Method of heat treating titanium aluminide

Hu, Dawei ;   et al.

Patent Application Summary

U.S. patent application number 10/913528 was filed with the patent office on 2005-04-21 for method of heat treating titanium aluminide. Invention is credited to Hu, Dawei, Loretto, Michael, Wu, Xinhua.

Application Number20050081967 10/913528
Document ID /
Family ID28052473
Filed Date2005-04-21

United States Patent Application 20050081967
Kind Code A1
Hu, Dawei ;   et al. April 21, 2005

Method of heat treating titanium aluminide

Abstract

A gamma titanium aluminide alloy consisting of 46 at % aluminium, 8 at % niobium, up to 0.07 at % carbon and the balance titanium plus incidental impurities has an alpha transus temperature T.sub..alpha.=1335.degree. C. The gamma titanium aluminide alloy was heated to a temperature T.sub.1=1360.degree. C. and was held at T.sub.1=1360.degree. C. for 1 hour or longer. The gamma titanium aluminide alloy was fluidised bed, or salt bath, quenched to a temperature T.sub.2, where 900.degree. C.<T.sub.2<1200.degree. C., and was held at temperature T.sub.2 for a sufficient time to allow the massive transformation to go to completion. The gamma titanium aluminide alloy was heated to a temperature T.sub.3=1300.degree. C. or 1320.degree. C. and was held at T.sub.2 for 4 hours. The gamma titanium aluminide alloy was air cooled to ambient temperature. The gamma titanium aluminide alloy has a fine duplex microstructure comprising differently orientated alpha plates in a massively transformed gamma matrix. The heat treatment reduces quenching stresses, allows larger castings and a broader range of titanium aluminide alloys to be grain refined.


Inventors: Hu, Dawei; (Birmingham, GB) ; Wu, Xinhua; (Birmingham, GB) ; Loretto, Michael; (Birmingham, GB)
Correspondence Address:
    MANELLI DENISON & SELTER
    2000 M STREET NW SUITE 700
    WASHINGTON
    DC
    20036-3307
    US
Family ID: 28052473
Appl. No.: 10/913528
Filed: August 9, 2004

Current U.S. Class: 148/669
Current CPC Class: C22F 1/183 20130101
Class at Publication: 148/669
International Class: C22F 001/18

Foreign Application Data

Date Code Application Number
Aug 14, 2003 GB 0319061.8

Claims



1. A method of heat-treating titanium aluminide alloy, the titanium aluminide alloy having a single alpha phase field and being capable of producing a massively transformed gamma microstructure, the method comprising the steps of (a) heating a titanium aluminide alloy to a temperature above the alpha transus temperature, (b) maintaining the titanium aluminide alloy at a temperature above the alpha transus temperature in the single alpha phase field for a predetermined time period, (c) cooling the titanium aluminide alloy from the single alpha phase field to a temperature in the range of 900.degree. C. to 1200.degree. C., (d) maintaining the titanium aluminide alloy at the temperature in the range of 900.degree. C. to 1200.degree. C. for a predetermined time period to produce a massively transformed gamma microstructure, (e) heating the titanium aluminide alloy to a temperature below the alpha transus temperature in the alpha and gamma phase field, (f) maintaining the titanium aluminide alloy at the temperature below the alpha transus temperature for a predetermined time period to precipitate alpha plates in the massively transformed gamma microstructure such that a refined microstructure is produced in the titanium aluminide alloy, (g) cooling the titanium aluminide alloy to ambient temperature.

2. A method as claimed in claim 1 wherein in step (b) the predetermined time period is up to 2 hours.

3. A method as claimed in claim 1 wherein in step (f) the predetermined time period is up to 4 hours.

4. A method as claimed in claim 1 wherein step (e) comprises heating the titanium aluminide alloy to a temperature about 30.degree. C. to 60.degree. C. below the alpha transus temperature.

5. A method as claimed in claim 1 wherein step (a) comprises heating the titanium aluminide alloy to a temperature of about 20.degree. C. to 30.degree. C. above the alpha transus temperature.

6. A method as claimed in claim 1 wherein step (g) comprises air-cooling or furnace cooling.

7. A method as claimed in claim 1 wherein step (c) comprises fluidised bed cooling or salt bath cooling.

8. A method as claimed in claim 1 comprising cooling the titanium aluminide to ambient temperature after step (d) and before step (e).

9. A method as claimed in claim 8 wherein the titanium aluminide is cooled to ambient temperature by air-cooling or oil cooling.

10. A method as claimed in claim 1 wherein the titanium aluminide alloy comprises 48 at % aluminium, 2 at % chromium, 2 at% niobium and the balance titanium and incidental impurities.

11. A method as claimed in claim 10 wherein the alpha transus temperature is about 1360.degree. C., step (a) comprises heating to a temperature of 1380.degree. C., step (b) comprises maintaining the titanium aluminide alloy at a temperature of about 1380.degree. C. for about 1 hour, step (c) and (d) comprise salt bath, or fluidised bed, cooling the titanium aluminide alloy from a temperature of 1380.degree. C. to a temperature between 900.degree. C. and 1200.degree. C. and maintaining the titanium aluminide alloy at the temperature in the range of 900.degree. C. to 1200.degree. C. for a predetermined time period to produce a massively transformed gamma microstructure, steps (e) and (f) comprise heating the titanium aluminide alloy to a temperature of about 1320.degree. C. for about 2 hours to precipitate alpha plates in the massively transformed gamma microstructure such that a refined microstructure is produced in the titanium aluminide alloy, and step (g) comprises air cooling the titanium aluminide alloy to ambient temperature.

12. A method as claimed in claim 1 wherein the titanium aluminide alloy comprises 46 at % aluminium, 8 at % niobium, up to 0.07 at % carbon and the balance titanium and incidental impurities.

13. A method as claimed in claim 12 wherein the alpha transus temperature is about 1335.degree. C., step (a) comprises heating to a temperature of 1360.degree. C., step (b) comprises maintaining the titanium aluminide alloy at a temperature of about 1360.degree. C. for about 1 hour, steps (c) and (d) comprise salt bath cooling, or fluidised bed cooling, the titanium aluminide alloy from a temperature of 1360.degree. C. to a temperature between 900.degree. C. and 1200.degree. C. and maintaining the titanium aluminide alloy at the temperature in the range of 900.degree. C. to 1200.degree. C. for a predetermined time period to produce a massively transformed gamma microstructure, steps (e) and (f) comprise heating the titanium aluminide alloy to a temperature of about 1300.degree. C. to about 1320.degree. C. for about 4 hours to precipitate alpha plates in the massively transformed gamma microstructure such that a refined microstructure is produced in the titanium aluminide alloy, and step (f) comprises air cooling the titanium aluminide alloy to ambient temperature.

14. A method as claimed in claim 1 wherein the titanium aluminide alloy consists of 45-46 at % aluminium, 8 at % niobium, up to 0.07 at % carbon and the balance is titanium and incidental impurities.

15. A method as claimed in claim 1 wherein the titanium aluminide alloy consists of 45-46 at % aluminium, 2-6 at % niobium, 2-6 at % hafnium and the balance is titanium plus incidental impurities.

16. A method as claimed in claim 1 wherein the titanium aluminide alloy is a cast titanium aluminide component.

17. A method as claimed in claim 1 wherein comprising hot isostatic pressing of the cast titanium aluminide alloy component.

18. A method as claimed in claim 17 wherein the hot isostatic pressing of the cast titanium aluminide alloy component is concurrent with step (f).

19. A method as claimed in claim 17 wherein the hot isostatic pressing comprises applying a pressure of about 150 MPa for about 4 hours.

20. A method as claimed in claim 1 wherein the titanium aluminide alloy is a compressor blade or a compressor vane.
Description



[0001] The present invention relates to a method of heat-treating titanium aluminide and in particular to a method of heat-treating gamma titanium aluminide.

[0002] There is a requirement to refine the microstructure of a titanium aluminide alloy, in particular cast titanium aluminide alloy, which does not involve hot working of the titanium aluminide alloy.

[0003] Our European patent application no. 03253539.5 filed 4 Jun. 2003 discloses a method of heat-treating a titanium aluminide alloy having a single alpha phase field and being capable of producing a massively transformed gamma microstructure. In that method of heat-treating the titanium aluminide alloy is heated to a temperature above the alpha transus temperature, is maintained above the alpha transus temperature in the single alpha phase field for a predetermined time period, is cooled from the single alpha phase field to ambient temperature to produce a massively transformed gamma microstructure, is heated to a temperature below the alpha transus temperature in the alpha and gamma phase field, is maintained at the temperature below the alpha transus temperature for a predetermined time period to precipitate alpha plates in the massively transformed gamma microstructure such that a refined microstructure is produced and is then cooled to ambient temperature.

[0004] A problem with this heat-treatment is that the cooling, quenching, of the titanium aluminide from above the alpha transus to ambient temperature induces quenching stresses in the titanium aluminide. A further problem is that the heat-treatment is only suitable for relatively thin castings. Another problem is that the heat-treatment is only applicable to compositions of titanium aluminide with a particular range of aluminium.

[0005] Accordingly the present invention seeks to provide a novel method of heat-treating titanium aluminide alloy which reduces, preferably overcomes, the above-mentioned problems.

[0006] Accordingly the present invention provides a method of heat-treating titanium aluminide alloy, the titanium aluminide alloy having a single alpha phase field and being capable of producing a massively transformed gamma microstructure, the method comprising the steps of:-

[0007] (a) heating a titanium aluminide alloy to a temperature above the alpha transus temperature,

[0008] (b) maintaining the titanium aluminide alloy at a temperature above the alpha transus temperature in the single alpha phase field for a predetermined time period,

[0009] (c) cooling the titanium aluminide alloy from the single alpha phase field to a temperature in the range of 900.degree. C. to 1200.degree. C.,

[0010] (d) maintaining the titanium aluminide alloy at the temperature in the range of 900.degree. C. to 1200.degree. C. for a predetermined time period to produce a massively transformed gamma microstructure,

[0011] (e) heating the titanium aluminide alloy to a temperature below the alpha transus temperature in the alpha and gamma phase field,

[0012] (f) maintaining the titanium aluminide alloy at the temperature below the alpha transus temperature for a predetermined time period to precipitate alpha plates in the massively transformed gamma microstructure such that a refined microstructure is produced in the titanium aluminide alloy,

[0013] (g) cooling the titanium aluminide alloy to ambient temperature.

[0014] Preferably in step (b) the predetermined time period is up to 2 hours.

[0015] Preferably in step (f) the predetermined time period is up to 4 hours.

[0016] Preferably step (e) comprises heating the titanium aluminide alloy to a temperature about 30.degree. C. to 60.degree. C. below the alpha transus temperature.

[0017] Preferably step (a) comprises heating the titanium aluminide alloy to a temperature of about 20.degree. C. to 30.degree. C. above the alpha transus temperature.

[0018] Preferably step (g) comprises air-cooling or furnace cooling.

[0019] Preferably step (c) comprises fluidised bed cooling or salt bath cooling.

[0020] It may be possible to cool the titanium aluminide to ambient temperature after step (d) and before step (e) The titanium aluminide may be cooled to ambient temperature by air-cooling or oil cooling

[0021] The titanium aluminide alloy may comprise 48 at % aluminium, 2 at % chromium, 2 at % niobium and the balance titanium and incidental impurities.

[0022] The alpha transus temperature is about 1360.degree. C., step (a) comprises heating to a temperature of 1380.degree. C., step (b) comprises maintaining the titanium aluminide alloy at a temperature of about 1380.degree. C. for about 1 hour, step (c) and (d) comprise salt bath, or fluidised bed, cooling the titanium aluminide alloy from a temperature of 1380.degree. C. to a temperature between 900.degree. C. and 1200.degree. C. and maintaining the titanium aluminide alloy at the temperature in the range of 900.degree. C. to 1200.degree. C. for a predetermined time period to produce a massively transformed gamma microstructure, steps (e) and (f) comprise heating the titanium aluminide alloy to a temperature of about 1320.degree. C. for about 2 hours to precipitate alpha plates in the massively transformed gamma microstructure such that a refined microstructure is produced in the titanium aluminide alloy, and step (g) comprises air cooling the titanium aluminide alloy to ambient temperature.

[0023] The titanium aluminide alloy may comprise 46 at % aluminium, 8 at % niobium, up to 0.07 at % carbon and the balance titanium and incidental impurities.

[0024] The alpha transus temperature is about 1335.degree. C., step (a) comprises heating to a temperature of 1360.degree. C., step (b) comprises maintaining the titanium aluminide alloy at a temperature of about 1360.degree. C. for about 1 hour, steps (c) and (d) comprise salt bath cooling, or fluidised bed cooling, the titanium aluminide alloy from a temperature of 1360.degree. C. to a temperature between 900.degree. C. and 1200.degree. C. and maintaining the titanium aluminide alloy at the temperature in the range of 900.degree. C. to 1200.degree. C. for a predetermined time period to produce a massively transformed gamma microstructure, steps (e) and (f) comprise heating the titanium aluminide alloy to a temperature of about 1300.degree. C. to about 1320.degree. C. for about 4 hours to precipitate alpha plates in the massively transformed gamma microstructure such that a refined microstructure is produced in the titanium aluminide alloy, and step (g) comprises air cooling the titanium aluminide alloy to ambient temperature.

[0025] The titanium aluminide alloy may consist of 45-46 at % aluminium, 8 at % niobium, up to 0.07 at % carbon and the balance is titanium and incidental impurities.

[0026] The titanium aluminide alloy may consist of 45-46 at % aluminium, 2-6 at % niobium, 2-6 at % hafnium and the balance is titanium plus incidental impurities.

[0027] The titanium aluminide alloy may be a cast titanium aluminide component.

[0028] The method may comprise hot isostatic pressing of the cast titanium aluminide alloy component.

[0029] Preferably the hot isostatic pressing of the cast titanium aluminide alloy component is concurrent with step (f).

[0030] Preferably the hot isostatic pressing comprises applying a pressure of about 150 MPa for about 4 hours.

[0031] The titanium aluminide alloy may be a compressor blade or a compressor vane.

[0032] The present invention will be more fully described by way of example with reference to the accompanying drawings in which:

[0033] FIG. 1 is graph of temperature versus time illustrating the method of heat-treating a titanium aluminide alloy according to the present invention.

[0034] FIG. 2 is a gamma titanium aluminide alloy gas turbine engine compressor blade heat treated according to the present invention.

[0035] A method of heat-treating a titanium aluminide alloy according to the present invention is described with reference to FIG. 1. The present invention is concerned with heat-treating gamma titanium aluminide alloys with at least 46 at % aluminium and a single alpha phase field.

[0036] The heat treatment process comprises heating the gamma titanium aluminide to a temperature T.sub.1 above the alpha transus temperature T.sub..alpha.. The gamma titanium aluminide alloy is then maintained at a temperature T.sub.1 above the alpha transus temperature T.sub..alpha. in the single alpha phase field for a predetermined time period t.sub.1. The gamma titanium aluminide is quenched, for example fluidised bed cooled, or slat bath cooled, from the single alpha phase field at temperature T.sub.1 to a temperature T.sub.2. The gamma titanium aluminide alloy is maintained at temperature T.sub.2 for a predetermined time period t.sub.2 to produce a massively transformed gamma microstructure. The gamma titanium aluminide alloy is then heated to a temperature T.sub.3 below the alpha transus temperature T.sub..alpha.. The gamma titanium aluminide alloy is maintained at the temperature T.sub.3 in the alpha and gamma phase field for a predetermined time period t.sub.3 to precipitate alpha plates in the massively transformed gamma microstructure such that a refined microstructure is produced in the titanium aluminide alloy. The gamma titanium aluminide is cooled, for example air cooled, or furnace cooled, to ambient temperature.

[0037] In particular, the gamma titanium aluminide is heated to a temperature T.sub.1 about 20.degree. C. to 30.degree. C. above the alpha transus temperature T.sub..alpha.. The gamma titanium aluminide alloy is maintained at the temperature T.sub.1 for up to 2 hours. The gamma titanium aluminide alloy is then quenched, for example fluidised bed cooled, or salt bath cooled, to a temperature T.sub.2 about 900.degree. C. to 1200.degree. C. and maintained for a predetermined time period to induce a massively transformed gamma microstructure. The gamma titanium alloy is heated to a temperature T.sub.3 about 30.degree. C. to 60.degree. C. below the alpha transus temperature T.sub..alpha.. The gamma titanium aluminide alloy is maintained at the temperature T.sub.3 for up to 4 hours to precipitate fine alpha plates with different orientations in the massively transformed gamma microstructure due to the massive gamma to alpha+gamma phase transformation. This gives rise to a very fine duplex microstructure. The differently orientated alpha plates precipitated in the massive gamma phase matrix effectively reduce the grain size of the gamma titanium aluminide. The gamma titanium aluminide alloy is then cooled, for example air cooled, or furnace cooled, to ambient temperature.

[0038] The holding at temperature T.sub.1 for a time period t.sub.1 also acts a homogenisation process for cast titanium aluminide alloys.

EXAMPLE

[0039] A gamma titanium aluminide alloy consisting of 46 at % aluminium, 8 at % niobium, up to 0.07 at % carbon and the balance titanium plus incidental impurities was heat treated according to the present invention. This gamma titanium aluminide alloy has an alpha transus temperature T.sub..alpha.=1335.degree. C. The gamma titanium aluminide alloy was heated to a temperature T.sub.1=1360.degree. C. and was held at T.sub.1=1360.degree. C. for 1 hour for small components and longer for larger components. The gamma titanium aluminide alloy was fluidised bed, or salt bath, quenched to a temperature 900.degree. C.<T.sub.2<1200.degree. C. and was held at temperature T.sub.2, where 900.degree. C.<T.sub.2<1200.degree. C., for a sufficient time to allow the massive transformation to go to completion. The gamma titanium aluminide alloy was heated to a temperature T.sub.3=1300.degree. C. or 1320.degree. C. and was held at T.sub.2=1300.degree. C. or 1320.degree. C. for 4 hours. The gamma titanium aluminide alloy was air cooled to ambient temperature.

[0040] As an alternative the gamma titanium aluminide alloy is air-cooled or oil cooled from temperature T.sub.2 to ambient temperature before the gamma titanium aluminide alloy is heated to the temperature T.sub.3.

[0041] The present invention is applicable to a gamma titanium aluminide alloy consisting of 46 at % aluminium, 5 at % niobium, 0.3 at % boron, 0.2 at % carbon and the balance titanium plus incidental impurities. The present invention is applicable to a gamma titanium aluminide alloy consisting of 47 at % aluminium, 2 at % niobium, 1 at % tungsten, 1 at % chromium, 1 at % boron, 0.2 at % silicon and the balance titanium plus incidental impurities. The present invention is applicable to gamma titanium aluminide alloy consisting of 47 at % aluminium, 2 at % tantalum, 1 at % chromium, 1 at % manganese, 1 at % boron, 0.2 at % silicon and the balance titanium plus incidental impurities. The present invention is also applicable to gamma titanium aluminide alloy consisting of 46 at % aluminium, 5 at % niobium, 1 at % tungsten and the balance titanium plus incidental impurities. The present invention is applicable to a gamma titanium aluminide alloy consisting of 45-46 at % aluminium, 8 at % niobium, up to 0.07 at % carbon and the balance is titanium and incidental impurities. The present invention is also applicable to a gamma titanium aluminide alloy consisting of 45-46 at % aluminium, 2-6 at % niobium, 2-6 at % hafnium and the balance is titanium plus incidental impurities. The present invention is also applicable to a gamma titanium aluminide alloy consisting of 48 at % aluminium, 2 at % chromium, 2 at % niobium and the balance titanium and incidental impurities.

[0042] The advantages of the present invention are that the cooling, quenching, of the titanium aluminide from above the alpha transus to an intermediate temperature induces reduced levels of quenching stresses compared to cooling, quenching, to ambient temperature as described in our European patent application no. 03253539.5. A further advantage is that at temperatures above about 1000.degree. C. the titanium aluminide is relatively ductile and the quenching stresses do not cause fracture. Another advantage is that the heat-treatment is suitable for relatively thin castings and for larger castings so that they all have improved ductility and high strength. Also the heat-treatment is applicable to compositions of titanium aluminide with a broader range, a lower level, of aluminium and hence it is applicable to stronger titanium aluminide alloys. It is believed that the lower level of aluminium may be 45 at % and possibly 44 at %. Thus, the present invention provides a heat treatment for gamma titanium aluminide alloy components, which provides grain refinement. It is particularly suitable for relatively large and complex shaped cast components where the previous heat treatment would induce high residual stresses and possibly cracking of the gamma titanium aluminide alloy components. The heat treatment also permits grain refinement throughout relatively large and complex shaped components rather than just the surface regions of the component.

[0043] It may be possible to heat the titanium aluminide alloy component to a temperature of about 1300.degree. C. and to maintain the titanium aluminide alloy component at about 1300.degree. C. to allow the temperature to equilibrate in the titanium aluminide alloy component so that the titanium aluminide alloy component needs to be maintained at temperature T.sub.1 for a shorter time period.

[0044] In the case of cast gamma titanium aluminide alloy components it may be necessary to remove porosity from the cast gamma titanium aluminide alloy component. In this case the cast gamma titanium aluminide alloy component may be hot isostatically pressed (HIP) to remove the porosity. The hot isostatic pressing preferably occurs at the same time as the heat treatment temperature T.sub.2 and for the time period of about 4 hours at a pressure of about 150 MPa and this is beneficial because this dispenses with the requirement for a separate hot isostatic pressing step.

[0045] The present invention is particularly suitable for gamma titanium aluminide gas turbine engine compressor blades as illustrated in FIG. 2. The compressor blade 10 comprises a root 12, a shank 14, a platform 16 and an aerofoil 18. The present invention is also suitable for gamma titanium aluminide gas turbine engine compressor vanes or other gamma titanium aluminide gas turbine engine components. The present invention may also be suitable for gamma titanium aluminide components for other engine, machines or applications.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed