Positive active material for rechargeable lithium battery and method of preparing same

Kweon, Ho-Jin ;   et al.

Patent Application Summary

U.S. patent application number 10/966927 was filed with the patent office on 2005-04-21 for positive active material for rechargeable lithium battery and method of preparing same. Invention is credited to Kim, Geun-Bae, Kweon, Ho-Jin, Noh, Hyung-Gon, Park, Dong-Gon.

Application Number20050084757 10/966927
Document ID /
Family ID19575741
Filed Date2005-04-21

United States Patent Application 20050084757
Kind Code A1
Kweon, Ho-Jin ;   et al. April 21, 2005

Positive active material for rechargeable lithium battery and method of preparing same

Abstract

A positive active material for rechargeable lithium batteries includes an active material component processed from a manganese-based compound. The transition metal compound is selected from Li.sub.xMnO.sub.2, Li.sub.xMnF.sub.2, Li.sub.xMnS.sub.2, Li.sub.xMnO.sub.2-zF.sub.z, Li.sub.xMnO.sub.2-zS.sub.z, Li.sub.xMn.sub.1-yM.sub.yO.sub.2, Li.sub.xMn.sub.1-yM.sub.yF.sub.2, Li.sub.xMn.sub.1-yM.sub.yS.sub.2, Li.sub.xMn.sub.1-yM.sub.yO.sub.2-zF.sub.z, Li.sub.xMn.sub.1-yO.sub.2-zS.s- ub.z, Li.sub.xMn.sub.2O.sub.4, Li.sub.xMn.sub.2F.sub.4, Li.sub.xMn.sub.2S.sub.4, Li.sub.xMn.sub.2O.sub.4-zF.sub.z, Li.sub.xMn.sub.2O.sub.4-zS.sub.z, Li.sub.xMn.sub.2-yM.sub.yO.sub.4, Li.sub.xMn.sub.2-yM.sub.yF.sub.4, Li.sub.xMn.sub.2-yM.sub.yS.sub.4, Li.sub.xMn.sub.2-yM.sub.yO.sub.4-zF.sub.z, or Li.sub.xMn.sub.2-yM.sub.yO.- sub.4-zS.sub.z where 0<x.ltoreq.1.5, 0.05.ltoreq.y.ltoreq.0.3, z.ltoreq.1.0 and M is selected from Al, Co, Cr, Mg, Fe or La. A metallic oxide is coated on the active material component.


Inventors: Kweon, Ho-Jin; (Cheonan-si, KR) ; Kim, Geun-Bae; (Cheonan-si, KR) ; Park, Dong-Gon; (Seoul, KR) ; Noh, Hyung-Gon; (Cheonan-si, KR)
Correspondence Address:
    BLAKELY SOKOLOFF TAYLOR & ZAFMAN
    12400 WILSHIRE BOULEVARD
     SEVENTH FLOOR
    LOS ANGELES
    CA
    90025-1030
    US
Family ID: 19575741
Appl. No.: 10/966927
Filed: October 14, 2004

Related U.S. Patent Documents

Application Number Filing Date Patent Number
10966927 Oct 14, 2004
09429262 Oct 29, 1999

Current U.S. Class: 429/231.1 ; 429/224; 429/232
Current CPC Class: Y02E 60/10 20130101; Y10T 29/49115 20150115; H01M 4/581 20130101; H01M 4/131 20130101; H01M 10/0525 20130101; H01M 4/505 20130101; Y10T 29/49108 20150115; H01M 4/1315 20130101
Class at Publication: 429/231.1 ; 429/224; 429/232
International Class: H01M 004/50; H01M 004/58; H01M 004/62

Foreign Application Data

Date Code Application Number
Mar 6, 1999 KR 99-7430

Claims



What is claimed is:

1. A positive active material for rechargeable lithium batteries, the positive active material comprising: an active material component processed from a manganese-based compound, the manganese-based compound being selected from the group consisting of Li.sub.xMn.sub.1-yM.sub.yO.su- b.2, Li.sub.xMn.sub.1-yM.sub.yO.sub.2-zF.sub.z, Li.sub.xMn.sub.1-yM.sub.yO- .sub.2-zS.sub.z, Li.sub.xMn.sub.2-yM.sub.yO.sub.4-zF.sub.z, and Li.sub.xMn.sub.2-yM.sub.yO.sub.4-zS.sub.z, where 0<x<1.5, 0.05.ltoreq.y.ltoreq.0.3, 7.ltoreq.1.0 and M is selected from the group consisting of Al, Co, Cr, Mg, Fe and La; and a metallic oxide coated on the active material component, the metallic oxide comprising a metal selected from the group consisting of Mg Al wherein the positive active material is formed of metallic oxide coated active material moieties.

2. The positive active material of claim 1 wherein the oxide has a thickness range of 1-1000 nm.

3. The positive active material of claim 1 wherein the quantity of metal content is a range of 1 to 10 weight percent of the oxide.

4. A positive electrode for rechargeable lithium batteries, the positive electrode comprising: a plurality of active material particles processed from a manganese-based compound, the manganese-based compound being selected from the group consisting of Li.sub.xMnO.sub.2, Li.sub.xMn.sub.1-yM.sub.yO.sub.2, Li.sub.xMn.sub.1-yM.sub.yO.sub.2-zF.sub- .z, Li.sub.xMn.sub.1-yM.sub.yO.sub.2-zS.sub.z, Li.sub.xMn.sub.2O.sub.4, Li.sub.xMn.sub.2-yM.sub.yO.sub.4, Li.sub.xMn.sub.2-yM.sub.yO.sub.4-zF.sub- .z, and Li.sub.xMn.sub.2-yM.sub.yO.sub.4-zS.sub.z, where 0<x<1.5, 0.05.ltoreq.y.ltoreq.0.3, z.ltoreq.1.0 and M is selected from the group consisting of Al, Co, Cr, Mg, Fe and La, and a metallic oxide coated on each of the active material particles, the metallic oxide comprising a metal selected from the group consisting of Mg and Al; wherein the positive electrode comprises the active material particles coated with the metallic oxide, and wherein the positive electrode is formed after the active material particles are coated with the metallic oxide.

5. The positive electrode of claim 4, wherein the oxide has a thickness range of 1 to 1000 nanometers.

6. The positive electrode of claim 4, wherein the quantity of metal content is in a range of 1 to 10 weight percent of the oxide.
Description



BACKGROUND OF THE INVENTION

[0001] (a) Field of the Invention

[0002] The present invention relates to a positive active material for rechargeable lithium batteries and a method of preparing the same and, more particularly, to a manganese-based positive active material for rechargeable lithium batteries which has a good cycle life characteristic.

[0003] (b) Description of the Related Art

[0004] Generally, manganese-based compounds such as LiMn.sub.2O.sub.4 and LiMnO.sub.2 are the positive active material of choice for rechargeable lithium batteries because of their low cost, abundance and environmentally friendly characteristics. Among such manganese-based compounds, LiMn.sub.2O.sub.4 is particularly stable for the battery use and thus attractive for the electric vehicle application.

[0005] However, as compared to other lithiated transition metal oxides such as LiCoO.sub.2 and LiNiO.sub.2, LiMn.sub.2O.sub.4 has a relatively low discharge capacity. Furthermore, when high rate of charge and discharge operations are cycled, the discharge capacity is excessively reduced. In particular, when the charge and discharge operations are continuously performed at high temperatures, manganese distributed in the surface of LiMn.sub.2O.sub.4 readily elutes to the electrolyte, causing a disproportionation reaction. This reaction seriously deteriorates the cycle life characteristic of the battery.

SUMMARY OF THE INVENTION

[0006] It is an object of the present invention to provide a manganese-based positive active material for rechargeable lithium batteries which exhibits a good cycle life characteristic at high temperatures.

[0007] This and other objects may be achieved by a positive active material for rechargeable lithium batteries including an active material component processed from a manganese-based compound. The manganese-based compound is selected from Li.sub.xMnO.sub.2, Li.sub.xMnF.sub.2, Li.sub.xMnS.sub.2, Li.sub.xMnO.sub.2-zF.sub.z, Li.sub.xMnO.sub.2-zS.sub.z- , Li.sub.xMn.sub.1-yM.sub.yO.sub.2, Li.sub.xMn.sub.1-yM.sub.yF.sub.2, Li.sub.xMn.sub.1-yM.sub.yS.sub.2, Li.sub.xMn.sub.1-yM.sub.yO.sub.2-zF.sub- .z, Li.sub.xMn.sub.1-yM.sub.yO.sub.2-zS.sub.z, Li.sub.xMn.sub.2O.sub.4, Li.sub.xMn.sub.2F.sub.4, Li.sub.xMn.sub.2S.sub.4, Li.sub.xMn.sub.2O.sub.4- -zF.sub.z, Li.sub.xMn.sub.2O.sub.4-zS.sub.z, Li.sub.xMn.sub.2-yM.sub.yO.su- b.4, Li.sub.xMn.sub.2-yM.sub.yF.sub.4, Li.sub.xMn.sub.2-yM.sub.yS.sub.4, Li.sub.xMn.sub.2-yM.sub.yO.sub.4-zF.sub.z, or Li.sub.xMn.sub.2-yM.sub.yO.- sub.4-zS.sub.z where 0<x.ltoreq.1.5, 0.05.ltoreq.y.ltoreq.0.3, z.ltoreq.1.0 and M is selected from Al, Co, Cr, Mg, Fe or La. A metallic oxide is coated on the active material component.

[0008] A method of preparing the positive active material is performed by obtaining a powder from a source material. The source material is selected from Li.sub.xMnO.sub.2, Li.sub.xMnF.sub.2, Li.sub.xMnS.sub.2, Li.sub.xMnO.sub.2-zF.sub.z, Li.sub.xMnO.sub.2-zS.sub.z, Li.sub.xMn.sub.1-yM.sub.yO.sub.2, Li.sub.xMn.sub.1-yM.sub.yF.sub.2, Li.sub.xMn.sub.1-yM.sub.yS.sub.2, Li.sub.xMn.sub.1-yM.sub.yO.sub.2-zF.sub- .z, Li.sub.xMn.sub.1-yM.sub.yO.sub.2-zS.sub.z, Li.sub.xMn.sub.2O.sub.4, Li.sub.xMn.sub.2F.sub.4, Li.sub.xMn.sub.2S.sub.4, Li.sub.xMn.sub.2O.sub.4- -zF.sub.z, Li.sub.xMn.sub.2O.sub.4-zS.sub.z, Li.sub.xMn.sub.2-yM.sub.yO.su- b.4, Li.sub.xMn.sub.2-yM.sub.yF.sub.4, Li.sub.xMn.sub.2-yM.sub.yS.sub.4, Li.sub.xMn.sub.2-yM.sub.yO.sub.4-zF.sub.z, or Li.sub.xMn.sub.2-yM.sub.yO.- sub.4-zS.sub.z, where 0<x.ltoreq.1.5, 0.05.ltoreq.y.ltoreq.0.3, z.ltoreq.1.0 and M is selected from Al, Co, Cr, Mg, Fe or La. The powder is then coated with a metallic alkoxide solution to make an alkoxide-coated powder. Thereafter, the metallic alkoxide-coated powder is heat-treated such that it is changed into a metallic oxide-coated powder.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] A more complete appreciation of the invention, and many of the attendant advantages thereof, will be readily apparent as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings, wherein:

[0010] FIG. 1 is a graph illustrating high-temperature charge and discharge characteristics of rechargeable lithium cells according to an example of the present invention and a comparative example;

[0011] FIG. 2 is a graph illustrating high-temperature cycle life characteristics of the rechargeable lithium cells of FIG. 1; and

[0012] FIG. 3 is a graph illustrating SIMS analysis results with respect to a rechargeable lithium cell according to another example of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0013] In a method of preparing a positive active material for rechargeable lithium batteries, a powder, being an active material precursor, is first processed from a manganese-based compound. The manganese-based compound is selected from Li.sub.xMnO.sub.2, Li.sub.xMnF.sub.2, Li.sub.xMnS.sub.2, Li.sub.xMnO.sub.2-zF.sub.z, Li.sub.xMnO.sub.2-zS.sub.z, Li.sub.xMn.sub.1-yM.sub.yO.sub.2, Li.sub.xMn.sub.1-yM.sub.yF.sub.2, Li.sub.xMn.sub.1-yM.sub.yS.sub.2, Li.sub.xMn.sub.1-yM.sub.yO.sub.2-zF.sub.z, Li.sub.xMn.sub.1-yM.sub.yO.sub- .2-zS.sub.z, Li.sub.xMn.sub.2O.sub.4, Li.sub.xMn.sub.2F.sub.4, Li.sub.xMn.sub.2S.sub.4, Li.sub.xMn.sub.2O.sub.4-zF.sub.z, Li.sub.xMn.sub.2O.sub.4-zS.sub.z, Li.sub.xMn.sub.2-yM.sub.yO.sub.4, Li.sub.xMn.sub.2-yM.sub.yF.sub.4, Li.sub.xMn.sub.2-yM.sub.yS.sub.4, Li.sub.xMn.sub.2-yM.sub.yO.sub.4-zF.sub.z, or Li.sub.xMn.sub.2-yM.sub.yO.- sub.4-zS.sub.z, where 0<x.ltoreq.1.5, 0.05.ltoreq.y.ltoreq.0.3, z.ltoreq.1.0 and M is selected from Al, Co, Cr, Mg, Fe or La. The powder processing step can be performed with a technique known in the related art.

[0014] Thereafter, the powder is coated with a metallic alkoxide solution. The metallic alkoxide solution is formed by the reaction of an alcohol with an alkali metal being 1 to 50 weight percent of the alcohol. The alkali metal may be preferably selected from Mg, Al, Co, K, Na, Ca, Si, Ti or Sr. More preferably, the alkali metal is selected from Si, Mg, Ti or Al. The alcohol is preferably selected from methanol or ethanol. When the alkali metal is less than 1 weight percent of the alcohol, the coating effect of the metallic alkoxide solution onto the powder is not induced. In contrast, when the alkali metal is more than 50 weight percent of the alcohol, the coating layer of the metallic alkoxide solution becomes undesirably thick. A sputtering technique, a chemical vapor deposition (CVD) technique, a dip coating technique and other general-purpose coating techniques may be employed for the coating use. Among the techniques, the dip coating technique may be preferably used for coating the metallic alkoxide solution onto the powder.

[0015] The alkoxide-coated powder is then dried at 120.degree. C. for about 5 hours in an oven. The drying step is to uniformly distribute lithium salts in the powder. Thereafter, the dried powder is heat-treated at temperatures ranged from 200 to 1000.degree. C. for 1 to 20 hours under an oxidation atmosphere where dry air or oxygen is blowing. When the heat-treating temperature is lower than 200.degree. C., the metallic alkoxide solution coated on the powder is not crystallized so that it prohibits free movement of lithium ions in the active material. It is preferable that the heat-treating step is performed at temperatures ranged from 300 to 900.degree. C. for 1 to 10 hours. This heat-treating operation makes the metallic alkoxide to be changed into a metallic oxide. In this way, a metallic oxide-coated active material is prepared.

[0016] The metallic oxide formed on the surface of the power may be derived from the single metallic alkoxide source or the composite sources of manganese of lithiated transition metal compound and metallic alkoxide. The thickness of the metallic oxide layer reaches up to 1 to 100 nm and the quantity of metal content is ranged from 0.1 to 10 weight percent of the metallic oxide.

[0017] The following examples further illustrate the present invention.

EXAMPLE 1

[0018] An aluminum isopropoxide solution having a 5 weight-percent concentration was prepared by refluxing an aluminum isopropoxide powder in ethanol at about 100.degree. C. for about half an hour. The aluminum isopropoxide solution was then mixed with a powder of Li.sub.xMn.sub.2-yAl.sub.yO.sub.4-zF.sub.z where 0<x.ltoreq.1.5, 0.05.ltoreq.y.ltoreq.0.3 and z.ltoreq.1.0 at an identical volume ratio in a moisture free dry room such that an overall surface of the power became wet sufficiently by the solution, and dried in the same room. Thereafter, the mixture was heat-treated at about 300.degree. C. for about 10 hours under a dry air atmosphere to thereby prepare a metallic oxide-coated active material. Then, the active material was mixed with Super P carbon for a conductive agent, KF-1300 polyvinylidene fluoride for a binder and N-methylpyrrolidone for a solvent to prepare an active material slurry. The slurry is cast into a tape shape to act as a positive electrode. The positive electrode is then assembled with a lithium metal foil for an opposite pole by using a lithium salt solution for an electrolyte to thereby fabricate a coin cell-type half cell. The lithium salt solution contained 1:1 volume ratio of ethylene carbonate and dimethyl carbonate for a solvent and LiPF.sub.6 for a solute.

EXAMPLE 2

[0019] The positive electrode preparing procedure was performed in the same way as in Example 1 with the exception that the heat-treating temperature was heightened up to 900.degree. C. A coin-type half cell was fabricated with the resulting positive electrode in combination with other components as described in Example 1.

EXAMPLE 3

[0020] An aluminum isopropoxide solution having a 5 weight-percent concentration was prepared by refluxing an aluminum isopropoxide powder in ethanol at about 100.degree. C. for about half an hour. The aluminum isopropoxide solution was then mixed with a powder of Li.sub.xMn.sub.2O.sub.4 where 0<x.ltoreq.1.5 at an identical volume ratio in a moisture free dry room such that an overall surface of the power became wet sufficiently by the solution, and dried in the same room. Thereafter, the mixture was heat-treated at about 300.degree. C. for about 10 hours under a dry air atmosphere to thereby prepare a metallic oxide-coated active material. The subsequent positive electrode processing steps were performed in the same way as in Example 1. A coin-type half cell was fabricated with the resulting positive electrode in combination with other components as described in Example 1.

COMPARATIVE EXAMPLE 1

[0021] The positive electrode preparing procedure was performed in the same way as in Example 1 with the exception that Li.sub.xMn.sub.2-yAl.sub- .yO.sub.4-zF.sub.z was directly used for the active material without the metallic-alkoxide coating operation. A coin-type half cell was fabricated with the resulting positive electrode in combination with other components as described in Example 1.

[0022] The coin type cells fabricated according to Example 1 and Comparative Example 1 were charged and discharged at 50.degree. C. from 0.1 C to 1 C rate over the voltage window between 4.3V and 3.0V. The charge and discharge characteristics of the cells in the early cycles were illustrated in FIG. 1. Further, the cycle life characteristics of the cells were illustrated in FIG. 2. In each of the figures, the charge and discharge characteristic of the cell according to Example 1 is indicated by a parenthesized alphabetic symbol "(a)" and that of the cell according to Comparative Example 1 is indicated by another symbol "(b)". As shown in FIGS. 1 and 2, the cell according to Example 1 exhibited a slightly lower specific capacity but a better cycle life characteristic at high temperatures than the cell according it Comparative Example 1. It is presumed that the good cycle life characteristic of the cell is resulted because the metallic oxide layer coated on the surface of the manganese-based active material component prevents elution of manganese to the electrolyte. The cells fabricated according to Examples 2 and 3 also exhibited the desired performance characteristic similar to that of Example 1.

[0023] Meanwhile, a secondary ion mass spectrometry (SIMS) analysis was performed with respect to the positive active material prepared according to Example 3 to measure the component distribution ratio. The result was illustrated in FIG. 3. In the figure, the relative intensity of the aluminum component is indicated by a parenthesized alphabetic symbol "(a)" and that of the manganese component is indicated by another symbol "(b)". As shown in FIG. 3, it could be known that the aluminum component existed more in the surface portion of the active material and the manganese component existed more in the center portion of the active material. This proved that the overall surface of Li.sub.xMn.sub.2O.sub.4 was completely coated with aluminum oxide.

[0024] As described above, the positive active material for rechargeable lithium batteries has a good high-temperature cycle life characteristic.

[0025] While the present invention has been described in detail with reference is to the preferred embodiments, those skilled in the art will appreciate that various modifications and substitutions can be made thereto without departing from the spirit and scope of the present invention as set forth in the appended claims.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed