg Arg Ser Phe Leu Pro Gln Gly Asp Ala Ser Leu Leu Ala Cys Glu 65 70 75 80 Cys Phe Leu His Leu Gln Val Val Trp Gly Gln Phe Cys Leu Leu Glu 85 90 95 Ala Trp Ala Gly Phe Thr Glu Gly Ser Met Pro Ala Pro Ser Cys Arg 100 105 110 Val His Phe Trp Cys Arg Val Asn Thr Cys Ala Phe Met Ser 115 120 125 52 488 PRT Homo sapiens misc_feature Incyte Clone No 2674857 52 Met Ala Gly Lys Gly Ser Ser Gly Arg Arg Pro Leu Leu Leu Gly Leu 1 5 10 15 Leu Val Ala Val Ala Thr Val His Leu Val Ile Cys Pro Tyr Thr Lys 20 25 30 Val Glu Glu Ser Phe Asn Leu Gln Ala Thr His Asp Leu Leu Tyr His 35 40 45 Trp Gln Asp Leu Glu Gln Tyr Asp His Leu Glu Phe Pro Gly Val Val 50 55 60 Pro Arg Thr Phe Leu Gly Pro Val Val Ile Ala Val Phe Ser Ser Pro 65 70 75 80 Ala Val Tyr Val Leu Ser Leu Leu Glu Met Ser Lys Phe Tyr Ser Gln 85 90 95 Leu Ile Val Arg Gly Val Leu Gly Leu Gly Val Ile Phe Gly Leu Trp 100 105 110 Thr Leu Gln Lys Glu Val Arg Arg His Phe Gly Ala Met Val Ala Thr 115 120 125 Met Phe Cys Trp Val Thr Ala Met Gln Phe His Leu Met Phe Tyr Cys 130 135 140 Thr Arg Thr Leu Pro Asn Val Leu Ala Leu Pro Val Val Leu Leu Ala 145 150 155 160 Leu Ala Ala Trp Leu Arg His Glu Trp Ala Arg Phe Ile Trp Leu Ser 165 170 175 Ala Phe Ala Ile Ile Val Phe Arg Val Glu Leu Cys Leu Phe Leu Gly 180 185 190 Leu Leu Leu Leu Leu Ala Leu Gly Asn Arg Lys Val Ser Val Val Arg 195 200 205 Ala Leu Arg His Ala Val Pro Ala Gly Ile Leu Cys Leu Gly Leu Thr 210 215 220 Val Ala Val Asp Ser Tyr Phe Trp Arg Gln Leu Thr Trp Pro Glu Gly 225 230 235 240 Lys Val Leu Trp Tyr Asn Thr Val Leu Asn Lys Ser Ser Asn Trp Gly 245 250 255 Thr Ser Pro Leu Leu Trp Tyr Phe Tyr Ser Ala Leu Pro Arg Gly Leu 260 265 270 Gly Cys Ser Leu Leu Phe Ile Pro Leu Gly Leu Val Asp Arg Arg Thr 275 280 285 His Ala Pro Thr Val Leu Ala Leu Gly Phe Met Ala Leu Tyr Ser Leu 290 295 300 Leu Pro His Lys Glu Leu Arg Phe Ile Ile Tyr Ala Phe Pro Met Leu 305 310 315 320 Asn Ile Thr Ala Ala Arg Gly Cys Ser Tyr Leu Leu Asn Asn Tyr Lys 325 330 335 Lys Ser Trp Leu Tyr Lys Ala Gly Ser Leu Leu Val Ile Gly His Leu 340 345 350 Val Val Asn Ala Ala Tyr Ser Ala Thr Ala Leu Tyr Val Ser His Phe 355 360 365 Asn Tyr Pro Gly Gly Val Ala Met Gln Arg Leu His Gln Leu Val Pro 370 375 380 Pro Gln Thr Asp Val Leu Leu His Ile Asp Val Ala Ala Ala Gln Thr 385 390 395 400 Gly Val Ser Arg Phe Leu Gln Val Asn Ser Ala Trp Arg Tyr Asp Lys 405 410 415 Arg Glu Asp Val Gln Pro Gly Thr Gly Met Leu Ala Tyr Thr His Ile 420 425 430

Leu Met Glu Ala Ala Pro Gly Leu Leu Ala Leu Tyr Arg Asp Thr His 435 440 445 Arg Val Leu Ala Ser Val Val Gly Thr Thr Gly Val Ser Leu Asn Leu 450 455 460 Thr Gln Leu Pro Pro Phe Asn Val His Leu Gln Thr Lys Leu Val Leu 465 470 475 480 Leu Glu Arg Leu Pro Arg Pro Ser 485 53 197 PRT Homo sapiens misc_feature Incyte Clone No 2758485 53 Met Ser Pro Arg Arg Thr Leu Pro Arg Pro Leu Ser Leu Cys Leu Ser 1 5 10 15 Leu Cys Leu Cys Leu Cys Leu Ala Ala Ala Leu Gly Ser Ala Gln Ser 20 25 30 Gly Ser Cys Arg Asp Lys Lys Asn Cys Lys Val Val Phe Ser Gln Gln 35 40 45 Glu Leu Arg Lys Arg Leu Thr Pro Leu Gln Tyr His Val Thr Gln Glu 50 55 60 Lys Gly Thr Glu Ser Ala Phe Glu Gly Glu Tyr Thr His His Lys Asp 65 70 75 80 Pro Gly Ile Tyr Lys Cys Val Val Cys Gly Thr Pro Leu Phe Lys Ser 85 90 95 Glu Thr Lys Phe Asp Ser Gly Ser Gly Trp Pro Ser Phe His Asp Val 100 105 110 Ile Asn Ser Glu Ala Ile Thr Phe Thr Asp Asp Phe Ser Tyr Gly Met 115 120 125 His Arg Val Glu Thr Ser Cys Ser Gln Cys Gly Ala His Leu Gly His 130 135 140 Ile Phe Asp Asp Gly Pro Arg Pro Thr Gly Lys Arg Tyr Cys Ile Asn 145 150 155 160 Ser Ala Ala Leu Ser Phe Thr Pro Ala Asp Ser Ser Gly Thr Ala Glu 165 170 175 Gly Gly Ser Gly Val Ala Ser Pro Ala Gln Ala Asp Lys Ala Asp Ser 180 185 190 Glu Ser Asn Gly Glu 195 54 84 PRT Homo sapiens misc_feature Incyte Clone No 2763296 54 Met Thr Pro Gln Ser Leu Leu Gln Thr Thr Leu Phe Leu Leu Ser Leu 1 5 10 15 Leu Phe Leu Val Gln Gly Ala His Gly Arg Gly His Arg Glu Asp Phe 20 25 30 Arg Phe Cys Ser Gln Arg Asn Gln Thr His Arg Ser Ser Leu His Tyr 35 40 45 Tyr Trp Ser Met Arg Leu Gln Ala Arg Gly Gly Pro Ser Pro Leu Lys 50 55 60 Ser Asn Ser Asp Ser Ala Arg Leu Pro Ile Ser Ser Gly Ser Thr Ser 65 70 75 80 Ser Ser Arg Ile 55 97 PRT Homo sapiens misc_feature Incyte Clone No 2779436 55 Met Gln Leu Gly Thr Gly Leu Leu Leu Ala Ala Val Leu Ser Leu Gln 1 5 10 15 Leu Ala Ala Ala Glu Ala Ile Trp Cys His Gln Cys Thr Gly Phe Gly 20 25 30 Gly Cys Ser His Gly Ser Arg Cys Leu Arg Asp Ser Thr His Cys Val 35 40 45 Thr Thr Ala Thr Arg Val Leu Ser Asn Thr Glu Asp Leu Pro Leu Val 50 55 60 Thr Lys Met Cys His Ile Gly Cys Pro Asp Ile Pro Ser Leu Gly Leu 65 70 75 80 Gly Pro Tyr Val Ser Ile Ala Cys Cys Gln Thr Ser Leu Cys Asn His 85 90 95 Asp 56 140 PRT Homo sapiens misc_feature Incyte Clone No 2808528 56 Met Ala Ala Ser Leu Gly Gln Val Leu Ala Leu Val Leu Val Ala Ala 1 5 10 15 Leu Trp Gly Gly Thr Gln Pro Leu Leu Lys Arg Ala Ser Ala Gly Leu 20 25 30 Gln Arg Val His Glu Pro Thr Trp Ala Gln Gln Leu Leu Gln Glu Met 35 40 45 Lys Thr Leu Phe Leu Asn Thr Glu Tyr Leu Met Pro Phe Leu Leu Asn 50 55 60 Gln Cys Gly Ser Leu Leu Tyr Tyr Leu Thr Leu Ala Ser Thr Asp Leu 65 70 75 80 Thr Leu Ala Val Pro Ile Cys Asn Ser Leu Ala Ile Ile Phe Thr Leu 85 90 95 Ile Val Gly Lys Ala Leu Gly Glu Asp Ile Gly Gly Lys Arg Ala Val 100 105 110 Ala Gly Met Val Leu Thr Val Ile Gly Ile Ser Leu Cys Ile Thr Ser 115 120 125 Ser Val Ser Lys Thr Gln Gly Gln Gln Ser Thr Leu 130 135 140 57 285 PRT Homo sapiens misc_feature Incyte Clone No 2809230 57 Met Glu Val Pro Pro Pro Ala Pro Arg Ser Phe Leu Cys Arg Ala Leu 1 5 10 15 Cys Leu Phe Pro Arg Val Phe Ala Ala Glu Ala Val Thr Ala Asp Ser 20 25 30 Glu Val Leu Glu Glu Arg Gln Lys Arg Leu Pro Tyr Val Pro Glu Pro 35 40 45 Tyr Tyr Pro Glu Ser Gly Trp Asp Arg Leu Arg Glu Leu Phe Gly Lys 50 55 60 Asp Glu Gln Gln Arg Ile Ser Lys Asp Leu Ala Asn Ile Cys Lys Thr 65 70 75 80 Ala Ala Thr Ala Gly Ile Ile Gly Trp Val Tyr Gly Gly Ile Pro Ala 85 90 95 Phe Ile His Ala Lys Gln Gln Tyr Ile Glu Gln Ser Gln Ala Glu Ile 100 105 110 Tyr His Asn Arg Phe Asp Ala Val Gln Ser Ala His Arg Ala Ala Thr 115 120 125 Arg Gly Phe Ile Arg Tyr Gly Trp Arg Trp Gly Trp Arg Thr Ala Val 130 135 140 Phe Val Thr Ile Phe Asn Thr Val Asn Thr Ser Leu Asn Val Tyr Arg 145 150 155 160 Asn Lys Asp Ala Leu Ser His Phe Val Ile Ala Gly Ala Val Thr Gly 165 170 175 Ser Leu Phe Arg Ile Asn Val Gly Leu Arg Gly Leu Val Ala Gly Gly 180 185 190 Ile Ile Gly Ala Leu Leu Gly Thr Pro Val Gly Gly Leu Leu Met Ala 195 200 205 Phe Gln Lys Tyr Ser Gly Glu Thr Val Gln Glu Arg Lys Gln Lys Asp 210 215 220 Arg Lys Ala Leu His Glu Leu Lys Leu Glu Glu Trp Lys Gly Arg Leu 225 230 235 240 Gln Val Thr Glu His Leu Pro Glu Lys Ile Glu Ser Ser Leu Gln Glu 245 250 255 Asp Glu Pro Glu Asn Asp Ala Lys Lys Ile Glu Ala Leu Leu Asn Leu 260 265 270 Pro Arg Asn Pro Ser Val Ile Asp Lys Gln Asp Lys Asp 275 280 285 58 262 PRT Homo sapiens misc_feature Incyte Clone No 2816821 58 Met Thr Gln Pro Val Pro Arg Leu Ser Val Pro Ala Ala Leu Ala Leu 1 5 10 15 Gly Ser Ala Ala Leu Gly Ala Ala Phe Ala Thr Gly Leu Phe Leu Gly 20 25 30 Arg Arg Cys Pro Pro Trp Arg Gly Arg Arg Glu Gln Cys Leu Leu Pro 35 40 45 Pro Glu Asp Ser Arg Leu Trp Gln Tyr Leu Leu Ser Arg Ser Met Arg 50 55 60 Glu His Pro Ala Leu Arg Ser Leu Arg Leu Leu Thr Leu Glu Gln Pro 65 70 75 80 Gln Gly Asp Ser Met Met Thr Cys Glu Gln Ala Gln Leu Leu Ala Asn 85 90 95 Leu Ala Arg Leu Ile Gln Ala Lys Lys Ala Leu Asp Leu Gly Thr Phe 100 105 110 Thr Gly Tyr Ser Ala Leu Ala Leu Ala Leu Ala Leu Pro Ala Asp Gly 115 120 125 Arg Val Val Thr Cys Glu Val Asp Ala Gln Pro Pro Glu Leu Gly Arg 130 135 140 Pro Leu Trp Arg Gln Ala Glu Ala Glu His Lys Ile Asp Leu Arg Leu 145 150 155 160 Lys Pro Ala Leu Glu Thr Leu Asp Glu Leu Leu Ala Ala Gly Glu Ala 165 170 175 Gly Thr Phe Asp Val Ala Val Val Asp Ala Asp Lys Glu Asn Cys Ser 180 185 190 Ala Tyr Tyr Glu Arg Cys Leu Gln Leu Leu Arg Pro Gly Gly Ile Leu 195 200 205 Ala Val Leu Arg Val Leu Trp Arg Gly Lys Val Leu Gln Pro Pro Lys 210 215 220 Gly Asp Val Ala Ala Glu Cys Val Arg Asn Leu Asn Glu Arg Ile Arg 225 230 235 240 Arg Asp Val Arg Val Tyr Ile Ser Leu Leu Pro Leu Gly Asp Gly Leu 245 250 255 Thr Leu Ala Phe Lys Ile 260 59 189 PRT Homo sapiens misc_feature Incyte Clone No 2817268 59 Met Ala Leu Leu Ser Arg Pro Ala Leu Thr Leu Leu Leu Leu Leu Met 1 5 10 15 Ala Ala Val Val Arg Cys Gln Glu Gln Ala Gln Thr Thr Asp Trp Arg 20 25 30 Ala Thr Leu Lys Thr Ile Arg Asn Gly Val His Lys Ile Asp Thr Tyr 35 40 45 Leu Asn Ala Ala Leu Asp Leu Leu Gly Gly Glu Asp Gly Leu Cys Gln 50 55 60 Tyr Lys Cys Ser Asp Gly Ser Lys Pro Phe Pro Arg Tyr Gly Tyr Lys 65 70 75 80 Pro Ser Pro Pro Asn Gly Cys Gly Ser Pro Leu Phe Gly Val His Leu 85 90 95 Asn Ile Gly Ile Pro Ser Leu Thr Lys Cys Cys Asn Gln His Asp Arg 100 105 110 Cys Tyr Glu Thr Cys Gly Lys Ser Lys Asn Asp Cys Asp Glu Glu Phe 115 120 125 Gln Tyr Cys Leu Ser Lys Ile Cys Arg Asp Val Gln Lys Thr Leu Gly 130 135 140 Leu Thr Gln His Val Gln Ala Cys Glu Thr Thr Val Glu Leu Leu Phe 145 150 155 160 Asp Ser Val Ile His Leu Gly Cys Lys Pro Tyr Leu Asp Ser Gln Arg 165 170 175 Ala Ala Cys Arg Cys His Tyr Glu Glu Lys Thr Asp Leu 180 185 60 257 PRT Homo sapiens misc_feature Incyte Clone No 2923165 60 Met Thr Ala Ala Val Phe Phe Gly Cys Ala Phe Ile Ala Phe Gly Pro 1 5 10 15 Ala Leu Ala Leu Tyr Val Phe Thr Ile Ala Thr Glu Pro Leu Arg Ile 20 25 30 Ile Phe Leu Ile Ala Gly Ala Phe Phe Trp Leu Val Ser Leu Leu Ile 35 40 45 Ser Ser Leu Val Trp Phe Met Ala Arg Val Ile Ile Asp Asn Lys Asp 50 55 60 Gly Pro Thr Gln Lys Tyr Leu Leu Ile Phe Gly Ala Phe Val Ser Val 65 70 75 80 Tyr Ile Gln Glu Met Phe Arg Phe Ala Tyr Tyr Lys Leu Leu Lys Lys 85 90 95 Ala Ser Glu Gly Leu Lys Ser Ile Asn Pro Gly Glu Thr Ala Pro Ser 100 105 110 Met Arg Leu Leu Ala Tyr Val Ser Gly Leu Gly Phe Gly Ile Met Ser 115 120 125 Gly Val Phe Ser Phe Val Asn Thr Leu Ser Asp Ser Leu Gly Pro Gly 130 135 140 Thr Val Gly Ile His Gly Asp Ser Pro Gln Phe Phe Leu Tyr Ser Ala 145 150 155 160 Phe Met Thr Leu Val Ile Ile Leu Leu His Val Phe Trp Gly Ile Val 165 170 175 Phe Phe Asp Gly Cys Glu Lys Lys Lys Trp Gly Ile Leu Leu Ile Val 180 185 190 Leu Leu Thr His Leu Leu Val Ser Ala Gln Thr Phe Ile Ser Ser Tyr 195 200 205 Tyr Gly Ile Asn Leu Ala Ser Ala Phe Ile Ile Leu Val Leu Met Gly 210 215 220 Thr Trp Ala Phe Leu Ala Ala Gly Gly Ser Cys Arg Ser Leu Lys Leu 225 230 235 240 Cys Leu Leu Cys Gln Asp Lys Asn Phe Leu Leu Tyr Asn Gln Arg Ser 245 250 255 Arg 61 82 PRT Homo sapiens misc_feature Incyte Clone No 2949822 61 Met Pro Phe Ser Trp Met Val Ile Ile Leu Gly Phe Leu Cys Gly Leu 1 5 10 15 Ser Gly Gln Leu Gln Ile Met Asn Thr Leu Ser Ser Leu Pro Ile Val 20 25 30 Leu Leu Val Ser Ser Ser Cys Leu Ile Leu Ala Arg Met Ser Tyr Ser 35 40 45 Ile Leu Thr Ser Ser Tyr Gly Gly Gly Val Phe Ile Leu Leu Asp Leu 50 55 60 Lys Arg Asn Thr Ser Lys Val Ser Pro Leu Met Met Met Phe Ala Ile 65 70 75 80 Gly His 62 202 PRT Homo sapiens misc_feature Incyte Clone No 2992192 62 Met Ala Ala Pro Trp Arg Arg Trp Pro Thr Gly Leu Leu Ala Val Leu 1 5 10 15 Arg Pro Leu Leu Thr Cys Arg Pro Leu Gln Gly Thr Thr Leu Gln Arg 20 25 30 Asp Val Leu Leu Phe Glu His Asp Arg Gly Arg Phe Phe Thr Ile Leu 35 40 45 Gly Leu Phe Cys Ala Gly Gln Gly Val Phe Trp Ala Ser Met Ala Val 50 55 60 Ala Ala Val Ser Arg Pro Pro Val Pro Val Gln Pro Leu Asp Ala Glu 65 70 75 80 Val Pro Asn Arg Gly Pro Phe Asp Leu Arg Ser Ala Leu Trp Arg Tyr 85 90 95 Gly Leu Ala Val Gly Cys Gly Ala Ile Gly Ala Leu Val Leu Gly Ala 100 105 110 Gly Leu Leu Phe Ser Leu Arg Ser Val Arg Ser Val Val Leu Arg Ala 115 120 125 Gly Gly Gln Gln Val Thr Leu Thr Thr His Ala Pro Phe Gly Leu Gly 130 135 140 Ala His Phe Thr Val Pro Leu Lys Gln Val Ser Cys Met Ala His Arg 145 150 155 160 Gly Glu Val Pro Ala Met Leu Pro Leu Lys Val Lys Gly Arg Arg Phe 165 170 175 Tyr Phe Leu Leu Asp Lys Thr Gly His Phe Pro Asn Thr Lys Leu Phe 180 185 190 Asp Asn Thr Val Gly Ala Tyr Arg Ser Leu 195 200 63 450 PRT Homo sapiens misc_feature Incyte Clone No 2992458 63 Met Leu Val Thr Ala Tyr Leu Ala Phe Val Gly Leu Leu Ala Ser Cys 1 5 10 15 Leu Gly Leu Glu Leu Ser Arg Cys Arg Ala Lys Pro Pro Gly Arg Ala 20 25 30 Cys Ser Asn Pro Ser Phe Leu Arg Phe Gln Leu Asp Phe Tyr Gln Val 35 40 45 Tyr Phe Leu Ala Leu Ala Ala Asp Trp Leu Gln Ala Pro Tyr Leu Tyr 50 55 60 Lys Leu Tyr Gln His Tyr Tyr Phe Leu Glu Gly Gln Ile Ala Ile Leu 65 70 75 80 Tyr Val Cys Gly Leu Ala Ser Thr Val Leu Phe Gly Leu Val Ala Ser 85 90 95 Ser Leu Val Asp Trp Leu Gly Arg Lys Asn Ser Cys Val Leu Phe Ser 100 105 110 Leu Thr Tyr Ser Leu Cys Cys Leu Thr Lys Leu Ser Gln Asp Tyr Phe 115 120 125 Val Leu Leu Val Gly Arg Ala Leu Gly Gly Leu Ser Thr Ala Leu Leu 130 135 140 Phe Ser Ala Phe Glu Ala Trp Tyr Ile His Glu His Val Glu Arg His 145 150 155 160 Asp Phe Pro Ala Glu Trp Ile Pro Ala Thr Phe Ala Arg Ala Ala Phe 165 170 175 Trp Asn His Val Leu Ala Val Val Ala Gly Val Ala Ala Glu Ala Val 180 185 190 Ala Ser Trp Ile Gly Leu Gly Pro Val Ala Pro Phe Val Ala Ala Ile 195 200 205 Pro Leu Leu Ala Leu Ala Gly Ala Leu Ala Leu Arg Asn Trp Gly Glu 210 215 220 Asn Tyr Asp Arg Gln Arg Ala Phe Ser Arg Thr Cys Ala Gly Gly Leu 225 230 235 240 Arg Cys Leu Leu Ser Asp Arg Arg Val Leu Leu Leu Gly Thr Ile Gln 245 250 255 Ala Leu Phe Glu Ser Val Ile Phe Ile Phe Val Phe Leu Trp Thr Pro 260 265 270 Val Leu Asp Pro His Gly Ala Pro Leu Gly Ile Ile Phe Ser Ser Phe 275 280 285 Met Ala Ala Ser Leu Leu Gly Ser Ser Leu Tyr Arg Ile Ala Thr Ser 290 295 300 Lys Arg Tyr His Leu Gln Pro Met His Leu Leu Ser Leu Ala Val Leu 305 310 315 320 Ile Val Val Phe Ser Leu Phe Met Leu Thr Phe Ser Thr Ser Pro Gly 325 330 335 Gln Glu Ser Pro Val Glu Ser Phe Ile Ala Phe Leu Leu Ile Glu Leu 340 345 350 Ala Cys Gly Leu Tyr Phe Pro Ser Met Ser Phe Leu Arg Arg Lys Val 355 360 365 Ile Pro Glu Thr Glu Gln Ala Gly Val Leu Asn Trp Phe Arg Val Pro 370 375 380 Leu His Ser Leu Ala Cys Leu Gly Leu Leu Val Leu His Asp Ser Asp 385 390 395 400 Arg Lys Thr Gly Thr Arg Asn Met Phe Ser Ile Cys Ser Ala Val Met 405 410 415 Val Met Ala Leu Leu Ala Val Val Gly Leu Phe Thr Val Val Arg His 420 425 430 Asp Ala Glu Leu Arg Val Pro Ser Pro Thr Glu Glu Pro Tyr Ala Pro 435 440 445 Glu Leu 450 64 322 PRT Homo sapiens misc_feature Incyte Clone No 3044710 64 Met Ala Arg Cys Phe Ser Leu Val Leu Leu Leu Thr Ser Ile Trp Thr 1 5 10 15 Thr Arg Leu Leu Val Gln Gly Ser Leu Arg Ala Glu Glu Leu Ser Ile 20 25 30 Gln Val Ser Cys Arg Ile Met Gly Ile Thr Leu Val Ser Lys Lys Ala 35 40 45 Asn Gln Gln Leu Asn Phe Thr Glu Ala Lys

Glu Ala Cys Arg Leu Leu 50 55 60 Gly Leu Ser Leu Ala Gly Lys Asp Gln Val Glu Thr Ala Leu Lys Ala 65 70 75 80 Ser Phe Glu Thr Cys Ser Tyr Gly Trp Val Gly Asp Gly Phe Val Val 85 90 95 Ile Ser Arg Ile Ser Pro Asn Pro Lys Cys Gly Lys Asn Gly Val Gly 100 105 110 Val Leu Ile Trp Lys Val Pro Val Ser Arg Gln Phe Ala Ala Tyr Cys 115 120 125 Tyr Asn Ser Ser Asp Thr Trp Thr Asn Ser Cys Ile Pro Glu Ile Ile 130 135 140 Thr Thr Lys Asp Pro Ile Phe Asn Thr Gln Thr Ala Thr Gln Thr Thr 145 150 155 160 Glu Phe Ile Val Ser Asp Ser Thr Tyr Ser Val Ala Ser Pro Tyr Ser 165 170 175 Thr Ile Pro Ala Pro Thr Thr Thr Pro Pro Ala Pro Ala Ser Thr Ser 180 185 190 Ile Pro Arg Arg Lys Lys Leu Ile Cys Val Thr Glu Val Phe Met Glu 195 200 205 Thr Ser Thr Met Ser Thr Glu Thr Glu Pro Phe Val Glu Asn Lys Ala 210 215 220 Ala Phe Lys Asn Glu Ala Ala Gly Phe Gly Gly Val Pro Thr Ala Leu 225 230 235 240 Leu Val Leu Ala Leu Leu Phe Phe Gly Ala Ala Ala Gly Leu Gly Phe 245 250 255 Cys Tyr Val Lys Arg Tyr Val Lys Ala Phe Pro Phe Thr Asn Lys Asn 260 265 270 Gln Gln Lys Glu Met Ile Glu Thr Lys Val Val Lys Glu Glu Lys Ala 275 280 285 Asn Asp Ser Asn Pro Asn Glu Glu Ser Lys Lys Thr Asp Lys Asn Pro 290 295 300 Glu Glu Ser Lys Ser Pro Ser Lys Thr Thr Val Arg Cys Leu Glu Ala 305 310 315 320 Glu Val 65 104 PRT Homo sapiens misc_feature Incyte Clone No 3120415 65 Met Lys Leu Ala Ala Leu Leu Gly Leu Cys Val Ala Leu Ser Cys Ser 1 5 10 15 Ser Ala Ala Ala Phe Leu Val Gly Ser Ala Lys Pro Val Ala Gln Pro 20 25 30 Val Ala Ala Leu Glu Ser Ala Ala Glu Ala Gly Ala Gly Thr Leu Ala 35 40 45 Asn Pro Leu Gly Thr Leu Asn Pro Leu Lys Leu Leu Leu Ser Ser Leu 50 55 60 Gly Ile Pro Val Asn His Leu Ile Glu Gly Ser Gln Lys Cys Val Ala 65 70 75 80 Glu Leu Gly Pro Gln Ala Val Gly Ala Val Lys Ala Leu Lys Ala Leu 85 90 95 Leu Gly Ala Leu Thr Val Phe Gly 100 66 93 PRT Homo sapiens misc_feature Incyte Clone No 126758 66 Met Lys Leu Val Thr Ile Phe Leu Leu Val Thr Ile Ser Leu Cys Ser 1 5 10 15 Tyr Ser Ala Thr Ala Phe Leu Ile Asn Lys Val Pro Leu Pro Val Asp 20 25 30 Lys Leu Ala Pro Leu Pro Leu Asp Asn Ile Leu Pro Phe Met Asp Pro 35 40 45 Leu Lys Leu Leu Leu Lys Thr Leu Gly Ile Ser Val Glu His Leu Val 50 55 60 Glu Gly Leu Arg Lys Cys Val Asn Glu Leu Gly Pro Glu Ala Ser Glu 65 70 75 80 Ala Val Lys Lys Leu Leu Glu Ala Leu Ser His Leu Val 85 90 67 71 PRT Homo sapiens misc_feature Incyte Clone No 674760 67 Met Thr Ala Gly Gln Phe Pro Ala Leu Val Ser Leu Ala Leu Leu Leu 1 5 10 15 Asp Gly Gly Arg Arg Ala Ser Ala Arg Arg Asn Arg Gly His Leu Trp 20 25 30 Val Phe Cys Thr Ser Phe Leu Leu Ala Pro Trp Glu Val Glu Asp Val 35 40 45 Gly Trp Lys Lys Gly Leu Asp Leu Pro Pro Ser Ser Ser Pro Pro Ser 50 55 60 Pro Lys Glu Leu Ala Leu Gln 65 70 68 394 PRT Homo sapiens misc_feature Incyte Clone No 1229438 68 Met Lys Arg Gln Asn Val Arg Thr Leu Ala Leu Ile Val Cys Thr Phe 1 5 10 15 Thr Tyr Leu Leu Val Gly Ala Ala Val Phe Asp Ala Leu Glu Ser Glu 20 25 30 Pro Glu Leu Ile Glu Arg Gln Arg Leu Glu Leu Arg Gln Gln Glu Leu 35 40 45 Arg Ala Arg Tyr Asn Leu Ser Gln Gly Gly Tyr Glu Glu Leu Glu Arg 50 55 60 Val Val Leu Arg Leu Lys Pro His Lys Ala Gly Val Gln Trp Arg Phe 65 70 75 80 Ala Gly Ser Phe Tyr Phe Ala Ile Thr Val Ile Thr Thr Ile Gly Tyr 85 90 95 Gly His Ala Ala Pro Ser Thr Asp Gly Gly Lys Val Phe Cys Met Phe 100 105 110 Tyr Ala Leu Leu Gly Ile Pro Leu Thr Leu Val Met Phe Gln Ser Leu 115 120 125 Gly Glu Arg Ile Asn Thr Leu Val Arg Tyr Leu Leu His Arg Ala Lys 130 135 140 Lys Gly Leu Gly Met Arg Arg Ala Asp Val Ser Met Ala Asn Met Val 145 150 155 160 Leu Ile Gly Phe Phe Ser Cys Ile Ser Thr Leu Cys Ile Gly Ala Ala 165 170 175 Ala Phe Ser His Tyr Glu His Trp Thr Phe Phe Gln Ala Tyr Tyr Tyr 180 185 190 Cys Phe Ile Thr Leu Thr Thr Ile Gly Phe Gly Asp Tyr Val Ala Leu 195 200 205 Gln Lys Asp Gln Ala Leu Gln Thr Gln Pro Gln Tyr Val Ala Phe Ser 210 215 220 Phe Val Tyr Ile Leu Thr Gly Leu Thr Val Ile Gly Ala Phe Leu Asn 225 230 235 240 Leu Val Val Leu Arg Phe Met Thr Met Asn Ala Glu Asp Glu Lys Arg 245 250 255 Asp Ala Glu His Arg Ala Leu Leu Thr Arg Asn Gly Gln Ala Gly Gly 260 265 270 Gly Gly Gly Gly Gly Ser Ala His Thr Thr Asp Thr Ala Ser Ser Thr 275 280 285 Ala Ala Ala Gly Gly Gly Gly Phe Arg Asn Val Tyr Ala Glu Val Leu 290 295 300 His Phe Gln Ser Met Cys Ser Cys Leu Trp Tyr Lys Ser Arg Glu Lys 305 310 315 320 Leu Gln Tyr Ser Ile Pro Met Ile Ile Pro Arg Asp Leu Ser Thr Ser 325 330 335 Asp Thr Cys Val Glu Gln Ser His Ser Ser Pro Gly Gly Gly Gly Arg 340 345 350 Tyr Ser Asp Thr Pro Ser Arg Arg Cys Leu Cys Ser Gly Ala Pro Arg 355 360 365 Ser Ala Ile Ser Ser Val Ser Thr Gly Leu His Ser Leu Ser Thr Phe 370 375 380 Arg Gly Leu Met Lys Arg Arg Ser Ser Val 385 390 69 72 PRT Homo sapiens misc_feature Incyte Clone No 1236935 69 Met Cys Pro Phe Phe Pro Leu Thr Ser Leu Ile Val Phe Leu Ile Leu 1 5 10 15 Phe Phe Lys Thr Ile Ala Ser Ser Gly Ser Gly Gly Ser Cys Leu Gly 20 25 30 Leu Pro Lys Cys Trp Asp Tyr Arg Arg Glu His Arg Ala Arg Pro Thr 35 40 45 Ile Val Phe Ser Lys His Val Tyr Thr Tyr Ser Met Arg Met Gln Ile 50 55 60 Glu Ile Ser Thr Asn Ile Ser Gln 65 70 70 71 PRT Homo sapiens misc_feature Incyte Clone No 1359283 70 Met Arg Leu Thr Gly Leu Thr Leu Leu Leu Ser Leu Met Glu Ser Leu 1 5 10 15 Gly Gln Val Glu Asp Arg Phe Phe Ser Thr His Arg Arg Phe Pro His 20 25 30 His Thr Pro Ile Ser Gly Leu Leu Cys Arg Glu Phe Ser Leu Pro Lys 35 40 45 Arg Ser Gly Val Pro Trp Thr Arg Val Leu Ile Ser Cys Ile Trp Arg 50 55 60 Ser Gly Ala Gly Lys Arg Met 65 70 71 247 PRT Homo sapiens misc_feature Incyte Clone No 1450703 71 Met His Leu Ala Arg Leu Val Gly Ser Cys Ser Leu Leu Leu Leu Leu 1 5 10 15 Gly Ala Leu Ser Gly Trp Ala Ala Ser Asp Asp Pro Ile Glu Lys Val 20 25 30 Ile Glu Gly Ile Asn Arg Gly Leu Ser Asn Ala Glu Arg Glu Val Gly 35 40 45 Lys Ala Leu Asp Gly Ile Asn Ser Gly Ile Thr His Ala Gly Arg Glu 50 55 60 Val Glu Lys Val Phe Asn Gly Leu Ser Asn Met Gly Ser His Thr Gly 65 70 75 80 Lys Glu Leu Asp Lys Gly Val Gln Gly Leu Asn His Gly Met Asp Lys 85 90 95 Val Ala His Glu Ile Asn His Gly Ile Gly Gln Ala Gly Lys Glu Ala 100 105 110 Glu Lys Leu Gly His Gly Val Asn Asn Ala Ala Gly Gln Ala Gly Lys 115 120 125 Glu Ala Asp Lys Ala Val Gln Gly Phe His Thr Gly Val His Gln Ala 130 135 140 Gly Lys Glu Ala Glu Lys Leu Gly Gln Gly Val Asn His Ala Ala Asp 145 150 155 160 Gln Ala Gly Lys Glu Val Glu Lys Leu Gly Gln Gly Ala His His Ala 165 170 175 Ala Gly Gln Ala Gly Lys Glu Leu Gln Asn Ala His Asn Gly Val Asn 180 185 190 Gln Ala Ser Lys Glu Ala Asn Gln Leu Leu Asn Gly Asn His Gln Ser 195 200 205 Gly Ser Ser Ser His Gln Gly Gly Ala Thr Thr Thr Pro Leu Ala Ser 210 215 220 Gly Ala Ser Val Asn Thr Pro Phe Ile Asn Leu Pro Ala Leu Trp Arg 225 230 235 240 Ser Val Ala Asn Ile Met Pro 245 72 73 PRT Homo sapiens misc_feature Incyte Clone No 1910668 72 Met Thr Cys Trp Met Leu Pro Pro Ile Ser Phe Leu Ser Tyr Leu Pro 1 5 10 15 Leu Trp Leu Gly Pro Ile Trp Pro Cys Ser Gly Ser Thr Leu Gly Lys 20 25 30 Pro Asp Pro Gly Val Trp Pro Ser Leu Phe Arg Pro Trp Asp Ala Ala 35 40 45 Ser Pro Gly Asn Tyr Ala Leu Ser Arg Gly Glu Asn Gln Tyr Glu Lys 50 55 60 Trp Gly Gln Gly Thr His Ser Ser Leu 65 70 73 70 PRT Homo sapiens misc_feature Incyte Clone No 1955143 73 Met Gly Arg Leu Arg Tyr Phe Phe Ser Leu Leu Leu Leu Arg Trp Gly 1 5 10 15 Gln Leu Leu Gly Ala Asp Glu Phe Cys Cys His Lys Ser Tyr Ile Ala 20 25 30 His Leu Val Cys Thr Glu Ser Ala Ile Leu Asn Pro Gly His Ala Leu 35 40 45 Glu Leu Tyr Lys Lys Asn Leu Gln Val Ser Ile Leu Ser Pro Tyr Pro 50 55 60 Thr Asp Pro Ile His Leu 65 70 74 67 PRT Homo sapiens misc_feature Incyte Clone No 1961637 74 Met Met Phe Thr Ser Leu Ser Leu Ala Leu Pro Phe Leu Leu Gln Thr 1 5 10 15 Met Leu Cys Leu Arg Ala Leu Leu Ile Ala Val Pro His Gly His Asp 20 25 30 Trp Asn Arg Asp Ala Thr Ser Phe Tyr Thr Ser Thr Val Ser Trp Val 35 40 45 Lys Ser Phe Phe Leu Phe Val Leu Asp Gly Val Ser Leu Leu Leu Pro 50 55 60 Arg Leu Glu 65 75 91 PRT Homo sapiens misc_feature Incyte Clone No 1990762 75 Met Trp Pro Thr Thr Trp Ala Trp Ser Trp Val Gln Thr Leu Thr Leu 1 5 10 15 Ala Leu Leu Ile Ser Cys Val Thr Leu Gly Gln Leu Ile Thr Thr Leu 20 25 30 Gln Val Ser Phe Leu Ile Cys Glu Met Asp Val Ile Ile Gly Cys Asp 35 40 45 Glu Met Ile Pro Ser Glu Ser Leu Val Leu Leu Trp Pro Pro Pro Leu 50 55 60 Leu Leu Leu Gly Glu Phe Trp Ile Trp Asn Pro Val Ser Arg Ile Leu 65 70 75 80 Phe Trp Leu Cys His Val Pro Ala Gly Gln Leu 85 90 76 56 PRT Homo sapiens misc_feature Incyte Clone No 1994131 76 Met Asn Glu Trp Trp Leu Leu Leu Leu Leu His Leu His Pro Pro Arg 1 5 10 15 Val Ile Ser Pro Phe Trp Phe Ile Val Ser Val Leu Thr Ala Cys Asp 20 25 30 Asn Arg Lys Tyr Ile Leu Leu Arg Thr Val Pro Val Phe Ser Phe Pro 35 40 45 Glu Asn Thr Tyr Phe Asp Val Gly 50 55 77 112 PRT Homo sapiens misc_feature Incyte Clone No 1997745 77 Met Pro Leu Phe Leu Ser Ile Pro Ser Leu Phe Leu Thr Leu Ser Gly 1 5 10 15 Leu Gly Leu Ala Val Gln Ser Pro Ala Gly Gly Cys Trp Gly Leu Ser 20 25 30 Leu Cys Arg His Cys Val Phe Leu Arg Gly Cys Pro Gln Asn Thr Pro 35 40 45 Pro Ala Pro Trp Gly Ser Ser Gly Ser His Phe Ser Trp Ser Leu Arg 50 55 60 Ser Gln Lys Gln Leu Leu Gln Glu Ala Lys Lys Arg Leu Gly Trp Leu 65 70 75 80 Leu Val Leu Met Met Ala Phe Ile Leu Leu Gly His Phe Gly Tyr Ile 85 90 95 His Gly His Cys Phe His Leu Ser Phe Leu Pro Val Pro Pro Leu Pro 100 105 110 78 54 PRT Homo sapiens misc_feature Incyte Clone No 2009035 78 Met Met Leu Gln Pro Val Asp Leu Leu Gln Ser Tyr Leu Leu Leu Leu 1 5 10 15 Tyr Cys Trp Ser Phe Ser Leu Leu Phe Thr Leu Leu Cys Asn Ala Val 20 25 30 Arg Asn Asp Phe Phe His Lys Leu Phe Ser Ile Tyr Trp Met Tyr Asn 35 40 45 Leu Thr His Ser Lys His 50 79 57 PRT Homo sapiens misc_feature Incyte Clone No 2009152 79 Met Lys Phe Tyr Ala Val Leu Leu Ser Ile Cys Leu Leu Leu Ser Cys 1 5 10 15 Trp Cys Ala Cys His Val Arg Asp Cys Asn Leu Ile Cys Leu Phe Ser 20 25 30 Thr Val Lys Ala Ile Thr Arg Glu Leu Leu Gln Leu Pro Ser Tyr Val 35 40 45 Lys Arg Phe Phe Phe Asn Ser Leu Arg 50 55 80 52 PRT Homo sapiens misc_feature Incyte Clone No 2061752 80 Met Gln Arg Leu Gly Lys Ala Pro Gly Thr Trp Gln Ala Ile Ser Lys 1 5 10 15 Cys Trp Leu Leu Leu Leu Leu Ser Leu Pro Phe Ser Gln Ser Ile Ile 20 25 30 Ile Ser Leu Arg Ala Gly Thr Met Ser Tyr Leu Pro Leu Tyr Phe Pro 35 40 45 Gln Tyr Phe Pro 50 81 64 PRT Homo sapiens misc_feature Incyte Clone No 2061933 81 Met Lys Leu Leu Leu Leu Lys Leu Asp Phe Phe Ile Leu Leu Gly Ser 1 5 10 15 Glu Glu Ser Arg Cys Leu Val Asp Val Gln Tyr Val Ile Phe Phe Leu 20 25 30 Ile Glu Cys Val His Leu Lys Ser Ser Leu Thr Phe Leu Glu Arg Leu 35 40 45 Leu Ser Ile Asn Asn Gly Ile Leu Glu Glu Lys Trp Phe Phe Lys Ser 50 55 60 82 65 PRT Homo sapiens misc_feature Incyte Clone No 2081422 82 Met Lys Pro Leu Ile Pro Phe Leu Ser Pro Pro Pro Leu Leu Pro Leu 1 5 10 15 Thr Phe Phe Leu Ser Ser Leu Leu Leu Ser Pro Leu Cys Arg Ala Leu 20 25 30 Gly Thr Ser Gln Ala Val Pro Pro Leu Arg Ala Leu Ser Val Thr Asp 35 40 45 Ala His Gly Ser Leu Leu Leu His Pro Lys Thr Leu Ala Cys Pro Cys 50 55 60 Leu 65 83 56 PRT Homo sapiens misc_feature Incyte Clone No 2101278 83 Met Arg Ala Asp Arg Leu Leu Pro Ile Ser Ala Leu Cys Leu Leu Tyr 1 5 10 15 Thr Pro Gly Gly Ala Leu Glu Pro Ala Gln Val Gly Tyr Thr Ile Phe 20 25 30 Leu Asn Ser Ile Trp Leu Pro Ala Tyr Phe Phe His Leu Phe Thr Val 35 40 45 Ile Ser Gly Val Phe Leu Phe Ile 50 55 84 120 PRT Homo sapiens misc_feature Incyte Clone No 2121353 84 Met Pro Ala Leu Pro Pro Gly Phe Ser Gln Ala Gly Ser Cys Val Pro 1 5 10 15 Thr Gly Ser Ser Leu Val Leu Cys Leu Leu Ala Ala Ser Leu Leu Leu 20 25 30 Phe Val Pro Thr Leu Ala Leu Leu Thr Gly Ala Thr Thr Cys Trp Cys 35 40 45 Leu His Asn Lys Arg Leu Ala Leu Arg Pro Leu Ala Trp Gln Gly Leu 50 55 60 Trp Gly Leu Val Ser Thr Arg Leu Ser His Gly Arg Thr Ser Phe Tyr 65 70 75 80 Phe Asn Ser Leu Pro Leu Gln Thr Asn Ser Ser Thr Cys Gln Asn His 85 90 95 Ser Trp Asp Ser Gly Ala Arg Ala Thr Ala Leu Ala Ser Gly Arg Thr 100 105 110 Gln Glu Gly Gly Val Gly Ser Val 115 120 85 67 PRT Homo sapiens misc_feature Incyte Clone No 2241736 85 Met Asn Ser Leu Val Leu Phe Leu Gly His Leu Gly Leu Leu Ile Lys 1 5 10 15 Asp Cys Val Leu Leu Phe Ala Met Ser Lys Val Ser Gln Lys Gln Lys 20 25 30 Val Leu

Gly Pro Phe Gly Ser Pro Glu Leu Glu Ser Leu Gly Ile Gly 35 40 45 Pro Arg Tyr Leu His Phe His Arg Phe Leu Val Gly Asp Phe Leu Gln 50 55 60 Ala Lys Val 65 86 62 PRT Homo sapiens misc_feature Incyte Clone No 2271935 86 Met Ala Trp Leu Ser Phe Ala Ala Val Glu Met Thr Leu Leu Leu His 1 5 10 15 Ser Ser Ser Leu Leu Ser Phe Ala Lys Val Val Leu Ser Leu Pro Glu 20 25 30 Ile Arg Pro Phe Gly Asp Gly Asn Phe Ser Leu Lys Gln Ser Ser Lys 35 40 45 Gln Asn Pro Asn Pro Ala Arg Val Gly Arg Lys Ser Met Phe 50 55 60 87 75 PRT Homo sapiens misc_feature Incyte Clone No 2295344 87 Met Met Ile Leu Leu Ser Leu Leu Val Ala Leu Ile Ser Val Ser Leu 1 5 10 15 Val Phe Leu Gly Leu Val Arg Phe Ser Arg Glu Asp Phe Ser Phe Pro 20 25 30 Leu Trp Arg Glu Lys Ala Phe Tyr Gln His Ser Ser Ser Ser Val Gly 35 40 45 Glu Arg Leu Gln Ala Leu Arg Lys His Ala Phe Thr Leu Phe Gly Thr 50 55 60 Ile Pro Leu Leu Val Thr Val Pro Gln Val Pro 65 70 75 88 80 PRT Homo sapiens misc_feature Incyte Clone No 2303994 88 Met Asn Ser Ile Phe Phe Leu Ser Leu Cys Leu Pro Leu Trp Val Ser 1 5 10 15 Leu Leu Trp Ala Lys Pro Leu Glu Met His Lys Thr Ser Arg His Gly 20 25 30 Phe Trp Gln Lys Leu His Asp Phe Lys Leu Ala Leu Leu Leu Leu Thr 35 40 45 Phe His Arg Glu Lys Ile Phe Pro Leu Lys Lys Thr Gly Leu Val Ile 50 55 60 Phe Ser Leu Val Ala Leu Ser Arg Asp Ile Ser Ala Leu His Tyr Thr 65 70 75 80 89 50 PRT Homo sapiens misc_feature Incyte Clone No 2497805 89 Met Arg Pro Ala Arg Leu Gly Pro Arg Cys Ser Asp Leu Asp Phe Gly 1 5 10 15 Leu Val Leu Ser Ser Trp Leu Arg Leu Ala Arg Cys Pro Leu Glu Ser 20 25 30 Ser Phe Gly Phe Ala Phe Phe Val Cys Leu Phe Ser Pro Asn Phe Cys 35 40 45 Gln Thr 50 90 116 PRT Homo sapiens misc_feature Incyte Clone No 2646362 90 Met Trp Trp Ala Leu Cys Ser Met Leu Pro Leu Leu Gly Cys Ala Cys 1 5 10 15 Ser Ser Gly Cys Trp Gly Ser Gly Pro Thr Pro Leu Leu Ala Glu Pro 20 25 30 Thr Phe Leu Cys Val Ser Ser Arg Pro His Asn Pro Leu Ser Phe Leu 35 40 45 Ser Val Leu Pro Cys Ser Arg Gly Pro Gly Pro Ser Gly Leu Gln Gly 50 55 60 Asp Gly Ala Gly Leu Pro Ala His Leu Gly Pro Leu Ser Cys Ile Cys 65 70 75 80 Leu Pro Ser Leu Leu Cys Asp Leu Gly Glu Arg Gln Cys Pro Leu Trp 85 90 95 Ala Val Arg Ser Thr Gln Cys Leu Ile Ala Gly Lys Lys Val Leu Gln 100 105 110 Arg Leu Cys Pro 115 91 67 PRT Homo sapiens misc_feature Incyte Clone No 2657146 91 Met Ile Cys Gln Cys Leu Arg Leu Leu Leu Val Leu Val Thr Leu Leu 1 5 10 15 Ile Cys Phe Ser Pro Asp Arg Leu Thr Cys Pro Leu Asn Ser Ala Val 20 25 30 Val Leu Ala Ser Tyr Ala Val Gln Cys Lys Ser Gln Arg Glu His Phe 35 40 45 Thr Asp Gly Gln Val Val Leu Ile Ser Val Trp Arg Lys Ser Leu Val 50 55 60 Pro Pro Ala 65 92 538 PRT Homo sapiens misc_feature Incyte Clone No 2755786 92 Met Ala Gly Ala Arg Ala Ala Ala Ala Ala Ala Ser Ala Gly Ser Ser 1 5 10 15 Ala Ser Ser Gly Asn Gln Pro Pro Gln Glu Leu Gly Leu Gly Glu Leu 20 25 30 Leu Glu Glu Phe Ser Arg Thr Gln Tyr Arg Ala Lys Asp Gly Ser Gly 35 40 45 Thr Gly Gly Ser Lys Val Glu Arg Ile Glu Lys Arg Cys Leu Glu Leu 50 55 60 Phe Gly Arg Asp Tyr Cys Phe Ser Val Ile Pro Asn Thr Asn Gly Asp 65 70 75 80 Ile Cys Gly His Tyr Pro Arg His Ile Val Phe Leu Glu Tyr Glu Ser 85 90 95 Ser Glu Lys Glu Lys Asp Thr Phe Glu Ser Thr Val Gln Val Ser Lys 100 105 110 Leu Gln Asp Leu Ile His Arg Ser Lys Met Ala Arg Cys Arg Gly Arg 115 120 125 Phe Val Cys Pro Val Ile Leu Phe Lys Gly Lys His Ile Cys Arg Ser 130 135 140 Ala Thr Leu Ala Gly Trp Gly Glu Leu Tyr Gly Arg Ser Gly Tyr Asn 145 150 155 160 Tyr Phe Phe Ser Gly Gly Ala Asp Asp Ala Trp Ala Asp Val Glu Asp 165 170 175 Val Thr Glu Glu Asp Cys Ala Leu Arg Ser Gly Asp Thr His Leu Phe 180 185 190 Asp Lys Val Arg Gly Tyr Asp Ile Lys Leu Leu Arg Tyr Leu Ser Val 195 200 205 Lys Tyr Ile Cys Asp Leu Met Val Glu Asn Lys Lys Val Lys Phe Gly 210 215 220 Met Asn Val Thr Ser Ser Glu Lys Val Asp Lys Ala Gln Arg Tyr Ala 225 230 235 240 Asp Phe Thr Leu Leu Ser Ile Pro Tyr Pro Gly Cys Glu Phe Phe Lys 245 250 255 Glu Tyr Lys Asp Arg Asp Tyr Met Ala Glu Gly Leu Ile Phe Asn Trp 260 265 270 Lys Gln Asp Tyr Val Asp Ala Pro Leu Ser Ile Pro Asp Phe Leu Thr 275 280 285 His Ser Leu Asn Ile Asp Trp Ser Gln Tyr Gln Cys Trp Asp Leu Val 290 295 300 Gln Gln Thr Gln Asn Tyr Leu Lys Leu Leu Leu Ser Leu Val Asn Ser 305 310 315 320 Asp Asp Asp Ser Gly Leu Leu Val His Cys Ile Ser Gly Trp Asp Arg 325 330 335 Thr Pro Leu Phe Ile Ser Leu Leu Arg Leu Ser Leu Trp Ala Asp Gly 340 345 350 Leu Ile His Thr Ser Leu Lys Pro Thr Glu Ile Leu Tyr Leu Thr Val 355 360 365 Ala Tyr Asp Trp Phe Leu Phe Gly His Met Leu Val Asp Arg Leu Ser 370 375 380 Lys Gly Glu Glu Ile Phe Phe Phe Cys Phe Asn Phe Leu Lys His Ile 385 390 395 400 Thr Ser Glu Glu Phe Ser Ala Leu Lys Thr Gln Arg Arg Lys Ser Leu 405 410 415 Pro Ala Arg Asp Gly Gly Phe Thr Leu Glu Asp Ile Cys Met Leu Arg 420 425 430 Arg Lys Asp Arg Gly Ser Thr Thr Ser Leu Gly Ser Asp Phe Ser Leu 435 440 445 Val Met Glu Ser Ser Pro Gly Ala Thr Gly Ser Phe Thr Tyr Glu Ala 450 455 460 Val Glu Leu Val Pro Ala Gly Ala Pro Thr Gln Ala Ala Trp Leu Ala 465 470 475 480 Ala Leu Ser Asp Arg Glu Thr Arg Leu Gln Glu Val Arg Ser Ala Phe 485 490 495 Leu Ala Ala Tyr Ser Ser Thr Val Gly Leu Arg Ala Val Ala Pro Ser 500 505 510 Pro Ser Gly Ala Ile Gly Gly Leu Leu Glu Gln Phe Ala Arg Gly Val 515 520 525 Gly Leu Arg Ser Ile Ser Ser Asn Ala Leu 530 535 93 58 PRT Homo sapiens misc_feature Incyte Clone No 2831245 93 Met Glu Met Lys Gly Ser Arg Val Trp Leu Leu Leu Leu Phe Met Trp 1 5 10 15 Lys Ala Arg Pro Thr Phe Phe Gln Ser Cys Val Val Pro Phe Ile Leu 20 25 30 Ser Pro Gln Asn Cys Val Gln Thr His Ser Leu Gly Pro Gly Val Trp 35 40 45 Leu Gly Val Phe Pro Ser Gly Ser Leu His 50 55 94 119 PRT Homo sapiens misc_feature Incyte Clone No 3116250 94 Met Lys Val Leu Ile Ser Ser Leu Leu Leu Leu Leu Pro Leu Met Leu 1 5 10 15 Met Ser Met Val Ser Ser Ser Leu Asn Pro Gly Val Ala Arg Gly His 20 25 30 Arg Asp Arg Gly Gln Ala Ser Arg Arg Trp Leu Gln Glu Gly Gly Gln 35 40 45 Glu Cys Glu Cys Lys Asp Trp Phe Leu Arg Ala Pro Arg Arg Lys Phe 50 55 60 Met Thr Val Ser Gly Leu Pro Lys Lys Gln Cys Pro Cys Asp His Phe 65 70 75 80 Lys Gly Asn Val Lys Lys Thr Arg His Gln Arg His His Arg Lys Pro 85 90 95 Asn Lys His Ser Arg Ala Cys Gln Gln Phe Leu Lys Gln Cys Gln Leu 100 105 110 Arg Ser Phe Ala Leu Pro Leu 115 95 128 PRT Homo sapiens misc_feature Incyte Clone No 3129630 95 Met Ala Tyr Ser Thr Val Gln Arg Val Ala Leu Ala Ser Gly Leu Val 1 5 10 15 Leu Ala Leu Ser Leu Leu Leu Pro Lys Ala Phe Leu Ser Arg Gly Lys 20 25 30 Arg Gln Glu Pro Pro Pro Thr Pro Glu Gly Lys Leu Gly Arg Phe Pro 35 40 45 Pro Met Met His His His Gln Ala Pro Ser Asp Gly Gln Thr Pro Gly 50 55 60 Ala Arg Phe Gln Arg Ser His Leu Ala Glu Ala Phe Ala Lys Ala Lys 65 70 75 80 Gly Ser Gly Gly Gly Ala Gly Gly Gly Gly Ser Gly Arg Gly Leu Met 85 90 95 Gly Gln Ile Ile Pro Ile Tyr Gly Phe Gly Ile Phe Leu Tyr Ile Leu 100 105 110 Tyr Ile Leu Phe Lys Val Ser Arg Ile Ile Leu Ile Ile Leu His Gln 115 120 125 96 124 PRT Homo sapiens misc_feature Incyte Clone No 007632 96 Met Tyr Lys Leu Ala Ser Cys Cys Leu Leu Phe Ile Gly Phe Leu Asn 1 5 10 15 Pro Leu Leu Ser Leu Pro Leu Leu Asp Ser Arg Glu Ile Ser Phe Gln 20 25 30 Leu Ser Ala Pro His Glu Asp Ala Arg Leu Thr Pro Glu Glu Leu Glu 35 40 45 Arg Ala Ser Leu Leu Gln Ile Leu Pro Glu Met Leu Gly Ala Glu Arg 50 55 60 Gly Asp Ile Leu Arg Lys Ala Asp Ser Ser Thr Asn Ile Phe Asn Pro 65 70 75 80 Arg Gly Asn Leu Arg Lys Phe Gln Asp Phe Ser Gly Gln Asp Pro Asn 85 90 95 Ile Leu Leu Ser His Leu Leu Ala Arg Ile Trp Lys Pro Tyr Lys Lys 100 105 110 Arg Glu Thr Pro Asp Cys Phe Trp Lys Tyr Cys Val 115 120 97 182 PRT Homo sapiens misc_feature Incyte Clone No 1236968 97 Met Trp Pro Leu Ser Ser Asp Ser Ser Trp Ser Leu Trp Ile Ser Thr 1 5 10 15 Gly Met Ala Pro Ala Pro Ser Ser Ser Thr Arg Ser Phe Ser Glu Ser 20 25 30 Leu Lys Gln Lys Leu Val Arg Val Leu Glu Glu Asn Leu Ile Leu Ser 35 40 45 Glu Lys Ile Gln Gln Leu Glu Glu Gly Ala Ala Ile Ser Ile Val Ser 50 55 60 Gly Gln Gln Ser His Thr Tyr Asp Asp Leu Leu His Lys Asn Gln Gln 65 70 75 80 Leu Thr Met Gln Val Ala Cys Leu Asn Gln Glu Leu Ala Gln Leu Lys 85 90 95 Lys Leu Glu Lys Thr Val Ala Ile Leu His Glu Ser Gln Arg Ser Leu 100 105 110 Val Val Thr Asn Glu Tyr Leu Leu Gln Gln Leu Asn Lys Glu Pro Lys 115 120 125 Gly Tyr Ser Gly Lys Ala Leu Leu Pro Pro Glu Lys Gly His His Leu 130 135 140 Gly Arg Ser Ser Pro Phe Gly Lys Ser Thr Leu Ser Ser Ser Ser Pro 145 150 155 160 Val Ala His Glu Thr Gly Gln Tyr Leu Ile Gln Ser Val Leu Asp Ala 165 170 175 Ala Pro Glu Pro Gly Leu 180 98 237 PRT Homo sapiens misc_feature Incyte Clone No 1334153 98 Met Lys Gly Ile Leu Val Ala Gly Ile Thr Ala Val Leu Val Ala Ala 1 5 10 15 Val Glu Ser Leu Ser Cys Val Pro Cys Asn Ser Trp Glu Lys Ser Cys 20 25 30 Val Asn Ser Ile Ala Ser Glu Cys Pro Ser His Ala Asn Thr Ser Cys 35 40 45 Ile Ser Ser Ser Ala Ser Ser Ser Leu Glu Thr Pro Val Arg Leu Tyr 50 55 60 Gln Asn Met Phe Cys Ser Ala Glu Asn Cys Ser Glu Glu Thr His Ile 65 70 75 80 Thr Ala Phe Thr Val His Val Ser Ala Glu Glu His Phe His Phe Val 85 90 95 Ser Gln Cys Cys Gln Gly Lys Glu Cys Ser Asn Thr Ser Asp Ala Leu 100 105 110 Asp Pro Pro Leu Lys Asn Val Ser Ser Asn Ala Glu Cys Pro Ala Cys 115 120 125 Tyr Glu Ser Asn Gly Thr Ser Cys Arg Gly Lys Pro Trp Lys Cys Tyr 130 135 140 Glu Glu Glu Gln Cys Val Phe Leu Val Ala Glu Leu Lys Asn Asp Ile 145 150 155 160 Glu Ser Lys Ser Leu Val Leu Lys Gly Cys Ser Asn Val Ser Asn Ala 165 170 175 Thr Cys Gln Phe Leu Ser Gly Glu Asn Lys Thr Leu Gly Gly Val Ile 180 185 190 Phe Arg Lys Phe Glu Cys Ala Asn Val Asn Ser Leu Thr Pro Thr Ser 195 200 205 Ala Pro Thr Thr Ser His Asn Val Gly Ser Lys Ala Ser Leu Tyr Leu 210 215 220 Leu Ala Leu Ala Ser Leu Leu Leu Arg Gly Leu Leu Pro 225 230 235 99 160 PRT Homo sapiens misc_feature Incyte Clone No 1396975 99 Met Arg Pro Gly Pro Met Leu Gln Ala Arg Val Ser Ile Pro Ala Ala 1 5 10 15 Leu Gly Thr Leu Phe Pro Arg Pro Gly Trp Ala Pro Gly Glu Val Ser 20 25 30 Ser Glu Ile Ser Ser Arg Asp Leu Leu Asn Pro His Pro Ser Thr Pro 35 40 45 Ser Cys Cys Ser Gln Ser Trp Ser Pro Met Ser Val Leu Glu Pro Asp 50 55 60 Ser Arg Gly Pro Pro Pro Ile Ser Leu Thr His Thr Gly Ile His Thr 65 70 75 80 Pro Gln Lys Thr Ser Gln Met Arg Pro Asp Ser Gly Ser Arg Gly Met 85 90 95 Cys Phe Cys Pro Cys Lys Gly Phe Gly Glu Gly Gly Asn Ile Val Glu 100 105 110 Ala Gly Lys Ser Pro Gln Thr Cys Ala His Ala Pro Pro Ala Leu Arg 115 120 125 Phe His Ser Ala Phe Ser Glu Cys Pro Cys Cys Thr Gln Thr Thr Gly 130 135 140 Gln Glu Arg Pro Ser Leu Pro Leu Gln Pro Leu Ser Leu Pro Phe Asn 145 150 155 160 100 148 PRT Homo sapiens misc_feature Incyte Clone No 1501749 100 Met Ala Ala Ser Pro Ala Arg Pro Ala Val Leu Ala Leu Thr Gly Leu 1 5 10 15 Ala Leu Leu Leu Leu Leu Cys Trp Gly Pro Gly Gly Ile Ser Gly Asn 20 25 30 Lys Leu Lys Leu Met Leu Gln Lys Arg Glu Ala Pro Val Pro Thr Lys 35 40 45 Thr Lys Val Ala Val Asp Glu Asn Lys Ala Lys Glu Phe Leu Gly Ser 50 55 60 Leu Lys Arg Gln Lys Arg Gln Leu Trp Asp Arg Thr Arg Pro Glu Val 65 70 75 80 Gln Gln Trp Tyr Gln Gln Phe Leu Tyr Met Gly Phe Asp Glu Ala Lys 85 90 95 Phe Glu Asp Asp Ile Thr Tyr Trp Leu Asn Arg Asp Arg Asn Gly His 100 105 110 Glu Tyr Tyr Gly Asp Tyr Tyr Gln Arg His Tyr Asp Glu Asp Ser Ala 115 120 125 Ile Gly Pro Arg Ser Pro Tyr Gly Phe Arg His Gly Ala Ser Val Asn 130 135 140 Tyr Asp Asp Tyr 145 101 170 PRT Homo sapiens misc_feature Incyte Clone No 1575240 101 Met Thr Pro Thr Lys Arg Glu Pro Pro Ala Ala Pro Leu Leu Leu Arg 1 5 10 15 Val Leu Pro Gln Leu Ser Ala Met Ser Leu Arg Leu Ser Thr Arg Arg 20 25 30 Glu Asp Met Ile Gly Gln Thr Ser Gly Met Cys Ser Phe Cys Ser Phe 35 40 45 Gln Asn Met Arg Gly Glu Ser Ile Trp Leu Leu Cys Leu Glu Glu Glu 50 55 60 Gly Ala Gly Leu Cys Gln Asn Ser Leu Asp Lys Arg Phe Ser Gln Lys 65 70 75 80 Glu Gly Cys Ser Asp Asp Lys Ser Pro Leu His His Phe Pro Trp Leu 85 90 95 Ser Asp Ala Pro Pro Ser Ser His Ala Arg Thr Ser Glu Ile Arg Leu 100 105 110 Pro Pro Asp Ile Thr Gln Pro Cys Leu Thr Lys Arg Gln Trp Phe Ile 115 120 125 Pro Ser Leu Gly Glu Lys Arg Gly Asn Ala Lys Leu Leu His Gln Leu 130 135 140 Leu Ile Leu Leu Pro Ala Arg Asn Pro Gly Tyr Leu

Gln Val Ser Leu 145 150 155 160 Pro Leu Val Trp Ser Trp Leu Ser Leu Phe 165 170 102 150 PRT Homo sapiens misc_feature Incyte Clone No 1647884 102 Met Gly Ala Ala Ala Trp Ala Arg Pro Leu Ser Val Ser Phe Leu Leu 1 5 10 15 Leu Leu Leu Pro Leu Pro Gly Met Pro Ala Gly Ser Trp Asp Pro Ala 20 25 30 Gly Tyr Leu Leu Tyr Cys Pro Cys Met Gly Lys Ala Ser Gln Ala Leu 35 40 45 Cys Ser Asp Gly Glu Thr Glu Ala Gly Arg Gly Lys Ala Thr Pro Gln 50 55 60 Met Arg Pro Glu Thr Pro Ser Gln Val Gln Glu Arg Thr Ser Glu Arg 65 70 75 80 Asp Gly Ala Cys Ser Ser Pro Leu Cys Leu Ser Cys Lys Gly Thr Glu 85 90 95 Gly Pro Thr Cys Pro Thr Phe His Leu Thr Asp Glu Lys Thr Glu Ala 100 105 110 Gly Arg Gly Tyr Val Thr Cys Leu Arg Ser Lys Pro Val Gln Gly Pro 115 120 125 Val Asn Gly Val Ser Gly Ala Gly Leu Asp Val Thr Asp Pro Arg Trp 130 135 140 Leu Leu Val Ile Phe His 145 150 103 142 PRT Homo sapiens misc_feature Incyte Clone No 1661144 103 Met Gly Cys Leu Val Trp Gly Pro Ser Trp Pro Pro Leu Ser Leu Leu 1 5 10 15 Ala Ser Leu Leu His Ser Gly Ile Ala Gly Arg Cys Leu Leu Cys Leu 20 25 30 Phe Lys Gly Leu Ala Ala Ala Ala Ser Leu Gln Ile Arg Asp Leu Ala 35 40 45 Ser Arg Leu Thr Thr Gly Pro Arg Thr Cys Arg Val Gln Pro Pro Pro 50 55 60 His Pro Gln Ser Ser Pro Pro Trp Pro Gly Pro Pro Gly Ala Glu Thr 65 70 75 80 Cys Arg Pro Leu Ser Arg Thr Val Gly Gly Val Cys Pro Ser Asp Trp 85 90 95 Pro Val Ser Trp Leu Leu Leu Pro Pro Leu Pro Glu Val Val Thr Cys 100 105 110 Ser Cys Pro Arg Ile Lys Ala Arg Pro Glu Arg Thr Pro Glu Leu Leu 115 120 125 Cys Ala Trp Gly Gly Arg Gly Lys His Ser Gln Leu Val Ala 130 135 140 104 110 PRT Homo sapiens misc_feature Incyte Clone No 1685409 104 Met Glu Thr Gly Arg Leu Leu Ser Leu Ser Ser Leu Pro Leu Val Leu 1 5 10 15 Leu Gly Trp Glu Tyr Ser Ser Gln Thr Leu Asn Leu Val Pro Ser Thr 20 25 30 Ser Ile Leu Ser Phe Val Pro Phe Ile Pro Leu His Leu Val Leu Phe 35 40 45 Ala Leu Trp Tyr Leu Pro Val Pro His His Leu Tyr Pro Gln Gly Leu 50 55 60 Gly Asp His Ala Ala Glu Ala Glu Lys Gly Lys Arg Glu Glu Gly Gly 65 70 75 80 Thr Gln Val Ala Leu Trp Leu Arg Val Gln Pro Ser Cys Pro Ser Pro 85 90 95 Val Cys Leu Glu Pro Val Pro Pro Arg Ser Arg Phe Leu Leu 100 105 110 105 120 PRT Homo sapiens misc_feature Incyte Clone No 1731419 105 Met Ser Arg Ala Gly Met Leu Gly Val Val Cys Ala Leu Leu Val Trp 1 5 10 15 Ala Tyr Leu Ala Val Gly Lys Leu Val Val Arg Met Thr Phe Thr Glu 20 25 30 Leu Cys Thr His His Pro Trp Ser Leu Arg Cys Glu Ser Phe Cys Arg 35 40 45 Ser Arg Val Thr Ala Cys Leu Pro Ala Pro Ala Pro Trp Leu Arg Pro 50 55 60 Phe Leu Cys Pro Met Leu Phe Ser Asp Arg Asn Pro Val Glu Cys His 65 70 75 80 Leu Phe Gly Glu Ala Val Ser Asp Pro Val Cys Lys Gly Leu Leu Pro 85 90 95 His Tyr Phe Trp His Pro Thr Phe Phe Pro Val Lys Ala Asn Cys Leu 100 105 110 Val Ser Phe Cys Pro Thr Thr Val 115 120 106 135 PRT Homo sapiens misc_feature Incyte Clone No 2650265 106 Met Ala Arg Phe Trp Val Cys Val Ala Gly Ala Gly Phe Phe Leu Ala 1 5 10 15 Phe Leu Val Leu His Ser Arg Phe Cys Gly Ser Pro Val Leu Arg Asn 20 25 30 Phe Thr Phe Ala Val Ser Trp Arg Thr Glu Lys Ile Leu Tyr Arg Leu 35 40 45 Asp Val Gly Trp Pro Lys His Pro Glu Tyr Phe Thr Gly Thr Thr Phe 50 55 60 Cys Val Ala Val Asp Ser Leu Asn Gly Leu Val Tyr Ile Gly Gln Arg 65 70 75 80 Gly Asp Asn Ile Pro Lys Ile Leu Val Phe Thr Glu Asp Gly Tyr Phe 85 90 95 Leu Arg Ala Trp Asn Tyr Thr Val Asp Thr Pro His Gly Ile Phe Ala 100 105 110 Ala Ser Thr Leu Tyr Glu Gln Ser Val Trp Ile Thr Asp Val Gly Ser 115 120 125 Gly Met Tyr Ser Asn Ile Tyr 130 135 107 301 PRT Homo sapiens misc_feature Incyte Clone No 2677129 107 Met Leu Met Ile Ile Ile Ile Glu Pro Phe Ser Val Leu Ile Leu Phe 1 5 10 15 Lys Ser Gly Ile Leu Ala Asp Phe Phe Ala Leu Leu Leu Leu Ile Asn 20 25 30 Phe Phe Leu Val Ser Phe Phe Leu Ala Tyr Pro Leu Phe Asn Asn Gln 35 40 45 Ile Asn Ser Arg Ser Met Asn Glu Ile Lys Asn Leu Gln Tyr Leu Pro 50 55 60 Arg Thr Ser Glu Pro Arg Glu Val Leu Phe Glu Asp Arg Thr Arg Ala 65 70 75 80 His Ala Asp His Val Gly Gln Gly Phe Asp Trp Gln Ser Thr Ala Ala 85 90 95 Val Gly Val Leu Lys Ala Val Gln Phe Gly Glu Trp Ser Asp Gln Pro 100 105 110 Arg Ile Thr Lys Asp Val Ile Cys Phe His Ala Glu Asp Phe Thr Asp 115 120 125 Val Val Gln Arg Leu Gln Leu Asp Leu His Glu Pro Pro Val Ser Gln 130 135 140 Cys Val Gln Trp Val Asp Glu Ala Lys Leu Asn Gln Met Arg Arg Glu 145 150 155 160 Gly Ile Arg Tyr Ala Arg Ile Gln Leu Cys Asp Asn Asp Ile Tyr Phe 165 170 175 Ile Pro Arg Asn Val Ile His Gln Phe Lys Thr Val Ser Ala Val Cys 180 185 190 Ser Leu Ala Trp His Ile Arg Leu Lys Gln Tyr His Pro Val Val Glu 195 200 205 Ala Thr Gln Asn Thr Glu Ser Asn Ser Asn Met Asp Cys Gly Leu Thr 210 215 220 Gly Lys Arg Glu Leu Glu Val Asp Ser Gln Cys Val Arg Ile Lys Thr 225 230 235 240 Glu Ser Glu Glu Ala Cys Thr Glu Ile Gln Leu Leu Thr Thr Ala Ser 245 250 255 Ser Ser Phe Pro Pro Ala Ser Glu Leu Asn Leu Gln Gln Asp Gln Lys 260 265 270 Thr Gln Pro Ile Pro Val Leu Lys Val Glu Ser Arg Leu Asp Ser Asp 275 280 285 Gln Gln His Asn Leu Gln Glu His Ser Thr Thr Ser Val 290 295 300 108 103 PRT Homo sapiens misc_feature Incyte Clone No 3151073 108 Met Ser Phe Val Pro Gly Leu Leu Leu Cys Phe Val Leu Leu Leu Cys 1 5 10 15 Val Ser Pro Val Tyr Leu Pro Ser Arg Ser Pro Ser Thr Phe Pro Ile 20 25 30 Ser Glu Pro Leu Ser Phe Ile Gly Met Ser Ala Trp Pro Gln Cys Ser 35 40 45 Pro Ile Tyr Ser Gln Thr Pro Gly Leu Ala Tyr Glu Pro Ser Ser Phe 50 55 60 Pro Lys Arg Arg Tyr Trp Val Cys Thr Leu His Glu Ile Lys Trp Glu 65 70 75 80 Cys Pro Arg Ser Arg Arg Thr Ser Asp Ala Val His Ala Asn Lys Leu 85 90 95 Gly Leu Pro Leu Lys Ile Ile 100 109 95 PRT Homo sapiens misc_feature Incyte Clone No 3170095 109 Met Lys Phe Leu Leu Leu Val Leu Ala Ala Leu Gly Phe Leu Thr Gln 1 5 10 15 Val Ile Pro Ala Ser Ala Gly Gly Ser Lys Cys Val Ser Asn Thr Pro 20 25 30 Gly Tyr Cys Arg Thr Cys Cys His Trp Gly Glu Thr Ala Leu Phe Met 35 40 45 Cys Asn Ala Ser Arg Lys Cys Cys Ile Ser Tyr Ser Phe Leu Pro Lys 50 55 60 Pro Asp Leu Pro Gln Leu Ile Gly Asn His Trp Gln Ser Arg Arg Arg 65 70 75 80 Asn Thr Gln Arg Lys Asp Lys Lys Gln Gln Thr Thr Val Thr Ser 85 90 95 110 113 PRT Homo sapiens misc_feature Incyte Clone No 3475168 110 Met Ser Pro Ser Pro Arg Trp Gly Phe Leu Cys Val Leu Phe Thr Ala 1 5 10 15 Val His Pro Ala Pro Ser Thr Ala Pro Val Gln Asp Lys Cys Pro Val 20 25 30 Asn Thr Trp Glu Ala Met Gln Ala Ser Ser Gln Gln Leu Leu Gln Thr 35 40 45 Asp Pro Arg Pro Lys Pro Phe Leu Leu Pro Pro Leu Pro Pro Leu Leu 50 55 60 Leu Ile Ser Ala Gly Thr Glu Val Ser Ser Leu Val Phe Gln Lys Ser 65 70 75 80 Pro Leu His Thr Gln Pro Glu Gly Ala Ile Lys Thr Ala Gly Gln Pro 85 90 95 Thr Ser Val His Ser Lys Val Leu Ser Lys Gly Ser Leu Leu Leu Gly 100 105 110 Glu 111 234 PRT Homo sapiens misc_feature Incyte Clone No 3836893 111 Met Arg Lys Thr Arg Leu Trp Gly Leu Leu Trp Met Leu Phe Val Ser 1 5 10 15 Glu Leu Arg Ala Ala Thr Lys Leu Thr Glu Glu Lys Tyr Glu Leu Lys 20 25 30 Glu Gly Gln Thr Leu Asp Val Lys Cys Asp Tyr Thr Leu Glu Lys Phe 35 40 45 Ala Ser Ser Gln Lys Ala Trp Gln Ile Ile Arg Asp Gly Glu Met Pro 50 55 60 Lys Thr Leu Ala Cys Thr Glu Arg Pro Ser Lys Asn Ser His Pro Val 65 70 75 80 Gln Val Gly Arg Ile Ile Leu Glu Asp Tyr His Asp His Gly Leu Leu 85 90 95 Arg Val Arg Met Val Asn Leu Gln Val Glu Asp Ser Gly Leu Tyr Gln 100 105 110 Cys Val Ile Tyr Gln Pro Pro Lys Glu Pro His Met Leu Phe Asp Arg 115 120 125 Ile Arg Leu Val Val Thr Lys Gly Phe Ser Gly Thr Pro Gly Ser Asn 130 135 140 Glu Asn Ser Thr Gln Asn Val Tyr Lys Ile Pro Pro Thr Thr Thr Lys 145 150 155 160 Ala Leu Cys Pro Leu Tyr Thr Ser Pro Arg Thr Val Thr Gln Ala Pro 165 170 175 Pro Lys Ser Thr Ala Asp Val Ser Thr Pro Asp Ser Glu Ile Asn Leu 180 185 190 Thr Asn Val Thr Asp Ile Ile Arg Val Pro Val Phe Asn Ile Val Ile 195 200 205 Leu Leu Ala Gly Gly Phe Leu Ser Lys Ser Leu Val Phe Ser Val Leu 210 215 220 Phe Ala Val Thr Leu Arg Ser Phe Val Pro 225 230 112 119 PRT Homo sapiens misc_feature Incyte Clone No 4072159 112 Met Val Leu Pro Leu Pro Trp Leu Ser Arg Tyr His Phe Leu Arg Leu 1 5 10 15 Leu Leu Pro Ser Trp Ser Leu Ala Pro Gln Gly Ser His Gly Cys Cys 20 25 30 Ser Gln Asn Pro Lys Ala Ser Met Glu Glu Gln Thr Asn Ser Arg Gly 35 40 45 Asn Gly Lys Met Thr Ser Pro Pro Arg Gly Pro Gly Thr His Arg Thr 50 55 60 Ala Glu Leu Ala Arg Ala Glu Glu Leu Leu Glu Gln Gln Leu Glu Leu 65 70 75 80 Tyr Gln Ala Leu Leu Glu Gly Gln Glu Gly Ala Trp Glu Ala Gln Ala 85 90 95 Leu Val Leu Lys Ile Gln Lys Leu Lys Glu Gln Met Arg Arg His Gln 100 105 110 Glu Ser Leu Gly Gly Gly Ala 115 113 200 PRT Homo sapiens misc_feature Incyte Clone No 1003916 113 Met Ala Ser Ser Leu Thr Cys Thr Gly Val Ile Trp Ala Leu Leu Ser 1 5 10 15 Phe Leu Cys Ala Ala Thr Ser Cys Val Gly Phe Phe Met Pro Tyr Trp 20 25 30 Leu Trp Gly Ser Gln Leu Gly Lys Pro Val Ser Phe Gly Thr Phe Arg 35 40 45 Arg Cys Ser Tyr Pro Val His Asp Glu Ser Arg Gln Met Met Val Met 50 55 60 Val Glu Glu Cys Gly Arg Tyr Ala Ser Phe Gln Gly Ile Pro Ser Ala 65 70 75 80 Glu Trp Arg Ile Cys Thr Ile Val Thr Gly Leu Gly Cys Gly Leu Leu 85 90 95 Leu Leu Val Ala Leu Thr Ala Leu Met Gly Cys Cys Val Ser Asp Leu 100 105 110 Ile Ser Arg Thr Val Gly Arg Val Ala Gly Gly Ile Gln Phe Leu Gly 115 120 125 Gly Leu Leu Ile Gly Ala Gly Cys Ala Leu Tyr Pro Leu Gly Trp Asp 130 135 140 Ser Glu Glu Val Arg Gln Thr Cys Gly Tyr Thr Ser Gly Gln Phe Asp 145 150 155 160 Leu Gly Lys Cys Glu Ile Gly Trp Ala Tyr Tyr Cys Thr Gly Ala Gly 165 170 175 Ala Thr Ala Ala Met Leu Leu Cys Thr Trp Leu Ala Cys Phe Ser Gly 180 185 190 Lys Lys Gln Lys His Tyr Pro Tyr 195 200 114 225 PRT Homo sapiens misc_feature Incyte Clone No 2093492 114 Met Gly Phe Arg Leu Glu Gly Ile Phe Pro Ala Ala Leu Leu Pro Leu 1 5 10 15 Leu Leu Thr Met Ile Leu Phe Leu Gly Pro Leu Met Gln Leu Ser Met 20 25 30 Asp Cys Pro Cys Asp Leu Ala Asp Gly Leu Lys Val Val Leu Ala Pro 35 40 45 Arg Ser Trp Ala Arg Cys Leu Thr Asp Met Arg Trp Leu Arg Asn Gln 50 55 60 Val Ile Ala Pro Leu Thr Glu Glu Leu Val Phe Arg Ala Cys Met Leu 65 70 75 80 Pro Met Leu Ala Pro Cys Met Gly Leu Gly Pro Ala Val Phe Thr Cys 85 90 95 Pro Leu Phe Phe Gly Val Ala His Phe His His Ile Ile Glu Gln Leu 100 105 110 Arg Phe Arg Gln Ser Ser Val Gly Asn Ile Phe Leu Ser Ala Ala Phe 115 120 125 Gln Phe Ser Tyr Thr Ala Val Phe Gly Ala Tyr Thr Ala Phe Leu Phe 130 135 140 Ile Arg Thr Gly His Leu Ile Gly Pro Val Leu Cys His Ser Phe Cys 145 150 155 160 Asn Tyr Met Gly Phe Pro Ala Val Cys Ala Ala Leu Glu His Pro Gln 165 170 175 Arg Arg Pro Leu Leu Ala Gly Tyr Ala Leu Gly Val Gly Leu Phe Leu 180 185 190 Leu Leu Leu Gln Pro Leu Thr Asp Pro Lys Leu Tyr Gly Ser Leu Pro 195 200 205 Leu Cys Val Leu Leu Glu Arg Ala Gly Asp Ser Glu Ala Pro Leu Cys 210 215 220 Ser 225 115 155 PRT Homo sapiens misc_feature Incyte Clone No 2108789 115 Met Ser Gly Leu Leu Ile Pro Pro Leu Pro Gly Trp Val Leu Gly Pro 1 5 10 15 Leu Met Trp Ala Cys Arg Pro Pro Gln Asp Glu Pro Ser Gly Thr Asp 20 25 30 Pro Pro Pro Pro Arg Leu Gln Pro His His Val Ser Gly Leu Gly Leu 35 40 45 Gly Gln Ala Trp Ala Gln Ser Trp Ala Pro Arg Gly Ser Pro Pro Leu 50 55 60 Thr Trp Leu Leu Pro Thr Leu Pro Leu Lys Asp Gly Pro Ala Ala Arg 65 70 75 80 Leu Pro Pro Pro Pro His Thr Thr Leu Gly Gly Leu Ser His Pro Pro 85 90 95 Gln Pro Arg Ser Ala Gln Thr Asp Pro His Ser Ile Pro Arg Pro Ala 100 105 110 Ala Gln Val Arg Gly Pro Val Leu Pro Gly Ala Trp Ala Thr Pro Tyr 115 120 125 Ala Ile Ser Ser Glu Gln Pro Gly Pro Thr Asp Pro His Ala Leu Ser 130 135 140 Tyr Val Pro Phe Ser Pro Asp Phe Phe Cys Thr 145 150 155 116 468 PRT Homo sapiens misc_feature Incyte Clone No 2171401 116 Met Gly Arg Gly Trp Gly Phe Leu Phe Gly Leu Leu Gly Ala Val Trp 1 5 10 15 Leu Leu Ser Ser Gly His Gly Glu Glu Gln Pro Pro Glu Thr Ala Ala 20 25 30 Gln Arg Cys Phe Cys Gln Val Ser Gly Tyr Leu Asp Asp Cys Thr Cys 35 40 45 Asp Val Glu Thr Ile Asp Arg Phe Asn Asn Tyr Arg Leu Phe Pro Arg 50 55 60 Leu Gln Lys Leu Leu Glu Ser Asp Tyr Phe Arg Tyr Tyr Lys Val Asn 65 70 75 80 Leu Lys Arg Pro Cys Pro Phe Trp Asn Asp Ile Ser Gln Cys Gly Arg 85 90 95 Arg Asp Cys Ala Val Lys Pro

Cys Gln Ser Asp Glu Val Pro Asp Gly 100 105 110 Ile Lys Ser Ala Ser Tyr Lys Tyr Ser Glu Glu Ala Asn Asn Leu Ile 115 120 125 Glu Glu Cys Glu Gln Ala Glu Arg Leu Gly Ala Val Asp Glu Ser Leu 130 135 140 Ser Glu Glu Thr Gln Lys Ala Val Leu Gln Trp Thr Lys His Asp Asp 145 150 155 160 Ser Ser Asp Asn Phe Cys Glu Ala Asp Asp Ile Gln Ser Pro Glu Ala 165 170 175 Glu Tyr Val Asp Leu Leu Leu Asn Pro Glu Arg Tyr Thr Gly Tyr Lys 180 185 190 Gly Pro Asp Ala Trp Lys Ile Trp Asn Val Ile Tyr Glu Glu Asn Cys 195 200 205 Phe Lys Pro Gln Thr Ile Lys Arg Pro Leu Asn Pro Leu Ala Ser Gly 210 215 220 Gln Gly Thr Ser Glu Glu Asn Thr Phe Tyr Ser Trp Leu Glu Gly Leu 225 230 235 240 Cys Val Glu Lys Arg Ala Phe Tyr Arg Leu Ile Ser Gly Leu His Ala 245 250 255 Ser Ile Asn Val His Leu Ser Ala Arg Tyr Leu Leu Gln Glu Thr Trp 260 265 270 Leu Glu Lys Lys Trp Gly His Asn Ile Thr Glu Phe Gln Gln Arg Phe 275 280 285 Asp Gly Ile Leu Thr Glu Gly Glu Gly Pro Arg Arg Leu Lys Asn Leu 290 295 300 Tyr Phe Leu Tyr Leu Ile Glu Leu Arg Ala Leu Ser Lys Val Leu Pro 305 310 315 320 Phe Phe Glu Arg Pro Asp Phe Gln Leu Phe Thr Gly Asn Lys Ile Gln 325 330 335 Asp Glu Glu Asn Lys Met Leu Leu Leu Glu Ile Leu His Glu Ile Lys 340 345 350 Ser Phe Pro Leu His Phe Asp Glu Asn Ser Phe Phe Ala Gly Asp Lys 355 360 365 Lys Glu Ala His Lys Leu Lys Glu Asp Phe Arg Leu His Phe Arg Asn 370 375 380 Ile Ser Arg Ile Met Asp Cys Val Gly Cys Phe Lys Cys Arg Leu Trp 385 390 395 400 Gly Lys Leu Gln Thr Gln Gly Leu Gly Thr Ala Leu Lys Ile Leu Phe 405 410 415 Ser Glu Lys Leu Ile Ala Asn Met Pro Glu Ser Gly Pro Ser Tyr Glu 420 425 430 Phe His Leu Thr Arg Gln Glu Ile Val Ser Leu Phe Asn Ala Phe Gly 435 440 445 Arg Ile Ser Thr Ser Val Lys Glu Leu Glu Asn Phe Arg Asn Leu Leu 450 455 460 Gln Asn Ile His 465 117 403 PRT Homo sapiens misc_feature Incyte Clone No 2212530 117 Met Ser Thr Ser Thr Ser Pro Ala Ala Met Leu Leu Arg Arg Leu Arg 1 5 10 15 Arg Leu Ser Trp Gly Ser Thr Ala Val Gln Leu Phe Ile Leu Thr Val 20 25 30 Val Thr Phe Gly Leu Leu Ala Pro Leu Ala Cys His Arg Leu Leu His 35 40 45 Ser Tyr Phe Tyr Leu Arg His Trp His Leu Asn Gln Met Ser Gln Glu 50 55 60 Phe Leu Gln Gln Ser Leu Lys Glu Gly Glu Ala Ala Leu His Tyr Phe 65 70 75 80 Glu Glu Leu Pro Ser Ala Asn Gly Ser Val Pro Ile Val Trp Gln Ala 85 90 95 Thr Pro Arg Pro Trp Leu Val Ile Thr Ile Ile Thr Val Asp Arg Gln 100 105 110 Pro Gly Phe His Tyr Val Leu Gln Val Val Ser Gln Phe His Arg Leu 115 120 125 Leu Gln Gln Cys Gly Pro Gln Cys Glu Gly His Gln Leu Phe Leu Cys 130 135 140 Asn Val Glu Arg Ser Val Ser His Phe Asp Ala Lys Leu Leu Ser Lys 145 150 155 160 Tyr Val Pro Val Ala Asn Arg Tyr Glu Gly Thr Glu Asp Asp Tyr Gly 165 170 175 Asp Asp Pro Ser Thr Asn Ser Phe Glu Lys Glu Lys Gln Asp Tyr Val 180 185 190 Tyr Cys Leu Glu Ser Ser Leu Gln Thr Tyr Asn Pro Asp Tyr Val Leu 195 200 205 Met Val Glu Asp Asp Ala Val Pro Glu Glu Gln Ile Phe Pro Val Leu 210 215 220 Glu His Leu Leu Arg Ala Arg Phe Ser Glu Pro His Leu Arg Asp Ala 225 230 235 240 Leu Tyr Leu Lys Leu Tyr His Pro Glu Arg Leu Gln His Tyr Ile Asn 245 250 255 Pro Glu Pro Met Arg Ile Leu Glu Trp Val Gly Val Gly Met Leu Leu 260 265 270 Gly Pro Leu Leu Thr Trp Ile Tyr Met Arg Phe Ala Ser Arg Pro Gly 275 280 285 Phe Ser Trp Pro Val Met Leu Phe Phe Ser Leu Tyr Ser Met Gly Leu 290 295 300 Val Glu Leu Val Gly Arg His Tyr Phe Leu Glu Leu Arg Arg Leu Ser 305 310 315 320 Pro Ser Leu Tyr Ser Val Val Pro Ala Ser Gln Cys Cys Thr Pro Ala 325 330 335 Met Leu Phe Pro Ala Pro Ala Ala Arg Arg Thr Leu Thr Tyr Leu Ser 340 345 350 Gln Val Tyr Cys His Lys Gly Phe Gly Lys Asp Met Ala Leu Tyr Ser 355 360 365 Leu Leu Arg Ala Lys Gly Glu Arg Ala Tyr Val Val Glu Pro Asn Leu 370 375 380 Val Lys His Ile Gly Leu Phe Ser Ser Leu Arg Tyr Asn Phe His Pro 385 390 395 400 Ser Leu Leu 118 131 PRT Homo sapiens misc_feature Incyte Clone No 2253036 118 Met Glu Arg Cys Phe His Cys Phe Pro Val His Leu Val Phe Asn Leu 1 5 10 15 Val Gln Ser Phe Ser Pro Ile Ser Gly Val Glu Ser Cys Leu Leu Pro 20 25 30 Gln Cys Asp Lys Cys Trp Pro Met Val Tyr Arg Ser Cys Asp Ala Ser 35 40 45 Arg Gly Leu Val Asn Ala Cys Ile Leu Gly Phe Val Leu Leu Glu Cys 50 55 60 Ser Phe Val Gly Ala Leu Asn Asn Tyr Val Arg Ser Leu Ala Thr Leu 65 70 75 80 Leu Glu Arg Thr His Gly Gly Lys Arg Leu Lys Leu Cys Glu Glu Ser 85 90 95 Gln Ala Ser His Pro Ser Phe Ser Ala Glu Pro Arg His Gln Pro Thr 100 105 110 Cys Gln Leu Asn Ala Thr Val Arg Val Ile Thr Ser Lys Ile Thr Arg 115 120 125 Lys Thr Thr 130 119 556 PRT Homo sapiens misc_feature Incyte Clone No 2280161 119 Met Ala Ala Ala Ala Trp Leu Gln Val Leu Pro Val Ile Leu Leu Leu 1 5 10 15 Leu Gly Ala His Pro Ser Pro Leu Ser Phe Phe Ser Ala Gly Pro Ala 20 25 30 Thr Val Ala Ala Ala Asp Arg Ser Lys Trp His Ile Pro Ile Pro Ser 35 40 45 Gly Lys Asn Tyr Phe Ser Phe Gly Lys Ile Leu Phe Arg Asn Thr Thr 50 55 60 Ile Phe Leu Lys Phe Asp Gly Glu Pro Cys Asp Leu Ser Leu Asn Ile 65 70 75 80 Thr Trp Tyr Leu Lys Ser Ala Asp Cys Tyr Asn Glu Ile Tyr Asn Phe 85 90 95 Lys Ala Glu Glu Val Glu Leu Tyr Leu Glu Lys Leu Lys Glu Lys Arg 100 105 110 Gly Leu Ser Gly Lys Tyr Gln Thr Ser Ser Lys Leu Phe Gln Asn Cys 115 120 125 Ser Glu Leu Phe Lys Thr Gln Thr Phe Ser Gly Asp Phe Met His Arg 130 135 140 Leu Pro Leu Leu Gly Glu Lys Gln Glu Ala Lys Glu Asn Gly Thr Asn 145 150 155 160 Leu Thr Phe Ile Gly Asp Lys Thr Ala Met His Glu Pro Leu Gln Thr 165 170 175 Trp Gln Asp Ala Pro Tyr Ile Phe Ile Val His Ile Gly Ile Ser Ser 180 185 190 Ser Lys Glu Ser Ser Lys Glu Asn Ser Leu Ser Asn Leu Phe Thr Met 195 200 205 Thr Val Glu Val Lys Gly Pro Tyr Glu Tyr Leu Thr Leu Glu Asp Tyr 210 215 220 Pro Leu Met Ile Phe Phe Met Val Met Cys Ile Val Tyr Val Leu Phe 225 230 235 240 Gly Val Leu Trp Leu Ala Trp Ser Ala Cys Tyr Trp Arg Asp Leu Leu 245 250 255 Arg Ile Gln Phe Trp Ile Gly Ala Val Ile Phe Leu Gly Met Leu Glu 260 265 270 Lys Ala Val Phe Tyr Ala Glu Phe Gln Asn Ile Arg Tyr Lys Gly Glu 275 280 285 Ser Val Gln Gly Ala Leu Ile Leu Ala Glu Leu Leu Ser Ala Val Lys 290 295 300 Arg Ser Leu Ala Arg Thr Leu Val Ile Ile Val Ser Leu Gly Tyr Gly 305 310 315 320 Ile Val Lys Pro Arg Leu Gly Val Thr Leu His Lys Val Val Val Ala 325 330 335 Gly Ala Leu Tyr Leu Leu Phe Ser Gly Met Glu Gly Val Leu Arg Val 340 345 350 Thr Gly Tyr Phe Ser Tyr Pro Leu Thr Leu Ile Val Asn Leu Ala Leu 355 360 365 Ser Ala Val Asp Ala Cys Val Ile Leu Trp Ile Phe Ile Ser Leu Thr 370 375 380 Gln Thr Met Lys Leu Leu Lys Leu Arg Arg Asn Ile Val Lys Leu Ser 385 390 395 400 Leu Tyr Arg His Phe Thr Asn Thr Leu Ile Leu Ala Val Ala Ala Ser 405 410 415 Ile Val Phe Ile Ile Trp Thr Thr Met Lys Phe Arg Ile Val Thr Cys 420 425 430 Gln Ser Asp Trp Arg Glu Leu Trp Val Asp Asp Ala Ile Trp Arg Leu 435 440 445 Leu Phe Ser Met Ile Leu Phe Val Ile Met Val Leu Trp Arg Pro Ser 450 455 460 Ala Asn Asn Gln Arg Phe Ala Phe Ser Pro Leu Ser Glu Glu Glu Glu 465 470 475 480 Glu Asp Glu Gln Lys Glu Pro Met Leu Lys Glu Ser Phe Glu Gly Met 485 490 495 Lys Met Arg Ser Thr Lys Gln Glu Pro Asn Gly Asn Ser Lys Val Asn 500 505 510 Lys Ala Gln Glu Asp Asp Leu Lys Trp Val Glu Glu Asn Val Pro Ser 515 520 525 Ser Val Thr Asp Val Ala Leu Pro Ala Leu Leu Asp Ser Asp Glu Glu 530 535 540 Arg Met Ile Thr His Phe Glu Arg Ser Lys Met Glu 545 550 555 120 514 PRT Homo sapiens misc_feature Incyte Clone No 2287485 120 Met Ser Trp Pro Arg Arg Leu Leu Leu Arg Tyr Leu Phe Pro Ala Leu 1 5 10 15 Leu Leu His Gly Leu Gly Glu Gly Ser Ala Leu Leu His Pro Asp Ser 20 25 30 Arg Ser His Pro Arg Ser Leu Glu Lys Ser Ala Trp Arg Ala Phe Lys 35 40 45 Glu Ser Gln Cys His His Met Leu Lys His Leu His Asn Gly Ala Arg 50 55 60 Ile Thr Val Gln Met Pro Pro Thr Ile Glu Gly His Trp Val Ser Thr 65 70 75 80 Gly Cys Glu Val Arg Ser Gly Pro Glu Phe Ile Thr Arg Ser Tyr Arg 85 90 95 Phe Tyr His Asn Asn Thr Phe Lys Ala Tyr Gln Phe Tyr Tyr Gly Ser 100 105 110 Asn Arg Cys Thr Asn Pro Thr Tyr Thr Leu Ile Ile Arg Gly Lys Ile 115 120 125 Arg Leu Arg Gln Ala Ser Trp Ile Ile Arg Gly Gly Thr Glu Ala Asp 130 135 140 Tyr Gln Leu His Asn Val Gln Val Ile Cys His Thr Glu Ala Val Ala 145 150 155 160 Glu Lys Leu Gly Gln Gln Val Asn Arg Thr Cys Pro Gly Phe Leu Ala 165 170 175 Asp Gly Gly Pro Trp Val Gln Asp Val Ala Tyr Asp Leu Trp Arg Glu 180 185 190 Glu Asn Gly Cys Glu Cys Thr Lys Ala Val Asn Phe Ala Met His Glu 195 200 205 Leu Gln Leu Ile Arg Val Glu Lys Gln Tyr Leu His His Asn Leu Asp 210 215 220 His Leu Val Glu Glu Leu Phe Leu Gly Asp Ile His Thr Asp Ala Thr 225 230 235 240 Gln Arg Met Phe Tyr Arg Pro Ser Ser Tyr Gln Pro Pro Leu Gln Asn 245 250 255 Ala Lys Asn His Asp His Ala Cys Ile Ala Cys Arg Ile Ile Tyr Arg 260 265 270 Ser Asp Glu His His Pro Pro Ile Leu Pro Pro Lys Ala Asp Leu Thr 275 280 285 Ile Gly Leu His Gly Glu Trp Val Ser Gln Arg Cys Glu Val Arg Pro 290 295 300 Glu Val Leu Phe Leu Thr Arg His Phe Ile Phe His Asp Asn Asn Asn 305 310 315 320 Thr Trp Glu Gly His Tyr Tyr His Tyr Ser Asp Pro Val Cys Lys His 325 330 335 Pro Thr Phe Ser Ile Tyr Ala Arg Gly Arg Tyr Ser Arg Gly Val Leu 340 345 350 Ser Ser Arg Val Met Gly Gly Thr Glu Phe Val Phe Lys Val Asn His 355 360 365 Met Lys Val Thr Pro Met Asp Ala Ala Thr Ala Ser Leu Leu Asn Val 370 375 380 Phe Asn Gly Asn Glu Cys Gly Ala Glu Gly Ser Trp Gln Val Gly Ile 385 390 395 400 Gln Gln Asp Val Thr His Thr Asn Gly Cys Val Ala Leu Gly Ile Lys 405 410 415 Leu Pro His Thr Glu Tyr Glu Ile Phe Lys Met Glu Gln Asp Ala Arg 420 425 430 Gly Arg Tyr Leu Leu Phe Asn Gly Gln Arg Pro Ser Asp Gly Ser Ser 435 440 445 Pro Asp Arg Pro Glu Lys Arg Ala Thr Ser Tyr Gln Met Pro Leu Val 450 455 460 Gln Cys Ala Ser Ser Ser Pro Arg Ala Glu Asp Leu Ala Glu Asp Ser 465 470 475 480 Gly Ser Ser Leu Tyr Gly Arg Ala Pro Gly Arg His Thr Trp Ser Leu 485 490 495 Leu Leu Ala Ala Leu Ala Cys Leu Val Pro Leu Leu His Trp Asn Ile 500 505 510 Arg Arg 121 109 PRT Homo sapiens misc_feature Incyte Clone No 2380344 121 Met Leu Trp Trp Leu Val Leu Leu Leu Leu Pro Thr Leu Lys Ser Val 1 5 10 15 Phe Cys Ser Leu Val Thr Ser Leu Tyr Leu Pro Asn Thr Glu Asp Leu 20 25 30 Ser Leu Trp Leu Trp Pro Lys Pro Asp Leu His Ser Gly Thr Arg Thr 35 40 45 Glu Val Ser Thr His Thr Val Pro Ser Lys Pro Gly Thr Ala Ser Pro 50 55 60 Cys Trp Pro Leu Ala Gly Ala Val Pro Ser Pro Thr Val Ser Arg Leu 65 70 75 80 Glu Ala Leu Thr Arg Ala Val Gln Val Ala Glu Pro Leu Gly Ser Cys 85 90 95 Gly Phe Gln Gly Gly Pro Cys Pro Gly Arg Arg Arg Asp 100 105 122 431 PRT Homo sapiens misc_feature Incyte Clone No 2383171 122 Met Ser Trp Val Gln Ala Thr Leu Leu Ala Arg Gly Leu Cys Arg Ala 1 5 10 15 Trp Gly Gly Thr Cys Gly Ala Ala Leu Thr Gly Thr Ser Ile Ser Gln 20 25 30 Val Pro Arg Arg Leu Pro Arg Gly Leu His Cys Ser Ala Ala Ala His 35 40 45 Ser Ser Glu Gln Ser Leu Val Pro Ser Pro Pro Glu Pro Arg Gln Arg 50 55 60 Pro Thr Lys Ala Leu Val Pro Phe Glu Asp Leu Phe Gly Gln Ala Pro 65 70 75 80 Gly Gly Glu Arg Asp Lys Ala Ser Phe Leu Gln Thr Val Gln Lys Phe 85 90 95 Ala Glu His Ser Val Arg Lys Arg Gly His Ile Asp Phe Ile Tyr Leu 100 105 110 Ala Leu Arg Lys Met Arg Glu Tyr Gly Val Glu Arg Asp Leu Ala Val 115 120 125 Tyr Asn Gln Leu Leu Asn Ile Phe Pro Lys Glu Val Phe Arg Pro Arg 130 135 140 Asn Ile Ile Gln Arg Ile Phe Val His Tyr Pro Arg Gln Gln Glu Cys 145 150 155 160 Gly Ile Ala Val Leu Glu Gln Met Glu Asn His Gly Val Met Pro Asn 165 170 175 Lys Glu Thr Glu Phe Leu Leu Ile Gln Ile Phe Gly Arg Lys Ser Tyr 180 185 190 Pro Met Leu Lys Leu Val Arg Leu Lys Leu Trp Phe Pro Arg Phe Met 195 200 205 Asn Val Asn Pro Phe Pro Val Pro Arg Asp Leu Pro Gln Asp Pro Val 210 215 220 Glu Leu Ala Met Phe Gly Leu Arg His Met Glu Pro Asp Leu Ser Ala 225 230 235 240 Arg Val Thr Ile Tyr Gln Val Pro Leu Pro Lys Asp Ser Thr Gly Ala 245 250 255 Ala Asp Pro Pro Gln Pro His Ile Val Gly Ile Gln Ser Pro Asp Gln 260 265 270 Gln Ala Ala Leu Ala Arg His Asn Pro Ala Arg Pro Val Phe Val Glu 275 280 285 Gly Pro Phe Ser Leu Trp Leu Arg Asn Lys Cys Val Tyr Tyr His Ile 290 295 300 Leu Arg Ala Asp Leu Leu Pro Pro Glu Glu Arg Glu Val Glu Glu Thr 305 310 315 320 Pro Glu Glu Trp Asn Leu

Tyr Tyr Pro Met Gln Leu Asp Leu Glu Tyr 325 330 335 Val Arg Ser Gly Trp Asp Asn Tyr Glu Phe Asp Ile Asn Glu Val Glu 340 345 350 Glu Gly Pro Val Phe Ala Met Cys Met Ala Gly Ala His Asp Gln Ala 355 360 365 Thr Met Ala Lys Trp Ile Gln Gly Leu Gln Glu Thr Asn Pro Thr Leu 370 375 380 Ala Gln Ile Pro Val Val Phe Arg Leu Ala Gly Ser Thr Arg Glu Leu 385 390 395 400 Gln Thr Ser Ser Ala Gly Leu Glu Glu Pro Pro Leu Pro Glu Asp His 405 410 415 Gln Glu Glu Asp Asp Asn Leu Gln Arg Gln Gln Gln Gly Gln Ser 420 425 430 123 142 PRT Homo sapiens misc_feature Incyte Clone No 2396046 123 Met Leu Leu Gly Val Arg Ala Val Pro Leu Cys Ser Ala Trp Gln Gly 1 5 10 15 Ala Val Gly Leu Val Ser Leu Ala Ile Ser Ile Cys Lys His Gly Leu 20 25 30 Ser Ser Gln Gln Asn Leu Val Pro Gly Lys Ser Asn Val Pro Lys Ala 35 40 45 Ser Asp Met Pro Arg Cys Pro Pro Val Phe Gln Ser Pro Asn Leu Thr 50 55 60 Pro Phe Pro His His Thr Lys His Thr Ser Gln Gly Ser His Leu Gly 65 70 75 80 Val Pro Pro Pro Ala Pro Met Pro Trp Cys Pro Gln Ala Gln Gly Phe 85 90 95 Gly Leu Ser Cys Gln Ser Leu Asp Ala Phe Glu Gly Gln Leu Gly Cys 100 105 110 Gly Trp Gly Val Gln Ala Ala Gly Glu Pro Arg Leu Arg Ile Ile His 115 120 125 Thr Leu Leu Phe Gly Ala Phe Val Glu Val Ser Arg Ile Pro 130 135 140 124 643 PRT Homo sapiens misc_feature Incyte Clone No 2456587 124 Met Glu Cys Cys Arg Arg Ala Thr Pro Gly Thr Leu Leu Leu Phe Leu 1 5 10 15 Ala Phe Leu Leu Leu Ser Ser Arg Thr Ala Arg Ser Glu Glu Asp Arg 20 25 30 Asp Gly Leu Trp Asp Ala Trp Gly Pro Trp Ser Glu Cys Ser Arg Thr 35 40 45 Cys Gly Gly Gly Ala Ser Tyr Ser Leu Arg Arg Cys Leu Ser Ser Lys 50 55 60 Ser Cys Glu Gly Arg Asn Ile Arg Tyr Arg Thr Cys Ser Asn Val Asp 65 70 75 80 Cys Pro Pro Glu Ala Gly Asp Phe Arg Ala Gln Gln Cys Ser Ala His 85 90 95 Asn Asp Val Lys His His Gly Gln Phe Tyr Glu Trp Leu Pro Val Ser 100 105 110 Asn Asp Pro Asp Asn Pro Cys Ser Leu Lys Cys Gln Ala Lys Gly Thr 115 120 125 Thr Leu Val Val Glu Leu Ala Pro Lys Val Leu Asp Gly Thr Arg Cys 130 135 140 Tyr Thr Glu Ser Leu Asp Met Cys Ile Ser Gly Leu Cys Gln Ile Val 145 150 155 160 Gly Cys Asp His Gln Leu Gly Ser Thr Val Lys Glu Asp Asn Cys Gly 165 170 175 Val Cys Asn Gly Asp Gly Ser Thr Cys Arg Leu Val Arg Gly Gln Tyr 180 185 190 Lys Ser Gln Leu Ser Ala Thr Lys Ser Asp Asp Thr Val Val Ala Ile 195 200 205 Pro Tyr Gly Ser Arg His Ile Arg Leu Val Leu Lys Gly Pro Asp His 210 215 220 Leu Tyr Leu Glu Thr Lys Thr Leu Gln Gly Thr Lys Gly Glu Asn Ser 225 230 235 240 Leu Ser Ser Thr Gly Thr Phe Leu Val Asp Asn Ser Ser Val Asp Phe 245 250 255 Gln Lys Phe Pro Asp Lys Glu Ile Leu Arg Met Ala Gly Pro Leu Thr 260 265 270 Ala Asp Phe Ile Val Lys Ile Arg Asn Ser Gly Ser Ala Asp Ser Thr 275 280 285 Val Gln Phe Ile Phe Tyr Gln Pro Ile Ile His Arg Trp Arg Glu Thr 290 295 300 Asp Phe Phe Pro Cys Ser Ala Thr Cys Gly Gly Gly Tyr Gln Leu Thr 305 310 315 320 Ser Ala Glu Cys Tyr Asp Leu Arg Ser Asn Arg Val Val Ala Asp Gln 325 330 335 Tyr Cys His Tyr Tyr Pro Glu Asn Ile Lys Pro Lys Pro Lys Leu Gln 340 345 350 Glu Cys Asn Leu Asp Pro Cys Pro Ala Ser Asp Gly Tyr Lys Gln Ile 355 360 365 Met Pro Tyr Asp Leu Tyr His Pro Leu Pro Arg Trp Glu Ala Thr Pro 370 375 380 Trp Thr Ala Cys Ser Ser Ser Cys Gly Gly Gly Ile Gln Ser Arg Ala 385 390 395 400 Val Ser Cys Val Glu Glu Asp Ile Gln Gly His Val Thr Ser Val Glu 405 410 415 Glu Trp Lys Cys Met Tyr Thr Pro Lys Met Pro Ile Ala Gln Pro Cys 420 425 430 Asn Ile Phe Asp Cys Pro Lys Trp Leu Ala Gln Glu Trp Ser Pro Cys 435 440 445 Thr Val Thr Cys Gly Gln Gly Leu Arg Tyr Arg Val Val Leu Cys Ile 450 455 460 Asp His Arg Gly Met His Thr Gly Gly Cys Ser Pro Lys Thr Lys Pro 465 470 475 480 His Ile Lys Glu Glu Cys Ile Val Pro Thr Pro Cys Tyr Lys Pro Lys 485 490 495 Glu Lys Leu Pro Val Glu Ala Lys Leu Pro Trp Phe Lys Gln Ala Gln 500 505 510 Glu Leu Glu Glu Gly Ala Ala Val Ser Glu Glu Pro Ser Phe Ile Pro 515 520 525 Glu Ala Trp Ser Ala Cys Thr Val Thr Cys Gly Val Gly Thr Gln Val 530 535 540 Arg Ile Val Arg Cys Gln Val Leu Leu Ser Phe Ser Gln Ser Val Ala 545 550 555 560 Asp Leu Pro Ile Asp Glu Cys Glu Gly Pro Lys Pro Ala Ser Gln Arg 565 570 575 Ala Cys Tyr Ala Gly Pro Cys Ser Gly Glu Ile Pro Glu Phe Asn Pro 580 585 590 Asp Glu Thr Asp Gly Leu Phe Gly Gly Leu Gln Asp Phe Asp Glu Leu 595 600 605 Tyr Asp Trp Glu Tyr Glu Gly Phe Thr Lys Cys Ser Glu Ser Cys Gly 610 615 620 Gly Gly Val Gln Glu Ala Val Val Ser Cys Leu Asn Lys Gln Thr Arg 625 630 635 640 Glu Pro Cys 125 568 PRT Homo sapiens misc_feature Incyte Clone No 2484813 125 Met Val Leu Leu His Trp Cys Leu Leu Trp Leu Leu Phe Pro Leu Ser 1 5 10 15 Ser Arg Thr Gln Lys Leu Pro Thr Arg Asp Glu Glu Leu Phe Gln Met 20 25 30 Gln Ile Arg Asp Lys Ala Phe Phe His Asp Ser Ser Val Ile Pro Asp 35 40 45 Gly Ala Glu Ile Ser Ser Tyr Leu Phe Arg Asp Thr Pro Lys Arg Tyr 50 55 60 Phe Phe Val Val Glu Glu Asp Asn Thr Pro Leu Ser Val Thr Val Thr 65 70 75 80 Pro Cys Asp Ala Pro Leu Glu Trp Lys Leu Ser Leu Gln Glu Leu Pro 85 90 95 Glu Asp Arg Ser Gly Glu Gly Ser Gly Asp Leu Glu Pro Leu Glu Gln 100 105 110 Gln Lys Gln Gln Ile Ile Asn Glu Glu Gly Thr Glu Leu Phe Ser Tyr 115 120 125 Lys Gly Asn Asp Val Glu Tyr Phe Ile Ser Ser Ser Ser Pro Ser Gly 130 135 140 Leu Tyr Gln Leu Asp Leu Leu Ser Thr Glu Lys Asp Thr His Phe Lys 145 150 155 160 Val Tyr Ala Thr Thr Thr Pro Glu Ser Asp Gln Pro Tyr Pro Glu Leu 165 170 175 Pro Tyr Asp Pro Arg Val Asp Val Thr Ser Leu Gly Arg Thr Thr Val 180 185 190 Thr Leu Ala Trp Lys Pro Ser Pro Thr Ala Ser Leu Leu Lys Gln Pro 195 200 205 Ile Gln Tyr Cys Val Val Ile Asn Lys Glu His Asn Phe Lys Ser Leu 210 215 220 Cys Ala Val Glu Ala Lys Leu Ser Ala Asp Asp Ala Phe Met Met Ala 225 230 235 240 Pro Lys Pro Gly Leu Asp Phe Ser Pro Phe Asp Phe Ala His Phe Gly 245 250 255 Phe Pro Ser Asp Asn Ser Gly Lys Glu Arg Ser Phe Gln Ala Lys Pro 260 265 270 Ser Pro Lys Leu Gly Arg His Val Tyr Ser Arg Pro Lys Val Asp Ile 275 280 285 Gln Lys Ile Cys Ile Gly Asn Lys Asn Ile Phe Thr Val Ser Asp Leu 290 295 300 Lys Pro Asp Thr Gln Tyr Tyr Phe Asp Val Phe Val Val Asn Ile Asn 305 310 315 320 Ser Asn Met Ser Thr Ala Tyr Val Gly Thr Phe Ala Arg Thr Lys Glu 325 330 335 Glu Ala Lys Gln Lys Thr Val Glu Leu Lys Asp Gly Lys Ile Thr Asp 340 345 350 Val Phe Val Lys Arg Lys Gly Ala Lys Phe Leu Arg Phe Ala Pro Val 355 360 365 Ser Ser His Gln Lys Val Thr Phe Phe Ile His Ser Cys Leu Asp Ala 370 375 380 Val Gln Ile Gln Val Arg Arg Asp Gly Lys Leu Leu Leu Ser Gln Asn 385 390 395 400 Val Glu Gly Ile Gln Gln Phe Gln Leu Arg Gly Lys Pro Lys Ala Lys 405 410 415 Tyr Leu Val Arg Leu Lys Gly Asn Lys Lys Gly Ala Ser Met Leu Lys 420 425 430 Ile Leu Ala Thr Thr Arg Pro Thr Lys Gln Ser Phe Pro Ser Leu Pro 435 440 445 Glu Asp Thr Arg Ile Lys Ala Phe Asp Lys Leu Arg Thr Cys Ser Ser 450 455 460 Ala Thr Val Ala Trp Leu Gly Thr Gln Glu Arg Asn Lys Phe Cys Ile 465 470 475 480 Tyr Lys Lys Glu Val Asp Asp Asn Tyr Asn Glu Asp Gln Lys Lys Arg 485 490 495 Glu Gln Asn Gln Cys Leu Gly Pro Asp Ile Arg Lys Lys Ser Glu Lys 500 505 510 Val Leu Cys Lys Tyr Phe His Ser Gln Asn Leu Gln Lys Ala Val Thr 515 520 525 Thr Glu Thr Ile Lys Gly Leu Gln Pro Gly Lys Ser Tyr Leu Leu Asp 530 535 540 Val Tyr Val Ile Gly His Gly Gly His Ser Val Lys Tyr Gln Ser Lys 545 550 555 560 Val Val Lys Thr Arg Lys Phe Cys 565 126 125 PRT Homo sapiens misc_feature Incyte Clone No 2493851 126 Met Trp Leu Val Gly Pro Ser Phe Leu Ser Cys Pro Leu Gly Lys Val 1 5 10 15 Pro Pro Ala Gly Leu Leu Leu Ala Gly Ser Ser Gly Arg Gly Ala Arg 20 25 30 Arg Pro Ala Thr Pro Arg His Trp Ser Ser Thr Thr Pro Gly Leu Arg 35 40 45 Leu Glu Ala Pro Leu Cys Gln Leu Cys Pro Leu Gly Gly Thr Arg Gln 50 55 60 Asp Cys Gln Pro Leu Ser Trp Gln Val Thr Ser Ala Phe Lys Leu Thr 65 70 75 80 Val Pro Ser Pro Phe His Ala Pro Pro Arg Ser Trp Ser Cys Leu Leu 85 90 95 Leu Gly Ile Phe Pro Gly Gln Ala Leu Ala Leu Glu Pro Trp His Leu 100 105 110 Phe Leu Gly Ser Met Leu Pro Arg Cys Asp Gly Glu Cys 115 120 125 127 196 PRT Homo sapiens misc_feature Incyte Clone No 2495719 127 Met Ala Ala Leu Lys Ala Leu Val Ser Gly Cys Gly Arg Leu Leu Arg 1 5 10 15 Gly Leu Leu Ala Gly Pro Ala Ala Thr Ser Trp Ser Arg Leu Pro Ala 20 25 30 Arg Gly Phe Arg Glu Val Val Glu Thr Gln Glu Gly Lys Thr Thr Ile 35 40 45 Ile Glu Gly Arg Ile Thr Ala Thr Pro Lys Glu Ser Pro Asn Pro Pro 50 55 60 Asn Pro Ser Gly Gln Cys Pro Ile Cys Arg Trp Asn Leu Lys His Lys 65 70 75 80 Tyr Asn Tyr Asp Asp Val Leu Leu Leu Ser Gln Phe Ile Arg Pro His 85 90 95 Gly Gly Met Leu Pro Arg Lys Ile Thr Gly Leu Cys Gln Glu Glu His 100 105 110 Arg Lys Ile Glu Glu Cys Val Lys Met Ala His Arg Ala Gly Leu Leu 115 120 125 Pro Asn His Arg Pro Arg Leu Pro Glu Gly Val Val Pro Lys Ser Lys 130 135 140 Pro Gln Leu Asn Arg Tyr Leu Thr Arg Trp Ala Pro Gly Ser Val Lys 145 150 155 160 Pro Ile Tyr Lys Lys Gly Pro Arg Trp Asn Arg Val Arg Met Pro Val 165 170 175 Gly Ser Pro Leu Leu Arg Asp Asn Val Cys Tyr Ser Arg Thr Pro Trp 180 185 190 Lys Leu Tyr His 195 128 214 PRT Homo sapiens misc_feature Incyte Clone No 2614153 128 Met Val Leu Gly Gly Cys Pro Val Ser Tyr Leu Leu Leu Cys Gly Gln 1 5 10 15 Ala Ala Leu Leu Leu Gly Asn Leu Leu Leu Leu His Cys Val Ser Arg 20 25 30 Ser His Ser Gln Asn Ala Thr Ala Glu Pro Glu Leu Thr Ser Ala Gly 35 40 45 Ala Ala Gln Pro Glu Gly Pro Gly Gly Ala Ala Ser Trp Glu Tyr Gly 50 55 60 Asp Pro His Ser Pro Val Ile Leu Cys Ser Tyr Leu Pro Asp Glu Phe 65 70 75 80 Ile Glu Cys Glu Asp Pro Val Asp His Val Gly Asn Ala Thr Ala Ser 85 90 95 Gln Glu Leu Gly Tyr Gly Cys Leu Lys Phe Gly Gly Gln Ala Tyr Ser 100 105 110 Asp Val Glu His Thr Ser Val Gln Cys His Ala Leu Asp Gly Ile Glu 115 120 125 Cys Ala Ser Pro Arg Thr Phe Leu Arg Glu Asn Lys Pro Cys Ile Lys 130 135 140 Tyr Thr Gly His Tyr Phe Ile Thr Thr Leu Leu Tyr Ser Phe Phe Leu 145 150 155 160 Gly Cys Phe Gly Val Asp Arg Phe Cys Leu Gly His Thr Gly Thr Ala 165 170 175 Val Gly Lys Leu Leu Thr Leu Gly Gly Leu Gly Ile Trp Trp Phe Val 180 185 190 Asp Leu Ile Leu Leu Ile Thr Gly Gly Leu Met Pro Ser Asp Gly Ser 195 200 205 Asn Trp Cys Thr Val Tyr 210 129 88 PRT Homo sapiens misc_feature Incyte Clone No 2655184 129 Met Ala Cys Phe Ser Phe Phe Leu Cys Phe Leu Val His Leu Leu Ile 1 5 10 15 Lys Met Asn Pro Val Thr Glu Ser Pro Ser Cys Leu Phe Ser Pro Pro 20 25 30 Ser Glu Ser Ala Leu Ala Ser Gln Leu Ala Leu Ser Ala Ser Cys Asp 35 40 45 Gln Arg Ala Pro Phe Ser Leu Ala Gly Val Val Ser His Asp Pro Gly 50 55 60 Trp Pro Val Val Arg Leu His Arg Pro Leu Val Pro Glu His Ala Val 65 70 75 80 Phe Ser Gln Pro Ser Leu Gln Pro 85 130 260 PRT Homo sapiens misc_feature Incyte Clone No 2848362 130 Met Pro Asp Pro Leu Phe Ser Ala Val Gln Gly Lys Asp Glu Ile Leu 1 5 10 15 His Lys Ala Leu Cys Phe Cys Pro Trp Leu Gly Lys Gly Gly Met Glu 20 25 30 Pro Leu Arg Leu Leu Ile Leu Leu Phe Val Thr Glu Leu Ser Gly Ala 35 40 45 His Asn Thr Thr Val Phe Gln Gly Val Ala Gly Gln Ser Leu Gln Val 50 55 60 Ser Cys Pro Tyr Asp Ser Met Lys His Trp Gly Arg Arg Lys Ala Trp 65 70 75 80 Cys Arg Gln Leu Gly Glu Lys Gly Pro Cys Gln Arg Val Val Ser Thr 85 90 95 His Asn Leu Trp Leu Leu Ser Phe Leu Arg Arg Trp Asn Gly Ser Thr 100 105 110 Ala Ile Thr Asp Asp Thr Leu Gly Gly Thr Leu Thr Ile Thr Leu Arg 115 120 125 Asn Leu Gln Pro His Asp Ala Gly Leu Tyr Gln Cys Gln Ser Leu His 130 135 140 Gly Ser Glu Ala Asp Thr Leu Arg Lys Val Leu Val Glu Val Leu Ala 145 150 155 160 Asp Pro Leu Asp His Arg Asp Ala Gly Asp Leu Trp Phe Pro Gly Glu 165 170 175 Ser Glu Ser Phe Glu Asp Ala His Val Glu His Ser Ile Ser Arg Ser 180 185 190 Leu Leu Glu Gly Glu Ile Pro Phe Pro Pro Thr Ser Ile Leu Leu Leu 195 200 205 Leu Ala Cys Ile Phe Leu Ile Lys Ile Leu Ala Ala Ser Ala Leu Trp 210 215 220 Ala Ala Ala Trp His Gly Gln Lys Pro Gly Thr His Pro Pro Ser Glu 225 230 235 240 Leu Asp Cys Gly His Asp Pro Gly Tyr Gln Leu Gln Thr Leu Pro Gly 245 250 255 Leu Arg Asp Thr 260 131 295 PRT Homo sapiens misc_feature Incyte Clone No 2849906 131 Met Gly Leu Pro Val Ser Trp Ala Pro Pro Ala Leu Trp Val Leu Gly 1 5 10 15 Cys Cys Ala Leu Leu Leu Ser Leu Trp Ala Leu Cys Thr Ala Cys Arg 20 25

30 Arg Pro Glu Asp Ala Val Ala Pro Arg Lys Arg Ala Arg Arg Gln Arg 35 40 45 Ala Arg Leu Gln Gly Ser Ala Thr Ala Ala Glu Ala Ser Leu Leu Arg 50 55 60 Arg Thr His Leu Cys Ser Leu Ser Lys Ser Asp Thr Arg Leu His Glu 65 70 75 80 Leu His Arg Gly Pro Arg Ser Ser Arg Ala Leu Arg Pro Ala Ser Met 85 90 95 Asp Leu Leu Arg Pro His Trp Leu Glu Val Ser Arg Asp Ile Thr Gly 100 105 110 Pro Gln Ala Ala Pro Ser Ala Phe Pro His Gln Glu Leu Pro Arg Ala 115 120 125 Leu Pro Ala Ala Ala Ala Thr Ala Gly Cys Ala Gly Leu Glu Ala Thr 130 135 140 Tyr Ser Asn Val Gly Leu Ala Ala Leu Pro Gly Val Ser Leu Ala Ala 145 150 155 160 Ser Pro Val Val Ala Glu Tyr Ala Arg Val Gln Lys Arg Lys Gly Thr 165 170 175 His Arg Ser Pro Gln Glu Pro Gln Gln Gly Lys Thr Glu Val Thr Pro 180 185 190 Ala Ala Gln Val Asp Val Leu Tyr Ser Arg Val Cys Lys Pro Lys Arg 195 200 205 Arg Asp Pro Gly Pro Thr Thr Asp Pro Leu Asp Pro Lys Gly Gln Gly 210 215 220 Ala Ile Leu Ala Leu Ala Gly Asp Leu Ala Tyr Gln Thr Leu Pro Leu 225 230 235 240 Arg Ala Leu Asp Val Asp Ser Gly Pro Leu Glu Asn Val Tyr Glu Ser 245 250 255 Ile Arg Glu Leu Gly Asp Pro Ala Gly Arg Ser Ser Thr Cys Gly Ala 260 265 270 Gly Thr Pro Pro Ala Ser Ser Cys Pro Ser Leu Gly Arg Gly Trp Arg 275 280 285 Pro Leu Pro Ala Ser Leu Pro 290 295 132 183 PRT Homo sapiens misc_feature Incyte Clone No 2899137 132 Met Ala Ala Ser Met Ala Arg Gly Gly Val Ser Ala Arg Val Leu Leu 1 5 10 15 Gln Ala Ala Arg Gly Thr Trp Trp Asn Arg Pro Gly Gly Thr Ser Gly 20 25 30 Ser Gly Glu Gly Val Ala Leu Gly Thr Thr Arg Lys Phe Gln Ala Thr 35 40 45 Gly Ser Arg Pro Ala Gly Glu Glu Asp Ala Gly Gly Pro Glu Arg Pro 50 55 60 Gly Asp Val Val Asn Val Val Phe Val Asp Arg Ser Gly Gln Arg Ile 65 70 75 80 Pro Val Ser Gly Arg Val Gly Asp Asn Val Leu His Leu Ala Gln Arg 85 90 95 His Gly Val Asp Leu Glu Gly Ala Cys Glu Ala Ser Leu Ala Cys Ser 100 105 110 Thr Cys His Val Tyr Val Ser Glu Asp His Leu Asp Leu Leu Pro Pro 115 120 125 Pro Glu Glu Arg Glu Asp Asp Met Leu Asp Met Ala Pro Leu Leu Gln 130 135 140 Glu Asn Ser Arg Leu Gly Cys Gln Ile Val Leu Thr Pro Glu Leu Glu 145 150 155 160 Gly Ala Glu Phe Thr Leu Pro Lys Ile Thr Arg Asn Phe Tyr Val Asp 165 170 175 Gly His Val Pro Lys Pro His 180 133 113 PRT Homo sapiens misc_feature Incyte Clone No 2986229 133 Met Trp Arg Lys Pro Asp Val Leu Tyr Ser Val Ile Pro Val Thr Ser 1 5 10 15 Leu Phe Phe Leu Leu Ala Leu Asn Leu Pro Asp Val Phe Gly Leu Val 20 25 30 Val Leu Pro Leu Glu Leu Lys Leu Arg Ile Phe Arg Leu Leu Asp Val 35 40 45 Arg Ser Val Leu Ser Leu Ser Ala Val Cys Arg Asp Leu Phe Thr Ala 50 55 60 Ser Asn Asp Pro Leu Leu Trp Arg Phe Leu Tyr Leu Arg Asp Phe Arg 65 70 75 80 Gly Asp Phe Arg Asn Asp Ile Phe Thr Arg Lys Gly Ser Tyr Cys Leu 85 90 95 Asp Tyr Ser Ala His Gln Lys Phe Leu Val Val Gly Phe Phe Cys Cys 100 105 110 Lys 134 160 PRT Homo sapiens misc_feature Incyte Clone No 3222081 134 Met Gln Arg Val Ser Gly Leu Leu Ser Trp Thr Leu Ser Arg Val Leu 1 5 10 15 Trp Leu Ser Gly Leu Ser Glu Pro Gly Ala Ala Arg Gln Pro Arg Ile 20 25 30 Met Glu Glu Lys Ala Leu Glu Val Tyr Asp Leu Ile Arg Thr Ile Arg 35 40 45 Asp Pro Glu Lys Pro Asn Thr Leu Glu Glu Leu Glu Val Val Ser Glu 50 55 60 Ser Cys Val Glu Val Gln Glu Ile Asn Glu Glu Glu Tyr Leu Val Ile 65 70 75 80 Ile Arg Phe Thr Pro Thr Val Pro His Cys Ser Leu Ala Thr Leu Ile 85 90 95 Gly Leu Cys Leu Arg Val Lys Leu Gln Arg Cys Leu Pro Phe Lys His 100 105 110 Lys Leu Glu Ile Tyr Ile Ser Glu Gly Thr His Ser Thr Glu Glu Asp 115 120 125 Ile Asn Lys Gln Ile Asn Asp Lys Glu Arg Val Ala Ala Ala Met Glu 130 135 140 Asn Pro Asn Leu Arg Glu Ile Val Glu Gln Cys Val Leu Glu Pro Asp 145 150 155 160 135 865 DNA Homo sapiens misc_feature Incyte Clone No 443531 135 attcctcaat tttccagtct cccttgagct aagtgtggcc ctatgactca cttccagcca 60 tgaaaacaag tgcaaatctg ttaggagtat gttctggggc aatttttgct ctcctgatga 120 agacaaaggc tgttgatcca ctgaacccac ccagacacta tgtggtttct tgaatgtcct 180 acgtacattt tgatggatta cccaaggact atctgatgaa gaataataga gacatataaa 240 tacatatggg ctacatcttg gcaaaataaa gtaatcctga agtaaattct aaggatgttc 300 tgaattgaca cctcttaagc acaaccgaat gtcctggtgg ctttgcctcc cactggggct 360 ttttggctct tgtttggccc cagcggctgc tgcagctctg tctgaattca cacaggagca 420 acatgatggt gctcagccct cgccgaagtg tcttgctgaa gagttgggag atgcttggac 480 tattcagata gaagccaact ggaagtacag ggcagtcaac acaaaccaga gaggcaaact 540 tttggccagt gagacatgga aagggagaag aaatacattc ttctttctcc cctagagtga 600 ggaccaacct gagtcccagt cacctggaat cccctcagac gagcgtccct tgagatccag 660 cacatggcag ccagcgtgct gacgattcct tcctgcctac tggctccttc ttatttctgc 720 ctccgtggaa ctgtattctc taatcaatat tagcacatac atattgcccc agactgtacc 780 tcctgggaac ccaggataaa gcactatcta aacattttgt cttggaattg taataaactt 840 caaaagaaaa atacaaaaaa aaaaa 865 136 706 DNA Homo sapiens modified_base (11)..(12) a, c, g, t, unknown, or other 136 cggaccgtgg nnttggtaaa gcccatttcc gaggatttta gggagaccta ggtggggcag 60 acactagaag tgtccagcct ccaagcccaa gagatgtggc cggcagggct gggcaggtcc 120 ttgctggctc agcctgctct ttgctccttc atgggacccc agtggatcct gcagttctgc 180 tcttggctgg aaccacgcca gcttcgctgg agctggactg agccgccttt tacattattg 240 gactctctcg ggttgagagc tgcccaggac tcctgcagtt tcaccaccct tgttcctttg 300 actcttgact catcattcat gaccgttaac gtggttccat ttgtatggac ttcttctttc 360 ttcagagcat ttcagtatcc tgttacctcc ccatgcagaa caaagaatac tccacttttg 420 atagatgggg ttaccaggat tcaggctaca tggcctgagg caaggtcaca acatgagtga 480 cagaatgtgt cctggaagcc aggcatcctc tggggtgtat ttggggcgct caacaaggct 540 tgatcgagct ttgggggtag atctagctat tccatgggga ttcttttcag aattgctgtt 600 ttcggtaact aattccatga ccaggtccat ggcattggat gacattgcgc tacactgttg 660 ctcacccggg tcacccgtcc tcacaggttg gatggcaagc atgttg 706 137 801 DNA Homo sapiens misc_feature Incyte Clone No 670010 137 acttctacat gggcctcctg ctgctggtgc tcttcctcag cctcctgccg gtggcctaca 60 ccatcatgtc cctcccaccc tcctttgact gcgggccgtt caggtgcaga gtctcagttg 120 cccgggagca cctcccctcc cgaggcagtc tgctcagagg gcctcggccc agaattccag 180 ttctggtttc atgccagcct gtaaaaggcc atggaacttt gggtgaatca ccgatgccat 240 ttaagagggt tttctgccag gatggaaatg ttaggtcgtt ctgtgtctgc gctgttcatt 300 tcagtagcca ccagccacct gtggccgttg agtgcttgaa atgaggaact gagaaaatta 360 atttctcatg tatttttctc atttatttat taatttttaa ctgatagttg tacatatttg 420 ggggtacatg tgatatttgg atacatgtat acaatatata atgatcaaat cagggtaact 480 gggatatcca tcacatcaaa catttatttt ttattctttt tagacagagt ctcactctgt 540 cacccaggct ggagtgcagt ggtgccatct cagcttactg caacctctgc ctgccaggtt 600 caagcgattc tcatgcctcc acctcccaag tagctgggac tacaggcatg caccacaatg 660 cccaactaat ttttgtattt ttagtagaga cggggttttg ccatgttgcc caggctggcc 720 ttgaactcct ggcctcaaac aatccacttg cctcggcctc ccaaagtgtt atgattacag 780 gcgtgagcca ccgtgcctgg g 801 138 664 DNA Homo sapiens modified_base (505) a, c, g, t, unknown, or other 138 cggacgcgtg ggctggaagg agctctggag tcggaatcag gatgtggagg ctgagaagaa 60 atctggctct accacctggg aaactggcat ggttgtattt gtcagtgttc agtcagggga 120 gcagagccat gatgagtctt acggaaataa ggttaaaaca tatgcttgaa atttggcatg 180 gcagacaagc cagagcttgt gaaaatctaa gaaaccaaac acgtgtagcc accaaagtgg 240 aaccacaaaa gggaagatct acagaaattt gttgccttgc tgtagttcca ttaaatgagg 300 ttgtgcagtc aagcatcttg tggtgggtct ggagctgttg ccagcatcag gaagacaagc 360 tgggtgctaa gtgaagaaat acacaatgta gaaactgtca ggcatctctg cccctggact 420 tcaccatatc tgatgatgtt ctcagagtca gggcactgct tcacttttcg cttccaaatc 480 tcacacaaaa ttctctgtta ggcancccca gcttagancc ttacaantga gggggatcan 540 ggaaatggag tacccagata cccanngtga tatactttta tgccctcagt ttcttatctt 600 tcagtgggga taatatcctc ggatacaaaa gagtgtacat atataccctg tatttggtaa 660 acta 664 139 1241 DNA Homo sapiens misc_feature Incyte Clone No 795064 139 ccaggcaata tctcaggata tggaagtttc tgggtttatt tacccctcag tgcccagagt 60 taaagtttca gaagagactt gtgcacataa gggcttcatc tcaagtgtat tgcagtaatg 120 gctgaatcgg ggttaacatc ccttccaggc acagcgagtt ggttctgctt tttgcctgta 180 agccaaagaa aagccacatc taaaaagcta ctactaaaag ccagaaagaa aagtggattt 240 gaactcagtg tcacagactc ttctgagtgt tttagggtca cagctagtgt aagaggcatg 300 aagaatagac atgcaaaagg gaacgggtgc accagagacc cctgttttgg ctgacagacc 360 atatgtccca ccagctgggg aatctgacaa gaggacatag gtggcactct ttttttaaag 420 ctatttattg tatctatttt taaataaaat tgcccatcct cattcagctc ttagaacaaa 480 agcaaaaaac cctgtaaatc aggagatata agcacatctg cacccagaat aggcccatat 540 gatagggcaa ccctgagctt aaacaatgac atcttcaagg gtagaactaa tctgaaaccc 600 ccttccagcc tctggaagac actggcctgc atcagttaga gtcagagcaa gtgtcacttc 660 acagggaaaa gaaggattat atagacttcc tatccctaga gtttataaat gtcaactata 720 taaaaaaagc tcaaaacagt gttaaaggaa tgaacagtag aattttaata ggctgtccaa 780 agaagccagg tctgctgtgg gcaagtatag cctaacccta gtcttgtaaa ataagccaga 840 aagggttact gagccacctt aagctagtac ctatatagta ggcaaaaagt acagaaatag 900 atgcaataag tgtggtgagt ctttgagcct acgagtcatg ccaccagcca taagttgacc 960 tatcacttga gaacctcctc agcaaagatg ccagaaaaca ttcaatcaag ttggcaaatg 1020 acacagggag ctggccctct gaccatcttc ctggcaaacc tggactggaa gggccatttg 1080 cagcactgtc ctggagctaa tacactgttt cactgcctct gccatataat gatgccagca 1140 ctagccagct ggtgggtatt tggaggaatc ctgcatgagg attgcccaat aaggggcagg 1200 tacacatacc tggcaaagtg atgatgatgt gaattgtttc c 1241 140 750 DNA Homo sapiens modified_base (570) a, c, g, t, unknown, or other 140 tggagtgggg agaagagcat acgccaggag cctcctgcct caaagtgctc ccctaagtct 60 tcttcctcct gtgctgacct cagggtggtc tgacccttcc ctcggtgtgg gggatgtggc 120 cctctcaggt gcccctactt gctttctgct tccttctggt gaagtccacc tccaacatta 180 acctgcccac cccacccccg tcatccctgg agaattccag ctttgtcgta tctcagagag 240 ggaatctaat tgtttttggg gggcaaaaga aagcaacgtt taggtatcac ttctacttgg 300 accgcatgcc tttttatagc caaatttctg tgtatttcgt aaatggattt cgcgttaatg 360 gatatttatg taataactag acttctcaga ttattgtgag aagggtcagg ttggaagggg 420 tgtaggaaga cgggtgaggg gtagtttttt tctgtcctag tttttttttt ttttattgtc 480 atctctgagg tggactttgt cacctgtggt tattggggcc aagtggactc agctccgggg 540 gagaaggctt ctctgccatt tcggtccaan ggtgactgac acaggcgtac tttttgggac 600 tgtggaagca tcagatgcca gcactgactt cagaccagca nttcgggcta gaggaagatg 660 ggacctttca ggatggaaat accttggact ttcttttggt ccctcggaaa cttgggcttt 720 ctctaccgac ttgcccagat ttcatttcac 750 141 1235 DNA Homo sapiens misc_feature Incyte Clone No 962390 141 ccctcaggca gcccctccac aggacccctc tcctgcctgg acagctctgc tggtctcccc 60 gtcccctgga gaagaacaag gccatgggtc ggcccctgct gctgcccctg ctgctcctgc 120 tgcagccgcc agcatttctg cagcctggtg gctccacagg atctggtcca agctaccttt 180 atggggtcac tcaaccaaaa cacctctcag cctccatggg tggctctgtg gaaatcccct 240 tctccttcta ttacccctgg gagttagcca tagttcccaa cgtgagaata tcctggagac 300 ggggccactt ccacgggcag tccttctaca gcacaaggcc gccttccatt cacaaggatt 360 atgtgaaccg gctctttctg aactggacag agggtcagga gagcggcttc ctcaggatct 420 caaacctgcg gaaggaggac cagtctgtgt atttctgccg agtcgagctg gacacccgga 480 gatcagggag gcagcagttg cagtccatca aggggaccaa actcaccatc acccaggctg 540 tcacaaccac caccacctgg aggcccagca gcacaaccac catagccggc ctcagggtca 600 cagaaagcaa agggcactca gaatcatggc acctaagtct ggacactgcc atcagggttg 660 cattggctgt cgctgtgctc aaaactgtca ttttgggact gctgtgcctc ctcctcctgt 720 ggtggaggag aaggaaaggt agcagggcgc caagcagtga cttctgacca acagagtgtg 780 gggagaaggg atgtgtatta gccccggagg acgtgatgtg agacccgctt gtgagtcctc 840 cacactcgtt ccccattggc aagatacatg gagagcaccc tgaggacctt taaaaggcaa 900 agccgcaagg cagaaggagg ctgggtccct gaatcaccga ctggaggaga gttacctaca 960 agagccttca tccaggagca tccacactgc aatgatatag gaatgaggtc tgaactccac 1020 tgaattaaac cactggcatt tgggggctgt ttattatagc agtgcaaaga gttcctttat 1080 cctccccaag gatggaaaaa tacaatttat tttgcttacc atacacccct tttctcctcg 1140 tccacatttt ccaatctgta tggtggctgt cttctatggc agaaggtttt ggggaataaa 1200 tagcgtgaaa tgctgctgac acttaaaaaa aaaaa 1235 142 1834 DNA Homo sapiens misc_feature Incyte Clone No 1259405 142 gacggaagtg cgggcggagg atccccagcc gggtcccaag cctgtgcctg tgcctgagcc 60 tgagcctgag cctgagcccg agccgggagc cggtcgcggg ggctccgggc tgtgggaccg 120 ctgggccccc agcgatggcg accctgtggg gaggccttct tcggcttggc tccttgctca 180 gcctgtcgtg cctggcgctt tccgtgctgc tgctggcgca gctgtcagac gccgccaaga 240 atttcgagga tgtcagatgt aaatgtatct gccctcccta taaagaaaat tctgggcata 300 tttataataa gaacatatct cagaaagatt gtgattgcct tcatgttgtg gagcccatgc 360 ctgtgcgggg gcctgatgta gaagcatact gtctacgctg tgaatgcaaa tatgaagaaa 420 gaagctctgt cacaatcaag gttaccatta taatttatct ctccattttg ggccttctac 480 ttctgtacat ggtatatctt actctggttg agcccatact gaagaggcgc ctctttggac 540 atgcacagtt gatacagagt gatgatgata ttggggatca ccagcctttt gcaaatgcac 600 acgatgtgct agcccgctcc cgcagtcgag ccaacgtgct gaacaaggta gaatatgcac 660 agcagcgctg gaagcttcaa gtccaagagc agcgaaagtc tgtctttgac cggcatgttg 720 tcctcagcta attgggaatt gaattcaagg tgactagaaa gaaacaggca gacaactgga 780 aagaactgac tgggttttgc tgggtttcat tttaatacct tgttgatttc accaactgtt 840 gctggaagat tcaaaactgg aagcaaaaac ttgcttgatt tttttttctt gttaacgtaa 900 taatagagac atttttaaaa gcacacagct caaagtcagc caataagtct tttcctattt 960 gtgactttta ctaataaaaa taaatctgcc tgtaaattat cttgaagtcc tttacctgga 1020 acaagcactc tctttttcac cacatagttt taacttgact ttcaagataa ttttcagggt 1080 ttttgttgtt gttgtttttt gtttgtttgt tttggtggga gaggggaggg atgcctggga 1140 agtggttaac aacttttttc aagtcacttt actaaacaaa cttttgtaaa tagaccttac 1200 cttctatttt cgagtttcat ttatattttg cagtgtagcc agcctcatca aagagctgac 1260 ttactcattt gacttttgca ctgactgtgt tatctgggta tctgctgtgt ctgcacttca 1320 tggtaaacgg gatctaaaat gcctggtggc ttttcacaaa aagcagattt tcttcatgta 1380 ctgtgatgtc tgatgcaatg catcctagaa caaactggcc atttgctagt ttactctaaa 1440 gactaaacat agtcttggtg tgtgtggtct tactcatctt ctagtacctt taaggacaaa 1500 tcctaaggac ttggacactt gcaataaaga aattttattt taaacccaag cctccctgga 1560 ttgataatat atacacattt gtcagcattt ccggtcgtgg tgagaggcag ctgtttgagc 1620 tccaatgtgt gcagctttga actagggctg gggttgtggg tgcctcttct gaaaggtcta 1680 accattattg gataactggc ttttttcttc ctctttggaa tgtaacaata aaaataattt 1740 ttgaaacatc catcagtgta tctatctatg tctcctagtt ttttcctcct ccctcttttg 1800 ctgtataatg agagagaaga tctgatgaga taac 1834 143 1722 DNA Homo sapiens misc_feature Incyte Clone No 1297384 143 tacgagaccc ggccgcaccc cgagtcacac aggcccccgg ggccacggcg ttcgtctctc 60 ctgtgctgtc ctcaggcctc cgctcctgtt ttggtggccc aggctctccc ctgccccatc 120 ctcgctcccc cacctccttg ggtcatgccc acccaccctt tcctgcctcc tccgtgtgaa 180 gacatccaac atccacgtga cttttccagc tccattttta aacagtgact gagattctag 240 aaaaactggc tgctaactgg cctgagccag gcaacactga ttccaatccc tcctcctttt 300 ttaagttatt tgatggaaga ctcacctaat ttgtgacctg aaactgttga agaaatagag 360 aggagggggc ccgttgatta cagagagcat ttgggatttt gtttggtttg gagatgatgc 420 ctaggttact gggtttgggg ggattgtttt cttttggggg ccttcccctt ttactccttt 480 tcttccagag atcaagagct tctcttgcat cttcttccac tgggctctgg attaatcaat 540 tacccaaagg ctgcacctgc cgtgttgtct gggcttgcat cccagatgtg ttggagtatg 600 catggatgta gtgcttttta gaggagccac tgggcaaggc caccaagaac aaatgcatga 660 cattttatag ccaaggacgc ctcgctaaag tcttatgggc gtcccctggg gttggggggg 720 cacaaggttt tggaggaaga agacaacttc cctcattcca tcatcaccat ctctttctca 780 ctaggttctt tctagttttc aagcaatagt tctagcctgc cttggacaag ggggccccag 840 ttaaacaaac tacccatcca tgaggtgcca ggcagtcaaa aacagaagct tccccgactt 900 gtgagtccct gagatgtgct cttgttgttt ggcatttggg gtgacaggga gtgacccaga 960 ggccaccact gcttttcatg caggagttac agacactggt ttcttggaaa atggagagaa 1020 gcgcactttg cacagacgtc gtcaattaag tcccaatttg ccacttggta ttgagtacac 1080 tggaccctga ccactggctc ttgggcaaac gtccttcctc acggggcgcc tccgccaagc 1140 cggcccagct gcacccctcc cttcctggag ggatggccag ggaaggagaa aacagagaac 1200 tgacaccttt gaaaccacag aatgtgttac atgcagactc gctcaagggc ataagttatt 1260 gtgaacgttt ttgccaatca ctgctcaaca gccctgctag attttgtatg atgctgaatt 1320 attatgcaga ctaattccac ccagttgaga cacaccatgc ttgttcactt gtatttattg 1380 aaactgtgga ttcttgcccg tgctgtccct tgtatttact ttaagcactg atcacttatc 1440 attcattcgg tatggttttc cctgtccctt gtacacattc tggtatgaat ttgtaaaaat 1500 aacctgctac aaattggttg aatgtttctg tctgtggtgc gaaccagcat taacggatgg 1560 ggcacgtgcc caactgagga

acaggagaag aaatcaccaa tttgggctct cagagctaag 1620 acacacttat tgattctgtt gcacattttg cactggttta tggcgattgt tttcttggac 1680 ggatagtgta aaataaactt ctctgttctc taaaaaaaaa aa 1722 144 1741 DNA Homo sapiens misc_feature Incyte Clone No 1299627 144 ttcgctccaa gcctcaggcc accggcttgg atggacgctc cgaggctacc cgtgcgtcca 60 ggggtcttgc ttccgaagtt ggtcctgctc tttgtctacg cagatgattg ccttgctcag 120 tgtggcaaag attgcaaatc ttactgctgt gatggaacca cgccctactg ttgctcctac 180 tacgcttata ttgggaatat cctctcgggc actgcaattg cgggcattgt ttttggaata 240 gtatttatca tgggggtcat tgctgggatt gccatatgca tctgcatgtg catgaagaac 300 cacagggcga cccgcgtggg catcctcagg acgactcaca tcaacaccgt ctcctcctat 360 cctggaccac caccctacgg tcacgaccac gagatggaat actgtgcaga cttgcctcct 420 ccatactccc ccaccccaca gggtccagca cagcgttctc caccccctcc ttatcctgga 480 aacgcaagga aataatctat ctcccagaac agaacatgtg ccaatgggcg atcttgcctg 540 gaataaaatg cctctactca gaaacaggca ggaaagaatt gctccaagga atactttttg 600 gggtcagata atgtgtcagg tggaatatcc ctgctaggag atataggatt tctactctgc 660 tcaaagctga ccccatctgg agtattaatg tttggttcta tggaaccaca ttttaagaga 720 tctgctgatc cacctaagca cattcaggga agagtaatgt aattgacaaa atatctgata 780 atcatgttgt ttaagggcta ggtgaagaaa gtttcagtat tgatcctgga aaaaaagaag 840 atctaagtag gatgggagaa tgatttggcc cacacaagga agcaacttta ttctatatag 900 ctttaaaagt cagaactaga attgttcatt ctttcattca tcaataaatg tattttgagt 960 gcctaagagt ttactatgtg cctagcactg tttgaggtcc tgatggaagt tacaggatgg 1020 gtactctggt tttagtacaa gaaagagcaa tgactagatt gctttgtgaa gctcttggta 1080 gagacacgct ccagaaggga taacaaaatc aaatagtaga tgggttcatt gggcctcaga 1140 agttctgctc gtattttagg tgggtgtgaa gtgaatttct atatgtccag gagtgaatac 1200 aacagaaaga gttggatctt atttatttaa ttagggagtt aaaacaagac caaaaagact 1260 caacagccgc ttgaagccaa gaactcttca atgccagcta ctgccaccta aaaatcatct 1320 ggctttatag tggatcagaa taaaggttat tctaactgtg gggagaaaaa aaaaattgta 1380 tcaagttcca caggtagcag acacttcact tccaagtaaa agatgagaaa tcaattattc 1440 ccacaggatt ttaggtcagg gagcaaaaat ctcagaactt gaccatgaag atacacaaca 1500 gactcgcaaa aataaagtgg gaaatgaagt tcagattccc ttctgtagat ttccttaaaa 1560 ctattatttt tttcttcttc gtaaaatttt gataatctgt tctcttaaaa aagttaatga 1620 cacaattaag atactgacat caaattgttg ccttttacca aaatgcaaat tttatgaagt 1680 gcctaccttt atatgtataa agcatttaat aaataattct aatgtgccat aaaaaaaaaa 1740 a 1741 145 997 DNA Homo sapiens modified_base (973) a, c, g, t, unknown, or other 145 ggacaaccgt tgctgggtgt cccagggcct gaggcaggac ggtactccgc tgacaccttc 60 cctttcggcc ttgaggttcc cagcctggtg gccccaggac gttccggtcg catggcagag 120 tgctacggac gacgcctatg aagcccttag tccttctagt tgcgcttttg ctatggcctt 180 cgtctgtgcc ggcttatccg agcataactg tgacacctga tgaagagcaa aacttgaatc 240 attatataca agttttagag aacctagtac gaagtgttcc ctctggggag ccaggtcgtg 300 agaaaaaatc taactctcca aaacatgttt attctatagc atcaaaggga tcaaaattta 360 aggagctagt tacacatgga gacgcttcaa ctgagaatga tgttttaacc aatcctatca 420 gtgaagaaac tacaactttc cctacaggag gcttcacacc ggaaatagga aagaaaaaac 480 acacggaaag taccccattc tggtcgatca aaccaaacaa tgtttccatt gttttgcatg 540 cagaggaacc ttatattgaa aatgaagagc cagagccaga gccggagcca gctgcaaaac 600 aaactgaggc accaagaatg ttgccagttg ttactgaatc atctacaagt ccatatgtta 660 cctcatacaa gtcacctgtc accactttag ataagagcac tggcattgag atctctacag 720 aatcagaaga tgttcctcag ctctcaggtg aaactgcgat agaaaaaccc gagagttgga 780 agcaccagag agtgggatat gatgcatttg aaaaaaattt agtattaatc acaatgcaca 840 ggcacttcta gtgacacagc acccagctat agagagatat gaaggggtac gagctcgaat 900 tcgaatcatg tcatagctgt ttcctgtgtg aattggtatc gctcacaatg cacacacata 960 cgagcggaag ctnaattggt aagcgggggt gccatga 997 146 981 DNA Homo sapiens misc_feature Incyte Clone No 1316219 146 gttttaaatt tacttaataa atataaaata ttgtatgttc ttaacttgaa gctcatattt 60 tcaagtaatt ccttgtctgg aattttctgt tgatctcatg ggtactaaga aacgaaatat 120 tctgttcatt ttcattttta aagaatatcg ataacttgat gaccccagaa ggagttggcc 180 ttaccactgc cttacgtgtt ctctgtaatg ttgcatgccc accacctcct gttgaaggtc 240 aacagaaaga tctgaaatgg aatcttgccg ttattcagct tttttctgct gaaggaatgg 300 acacgtttat tcgagttctg caaaaattga acagtattct gactcagcct tggaggctcc 360 atgtcaacat ggggactacc cttcacagag ttactactat ttcaatggct cgctgcacac 420 tcactcttct taaaactatg ttaacggaac tcctgagagg tggatccttt gagtttaagg 480 acatgcgtgt tccttcagcg cttgttactt tacatatgct cctgtgctct atccccctct 540 caggtcgttt ggatagtgat gaacagaaaa ttcagaatga tatcattgat attttactga 600 cttttacaca aggagttaat gaaaaactca caatctcaga agagactctg gccaataata 660 cttggtcttt aatgttaaaa gaagttcttt cttcaatctt gaaggttcct gaaggatttt 720 tttctggact catactcctt tcagagctgc tgcctcttcc attgcccatg caaacaactc 780 aggtatcact tccatataac atgcatctta taaatgactg cagtaacact ttttaaaaag 840 ccagtgattt tgttaaaaaa caaaaaccct catctccctt cctcccaaaa agacataaaa 900 taaccggatg agggggagat aaaactgaaa caagttggtc attgaggaaa tatgggggta 960 aaaattttaa ataaattttt g 981 147 526 DNA Homo sapiens misc_feature Incyte Clone No 1329031 147 ctgcaggccc acctgtctgc aacccagctg aggccatgcc ctccccaggg accgtctgca 60 gcctcctgct cctcggcatg ctctggctgg acttggccat ggcaggctcc agcttcctga 120 gccctgaaca ccagagagtc cagcagagaa aggagtcgaa gaagccacca gccaagctgc 180 agccccgagc tctagcaggc tggctccgcc cggaagatgg aggtcaagca gaaggggcag 240 aggatgaact ggaagtccgg ttcaacgccc cctttgatgt tggaatcaag ctgtcagggg 300 ttcagtacca gcagcacagc caggccctgg ggaagtttct tcaggacatc ctctgggaag 360 aggccaaaga ggccccagcc gacaagtgat cgcccacaag ccttactcac ctctctctaa 420 gtttagaagc gctcatctgg cttttcgctt gcttctgcag caactcccac gactgttgta 480 caagctcagg aggcgaataa atgttccaac ctggtaaaaa aaaaaa 526 148 2090 DNA Homo sapiens misc_feature Incyte Clone No 1483050 148 gaggcgcggg gagagtaggg tgctgtggtc tgagctagag ggtgaagctg gcggagcagg 60 aggatgggcg tatgcaggtg atagactaga gaacaagacc tctgtctccg tagcatcctg 120 gagcagtctg aatgccagaa tggataaccg ttttgctaca gcatttgtaa ttgcttgtgt 180 gcttagcctc atttccacca tctacatggc agcctccatt ggcacagact tctggtatga 240 atatcgaagt ccagttcaag aaaattccag tgatttgaat aaaagcatct gggatgaatt 300 cattagtgat gaggcagatg aaaagactta taatgatgca ctttttcgat acaatggcac 360 agtgggattg tggagacggt gtatcaccat acccaaaaac atgcattggt atagcccacc 420 agaaaggaca gagtcatttg atgtggtcac aaaatgtgtg agtttcacac taactgagca 480 gttcatggag aaatttgttg atcccggaaa ccacaatagc gggattgatc tccttaggac 540 ctatctttgg cgttgccagt tccttttacc ttttgtgagt ttaggtttga tgtgctttgg 600 ggctttgatc ggactttgtg cttgcatttg ccgaagctta tatcccacca ttgccacggg 660 cattctccat ctccttgcag gtctgtgtac actgggctca gtaagttgtt atgttgctgg 720 aattgaacta ctccaccaga aactagagct ccctgacaat gtatccggtg aatttggatg 780 gtccttctgc ctggcttgtg tctctgctcc cttacagttc atggcttctg ctctcttcat 840 ctgggctgct cacaccaacc ggaaagagta caccttaatg aaggcatatc gtgtggcatg 900 agcaagaaac tgcctgcttt acaattgcca tttttatttt tttaaaataa tactgatatt 960 ttccccacct ctcaattgtt tttaattttt atttgtggat ataccatttt attatgaaaa 1020 tctattttat ttatacacat tcaccactaa atacacactt aataccacta aaatttatgt 1080 ggtttacttt aagcgatgcc atctttcaaa taaactaatc taggtctaga cagaaagaaa 1140 tggatagaga cttgacacaa atttatgaaa gaaaattggg agtaggaatg tgaccgaaaa 1200 caagttgtgc taatgtctgt tagacttttc agtaaaacta aagtaactgt atctgttcaa 1260 ctaaaaactc tatattagtt tctttgggaa acctctcatc gtcaaaactt tatgttcact 1320 ttgctgttgt agatagccag tcaaccagca gtattagtgc tgttttcaaa gatttaagct 1380 ctataaaatt gggaaattat ctaagatcat tttccctaag cattgacaca tagcttcatc 1440 tgaggtgaga tatggcagct gtttgtatct gcactgtgtc tgtctacaaa aagtgaaaaa 1500 tacagtgttt acttgaaatt ttaactttgt aactgcaaga attccagttc agccgggcga 1560 ggattagtat tatttttaac tctccgtaag attttcagta ccaccaaatt gttttggatt 1620 ttttttcttt cctcttcaca taccagggtt attaaaagtg tgctttcttt ttacattata 1680 ttacagttac aaggtaaaat tcctcaactg ctatttattt attccagccc agtactataa 1740 agaacgtttc accataatga ccctccagag ctgggaaacc taccacaaga tctaaagttc 1800 tggctgtcca ttaacctcca actatggtct ttatttcttg tggtaatatg atgtgccttt 1860 ccttgcctaa atcccttcct ggtgtgtatc aacattattt aatgtcttct aattcagtca 1920 tttttttata agtatgtcta taaacattga actttaaaaa acttatttat ttattccact 1980 actgtagcaa ttgacagatt aaaaaaatgt aacttcataa tttcttacca taacctcaat 2040 gtctttttta aaaaataaaa ttaaaaatga aaagagactc aaaaaaaaaa 2090 149 2403 DNA Homo sapiens misc_feature Incyte Clone No 1514160 149 gggagagagc agcagagacc tcatcagcag accaaggaag tggtgggtgc tccccctccc 60 taagctccag ggtccctgaa tcttctgaaa tctcaaatga gtggaggcct cctggggtgg 120 cctgtcctgc aggggccctg gaatgggggc aagcagctgg gtgggcagaa tgcagagtag 180 actcggggga ggatcctttc actttccgct tccccttctg atgcatggag gatggtgtga 240 gcttttcagc aggcccggaa aggtacgcag gtgacgcctt agcagccccg cagctggtgc 300 tctgccccgc ggtactggcg ccatcagggc ctcccttgcc cgcctgagag cagcagcagt 360 ctctgtcatc ccgtcgcccc ttacccccca ccccaggcca ctgggcccct cccacaccac 420 ctggggagct gagaagagga ggctggagta agggaggact tgatcatcca agaaatactt 480 tttattgctg ggagtcttct gaacctcacc aaactgaggc cagagctgag ctcctggggg 540 agttaattca gaggggagag gccagcacct ccctcctcca tcgctcgctg tgtgccttaa 600 actccatctc atgtccctcc ccatcccctg gctttccctc cctccttgcc ccatcctggg 660 ccagccagca gggctcctcc tctggctctt cagacctttc agccagtgct gtcagtgccc 720 ctgggaggga agggcatccc tgaggcaccc gaatggtccc tcagggtgca gggaggcaga 780 agcctggcca cagaggagcc tcctaaggca gcagctgcag caagcgcacc ctctccccac 840 tctccccacg ccagagcggc ttccagagca gatgctgttt ccatcctcct cgtcaaaacc 900 attctcgctg ctgagcttga caatctgggc aaggcttgtg gggcgcttga caaacagaat 960 ctgccctgtg ccgcctggtt ccgtggcctc cagcatgagc ctgcaggcag ggcgctgcgg 1020 gaacccagtt gtgctgcccc agcccatgcc tccgggtctg ctgtgcatga atgagtgctc 1080 acttgtcccg ggtttaggac gtggtcaagt gaacagcagg gtctaactgt gcttacttag 1140 cccagttcaa acagaacaaa ggaaaaatat agaaagcaac atctgttgat catttaggtt 1200 tttttttaaa ccaccatgtc actttgagtc cttcatgggt ttttgaacag catttatcaa 1260 gaagaaaatg tgggcttttt cccctctccc gtgttttgtt tgtcctgtag atagagggag 1320 gaaagccgtg cagtggcagg cgggaccccc tctggtggcg ggaccccctc ttgcggtggt 1380 cttgcggggc cagccgggac ctgtcacttt attatttaag gagtgtgtgt gtagagtcgc 1440 tggcttatta acagtattgt gtgtgggttg ggtttttagt ttgttccttc tttttgaagt 1500 cccttcattt caatccttga ctctctctcc ccttcccttg cccagctctg ttgaatgctg 1560 ctgtgcgcgt gtgagggccg ctctgcacac agggcccttg ggttgtgtga actgaaattc 1620 tccctgtatt tgtgagactc gcaggagtcc ccatctgtag cacaggcaat gccagtgcca 1680 tgctgcagcc tcagaaacca ggcctctcac tccagcagca ggcagaaccg tgtctgtggt 1740 cgggtgctgt ccacagctct gtctgccttg ttcttgggct tgagctggat agaggtgggg 1800 tctcttcacc ttccctgaat tcagaacaga ccctgtgcct ggccccagtg tgcccaggca 1860 attccccagg ccctcattgg gagcccttgg tgttctgagc agcagggccc aggcagcaca 1920 tgagcagtgc ccaggggctc cctgcgtgag gacggcaagg tgcgatgtat gtctaactta 1980 ttgatggcag gcagccccct gtgcccccta agcctggccc tggttattgc tgagctctgt 2040 gctcagtgct gcggcctggc cgtggctcgt ctgttccttt ggggggcccg ggcgggttgt 2100 gggaatcagt cttcacagac agacgtgagc caggcggagg actcgttcct tgcagaggtc 2160 agtcctcacc tgcaggtgtc ggggtggggg ggggcaagga ggggcaggca cacaccatgt 2220 ctgacctgaa cccgattctg gggagcatct tcccgctccg gccccacgac ctccacaggg 2280 ttacattgta atatatatgc cccagctaac ctgtctgatg gtggcatctt cctgcagaca 2340 tttcaaacat gtaactttta tatgaaaaaa aataaacaca gatgaaagct gaaaaaaaaa 2400 aaa 2403 150 431 DNA Homo sapiens misc_feature Incyte Clone No 1603403 150 ggccaccggg acttcagtgt ctcctccatc ccaggagcgc agtggccact atggggtctg 60 ggctgcccct tgtcctcctc ttgaccctcc ttggcagctc acatggaaca gggccgggta 120 tgactttgca actgaagctg aaggagtctt ttctgacaaa ttcctcctat gagtccagct 180 tcctggaatt gcttgaaaag ctctgcctcc tcctccatct cccttcaggg accagcgtca 240 ccctccacca tgcaagatct caacaccatg ttgtctgcaa cacatgacag ccattgaagc 300 ctgtgtcctt cttggcccgg gcttttgggc cggggatgca ggaggcaggc cccgaccctg 360 tctttcagca ggcccccacc ctcctgagtg gcaataaata aaattcggta tgctgaattc 420 aaaaaaaaaa a 431 151 2109 DNA Homo sapiens misc_feature Incyte Clone No 1652303 151 tttgtagcca agtgggagct attttctttt ttgtgcatat agatatttct taaatgaagc 60 tgctttcttg tcttttattt ctaaaagccc ccttataccc cactttgtgc agcaaagatc 120 cccgtgcagg tcacagcctg atttgtggcc aggctggaca aattcctgag gcacaacttg 180 gcttcagttc agatttcaag ctgtgttggt gttgggacca gcagaaggca aacgtccagc 240 caacacacag gactgtaaga ggactctgag ctacgtgccc tgtgaagacc cccaggcttt 300 gtcataggag gtcgttcagc ttccccaaag tcagaggtga tttgatttgg ggaagactga 360 atattcacac ctaagtcgtg agcatatcct gagttttact tccttatggc ttgccctcca 420 agttctctct ctcatacaca cacacaccct tgctccagaa tcaccagaca cctccatggc 480 tccagctatg ggaacagctg cattggggct gcctttctgt ttggcttagg aacttctgtg 540 cttcttgtgg ctccactcgc gaggcagctc ggaggtgtgg actccgattg ggctgcaggc 600 agctctggga cggcacaggg cgggcgctct gatcagctcg tgtaaaacac accgtcttct 660 tggcctcctg gccagtcttt ctgcgaatag tcctctccct ggccagttga atgggggaag 720 ctgctggcac aggaaggaga ggcgatcccg gctgaggctt aggaaattgc tggagccggc 780 tccaagcaga taattcactg gggaggtttt cagagtcaaa catcattctg cctgtgttgg 840 gggccaggtg tgtcacacaa gcatctcaaa gtcaaaagcc atctggggct gctgcttctc 900 tttctcaggc tctggggaaa ggaatctccc tctcctctca cttgattcca agtgtggttg 960 aattgtctgg agcactggga ctttttttct cttttccttg atggaccaac agtgcaaatg 1020 caatctcgcc atttaacttt caggtcgatt tcctttcctg atcagacatc tttgtgcccc 1080 ctttaggaag gaaaagaata cacctacgat gtgccaggca ctgtgttagg cgcttttata 1140 tagatcctcg ttaggatgag actaagggat gaggacatct ctttataaaa ggcccctaag 1200 taatggataa acagaaacac ttagaggtga gaaggtctgt cttcaagatc caaggtaaga 1260 ttgccttcag tctgatgttt gttctcaagg acttatcccc tacaatattc tcccactcca 1320 tacttctcct tctaccccac catgtgctcc cgtgcactcc tcagatggtc agaggggtaa 1380 cccaagtcct tagagaattt ggggaccaat agaatatgtg atgtgtgaat tttctttaaa 1440 aaacttaagg agtctttgct accttctgct tgttgagttg ttttggcatt catattaaaa 1500 gccagcatct cactatttat tgacaggttg ggctgtgtgt gtgcgcatgt gtgtatacat 1560 ttccaggcgt gcctgtgtcc tgtagctttt taaaaggaaa cccagtcatc ccactatgaa 1620 tctggcatct tcttatgctt ctagtgtttt ggccatacat caaccaaggg gtttaattta 1680 tccaatgctt gacgacatgt tcaggagggg ctggatcaaa ttttgagagg gttatgggaa 1740 agggaggggg agaagaaatt gacatttatt ttattattta ttttaaatgt ttacatcttc 1800 tttatgttgt atcaagcctg aatagaaact gatagcatta aaatactccg ttcctctctc 1860 tcttctcgct tccttttttt ttttttttaa atttaggata acacattttt gtttctaaag 1920 tgatttgtga tttgtgctgt ataaactgta taaaaggttc tgtttttaaa ggtggatttt 1980 cattcctctg gggacagtgg tcgccaagac atctacattg taagagaaca cagtggaaga 2040 tcctgtcctg attctcaaaa attattttct ctgtatgatt aaaagtttat tccatttaaa 2100 aaaaaaaaa 2109 152 1114 DNA Homo sapiens misc_feature Incyte Clone No 1693358 152 ggccggagca gctgtcaggc tgaagtcctg cgagcgacgc gcggcggggc ggcgagagga 60 aacgcggcgc cgggccgggc cgggccctgg agatggtccc cggcgccgcg ggctggtgtt 120 gtctcgtgct ctggctcccc gcgtgcgtcg cggcccacgg cttccgtatc catgattatt 180 tgtactttca agtgctgagt cctggggaca ttcgatacat cttcacagcc acacctgcca 240 aggactttgg tggtatcttt cacacaaggt atgagcagat tcaccttgtc cccgctgaac 300 ctccagaggc ctgcggggaa ctcagcaacg gtttcttcat ccaggaccag attgctctgg 360 tggagagggg gggctgctcc ttcctctcca agactcgggt ggtccaggag cacggcgggc 420 gggcggtgat catctctgac aacgcagttg acaatgacag cttctacgtg gagatgatcc 480 aggacagtac ccagcgcaca gctgacatcc ccgccctctt cctgctcggc cgagacggct 540 acatgatccg ccgctctctg gaacagcatg ggctgccatg ggccatcatt tccatcccag 600 tcaatgtcac cagcatcccc acctttgagc tgctgcaacc gccctggacc ttctggtaga 660 agagtttgtc ccacattcca gccataagtg actctgagct gggaagggga aacccaggaa 720 ttttgctact tggaatttgg agatagcatc tggggacaag tggagccagg tagaggaaaa 780 gggtttgggc gttgctaggc tgaaagggaa gccacaccac tggccttccc ttccccaggg 840 cccccaaggg tgtctcatgc tacaagaaga ggcaagagac aggccccagg gcttctggct 900 agaacccgaa acaaaaggag ctgaaggcag gtggcctgag agccatctgt gacctgtcac 960 actcacctgg ctccagcctc ccctacccag ggtctctgca cagtgacctt cacagcagtt 1020 gttggagtgg tttaaagagc tggtgtttgg ggactcaata aaccctcact gactttttag 1080 caataaagct tctcatcagg gttaaaaaaa aaaa 1114 153 2192 DNA Homo sapiens misc_feature Incyte Clone No 1707711 153 ggaactcatg agccaacagc tgaagaaacc cattgctaca gcttccagtt gaatgccggg 60 gagaaacctg tccaatttta gcaggtttga agggaggatc ttcttcagtt gtagtttgga 120 aggttccttg gtgtggctca tgaaatcaca gagctcagag ataccatctt gagaaatcct 180 ccttggtatc atgaaactgg agcagaggaa ttgcaattta gcaggaggtc ctctactggt 240 gataccctca ccttggggta atggtcctaa cccagaccca gggtctggaa gcttaatgtt 300 gagttggtga ctccagcctc tttctcctgg aggtcacaag atgatgattg cgtagatgtt 360 gcctggtgca aagtgcccca aacagcaata gaaaggcata tgtataacca aactccaagt 420 gataaccaga cccatctctc ctccaccttg acaaaagcag attatagtat acaaggtagg 480 aattcctgtc ctatttgaga tgaactatat cctgtacctc tgtgctctgt gtctgcatga 540 aggctcagcc tttagaggca ctccttctag ttgcattagt actgtctttc tgtggagttt 600 ggtttgaaga ctggctcagc aagtggaggt ttcaatgtat ttttcagttg gctcatcagc 660 cagcattggt gaatattcag tttaggggaa cagttctagg gagtgagaca tttttgggag 720 cagaggaaaa ctctgctgat gttcggtcct ggcaaacatt gagttatttt gagctgtgaa 780 ggcagtcgtc tctgttacac agtggcagct cttgagttat gcactgtgaa gaatgagaag 840 ggaaaagcaa aaattatcct tgtgaaatat ctgctgattg tgccctactc tttgcacctg 900 acttttccta gttgtcctgg tgctaacaca ggagctacac cttgatcctc tcctggcatg 960 aaaataaaac aaaggttttc gttgttgttg ttccattgcc catttccccc atgttgtctt 1020 tcccttggct gatgcctcct ctgggtcaca ttgcttctta tcctgaacac ttgacacctt 1080 gagggtagaa tttagcgttt ggtttttacc tcctagcata tgctgtttgg tatgtgaggg 1140 tttcagtaca aatgctgctg tctatttctg tgcacttaac aatggaaccc aaacagaaga 1200 gaataaagcc ttgataccaa aattgggaaa gaacatgtgt ccatttggac caaacgttgt 1260 tggtttttaa aaaattttat tttgtttttt tgtttttgtt tttgtttttt ttcatcttaa 1320 tatgtaccag tggcacttaa ccaaaagata cagtgatata gccatgtact gtgggtggga 1380 cagatacagt ctccttggcc tataatgaaa ccactaggac tttatacagt tttccttaat 1440 ttgttgacat ataaatggta aattatattt aggcttatcc tgttttgaaa tgatggtagt 1500 catctttctt actgctactt tcatgttgct ttctagaaaa cagcatttca ttccaaaata 1560 actaggatct

gcatttagaa caagaatcat tatttgtcct gaccttttca gtcctacaga 1620 gacgcatctg tggttctttt gtacttgcca tagatgtaac ctaaaaagtt ttggcatatt 1680 taggtcagcc tagcggaact ttttttttca tttaaatgga gctgaataat ggagattttg 1740 tgtctgcaaa attcctgaga tcattgaaaa agtaacaagc tgttccttgt ttctgataca 1800 taaaattatt ttaagcattt tatcaatcat taaaatttac tgccagttgt gagtggcttt 1860 ttaattaact tgtctttcat tgcacttcac tctgcctgtt ttcaagggga gtaagattgg 1920 taacatttgg ggagactgta tctgtctact tagcgtggct gttttgaggg actgtcccat 1980 cagtgaacaa actgcatggc cttggagaga gactctgggc tcttggctca gatgtgttca 2040 tcaaatactc ctttcagagc tgttgtgggt gtaagtgaca tgatgtggcc aaaaatccaa 2100 actgtgcagt tgcgttgtga caaacatgca atgtgctgta aaaattcaat acagtttaaa 2160 taaaatctct atattagtgc tgaaaaaaaa aa 2192 154 913 DNA Homo sapiens misc_feature Incyte Clone No 1738735 154 ctcgagcggc tcgagagcgg ggcaaactgc ttggcacctc ttcaataggt gacattcaat 60 gatagatctc tggcttcctg ctctgtttgt tctggttgcc ctggaaagcc tgctgctcag 120 cccatgcccc gggacttcct ccaccctcac caggacattc tttccatctc ttgtctcctg 180 tgtgcaagtc cctttctcct ggattccatg tcttgaatgt ttcttaattt acttcctcat 240 tttggcagag gatgtcctcc agttgttttc tgggaatgct aatatgcaag tgaaccagtg 300 acctgcagtt ctgcccacac agggttaata accaatcaga ttctctcttt tcaagatggt 360 taacataaca gacaccaaga aagggaagag gagccgacag cagaggggga agctgaaaag 420 acgcacaaag aatggccata aaagatatga gcaaccccag ctttccagac agtcactttt 480 cccagtggtc atacctggtc tggaagattc cccatcatct cgaataaagc tgttgttgct 540 tttaactcca tggagagacc gaatggagtg agcccagcag ggcatgctgg gcaagagagg 600 tcccccgagt cccaaataag aatttcaact agtataaaac gaggcagcga acccacacgt 660 ggaagtctga taccgcttgc agaagggaat tgaatagatg tctccctatt ggtaaggatg 720 tggttttatt gacttgaaat aacaaagccc gcaagcaaca actgatcatc cgcgggatgc 780 tgccacaagg aataattgag cactcattca gacacagggg aaaccactgc ctctttcagt 840 ctttctccca gattccaaca gtcagtgtta cagcatttca ccttgttcac ctccctgaga 900 agacgttgca ggg 913 155 480 DNA Homo sapiens misc_feature Incyte Clone No 1749147 155 cttctgttca ggctgggatt acaggtgtga gccgctgcgc tcggccttct ttgattttat 60 attattagga gcaaaagtaa atgaagccca ggaaaacacc tttgggaaca aactcttcct 120 ttgatggaaa atgcagaggc ccttcctctc tgtgccgtgc ttgctcctct tacctgcccg 180 ggtggtttgg gggtgttggt gtttcctccc tggagaagat gggggaggct gtcccactcc 240 cagctctggc agaatcaagc tgttgcagca gtgccttctt catccttcct tacgatcaat 300 cacagtctcc agaagatcag ctcaattgct gtgcaggtta aaactacaga accacatccc 360 aaaggtacct ggtaagaatg tttgaaagat cttccatttc taggaacccc agtcctgctt 420 ctccgcaatg gcacatgctt ccactccatc catactgcag tcgtcaaata aacagatatg 480 156 545 DNA Homo sapiens misc_feature Incyte Clone No 1817722 156 caggctatta agaaaggcgg acccatgcac atgattttaa aggttctgac aactgcattg 60 ctgttacaag ctgcttcagc tttagctaat tacattcatt tctccagtta ctccaaagat 120 ggaatagggg taccatttat gggaagtttg gcagaatttt ttgacatcgc ttcccaaatt 180 cagatgttat acttactttt gagtctatgc atgggttgga caatagtcag aatgaagaag 240 tctcaaagca gacctctcca gtgggattct acacctgcat ccactggcat tgcagtattc 300 attgtcatga cacagagtgt tttgctactt tgggaacagt ttgaagatat cagtcatcat 360 agctaccatt cacaccacaa cttagcaggg atcctcctaa ttgttctaag aatttgccta 420 gcattgtcat taggctgtgg actctatcag atcatcacag tggagagaag tacactcaaa 480 agggagttct acatcacatt tgccaaagta tgggtttgga aagaaaatgg tttattctga 540 ttatc 545 157 1746 DNA Homo sapiens misc_feature Incyte Clone No 1831290 157 ttggcatcag cttgggcagg tgtgcgggct caggatgggg cggccgtggt gaggaaccct 60 ggactctcag catcacaaga ggcaacacca ggagccaaca tgagctcggg gactgaactg 120 ctgtggcccg gagcagcgct gctggtgctg ttgggggtgg cagccagtct gtgtgtgcgc 180 tgctcacgcc caggtgcaaa gaggtcagag aaaatctacc agcagagaag tctgcgtgag 240 gaccaacaga gctttacggg gtcccggacc tactccttgg tcgggcaggc atggccagga 300 cccctggcgg acatggcacc cacaaggaag gacaagctgt tgcaattcta ccccagcctg 360 gaggatccag catcttccag gtaccagaac ttcagcaaag gaagcagaca cgggtcggag 420 gaagcctaca tagaccccat tgccatggag tattacaact gggggcggtt ctcgaagccc 480 ccagaagatg atgatgccaa ttcctacgag aatgtgctca tttgcaagca gaaaaccaca 540 gagacaggtg cccagcagga gggcataggt ggcctctgca gaggggacct cagcctgtca 600 ctggccctga agactggccc cacttctggt ctctgtccct ctgcctcccc ggaagaagat 660 gaggaatctg aggattatca gaactcagca tccatccatc agtggcgcga gtccaggaag 720 gtcatggggc aactccagag agaagcatcc cctggcccgg tgggaagccc agacgaggag 780 gacggggaac cggattacgt gaatggggag gtggcagcca cagaagccta gggcagacca 840 agaagaaagg agccaaggca aagagggacc actgtgctca tggacccatc gctgccttcc 900 aaggaccatt tcccagagct actcaacttt taagcccctg ccatggttgc tcctggaagg 960 agaaccagcc accctgagga ccacctggcc atgcgtgcac agcctgggaa aagacagtta 1020 ctcacgggag ctgcaggccc gtcaccaagc cctctcccga cccaggcttt gtggggcagg 1080 cacctggtac caagggtaac ccggctcctg gtatggacgg atgcgcagga tttaggataa 1140 gctgtcaccc agtccccata acaaaaccac tgtccaacac tggtatctgt gttcttttgt 1200 gctatgaatt tggattccta attgctattg ttggttgctg gggttttaaa tgattgataa 1260 gcttgtacag ttaacttata gagggggagc catatttaac attctggatt tcagagtaga 1320 gatttctgtg ttgtctccta gaaagcatta catgtagttt atttcagcat ccttgttggg 1380 tggggccctg gctctcttcc cctttggtgg gacctcccct ttctttgggc ttcagttcac 1440 tcaggaagaa atgaggctgt cgccatcttt atgtgcttcc agtggaaatg tcacttgcta 1500 cagacaatag tgcatgagag tctagagaag tagtgaccag aacagggcag agtaggtccc 1560 ctccatggcc ctgaatcctc ctctgctcca gggctggcct ctgcagagct gattaaacag 1620 tgttgtgact gtctcatggg aagagctggg gcccagaggg accttgagtc agaaatgttg 1680 ccagaaaaag tatctcctcc aaccaaaaca tctcaataaa accattttag ttgaaaaaaa 1740 aaaaaa 1746 158 2011 DNA Homo sapiens misc_feature Incyte Clone No 1831477 158 ggagcacggc gctggggccg cccgcagcgc tcactcgctc gcactcagtc gcgggaggct 60 tccccgcgcc ggccgcgtcc cgcccgctcc ccggcaccag aagttcctct gcgcgtccga 120 cggcgacatg ggcgtcccca cggccccgga ggccggcagc tggcgctggg gatccctgct 180 cttcgctctc ttcctggctg cgtccctagg tccggtggca gccttcaagg tcgccacgcc 240 gtattccctg tatgtctgtc ccgaggggca gaacgtcacc ctcacctgca ggctcttggg 300 ccctgtggac aaagggcacg atgtgacctt ctacaagacg tggtaccgca gctcgagggg 360 cgaggtgcag acctgctcag agcgccggcc catccgcaac ctcacgttcc aggaccttca 420 cctgcaccat ggaggccacc aggctgccaa caccagccac gacctggctc agcgccacgg 480 gctggagtcg gcctccgacc accatggcaa cttctccatc accatgcgca acctgaccct 540 gctggatagc ggcctctact gctgcctggt ggtggagatc aggcaccacc actcggagca 600 cagggtccat ggtgccatgg agctgcaggt gcagacaggc aaagatgcac catccaactg 660 tgtggtgtac ccatcctcct cccaggagag tgaaaacatc acggctgcag ccctggctac 720 gggtgcctgc atcgtaggaa tcctctgcct ccccctcatc ctgctcctgg tctacaagca 780 aaggcaggca gcctccaacc gccgtgccca ggagctggtg cggatggaca gcaacattca 840 agggattgaa aaccccggct ttgaagcctc accacctgcc caggggatac ccgaggccaa 900 agtcaggcac cccctgtcct atgtggccca gcggcagcct tctgagtctg ggcggcatct 960 gctttcggag cccagcaccc ccctgtctcc tccaggcccc ggagacgtct tcttcccatc 1020 cctggaccct gtccctgact ctccaaactt tgaggtcatc tagcccagct gggggacagt 1080 gggctgttgt ggctgggtct ggggcaggtg catttgagcc agggctggct ctgtgagtgg 1140 cctccttggc ctcggccctg gttccctccc tcctgctctg ggctcagata ctgtgacatc 1200 ccagaagccc agcccctcaa cccctctgga tgctacatgg ggatgctgga cggctcagcc 1260 cctgttccaa ggattttggg gtgctgagat tctcccctag agacctgaaa ttcaccagct 1320 acagatgcca aatgacttac atcttaagaa gtctcagaac gtccagccct tcagcagctc 1380 tcgttctgag acatgagcct tgggatgtgg cagcatcagt gggacaagat ggacactggg 1440 ccaccctccc aggcaccaga cacagggcac ggtggagaga cttctccccc gtggccgcct 1500 tggctccccc gttttgcccg aggctgctct tctgtcagac ttcctctttg taccacagtg 1560 gctctggggc caggcctgcc tgcccactgg ccatcgccac cttccccagc tgcctcctac 1620 cagcagtttc tctgaagatc tgtcaacagg ttaagtcaat ctggggcttc cactgcctgc 1680 attccagtcc ccagagcttg gtggtcccga aacgggaagt acatattggg gcatggtggc 1740 ctccgtgagc aaatggtgtc ttgggcaatc tgaggccagg acagatgttg ccccacccac 1800 tggagatggt gctgagggag gtgggtgggg ccttctggga aggtgagtgg agaggggcac 1860 ctgccccccg ccctccccat cccctactcc cactgctcag cgcgggccat tgcaagggtg 1920 ccacacaatg tcttgtccac cctgggacac ttctgagtat gaagcgggat gctattaaaa 1980 actacatggg gaaacaggtg caaaaaaaaa a 2011 159 480 DNA Homo sapiens modified_base (440) a, c, g, t, unknown, or other 159 cccacgcgtc cgaaaagaaa agaaaaaaga aaatggcctc atcttgtttc agcctcagtt 60 ttcctcccct cagtctggct gggagcttag ctctttgggg tcattgctgt gtcaggctgg 120 gttgttcctt ttggtctgtt tctgccatgg cccagcgcct tccctctcag aatacataca 180 atccccccct ctgctgggcg tggtgactca tgtctataat cccagctctt tgggaggcca 240 gggcgggtgg atcacttgag cctaggagtt cgaaaccagc ctgagcaaca tggtgaaagc 300 ccatctctac gaaaaatgca aaagttagcc aggcatggtg gtgcacgtct gtagacccag 360 ctacttggga ggctgaggca ggaggatcct tgagcccagg aggcagaagc tgcagtgagc 420 tgtgatcgca ccactgctcn tcagcctggc gacagagcga gattccctca aaaaaaaaaa 480 160 542 DNA Homo sapiens misc_feature Incyte Clone No 1852391 160 ttgaatcaac ataatgtatg tgaaagggct tagtccatga ttgggtgctt aatatgcccg 60 tgttgctggg gtgagccaaa gggatgaagt tggcagtgct tgctctgtcg tggagcagtc 120 cccacgtggg aaggccagcg ggaaaccagg cctgctgaag tctccagcgc tggaagcctc 180 acgggggtta ggaaggagcc ttgggagcag ctcctcagag cacagttgta cctcaattgt 240 ggattttaga tgtttctgct tctcaatgtt ctctcttttt tcctgcctgc ttgcctgcct 300 tttggacctc ttgctgtcta gggtggcaga tgaagctttc tacaaacaac ccttcgctga 360 cgtgattggt tatgtgtatg ttgcaaaact aattcctttt tctacatctg attctttcta 420 cttttgttta gagttaatgc tccttttatg tcaccagttg ctttgctttt taaattattt 480 caaattggca ctttgggggc tgcctaagaa ttgataagcg gggtatgatc tgttgatgaa 540 tc 542 161 1066 DNA Homo sapiens misc_feature Incyte Clone No 1854555 161 ttaggctttc tgtatttgtc tgaatgcttt cacgggagtg tgtcgcactg gagcacagag 60 gacactcgat cgtgcggcgc gcagggcggg gggccgccgc tgcctccccg cgggatggct 120 ggcactgtgc tcggagtcgg tgcgggcgtg ttcatcttag ccctgctctg ggtggcagtg 180 ctgctgctgt gtgtgctgct gtccagagcc tccggggcgg cgaggttctc tgtcattttt 240 ttattcttcg gtgctgtgat catcacatca gttctgttgc ttttcccgcg agctggtgaa 300 ttcccagccc cagaagtgga agttaagatt gtggatgact ttttcattgg ccgctatgtc 360 ctgctggctt tccttagtgc catcttcctt ggaggcctct tcttggtttt aatccattat 420 gttctggagc cgatctatgc caaaccactg cactcctact gaccactctt caggaaaacg 480 aaaacctgtt ctctccttca ttgtgatgac attgatgagc aggaaggcac tattcagagc 540 cttgttttga cagccctcat gccttaaggt tagaggagta tctgtccatc actaagacaa 600 atctctggag tcctggcttc cagaaacagg attgccaaat tgtccctgtg gggctagatt 660 cttaccagct taagaaggat attgctatct tcttagtacc cgtaccttag gatttccaac 720 tgttttgaaa gggaaatagt aacagtgatc tgcttagagt ggattttcac tcaagtcctt 780 agtaagtgga ttttggggaa aaaagcacat gggcttctgg ttctttttga taatatataa 840 aattattcat tatgaggttg cagttgtttg caaaggagag gcactcaaat ttgaaaggtt 900 attttaatgt gataatttgg aagacttact cagatgttgg tcattgacca ctctgtgcat 960 atatttctgc agagctctgt gaaggcaatg agtgtcactt ccctctgctc taataaagca 1020 ataaataata gctaaagggc tgactttcac ttcgaaaaaa aaaaaa 1066 162 1173 DNA Homo sapiens misc_feature Incyte Clone No 1855755 162 gtctcgctcc tgcccagccc gggcggctgc ccttgggtgc tcccttccct gcccgacacc 60 cagaccgacc ttgaccgccc acctggcagg agcaggacag gacggccgga cgcggccatg 120 gccgagctcc cggggccctt tctctgcggg gccctgctag gcttcctgtg cctgagtggg 180 ctggccgtgg aggtgaaggt acccacagag ccgctgagca cgcccctggg gaagacagcc 240 gagctgacct gcacctacag cacgtcggtg ggagacagct tcgccctgga gtggagcttt 300 gtgcagcctg ggaaacccat ctctgagtcc catccaatcc tgtacttcac caatggccat 360 ctgtatccaa ctggttctaa gtcaaagcgg gtcagcctgc ttcagaaccc ccccacagtg 420 ggggtggcca cactgaaact gactgacgtc cacccctcag atactggaac ctacctctgc 480 caagtcaaca acccaccaga tttctacacc aatgggttgg ggctaatcaa ccttactgtg 540 ctggttcccc ccagtaatcc cttatgcagt cagagtggac aaacctctgt gggaggctct 600 actgcactga gatgcagctc ttccgagggg gctcctaagc cagtgtacaa ctgggtgcgt 660 cttggaactt ttcctacacc ttctcctggc agcatggttc aagatgaggt gtctggccag 720 ctcattctca ccaacctctc cctgacctcc tcgggcacct accgctgtgt ggccaccaac 780 cagatgggca gtgcatcctg tgagctgacc ctctctgtga ccgaaccctc ccaaggccga 840 gtggccggag ctctgattgg ggtgctcctg ggcgtgctgt tgctgtcagt tgctgcgttc 900 tgcctggtca ggttccagaa agagaggggg aagaagccca aggagacata tgggggtagt 960 gaccttcggg aggatgccat cgctcctggg atctctgagc acacttgtat gagggctgat 1020 tctagcaagg ggttcctgga aagaccctcg tctgccagca ccgtgacgac caccaagtcc 1080 aagctcccta tggtcgtgtg acttctcccg atccctgagg gcggtgaggg ggaatatcaa 1140 taattaaagt ctgtgggtac caaaaaaaaa aaa 1173 163 890 DNA Homo sapiens misc_feature Incyte Clone No 1861434 163 ctcgagccgg agagatcctc taccgcagtc gtttgaggag gcggaactga agttttttct 60 taattatcat gtgacgggtt ctggatttaa tggggggaaa agggcggaaa aggacaagga 120 tccaaactgg cgaatttgct gatcttcgcg tccctctccg ctttccggcc ggcagcgctg 180 ccagggtata tttccttttt tccgatcctg caacagcctc tttaaactgt ttaaatgaga 240 atgtccttgg ctcagagagt actactcacc tggcttttca cactactctt cttgatcatg 300 ttggtgttga aactggatga gaaagcacct tggaactggt tcctcatatt cattccagtc 360 tggatatttg atactatcct tcttgtcctg ctgattgtga aaatggctgg gcggtgtaag 420 tctggctttg accctcgaca tggatcacac aatattaaaa aaaaagcctg gtacctcatt 480 gcaatgttac ttaaattagc cttctgcctc gcactctgtg ctaaactgga acagtttact 540 accatgaatc tatcctatgt cttcattcct ttatgggcct tgctggctgg ggctttaaca 600 gaactcggat ataatgtctt ttttgtgaga gactgacttc taagtacatc atctcctttc 660 tattgctgtt caacaagtta ccattaaagt gttctgaatc tgtcaagctt caagaatacc 720 agagaactga gggaaaatac caaatgtagt tttatactac ttccataaaa caggattggt 780 gaatcacgga cttctagtca acctacagct taattattca gcatttgagt tattgagatc 840 cttattatct ctatgtaaat aaagtttgtt ttggacctca aaaaaaaaaa 890 164 806 DNA Homo sapiens misc_feature Incyte Clone No 1872334 164 tgcatcagtg cccaggcaag cccaggagtt gacatttctc tgcccagcca tgggcctcac 60 cctgctcttg ctgctgctcc tgggactaga aggtcagggc atagttggca gcctccctga 120 ggtgctgcag gcacccgtgg gaagctccat tctggtgcag tgccactaca ggctccagga 180 tgtcaaagct cagaaggtgt ggtgccggtt cttgccggag gggtgccagc ccctggtgtc 240 ctcagctgtg gatcgcagag ctccagcggg caggcgtacg tttctcacag acctgggtgg 300 gggcctgctg caggtggaaa tggttaccct gcaggaagag gatgctggcg agtatggctg 360 catggtggat ggggccaggg ggccccagat tttgcacaga gtctctctga acatactgcc 420 cccaggtgag ttatcctagg ccagctacca ccccttagac ctaccctccc cacccccgcc 480 tattgccagg gctcatgggt tcttgaggag tgggggcccc tggggaggag gcattccaag 540 gagatatcct cttgacagct ctgcagggag cggaaaccaa actgggtggg aagtctgaga 600 taaatcagct gaaaaccatc cctttccccc ttccacacta ctgcgcttcc ccacaggaag 660 gcatgtcctt cccactccag ggacttggcc tcttcttcca gcattttcaa catacttgat 720 gctaacttat tttttaatta gaaatatttt aaacaatgtt gaatctgagt gtataaaaca 780 gaataatttt tgtagctcca gtgttt 806 165 1923 DNA Homo sapiens misc_feature Incyte Clone No 1877230 165 tggccggcaa gcagggctgc agtcacgggg cggcgcggag ggccccagcc cagtcagggg 60 tgtggccgcc gccaccgtaa ggctaggccg cgagcttagt cctgggagcc gcctccgtcg 120 ccgccgtcag agccgcccta tcagattatc ttaacaagaa aaccaactgg aaaaaaaaat 180 gaaattcctt atcttcgcat ttttcggtgg tgttcacctt ttatccctgt gctctgggaa 240 agctatatgc aagaatggca tctctaagag gacttttgaa gaaataaaag aagaaatagc 300 cagctgtgga gatgttgcta aagcaatcat caacctagct gtttatggta aagcccagaa 360 cagatcctat gagcgattgg cacttctggt tgatactgtt ggacccagac tgagtggctc 420 caagaaccta gaaaaagcca tccaaattat gtaccaaaac ctgcagcaag atgggctgga 480 gaaagttcac ctggagccag tgagaatacc ccactgggag aggggagaag aatcagctgt 540 gatgctggag ccaagaattc ataagatagc catcctgggt cttggcagca gcattgggac 600 tcctccagaa ggcattacag cagaagttct ggtggtgacc tctttcgatg aactgcagag 660 aagggcctca gaagcaagag ggaagattgt tgtttataac caaccttaca tcaactactc 720 aaggacggtg caataccgaa cgcagggggc ggtggaagct gccaaggttg gggctttggc 780 atctctcatt cgatccgtgg cctccttctc catctacagt cctcacacag gtattcagga 840 ataccaggat ggcgtgccca agattccaac agcctgtatt acggtggaag atgcagaaat 900 gatgtcaaga atggcttctc atgggatcaa aattgtcatt cagctaaaga tgggggcaaa 960 gacctaccca gatactgatt ccttcaacac tgtagcagag atcactggga gcaaatatcc 1020 agaacaggtt gtactggtca gtggacatct ggacagctgg gatgttgggc agggtgccat 1080 ggatgatggc ggtggagcct ttatatcatg ggaagcactc tcacttatta aagatcttgg 1140 gctgcgtcca aagaggactc tgcggctggt gctctggact gcagaagaac aaggtggagt 1200 tggtgccttc cagtattatc agttacacaa ggtaaatatt tccaactaca gtctggtgat 1260 ggagtctgac gcaggaacct tcttacccac tgggctgcaa ttcactggca gtgaaaaggc 1320 cagggccatc atggaggagg ttatgagcct gctgcagccc ctcaatatca ctcaggtcct 1380 gagccatgga gaagggacag acatcaactt ttggatccaa gctggagtgc ctggagccag 1440 tctacttgat gacttataca agtatttctt cttccatcac tcccacggag acaccatgac 1500 tgtcatggat ccaaagcaga tgaatgttgc tgctgctgtt tgggctgttg tttcttatgt 1560 tgttgcagac atggaagaaa tgctgcctag gtcctagaaa cagtaagaaa gaaacgtttt 1620 catgcttctg gccaggaatc ctgggtctgc aactttggaa aactcctctt cacataacaa 1680 tttcatccaa ttcatcttca aagcacaact ctatttcatg ctttctgtta ttatctttct 1740 tgatactttc caaattctct gattctagaa aaaggaatca ttctcccctc cctcccacca 1800 catagaatca acatatggta gggattacag tgggggcatt tctttatatc acctcttaaa 1860 aacattgttt ccactttaaa agtaaacact taataaattt ttggaagatc aaaaaaaaaa 1920 aaa 1923 166 518 DNA Homo sapiens misc_feature Incyte Clone No 1877885 166 ttgacaccag cagggtgaca tccgctattg ctacttctct gctcccccac agttcctctg 60 gacttctctg gaccacagtc ctctgccaga cccctgccag accccagtcc accatgatcc 120 atctgggtca catcctcttc ctgcttttgc tcccagtggc tgcagctcag acgactccag 180 gagagagatc atcactccct gccttttacc ctggcacttc aggctcttgt tccggatgtg 240 ggtccctctc tctgccgctc ctggcaggcc tcgtggctgc tgatgcggtg gcatcgctgc 300 tcatcgtggg ggcggtgttc ctgtgcgcac gcccacgccg cagccccgcc caagaagatg 360 gcaaagtcta catcaacatg ccaggcaggg gctgaccctc ctgcagcttg gacctttgac 420 ttctgaccct ctcatcctgg atggtgtgtg gtggcacagg aacccccgcc ccaacttttg 480 gattgtaata aaacaattga aacaccaaaa aaaaaaaa 518 167 1631 DNA Homo sapiens misc_feature Incyte Clone No 1889269 167 gcgagctctc agcgggagcc gagacggtgc agggccggag aagcaccttc actcccagcc 60

tgcgccccga tgctgcgcgt tctgtgcctc ctgcgcccct ggaggcccct tcgggcccgc 120 ggctgcgctt ccgacggggc ggccgggggc tcagagatcc aagtgcgcgc cctggcgggt 180 ccggaccaag gctgtaggtt ccatgaggac aggccttgag tctgtcctgg tctctggaat 240 cacggtgtct agtagaggcc agcacacagc aaatatataa atgtacaaat gagtgaatga 300 agagaatctg attggcctta aggaacttac gcacttaaaa taattgggca gaagagaagc 360 agtgaaggag tgcagaggca tcacctgaaa gtttacaagt ccttccactt tctctctgag 420 gcagaaagag caagggtttt tctctccatt ttatggttgg gaaaattgag gcctgcctga 480 gtgtgtgact tgtggcaagt cactctggtc atctagggca gaggctcccc agatcccagg 540 cctcctgcct ccagtcccca gcccgcagcc caggattagg cagagccagc tgctttcccg 600 tggctgccct gactccttac agggatcact gagattctga tgaacagacc ttctgcccgc 660 aatgccttgg ggaatgtctt cgtcagtgag ctgctggaaa ctctggccca gctgcgggag 720 gaccggcaag tgcgtgtcct gctcttcaga agtggagtga agggcgtgtt ctgtgcaggt 780 gcagacctga aggagcggga acagatgagt gaagcagagg tgggggtgtt tgtccagcga 840 ctccggggcc tgatgaatga catcggtgag gatctgggtg tagggtggag gagggggttt 900 gggggtccct gccgatgaca gtcccgctac ccccaccagc atctaaggag agtcttcttt 960 ctgtttggag ttctgtgata agacagatga ctcacccagg gggatggagg aggatgaccg 1020 agggcagttc tctcagagag ggagttctgg ctcttcagct tttgtgtccc gccccaccct 1080 cagggttcaa gcctggccat tccaaagcag ttaagtttcc ccaagcatgc tttcaagttt 1140 tgacaattgc tgttaccttt gcctgagata ccccttcttg gttacttgaa cttttacttg 1200 tccttcaagc cctccagtac ctcctcctcc aggaagcctt cccaacccac cctctgagct 1260 ttttattgga gcactgatga tcctgggtca ataatgcctg atacacattt gtcttcccca 1320 tgagactgag ccccatggga acaaaggcta tgtctgattc attctgtgtt cccagttccc 1380 agcacccagc acagggcttg gcacaaagaa agggaggccc cagggaggcc agcggattag 1440 gcctgaacag ggatcatcca gcccatcctc ccattcctct tccctggctg attctgtaac 1500 tttccctaaa gggaaaattg gcttctgaga taacctggct gcgggaagca gaggttgtcg 1560 tgagcagaga ttgtgccatt gcactccagc ctgggcaaca acagcgagac tccatctcaa 1620 aaaaaaaaaa a 1631 168 1548 DNA Homo sapiens misc_feature Incyte Clone No 1890243 168 atgcgctcca gcagcctgtt tgggaagcag cagtctctcc ttcagatact gtgggactca 60 tgctggagag gagccgccca cttccaggac ctgtgaataa gggctaatga tgagggttgg 120 tggggctctc tgtggggcaa aaaggtggta tgggggttag cactggctct cgttctcacc 180 ggagaaggaa gtgttctagt gtggtttagg aaacatgtgg ataaagggaa ccatgaaaat 240 gagaggagga aagacatcca gatcagctgt tttgcctgtt gctcagttga ctctgattgc 300 atcctgtttt cctaattccc agactgttct gggcacggaa gggaccctgg atgtggagtc 360 ttcccctttg gccctcctca ctggcctctg ggctagccca gagtccctta gcttgtacct 420 cgtaacactc ctgtgtgtct gtccagcctt gcagtcatgt caaggccagc aagctgatgt 480 gactcttgcc ccatgcgaga tatttatacc tcaaacactg gcctgtgagc cctttccaag 540 tcagtggaga gccctgaaag gagcctcact tgaatccagc tcagtgctct gggtggcccc 600 ctgcaggtgg cccctgaccc tgcgttgcag cagggtccac ctgtgagcag gcccgccctg 660 gggcctcttc ctggatgtgc cctctctgag ttctgtgctg tctcttggag gcagggccca 720 ggagaacaaa gtgtggaggc ctcggggagt ggcttttcca gctctcatgc cccgcagtgt 780 ggaacaaggc agaaaaggat cctaggaaat aagtctcttg gcggtccctg agagtcctgc 840 tgaaatccag ccagtgtttt ttgtggtatg agaacaggca aaaagagatg ccccgagata 900 gaaggggagc cttgtgtttc tttcctgcag acgtgagatg aacactggag tgggcagagg 960 tggcccagga ccatggcacc cttagagtgc agaagctggg gggagaggct gcttcgaagg 1020 gcaggactgg ggataatcag aacctgcctg tcacctcagg gcatcactga acaaacattt 1080 cctgatggga actcctgcgg cagagcccag gctggggaag tgaactaccc agggcagccc 1140 ctttgtggcc caggataatc aacactgttc tctctgtacc atgagctcct ccaggagatt 1200 atttaagtgt attgtatcat tggttttctg tgattgtcat aacattgttt ttgttattgt 1260 tggtgctgtt gttatttatt attgtaattt cagtttgcct ctactggaga atctcagcag 1320 gggtttcagc ctgactgtct ccctttctct accagactct acctctgaat gtgctgggaa 1380 cctcttggag cctgtcagga actcctcact gtttaaatat ttatttattg tgacaaatgg 1440 agctggtttc ctagatatga atgatgtttg caatccccat tttcctgttt cagcatgtta 1500 tattcttata aaataaaagc aaaagtcaaa tatgaaaaaa aaaaaaaa 1548 169 616 DNA Homo sapiens misc_feature Incyte Clone No 1900433 169 gccagctcag gtgagccctc gccaaggtga cctcgcagga cactggtgaa ggagcagtga 60 ggaacctgca gagtcacaca gttgctgacc aattgagctg tgagcctgga gcagatccgt 120 gggctgcaga cccccgcccc agtgcctctc cccctgcagc cctgcccctc gaactgtgac 180 atggagagag tgaccctggc ccttctccta ctggcaggcc tgactgcctt ggaagccaat 240 gacccatttg ccaataaaga cgatcccttc tactatgact ggaaaaacct gcagctgagc 300 ggactgatct gcggagggct cctggccatt gctgggatcg cggcagttct gagtggcaaa 360 tgcaaataca agagcagcca gaagcagcac agtcctgtac ctgagaaggc catcccactc 420 atcactccag gctctgccac tacttgctga gcacaggact ggcctccagg gatggcctga 480 agcctaacac tggcccccag cacctcctcc cctgggaggc cttatcctca aggaaggact 540 tctctccaag ggcaggctgt taggcccctt tctgatcagg aggcttcttt atgaattaaa 600 ctcgccccac cacccc 616 170 1981 DNA Homo sapiens misc_feature Incyte Clone No 1909441 170 cagaacttct ttttgacacc atagattctt ctgaggtcaa cgttgcaaaa agcatagcaa 60 agtttcttcg aaatgttaga tatcgttatc aaccactatt agaaagatgt aataacgtat 120 ttttaagtaa tgtggaccac cttgatttgg attccatcag taaaatactt agtgtataca 180 aatttctaca atttaatagt tttgaattta ttataatggc taaaaagaag ctaactgaaa 240 tgattcctct gtgtaatcat cctgctagct ttgtaaaatt gtttgtagca ttgggaccca 300 ttgcaggacc tgaagaaaag aaacaactta aatcaactat gttattgatg tcagaggacc 360 taactggcga gcaagccctg gcagtgttgg gagcaatggg agatatggaa agcagaaact 420 catgtctgat taaaagagtt acttcagttc tgcataaaca tttggatggc tataaaccat 480 tagagttgtt gaagataact caagaattga cttttctgca tttccaaagg aaggagtttt 540 ttgcgaaact tagagaatta ctgcttagtt atttgaaaaa tagtttcata ccaactgagg 600 tgtctgttct ggtccgtgct atttccctgc tcccttctcc tcacttggac gaagtgggga 660 tatcccgaat tgaagccgtt ttaccacagt gtgacctaaa taacctgagt agttttgcca 720 catctgtttt aagatggatt cagcatgatc acatgtattt ggataatatg actgcgaaac 780 aactgaaact acttcaaaaa ttagatcact atggtcgtca gagactacaa cacagcaaca 840 gtttggatct gttacggaag gaacttaaat ctctcaaagg aaacacgttt cctgagtcac 900 ttcttgaaga aatgattgct actttacagc atttcatgga tgatattaat tacataaatg 960 ttggggagat tgcatctttt atttctagta ctgattacct cagtactttg ctactagata 1020 ggatagcctc agtggctgtt cagcagattg aaaagatcca tccttttaca atccctgcta 1080 ttattcgtcc attcagcgta ttgaactatg atccacctca aagggatgaa tttttgggaa 1140 cttgcgtgca acatcttaat tcttacttag gtatattgga tccttttata ttagtgtttc 1200 ttggtttctc tttggccaca cttgaatatt ttccagaaga tctgctaaag gcaattttta 1260 acatcaaatt cttagctaga ttggattctc aacttgaaat tttatctcca tctcgaagtg 1320 caagagtcca gtttcatctt atggagttaa atagatcagt ctgcttggaa tgccctgagt 1380 ttcagattcc atggtttcat gaccgcttct gtcaacaata taataaaggt attggtggca 1440 tggatggaac acaacagcag atttttaaaa tgttagcaga ggtactagga ggaatcaatt 1500 gtgtaaaagc ctcggttctt acgccttatt accacaaagt agattttgag tgtatcttgg 1560 ataaaagaaa aaaacctctt ccgtatggaa gccataatat agcattggga caactaccag 1620 aaatgccctg ggaatcaaat atcgaaatag ttggatcaag gctgccacca ggggctgaaa 1680 ggattgcttt ggaatttttg gattcaaaag cactttgtag aaatatccct cacatgaaag 1740 gaaaatctgc tatgaaaaaa cgacatttgg aaattctggg gtatcgtgta attcagattt 1800 cccagtttga atggaactct atggcactgt caacaaagga tgctcggatg gactacctga 1860 gagaatgtat atttggagaa gtcaagtcat gtttgtagtt tttatttaaa atgaatgtta 1920 tcgtgtgtta catttggacc tattttaata aagtggcctg tctcaattaa aaaaaaaaaa 1980 g 1981 171 1492 DNA Homo sapiens misc_feature Incyte Clone No 1932226 171 cttctgggtg aggagtttga gcttggctgg gtccagggcc cagcactgac tcccgtccct 60 gaggaggagg aagaagagga agagggggct ccgattggga cccctaggga tcctggagat 120 ggttgtcctt cccccgacat ccctcctgaa ccccctccaa cacacctgag gccctgccct 180 gccagccagc tccctggact cctgtcccat ggcctcctgg ccggcctctc ctttgcagtg 240 gggtcctcct ctggcctcct gcccctcctg ctgctgctgc tgcttccatt gctggcagcc 300 cagggtgggg gtggcctgca ggcagcgctg ctggcccttg aggtggggct ggtgggtctg 360 ggggcctcct acctgctcct ttgtacagcc ctgcacctgc cctccagtct tttcctactc 420 ctggcccagg gtaccgcact gggggccgtc ctgggcctga gctggcgccg aggcctcatg 480 ggtgttcccc tgggccttgg agctgcctgg ctcttagctt ggccaggcct agctctacct 540 ctggtggcta tggcagcggg gggcagatgg gtgcggcagc agggcccccg ggtgcgccgg 600 ggcatatctc gactctggtt gcgggttctg ctgcgcctgt cacccatggc cttccgggcc 660 ctgcagggct gtggggctgt gggggaccgg ggtctgtttg cactgtaccc caaaaccaac 720 aaggatggct tccgcagccg cctgcccgtc cctgggcccc ggcggcgtaa tccccgcacc 780 acccaacacc cattagctct gttggcaagg gtctgggtcc tgtgcaaggg ctggaactgg 840 cgtctggcac gggccagcca gggtttagca tcccacttgc ccccgtgggc catccacaca 900 ctggccagct ggggcctgct tcggggtgaa cggcccaccc gaatcccccg gctactacca 960 cgcagccagc gccagctagg gccccctgcc tcccgccagc cactgccagg gactctagcc 1020 gggcggaggt cacgcacccg ccagtcccgg gccctgcccc cctggaggta gctgactcca 1080 gcccttccag cccaaatcta gagcattgag cactttatct cccacgactc agtgaagttt 1140 ctccagtccc tagtcctctc ttttcaccca ccttcctcag tttgctcact taccccaggc 1200 ccagcccttc ggacctctag acaggcagcc tcctcagctg tggagtccag cagtcactct 1260 gtgttctcct ggcgctcctc ccctaagtta ttgctgttcg cccgctgtgt gtgctcatcc 1320 tcaccctcat tgactcaggc ctggggccag gggtggtgga gggtgggaag agtcatgttt 1380 tttttctcct ctttgatttt gtttttctgt ctcccttcca acctgtcccc ttccccccac 1440 caaaaaaaga aaaagacaaa cacaaataaa atatctgagc ggaaaaaaaa aa 1492 172 1613 DNA Homo sapiens misc_feature Incyte Clone No 1932647 172 ctcggaattc ggctcgagac gggtcatgag cgcggtatta ctgctggccc tcctggggtt 60 catcctccca ctgccaggag tgcaggcgct gctctgccag tttgggacag ttcagcatgt 120 gtggaaggtg tccgacctac cccggcaatg gacccctaag aacaccagct gcgacagcgg 180 cttggggtgc caggacacgt tgatgctcat tgagagcgga ccccaagtga gcctggtgct 240 ctccaagggc tgcacggagg ccaaggacca ggagccccgc gtcactgagc accggatggg 300 ccccggcctc tccctgatct cctacacctt cgtgtgccgc caggaggact tctgcaacaa 360 cctcgttaac tccctcccgc tttgggcccc acagccccca gcagacccag gatccttgag 420 gtgcccagtc tgcttgtcta tggaaggctg tctggagggg acaacagaag agatctgccc 480 caaggggacc acacactgtt atgatggcct cctcaggctc aggggaggag gcatcttctc 540 caatctgaga gtccagggat gcatgcccca gccaggttgc aacctgctca atgggacaca 600 ggaaattggg cccgtgggta tgactgagaa ctgcaatagg aaagattttc tgacctgtca 660 tcgggggacc accattatga cacacggaaa cttggctcaa gaacccactg attggaccac 720 atcgaatacc gagatgtgcg aggtggggca ggtgtgtcag gagacgctgc tgctcataga 780 tgtaggactc acatcaaccc tggtggggac aaaaggctgc agcactgttg gggctcaaaa 840 ttcccagaag accaccatcc actcagcccc tcctggggtg cttgtggcct cctataccca 900 cttctgctcc tcggacctgt gcaatagtgc cagcagcagc agcgttctgc tgaactccct 960 ccctcctcaa gctgcccctg tcccaggaga ccggcagtgt cctacctgtg tgcagcccct 1020 tggaacctgt tcaagtggct ccccccgaat gacctgcccc aggggcgcca ctcattgtta 1080 tgatgggtac attcatctct caggaggtgg gctgtccacc aaaatgagca ttcagggctg 1140 cgtggcccaa ccttccagct tcttgttgaa ccacaccaga caaatcggga tcttctctgc 1200 gcgtgagaag cgtgatgtgc agcctcctgc ctctcagcat gagggaggtg gggctgaggg 1260 cctggagtct ctcacttggg gggtggggct ggcactggcc ccagcgctgt ggtggggagt 1320 ggtttgccct tcctgctaac tctattaccc ccacgattct tcaccgctgc tgaccaccca 1380 cactcaacct ccctctgacc tcataaccta atggccttgg acaccagatt ctttcccatt 1440 ctgtccatga atcatcttcc ccacacacaa tcattcatat ctattcacct aacagcaaca 1500 ctggggagag cctggagcat ccggacttgc cctatgggag aggggacgct ggaggagtgg 1560 ctgcatgtat ctgataatac agaccctgtc ctttctccca aaaaaaaaaa aaa 1613 173 1622 DNA Homo sapiens misc_feature Incyte Clone No 2124245 173 tgtcgcgccc gctggccggc tccgccctca cctcccggcc gcggctgccc tctgcccggg 60 ttgtccaaga tggagggcgc tccaccgggg tcgctcgccc tccggctcct gctgttcgtg 120 gcgctacccg cctccggctg gctgacgacg ggcgcccccg agccgccgcc gctgtccgga 180 gccccacagg acggcatcag aattaatgta actacactga aagatgatgg ggacatatct 240 aaacagcagg ttgttcttaa cataacctat gagagtggac aggtgtatgt aaatgactta 300 cctgtaaata gtggtgtaac ccgaataagc tgtcagactt tgatagtgaa gaatgaaaat 360 cttgaaaatt tggaggaaaa agaatatttt ggaattgtca gtgtaaggat tttagttcat 420 gagtggccta tgacatctgg ttccagtttg caactaattg tcattcaaga agaggtagta 480 gagattgatg gaaaacaagt tcagcaaaag gatgtcactg aaattgatat tttagttaag 540 aaccggggag tactcagaca ttcaaactat accctccctt tggaagaaag catgctctac 600 tctatttctc gagacagtga cattttattt acccttccta acctctccaa aaaagaaagt 660 gttagttcac tgcaaaccac tagccagtat cttatcagga atgtggaaac cactgtagat 720 gaagatgttt tacctggcaa gttacctgaa actcctctca gagcagagcc gccatcttca 780 tataaggtaa tgtgtcagtg gatggaaaag tttagaaaag atctgtgtag gttctggagc 840 aacgttttcc cagtattctt tcagtttttg aacatcatgg tggttggaat tacaggagca 900 gctgtggtaa taaccatctt aaaggtgttt ttcccagttt ctgaatacaa aggaattctt 960 cagttggata aagtggacgt catacctgtg acagctatca acttatatcc agatggtcca 1020 gagaaaagag ctgaaaacct tgaagataaa acatgtattt aaaacgccat ctcatatcat 1080 ggactccgaa gtagcctgtt gcctccaaat ttgccacttg aatataattt tctttaaatc 1140 gttaagaatc agtttataca ctagagaaat tgctaaactc taagactgcc tgaaaattga 1200 cctttacagt gccaagttaa agtttacctt attctcggcc gggtgcagtg gctcatgcct 1260 gtaatcccag gactttggga ggccaatgcg ggcggatcac gaggtcagat caagaccatc 1320 ctgccaacat ggtgaaaccc tgtctctact aaaaaaaata aaaaaattag ctgggtgtgg 1380 cggtgcacgc ctgtagtccc agctacttgg gaggctgagg caggagaatt gcttgaaccc 1440 gggaggcgga ggctgcagtg agccaggatc acgccactgc actccagcct gggtgacaga 1500 gcgagactct gtttcaaaaa aaaaaaagtt gaccttattc tctaaaaggg ctggctattc 1560 atatgatgaa ttgttaagga aaacttaaag tggacaagaa caggatgtga agagaggtga 1620 tg 1622 174 1320 DNA Homo sapiens misc_feature Incyte Clone No 2132626 174 gcgtgaccca gctgcggccg gccagccatg gagactggag cgctgcggcg cccgcaactt 60 ctcccgttgc tgctgctgct ctgcggtggg tgtcccagag caggcggctg caacgagaca 120 ggcatgttgg agaggctgcc cctgtgtggg aaggctttcg cagacatgat gggcaaggtg 180 gacgtctgga agtggtgcaa cctgtccgag ttcatcgtgt actatgagag tttcaccaac 240 tgcaccgaga tggaggccaa tgtcgtgggc tgctactggc ccaaccccct ggcccagggc 300 ttcatcaccg gcatccacag gcagttcttc tccaactgca ccgtggacag ggtccacttg 360 gaggaccccc cagacgaggt tctcatcccg ctgatcgtta tacccgtcgt tctgactgtc 420 gccatggctg gcctggtggt gtggcgcagc aaacgcaccg acacgctgct gtgagggtcc 480 cggtgagatg gagtgggtca cacctggcaa gctggaagaa agttccctgg ggatgggaga 540 gcgggtgggt gctgccaatc tccagctact gtggccacac cccacctggt catgggcaga 600 cccctccctt cctgggctga cctgctccct cgaggccagc ctgctccctg gctgaggctc 660 aggctatccg cccaagctct ttgctcattc tagggccagt ggaggaaaat gtgataaggc 720 cagagcttgt gtgctgggca cagaaatcac ctgctgcatc ctgtgctccg caggctgggc 780 cggagcctct gcccgcaggt ttctatgctg tttcttagca cagaatccag cctagcctta 840 gccgcagtct aggccctgct tggactagga ctccttgctt gaccccatct ctggttcctg 900 ccctggctcc tgcaccagcc ccagctcctg cctacatcca ggcagaaaga taggcagggg 960 ctcttggaag acgttccgtg ctgtgacctc cgagccctcc tggtgggaag acagctggaa 1020 aggctgggag gagaagggag gggttggggg ttcccaggag ccatgcgtgg cctgcagagt 1080 ccattccatc atgatgctgt gcccgctatg ggctgtgtcc atgaccagag gctggagtgg 1140 gggtgtgtta gagcccctca ccgggacttg ctgtgcggat ggggcctggg cctccttcct 1200 acaggggctc ctctgtgggt gaggggccct ctggaatggc atcccatgag cttgtggcct 1260 ctatctgcta ccatctgtgt tttatctgag taaagttacc ttacttctgg aaaaaaaaaa 1320 175 778 DNA Homo sapiens misc_feature Incyte Clone No 2280639 175 gcgctccctc gctggcggac ggctgggcgg cgggccgggc ccggggccgc ttggaatggc 60 gcctcctccg ccttcgcccc aactgcttct cctggcagcc ctcgcgaggc tcctgggtcc 120 cagcgaggtg atggctggac cggcggagga ggcgggagcc cattgtcccg agagcctgtg 180 gcctctgcct ccgcaggtgt caccaagagt gacctacaca cgagtgagcc cagggcaggc 240 tgaggatgtc accttcctct accacccctg tgcccatccc tggctgaagc tccagcttgc 300 cctcctggcc tatgcttgta tggctaaccc ttccctcacc cctgacttca gcctcacgca 360 ggatcggccc ctggtgctga ctgcatgggg gctggcgctg gagatggcct gggtagagcc 420 agcctgggct gcccactggc tgatgaggag gcggaggagg aagcagagga agaagaaggc 480 atggatctac tgtgaaagcc tttcagggcc tgctccctcc gagccaactc ccggtagagg 540 gaggctgtgc cgaagagggt gtgtgcaggc cctggctctg gcctttgctc tgcggactgg 600 cggccccctg gcacagaggt gacatctcaa gggcccaggc agccctcttc tagtggtgcc 660 aagacgcgga tgctgcgggc tgcacttggg tcccagccca ctcgctcagc cctgaggttt 720 ccctctgctt ccccagttag cttgatggcc aagcattcca tggcgggcta tcctggtt 778 176 1477 DNA Homo sapiens misc_feature Incyte Clone No 2292356 176 cctggcctgg ctcgctgggg cctggggagc tgcccgtgct tccagcccag tctccccctg 60 gctgctgccg gctgctggcc actcccacct cccaggcctg gcgtgaggcc cacagctgct 120 gttgcacaac cctggtcatt gtgtgatggg gggaggcctg ggcctggccc gcccctctgc 180 cagggcttca gacccctgcc cagccccagt atctgaagga accacagtgg agccaagccc 240 gcgatgtgga gaactcaggc ttcaggagac cctggccctg ctcctggcgg ctccgggtgg 300 ctttcagctc tctctgcaac ctgagctggg ggaggagcca ggcctcatgc ccagggctgg 360 gagtggggag cctggtgtgc acgcgtgccc aggcctgcac gtggaccgac caggggaggg 420 gcccagagct ctggctgggt cacccgcacc ccgcccccat ctcctccaga gccaccccag 480 gaaaagcccg gctggacgag gtcatggctg ccgctgccct tacaagcctg tccaccagcc 540 ctctccttct gggggcccca gttgcagcct tcagcccaga gcctggcctg gagccctgga 600 aggaggccct ggtgcggccc ccaggcagct acagcagcag cagcaacagt ggagactggg 660 gatgggacct ggccagtgac cagtcctctc cgtccacccc gtcaccccca ctgccccccg 720 aggcagccca ctttctgttt ggggagccca ccctgagaaa aaggaagagc ccggcccagg 780 tcatgttcca gtgtctgtgg aagagctgcg ggaaggtgct gagcacggcg tcggcgatgc 840 agagacacat ccgcctggtg cacctggggt gcggcggggc ctggggtgcg gcggggcctg 900 cgggttggct ggggttgtta ggcccggcca ggccacccct tcagctccca ctggctggct 960 gtgtctcccg caggaggcag gcagagcctg agcagagtga tggtgaggag gacttctact 1020 acacagagct ggatgttggt gtggacacgc tgaccgacgg gctgtccagc ctgactccag 1080 ttttccccga gggcttccat gccagcttgc cttcccccgc cctgaagctc cgcagacttg 1140 gtgggacccg ccaaccccgc cagtacccct gaggagcgcc gggatttagt cgaggtcctt 1200 tgtcggcgcc cacggggaat attaatagct cccggggggg gggaatactt ttgaaggcag 1260 ttgataaaaa attttccccc ccaaacagag ggaggcccga gaataaagaa cccctccggg 1320 aaaaaacaca gtgggagaca tagagttgat tctccctggg tgagaaaaat ttgggtaaag 1380 cggcttcaag caatttcgca gagcaagatt tgcgggcgcc ggaacccata aaggtggtaa 1440 aaccctgggg ggtccccaag agggggaagc tcaaccc 1477 177 682 DNA Homo sapiens misc_feature Incyte Clone No 2349310 177 tctgaatgtt ttggtgaata aatctgttct tcagcaaccc tacctgcttc tccaaactgc 60 ctaaagagat ccagtactga tgacgctgtt cttccatctt tactccctgg aaactaacca 120 cgttgtcttc tttccttcac caccacccag gagctcagag atctaagctg ctttccatct 180

tttctcccag ccccaggaca ctgactctgt acaggatggg gccgtcctct tgcctccttc 240 tcatcctaat cccccttctc cagctgatca acctggggag tactcagtgt tccttagact 300 ccgttatgga taagaagatc aaggatgttc tcaacagtct agagtacagt ccctctccta 360 taagcaagaa gctctcgtgt gctagtgtca aaagccaagg cagaccgtcc tcctgccctg 420 ctgggatggc tgtcactggc tgtgcttgtg gctatggctg tggttcgtgg gatgttcagc 480 tggaaaccac ctgccactgc cagtgcagtg tggtggactg gaccactgcc cgctgctgcc 540 acctgacctg acagggagga ggctgagaac tcagttttgt gaccatgaca gtaatgaaac 600 cagggtccca accaagaaat ctaactcaaa cgtcccactt catttgttcc attcctgatt 660 cttgggtaat aaagacaaac tt 682 178 1508 DNA Homo sapiens modified_base (11) a, c, g, t, unknown, or other 178 gcgtaacccc ntgatctggt gataaacgta ttacccgctt ttgagtgagc tgataccgct 60 cgccgcagcc gaacgaccga gcgcagcgag tcagtgagcg agaaagcgga agagcgccca 120 atacgcaaac cgcttctcnc cgcgcgttgg ccgattcatt aatcagcttg cacgacaggt 180 ttcccgactg gaaagcgggc agtgagcgca acgcaattaa tgtgagttag ctcactcccc 240 acccccttcc ccgcgggcct cggttcaaac gacccggtgg gtctacagcg gaagggaggg 300 agcgaaggta ggaggcaggg cttgcctcac tggccaccct cccaacccca agagcccagc 360 cccatggtcc ccgccgccgg cgcgctgctg tgggtcctgc tgctgaatct gggtccccgg 420 gcggcggggg cccaaggcct gacccagact ccgaccgaaa tgcagcgggt cagtttacgc 480 tttgggggcc ccatgacccg cagctaccgg agcaccgccc ggactggtct tccccggaag 540 acaaggataa tcctagagga cgagaatgat gccatggccg acgccgaccg cctggctgga 600 ccagcggctg ccgagctctt ggccgccacg gtgtccaccg gctttagccg gtcgtccgcc 660 attaacgagg aggatgggtc ttcagaagag ggggttgtga ttaatgccgg aaaggatagc 720 accagcagag agcttcccag tgcgactccc aatacagcgg ggagttccag cacgaggttt 780 atagccaata gtcaggagcc tgaaatcagg ctgacttcaa gcctgccgcg ctcccccggg 840 aggtctactg aggacctgcc aggctcgcag gccaccctga gccagtggtc cacacctggg 900 tctaccccga gccggtggcc gtcaccctca cccacagcca tgccatctcc tgaggatctg 960 cggctggtgc tgatgccctg gggcccgtgg cactgccact gcaagtcggg caccatgagc 1020 cggagccggt ctgggaagct gcacggcctt tccgggcgcc ttcgagttgg ggcgctgagc 1080 cagctccgca cggagcacaa gccttgcacc tatcaacaat gtccctgcaa ccgacttcgg 1140 gaagagtgcc ccctggacac aagtctctgt actgacacca actgtgcctc tcagagcacc 1200 accagtacca ggaccaccac tacccccttc cccaccatcc acctcagaag cagtcccagc 1260 ctgccacccg ccagcccctg cccagccctg gctttttgga aacgggtcag gattggcctg 1320 gaggatattt ggaatagcct ctcttcagtg ttcacagaga tgcaaccaat agacagaaac 1380 cagaggtaat ggccacttca tccacatgag gagatgtcag tatctcaacc tctcttgccc 1440 tttcaatcct agcacccact agatattttt agtacagaaa aacaaaactg gaaaacaaaa 1500 aaaaaaaa 1508 179 558 DNA Homo sapiens misc_feature Incyte Clone No 2457682 179 ggagaaagga tggccggcct ggcggcgcgg ttggtcctgc tagctggggc agcggcgctg 60 gcgagcggct cccagggcga ccgtgagccg gtgtaccgcg actgcgtact gcagtgcgaa 120 gagcagaact gctctggggg cgctctgaat cacttccgct cccgccagcc aatctacatg 180 agtctagcag gctggacctg tcgggacgac tgtaagtatg agtgtatgtg ggtcaccgtt 240 gggctctacc tccaggaagg tcacaaagtg cctcagttcc atggcaagtg gcccttctcc 300 cggttcctgt tctttcaaga gccggcatcg gccgtggcct cgtttctcaa tggcctggcc 360 agcctggtga tgctctgccg ctaccgcacc ttcgtgccag cctcctcccc catgtaccac 420 acctgtgtgg ccttcgcctg gctttctgga agatgacagc ctgtagctgc tgaaggaatc 480 agaggacaag ttcaggctgg actgaagacc cttggagcga gtcttcccca gttggggata 540 ctgcccccgc cctgctgg 558 180 502 DNA Homo sapiens misc_feature Incyte Clone No 2480426 180 cttggagtct gggaggagga aagcggagcc ggcagggagc gaaccaggac tggggtgacg 60 gcagggcagg gggcgcctgg ccggggagaa gcgcgggggc tggagcacca ccaactggag 120 ggtccggagt agcgagcgcc ccgaaggagg ccatcgggga gccgggaggg gggactgcga 180 gaggaccccg gcgtccgggc tcccggtgcc agcgctatga ggccactcct cgtcctgctg 240 ctcctgggcc tggcggccgg ctcgccccca ctggacgaca acaagatccc cagcctctgc 300 ccgggactgc cgggacctcg aggggacccc gggccgcgag gagaggcggg acccgcgggg 360 cccaccgggc tagccgggga gtgctcggtg cctccgcgat ccgccttcag cgccaagcgc 420 tccgagatcc gggtgcctcc gctgtctgac gcacccttgc cttcgaccgc gtgctggtga 480 acgagcaagg acattacgac gc 502 181 1659 DNA Homo sapiens misc_feature Incyte Clone No 2503743 181 gctgtgcggc ggggcaggca tgggagccgc gcgctctctc ccggcgccca cacctgtctg 60 agcggcgcac gagccgcggc ccgggcgggc tgctcggcgc ggaacagtgc tcggcatggc 120 agggattcca gggctcctct tccttctctt ctttctgctc tgtgctgttg ggcaagtgag 180 cccttacagt gccccctgga aacccacttg gcctgcatac cgcctccctg tcgtcttgcc 240 ccagtctacc ctcaatttag ccaagccaga ctttggagcc gaagccaaat tagaagtatc 300 ttcttcatgt ggaccccagt gtcataaggg aactccactg cccacttacg aagaggccaa 360 gcaatatctg tcttatgaaa cgctctatgc caatggcagc cgcacagaga cgcaggtggg 420 catctacatc ctcagcagta gtggagatgg ggcccaacac cgagactcag ggtcttcagg 480 aaagtctcga aggaagcggc agatttatgg ctatgacagc aggttcagca tttttgggaa 540 ggacttcctg ctcaactacc ctttctcaac atcagtgaag ttatccacgg gctgcaccgg 600 caccctggtg gcagagaagc atgtcctcac agctgcccac tgcatacacg atggaaaaac 660 ctatgtgaaa ggaacccaga agcttcgagt gggcttccta aagcccaagt ttaaagatgg 720 tggtcgaggg gccaacgact ccacttcagc catgcccgag cagatgaaat ttcagtggat 780 ccgggtgaaa cgcacccatg tgcccaaggg ttggatcaag ggcaatgcca atgacatcgg 840 catggattat gattatgccc tcctggaact caaaaagccc cacaagagaa aatttatgaa 900 gattggggtg agccctcctg ctaagcagct gccagggggc agaattcact tctctggtta 960 tgacaatgac cgaccaggca atttggtgta tcgcttctgt gacgtcaaag acgagaccta 1020 tgacttgctc taccagcaat gcgatgccca gccaggggcc agcgggtctg gggtctatgt 1080 gaggatgtgg aagagacagc agcagaagtg ggagcgaaaa attattggca ttttttcagg 1140 gcaccagtgg gtggacatga atggttcccc acaggatttc aacgtggctg tcagaatcac 1200 tcctctcaaa tatgcccaga tttgctattg gattaaagga aactacctgg attgtaggga 1260 ggggtgacac agtgttccct cctggcagca attaagggtc ttcatgttct tattttagga 1320 gaggccaaat tgttttttgt cattggcgtg cacacgtgtg tgtgtgtgtg tgtgtgtgtg 1380 taaggtgtct tataatcttt tacctatttc ttacaattgc aagatgactg gctttactat 1440 ttgaaaactg gtttgtgtat catatcatat atcatttaag cagtttgaag gcatactttt 1500 gcatagaaat aaaaaaaata ctgatttggg gcaatgagga atatttgaca attaagttaa 1560 tcttcacgtt tttgcaaact ttgattttta tttcatctga acttgtttca aagatttata 1620 ttaaatattt ggcatacaag agatatgaaa aaaaaaaaa 1659 182 2015 DNA Homo sapiens misc_feature Incyte Clone No 2537684 182 aaaaacaaag gcaatgcatt ggcaagcctc acagcacaga gtgaccgctg cctggcgttc 60 cccagcactc ggtgtggaaa ggcccctacc tgctgtaaga ttatgggtcc atgaaagcag 120 taagctggac acagaggtgt agtgtgcggg acagagggcc ttgcagatgc ctttctgttg 180 gtgttttagt gttaaaatac ggagagtatg gaactcttca cctccatttt ctcagcggct 240 gtgaagcagc ctcctagctt cggaagtacg gacactacgt cgcgttttca agcgtgtctg 300 ttctgcaggt aacagcatca agctgcacgt ggaagcatct cgcggttttc tagaaacagg 360 cattttctta tccctctccc gctccttttt ccacaaaggt gaatttcata aatgtaatac 420 tagtaaagtg aatgaattac tgagtttata cagaaattta ggtaacttct cctttagtct 480 caagagcgag tcttgctttt taatgggtgc cgtttatgtt gctgcccgcc ctgtgtgcct 540 ggctcctctg ggtgccttgg tgtctgctgg tggctggcag tgggcgcagc ggaggagagt 600 tgtgctgcag ctcatacggt gtgtctgtca tctcagtctg gagtaaatgc agtgtctgcc 660 ggtgtctgat gggttctgtc cctcgtattt tctttgcctt ctatcccatt gcctggctac 720 cgctgcctgg cagccaaggg tgttggtcgc gaagctggga gtggcctctg gtggagcctg 780 catcttgtct cgtctgcctc tgctttacat ttggtgtact ttcgggcgtg gtggcagtaa 840 aatgacaccg tgattgagct tgtcagcaga gctgaaagag aaagtagaag gatgtgcatt 900 gtttcttgta agatatcttg catgtatctg tgtattcaaa ttcaaacaga gatggtttgt 960 ccatttgtcc actgagaaat tataaactag ggacaagggg gaggaaaagt actgaaatac 1020 agtttatgaa gcaagtgtgt ctcgggctgt gcttgtccca ggagccccag cagcatctga 1080 actgaggctt cttcagtcct gcaggaacag gatcatctgt ctcagcggtg ggcagatgtt 1140 ttcatagaca gccagggagt aaacactgtt ggctctgtgg gctgtatggt ctctgccata 1200 aatagtacag agatgtggct gtgtctagta caacttttag acacagaaat ctgaatgaca 1260 tatattgttc tgtgtcaaga aacttagatt ttttttttaa ctatttaaaa acgtgaaacc 1320 tattcttagc tcacaggcca tggagaagct ggtggggacc agacccagct ccttagctgg 1380 ctgggctggg gagggggcag tgacagtggc agctgctact cactgctcag tgtggaaaac 1440 acaggacttg gcaatcacag cccgcagaac catcatgtgt ggcagaagcc tgagggatgc 1500 ggtttcttgc ccacgtgctc tgttcatttt ctgttgtttt tctgcactta aagaattcac 1560 atggaagcat gttttataaa atgaattacc agagaaacag agatgggccg agattctcag 1620 aaatggtccc atgtgaccaa gttctgctgt ttgggtgaca gtgctttgaa gatctccttt 1680 gaggatgtgc agtctttttt tttttttttt tttgagatgg agtttgttgc ccaggctgga 1740 gtgagtggca cagtctcggc tcactgcaac ctccacctcc tgggttcaag cagttctcgt 1800 gccgcagcct cccaagtagc tgggactaca ggcatgcgcc accacgccag gctaattttt 1860 gtatttttag tagagatggg gtttcaccat gtctcaaact cctgacctca ggcgatccac 1920 ccacctcagc gtcccaaagt gctggggata taggggtgac cacccgcacc tgcgccaaga 1980 gtgggctttt aattagggac aaatccaatg gaagg 2015 183 740 DNA Homo sapiens misc_feature Incyte Clone No 2593853 183 ctgctttcgt gaagacaaga tgaagttcac aattgtcttt gctggacttc ttggagtctt 60 tctagctcct gccctagcta actataatat caacgtcaat gatgacaaca acaatgctgg 120 aagtgggcag cagtcagtga gtgtcaacaa tgaacacaat gtggccaatg ttgacaataa 180 caacggatgg gactcctgga attccatctg ggattatgga aatggctttg ctgcaaccag 240 actctttcaa aagaagacat gcattgtgca caaaatgaac aaggaagtca tgccctccat 300 tcaatccctt gatgcactgg tcaaggaaaa gaagcttcag ggtaagggac caggaggacc 360 acctcccaag ggcctgatgt actcagtcaa cccaaacaaa gtcgatgacc tgagcaagtt 420 cggaaaaaac attgcaaaca tgtgtcgtgg gattccaaca tacatggctg aggagatgca 480 agaggcaagc ctgttttttt actcaggaac gtgctacacg accagtgtac tatggattgt 540 ggacatttcc ttctgtggag acacggtgga gaactaaaca attttttaaa gccactatgg 600 atttagtcat ctgaatatgc tgtgcagaaa aaatatgggc tccagtggtt tttaccatgt 660 cattctgaaa tttttctcta ctagttatgt ttgatttctt taagtttcaa taaaatcatt 720 tagcattgaa aaaaaaaaaa 740 184 748 DNA Homo sapiens misc_feature Incyte Clone No 2622354 184 ctgcaaccac ccagagccat ggctccccga ggctgcatcg tagctgtctt tgccattttc 60 tgcatctcca ggctcctctg ctcacacgga gccccagtgg cccccatgac tccttacctg 120 atgctgtgcc agccacacaa gagatgtggg gacaagttct acgaccccct gcagcactgt 180 tgctatgatg atgccgtcgt gcccttggcc aggacccaga cgtgtggaaa ctgcaccttc 240 agagtctgct ttgagcagtg ctgcccctgg accttcatgg tgaagctgat aaaccagaac 300 tgcgactcag cccggacctc ggatgacagg ctttgtcgca gtgtcagcta atggaacatc 360 aggggaacga tgactcctgg attctccttc ctgggtgggc ctggagaaag aggctggtgt 420 tacctgagat ctgggatgct gagtggctgt ttgggggcca gagaaacaca cactcaactg 480 cccacttcat tctgtgacct gtctgaggcc caccctgcag ctgccctgag gaggcccaca 540 ggtccccttc tagaattctg gacagcatga gatgcgtgtg ctgatggggg cccagggact 600 ctgaaccctc ctgatgaccc ctatggccaa catcaacccg gcaccacccc aaggctggct 660 gggaaccctt cacccttctg tgagattttc catcatctca agttctcttc tatccaggag 720 caaagcacag gatcataata aatttatg 748 185 648 DNA Homo sapiens misc_feature Incyte Clone No 2641377 185 cggctcgagg atccccaagt ctctgaccca ccttcctgcc tgctcctctc ctcccacatt 60 ggctcagatt ctttccccgc tgtctgtggg tccacactcc cagtggcacc tccaggagag 120 aatctgattg gctcagttcg ccagataact caactttccc attggctacc tttgggtcag 180 gtgatctcca ctagacctat cgcctatgcc tgatggtggg tcacatggtg caaatgttgc 240 ctgagagctt agtggattag ggatgtggct gggctcatgg ttgacgtccc tgctgctgag 300 cccttacggg tcaggctggg agaaggtacc atgttgtgtg actggtcatt tgaggtcttg 360 cagctgttgc ttgctgggct tggcaggtgt tcaaagtgac catttttctg aagggttttt 420 ttctgagtat tcctcagatg tactcccctg gggccgacgg tctttccttc cacagggcga 480 tgcttcccta cttgcttgtg aatgtttcct tcatctccag gttgtctggg gacaattctg 540 tcttttggag gcctgggcag gatttacaga gggctccatg ccagctcctt cctgccgggt 600 ccacttctgg tgtagggtaa acacctgcgc attcatgtcc tagtgttg 648 186 2110 DNA Homo sapiens modified_base (1932) a, c, g, t, unknown, or other 186 cggcggccat ctttactcag ggcacagagg gtctctgcgg ccgtagcggc cggggctgcg 60 gtagccactt tagatttggg caaggacttt agattcgggc tctgttctgt ttccgccgtc 120 ctgcttcctg ccgaggctgg cccaggcagc cgcgcttcga aggacgccgc cgggagctgc 180 ggacatgcgt ggagtggcag tgctaacggc tggtgtctcg cactgttggc ctgtgaaggt 240 acgtgaagct gaaagcctgg aatggctgga aaggggtcat caggcaggcg gcccctgctg 300 ctggggctgc tggtggccgt agccactgtc cacctggtca tctgtcccta caccaaagtg 360 gaggagagct tcaacctgca ggccacacat gacctgctct accactggca agacctggag 420 cagtacgacc atcttgagtt ccccggagtc gtccccagga cgttcctcgg gccagtggtg 480 atcgcagtgt tctccagccc cgcggtttac gtgctttcgc tgttagaaat gtccaagttt 540 tactctcagc taatagttag aggagtgctt ggactcggcg tgatttttgg actctggacg 600 ttacaaaagg aagtgagacg gcacttcggg gccatggtgg ccaccatgtt ctgctgggtg 660 acggccatgc agttccacct gatgttctac tgcacgcgga cactgcccaa tgtgctggcc 720 ctgcctgtag tcctgctggc cctcgcggcc tggctgcggc acgagtgggc ccgcttcatc 780 tggctgtcag ccttcgccat catcgtgttc agggtggagc tgtgcctgtt cctgggcctc 840 ctgctgctgc tggccttggg caaccgaaag gtttctgtag tcagagccct tcgccacgcc 900 gtcccggcag ggatcctctg tttaggactg acggttgctg tggactctta tttttggcgg 960 cagctcactt ggccggaagg aaaggtgctt tggtacaaca ctgtcctgaa caaaagctcc 1020 aactggggga cctccccgct gctgtggtac ttctactcag ccctgccccg cggcctgggc 1080 tgcagcctgc tcttcatccc cctgggcttg gtagacagaa ggacgcacgc gccgacggtg 1140 ctggcactgg gcttcatggc actctactcc ctcctgccac acaaggagct acgcttcatc 1200 atctatgcct tccccatgct caacatcacg gctgccagag gctgctccta cctgctgaat 1260 aactataaaa agtcttggct gtacaaagcg gggtctctgc ttgtgatcgg acacctcgtg 1320 gtgaatgccg cctactcagc cacggccctg tatgtgtccc atttcaacta cccaggtggc 1380 gtcgcaatgc agaggctgca ccagctggtg cccccccaga cagacgtcct tctgcacatt 1440 gacgtggcag ccgcccagac aggtgtgtct cggtttctcc aagtcaacag cgcctggagg 1500 tacgacaaga gggaggatgt gcagccgggg acaggcatgc tggcatacac acacatcctc 1560 atggaggcgg cccctgggct cctggccctc tacagggaca cacaccgggt cctggccagc 1620 gtcgtgggga ccacaggtgt gagtctgaac ctgacccaac tgcccccctt caacgtccac 1680 ctgcagacaa agctggtgct tctggagagg ctcccccggc cgtcctgagg gggaccaggc 1740 agccctcagc agccacaggc cttccaggag ctgttatcac taccagtttc tggcacaatt 1800 ccagcacaat tatgacaatt cagagaagca agtcaaagga ctggggcacc tgcctctgac 1860 agacaccaga ccaggtccag ggcctcctcc cacagcctca gctgggggct cttcagcaac 1920 caaagaacga anggggcccc aagttctttg tttgggcacc ccccggggta agcccacttg 1980 cccccaaggg tttgatgggg ttgggcccag cttccagggg ctttcccttg gccggggttt 2040 gacttgttcc ggccccagga ttcaagggtt ggcccaattt cccattgaac ttaaatttcc 2100 agggaaaggc 2110 187 773 DNA Homo sapiens misc_feature Incyte Clone No 2758485 187 cccggagccg gggagggagg gagcgaggtt cggacaccgg cggcggctgc ctggcctttc 60 catgagcccg cggcggaccc tcccgcgccc cctctcgctc tgcctctccc tctgcctctg 120 cctctgcctg gccgcggctc tgggaagtgc gcagtccggg tcgtgtaggg ataaaaagaa 180 ctgtaaggtg gtcttttccc agcaggaact gaggaagcgg ctaacacccc tgcagtacca 240 tgtcactcag gagaaaggga ccgaaagtgc ctttgaagga gaatacacac atcacaaaga 300 tcctggaata tataaatgtg ttgtttgtgg aactccattg tttaagtcag aaaccaaatt 360 tgactccggt tcaggttggc cttcattcca cgatgtgatc aattctgagg caatcacatt 420 cacagatgac ttttcctatg ggatgcacag ggtggaaaca agctgctctc agtgtggtgc 480 tcaccttggg cacatttttg atgatgggcc tcgtccaact gggaaaagat actgcataaa 540 ttcggctgcc ttgtctttta cacctgcgga tagcagtggc accgccgagg gaggcagtgg 600 ggtcgccagc ccggcccagg cagacaaagc ggactctgag agtaatggag agtgatggaa 660 acaaagtgta cttaatgcac agcttattaa aaagatcaaa attgttatcc taatagatat 720 attttttcaa aaactataag ggcagttttg tgctattgta atttttcctc ctt 773 188 714 DNA Homo sapiens misc_feature Incyte Clone No 2763296 188 gggagcctcc cacgctctcc agctcactcg gcaggcagcg gggaccaggg ctggcaggtt 60 aagcctctgg gggtggatcc tgaaaggtgg tccagccgcc tggccctgcg tgggaccctc 120 cacctggcag caggtggtga cttccaagag tgactccgtc ggaggaaaat gactccccag 180 tcgctgctgc agacgacact gttcctgctg agtctgctct tcctggtcca aggtgcccac 240 ggcaggggcc acagggaaga ctttcgcttc tgcagccagc ggaaccagac acacaggagc 300 agcctccact actactggtc catgcggctg caggcccggg gtggcccctc ccctctgaag 360 agcaactcag acagcgccag gctccccatc agctcgggca gcacctcgtc cagccgcatc 420 taggcctcca gcccacctgc ccatgtaatg aagcagagat gcggcctcgt cgcacactgc 480 ctgtagcccc cgaacccggc ccagccccag gccagtaagc cgcagacttt agaaagccca 540 acgaccatgg agagatgggc cgttgccatg gtggacggac tcccgggctg ggcttttgag 600 attggcttag gggctactcg gctctcactc agctcccacg ggactcaaga atgcggcgcc 660 atgctgcctt aggtactgtc cccacatctg tcccaaccca gctggaggcc tggt 714 189 609 DNA Homo sapiens misc_feature Incyte Clone No 2779436 189 cggccagggc gccgacagcc cgacctcacc aggagaacat gcagctcggc actgggctcc 60 tgctggccgc cgtcctgagc ctgcagctgg ctgcagccga agccatatgg tgtcaccagt 120 gcacgggctt cggagggtgc tcccatggat ccagatgcct gagggactcc acccactgtg 180 tcaccactgc cacccgggtc ctcagcaaca ccgaggattt gcctctggtc accaagatgt 240 gccacatagg ctgccccgat atccccagcc tgggcctggg cccctacgta tccatcgctt 300 gctgccagac cagcctctgc aaccatgact gacggctgcc ctcctccagg cccccggacg 360 ctcagccccc acagccccca cagcctggcg ccagggctca cggccgcccc tccctcgaga 420 ctggccagcc cacctctccc ggcctctgca gccaccgtcc agcaccgctt gtcctaggga 480 agtcctgcgt ggagtcttgc ctcaatctgc tgccgtccaa gcctggggcc catcgtgcct 540 gccgcccctt caggtcccga cctccccaca ataaaatgtg attggatcgt gtggtacaaa 600 aaaaaaaac 609 190 1088 DNA Homo sapiens misc_feature Incyte Clone No 2808528 190 tgtagaagac agcggcgttg ccatggcggc gtctctgggg caggtgttgg ctctggtgct 60 ggtggccgct ctgtggggtg gcacgcagcc gctgctgaag cgggcctccg ccggcctgca 120 gcgggttcat gagccgacct gggcccagca gttgctacag gagatgaaga ccctcttctt 180 gaatactgag tacctgatgc cctttctcct caaccagtgt ggatcccttc tctattacct 240 caccttggca tcgacagatc tgaccctggc tgtgcccatc tgtaactctc tggctatcat 300 cttcacactg attgttggga aggcccttgg agaagatatt ggtggaaaac gagcagttgc 360 tggcatggtg ctcaccgtga taggaatttc actctgcatc acaagctcag tgagtaagac 420 ccaggggcaa cagtctaccc tttgagtggg ccgaacccac ttccagctct gctgcctcca 480 ggaagcccct gggccatgaa gtgctggcag tgagcggatg gacctagcac ttcccctctc 540 tggccttagc ttcctcctct cttatgggga taacagctac ctcatggatc acaataagag 600 aacaagagtg aaagagtttt gtaaccttca agtgctgttc agctgcgggg atttagcaca 660 ggagactcta cgctcaccct cagcaacctt tctgccccag cagctctctt cctgctaaca 720 tctcaggctc ccagcccagc caccattact gtggcctgat

ctggactatc atggtggcag 780 gttccatgga ctgcagaact ccagctgcat ggaaagggcc agctgcagac tttgagccag 840 aaatgcaaac gggaggcctc tgggactcag tcagagcgct ttggctgaat gaggggtgga 900 accgagggaa gaaggtgcgt cggagtggca gatgcaggaa atgagctgtc tattagcctt 960 gcctgcccca cccatgaggt aggcagaaat cctcactgcc agcccctctt aaacaggtag 1020 agagctgtga gccccagccc cacctgactc cagcacacct ggcgagtagt agctgtcaat 1080 aaagctat 1088 191 1377 DNA Homo sapiens misc_feature Incyte Clone No 2809230 191 gcgggacttc ctgtgtcgta tttccaagga ctccaaagcg aggccgggga ctgaaggtgt 60 gggtgtcgag ccctctggca gagggttaac ctgggtcaaa tgcacggatt ctcacctcgt 120 acagttacgc tctcccgcgg cacgtccgcg aggacttgaa gtcctgagcg ctcaagtttg 180 tccgtaggtc gagagaaggc catggaggtg ccgccaccgg caccgcggag ctttctctgt 240 agagcattgt gcctatttcc ccgagtcttt gctgccgaag ctgtgactgc cgattcggaa 300 gtccttgagg agcgtcagaa gcggcttccc tacgtcccag agccctatta cccggaatct 360 ggatgggacc gcctccggga gctgtttggc aaagatgaac agcagagaat ttcaaaggac 420 cttgctaata tctgtaagac ggcagctaca gcaggcatca ttggctgggt gtatggggga 480 ataccagctt ttattcatgc taaacaacaa tacattgagc agagccaggc agaaatttat 540 cataaccggt ttgatgctgt gcaatctgca catcgtgctg ccacacgagg cttcattcgt 600 tatggctggc gctggggttg gagaactgca gtgtttgtca ctatattcaa cacagtgaac 660 actagtctga atgtataccg aaataaagat gccttaagcc attttgtaat tgcaggagct 720 gtcacgggaa gtctttttag gataaacgta ggcctgcgtg gcctggtggc tggtggcata 780 attggagcct tgctgggcac tcctgtagga ggcctgctga tggcatttca gaagtactct 840 ggtgagactg ttcaggaaag aaaacagaag gatcgaaagg cactccatga gctaaaactg 900 gaagagtgga aaggcagact acaagttact gagcacctcc ctgagaaaat tgaaagtagt 960 ttacaggaag atgaacctga gaatgatgct aagaaaattg aagcactgct aaaccttcct 1020 agaaaccctt cagtaataga taaacaagac aaggactgaa agtgctctga acttgaaact 1080 cactggagag ctgaagggag ctgccatgtc cgatgaatgc caacagacag gccactcttt 1140 ggtcagcctg ctgacaaatt taagtgctgg tacctgtggt ggcagtggct tgctcttgtc 1200 tttttctttt ctttttaact aagaatgggg ctgttgtact ctcactttac ttatccttaa 1260 atttaaatac atacttatgt ttgtattaat ctatcaatat atgcatacat gaatatatcc 1320 acccacctag attttaagca gtaaataaaa catttcgcaa aagattaaaa aaaaaaa 1377 192 985 DNA Homo sapiens misc_feature Incyte Clone No 2816821 192 gcgggcccgc gagtccgaga cctgtcccag gagctccagc tcacgtgacc tgtcactgcc 60 tcccgccgcc tcctgcccgc gccatgaccc agccggtgcc ccggctctcc gtgcccgccg 120 cgctggccct gggctcagcc gcactgggcg ccgccttcgc cactggcctc ttcctgggga 180 ggcggtgccc cccatggcga ggccggcgag agcagtgcct gcttcccccc gaggacagcc 240 gcctgtggca gtatcttctg agccgctcca tgcgggagca cccggcgctg cgaagcctga 300 ggctgctgac cctggagcag ccgcaggggg attctatgat gacctgcgag caggcccagc 360 tcttggccaa cctggcgcgg ctcatccagg ccaagaaggc gctggacctg ggcaccttca 420 cgggctactc cgccctggcc ctggccctgg cgctgcccgc ggacgggcgc gtggtgacct 480 gcgaggtgga cgcgcagccc ccggagctgg gacggcccct gtggaggcag gccgaggcgg 540 agcacaagat cgacctccgg ctgaagcccg ccttggagac cctggacgag ctgctggcgg 600 cgggcgaggc cggcaccttc gacgtggccg tggtggatgc ggacaaggag aactgctccg 660 cctactacga gcgctgcctg cagctgctgc gacccggagg catcctcgcc gtcctcagag 720 tcctgtggcg cgggaaggtg ctgcaacctc cgaaagggga cgtggcggcc gagtgtgtgc 780 gaaacctaaa cgaacgcatc cggcgggacg tcagggtcta catcagcctc ctgcccctgg 840 gcgatggact caccttggcc ttcaagatct agggctggcc cctagtgagt gggctcgagg 900 gagggttgcc tgggaacccc aggaattgac cctgagtttt aaattcgaaa ataaagtggg 960 gctgggacac acgaaaaaaa aaaaa 985 193 1310 DNA Homo sapiens misc_feature Incyte Clone No 2817268 193 cccacgcgtc cgggttcacg taaagacagc gagatcctga gggccagccg ggaaggaggc 60 gtggatatgg agctggctgc tgccaagtcc ggggcccgcg ccgctgccta gcgcgtcctg 120 gggactctgt ggggacgcgc cccgcgccgc ggctcgggga cccgtagagc ccggcgctgc 180 gcgcatggcc ctgctctcgc gccccgcgct caccctcctg ctcctcctca tggccgctgt 240 tgtcaggtgc caggagcagg cccagaccac cgactggaga gccaccctga agaccatccg 300 gaacggcgtt cataagatag acacgtacct gaacgccgcc ttggacctcc tgggaggcga 360 ggacggtctc tgccagtata aatgcagtga cggatctaag cctttcccac gttatggtta 420 taaaccctcc ccaccgaatg gatgtggctc tccactgttt ggtgttcatc ttaacattgg 480 tatcccttcc ctgacaaagt gttgcaacca acacgacagg tgctatgaaa cctgtggcaa 540 aagcaagaat gactgtgatg aagaattcca gtattgcctc tccaagatct gccgagatgt 600 acagaaaaca ctaggactaa ctcagcatgt tcaggcatgt gaaacaacag tggagctctt 660 gtttgacagt gttatacatt taggttgtaa accatatctg gacagccaac gagccgcatg 720 caggtgtcat tatgaagaaa aaactgatct ttaaaggaga tgccgacagc tagtgacaga 780 tgaagatgga agaacataac ctttgacaaa taactaatgt ttttacaaca taaaactgtc 840 ttatttttgt gaaaggatta ttttgagacc ttaaaataat ttatatcttg atgttaaaac 900 ctcaaagcaa aaaaagtgag ggagatagtg aggggagggc acgcttgtct tctcaggtat 960 cttccccagc attgctccct tacttagtat gccaaatgtc ttgaccaata tcaaaaacaa 1020 gtgcttgttt agcggagaat tttgaaaaga ggaatatata actcaatttt cacaaccaca 1080 tttaccaaaa aaagagatca aatataaaat tcatcataat gtctgttcaa cattatctta 1140 tttggaaaat ggggaaatta tcacttacaa gtatttgttt actatgaaat tttaaataca 1200 catttatgcc tagaaggaac ggactttttt tttctatttt aattacacat aatatgtaat 1260 taaagtacaa cataatatgt tgtttctctg tagcccgttg agcatatgag 1310 194 914 DNA Homo sapiens misc_feature Incyte Clone No 2923165 194 cggtggccat gactgcggcc gtgttcttcg gctgcgcctt cattgccttc gggcctgcgc 60 tcgcccttta tgtcttcacc atcgccaccg agccgttgcg tatcatcttc ctcatcgccg 120 gagctttctt ctggttggtg tctctactga tttcgtccct tgtttggttc atggcaagag 180 tcattattga caacaaagat ggaccaacac agaaatatct gctgatcttt ggagcgtttg 240 tctctgtcta tatccaagaa atgttccgat ttgcatatta taaactctta aaaaaagcca 300 gtgaaggttt gaagagtata aacccaggtg agacagcacc ctctatgcga ctgctggcct 360 atgtttctgg cttgggcttt ggaatcatga gtggagtatt ttcctttgtg aataccctat 420 ctgactcctt ggggccaggc acagtgggca ttcatggaga ttctcctcaa ttcttccttt 480 attcagcttt catgacgctg gtcattatct tgctgcatgt attctggggc attgtatttt 540 ttgatggctg tgagaagaaa aagtggggca tcctccttat cgttctcctg acccacctgc 600 tggtgtcagc ccagaccttc ataagttctt attatggaat aaacctggcg tcagcattta 660 taatcctggt gctcatgggc acctgggcat tcttagctgc gggaggcagc tgccgaagcc 720 tgaaactctg cctgctctgc caagacaaga actttcttct ttacaaccag cgctccagat 780 aacctcaggg aaccagcact tcccaaaccg cagactacat ctttagagga agcacaactg 840 tgcctttttc tgaaaatccc tttttctggt ggaattgaga aagaaataaa actatgcaga 900 tatgaaaaaa aaaa 914 195 606 DNA Homo sapiens misc_feature Incyte Clone No 2949822 195 ttttttaata atgcctttta gttggatggt aattatcctg ggttttctat gtggattatc 60 aggtcagctt caaataatga acaccctctc ttctcttcca attgttttac ttgtttcttc 120 ttcttgtctt atattagcca gaatgtcata tagtatattg accagtagct atggtggtgg 180 cgtttttatc ttattggact taaaaagaaa tacatcaaaa gtttctccat taatgatgat 240 gtttgctata gggcattgat agatagcctt caaaaagtta agaaagttct tttctttcta 300 gtcttcaagg ttaaaaagtt tttaaagatc ttaattgaat gtgaacttta tcaaatgcct 360 ttgtgatgtc tatggagata atcatgtatt tgcttcttta atacattcct gtggtgaaat 420 atgtgaataa gtgttctgat attgaattat ctttgcattt ctagaataag ccctaataag 480 tactattcaa ggtatttttc tcaaacacct gattggactc tgtaagctca tatttcattg 540 agtggatttc cttctatgtt tgtcagtgca attgcgctat aattcgcgtt gctgtcctca 600 tctgaa 606 196 893 DNA Homo sapiens misc_feature Incyte Clone No 2992192 196 ccaccccgga agtcggctgg ccatggcggc gccttggagg cgatggccca cggggctgct 60 agccgtgctg cggcccctgc tcacctgccg gcccctgcaa ggcacgacgc tgcaacggga 120 tgtgctgctc tttgagcatg atcggggccg cttcttcacc atcctcgggc tgttctgcgc 180 gggccagggc gtcttctggg cttccatggc tgtggcagcc gtgtcccggc ccccggttcc 240 ggtgcagcct ctggatgcgg aggtcccaaa tcgtggcccc ttcgacctgc gctccgcgct 300 ctggcgctac ggtctggccg tcggctgcgg cgccatcgga gccctcgtac tcggtgctgg 360 tcttctcttc tctctccggt ctgtgcgctc agtggtgctt cgagctggag ggcagcaggt 420 gaccctcacc actcatgccc cctttggctt gggggcccat ttcacagttc ctttgaagca 480 ggtatcttgc atggcccacc ggggtgaagt ccctgccatg ctacctctga aagtcaaagg 540 ccgacgcttc tatttcctct tggacaaaac tggacacttc cctaacacaa aactctttga 600 caatactgtg ggtgcctacc ggagcttgtg aagaaatgac ctcaagtcac tcacctctcc 660 aagaggagga taaaaactga accttgggga gccaggtgtg ttggttcaca cctgttgtaa 720 tcccagcact ttgggagggt gaggcaggag cactgctcga gcccaggctg ggcaacatag 780 cgagaccttg tctctattta caaaaaaaaa aacaaaaaaa aacgccaatc ttagaatgga 840 gtaacaacca gggtcacaca aggaggtcaa gattcattaa caacaaataa agg 893 197 1730 DNA Homo sapiens misc_feature Incyte Clone No 2992458 197 ggccagaggc tgcccggctc ccggaagcag gctgtgaggg gcgggagcgc tgctggaacc 60 cgagccggag ccggagccac agcggggagg gtggcctggc ggcctggagc cggacgtgtc 120 cggggcgtcc ccgcagaccg gggcagcagg tcgtccgggg gcccaccatg ctggtgactg 180 cctaccttgc ttttgtaggc ctcctggcct cctgcctggg gctggaactg tcaagatgcc 240 gggctaaacc ccctggaagg gcctgcagca atccctcctt ccttcggttt caactggact 300 tctatcaggt ctacttcctg gccctggcag ctgattggct tcaggccccc tacctctata 360 aactctacca gcattactac ttcctggaag gtcaaattgc catcctctat gtctgtggcc 420 ttgcctctac agtcctcttt ggcctagtgg cctcctccct tgtggattgg ctgggtcgca 480 agaattcttg tgtcctcttc tccctgactt actcactatg ctgcttaacc aaactctctc 540 aagactactt tgtgctgcta gtggggcgag cacttggtgg gctgtccaca gccctgctct 600 tctcagcctt cgaggcctgg tatatccatg agcacgtgga acggcatgac ttccctgctg 660 agtggatccc agctaccttt gctcgagctg ccttctggaa ccatgtgctg gctgtagtgg 720 caggtgtggc agctgaggct gtagccagct ggatagggct ggggcctgta gcgccctttg 780 tggctgccat ccctctcctg gctctggcag gggccttggc ccttcgaaac tggggggaga 840 actatgaccg gcagcgtgcc ttctcaagga cctgtgctgg aggcctgcgc tgcctcctgt 900 cggaccgccg cgtgctgctg ttgggcacca tacaagctct atttgagagt gtcatcttca 960 tctttgtctt cctctggaca cctgtgctgg acccacacgg ggcccctctg ggcattatct 1020 tctccagctt catggcagcc agcctgcttg gctcttccct gtaccgtatc gccacctcca 1080 agaggtacca ccttcagccc atgcacctgc tgtcccttgc tgtgctcatc gtcgtcttct 1140 ctctcttcat gttgactttc tctaccagcc caggccagga gagtccggtg gagtccttca 1200 tagcctttct acttattgag ttggcttgtg gattatactt tcccagcatg agcttcctac 1260 ggagaaaggt gatccctgag acagagcagg ctggtgtact caactggttc cgggtacctc 1320 tgcactcact ggcttgccta gggctccttg tcctccatga cagtgatcga aaaacaggca 1380 ctcggaatat gttcagcatt tgctctgctg tcatggtgat ggctctgctg gcagtggtgg 1440 gactcttcac cgtggtaagg catgatgctg agctgcgggt accttcacct actgaggagc 1500 cctatgcccc tgagctgtaa ccccactcca ggacaagata gctgggacag actcttgaat 1560 tccagctatc cgggattgta cagatctctc tgtgactgac tttgtgactg tcctgtggtt 1620 tctcctgcca ttgctttgtg tttgggagga catgatgggg gtgatggact ggaaagaagg 1680 tgccaaaagt tccctctgtg ttactcccat ttagaaaata aacactttta 1730 198 2029 DNA Homo sapiens misc_feature Incyte Clone No 3044710 198 ccttgacaag tcagaagctt gaaagcaggg aaatccggat gtctcggtta tgaagtggag 60 cagtgagtgt gagcctcaac atagttccag aactctccat ccggactagt tattgagcat 120 ctgcctctca tatcaccagt ggccatctga ggtgtttccc tggctctgaa ggggtaggca 180 cgatggccag gtgcttcagc ctggtgttgc ttctcacttc catctggacc acgaggctcc 240 tggtccaagg ctctttgcgt gcagaagagc tttccatcca ggtgtcatgc agaattatgg 300 ggatcaccct tgtgagcaaa aaggcgaacc agcagctgaa tttcacagaa gctaaggagg 360 cctgtaggct gctgggacta agtttggccg gcaaggacca agttgaaaca gccttgaaag 420 ctagctttga aacttgcagc tatggctggg ttggagatgg attcgtggtc atctctagga 480 ttagcccaaa ccccaagtgt gggaaaaatg gggtgggtgt cctgatttgg aaggttccag 540 tgagccgaca gtttgcagcc tattgttaca actcatctga tacttggact aactcgtgca 600 ttccagaaat tatcaccacc aaagatccca tattcaacac tcaaactgca acacaaacaa 660 cagaatttat tgtcagtgac agtacctact cggtggcatc cccttactct acaatacctg 720 cccctactac tactcctcct gctccagctt ccacttctat tccacggaga aaaaaattga 780 tttgtgtcac agaagttttt atggaaacta gcaccatgtc tacagaaact gaaccatttg 840 ttgaaaataa agcagcattc aagaatgaag ctgctgggtt tggaggtgtc cccacggctc 900 tgctagtgct tgctctcctc ttctttggtg ctgcagctgg tcttggattt tgctatgtca 960 aaaggtatgt gaaggccttc ccttttacaa acaagaatca gcagaaggaa atgatcgaaa 1020 ccaaagtagt aaaggaggag aaggccaatg atagcaaccc taatgaggaa tcaaagaaaa 1080 ctgataaaaa cccagaagag tccaagagtc caagcaaaac taccgtgcga tgcctggaag 1140 ctgaagttta gatgagacag aaatgaggag acacacctga ggctggtttc tttcatgctc 1200 cttaccctgc cccagctggg gaaatcaaaa gggccaaaga accaaagaag aaagtccacc 1260 cttggttcct aactggaatc agctcaggac tgccattgga ctatggagtg caccaaagag 1320 aatgcccttc tccttattgt aaccctgtct ggatcctatc ctcctacctc caaagcttcc 1380 cacggccttt ctagcctggc tatgtcctaa taatatccca ctgggagaaa ggagttttgc 1440 aaagtgcaag gacctaaaac atctcatcag tatccagtgg taaaaaggcc tcctggctgt 1500 ctgaggctag gtgggttgaa agccaaggag tcactgagac caaggctttc tctactgatt 1560 ccgcagctca gaccctttct tcagctctga aagagaaaca cgtatcccac ctgacatgtc 1620 cttctgagcc cggtaagagc aaaagaatgg cagaaaagtt tagcccctga aagccatgga 1680 gattctcata acttgagacc taatctctgt aaagctaaaa taaagaaata gaacaaggct 1740 gaggatacga cagtacactg tcagcaggga ctgtaaacac agacagggtc aaagtgtttt 1800 ctctgaacac attgagttgg aatcactgtt tagaacacac acacttactt tttctggtct 1860 ctaccactgc tgatattttc tctaggaaat atacttttac aagtaacaaa aataaaaact 1920 cttataaatt tctattttta tctgagttac agaaatgatt actaaggaag attactcagt 1980 aatttgttta aaaagtaata aaattcaaca aacatttaaa aaaaaaaaa 2029 199 543 DNA Homo sapiens misc_feature Incyte Clone No 3120415 199 ccggcgctgg aggggcgagg accgggtata agaagcctcg tggccttgcc cgggcagccg 60 caggttcccc gcgcgccccg agcccccgcg ccatgaagct cgccgccctc ctggggctct 120 gcgtggccct gtcctgcagc tccgctgctg ctttcttagt gggctcggcc aagcctgtgg 180 cccagcctgt cgctgcgctg gagtcggcgg cggaggccgg ggccgggacc ctggccaacc 240 ccctcggcac cctcaacccg ctgaagctcc tgctgagcag cctgggcatc cccgtgaacc 300 acctcataga gggctcccag aagtgtgtgg ctgagctggg tccccaggcc gtgggggccg 360 tgaaggccct gaaggccctg ctgggggccc tgacagtgtt tggctgagcc gagactggag 420 catctacacc tgaggacaag acgctgccca cccgcgaggg ctgaaaaccc cgccgcgggg 480 aggaccgtcc atccccttcc cccggcccct ctcaataaac gtggttaaga gcaaaaaaaa 540 aaa 543 200 531 DNA Homo sapiens misc_feature Incyte Clone No 126758 200 gcaagtggaa ccactggctt ggtggatttt gctagatttt tctgattttt aaactcctga 60 aaaatatccc agataactgt catgaagctg gtaactatct tcctgctggt gaccatcagc 120 ctttgtagtt actctgctac tgccttcctc atcaacaaag tgccccttcc tgttgacaag 180 ttggcacctt tacctctgga caacattctt ccctttatgg atccattaaa gcttcttctg 240 aaaactctgg gcatttctgt tgagcacctt gtggaggggc taaggaagtg tgtaaatgag 300 ctgggaccag aggcttctga agctgtgaag aaactgctgg aggcgctatc acacttggtg 360 tgacatcaag ataaagagcg gaggtggatg gggatggaag atgatgctcc tatcctccct 420 gcctgaaacc tgttctacca attatagatc aaatgcccta aaatgtagtg acccgtgaaa 480 aggacaaata aagcaatgaa tacatttaaa ctcagaccat cgaatggaaa a 531 201 491 DNA Homo sapiens misc_feature Incyte Clone No 674760 201 cttctcccat gactgccggc cagtttcctg cacttgtttc tctcgcttta ttgctggacg 60 gtgggagaag ggcaagtgca agacggaatc gagggcacct ctgggtgttc tgtacctctt 120 ttcttcttgc accttgggaa gtggaggacg tgggatggaa gaagggcctg gacctccctc 180 cttcctcctc cccaccttct cctaaggagc ttgccctgca gtaagcccca actttccctt 240 cctcttttcc ctctatcaga gtcgtcgccc accccccttt cccaccgctc ccctaccccc 300 gccttcctgc caagccgagg gcgacggtga tccccagctt agtaagaaaa gtaaataggc 360 cgggcgcggt agctcacgcc tggaatccca gcactgtggg aggccgaggc gggcggatcg 420 cttgagccca ggagatcagg ttggagacag cctaggcaac atggcgaaac cctgtctcta 480 caaaaaaaaa a 491 202 1551 DNA Homo sapiens misc_feature Incyte Clone No 1229438 202 ccggggggcc ggcggcggcc cgggcgggac gatgaagcgg cagaacgtgc gcacgctggc 60 gctcatcgtg tgcaccttca cctacctgct ggtgggcgcc gcggtcttcg acgcgctgga 120 gtcggagccc gagctgatcg agcggcagcg gctggagctg cggcagcagg agctgcgggc 180 gcgctacaac ctcagccagg gcggctacga ggagctggag cgcgtcgtgc tgcgcctcaa 240 gccgcacaag gccggcgtgc agtggcgctt cgccggctcc ttctacttcg ccatcaccgt 300 catcaccacc atcggctacg ggcacgcggc acccagcacg gatggcggca aggtgttctg 360 catgttctac gcgctgctgg gcatcccgct cacgctcgtc atgttccaga gcctgggcga 420 gcgcatcaac accttggtga ggtacctgct gcaccgcgcc aagaaggggc tgggcatgcg 480 gcgcgccgac gtgtccatgg ccaacatggt gctcatcggc ttcttctcgt gcatcagcac 540 gctgtgcatc ggcgccgccg ccttctccca ctacgagcac tggaccttct tccaggccta 600 ctactactgc ttcatcaccc tcaccaccat cggcttcggc gactacgtgg cgctgcagaa 660 ggaccaggcc ctgcagacgc agccgcagta cgtggccttc agcttcgtct acatccttac 720 gggcctcacg gtcatcggcg ccttcctcaa cctcgtggtg ctgcgcttca tgaccatgaa 780 cgccgaggac gagaagcgcg acgccgagca ccgcgcgctg ctcacgcgca acgggcaggc 840 gggcggcggc ggagggggtg gcagcgcgca cactacggac accgcctcat ccacggcggc 900 agcgggcggc ggcggcttcc gcaacgtcta cgcggaggtg ctgcacttcc agtccatgtg 960 ctcgtgcctg tggtacaaga gccgcgagaa gctgcagtac tccatcccca tgatcatccc 1020 gcgggacctc tccacgtccg acacgtgcgt ggagcagagc cactcgtcgc cgggaggggg 1080 cggccgctac agcgacacgc cctcgcgacg ctgcctgtgc agcggggcgc cacgctccgc 1140 catcagctcg gtgtccacgg gtctgcacag cctgtccacc ttccgcggcc tcatgaagcg 1200 caggagctcc gtgtgactgc cccgagggac ctggagcacc tgggggcgcg ggcgggggac 1260 ccctgctggg aggccaggag actgcccctg ctgccttctg cccagtggga ccccgcacaa 1320 catccctcac cactctcccc cagcaccccc atctccgact gtgcctgctt gcaccagccg 1380 gcaggaggcc gggctctgag gacccctggg gcccccatcg gagccctgca aattccgaga 1440 aatgtgaaac ttggtggggt cagggaggaa aggcagaagc tgggagcctc ccttcccttt 1500 gaaaatctaa gaagctccca gtcctcagag accctgctgg tacccagact a 1551 203 936 DNA Homo sapiens misc_feature Incyte Clone No 1236935 203 gtcagtttag tgtttgtggc attcccgctg cttttatggc acttcagtca ttttttagca 60 cacttccatc catactacat gtgtcctttt ttccccttaa cttctctaat tgtgtttctt 120 atccttttct ttaaaaccat tgcttcatct gggagtggtg gttcatgcct tggcctccca 180 aagtgctggg attacaggcg tgagcaccgc gcccggccaa ctatagtgtt ttcaaaacat 240 gtgtacacat actctatgag gatgcaaatt gagatttcaa caaatatttc tcagtgactt 300 acataaagcc gtgctttatc ttggcgctta gatgaatttt gtttggttgg ttttggtttt 360 ggttttacat atatcctagg aacatagcag gtgatataga gtggtaaaga gcacacgtcc 420 actgttagta ggtattttta tgcacttgtt ttctcatcta taaaataagg ataaaattag 480 tgcctacctc acaggatatt agggagatgg agagaatgct cagaacacaa cagggcctag 540 cacagaggaa gcacaatgct gaggaacgag aaactgcacc tgtaaattct gcagtcactt 600 taaattataa aacgagtatt tgatgtatga tcataacttt

gctaagaagc catcagttat 660 aatggatgca tgaactgtag ccatccagtg agtagtgacc aggatggagg agctttatgg 720 agggggaaga aaggaacctc aaagctttcc gattcatttt gaatcatgag atgtctacat 780 gtaaaaattc tgccttggta aactttgttt ataatgtttt agataatgca ttcacatggt 840 tcagatgtat gaatgtgata tattagttat ttgtttataa atatatattt tataaacata 900 tttataaata tataaatata tatttgggga acatat 936 204 432 DNA Homo sapiens misc_feature Incyte Clone No 1359283 204 cgctgtcctg ctaaagcaga ggatcacagc tttaataaag accctaaata tttatcttgc 60 ctgtggtcat gtatagctga acaatgcaca gcgaactcat ttagtttcca tgcgcttaac 120 tgggctaact ctgcttttga gcctaatgga aagcttgggg caggtggagg accggttctt 180 tagcactcac agacgattcc cacaccacac tcccatatcc ggtcttctct gccgagaatt 240 ctccctgccc aagaggtctg gggtgccctg gacacgtgtg ctcatctcct gtatttggag 300 atctggggct gggaagagaa tgtaaagcaa cctaaacagt aatttaagaa tggagaaaat 360 gggactaaat tattcagaca cgtttgagtg cctactcgct agcaggcatt ttccgctgcc 420 tataattatg ag 432 205 971 DNA Homo sapiens misc_feature Incyte Clone No 1450703 205 gggagagagg ataaatagca gcgtggcttc cctggctcct ctctgcatcc ttcccgacct 60 tcccagcaat atgcatcttg cacgtctggt cggctcctgc tccctccttc tgctactggg 120 ggccctgtct ggatgggcgg ccagcgatga ccccattgag aaggtcattg aagggatcaa 180 ccgagggctg agcaatgcag agagagaggt gggcaaggcc ctggatggca tcaacagtgg 240 aatcacgcat gccggaaggg aagtggagaa ggttttcaac ggacttagca acatggggag 300 ccacaccggc aaggagttgg acaaaggcgt ccaggggctc aaccacggca tggacaaggt 360 tgcccatgag atcaaccatg gtattggaca agcaggaaag gaagcagaga agcttggcca 420 tggggtcaac aacgctgctg gacaggccgg gaaggaagca gacaaagcgg tccaagggtt 480 ccacactggg gtccaccagg ctgggaagga agcagagaaa cttggccaag gggtcaacca 540 tgctgctgac caggctggaa aggaagtgga gaagcttggc caaggtgccc accatgctgc 600 tggccaggcc gggaaggagc tgcagaatgc tcataatggg gtcaaccaag ccagcaagga 660 ggccaaccag ctgctgaatg gcaaccatca aagcggatct tccagccatc aaggaggggc 720 cacaaccacg ccgttagcct ctggggcctc ggtcaacacg cctttcatca accttcccgc 780 cctgtggagg agcgtcgcca acatcatgcc ctaaactggc atccggcctt gctgggagaa 840 taatgtcgcc gttgtcacat cagctgacat gacctggagg ggttgggggt gggggacagg 900 tttctgaaat ccctgaaggg ggttgtactg ggatttgtga ataaacttga tacactaaaa 960 aaaaaaaaaa a 971 206 1832 DNA Homo sapiens misc_feature Incyte Clone No 1910668 206 cccagtttta tctgctcctg agactgagcc cagatcccca aatctaatct gatttacagt 60 tcaaggaagc tgatggggag ctgggcctta cccctgatgt aggaggggca cacagctggg 120 ggtgcagagc ccacctgggt acctgacccc caggggatga aaatgcaagg gtgagtctgc 180 ttgggcctga gagtttgatc tgcaggggca ggctcatctt ttctctcccc tgccttctcc 240 tccttctctc cccagagccc ccttgagccc ctctgcctat gtccctctgc ctcctcccca 300 tgcccccagt tgctgtggct tgattctgct accctgaccc caccatgtgc caggtggcat 360 ctgccttact gccttccctg aggagctggg acatgctggg cagttgtcag atgtaaaggc 420 acagctggag cagagggcat gtcagtaatg attggtccct ggggaaggtc tggctggctc 480 cagcacagtg aggcatttag gtatctctcg gtgaccgttg gattcctgga agcagtagct 540 gttctgtttg gatctggtag gacagggctc agagggctag gcacggaggg aaggtcagag 600 gagaaggcag gcagggccca gtgagagggg agcatgcctt cccccaccct ggcttgctct 660 tggtcacagg gcggttctgg gcacttgaac tcagggccga agcagaagca caggcccagt 720 cctggctgca agcacaatag cctgaatggg atttcaggtt aggcagggtg ggaggggagg 780 ctctctggct ttagttttgt tttgttttcc aaatcaaggt aacttgctcc cttctgccta 840 caggccttgg tcttggcttg tcctcaccca gtcggaactc cctaccactt tcaggagagt 900 ggttttaggc ccgtggggct gttctgttcc aagcagtgtg agaacatggc tggtagaggc 960 tctagctgtg tgcggggcct gaaggggagt gggttctcgc ccaaagagca tctgcccatt 1020 tcccaccttc ccttctccca ccagaagctt gcctgagctg tttggacaaa aatccaaacc 1080 ccacttggct actctggcct ggcttcagct tggaacccaa tacctaggct tacaggccat 1140 cctgagccag gggcctctgg aaattctctt cctgatggtc ctttaggttt gggcacaaaa 1200 tataattgcc tctcccctct cccattttct ctcttgggag caatggtcac agtccctggt 1260 acctgaaaag gtacctaggt ctaggccctt cttccctttc ccttcctctc ccctacccca 1320 gaactttggc tccctttccc ttctctctct ggtagctcca ggaggcctgt gatccagctc 1380 cctgcctagc atccatgacc tgttggatgt tacctccaat cagtttcctg tcctacctgc 1440 ctctttggct tggacctata tggccatgct ctggctctac ccttgggaag cctgatcccg 1500 gtgtgtggcc cagcttgttc aggccctggg atgctgcatc tccaggcaac tatgcacttt 1560 cccggggaga gaaccagtat gagaagtggg ggcagggcac acattcatct ttgtaggaag 1620 gtctggcctg gggtcgggtg aaggagggcc caggtcagtt ctggggtccc agtgacctgc 1680 tttgccattc tcctggtgcc gctgctgctc cctgtttctg gagctggatg ttccccagct 1740 ggcagttgag ctgcctgagc caatgtgtct gtctttggta actgagtgaa ccataataaa 1800 ggggaacatt tggccctgtg aaaaaaaaaa aa 1832 207 567 DNA Homo sapiens misc_feature Incyte Clone No 1955143 207 catagatcca taaatcatca tctgttgcaa aaaagcacat taattgattg gttgaatggg 60 gagattgaga tatttctttt ctcttcttct gctcaggtgg gggcaacttt tgggggcaga 120 tgagttctgt tgccacaaaa gttatatagc acatttggtt tgcactgaat cagcgattct 180 caatcctggc catgctttag aattatacaa gaaaaatctt caagtatcaa tactcagtcc 240 ctatcctact gatccaattc atctatgata aagccagagc attgattttt aagttctgca 300 agtgattcta atatacagcc aaggctaaga actactgata tgttccaaac actcctattt 360 tggagataaa gaagttgagg ctgaggatga gaccttagca cataaagttc cataactagt 420 aacagaccga agttctgtcc ttacaaataa aaaaaaaaag gggcggccgc cgacttagtg 480 gagcttcgtc ggccccggga atttatttcc cggaccggta ccttgcaggg ggttccaagc 540 ttttcactct atagtggagg ccgtatt 567 208 1303 DNA Homo sapiens misc_feature Incyte Clone No 1961637 208 gggggacaat tccacccact cgagggctgc cccctcttcc ttagcagacg aaccagtaat 60 gggggcaagg ctggggcatc ccagcccaca caccctggat gcccagcaag gccacagaaa 120 gagcctgatg tccatgatcc aggtggctct gagaagcttg gcctggacac ctgagcctgc 180 ggccggtact cctgccttct ccccatctat ccccaaggcc tctgcctctc agcctcttcc 240 atggtcggtt taggctgctg agttttctgt gcttccccaa gaaccagtgg gatcaatgcc 300 ggcggcctct gtgatggttg ctgactaatc cgggatttca tgagtcagag gcaccacccc 360 tcaccccagc tgcctgctgc ttctgacgga tcttggtgct caggctgcct ggctctccga 420 gtgaggacgc agcctccata tttggtgcac tcaggcatgg ctgggacaag ccagctgccc 480 cagggttctt cccctggtga ttctcgcctg ctttctcatc tcaggggagg cagtggcacc 540 tccctctccc tgctgacatg aagagagcta tgatatgcca ctgctgccaa ctcatcctct 600 gcccccacct cgaaacccac agtccccagt ggagggccac tactcatccc cattggtttc 660 ccaggggagg ggtgttgtct ggaagggcag gttcagatgc agccttccag atttagaggc 720 actgggagga cagtggctga gtggaggcgc ccagacctgg gcaggcagca ggctcaggcc 780 cacaccttgt gatttttgaa accaaagccc agaagatgat gtttacttct ctctccctgg 840 ctctgccctt cttactgcaa accatgctgt gccttagggc ccttctcata gctgttcctc 900 atggccatga ctggaacagg gatgcaacct ctttctacac aagcacagtt agttgggtga 960 agtctttttt tttgtttgtt ttagacggag tttcactctt gttgcccagg ctggagtgaa 1020 gtggcgtgac cttggctcac tgcaacctcc aggccagcct cagcctccct agtagctggg 1080 actacaggca cccactacca cgcctggcta attctttgta tttttagtag agatggggtt 1140 tgaccgtgtt agccaggatg gtctcgatct cctgacctcg tgatccaccc acctcggcct 1200 cccaaagtgc tgggattata ggtgtgagcc accgcgccgg gccggttgct ggcatcttaa 1260 tgttctgtag gtggaatatt tccaataaac acaaggtcgc cac 1303 209 1355 DNA Homo sapiens misc_feature Incyte Clone No 1990762 209 gcagctcttt tctggaaatt tctcagggga tgtatctgaa gctccaggtc tctgagatac 60 tctggagggc ccgaccttgt ggagatgtgg ccaaccacat gggcctggag ctgggttcaa 120 accctgactt tggcactact tattagctgt gtgaccttgg gacagttaat taccactctg 180 caggtcagtt tcctcatctg tgagatggat gtaataatag ggtgtgatga gatgatccct 240 agtgagtcat tggtgttgct gtggccacca ccattgttgt tactgggaga gttttggatt 300 tggaatcccg tgagcaggat tctattctgg ctgtgccatg tgccagctgg gcagctgtag 360 gaagtcactt cctctctgag ccttcacttc ccagtctcta aactggggct cacaaatgtc 420 gcattgcagt ttgggggtgg atcttttgta agaatggaca gaaaaaagat ggtcaactgt 480 aatgtgtggt gcatcgtgag ctgtcactcc cgtgtgccct ggtctcctgc tggcctcact 540 gtggtttgac tcagacttgg actttcctgg aattctgaac tttgcctctc taagcaaagc 600 cccgccaggg ggtacactct gccttgtttt ccatggtgcc gtgtttccag ccctatccaa 660 caactggctt ctgatcggct gctttttcac actgctgttc ctgcaaggct gtgtggcccc 720 atggttaagg gtgagggttc tgcaagggtc agccagatgc gagttccggt cctaggtcca 780 ccacttactg gtcaggtgac ctcaagtaag ttgcctaacc aaggcttaac ctcttaggag 840 ctcagttttt cttcctgtaa aatggggata ataatagtac ctacctcagg ggaatagggg 900 atgaaaaatg gtcttatgaa atccccctgg ccctaactgg caaaagccaa ctcagttaac 960 ggggctccat tatcactgtt gggacctggg cttgtgggag ctcaggagtc ttctcagacc 1020 tcctcattgc tgtgccaggt ggaggaggtg tttgtattta ctgagagcaa ttgggccaat 1080 ggcccatagt ccttgagcac ccagctgacc caggccacag aggctgctca tcttggtctg 1140 gtgaccacag gaggctgtgg ctgttgggat gaccctcccc agtgttgtta acaacagtcc 1200 caggccatgt cctgctggcc ttgagttccc ctgtcctctt gtgaatgtcc ctagagccat 1260 ggcctcaagg ttcctgaagt tcccaataat gtgacatgct gcccagacct cactacactc 1320 cttttttatt ttgagcctgg gtgacagagc aagac 1355 210 776 DNA Homo sapiens misc_feature Incyte Clone No 1994131 210 gttcactgcc atattcctag ggacaagtaa agttccctgt atattgtagg agctaagtgt 60 tgaatgaatg aatggtggct gctattattg cttcaccttc accctccaag agtaatctcc 120 ccattctggt ttatagtttc tgtgctcact gcttgtgata atcgtaagta tatattgttg 180 agaacagtgc ctgttttctc tttccctgaa aacacatact ttgacgttgg ctgacatagt 240 tcactcagct gttcctaacc actgatccct ctgtatcaca ggtatctcgg gggagctttg 300 tgccttgatg gatcaagttc atcatatgca gcactcaaaa tggcagcatc cttcggacct 360 caccacgcga aactacgccc gccgacagaa acatctgcaa agatacagtc tgactcagtg 420 ggttgacagg aacatgcgaa gccaccatcg gttccagcgt ctcccagact tctcgtacag 480 ttaatttgtg tcatcccatc agcaatgaag gtccctatcc agggtcctgc ttggagcagc 540 atttcatgtt cttttgctgt tttgtgcttt gccgattttg gattttattt ttcacaaaat 600 ttttatttaa aaaactcgtc accttttgga aatgcccatt gccgacttga atttttttgt 660 atggagtccc cctgattttg tgtgtgtgtg tctgtgttta agcacgcgtt cggttggtat 720 agttttttat atgtattttt acattaaatt gaaggtagct gcctcctgga aagcag 776 211 817 DNA Homo sapiens misc_feature Incyte Clone No 1997745 211 ggaggcgtta gaggagctgc cttcggaggc tcagggagtc cctttggagc tggttgtttc 60 cttggccctg cagcgcactg ctcggggctc ccaaggaggt tgtgtgtatg gttcttaatt 120 catcaggaca aagaccccca gcatgtgtgt accctgggac ccgatttctc tgggcccaca 180 tctatctcca atacctcagc ctcagatcag accctttctt ttttgtcttt cttctcttaa 240 tttttaaatg cctcttttct tgagcattcc atctctcttt ttgaccctct caggactggg 300 cttagctgtc cagagccctg ccggagggtg ctgggggctg tccctctgca ggcactgtgt 360 tttcctcagg ggctgtcctc agaacacccc tcctgctccc tggggctcct cagggagcca 420 tttcagctgg agtctcaggt ctcaaaaaca acttctccag gaggccaaaa aaagactggg 480 ttggcttctg gtcctcatga tggcttttat cctcctggga cactttgggt atattcatgg 540 gcattgtttc catctgtctt ttctacctgt gccacccctg ccctgattcc acggctgcct 600 caggcaggca ggcaaggagc taggccggtg cccggccctg gcagcaaggg gtctttgtgc 660 agttggagat gctgccgttg tggcagagcg tcctgcagcc ccgcttccat cagcaggctc 720 tggggtgggg gctttgcagg ggatgctctc tgatgtttgt tccgttgttt aaataaaatg 780 cacttatttt tgtttttttt tttgcaaaaa aaaaaaa 817 212 484 DNA Homo sapiens misc_feature Incyte Clone No 2009035 212 ttttctttta tatgtattat taaatgactg ttactctaca aacatatggt tgttattttt 60 actttttgga taccattata gtgtaggcat ttcccaggtt tttttggtaa caccattttc 120 ttaatgatat gatgttgcag ccagtggatt tattacagtc ttacttatta ttgctctact 180 gttggtcctt tagtttgctt ttcactcttc tatgtaatgc tgtaagaaat gactttttcc 240 ataaactatt ttccatatat tggatgtata atttaacaca ttctaaacat taatgttaaa 300 acagacataa agcataaaaa ccgagatata tatttgatca tataaaaatt taagctgggc 360 acagtggctc ataccctgta tcccagcact ttgggaggcc aaggtggggg tagactggtt 420 gagctcaggg gttcaagacc agcctgggaa catggtgaaa cccaactcta ccaaaaaaaa 480 aaaa 484 213 509 DNA Homo sapiens misc_feature Incyte Clone No 2009152 213 cccagtttat taccattaga ccataccttt ttgtccaatc atttaaaaca aatttttata 60 taataagttt tatttgtatg taataaattt tattatataa aaataagttt taatatatat 120 tatataaaaa gttttaataa atacctaata tattatttaa tatgataaaa cttatattaa 180 atgaaatttt atgctgttct cttgtcaatc tgtcttttgt tatcttgctg gtgtgcctgt 240 catgtgaggg actgcaatct gatatgccta ttttccacag tcaaagcaat tacaagagaa 300 ttgttacaat tacccagtta tgtcaagaga ttttttttta attcactaag gtagagataa 360 ggagaatgta ttaaaatagg atattttaat tataaatgca tgactgggga gggggtattg 420 tttttgaata aaatatgagg ttatttgcca tgacaaaaaa aaaaagaagt aggaaaatcc 480 catggaaatt tatgttcctt ctaactttt 509 214 1130 DNA Homo sapiens misc_feature Incyte Clone No 2061752 214 ggatttatca cattctgcct tgaatcatag ggaacagcat gtgtagtgga atgaacacag 60 gcctctgaat ccaagatatg agtttaaatc ccagctttgg aggtggttac ttaaagtctc 120 agtgccttca ttcttcttcc tatataaagt agatattaca atatctaact tacagagtca 180 ttgggagcta tacatgcagc gattgggtaa agcacctggc acatggcaag cgattagcaa 240 atgctggtta cttctacttc tttctcttcc cttttcccag tctatcataa tttccttgag 300 agcaggcacc atgtcttatt tacccttgta tttcccacag tacttcccat agtgagttac 360 ccttagtaaa tactcagtaa gttgaattga atttaaatta cctgtaagtc ttaaaatgtg 420 ggattaaatt aagaatatat tgtcctggaa atacccaaat gtctattgat ggatgaatgg 480 ataaacaaaa tgtggtatac acataatgga atattattca gccttaaaaa ggaatgaaat 540 tctgacatgt gctacaatat gatgaacctg gaagacatta tatgtgaaat aagccagaca 600 gaaaaggaca aatactatat gattccactt atatgaagta cctagagtag tgtaattcat 660 agaaacagaa agtacaggtt gacatccaaa atctgaaatg agaaatgctc caaaaactga 720 aactttttca atgccgacac gatgctcaaa gaaaatgcta attggagcat ttcagatttt 780 ggatttttgg atttgggatg ctcaactggc ataatgtgaa tattccaaac tctgaaaaaa 840 tctgaagtct aaaacacttc tggtctcaag gattttggat aaaggatact caatgtgcaa 900 catgtagaat ggtggttgca aggtgggagg agagaatgga gagttactgt ttaatgatac 960 aatgtttccg tttgggaaga tggaaagttt tggagatgtg tgatggttat ggttgcgcaa 1020 caatgggaag gtacttagta ctgcttaact gtgcacactt aaaaatggta aaaatgataa 1080 attttgtgta tgtcttaaaa caataaaaga agttttttaa aaaaaaaaaa 1130 215 1273 DNA Homo sapiens misc_feature Incyte Clone No 2061933 215 attttctccc ttcagcaagc actcattaag gagtgaggct gagtatttta agatagagtg 60 agatctgtga gtgattgaaa ggtgatattt aaaaacttgg atttcattcc agtgtcaggt 120 ttgggtttta agttcctttg gtccagggaa gggtccaagc agccacagtt gccctaaatc 180 tccatcatta agtcttccag caaggttaag tgcagtatgg aaggagaagg gggaagagga 240 cggtaacggc cccacactcc aggctgagaa agagtaatta ggaggcctga ggaggggccg 300 aggaaaggct gttggggtgt gctggggttg gtacccgagc gccttcccct cacctcaacc 360 agagaagagc atccggttgc tttttaaagc ttttagcctg ccctagcaag gacaaagcat 420 gttagattag agatgcttct gctgatcgca ggggttctta tttgaaaaca tctatgatgg 480 gggtggggtg ggaggagaca ggttgtggtt atgcaggaaa atcttgtcct aaaaatatat 540 gagtttgggg gtaaggggtg ggatagccaa gcaaaatcag taattatttt aaaatgaaca 600 tatgtatttt tattaacttt tagttaaata cagattttac aacgaggtca gcataagcct 660 aaatctatat agagggctaa ctcaggcatt gtcttgttta tttgtagact ggattaaaaa 720 caacctgtcc tgttttgtca gttcccagct tcttcgttta gaataaatta gaccaaaaga 780 agaaacgtgc ttgtctctgt atacccgcag aatgaagtta ctgttgttaa aactggattt 840 tttcatttta ctaggttccg aagagtccag atgcttggta gatgttcaat acgtgatttt 900 ttttttaatt gaatgtgttc atttaaaatc ctccttaaca tttctagaaa gacttctttc 960 aataaataat ggaatcttag aggaaaagtg gttttttaaa agctagggaa ctcctccact 1020 aaaagtaacc attggaaacc tcgaatgagg gctaaagttt taatcataag agaaaaggca 1080 gcataatgaa atgtgtacac atacatagtc agtggtccat tttaggaagc cagtggcgtc 1140 tgataaagaa atgttaagag tagtgaggtt gaggaaggaa attgtgggga tttgaaatat 1200 tctctttatg ttgtttctct tctgagtcat ggtaaaacaa taaattatca tctctaggtg 1260 gaaaaaaaaa aaa 1273 216 1279 DNA Homo sapiens misc_feature Incyte Clone No 2081422 216 ctttaacaga aggatggggg atagtcagat agtcggagga agtgggtgat ttgaacaagt 60 tcagagcagg gaggaaggct gtgttgggga cttccagctt gctctcctca tgcatgaagc 120 cactcattcc ctttctctct cccccacccc ttcttcccct cactttcttc ctttcctcac 180 ttctcctttc ccctctgtgc agagctcttg gcaccagtca agctgtccca cccctcaggg 240 ccctctcagt gactgatgcc catggctccc tcctcctaca cccaaagacc ctggcttgcc 300 catgtctctg atgagaattc aaagggagct gtgtttatat aacgtagagg gatttacctg 360 tggcttttcc tttactcact tcctcaaaac tgtacattta tggcatagga tgtcagtcct 420 aaaagtttta ttatcaaaac agtaggtggc aagtaattat tatcataaat ccagcaggtt 480 ctagagaagc caagttggag gagaaagcag gatagagtcc accatgacca ttgattgttg 540 ggcacattct ttctaagaaa cagattaatt ccattgtatc tgttctctgt tatcccatac 600 cagcttatga ttagagtctt gagctcacaa cttggtcctc taagaggtag tcagtggtca 660 gcgcttcagc ttgaccacag cgtttggttc tttctttaag tgttgtgttg taatgcttgg 720 attataaaag ccttaacacg gccccatttg atcagttccc tgccaactct tgtatcctca 780 tttcactaag ctttgttaca ctcactagac tgttaacaac ggagaaaaac ctgtgggtac 840 tgaatatgcc atatacaact tgctatttat tctgttccct gtttagaagg ccatggctac 900 ccttaactat ctgaactctt cctgtcctgt aagactgagc tcactggcaa tatcctatag 960 gctgctttcc ctaagcctcc ccatctttct tcctccctcc ttctacttct ctcctacctc 1020 cttttccctc tctcccctac tcacctgctt tccttttgcc cctcccacat cctcttcccc 1080 cttcttgtca tttttccatg tcaagaaatt tccagatata taggaatatg atggagaatg 1140 ctgacaggca gttctttgag tagtcaaatt aagatgtaat ggttgaattg tataatggca 1200 atcacataaa ctacatatat aaagcttcta gcttagtaaa ctctaaatgt gtttttttaa 1260 actaaagaat gaggggggg 1279 217 899 DNA Homo sapiens misc_feature Incyte Clone No 2101278 217 tggtttggga atgcttcgaa ttttattttt tctactccca attaatcagg agttgatgat 60 cccatgagca ggaccgcctc catgattggg gagcatgcac ttgtgactgc agggtaagag 120 tgggaagata ggtttgtgga gtggcaccga caggactgtg attgtgtgtg ggcctgcccc 180 acatttctct gggggatgct tatgtgagag tgggcccagt gaaagagtta ccaagccacc 240 cacaccccta acactgttct ggatgagaga tgagagcaga ccggcttctc cccatcagtg 300 cattgtgcct gttgtacacc cctggaggag ccctggagcc agcccaggtg gggtacacaa 360 tctttttaaa ttccatatgg ttgccagctt atttctttca cttgtttact gtaatatctg 420 gcgtgttttt atttatctaa ttttgtattc agttataacc atggtagggg tagtgaatat 480 atgacaggtg taatccctgg tgctgcagtg gaccttcttt tcttttggac aagataatac 540 tgtgagtttc cctccttcct tccctctaat ttgttttcct tttttcccca gcctcttgca 600 tccccttctt ttctaccctg tcctacaact atcatatgca cagtcttctc tctttgtgtg 660 tgactgttac aaaatttcac ttttcaaaat cgaaatcagg tgtttgctca aatgagggga 720 gatttttttt tttttttttt ttttaaatgc tgagacttca

gcagagtact ttccttttgg 780 tggtttcccc caaaaaccca tcagtctggg agagcattgg gagtggaaat catgttgcct 840 gggatgctgg tttctttgaa aattatataa aacgtatgta aaaggtcccc ccatttggg 899 218 645 DNA Homo sapiens misc_feature Incyte Clone No 2121353 218 caaagtgctg ggattacagg tatgagccac cgcaccgggc ctgttctatt tttctagtta 60 agggaactga agctcagaga ggtgtcacca gcaggtgttc attcccatgc cagccttgcc 120 ccccggcttt tcccaggcag gctcctgcgt gcccactggc tccagcctgg tcctctgtct 180 cttggctgct tcactcctgc tctttgtccc gactctggcc ctgcttacag gggccactac 240 ctgctggtgc ctccataaca agcgtctggc gttgagaccc ctggcatggc aggggctttg 300 gggtctggtt tccacaaggc ttagccatgg cagaacctcg ttttatttta actctttgcc 360 cctacaaaca aacagcagta cttgccagaa ccattcttgg gattcaggag ctcgggcgac 420 tgccttggcc tctggccgca cccaggaggg tggggttgga tctgtgtagt tgccaggccc 480 acacctgcca gcagggggct gactggatcc atgctttact gtgtttaatg ggggtaacag 540 gggtccctac agccctccca gctaaacatt tggaacaaaa caccagccct tttgtagtgg 600 atgcagaata aaattgttaa tccaatcacc tccaaaaaaa aaaaa 645 219 703 DNA Homo sapiens misc_feature Incyte Clone No 2241736 219 ccacgcgtcc gctgtaaacc agaaaaatgt tggttatcta gaaaacttga gagagcatgt 60 agattaactt ttctctttgg agttctaaaa cattaactgg aaagattaga taatatacta 120 aatgtataca gaagtataca gactatacaa agactgaaac aagtcccttt tgcactacaa 180 ctctataaca ttaccgcaga aattttggtt ctatgtagca tggacctcct aaggaattct 240 gtttctttta gcattgagat ccctggtgct ctttttttac ctcagaattg gtacaatcat 300 tattaaacgt taatttattt caaacttttt aattgaaaaa aggaaaggga aacttaattg 360 gggataaatt caggcatcat attattatga tagagtctcc tgagtggttc gtctataggt 420 aatgaactca ttggtgttat ttcttggaca tcttggcctt ttaatcaaag actgtgtgct 480 gctatttgct atgagcaagg tttctcaaaa gcaaaaggtg cttggaccat ttggatcacc 540 tgagttagaa tctctaggta tagggcccag gtatctgcat tttcacaggt ttcttgtagg 600 tgactttctg caagctaaag tatgagaacc attggcttgg atgtagttct aaacttttag 660 gtctgtaaat cttgaaatct tgaactgaag gtcaactatt ggc 703 220 536 DNA Homo sapiens misc_feature Incyte Clone No 2271935 220 ctttcatcat aattaaagtg ctgtcaggga aaatggcatg gctgagtttt gctgctgttg 60 aaatgaccct cctcctccac tcctcttcgc ttctctcatt tgctaaagtg gtcctttctc 120 tgcctgaaat caggcccttt ggtgatggaa attttagctt aaagcagagt tctaagcaga 180 atcctaaccc tgcgagggtg gggagaaaat caatgttttg agctggtgtc tgtttgcagc 240 gaggtgctgg tgaggccatt ttcatcagga ggaacggtgg tggtggctac ttctgggctt 300 tagatccacg caaggtctcc taaatacaag tcactgtcat ggtacacaat ttagcaaaac 360 ttggaggctg attttccccg ttgacttagc tagggtcagg aggaagctgt ttagaagtac 420 agaggttctg catctgggag ggtaaaatcc aaacgcctct catgctcaga gggaaagcat 480 gcctgcatgt ttactatcac tgctggccta cgtgcttgtg tgctgaattt agatgg 536 221 790 DNA Homo sapiens misc_feature Incyte Clone No 2295344 221 tccgtccccg gccggtagat tttcttctct ttctaaggct aatggtggta gttttgtttt 60 ttgacgtttt cttataatga gtttttcttt ataattttta atttatgctg taatgtttct 120 tatttacaat gttatctctt aaatctttga gtacattaca ttttctcccc tgataatctc 180 ttctaaatta ccttctctag ttggttttct tcccttcctt aatgttagcc attcttcagg 240 tgaaggttaa tcctcaatgt actcttcatg tttaagggga gggtctaaaa ccttgtgggt 300 aggacttacc aacggagttt cattgcatga tgatcttatt gagcttattg gtagccctta 360 tctcagtatc tttagttttt cttgggctgg tcagattttc aagagaagac ttttcatttc 420 ctttgtggag ggaaaaggcc ttttaccagc actcttcaag ctcagtaggg gaaagacttc 480 aagcactcag gaagcatgca ttcactttat ttggaacaat acccttactt gtaactgtgc 540 ctcaggtgcc atagtccaca gagacttctt ttacctgtcc agagaataaa attagttgtc 600 tgttggggta acaaaaagtg tggagctgaa gagggtacct ataaatgaag ttgttttctg 660 gccgggcgca gtggctcacg cctgtaatcc cagcacttcg ggaggccaag gtggagggat 720 cacttgagtc caggagtttg agaccagcct gggcaacata ctgagactcc gtctctccaa 780 aaaaaaaaaa 790 222 1045 DNA Homo sapiens misc_feature Incyte Clone No 2303994 222 gggaagttga ggctgcagtg aactatgatt ttaccactgc actccagctt gggcaacaag 60 atgagaccct gtctcaaaaa aaaaaaaaag ttttctagaa taagcaggat gattgtttaa 120 tttgaagatg gaacaggaaa ctagagtgca tttaaaatac tctgtcttca ttttaacatg 180 ttgaatggaa taactgcata tcaccatgag tttgttttgc ttttcataca gacttgtatg 240 tgtcatttga gtggtttcca gattggagcg aggttattct gatctaaatg aacagcattt 300 ttttccttag cctctgtttg ccactctggg tatctctcct atgggcaaag ccattagaaa 360 tgcataaaac ctcgagacat ggtttttggc aaaaactcca tgactttaaa ctagctcttt 420 tactactgac ctttcacaga gaaaaaatat ttcccttgaa aaaaactggg cttgtcattt 480 tttcccttgt agctttaagc agagacataa gtgccttgca ttacacatag taaactttct 540 ttaaaaaaaa aaaaaaagat tttggagact accagggtaa gattccaact tgtccaaaag 600 ctttctggcc ttacatattt tattataaaa attctcaagt ctggtaatct tctatgtcag 660 agctagtgat ttcaaaaggt ttcacaattc cccaagacaa aagtgatttt cgttcattat 720 aataaggtta agtgatatgt gattcataac aattttgatg tgaagaaggg aaggacatca 780 ttgacttaat aatagtatca gtcggtgcaa cagttggcaa catgtgcctt cacactttac 840 cataaagaga cgggtttgag ggtttgcctt ctaaagtctg caacttcaag aaaaaaaatc 900 gacaccgtgg attgaccttc ccgggtccac taatataaag ccaataaagc ttaaaaacac 960 ctttggtaac ccatgtaatt taactccggt ccagtggccc tataattcca attaaaaatg 1020 gttcaatctc ttggaaaaaa aaaaa 1045 223 553 DNA Homo sapiens misc_feature Incyte Clone No 2497805 223 ctggcagatc cggacgggca ggactgggtg tgtcccatga gagcacctcc ttcctggcct 60 ttcctgtgga ctttgtccca caccacctgc ctgggttcct tcctttagtc acttccagct 120 ccaggcacag cagttggtga ctccttggtg ggagccgtgt cccacccggt cctgatactg 180 ccgtcttctc tttcacagtc ctccaggctt gggccagcct tgggggcagc agagcttctg 240 gggtgagtgt cgagatcctg tgtcctgaga gcggtagtca gggagagggc tggtcggggc 300 agggctgccc gggcaggaca caggatgcgg ccggccaggc tggggccaag gtgttcagac 360 ctggactttg ggctcgtgct ttcttcatgg ttgcgccttg ctcgctgtcc cttggagtct 420 tcatttggtt ttgctttttt tgtttgtttg ttttcaccta atttttgcca gacttaagct 480 agttttgctg ccttttgaaa ctagtggaag aatcatttta ttcctgggga taatttgggg 540 gcttttgaat cca 553 224 706 DNA Homo sapiens misc_feature Incyte Clone No 2646362 224 ccgaccccca acctcaagtt gccgccggaa gagcggctca tctgaacgct ggggcctgct 60 gcagccacca acactgccca ggactgcggg ttgctggctt gtacaccgca gctgccaccg 120 agacaccagc ctctgatggc tcaggaggac ttgtggggag aggctggggg cacccatgtg 180 gtgggctctg tgcagcatgt tgcctctgct tggctgtgcc tgcagctcag ggtgctgggg 240 ctcgggaccc acccccctgc ttgcggaacc aacttttctc tgtgtgtcca gcaggcccca 300 caaccccctc tcctttcttt cagttctccc atgcagccga ggcccgggcc cctcaggact 360 ccaaggagac ggtgcagggc tgcctgccca tctaggtccc ctctcctgca tctgtctccc 420 ttcattgctg tgtgaccttg gggaaaggca gtgccctctc tgggcagtca gatccaccca 480 gtgcttaata gcagggaaga aggtacttca aagactctgc ccctgaggtc aagagaggat 540 ggggctattc acttttatat atttatataa aattagtagt gagatgtaac aaaagcttta 600 ttggtgtgtt tgagctggtg ggtgccacat atttggggat ttgaagaagg aggtgagatg 660 tctggatggg gactgggatg ggtagaggat tcagtgatac tccgag 706 225 509 DNA Homo sapiens modified_base (492) a, c, g, t, unknown, or other 225 aaattttagt gtattacatt tgcctttact gtttatgtgc agcataaagt tgcttttgtt 60 acaattcatg ttgttttgta atggttgatc aaagcaaaga aagacatgtg ttactacgca 120 tgatctgtca atgtttaagg ctgttgttgg ttcttgtgac tttgctaata tgtttttctc 180 ctgacaggtt aacctgccct cttaactcag cagtggttct agcgtcctat gccgtacaat 240 gtaagtcaca aagggagcat ttcacggatg gacaggttgt tctgatcagt gtgtggagaa 300 agtcactggt tcctcctgct tgaccaagtc cctcttcccc aggaatcctg ctgggcagca 360 tatctctggc tgtccagata tgtgtttcta ctcagactgg cactctcctg tagcatgggg 420 atgttagatt aaggaaggtg gttaaagggg aaagaatgaa tgaactgtgg tgtgaaattt 480 cttccaagga gnccatccga cagcagaca 509 226 2153 DNA Homo sapiens misc_feature Incyte Clone No 2755786 226 gaaggcggtg gctgaggcgg ttccggaggt tctagtgtcg gagttgggtg caggcaggtg 60 ccatgggccc gcttgaggca cactgagggg acgcggggct gggccatggc cggcgctcgg 120 gccgccgccg ccgctgcctc ggcggggtcc tcggcctctt caggcaacca gccgcctcag 180 gagctggggc ttggggagct gctggaggag ttctcccgga ctcagtaccg ggccaaggat 240 ggcagcggga ccggcggctc taaggttgag cgcattgaga agagatgtct ggagctgttt 300 ggccgagact actgtttcag cgtgattcca aacacgaatg gggatatctg tggccactat 360 ccccggcaca tcgtgttcct ggagtatgag agttctgaga aggagaaaga cacgtttgag 420 agtaccgtac aggtgagcaa gttgcaagac ctcatccacc gcagcaagat ggcccggtgc 480 agaggacggt ttgtctgccc agtaatcctg ttcaagggca agcacatttg caggtcggcc 540 acactggctg gatggggaga gctgtatgga cgctcaggct acaactattt tttctcaggg 600 ggtgcagatg atgcctgggc agatgtggag gacgtcacgg aggaggactg tgctcttcga 660 agtggtgaca cgcatctttt tgataaggtc agaggctatg acatcaagct gcttcgatac 720 ctgtcagtca aatacatctg tgacctgatg gtggagaaca agaaggtgaa gtttggcatg 780 aatgtaacct cctctgagaa ggtggacaaa gcccagcgct atgccgactt cactctcctc 840 tccatcccgt atccaggctg tgaatttttc aaggaatata aagatcggga ttacatggca 900 gaagggctca tatttaactg gaagcaggac tacgttgatg ccccattgag catccccgac 960 ttcctgactc actctctgaa cattgactgg agccagtatc agtgttggga tctggtgcaa 1020 caaacacaaa actacctgaa gctgctgctt tccttagtta acagtgatga tgacagcggg 1080 ctgctggtac actgtatctc aggctgggat cggacccccc tcttcatctc cctcctgcgc 1140 ctttccttgt gggctgatgg gctcatccac acgtccctga agcccactga gatcctctac 1200 ctcactgtgg cctatgactg gttcctcttc gggcacatgt tggtagatcg gctcagcaaa 1260 ggggaggaga ttttcttctt ctgcttcaat tttttgaagc atattacctc cgaggagttc 1320 tctgctctga agacccagag gaggaagagt ttgccagccc gggatggagg cttcaccctg 1380 gaagacatct gcatgctgag acgaaaggac cgtggcagca ccaccagcct tggcagcgac 1440 ttctccctgg tcatggagag ttccccagga gccactggga gcttcaccta tgaggccgtg 1500 gagctggtcc cagcaggagc gccaactcag gcagcttggc ttgcagccct gagtgatcga 1560 gagactcggc tgcaggaggt gcgctcagcc ttcttggctg cgtacagcag cacagtgggg 1620 cttcgggcag tagcccccag tccttccggt gccatcgggg gcctgctgga gcaatttgcc 1680 cgtggtgttg gactccggag catcagcagc aatgccttgt gaagaagcca gcccatgaca 1740 ttttcctgct cctctctcag ctgagccctt agcagagaat caaagccatg cctggccgaa 1800 ggggtacttc caggtcaggg gaaatttcag tcccccatct ccatcatgaa catggcagcc 1860 ccaaagctga gcaaggccaa agacagggtt ttccaacccc cagcctcttg actggtgacc 1920 accacccctt cttgtcactg tctcccaccc accccatctt tgctgggatt cccatcaact 1980 ctcagaactg tgtggggttt ccctggggcc ttgtggaagc catgacttca caaagaccct 2040 acctgtcagt tcttgtttct ggggaggagg gatcacctgc actgagaatg aggcagtttg 2100 acacagatca caaaataaaa tcaaagtctt tttgaatagc caaaaaaaaa aaa 2153 227 791 DNA Homo sapiens misc_feature Incyte Clone No 2831245 227 ttaactgagg actaagttga tctatgcagg gtctgagtcc aaaccctggt gtcaaggtgt 60 taagtgcaaa ttattattat tattttttaa agaaaacact cttgttacaa tttggacaga 120 gagaatggta tggagatgaa aggttctcgt gtatggcttt tgctcctatt tatgtggaaa 180 gcacgcccta cattctttca aagctgtgtt gttcccttta ttctcagtcc ccagaattgt 240 gtgcaaacac actctcttgg cccaggggtt tggctgggtg tgtttccttc tggaagtctt 300 cactagcact cttgagttag ctggcaggag atcccttaaa accatttcca agcagttttt 360 ctcacttccc tataggggct aatcctgtac tttccacttc agttccagct gctgttgctt 420 gggaagaaac aaatttctgc tgtgttctca atctccagac ggtccatgaa aatttaatgt 480 ataagaacaa agaggctggg cgcagtggct aacgcctgta atacctgcac tttgggaggc 540 tgaggtgggt ggatcacctg aggtcagaag ttcgagaaca gcctagccaa catggcgaaa 600 ccctgtctct actaaaaata ccaaatttgc tgaacgtgat ggtgggggct gttaacccca 660 gtacttggga ggctgaggca ggaaatcgct gaactcggga agcaaaggtt gcattaaggg 720 tacgagctcg aattcggtat catgttaaaa ccgtttccgg gttaaattgg tatccgccca 780 caattcccac a 791 228 870 DNA Homo sapiens misc_feature Incyte Clone No 3116250 228 cctgttctcg ccctcaaatg ggaacgctgg cctgggacta aagcatagac caccaggctg 60 agtatcctga cctgagtcat ccccagggat caggagcctc cagcagggaa ccttccatta 120 tattcttcaa gcaacttaca gctgcaccga cagttgcgat gaaagttcta atctcttccc 180 tcctcctgtt gctgccacta atgctgatgt ccatggtctc tagcagcctg aatccagggg 240 tcgccagagg ccacagggac cgaggccagg cttctaggag atggctccag gaaggcggcc 300 aagaatgtga gtgcaaagat tggttcctga gagccccgag aagaaaattc atgacagtgt 360 ctgggctgcc aaagaagcag tgcccctgtg atcatttcaa gggcaatgtg aagaaaacaa 420 gacaccaaag gcaccacaga aagccaaaca agcattccag agcctgccag caatttctca 480 aacaatgtca gctaagaagc tttgctctgc ctttgtagga gctctgagcg cccactcttc 540 caattaaaca ttctcagcca agaagacagt gagcacacct accagacact cttcttctcc 600 cacctcactc tcccactgta cccaccccta aatcattcca gtgctctcaa aaagcatgtt 660 tttcaagatc attttgtttg ttgctctctc tagtgtcttc ttctctcgtc agtcttagcc 720 tgtgccctcc ccttacccag gcttaggctt aattacctga aagattccag gaaactgtag 780 cttcctagct agtgtcattt aaccttaaat gcaatcagga aagtagcaaa cagaagtcaa 840 taaatatttt taaatgtcac aaaaaaaaaa 870 229 764 DNA Homo sapiens misc_feature Incyte Clone No 3129630 229 gcacctgcga ccaccgtgag cagtcatggc gtactccaca gtgcagagag tcgctctggc 60 ttctgggctt gtcctggctc tgtcgctgct gctgcccaag gccttcctgt cccgcgggaa 120 gcggcaggag ccgccgccga cacctgaagg aaaattgggc cgatttccac ctatgatgca 180 tcatcaccag gcaccctcag atggccagac tcctggggct cgtttccaga ggtctcacct 240 tgccgaggca tttgcaaagg ccaaaggatc aggtggaggt gctggaggag gaggtagtgg 300 aagaggtctg atggggcaga ttattccaat ctacggtttt gggatttttt tatatatact 360 gtacattcta tttaaggtaa gtagaatcat cctaatcata ttacatcaat gaaaatctaa 420 tatggcgata aaaatcattg tctacattaa aacttcttat agttcataaa attatttcaa 480 atccatcatc tctttaaatc ctgcctcctc ttcatgaggt acttaggata gccatgattt 540 cagtttcaca taagaatgtt tactcaatgt ttaagtgtgt tgccccaaaa ttcccaacta 600 acaaggcaga actaggggac ttgaccttgg gacctttttg ggtcctaaac tccaggtaag 660 tataaacaat ttcaattggc ctttcccctt gccaagaaaa aaaaaaataa aggggcgggg 720 gggttccccg acccccggaa tttccggaaa cccttggtaa aacc 764 230 540 DNA Homo sapiens misc_feature Incyte Clone No 007632 230 atcttgtggc gatcatgtat aagctggcct cctgctgttt gcttttcata ggattcttaa 60 atcctctctt atctcttcct ctccttgact ccagggaaat atcctttcaa ctctcagcac 120 ctcatgaaga cgcgcgctta actccggagg agctagaaag agcttccctt ctacagatac 180 tgccagagat gctgggtgca gaaagagggg atattctcag gaaagcagac tcaagtacca 240 acatttttaa cccaagagga aatttgagaa agtttcagga tttctctgga caagatccta 300 acattttact gagtcatctt ttggccagaa tctggaaacc atacaagaaa cgtgagactc 360 ctgattgctt ctggaaatac tgtgtctgaa gtgaaataag catctgttag tcagctcaga 420 aacacccatc ttagaatatg aaaaataaca caatgcttga tttgaaaaca gtgtggagaa 480 aaactaggca aactacaccc tgttcattgt tacctggaaa ataaatcctc tatgttttgc 540 231 857 DNA Homo sapiens misc_feature Incyte Clone No 1236968 231 cacatttgaa cgcgcatgga cttccttcta cctaaacttt cgaacttttt ttagacacag 60 gaagtagcaa gaagggagat gccaagtgac aatcaccagg aagatgcctc tctctagtga 120 cctgggtagt ttgcacggtt tggctggaaa ccacagtccc cccatctctg ccagaacccc 180 ccatgtggcc actgtcctca gacagctcct ggagcttgtg gataagcact ggaatggctc 240 cggctccctc ctcctcaaca agaagtttct cggaaagttt gaagcaaaaa ctggtcagag 300 tgctggagga aaacctcatt ttgtcagaaa aaattcaaca gttggaggaa ggtgctgcca 360 tctcaattgt gagtgggcaa cagtcacata cttatgatga tcttctgcac aaaaaccaac 420 agctgaccat gcaggtggct tgcctgaacc aggagcttgc ccagctgaaa aagctggaga 480 agacagttgc cattctccat gaaagtcaga gatccctggt ggtaactaat gagtatctgc 540 tgcagcagct gaataaggag ccaaaaggtt attccgggaa agcgctcctg cctcctgaga 600 agggtcatca tctggggaga tcatcgccct ttgggaaaag cacgttgtct tcctcctcac 660 cagtggcaca tgagactggt cagtatctaa tacagagcgt cttggatgct gccccagagc 720 ctggcttata gagctagcat ggaactcaca ccacagcttc cctggtccac agaggctctc 780 accgccattg ccaccagtat ggtggtatgt actcacaaag attaagaaag aaatgtattc 840 tgattaaaaa aaaaaaa 857 232 1010 DNA Homo sapiens misc_feature Incyte Clone No 1334153 232 gggaaccacc ttctgtagga cagtcaccag gccagatcca gaaggcttga ggccctgtgg 60 tccccatcct tgggagaagt cagctccagc accatgaagg gcatcctcgt tgctggtatc 120 actgcagtgc ttgttgcagc tgtagaatct ctgagctgcg tgccgtgtaa ttcatgggaa 180 aaatcctgtg tcaacagcat tgcctctgaa tgtccctcac atgccaacac cagctgtatc 240 agctcctcag ccagctcctc tctagagaca ccagtcagat tataccagaa tatgttctgc 300 tcagcggaga actgcagtga ggagacacac attacagcct tcactgtcca cgtgtctgct 360 gaagaacact ttcattttgt aagccagtgc tgccaaggaa aggaatgcag caacaccagc 420 gatgccctgg accctcccct gaagaacgtg tccagcaacg cagagtgccc tgcttgttat 480 gaatctaatg gaacttcctg tcgtgggaag ccctggaaat gctatgaaga agaacagtgt 540 gtctttctag ttgcagaact taagaatgac attgagtcta agagtctcgt gctgaaaggc 600 tgttccaacg tcagtaacgc cacctgtcag ttcctgtctg gtgaaaacaa gactcttgga 660 ggagtcatct ttcgaaagtt tgagtgtgca aatgtaaaca gcttaacccc cacgtctgca 720 ccaaccactt cccacaacgt gggctccaaa gcttccctct acctcttggc ccttgccagc 780 ctccttcttc ggggactgct gccctgaggt cctggggctg cactttgccc agcaccccat 840 ttctgcttct ctgaggtcca gagcaccccc tgcggtgctg acaccctctt tccctgctct 900 gccccgttta actgcccagt aagtgggagt cacaggtctc caggcaatgc cgacagctgc 960 cttgttcttc attattaaag cactggttca ttcactgccc aaaaaaaaaa 1010 233 1981 DNA Homo sapiens misc_feature Incyte Clone No 1396975 233 cagcactttg ggaggctggt ctcgaactcc tgatctcagg tgattcaccc gcctcagcct 60 tccaaagtgc tgggattata ggtgtgagcc accgcgcccg gcctggatct gttttcttag 120 cacgcagtga ggaatctttg tacttaaggc cagggcaaca aagtcaagag gtcaaggtgt 180 agggccatga ggcctggacc tatgctgcag gcaagggttt ccatccccgc tgccctaggc 240 actctcttcc caaggccagg ttgggcacct ggggaggtca gttcagaaat atctagcaga 300 gacctcttaa acccccatcc cagcacccca tcctgttgtt cccagagctg gtctcccatg 360 agtgtgctag agccagatag ccgtggcccc ccacccatct cactcacaca cacaggcatc 420 catacacccc agaagacttc ccaaatgagg ccagactcag ggtcacgggg aatgtgcttc 480 tgcccctgta agggctttgg ggaagggggc aacatagtag aggctggaaa gagcccccaa 540 acctgtgccc atgcccctcc agccctgcgt ttccattctg ccttctcaga gtgcccttgc 600 tgcacccaga ccaccggcca ggagagacct tctctcccac tccagcccct ctcactgccc 660 ttcaactaga gctttcacct ttttacattt cccttctgaa ggacacaaat ctgcttttct 720 gcccatacac tggcccaagg gctcacctaa cttgggaggg aaggggctgt tggtacaagg 780 atgattttct gttagactgc cattttgcac ggtctccccc ttcccatctg atgtgtcctg 840 cccctcagct ctttgcctta tctgtgtcac tgtcacttta gcaaaaatac agcggccatt 900 tgtatcagcc tctggtggtt gcttgtgagg tgggactctt gcgggaacag gtggactttg 960 ggaggagtgg gcagggaggg agtggtagtg gcagttctcg agctatctga ttaagccatt 1020 ccgttagttc agttgtgccc tggagggcag gggacagggt cagtatctct ggggctgcag 1080 gccctcttgc cttggccctc

ctggcatggg gtaaccacca gctcagctct cctcctccag 1140 ctttcctctc tctagcacac cccagccagg gcaaggatgc ccacgggcat agctacagca 1200 acccctgcgg gatttggtgt ccacacccga gaggccaggc cagatgggaa agggattagc 1260 gcctcttccc tcacactctg ccaggctgcc gggagcttgg gccaggtcta aggtaatgag 1320 gtgctcctct tcctgctgga aaaaccggac agactcagaa ccacaaaggc aggtgctgcc 1380 agcctggcgc cttcctctct gcttaggctg ggtgagcttg tccaggcctg tgcctcaccc 1440 cttctctctt ctaggctcag tgtatgctta atcaggcatg gtgcatcaga gcgggaagga 1500 gccatcaaca gtgtatactt ctggagcctt ctactgataa acagaggccc cagaagacga 1560 tttgacttac ctgagctccc agctgggact taaacccagg tgtgtctgag tcacaactct 1620 tcggggatgc cgtggtgagc tggggctgag ctcctgtatt cccactcccc caccccaccc 1680 ccactcctgc catatcaggg ctggtctctg tggactcagc ccagggctgc ctcctctttg 1740 tcaccccaaa gtggggcagc cagggacagc cagggtgtgt tcagaatggg ttcttcctgc 1800 agggcaggaa gggcagattg ttaaaggggc tgcggcccag accaccctgg tccctcctcc 1860 ggcagtgact cagacccaca ctgtgccgtg cagctgtgtg ccctgcacac ccgcttgacg 1920 gcgcactgct cacttctggg gggccctttc agaggcactt ttaaagcaaa taaaacattt 1980 a 1981 234 744 DNA Homo sapiens misc_feature Incyte Clone No 1501749 234 gcgcccggtt ctccctcgca gcacctcgaa gtgcgcccct cgccctcctg ctcgcgcccc 60 gccgccatgg ctgcctcccc cgcgcggcct gctgtcctgg ccctgaccgg gctggcgctg 120 ctcctgctcc tgtgctgggg cccaggtggc ataagtggaa ataaactcaa gctgatgctt 180 caaaaacgag aagcacctgt tccaactaag actaaagtgg ccgttgatga gaataaagcc 240 aaagaattcc ttggcagcct gaagcgccag aagcggcagc tgtgggaccg gactcggccc 300 gaggtgcagc agtggtacca gcagtttctc tacatgggct ttgacgaagc gaaatttgaa 360 gatgacatca cctattggct taacagagat cgaaatggac atgaatacta tggcgattac 420 taccaacgtc actatgatga agactctgca attggtcccc ggagccccta cggctttagg 480 catggagcca gcgtcaacta cgatgactac taaccatgac ttgccacacg ctgtacaaga 540 agcaaatagc gattctcttc atgtatctcc taatgcctta cactacttgg tttctgattt 600 gctctatttc agcagatctt ttctacctac tttgtgtgat caaaaaagaa gagttaaaac 660 aacacatgta aatgcctttt gatatttcat gggaatgcct ctcatttaaa aatagaaata 720 aagcattttg ttaaaaaaaa aaaa 744 235 979 DNA Homo sapiens misc_feature Incyte Clone No 1575240 235 gggatgaagc ccagcaagtt cacagggatc cgggaagttg tgtggctgga aacccaggca 60 gggctgcacc acagggacca tttgctggag atgcagcact tgccacagcc accaccactg 120 acagcatgac acccacaaaa agggagcctc cagctgcacc cctgctgctg cgagtacttc 180 ctcagctgtc tgccatgagc ttaaggttaa gtaccaggag ggaggatatg attgggcaaa 240 cctcaggcat gtgttcattc tgtagcttcc agaacatgcg aggagagagc atctggctcc 300 tttgtctcga ggaggagggg gcaggactct gccagaactc actcgataaa agattttccc 360 aaaaggaagg gtgttcagat gacaaaagtc cactacacca ctttccttgg ctatctgatg 420 cacccccatc ttcccatgcg cgcacctcag aaatcaggct cccacctgac ataacacaac 480 catgcctcac aaaaagacag tggtttatcc cttccctagg agaaaagaga ggcaatgcca 540 agctgcttca tcaactgtta atacttcttc cagcccgcaa cccaggatat ctgcaggtgt 600 ctctccctct ggtttggtca tggctctctc tgttctagaa tgtatgggtt aaagtcggct 660 gccacaccat gccctcggca gtgtggtcca aggacccctg agggtcctca aggtccttcc 720 tttcccaacc ccacgtggtt ttcttcagtc aggataccat actgcaacag accgaaggcg 780 gaagcagcta tgaggatgca gcagccttct gttaagccag gctttaagga tctgcaaaaa 840 tgtaaaacga tgccactcct actgatgaaa tatattgttt tggaaaatat aggtttaaaa 900 atttttttaa ggtaacatgt aatggatgta tagtcttcaa atggatgaat aaatgttttt 960 cagagttaaa aaaaaaaaa 979 236 760 DNA Homo sapiens misc_feature Incyte Clone No 1647884 236 cccgactgtg cgccgcggct ggctcgggtt cccgggccga catgggcgcc gccgcgtggg 60 cacggccgct gagcgtgtct ttcctgctgc tgcttctgcc gctcccgggg atgcccgcgg 120 gctcctggga cccggccggt tacctgctct actgcccctg catgggtaag gcctcccaag 180 ccctctgctc agatggagaa actgaggccg ggagaggaaa agccactcct cagatgcgcc 240 cagagacacc ttcacaggtc caggagagaa cctcagagcg ggacggggca tgctcttctc 300 ctctctgcct tagttgcaag ggcacagagg ggccaacgtg tccaactttc catttgacag 360 atgagaaaac tgaggctggg agaggttacg tgacttgctt gaggtctaag ccagtccagg 420 gtccagtaaa tggagttagt ggggcaggac ttgatgtcac tgacccacgc tggctcctgg 480 tgatttttca ttgattcagc aaatatttat ggggcaccta ttctgtgccg ggccctgttc 540 tctgtactgg gaataccgca gtgaataaga taaactccgt gtccttgtag agccttcatt 600 ttagttgggg aagacaaaca attgagaata agtaggccag gcgcggtggc tcacttctgt 660 aatcccacca ctttgagaga ccgaggcagg atcacttgaa gccaggagct cgagatcagc 720 ctaggcaaca tagtgaaaat ccaatctcaa aaaaaaaaaa 760 237 1080 DNA Homo sapiens misc_feature Incyte Clone No 1661144 237 ttttttgtat ttttagtaga gatgggtcta accatgttgc ctaggctggt ctcgaactcc 60 tgagctcaag cgatcctctt gcctcaacct cccaaagtgc tgggattgca gctgtgagcc 120 accgcacccg gccgcattct tctaaatcac agtacatctg gttcccagtg cccaggctct 180 cagggcagag ggtccagtgt gatcactttg catggcctct ctcccctcct gagcttgtgc 240 cagggcccca gggctgacct ggagaaggaa aatggcagag ggtgaagatg gggtgtctgg 300 tttggggacc atcctggccc cccttgtcac tgttggcatc tcttctgcac agtggcattg 360 ctgggaggtg cttactgtgc ctattcaagg ggctggcagc cgcagcctca ctgcagatca 420 gggacttggc ttcccggttg accacaggtc caagaacctg cagggtccag cctccccccc 480 atccccagtc ttccccaccc tggcccggcc ctccaggtgc agaaacatgc aggcccctct 540 ccaggactgt gggaggagtg tgtccctcag actggcctgt gtcctggctc ctcttaccac 600 ctcttccaga ggttgtcacc tgcagctgcc ccaggataaa ggcaaggcca gagaggactc 660 ctgaactcct gtgtgcctgg ggtggcaggg gcaaacatag ccaactggtg gcctgagcgg 720 ggccatggtg aggacaccct tggtggcttg tcccacatca agctgggagg tgacactgag 780 gatgcattag tctgcagcgt atgataaaaa cggcatttca ggccaggcgt ggtggctcat 840 gcctgtcacc ccagcacctt gggaggccga ggtgggcgga tcatatgagg tcaggacttt 900 gagaccagcc tggccaacat ggtgaaaact catctgtact aaaaaaacaa aaattatgtg 960 ggttggtggt gtgcgcctgt aatcccagct acttgggagg ctgaggcagg agaatcactt 1020 gaacctggga ggcggaggct acaacgagcc gaaattgcac cactgcactc cagcgctgat 1080 238 1129 DNA Homo sapiens misc_feature Incyte Clone No 1685409 238 caacgtccga cagaacgagg ggacgtaacg gaggcaggtt ggagccgctg ccgtcgccat 60 gacccgcggt aaccagcgtg agctcgcccg ccagaagaat atgaaaaagc agagcgactc 120 ggttaaggga aagcgccgag atgacgggct ttctgctgcc gcccgcaagc agaggtagcc 180 ccagggaggg gagggaaagg gacggtggag acctgggtta gaccaagggt tatagaagga 240 aagagagcta cctcagggct tgaatgtgga ctagtcgtga ggagcagagt gcattgcttc 300 ctctagggtt ttatttcctc cccaccctcc aaattgttag ctcacagcct tacaggaaag 360 gacgggggcg ggcgcctgcc ctcagtctga tttctgagcg tccctgggtc tgaccttaag 420 ggcaagggca gggagcttca catttcaaat acagttgtgg ttacggcagc ccagtacttt 480 tggccctcct tgctgttcgg ttctcctccc ttctcccaac ctcctcactg gtgttgctgg 540 gtgtggtcct caatacagaa tagagaccct tgggcctgtg tcaccagact tctgacccct 600 tgggcaacag ccagatggag actggtcgcc ttttgagcct cagctctctt cctcttgttc 660 tcctagggtg ggagtacagc agccaaacgc tgaacttagt cccatccact tccatcttat 720 cctttgtgcc cttcatcccc ctgcatcttg tcctttttgc cctctggtac ctcccagtgc 780 cccatcatct ctacccccag ggactcggag atcatgcagc agaagcagaa aaaggcaaac 840 gagaagaagg aggaacccaa gtagctttgt ggcttcgtgt ccaaccctct tgcccttcgc 900 ctgtgtgcct ggagccagtc ccaccacgct cgcgtttcct cctgtagtgc tcacaggtcc 960 cagcaccgat ggcattccct ttgccctgag tctgcagcgg gtcccttttg tgcttccttc 1020 ccctcaggta gcctctctcc ccctgggcca ctcccggggg tgagggggtt accccttccc 1080 agtgtttttt attcctgtgg ggctcacccc aaagtattaa aagtagctt 1129 239 2370 DNA Homo sapiens modified_base (122) a, c, g, t, unknown, or other 239 agaaacttgg cccaagtttg tgacggttct gggtatgaaa gaagtcagtg tttcccaagt 60 gcctgccatg tgcgaggctc tgtgctgggg cgggtgcatg tgtgcgttgg gggcgtggac 120 angnggggtg ggaaaggcct gtgacatttc ctctggtggt ttccacgaac ccaggcgtca 180 cccctcggtg gagataaagt ggagccaccc agctccaccg tgtctcagcc tggggtcggc 240 ctctgctgct tctggactca gtgaccctgg gctgtcaggg agcttctgag ccttggtttt 300 cctgtcgagt aagatggagg taatcgtgtc ttatggggtt gttttgaggg ttaaatgagc 360 tggtggctgt gtgggaaaga gctctgcctc ccgcagggag gaactgtgct gttcttatta 420 ttgtgaactt agtgacaagt gtggcactat tacccatttc cttgtctgcc cccaaccctg 480 gggtcttggg cagagaacag gagttcttgc cattttctcc cagctcccac cttgtgctgg 540 cttgcgggtg ctgaggtcat atttgctggg tgaaagggtg caggccagat atgagccagg 600 cctggcagag agggttttgg tcagcagtga tacctgcagt gttctctgca gttggtttgg 660 gctggccctg ctcctgagaa ctcctgggtt gtcccttcag gcaaccaggg aaggctcctt 720 ggagcagcag catctcccct taccactcgc cgacaccagc ttccgcctga cccagagaag 780 gagtttgggg acagccacag cacgtccagg gcttccaagg cagctggcag agccaatgag 840 gagaccccaa cacccatccg acggctgcag ctctccctga cgtgtgttac cgcagccctg 900 gtcccagccg ctgtgcttct cagggcctgc ctgcccagcc cgggtggata tggtgcccag 960 gcgggccccg gggacacaat gagggccatt ctcagagcca ggcagagcgt gtggggcagt 1020 cctgtcagtc ctatgtgcaa cagctgggat attgtttagg gagtgctggc atcaggccgg 1080 ggctctcctc ctctggccct gccctttggg atgagcaagc ccccaaaggc cttcctgggt 1140 tcctctggtg cacgtgccct ggagttaccc ttctgaagga ggtagacttg tcctcctgtc 1200 ctgggtgcct ggggtgcagg ggtgtgaatt gggctatgtc aagatatgct gggcagtact 1260 gtgaggtggg ggcagagggg agaaggtgtc ccaggaggag ccttcctgga ggggatgata 1320 gtccagcatg ttctgaagtg ggagtagggt gcggcaggag tagggtacca gagaatgagt 1380 gagtcaggca gcagcctcca ctgcgccttg gacacaggtg gccgacagtg tccacctgga 1440 ctggctttgc accccttctg aggtcacagt tgtgtccctt gaaaacttgg gcaggagcac 1500 ctgactggcc cagcttgggt catgccctag gcccagcagt gcgggaggcc aggaaagtag 1560 gcttggggag gctggcctct cctccagttt gaagcatggc aggggttccg ggggaggctg 1620 ctggggggcc tgcgagcatg tccagagcag gaatgcttgg ggtggtgtgt gctttgctcg 1680 tctgggctta tctggccgtg gggaagctgg ttgtgcggat gacgttcact gagctgtgca 1740 cgcatcatcc atggagtctg cggtgtgagt ccttttgccg ctccagggtc acagcctgcc 1800 tccctgctcc agccccctgg ctgaggccct tcctctgccc catgctcttc tcagacagga 1860 atcctgtgga atgtcatctc tttggggagg ccgtctctga ccctgtatgc aaaggccttc 1920 tcccacatta tttttggcac cccactttct tccccgtgaa agcaaattgt ttggtgtctt 1980 tctgtcccac tacagtatag gcccggttca gacagaggcc ttgtccacta ggcctgcgct 2040 atctctgcgg agcccagcca aagcaggggc caggcgaatc ttttgttaaa agaacaatgc 2100 gcgctgggca cagtgctcac gcctgtaatc ccagcacttt gggagtccga agctggagga 2160 tcacttgaac ccaagagttt gagaccaccc tgggcaacat aaggagaacc catctctaca 2220 caaaattagc tgggcgtggt ggtgtatgcc tgtagtccta gctacttggg aggctaaggt 2280 gggaggtggc tgaggtggga ggatcacttg agcctgggag gttgttgcag tgagagccat 2340 gatcgcgcta ctgggcaata gagcagaacc 2370 240 981 DNA Homo sapiens misc_feature Incyte Clone No 2650265 240 cggactgccc tgagggcggg aaagggtggt cactgggtca gcccgaagca cctgacatga 60 gggcggggac cccgaaatgc acacgaagtc cggaactggt cttctgtgat tttcattcgc 120 cctggtctct gttccctttc gtactcaaag ctcgtgcatc cagggagggg aaaccggaga 180 tagggtcttc gggccccggg cagaccctct gtgccgctgc aaaccgttgc agcctgaggc 240 tgtcaggtcc tcccccagac acctgcggac cctccctctc ctggcttccc gtctggtcat 300 ggcgagattc tgggtctgcg tagccggtgc tggcttcttt cttgcatttt tggttttgca 360 ttcgcgtttt tgtggctctc cagttttgag gaactttact tttgcagttt cctggagaac 420 tgagaaaatt ctttaccggc tggatgtggg ttggcctaag cacccagaat attttaccgg 480 aacaacattt tgtgttgcag ttgactccct caatggattg gtttacatag gtcaaagagg 540 ggataacatc ccaaagatat tagtgttcac agaggatgga tatttcctac gagcctggaa 600 ttatacagtt gacacacctc atggtatatt tgcagccagt actctatatg aacaatccgt 660 ctggatcacg gatgtaggaa gtggtatgta tagtaatatc tattaaatta tcttactgga 720 aatcacatct ttgcacatgt ccttgtttgt attgtttaaa atcagagttg ctgaatctaa 780 ttgtaatttc tttaacgatt catgaaatca catgttttta acaaacttta ttttgtactt 840 ctgtggaatt aagaaattta acaagggctg gacgccgtgc tcacgcctgt aatcccagca 900 ctttgggagg ccgaggcggg cggatcacga ggtcaggaga tcgagacgat cctggccaac 960 acggtgaaac ccccgtctcc a 981 241 1204 DNA Homo sapiens misc_feature Incyte Clone No 2677129 241 aggagaggaa ggtaattaca ttaagcatta taatatagtg tgttaaatgc taatgatcat 60 aatcattgaa cccttctcag tcctcatctt atttaaatct ggtattttag cagacttttt 120 tgccttactg ctattaatta attttttttt ggtctctttc ttccttgctt accctttgtt 180 taacaaccaa atcaactcta gatcaatgaa tgaaataaaa aatctccagt acctacctcg 240 gaccagtgaa ccccgcgaag ttctctttga agataggact agagctcatg ctgatcatgt 300 cggtcagggg tttgactggc agagtacggc tgctgttgga gttttgaaag ctgtacaatt 360 tggtgaatgg agtgaccaac ctcgcataac caaagatgtg atttgttttc atgctgagga 420 ttttactgat gttgtacaaa gacttcagtt agatcttcat gaacctccag tttcccagtg 480 cgtacagtgg gtagatgaag ctaaactaaa ccaaatgagg cgggaaggca ttcgttatgc 540 tagaattcag ctttgcgaca atgatatcta cttcatccct agaaatgtca ttcatcagtt 600 caaaacagtt tcggcggtgt gcagcttagc ctggcatata aggcttaaac agtaccaccc 660 tgttgtggaa gccactcaaa acacagaaag caattctaac atggactgtg gtttaactgg 720 aaagcgagaa ttagaagttg actcccaatg tgtgaggata aaaactgaat ctgaagaagc 780 atgcacagag attcagctgt taacaactgc ttcatcatct ttcccacctg catcagaact 840 taatctacag caagatcaga agactcagcc tattccagtt ttaaaagtgg aaagtagact 900 ggactctgac cagcaacaca atctgcaaga acattcaacc acttctgtgt gatatgtaca 960 tattcaaaca cattttttaa cttttttaaa ttttgatgtg aagttatagt tttataactg 1020 gcttaagtta agttttattg gagaaatctt gcctataatt ctataaagag aaatgacatt 1080 cacaaatgtc agcatatctt tttacacaga tatgcaagtt agagtgtatc tatccggtag 1140 tacgtatgta taagtggtct gcgcacttct gttttaaggg tgaggtacat ccatctctct 1200 cgag 1204 242 784 DNA Homo sapiens misc_feature Incyte Clone No 3151073 242 cacagacaaa ccgtcaacag ctggtctcgc atgtcctttg ttcccggtct gctcttgtgt 60 ttcgttctcc tcctgtgtgt tagccctgtg taccttccct ctcgttcacc ctccacattt 120 cccatctctg agcccctcag ctttataggg atgtcagctt ggccccaatg tagtcccatt 180 tacagccaga ctcctggact tgcctatgag ccatcttcat ttccaaaaag gcgatattgg 240 gtatgtacat tgcatgaaat aaagtgggaa tgtcccagaa gcagaaggac atctgatgca 300 gtccacgcca ataaattggg cttaccttta aaaatcatct gaatatgcag gtcttagggc 360 agagaatata gacagcttaa gattttctaa actacaagtc ccacccaaaa tacggtattt 420 tcatgatttc ccaaaggttg accatcagca agactggata tttttcagac ttaagatgac 480 tgttcagtag ctgatgttct ggaaaagatc tgggccttca ccatgaaatc ttaaatgtga 540 gcagttactg gatgttgaat ttgaaaccta ttcatttctt tttttaaaac aagcttggtc 600 atttctgtgc aatgctataa ttcggaacga aacaaagcac aatgttaata aggtagacac 660 taattcattc ctctgaagag agatctcttc cagacatttt aagccagggc aagaaatgtt 720 taaagatgtt ttctgcagtt gccgtagaaa cactccttag cagtcatctt ggctgttggt 780 aaaa 784 243 426 DNA Homo sapiens misc_feature Incyte Clone No 3170095 243 ctccattaaa ccaccaccag ctccccaagc caccccttca gccatgaagt tcctgctcct 60 ggtcttggca gccctcggat tcctgaccca ggtgatccca gccagtgcag gtgggtcaaa 120 atgtgtgagt aacaccccag gatactgcag gacatgttgc cactgggggg agacagcatt 180 gttcatgtgc aacgcttcca gaaaatgctg catcagctac tccttcctgc cgaagcctga 240 cctaccacag ctcatcggta accactggca atcaaggaga agaaacacac aaaggaaaga 300 caagaagcaa caaacgaccg taacatcata ataaccactg ctatcgcctc caccaactca 360 gagaaatatc atttccacag ttccaattcc tcctacattg ctgagtacta gccaaggctc 420 ctcttt 426 244 1732 DNA Homo sapiens modified_base (1651) a, c, g, t, unknown, or other 244 cgggaccaga gcacgttcct ggctgcagag gccacaagtc acgctgtctc tgagagtgga 60 atgtcaccat cgcccaggtg gggatttttg tgtgttttgt tcactgctgt acacccagcc 120 cccagcacag cgcctgtcca ggacaagtgc ccagtaaaca cttgggaagc aatgcaagcg 180 tcctcccagc agctcctgca aacagacccc cgacccaagc ctttccttct gcctccactg 240 ccaccactgc tgctcatctc tgctggcaca gaagtctctt ccctggtctt ccagaaatcc 300 cctctccaca ctcagccaga gggagctatt aaaactgcgg gccagcccac atcagtccac 360 agcaaagtcc tctctaaggg atctctgttg cttggagaat aaaccctcgg attccttcct 420 tggctctcgg ggcctcctct ctgacctccc tctgtctcct ctcccagcct tcctcctcac 480 tcaccctcca gccatgctgg cttcctcctt gctcctgaaa cagcctgaga gccacactgc 540 cccgggccct ttgcactggc tgtttcctct gcctggagca cttctcctag gcatccacag 600 ggctccctcc cacaactcct tcgggtgccc acatgggaag ccatccctga ccaccccccc 660 gacttccttc tgagcaaggt agggtctttc tacctagtca tgagggcagg gatttttgtc 720 tgttgtgttc tctgtgtgcc cccagtgcca tcccagtgcc tggcagatgg taagtgctcg 780 acacacattg gctgactgcc tgaatgaaca actctatgag ccgatggcag ataaggacac 840 tgaggtcctc tggggtaggt gaccagccca aggccacaca gctggtctga gattaggcca 900 ggagaggagc ccgggttggt cacatcctgg agttggcgtc ttggaaactg catcaggaga 960 ataacaaaga tgagacgcag gctctaacaa gtggatacca gtgactctcg ccccgccagc 1020 cccagccctg cagccttggg cccttccagg agtcatggtc tgcctgcctg gggcattcca 1080 ggcttcgacc caggtcctgc actttctatt ttgagcctct tagtcctgag gactgtgtgt 1140 tcccagcagg cggcgcgggc cagaggctga gcctgggtgt ggctgtcacc ctatctgggg 1200 ccagagaccc agattcccgg gcccttaacc tgttggctgc tgagggctct ggcataagcc 1260 ctgttccctg cttgattgtc tccccttcaa gcccctgccc tggtatcgta tcggcccatc 1320 tcaccttgga ttatatccct gtttggcccc atttgaatcc tggctctgcc cctttccagc 1380 aatgtgacct tgggcaagtc acttcatctc tctggtctca gttcttcatc tggaaatggg 1440 acaataagag tacctgtctc tggccatgtg tggtgactca tgcctgtaac cccagcgctt 1500 tgggaagccg agccgagaga attgcttgag accaggagtt tgagatcagc cctgggcaac 1560 atagtgagac ccctgtctct acaaaattct aaaaaaatta gccggttgtg gtggtgtgtg 1620 cctgtagtcc cagctattct agaggctgag ncggnaggat tgcttgagcc cagcagtttg 1680 aggctgcagt gagctatgat tatgcccgtg aaggcccccc aaaaaaaaaa aa 1732 245 918 DNA Homo sapiens misc_feature Incyte Clone No 3836893 245 agcctctagg tcattgtggt gccttgtagc tgtcccggga gccctcagca gcagttggag 60 ctggtgcaca ggaaggatga ggaagaccag gctctggggg ctgctgtgga tgctctttgt 120 ctcagaactc cgagctgcaa ctaaattaac tgaggaaaag tatgaactga aagaggggca 180 gaccctggat gtgaaatgtg actacacgct agagaagttt gccagcagcc agaaagcttg 240 gcagataata agggacggag agatgcccaa gaccctggca tgcacagaga ggccttcaaa 300 gaattcccat ccagtccaag tggggaggat catactagaa gactaccatg atcatggttt 360 actgcgcgtc cgaatggtca accttcaagt ggaagattct ggactgtatc agtgtgtgat 420 ctaccagcct cccaaggagc ctcacatgct gttcgatcgc atccgcttgg tggtgaccaa 480 gggtttttca gggacccctg gctccaatga gaattctacc cagaatgtgt ataagattcc 540 tcctaccacc actaaggcct tgtgcccact ctataccagc cccagaactg tgacccaagc 600 tccacccaag tcaactgccg atgtctccac tcctgactct gaaatcaacc ttacaaatgt 660 gacagatatc atcagggttc cggtgttcaa cattgtcatt ctcctggctg gtggattcct 720 gagtaagagc ctggtcttct ctgtcctgtt tgctgtcacg ctgaggtcat ttgtacccta 780 ggcccacgaa cccacgagaa tgtcctctga cttccagcca catccatctg gcagttgtgc 840

caagggagga gggaggaggt aaaaggcagg gagttaataa catgaattaa atctgtaatc 900 accagctaaa aaaaaaaa 918 246 676 DNA Homo sapiens misc_feature Incyte Clone No 4072159 246 gctcacacag ctcccggcca ggtcacccgc catggtcctc cctctgccct ggctctctcg 60 gtaccatttc cttcgcctcc ttctgccctc ctggtccttg gcaccccagg gctcccatgg 120 gtgctgctcc caaaacccca aagcaagcat ggaagagcag accaactcca gaggaaatgg 180 gaagatgacg tcccctccca ggggccctgg gacccaccgc acagctgagc tggcccgagc 240 tgaagagttg ttggagcagc agctggagct gtaccaggcc ctccttgaag ggcaggaggg 300 agcctgggag gcccaagccc tggtgctcaa gatccagaag ctgaaggaac agatgaggag 360 gcaccaagag agccttggag gaggcgccta agtttccccc agtgcccaca gcaccctccg 420 gcactgaaaa tacacgcacc acccaccagg agccttggga tcataaacac cccagcgtct 480 tcccaggcca gagaaagtgg aagagaccac aaaccgcagg caattggcag gcagtggggg 540 agccagggct ctgcagtctt agtcccattc ccctttgatc tcacagcagg cagggcacca 600 caggccttac taggaattca ccctggacca tgccctaaaa taacctcacc ccaaatacaa 660 taaagggacg aggcaa 676 247 2255 DNA Homo sapiens misc_feature Incyte Clone No 1003916 247 ccggtgcgtc ctgggtctgt ctgcgcggag ttccccgggg cgcgaggaga ggggactgga 60 gaaagaggag ggccgggcag cggaggggag gaggcggtgc gtgcctcgcc tgccaaaggg 120 agatccgctc ctctgcgtgc gatccccggc gcccgcccgc gcccacagcg ctccgccaga 180 gctgccgccg cggactcgcc gggagtgggg gtctccgctg gtgccagccc gcttctggag 240 accctccgcc tcctgccaac ccctgctctt ccaggtcggg ccccggggtt ctgcggctgt 300 tagggacaga ggcaaagaag ggcaggacgg tccggtttcc cgtggatgtt cccgcccgag 360 aaagacagca agttgtgtgt gcgcccggga cgcgggaggg aaggtagccg ccgcccgcca 420 gccatggacc atcatcttta gtgcagagga tggaaagttg atgcccagta agactgaaga 480 tccattctgc attacggaac tgtggattat ctgtgggtcc ctggtgattt cacaccttca 540 ttcactcctg cagtccctga acacttactt ggggtcctca ttgccctatc tggtgaaaga 600 tggcatccag cctgacttgt actggagtaa tctgggcttt gctgtctttt ctttgtgctg 660 ccacctcctg cgtggggttc tttatgcctt actggctctg gggatcacag ctgggcaagc 720 ctgtgtcctt cggtaccttc cggaggtgct catatcctgt gcatgatgag agtcggcaga 780 tgatggtgat ggtggaggaa tgtgggcgct atgcctcctt ccagggcatc cccagcgcag 840 aatggaggat ctgcaccata gtgaccggcc tgggttgtgg cctcctcctc ctggtggcgc 900 tcactgccct catgggttgc tgtgtttccg acctcatctc caggacagtg ggaagagtgg 960 ctggaggaat tcagtttctt gggggcttgt tgattggtgc tggctgtgcc ctctacccct 1020 tgggctggga cagtgaggaa gtccggcaga cttgtggcta cacttctggc cagtttgacc 1080 tggggaagtg tgaaatcggc tgggcctact actgcacggg agcaggtgcc actgccgcca 1140 tgctgctgtg cacgtggctg gcttgctttt cgggcaagaa acagaagcac tacccatact 1200 gagatggagc taccaagagc agacagagga gaagatgggc caaaggggct tggagaggtc 1260 aaaacatcca cctaccttca aaaggtggga tagtagttct aatccaatac aatgctaata 1320 aaatgaaacc cgataaaatc aggaacatga tataggaagg aaggattgta ggagatttgt 1380 gggggaaaaa aaaggagagt atagaatgat ggagaaaaat ggaccaaagg ctaaaaatat 1440 tgcagggcat cgggtgtttc tattccacag agtattgtta atgtacaaca cacacacaca 1500 cacacacaca cacacacaca cacacacaca acaaatctac atatacaaac aagggtttgg 1560 gttttagttt ttttttttta aggtgaggac tcagaaaatc aaagggctag tagaaacagt 1620 gttatgttgg gaagcagggt acccccaaag atgttccctg taggtcacgg cactcccaaa 1680 agcacacaag cacatacaga catatgcatc cccacacacg cctatgcaca aacgtggatt 1740 atcgcacaga ctgggaggtt tagtggtgca tttctcctct gttttctttt taatatacat 1800 ttaaaataca gtattatcac tttataaaac atacattaag cctaataaat ggaccaataa 1860 gccaaactat cagtattttg tatatcctgc ataaactcta atttagttcc tcaacatatt 1920 ttcagtgttt atgcagacct ttagagttaa gcctttgtat ttccatgtta ttccacaata 1980 tgcaatattt ctctgagtag cttctgctat gatattctta tgaagaaaag gggcaacttt 2040 ctgtccacta taggagagaa ttcagccgaa gatatgagag taatgagaga cattttccag 2100 tcattggatc gtgttttctt ttgtccatta ttgtactgtg ctgtaccaca tttatttcta 2160 tattcatttt gtaaaaaatt taaaagtgct attttgtttg tatttgaaaa tctctgtgaa 2220 taaattctct ctttgatcaa tagcaaaaaa aaaaa 2255 248 1223 DNA Homo sapiens misc_feature Incyte Clone No 2093492 248 gacgcttcac cagcgtcctg gtggtgtcca gtctctcacc cctgtgcgtg ctgctctgga 60 gggaactcac aggcatccag ccaggcacat ccctgctcac cctgatgggc ttcaggctgg 120 agggcatttt cccagcggcg ctgctgcccc tgttgctgac catgattctt ttcctgggcc 180 cactgatgca gctctctatg gattgccctt gtgacctggc agatgggctg aaggttgtcc 240 tggccccccg ctcctgggcc cgctgcctca cagacatgcg ttggctgcgg aaccaagtga 300 tcgccccgct gacagaggag ctggtgttcc gggcctgtat gctgcccatg ttagcaccgt 360 gcatgggcct gggccctgct gtgttcacct gcccgctctt ttttggagtt gcccattttc 420 accatattat tgagcagctg cgtttccgcc agagcagcgt ggggaacatc ttcttgtctg 480 ctgcgttcca gttctcctac acagctgtct tcggtgccta cactgctttc ctcttcatcc 540 gcacaggaca cctgattggg ccggttctct gccattcctt ctgcaattac atgggtttcc 600 cagctgtttg cgcggccttg gagcacccac agaggcggcc cctgctggca ggctatgccc 660 tgggtgtggg actcttcctg cttctgctcc agcccctcac ggaccccaag ctctacggca 720 gccttcccct ttgtgtgctt ttggagcggg caggggactc agaggctccc ctgtgctcct 780 gacctatgct cctggatacg ctatgaactc tcaccggctc cccagccctc cccaccaagg 840 ggtactgcag gggaagggct ggctggggtc cccgagatct caggaatttt tgtaggggat 900 tgaagccaga gctagttgcg tcccagggac caagagaaag aagcagatat ccaaagggtg 960 cagccccttt tgaaaggggt gtttacgagc agctgtgagt gaggggacaa ggggcaggtc 1020 ccaggagcca cacactccct tcctcacttt ggactgctgc ttctcttagc tcctctgcct 1080 ctgaaaagct gctcggggtt ttttatttat aaaacctctc cccacccccc accccccaac 1140 ttcctgggtt ttctcattgt ctttttgcat cagtactttg tattgggata ttaaagagat 1200 ttaacttggg taaaaaaaaa aaa 1223 249 1188 DNA Homo sapiens misc_feature Incyte Clone No 2108789 249 gcccctccca gcctgccaag aaaacggtag gggagcatga tggggccttt gaggcagggt 60 cgcagggaca agctcagctt taggcaccat ctgttcccat cgcgcctgct gctgtgaccc 120 gttttggaaa actggtgtgt accgaggcgc tgactgcacg gctgaccgcc tgctcgtgcc 180 ttcattctgc agcggcatgg tccctcccat tctggctcca cctgcagcct ccctgggtgg 240 cctaggctcc cccgaccaag agacctccct ctcatgatca ctggtacctg ggggcctgaa 300 ttctggcccc cggctcccca cacagctggg actggcctgg atggctgtcc tggtagcccc 360 tgcccaccct gacagaggga gctgggcctc ccctcatcct ctgtaactcc cgccttcacc 420 agactcgagg acaccctggc cctgctgagg catacagagc ttcagcccag cacagaagca 480 agacaaaatc agtggctctt agagtttaga aaacaagaca gactctcaga tgaaagatct 540 gacaagcacc gtggccagtc acagggagag acttgatgtc tggcctttta attcctcctc 600 tgccagggtg ggtcctggga cctctaatgt gggcatgtcg tccaccccag gacgagccat 660 cagggacaga ccccccaccc ccaaggctgc agccacacca tgtttcaggc ttggggctgg 720 ggcaggcttg ggctcaatcc tgggcaccca ggggcagccc acccctaacc tggctcctac 780 ccaccttgcc cttgaaggat gggcctgctg cacgtctccc tcctccaccc cataccacac 840 tggggggtct gagccacccc cctcagcccc gttcggctca gaccgacccc cactccatcc 900 ccagacctgc agcacaagtg cgcgggcctg tcctcccagg ggcctgggcg actccatatg 960 caatcagtag cgagcagccg ggccccacag accctcatgc actctcttac gtgccattct 1020 ccccagactt tttttgtact taatgtatga aagatccaaa ctaatattgc tgtaaaaagg 1080 agagacaaat taatatagct tattctataa atatatctgt atataaaggt ttctgtatat 1140 tgtatagagc tgtgtataaa ctggatgtag aagcacaaaa aaaaaaaa 1188 250 1792 DNA Homo sapiens misc_feature Incyte Clone No 2171401 250 cgccgctggg gccggcccgc acggcttcat ctgagggcgc acggcccgcg accgagcgtg 60 cggactggcc tcccaagcgt ggggcgacaa gctgccggag ctgcaatggg ccgcggctgg 120 ggattcttgt ttggcctcct gggcgccgtg tggctgctca gctcgggcca cggagaggag 180 cagcccccgg agacagcggc acagaggtgc ttctgccagg ttagtggtta cttggatgat 240 tgtacctgtg atgttgaaac cattgataga tttaataact acaggctttt cccaagacta 300 caaaaacttc ttgaaagtga ctactttagg tattacaagg taaacctgaa gaggccgtgt 360 cctttctgga atgacatcag ccagtgtgga agaagggact gtgctgtcaa accatgtcaa 420 tctgatgaag ttcctgatgg aattaaatct gcgagctaca agtattctga agaagccaat 480 aatctcattg aagaatgtga acaagctgaa cgacttggag cagtggatga atctctgagt 540 gaggaaacac agaaggctgt tcttcagtgg accaagcatg atgattcttc agataacttc 600 tgtgaagctg atgacattca gtcccctgaa gctgaatatg tagatttgct tcttaatcct 660 gagcgctaca ctggttacaa gggaccagat gcttggaaaa tatggaatgt catctacgaa 720 gaaaactgtt ttaagccaca gacaattaaa agacctttaa atcctttggc ttctggtcaa 780 gggacaagtg aagagaacac tttttacagt tggctagaag gtctctgtgt agaaaaaaga 840 gcattctaca gacttatatc tggcctacat gcaagcatta atgtgcattt gagtgcaaga 900 tatcttttac aagagacctg gttagaaaag aaatggggac acaacattac agaatttcaa 960 cagcgatttg atggaatttt gactgaagga gaaggtccaa gaaggcttaa gaacttgtat 1020 tttctctact taatagaact aagggcttta tccaaagtgt taccattctt cgagcgccca 1080 gattttcaac tctttactgg aaataaaatt caggatgagg aaaacaaaat gttacttctg 1140 gaaatacttc atgaaatcaa gtcatttcct ttgcattttg atgagaattc attttttgct 1200 ggggataaaa aagaagcaca caaactaaag gaggactttc gactgcattt tagaaatatt 1260 tcaagaatta tggattgtgt tggttgtttt aaatgtcgtc tgtggggaaa gcttcagact 1320 cagggtttgg gcactgctct gaagatctta ttttctgaga aattgatagc aaatatgcca 1380 gaaagtggac ctagttatga attccatcta accagacaag aaatagtatc attattcaac 1440 gcatttggaa gaatttctac aagtgtgaaa gaattagaaa acttcaggaa cttgttacag 1500 aatattcatt aaagaaaaca agctgatatg tgcctgtttc tggacaatgg aggcgaaaga 1560 gtggaatttc attcaaaggc ataatagcaa tgacagtctt aagccaaaca ttttatataa 1620 agttgctttt gtaaaggaga attatattgt tttaagtaaa cacattttta aaaattgtgt 1680 taagtctatg tataatacta ctgtgagtaa aagtaatact ttaataatgt ggtacaaatt 1740 ttaaagttta atattgaata aaaggaggat tatcaaattc aaaaaaaaaa aa 1792 251 2005 DNA Homo sapiens misc_feature Incyte Clone No 2212530 251 gcgaggcggg aggaggtgag gctccggcgc acacccaaac cgcgctgcgc ccgctccttc 60 cgggccccgg agatggcgcc tccaccggga tgagctagcc agcctgggca ataccagagg 120 cggccctcgg cgcgcgcagg ggaccgagct ggtcgcccca accgggtttg atttctgatg 180 actctggcct gagttccagg atggtttttt cttgggacca gacatgaaca aaagttgacc 240 tcatgagcac ttcaacctct ccagctgcca tgctcctccg gaggctgcgg cgactctcct 300 ggggcagcac tgctgtccag ctcttcatcc taacagtggt gacgtttggc ctgctggccc 360 ccctggcctg tcaccgactt ctacactctt acttctatct gcgccattgg catctgaacc 420 aaatgagcca agagttcctg cagcaaagct tgaaagaggg tgaggctgcc ctccactatt 480 ttgaggagct tccctctgcc aatggctcag tgcccattgt ctggcaggcc accccccggc 540 cctggctggt gatcaccatc atcactgtgg acaggcagcc tggcttccac tacgtcctgc 600 aggttgtgtc ccagttccac cggcttcttc agcaatgtgg cccccagtgc gaggggcacc 660 aactcttcct gtgcaacgtg gagcgtagtg tgagccattt tgatgccaag ttgctctcca 720 agtatgtccc tgtggccaat cgctatgagg gcactgagga tgattatggt gatgaccctt 780 cgaccaactc gtttgagaaa gagaagcagg actatgtcta ttgcctggag tcatccctgc 840 agacctacaa cccagactac gtcctgatgg tagaagacga tgctgtacca gaagagcaga 900 tcttcccagt cttggagcac cttctgcggg ctcgcttctc tgagccacat ctcagagatg 960 ccctttatct caagctgtat caccccgaga ggctccagca ctacatcaat ccagagccca 1020 tgcggatcct ggaatgggtt ggtgtaggca tgttgctggg gcccttacta acctggatat 1080 acatgaggtt tgccagccgc ccagggttta gctggcctgt aatgctcttc ttctccctgt 1140 atagcatggg tctggtggag ctggtgggtc ggcactattt cctggaactg cggcggctga 1200 gtccttccct gtacagtgtg gttcctgcct ctcagtgttg caccccagcc atgctcttcc 1260 cggcacctgc ggcccgccgg accctcacct acctgtccca agtgtactgc cacaagggct 1320 ttggcaagga catggcactg tactcgctgt tgagggccaa gggagagagg gcctatgtag 1380 tggagccgaa cctcgtgaaa cacatcgggc tcttctccag tctccggtac aactttcatc 1440 ccagtctcct ctagggtgcc aagagatgcc tttcggaagt tggccacttc ttgaagattc 1500 aaatatttat ctctttattt agacatggtt gcctgcaggt atttcactgt ttactgttgt 1560 tagagatata ggcactgggg cagctgagga acctcaatat gttaagagcc ttggctttgg 1620 tagcctcctg gcaggagcag cagtttgcca caggtccgga cctctccctc cacacagcca 1680 cactgcctca tgcagtctga cccacccagt gagggtgcat ttgaacactg attatattct 1740 ccatttgttt ttaagctctg ctttgtgtta gagcttgtga ctgccaaaaa ttttgtgcac 1800 agtgatatga ctgttttagg atcttaaggg tagaattttg tgaaaggtga gatcctttgg 1860 aattgagttc tttctcattg ggtatgaaaa tggatgtatg tttagaatat atgcccaacg 1920 aggcaggacc atgtggatag attccatttg tttccttgac ctgatgtaat aaaaactgat 1980 aaaagccgtg cagtgcccgg catct 2005 252 471 DNA Homo sapiens misc_feature Incyte Clone No 2253036 252 tgggtatgtc tcatggagag gtgctttcac tgcttccctg ttcacctagt cttcaatctg 60 gtccagagtt tcagccccat ctctggagtt gagtcctgcc ttctccctca atgtgacaaa 120 tgttggccaa tggtatatcg cagttgtgat gcaagcagag gcttggtaaa tgcctgcata 180 ctggggtttg tcctcttgga atgctcattt gtgggagccc tgaacaacta tgtaagaagt 240 ctggctaccc tgctggagag aacacatggt gggaagagac taaaattatg tgaagagagt 300 caggccagcc atcccagctt ctctgctgag ccccgccatc agccaacctg ccagctgaat 360 gcaaccgtaa gagtgatcac cagcaagatc actagaaaaa ccacctaact gagcccaccc 420 tggattgaac aatcataaac aaataaaatg gttattgttt taaaaaaaaa a 471 253 3775 DNA Homo sapiens misc_feature Incyte Clone No 2280161 253 tccctgagag gtgtccactg atgtctcctc ctcatttcat ttagcagctc ttagtttgtg 60 aagaatctgt agatgctcaa agtataattg ccccagggaa tttatgctaa tcacaacctc 120 ttcttcagac accaagtcta ccttgaatgg gtttgctgtg atatggcact tcaggtctcc 180 ttttccatct gccaatatca gactgcctgt gtccccagag catgaaatca gccttacagt 240 gcttggcttg cttgtgagga catccggaac ttcaaatctg ggttttagag gagtctcttc 300 gttaatttta agcctgaaaa tgtttccttc tataccataa atttcagcca ggagaggaac 360 cttacttgct tcattgatga tttggaacct ggtgctgtct tcatctgttg tgactgaatc 420 caataatgcc cgataggtgg acttcttgga aagccactgt ttctgacgcc tgtaaaatgc 480 gatcttgtta cagtctctga aaatgttttt atctacagct tcatcttcaa cacttatttc 540 ctctttcact gctgcttcca tggcttctct gtcactccga ccagctccca gctctcagga 600 caagggccct gggcgatctt ttaaaaaagc cgattgggtg tctttctaaa attacaacca 660 gtacttcatc gtcaagtttc tgggaaggga gtcccctcca gattctcatg gagtgacaaa 720 tcttgactct tgctcctgga atttttcagg cccaaactag cgtttctaca atgatttatt 780 tggcaaattt gtcttgatta tgggtggctg atgaggaacg tgcttttgtt aggaaccgaa 840 actgggcggc ggtgagggcg tgtacgcaat gagtccggaa gagggtgaaa tgctttcggt 900 aggcactcca cggctgtgaa gatggcggcg gctgcgtggc ttcaggtgtt gcctgtcatt 960 cttctgcttc tgggagctca cccgtcacca ctgtcgtttt tcagtgcggg accggcaacc 1020 gtagctgctg ccgaccggtc caaatggcac attccgatac cgtcggggaa aaattatttt 1080 agttttggaa agatcctctt cagaaatacc actatcttcc tgaagtttga tggagaacct 1140 tgtgacctgt ctttgaatat aacctggtat ctgaaaagcg ctgattgtta caatgaaatc 1200 tataacttca aggcagaaga agtagagttg tatttggaaa aacttaagga aaaaagaggc 1260 ttgtctggga aatatcaaac atcatcaaaa ttgttccaga actgcagtga actctttaaa 1320 acacagacct tttctggaga ttttatgcat cgactgcctc ttttaggaga aaaacaggag 1380 gctaaggaga atggaacaaa ccttaccttt attggagaca aaaccgcaat gcatgaacca 1440 ttgcaaactt ggcaagatgc accatacatt tttattgtac atattggcat ttcatcctca 1500 aaggaatcat caaaagaaaa ttcactgagt aatcttttta ccatgactgt tgaagtgaag 1560 ggtccctatg aatacctcac acttgaagac tatcccttga tgattttttt catggtgatg 1620 tgtattgtat atgtcctgtt tggtgttctg tggctggcat ggtctgcctg ctactggaga 1680 gatctcctga gaattcagtt ttggattggt gctgtcatct tcctgggaat gcttgagaaa 1740 gctgtcttct atgcggaatt tcagaatatc cgatacaaag gagaatctgt ccagggtgct 1800 ttgatccttg cagagctgct ttcagcagtg aaacgctcac tggctcgaac cctggtcatc 1860 atagtcagtc tgggatatgg catcgtcaag ccacgccttg gagtcactct tcataaggtt 1920 gtagtagcag gagccctcta tcttttgttc tctggcatgg aaggggtcct cagagttact 1980 gggtattttt cttatccctt gactctgata gtaaacctgg ccctctcagc agttgacgcc 2040 tgtgttattt tatggatatt tattagcctg actcaaacaa tgaagctatt aaaacttcgg 2100 aggaacattg taaaactctc tttgtatcgg catttcacca acacgcttat tttggcagtg 2160 gcagcatcca ttgtgtttat catctggaca accatgaagt tcagaatagt gacatgtcag 2220 tcggactggc gggagctgtg ggtagacgat gccatctggc gcttgctgtt ctccatgatc 2280 ctctttgtca tcatggttct ctggcgacca tctgcaaaca accagaggtt tgccttttca 2340 ccattgtctg aggaagagga ggaggatgaa caaaaggagc ctatgctgaa agaaagcttt 2400 gaaggaatga aaatgagaag taccaaacaa gaacccaatg gaaatagtaa agttaacaaa 2460 gcacaggaag atgatttgaa gtgggtagaa gagaatgttc cttcttctgt gacagatgta 2520 gcacttccag cccttctgga ttcagatgag gaacgaatga tcacacactt tgaaaggtcc 2580 aaaatggagt aaggaatggg aagatttgca gttaaagatg gctaccatca gggaagagat 2640 cagcatctgt gtcagtcttc tgtacggctc catgggatta aaggaagcaa tgacatcctg 2700 atctgttcct tgatctttgg gcattggagt tggcgagagg tgtcagaaca aagagaacat 2760 cttactgaaa acaagttcat aagatgagaa aaatctacga gcttcttatt tacaacactg 2820 ctgccccctt tcctcccaga ctctgacatg gatgttcatg caacttaagt gtgttgttcc 2880 tgaactttct gtaatgtttc attttttaaa tctgacaaac taaaaagttt aacgtcttct 2940 aaaagattgt catcaacacc ataatatgta atctccagga gcaactgcct gtaattttta 3000 tttatttagg gagttacata ggtgatgggg gaaattgtta actacctttc attttcctgg 3060 gaagtcaagg ttacatcttg cagaggttgt tttgagaaaa aagggccctt ctgagttaag 3120 gagccatagt tctatcaatg atcaaaagaa aaaaaaaaaa aagagaaact gttacagtat 3180 gattcagatc atttaaaaaa gcaaaatcaa gtgcaatttt gtttacaaat ggtgtatatt 3240 aaagattttt ctatttcaga tgtactttaa agagaaatat tagcttaact cttttgacat 3300 ctgctattgt gacacatccc attgctggca atgtggtgca cactccgaaa cttttaacta 3360 ctgttttgta agcctccaag ggtggcattg cagggtcctt aggcaatgtt ttgtttgcct 3420 ttatgcagag aggtgctcca agtgctgtga ttgagcaccg tgctagagga actgtaatgc 3480 ttcagaagtt gtagcttata caaaggaaac aggtcctgct ggcttaattt aaacagttat 3540 tgcatgaagt agcgtggagg ccctggactg ctgctcgttc tttaggatgg actgttctgg 3600 tatctggtat tggtttagag actgttaata agggacatca caaggtgatg ggattcattt 3660 gaagcactct atttctgttt taatggtttt atccaatttt gccttcccaa gatttttgtt 3720 ctacataaaa agttcatgcc actttttaat ataaaaaaat ttaacaaaaa aaaaa 3775 254 1856 DNA Homo sapiens misc_feature Incyte Clone No 2287485 254 cggccgcacc cggccggagc ggagggcaga gcgcgcgccc agttgcccgg gcaccaaatc 60 ggagcgcggc gtgcgggagg gcccagagca ggactggaaa tgtcctggcc gcgccgcctc 120 ctgctcagat acctgttccc ggccctcctg cttcacgggc tgggagaggg ttctgccctc 180 cttcatccag acagcaggtc tcatcctagg tccttagaga aaagtgcctg gagggctttt 240 aaggagtcac agtgccatca catgctcaaa catctccaca atggtgcaag gatcacagtg 300 cagatgccac ctacaatcga gggccactgg gtctccacag gctgtgaagt aaggtcaggc 360 ccagagttca tcacaaggtc ctacagattc taccacaata acaccttcaa ggcctaccaa 420 ttttattatg gcagcaaccg gtgcacaaat cccacttata ctctcatcat ccggggcaag 480 atccgcctcc gccaggcctc ctggatcatc cgagggggca cggaagccga ctaccagctg 540 cacaacgtcc aggtgatctg ccacacagag gcggtggccg agaagctggg ccagcaggtg 600 aaccgcacat gcccgggctt cctcgcagac gggggtccct gggtgcagga cgtggcctat 660 gacctctggc gagaggagaa cggctgtgag tgcaccaagg ccgtgaactt tgccatgcat 720 gaacttcagc tcatccgggt ggagaagcag taccttcacc acaacctcga ccacctggtc 780 gaggagctct tccttggtga cattcacact gatgccaccc agaggatgtt ctaccggccc 840

tccagttacc agccccctct gcagaatgcc aagaaccacg accatgcctg catcgcctgt 900 cggatcatct atcggtcaga cgagcaccac cctcccatcc tgcccccaaa ggcagacctg 960 accatcggcc tgcacgggga gtgggtgagc cagcgctgtg aggtgcgccc cgaagtcctc 1020 ttcctcaccc gccacttcat cttccatgac aacaacaaca cctgggaggg ccactactac 1080 cactactcag acccggtgtg caagcacccc accttctcca tctacgcccg gggccgctac 1140 agccgcggcg tcctctcgtc cagggtcatg ggaggcaccg agttcgtgtt caaagtgaat 1200 cacatgaagg tcacccccat ggatgcggcc acagcctcac tgctcaacgt cttcaacggg 1260 aatgagtgcg gggccgaggg ctcctggcag gtgggcatcc agcaggatgt gacccacacc 1320 aatggctgcg tggccctggg catcaaacta cctcacacgg agtacgagat cttcaaaatg 1380 gaacaggatg cccgggggcg ctatctgctg ttcaacggtc agaggcccag cgacgggtcc 1440 agcccagaca ggccagagaa gagagccacg tcctaccaga tgcccttggt ccagtgtgcc 1500 tcctcttcgc cgagggcaga ggacctcgca gaagacagtg gaagcagcct gtatggccgg 1560 gcccctggga ggcacacctg gtccctgctg ctggctgcac ttgcctgcct tgtccctctg 1620 ctgcattgga acatccgcag atagaagttt tagaaagttc tatttttcca aaccaggatt 1680 ccttactatt gacagatttt ctttaccaaa agaaaagaca tttattcttt tgatgcactt 1740 gaatgccaga gaactgtcct tctttttctc ctctccctcc ctcccagccc ctgagtcatg 1800 aacagcaagg agtgtttgaa gtttctgctt tgaactccgt ccagcctgat ccctgg 1856 255 1545 DNA Homo sapiens misc_feature Incyte Clone No 2380344 255 ggctggactg gaactcctgg tcccaagtga tccacccgcc tcagcctccc aaggtgctgt 60 gattataggt gtaagccacc gtgtctggcc tctgaacaac tttttcagca actaaaaaag 120 ccacaggagt tgaactgcta ggattctgac tatgctgtgg tggctagtgc tcctactcct 180 acctacatta aaatctgttt tttgttctct tgtaactagc ctttaccttc ctaacacaga 240 ggatctgtca ctgtggctct ggcccaaacc tgaccttcac tctggaacga gaacagaggt 300 ttctacccac accgtcccct cgaagccggg gacagcctca ccttgctggc ctctcgctgg 360 agcagtgccc tcaccaactg tctcacgtct ggaggcactg actcgggcag tgcaggtagc 420 tgagcctctt ggtagctgcg gctttcaagg tgggccttgc cctggccgta gaagggattg 480 acaagcccga agatttcata ggcgatggct cccactgccc aggcatcagc cttgctgtag 540 tcaatcactg ccctggggcc aggacgggcc gtggacacct gctcagaagc agtgggtgag 600 acatcacgct gcccgcccat ctaacctttt catgtcctgc acatcacctg atccatgggc 660 taatctgaac tctgtcccaa ggaacccaga gcttgagtga gctgtggctc agacccagaa 720 ggggtctgct tagaccacct ggtttatgtg acaggacttg cattctcctg gaacatgagg 780 gaacgccgga ggaaagcaaa gtggccaggg aaggaacttg tgccaaatta tgggtcagaa 840 aagatggagg tgttgggtta tcacaaggca tcgagtctcc tgcattcagt ggacatgtgg 900 gggaagggct gccgatggcg catgacacac tcgggactca cctctggggc catcagacag 960 ccgtttccgc cccgatccac gtaccagctg ctgaagggca actgcaggcc gatgctctca 1020 tcagccaggc agcagccaaa atctgcgatc accagccagg ggcagccgtc tgggaaggag 1080 caagcaaagt gaccatttct cctcccctcc ttccctctga gaggccctcc tatgtcccta 1140 ctaaagccac cagcaagaca tagctgacag gggctaatgg ctcagtgttg gcccaggagg 1200 tcagcaaggc ctgagagctg atcagaaggg cctgctgtgc gaacacggaa atgcctccag 1260 tctctgtgcg cgatgccctg ttgaaccaga tggtccacgc cttccagcag ctgcagcagc 1320 atcatggcgg cgaggcgggg gctgggtgtg ttcacacaaa ggaagaagag tgacctccct 1380 ggaagaagat ggaattctgc cagcggccag gcttcaaacc tgaactgcac cgctggctcc 1440 tccctggctc tccagcctgc ccgcctactc tgcggctttt aagactttgc caatccccat 1500 agggagccag gtcctcaaaa taaacctgcc tctatataga cacat 1545 256 1671 DNA Homo sapiens misc_feature Incyte Clone No 2383171 256 gaattcggac gctctctggg ccaatatggc agcgcccagc aacaagacag agctggcctg 60 gagtccgcgg ctggccgcgt gagtaggtga ttgtctgaca agcagaggca tgagctgggt 120 ccaggccacc ctactggccc gaggcctctg tagggcctgg ggaggcacct gcggggccgc 180 cctcacagga acctccatct ctcaggtccc tcgccggctc cctcggggcc tccactgcag 240 cgcagctgcc catagctctg aacagtccct ggttcccagc ccaccggaac cccggcagag 300 gcccaccaag gctctggtgc cctttgagga cctgtttggg caggcgcctg gtggggaacg 360 ggacaaggcg agcttcctgc agacggtgca gaaatttgcg gagcacagcg tgcgtaagcg 420 gggccacatt gacttcatct acctggccct gcgcaagatg cgggagtatg gtgtcgagcg 480 ggacctggct gtgtacaacc agctgctcaa catcttcccc aaggaggtct tccggcctcg 540 caacatcatc cagcgcatct tcgtccacta ccctcggcag caggagtgtg ggattgctgt 600 cctggagcag atggagaacc acggtgtgat gcccaacaag gagacggagt tcctgctgat 660 tcagatcttt ggacgcaaaa gctaccccat gctcaagttg gtgcgcctga agctgtggtt 720 ccctcgattc atgaacgtca accccttccc agtgccccgg gacctgcccc aggaccctgt 780 ggagctggcc atgtttggcc tgcggcacat ggagcctgac cttagtgcca gggtcaccat 840 ctaccaggtt cctttgccca aagactcaac aggtgcagca gatccccccc agccccacat 900 cgtaggaatc cagagtcccg atcagcaggc cgccctggcc cgccacaatc cagcccggcc 960 tgtctttgtt gagggcccct tctccctgtg gctccgcaac aagtgtgtgt attaccacat 1020 cctcagagct gacttgctgc ccccggagga gagggaagtg gaagagacgc cggaggagtg 1080 gaacctctac tacccgatgc agctggacct ggagtatgtg aggagtggct gggacaacta 1140 cgagtttgac atcaatgaag tggaggaagg ccctgtcttc gccatgtgca tggcgggtgc 1200 tcatgaccag gcgacgatgg ctaagtggat ccagggcctg caggagacca acccaaccct 1260 ggcccagatc cccgtggtct tccgcctcgc cgggtccacc cgggagctcc agacatcctc 1320 tgcagggctg gaggagccgc ccctgcccga ggaccaccag gaagaagacg acaacctgca 1380 gcgacagcag cagggccaga gctagtctga gccggcgcga gggcacgggc tgtggcccga 1440 ggaggcggtg gactgaaggc atgagatgcc ctttgagtgt acagcaaatc aatgttttcc 1500 tgcttggggc tctcttccct catctctagc agtatggcat cccctcccca ggatctcggg 1560 ctgccagcga tgggcaggcg agacccctcc agaatctgca ggcgcctctg gttctccgaa 1620 ttcaaataaa aaggggcggg agcgctgttg gttgtgcgca aaaaaaaaaa a 1671 257 792 DNA Homo sapiens misc_feature Incyte Clone No 2396046 257 aattttaggg agaatgtggg ggggtggggt gttactttcc attttacaca tatttgtatt 60 ttcagatttt caacaataac agtattcaat acataatcag aaaaaagaga tgtggaggag 120 gaggagagaa acttcccaag gagctccctt gggtgctgct ggctcctaat tagtgtaacc 180 tgttaatcac atgttgctcg gtgttagagc ggtccctctg tgctctgcct ggcagggcgc 240 tgttggcctg gtctccctcg ctatttctat ttgcaagcat gggctttctt cccagcagaa 300 tctggttcct gggaagagta atgttccaaa ggcctctgat atgcctcgat gccctcctgt 360 cttccagagc cccaacctca ctccctttcc ccaccataca aaacacacct cccaggggtc 420 acatttgggg gtcccgcccc ctgctccaat gccatggtgt ccccaagcac agggctttgg 480 cctgagttgt cagtctctgg atgcatttga ggggcagcta gggtgtggct ggggggtcca 540 agcagctggg gagccgagac tcagaatcat tcacacactt ctatttggag cttttgtgga 600 agtttccaga attccataat attcacctcc tgaatggtgg ctgcccctta tcagccaggg 660 ctggggtttc cagtgccctc ggagagcttg ctttagagtc ttggagagac ggccatggtc 720 tgcgtttgta tgtctgtcac atcttaccat catcacaaat tgaatataca acattaccta 780 attgtgtgat ca 792 258 3045 DNA Homo sapiens misc_feature Incyte Clone No 2456587 258 gtgagagggg ctgatggaag ctgataggca ggactggagt gttagcacca gtactggatg 60 tgacagcagg cagaggagca cttagcagct tattcagtgt ccgattctga ttccggcaag 120 gatccaagca tggaatgctg ccgtcgggca actcctggca cactgctcct ctttctggct 180 ttcctgctcc tgagttccag gaccgcacgc tccgaggagg accgggacgg cctatgggat 240 gcctggggcc catggagtga atgctcacgc acctgcgggg gaggggcctc ctactctctg 300 aggcgctgcc tgagcagcaa gagctgtgaa ggaagaaata tccgatacag aacatgcagt 360 aatgtggact gcccaccaga agcaggtgat ttccgagctc agcaatgctc agctcataat 420 gatgtcaagc accatggcca gttttatgaa tggcttcctg tgtctaatga ccctgacaac 480 ccatgttcac tcaagtgcca agccaaagga acaaccctgg ttgttgaact agcacctaag 540 gtcttagatg gtacgcgttg ctatacagaa tctttggata tgtgcatcag tggtttatgc 600 caaattgttg gctgcgatca ccagctggga agcaccgtca aggaagataa ctgtggggtc 660 tgcaacggag atgggtccac ctgccggctg gtccgagggc agtataaatc ccagctctcc 720 gcaaccaaat cggatgatac tgtggttgca attccctatg gaagtagaca tattcgcctt 780 gtcttaaaag gtcctgatca cttatatctg gaaaccaaaa ccctccaggg gactaaaggt 840 gaaaacagtc tcagctccac aggaactttc cttgtggaca attctagtgt ggacttccag 900 aaatttccag acaaagagat actgagaatg gctggaccac tcacagcaga tttcattgtc 960 aagattcgta actcgggctc cgctgacagt acagtccagt tcatcttcta tcaacccatc 1020 atccaccgat ggagggagac ggatttcttt ccttgctcag caacctgtgg aggaggttat 1080 cagctgacat cggctgagtg ctacgatctg aggagcaacc gtgtggttgc tgaccaatac 1140 tgtcactatt acccagagaa catcaaaccc aaacccaagc ttcaggagtg caacttggat 1200 ccttgtccag ccagtgacgg atacaagcag atcatgcctt atgacctcta ccatcccctt 1260 cctcggtggg aggccacccc atggaccgcg tgctcctcct cgtgtggggg gggcatccag 1320 agccgggcag tttcctgtgt ggaggaggac atccaggggc atgtcacttc agtggaagag 1380 tggaaatgca tgtacacccc taagatgccc atcgcgcagc cctgcaacat ttttgactgc 1440 cctaaatggc tggcacagga gtggtctccg tgcacagtga cgtgtggcca gggcctcaga 1500 taccgtgtgg tcctctgcat cgaccatcga ggaatgcaca caggaggctg tagcccaaaa 1560 acaaagcccc acataaaaga ggaatgcatc gtacccactc cctgctataa acccaaagag 1620 aaacttccag tcgaggccaa gttgccatgg ttcaaacaag ctcaagagct agaagaagga 1680 gctgctgtgt cagaggagcc ctcgttcatc ccagaggcct ggtcggcctg cacagtcacc 1740 tgtggtgtgg ggacccaggt gcgaatagtc aggtgccagg tgctcctgtc tttctctcag 1800 tccgtggctg acctgcctat tgacgagtgt gaagggccca agccagcatc ccagcgtgcc 1860 tgttatgcag gcccatgcag cggggaaatt cctgagttca acccagacga gacagatggg 1920 ctctttggtg gcctgcagga tttcgacgag ctgtatgact gggagtatga ggggttcacc 1980 aagtgctccg agtcctgtgg aggaggtgtc caggaggctg tggtgagctg cttgaacaaa 2040 cagactcggg agccttgctg aggagaacct gtgcgtgacc accgccggcc cccacagctc 2100 ctgaagtcct gcaatttgga tccctgccca gcaagtcctg tcatctagga agaagcagta 2160 tcgactcagc atggaacgcc tgcaacgttc tttgttaggc aaccaagagg cctggcttct 2220 catcctgctg tcaccaacta gctctgtggc ctagggcgag gtgtctgccc tttatgtttc 2280 cacatctgca aagtgaactg gttgtacctg atgatctgag atcccatgac ttgctcacat 2340 gtcccatgat tctttatttt gtaggcagaa gcattaaaca gctactcctg ctgctgtgtg 2400 ctaatcattc ctgtaatttc tgttctgctt atttgccatt atttgaaaaa catgcaaaag 2460 ggtctttcta accacattcc tgtgttgtaa caacacccaa atgctgaggc agtgccgagg 2520 agtcagtgcc tgggacttgc ttaaaactgc tgggactcgt ggtccctaaa cccttctttg 2580 agcaccaaaa cgaataggac atgagatgtt acttctcatt ctcaaagtac taactatgtt 2640 taagttacaa aaggttaggt tatcctgtga cccttttgtt gactcacaga caagaacagt 2700 tgttgagctt aatgttgtcg catttgctcc agataaactc aattctctga tttcccacca 2760 gccaactgtc aagccaacag gcaagacctc tcactgggca cagccaggag tttcttgggt 2820 cgaccataca cattgaaaca tttgtagaag gttgctaatt gcaacaataa aggggaccaa 2880 agtataatgg cctaatctca tccaagagtc aaaacagatt ttccccctaa aaatgataat 2940 tgtatagagg tgcctttcct gtggaatatc tcactctgat gtcagagaaa aatctctcct 3000 tcccttctcc tggtgttcaa tgtgagacag aaaataaaat gtgtg 3045 259 2445 DNA Homo sapiens misc_feature Incyte Clone No 2484813 259 gcatcttggc agggtccggg gacgtggact atttcgcaca ccacaccacg gggagggatt 60 tttttctatt ttccctacga aaaacagatc tttttaagga tggtgctgct ccactggtgc 120 ctgctgtggc tcctgtttcc actcagctca aggacccaga agttacccac ccgggatgag 180 gaactttttc agatgcagat ccgggacaag gcattttttc atgattcgtc agtaattcca 240 gatggagctg aaattagcag ttatctcttt agagatacac ctaaaaggta tttctttgtg 300 gttgaagaag acaatactcc attatcagtc acagtgacgc cctgtgatgc gcctttggag 360 tggaagctga gcctccagga gctgccagag gacaggagcg gggaaggctc aggtgatctg 420 gaacctcttg agcagcagaa gcagcagatc attaatgagg aaggcactga gttattctcc 480 tacaaaggca atgatgttga gtattttata tcgtctagtt ccccatccgg tttatatcag 540 ttggatcttc tttcaacaga gaaagacaca catttcaaag tatatgccac cacaactcca 600 gaatctgatc agccataccc tgagttaccc tatgacccaa gagtagatgt gacctcactg 660 gggcgcacca cggtcacttt ggcctggaaa ccaagcccca ctgcctcttt gctgaaacaa 720 cccattcagt actgtgtggt catcaacaaa gagcacaatt tcaaaagtct ctgtgcagtg 780 gaagcaaaac tgagtgcaga tgatgctttt atgatggcac cgaaacctgg tctggacttc 840 agcccctttg actttgccca ctttggattt ccttctgata attcaggtaa agaacgcagt 900 ttccaggcaa agccttctcc aaaactgggg cgtcatgtct actccaggcc caaggttgat 960 attcagaaaa tctgcatagg aaacaagaac atcttcaccg tctctgatct gaaacccgac 1020 acgcagtact actttgacgt atttgtggtc aacatcaaca gcaacatgag caccgcttat 1080 gtaggtacct ttgccaggac caaggaagaa gccaaacaga agacagtcga gctaaaagat 1140 gggaagataa cagatgtatt tgttaaaagg aagggagcaa agtttctacg gtttgctcca 1200 gtctcttctc accaaaaagt caccttcttt attcactctt gtctggatgc tgtccaaatc 1260 caagtgagaa gagatgggaa acttcttctg tctcagaatg tggaaggcat tcagcagttt 1320 cagcttagag gaaaacctaa agctaaatac ctcgttcgac tgaaaggaaa caagaaagga 1380 gcatctatgt tgaaaattct agctaccaca aggcctacta agcagtcatt tccctctctt 1440 cctgaagaca caagaatcaa agcctttgac aagctccgta cctgttcctc ggccaccgtg 1500 gcttggctag gcactcagga aaggaacaag ttttgcatct acaaaaaaga agtggatgat 1560 aactacaatg aagaccagaa gaaaagagag caaaaccaat gtctaggacc agatataagg 1620 aagaagtcag aaaaggtcct ctgtaaatat ttccacagtc aaaacctgca gaaagcagtg 1680 accacagaaa caattaaagg tcttcagcct ggcaaatctt acctgctgga tgtttatgtc 1740 ataggacatg gggggcactc tgtaaagtat cagagtaagg ttgtgaaaac tagaaagttc 1800 tgttagttac cttcttatag agatatatta tgtagaactc caggagggac attaaatcac 1860 tttaagtata aactgactac tcccacagtt gagagaagtt gtgacctgta cttgtactat 1920 ggaaggaagg atatcaacgt gtgtatattg atgtttatat aagtaactct tgaaggagac 1980 ttgttctagc gtgccccatg gtacctagtg tgtgtctgat gccggttggt gtcaaagata 2040 gagggcttct tgaaggaact tgccattcct tgctttgacc actgcatgaa ctgcttctaa 2100 attattttat tacctaaaaa tttaaaatat gccattcatt gcacacaccc acaaatgcaa 2160 atcattcctc tctatagatg ctaggatata tataaattat tttataaatt cttgttttaa 2220 atgtcagtgt ttctatgatt gtaaactatt aaattctttt cctattaaag tacagatcta 2280 atctaagtat tattaagttg atagccctct agtcagttat attgctattg taaattcttg 2340 tttgttgagt aaaatgttta aatactatat gtatctcatg tacaaagttg acatacatta 2400 tattcatgta cataaaatta aagagattag attatatagt gttca 2445 260 672 DNA Homo sapiens misc_feature Incyte Clone No 2493851 260 cccacgggcg cccagcctag gagtcgtccc ccaggcaatc cccagtactc ctgatgctgg 60 agagccagcc acactgcaca gtgccccggg ggcggtttct accaccctaa ggggtattct 120 tggctccagg catcagagtc catgtggctt gtggggccct catttctttc atgcccactg 180 gggaaggttc caccagcagg gctgttactg gcggggtcct ctgggagggg ggcaagaagg 240 ccagccacac caaggcactg gagctccacg actcctggcc ttcgattgga ggcccctctc 300 tgccagctct gccccttggg gggcaccagg caggactgcc agccgctctc ctggcaggtg 360 acatcagcct tcaagctcac tgtgccctca ccatttcatg ctcccccaag gtcctggtca 420 tgtcttctct tgggtatctt cccaggacag gcactggcac tggagccctg gcacttgttt 480 ctgggttcca tgcttcccag gtgtgatggt gaatgctgag tgtcagcttg actggattga 540 aggatgcaaa gtattgtcac tgggtgtgtc tgtgagggtg ttgccagagg agattcccat 600 ttgagtcagt gggctgggag aggcagaccc accctcaatc caggtgggca ccacctaatc 660 ggctgccagc aa 672 261 1183 DNA Homo sapiens misc_feature Incyte Clone No 2495719 261 gagagaaatg atgtgacagg agcaagcgaa ctacaacccc gccccgccgt tcctgcccca 60 ccactgcggc ggcgggcgct acgttccgga agcggaaatg gacgagaggt cagggtaggt 120 ttttgaagat ggcggccctc aaggctctgg tgtccggctg tgggcggctt ctccgtgggc 180 tactagcggg cccggcagcg accagctggt ctcggcttcc agctcgcggg ttcagggaag 240 tggtggagac ccaagaaggg aagacaacta taattgaagg ccgtatcaca gcgactccca 300 aggagagtcc aaatcctcct aacccctctg gccagtgccc catctgccgt tggaacctga 360 agcacaagta taactatgac gatgttctgc tgcttagcca gttcatccgg cctcatggag 420 gcatgctgcc ccgaaagatc acaggcctat gccaggaaga acaccgcaag atcgaggagt 480 gtgtgaagat ggcccaccga gcaggtctat taccaaatca caggcctcgg cttcctgaag 540 gagttgttcc gaagagcaaa ccccaactca accggtacct gacgcgctgg gctcctggct 600 ccgtcaagcc catctacaaa aaaggccccc gctggaacag ggtgcgcatg cccgtggggt 660 caccccttct gagggacaat gtctgctact caagaacacc ttggaagctg tatcactgac 720 agagagcagt gcttccagag ttcctcctgc acctgtgctg gggagtagga ggcccactca 780 caagcccttg gccacaacta tactcctgtc ccaccccacc acgatggcct ggtccctcca 840 acatgcatgg acaggggaca gtgggactaa cttcagtacc cttggcctgc acagtagcaa 900 tgctgggagc tagaggcagg cagggcagtt gggtcccttg ccagctgcta tggggcttag 960 gccatgctca gtgctgggga caggagtttt gcccaacgca gtgtcataaa ctgggttcat 1020 gggcttaccc attgggtgtg cgctcactgc ttgggaagtg cagggggtcc tgggcacatt 1080 gccagctggg tgctgagcat tgagtcactg atctcttgtg atggggccaa tgagtcaatt 1140 gaattcatgg gccaaacagg tcccatcctc ttcaaaaaaa aaa 1183 262 1266 DNA Homo sapiens misc_feature Incyte Clone No 2614153 262 gcctgaccac gcagttcttg ggtctgtgct gctggcctgg ggttgtggtt gaggccgggt 60 ctccgctcct gtgcccggga agatggtgct aggtggttgc ccggttagtt acttacttct 120 gtgcggccag gcggctttgc tgctggggaa tttacttctg ctgcattgtg tgtctcggag 180 ccactcgcaa aatgcgaccg ctgagcctga gctcacatcc gctggcgccg cccagccgga 240 gggccccggg ggtgctgcga gctgggaata tggcgacccc cactctccgg tcatcctctg 300 ctcttaccta cctgatgaat ttatagaatg tgaagaccca gtggatcatg ttggaaatgc 360 aactgcatcc caggaacttg gttatggttg tctcaagttc ggcggtcagg cctacagcga 420 cgtggaacac acttcagtcc agtgccatgc cttagatgga attgagtgtg ccagtcctag 480 gacctttcta cgagaaaata aaccttgtat aaagtatacc ggacactact tcataaccac 540 tttactctac tccttcttcc tgggatgttt tggtgtggat cgattctgtt tgggacacac 600 tggcactgca gtagggaagc tgttgacgct tggaggactt gggatttggt ggtttgttga 660 ccttattttg ctaattactg gagggctgat gccaagtgat ggcagcaact ggtgcactgt 720 ttactaaaaa gagctgccat catggcccag ggaggcgggt gaaagctccg tcttctgaat 780 tcatctctac aggctcaaaa ctcctctttg atatcagacc tgatgttatt ttccttcttt 840 tggagggcat ttgtttggtt aagaaggctt ctttggactt tggaatttca acccagattt 900 taccttgcag acggaatgac aagcaaaaag tgttgtgggg aatcaaattt gttcctttcc 960 tcatgcacaa aacataaagg atagtggcga gtttacaagc tgtggatggg tttccatagt 1020 cttcctttct gtacattgct atatcttcag tcctttggag caagtggacc taacaagttg 1080 agcaaaatga atatttggat ccatgttcct cttgtgaccc tgagtcttca tgcaaggaga 1140 tctgaagctg aacaatgaaa atcttcagca gaaatagaaa tggccgtgga ttgtaataca 1200 cactgaaatt ctgactttct gaatttaaat gtagaataaa ttttaccaac ttggaaaaaa 1260 aaaaaa 1266 263 1093 DNA Homo sapiens misc_feature Incyte Clone No 2655184 263 gatggcttgt ttttcatttt ttttgtgctt tttggtccat ctattaataa aaatgaaccc 60 cgttacagag tcaccatcat gtctcttctc accaccctct gaatctgcat tagccagtca 120 actagccctt tcagcgtcat gtgaccagcg cgccccattc agcttggctg gtgtcgtttc 180 acatgaccca ggctggccag tcgtcaggtt gcaccgccct ttggttcccg agcatgctgt 240 tttctctcag ccttctctcc aaccttaacc aaatcggcag cagccacctc gaccgcccac 300 acattcctgg ccaatcagct cagctgttta tttaccaaat gtcttcacaa caactacagc 360 agcagccttc ggctaacaaa aaagcaggaa aaatccacaa cacccccttc gccaaccaac 420 taaatccaac gcaacatctg gcaaaacctt ttcagcaaat tcttcctggc cgtcagtccg 480 gcagcctcac ctcaccattt ctagcttgtt gaaacccaaa actaatctcc aagaaggaga 540 agcttctctc gcagccggag caggtccctt tctagagata ggagaagaga gagatcgctg 600 tctcgggaga gaaatcacaa gccgtcccga tccttctcta ggtctcgtag tcgatctagg 660

tcaaatgaaa ggaaatagaa gacagtttgc aagagaagtg gtgtacagga aattacttca 720 tttgacagga gtatgtacag aaaattcaag ttttgtttga gacttcataa gcttggtgca 780 tttttaagat gttttagctg ttcaaatctg tttgtctctt gaaacagtga cacaaaggtg 840 taattctcta tggtttgaaa tggatcatac gaggcatgta ataccaagaa ttgttacttt 900 acaatgttcc cttaagcaaa attgaatttg ctttgaactt ttagttatgc acagactgat 960 aataaacctc taaacctgcc cagcggaagt gtgttttttt taaatttaaa tacagaacca 1020 ctggcaaaaa ttgaactaag atttactttt ttttccatag ctgggatata ggggggatcc 1080 tctagagtcg acc 1093 264 1056 DNA Homo sapiens misc_feature Incyte Clone No 2848362 264 gcctgacatg cctgatcctc tcttttctgc agttcaaggg aaagacgaga tcttgcacaa 60 ggcactctgc ttctgccctt ggctggggaa gggtggcatg gagcctctcc ggctgctcat 120 cttactcttt gtcacagagc tgtccggagc ccacaacacc acagtgttcc agggcgtggc 180 gggccagtcc ctgcaggtgt cttgccccta tgactccatg aagcactggg ggaggcgcaa 240 ggcctggtgc cgccagctgg gagagaaggg cccatgccag cgtgtggtca gcacgcacaa 300 cttgtggctg ctgtccttcc tgaggaggtg gaatgggagc acagccatca cagacgatac 360 cctgggtggc actctcacca ttacgctgcg gaatctacaa ccccatgatg cgggtctcta 420 ccagtgccag agcctccatg gcagtgaggc tgacaccctc aggaaggtcc tggtggaggt 480 gctggcagac cccctggatc accgggatgc tggagatctc tggttccccg gggagtctga 540 gagcttcgag gatgcccatg tggagcacag catctccagg agcctcttgg aaggagaaat 600 ccccttccca cccacttcca tccttctcct cctggcctgc atctttctca tcaagattct 660 agcagccagc gccctctggg ctgcagcctg gcatggacag aagccaggga cacatccacc 720 cagtgaactg gactgtggcc atgacccagg gtatcagctc caaactctgc cagggctgag 780 agacacgtga aggaagatga tgggaggaaa agcccaggag aagtcccacc agggaccagc 840 ccagcctgca tacttgccac ttggccacca ggactccttg ttctgctctg gcaagagact 900 actctgcctg aacactgctt ctcctggacc ctggaagcag ggactggttg agggagtggg 960 gaggtggtaa gaacacctga caacttctga atattggaca ttttaaacac ttacaaataa 1020 atccaagact gtcatattta gctggaaaaa aaaaaa 1056 265 1183 DNA Homo sapiens misc_feature Incyte Clone No 2849906 265 ggagctcagc cgagggctgc acaaagacct tcctggcctg ccccagacag agctgaggac 60 ccctggccgt gggcttgggc ctcggcttca caggatgggg ctgccagtgt cctgggcccc 120 tcctgccctc tgggttctag ggtgctgcgc cctgctcctc tcgctgtggg cgctgtgcac 180 agcctgccgc aggcccgagg acgctgtagc ccccaggaag agggcgcgga ggcagcgggc 240 gaggctgcag ggcagtgcga cggcggcgga agcgtcccta ctgaggcgga cccacctctg 300 ctccctcagc aagtcggaca ccagactgca cgagctgcac cggggcccgc gcagcagcag 360 ggccctgcgg cctgccagca tggatctcct gcgcccacac tggctggagg tgtccaggga 420 catcaccgga ccgcaggcag ccccctctgc cttcccacac caggagctgc cccgggctct 480 gccggcagct gcagccaccg cagggtgcgc tggcctcgag gccacctatt ccaacgtggg 540 gctggcggcc cttcccgggg tcagcctggc ggccagccct gtggtggccg agtatgcccg 600 cgtccagaag cgcaaaggga cccatcgcag tccccaagag ccacagcagg ggaagactga 660 ggtgaccccg gccgctcagg tggacgtcct gtactccagg gtctgcaagc ctaaaaggag 720 ggacccagga cccaccacag acccgctgga ccccaagggc cagggagcga ttctggccct 780 ggcgggtgac ctggcctacc agaccctccc gctcagggcc ctggatgtgg acagcggccc 840 cctggaaaac gtgtatgaga gcatccggga gctgggggac cctgctggca ggagcagcac 900 gtgcggggct gggacgcccc ctgcttccag ctgccccagc ctagggaggg gctggagacc 960 cctccctgcc tccctgccct gaacactcaa ggacctgtgc tccttcctcc agagtgaggc 1020 ccgtcccccg ccccgccccg cctcacagct gacagcgcca gtcccaggtc cccgggccgc 1080 cagcccgtga ggtccgtgag gtcctggccg ctctgacagc cgcggcctcc ccgggcatcc 1140 tagagaaggc ccgcgtctaa ataaagcgcc acgcagagtg atc 1183 266 840 DNA Homo sapiens misc_feature Incyte Clone No 2899137 266 gcatgtcatg gccgcctcca tggcccgggg aggcgtgagt gccagggttc tactgcaggc 60 tgccaggggc acctggtgga acagacctgg gggcacttcc gggtcggggg agggggtggc 120 gctggggaca accagaaagt ttcaagcgac aggctcgcgc ccggctggag aggaggacgc 180 gggcggcccg gagcggcccg gggacgtggt gaacgtggtg ttcgtagacc gctcaggcca 240 gcggatccca gtgagtggca gagtcgggga caatgttctt cacctggccc agcgccacgg 300 ggtggacctg gaaggggcct gtgaagcctc cctggcctgc tccacctgcc atgtgtatgt 360 gagtgaagac cacctggatc tcctgcctcc tcccgaggag agggaagacg acatgctaga 420 catggccccc ctcctccagg agaactcgcg gctgggctgc cagattgtgc tgacaccgga 480 gctggaagga gcggaattca ccctgcccaa gatcaccagg aacttctacg tggatggcca 540 tgtccccaag ccccactgac atgaacacct ggaccattcc acattgccat ggccccaggg 600 cccagattga gggaatagcc aggtgccagc cctgcccaga gtgcggacag gcccgggaga 660 gacgtggaag cccctgtgaa ggacaacacc cctgcttggg agagagtccc atgtccaggc 720 tctggtgggg acagggcccc tagtggggtg gccttcccca ggcccctgag aatcagggtt 780 tgagtaggag tggactcata ttggagctgc aataaatcga taacacagga aaaaaaaaaa 840 267 606 DNA Homo sapiens misc_feature Incyte Clone No 2986229 267 aataatgttt gagacagaag agaccattgg ctagtattta gcaattatca tagttatttg 60 atttatatta aaaagcattt gtctttccac taaaacataa agggaataag ggcctagagt 120 tatatgagtt aatagtaatt atagtcaagc tggggttaaa aatttgttgt agatgatgca 180 tacttgggga taattaagag taccatctaa ttttctgtca ctttagaaag gaacaagtgg 240 caactttgtt gactatgtgg agaaagccag atgttcttta ctcagtaata cctgttactt 300 ctcttttttt ccttttagca ctgaacctac cagatgtatt tgggttggtc gtcctcccat 360 tggaactgaa actacggatc ttccgacttc tggatgttcg ttccgtcttg tctttgtctg 420 cggtttgtcg tgacctcttt actgcttcaa atgacccact cctgtggagg tttttatatc 480 tgcgtgattt tcgaggtgat ttccgtaatg acatattcac aagaaagggc tcttattgtc 540 ttgattactc agctcaccaa aagtttttag ttgtaggatt tttctgttgc aaatgattac 600 aataaa 606 268 1025 DNA Homo sapiens misc_feature Incyte Clone No 3222081 268 gtccttcgag ctactccgtc tggccccgcc ttttctctgc tctcctgaac ctttaggctt 60 gtctcggccc atttgaagac caggaagttg atcaatcccg aggctgctga gagacggtgg 120 cgcgattggg acagtcgcca gggatggctg agcgtgaaga tgcagcgggt gtccgggctg 180 ctctcctgga cgctgagcag agtcctgtgg ctctccggcc tctctgagcc gggagctgcc 240 cggcagcccc ggatcatgga agagaaagcg ctagaggttt atgatttgat tagaactatc 300 cgggacccag aaaagcccaa tactttagaa gaactggaag tggtctcgga aagttgtgtg 360 gaagttcagg agataaatga agaagaatat ctggttatta tcaggttcac gccaacagta 420 cctcattgct ctttggcgac tcttattggg ctgtgcttaa gagtaaaact tcagcgatgt 480 ttaccattta aacataagtt ggaaatctac atttctgaag gaacccactc aacagaagaa 540 gacatcaata agcagataaa tgacaaagag cgagtggcag ctgcaatgga aaaccccaac 600 ttacgggaaa ttgtggaaca gtgtgtcctt gaacctgact gatagctgtt ttaagagcca 660 ctggcctgta attgtttgat atatttgttt aaactctttg tataatgtca gagactcatg 720 tttaatacat aggtgatttg tacctcagag cattttttaa aggattcttt ccaagcgaga 780 tttaattata aggtagtacc taatttgttc aatgtataac attctcagga tttgtaacac 840 ttaaatgatc agacagaata atattttcta gttattatgt gtaagatgag ttgctatttt 900 tctgatgctc attctgatac aactattttt cgtgtcaaat atctactgtg cccaaatgta 960 ctcaatttaa atcattactc tgtaaaataa ataagcagat gattcttata atgaaaaaaa 1020 aaaaa 1025 269 6 PRT Artificial Sequence Description of Artificial Sequence Synthetic 6xHis tag 269 His His His His His His 1 5

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed