Immunostimulatory nucleic acid molecules

Krieg, Arthur M. ;   et al.

Patent Application Summary

U.S. patent application number 10/888449 was filed with the patent office on 2005-03-03 for immunostimulatory nucleic acid molecules. This patent application is currently assigned to The University of Iowa Research Foundation. Invention is credited to Kline, Joel, Klinman, Dennis, Krieg, Arthur M., Steinberg, Alfred D..

Application Number20050049215 10/888449
Document ID /
Family ID24968901
Filed Date2005-03-03

United States Patent Application 20050049215
Kind Code A1
Krieg, Arthur M. ;   et al. March 3, 2005

Immunostimulatory nucleic acid molecules

Abstract

Nucleic acids containing unmethylated CpG dinucleotides and therapeutic utilities based on their ability to stimulate an immune response and to redirect a Th2 response to a Th1 response in a subject are disclosed. Methods for treating atopic diseases, including atopic dermatitis, are disclosed.


Inventors: Krieg, Arthur M.; (Wellesley, MA) ; Kline, Joel; (Iowa City, IA) ; Klinman, Dennis; (Potomac, MD) ; Steinberg, Alfred D.; (Potomac, MD)
Correspondence Address:
    Helen C. Lockhart
    Wolf, Greenfield & Sacks, P.C.
    600 Atlantic Avenue
    Boston
    MA
    02210
    US
Assignee: The University of Iowa Research Foundation
Iowa City
IA

Coley Pharmaceutical Group, Inc.
Wellesley
MA

United States of America, as represented by the Secretary, Department of Health & Human Services
Bethesda
MD

Family ID: 24968901
Appl. No.: 10/888449
Filed: July 9, 2004

Related U.S. Patent Documents

Application Number Filing Date Patent Number
10888449 Jul 9, 2004
09818918 Mar 27, 2001
09818918 Mar 27, 2001
08738652 Oct 30, 1996
6207646
08738652 Oct 30, 1996
08386063 Feb 7, 1995
6194388
08386063 Feb 7, 1995
08276358 Jul 15, 1994

Current U.S. Class: 514/44A
Current CPC Class: A61P 1/04 20180101; A61P 43/00 20180101; C12N 15/117 20130101; A61P 31/10 20180101; A61P 37/04 20180101; A61P 37/08 20180101; A61K 31/00 20130101; A61K 31/711 20130101; A61P 17/06 20180101; Y02A 50/30 20180101; A61P 1/00 20180101; A61K 39/39 20130101; A61K 31/7125 20130101; A61P 31/12 20180101; C07H 21/00 20130101; C12Q 1/68 20130101; C12N 2310/315 20130101; A61P 37/02 20180101; A61P 37/06 20180101; A61P 7/00 20180101; A61P 19/02 20180101; C12N 2310/17 20130101; A61P 1/02 20180101; A61P 11/06 20180101; A61K 2039/55561 20130101; A61P 17/00 20180101; A61P 31/04 20180101; A61P 35/00 20180101; A61K 31/7048 20130101; A61P 1/16 20180101; A61P 33/00 20180101; A61K 39/00 20130101; A61P 31/00 20180101; A61K 31/4706 20130101
Class at Publication: 514/044
International Class: A61K 048/00

Goverment Interests



[0002] The work resulting in this invention was supported in part by National Institute of Health Grant No. R29-AR42556-01. The U.S. Government may therefore be entitled to certain rights in the invention.
Claims



1-18. (Cancelled)

19. A method of stimulating interferon-alpha in a subject comprising administering to a subject an immunostimulatory oligonucleotide/delivery complex, said delivery complex comprising a oligonucleotide linked to a biodegradable delivery complex, wherein the oligonucleotide comprises the sequence 5'-C, G-3', in an amount sufficient to increase interferon-alpha in the subject.

20. The method of claim 19, wherein said complex is antigen-free.

21. The method of claim 19, wherein said complex further comprises an antigen.

22. The method of claim 19, wherein said delivery complex is a liquid phase microcarrier.

23. The method of claim 19, wherein said immunostimulatory oligonucleotide is covalently linked to said delivery complex.

24. The method of claim 19, wherein said immunostimulatory oligonucleotide is non-covalently linked to said delivery complex.

25. The method of claim 19, wherein said immunostimulatory oligonucleotide comprises a phosphate backbone modification.

26. The method of claim 25, wherein said phosphate backbone modification is a phosphorothioate.

27. The method of claim 19, wherein the immunostimulatory oligonucleotide is 8 to 40 nucleotides in length and comprises: 5'X.sub.1X.sub.2CGX.sub.3- X.sub.43', wherein C and G are unmethylated and X.sub.1, X.sub.2, X.sub.3, and X.sub.4 are nucleotides.

28. The method of claim 27, wherein the immunostimulatory oligonucleotide does not include a GCG trinucleotide at a 5' and/or 3' terminal.

29. The method of claim 19 wherein the immunostimulatory oligonucleotide does not contain a 5'X.sub.1X.sub.2CGX.sub.3X.sub.43' palindrome.

30. The method of claim 27 wherein the immunostimulatory oligonucleotide does not contain a 5'X.sub.1X.sub.2CGX.sub.3X.sub.43' palindrome.

31. The method of claim 19, wherein said oligonucleotide comprises the sequence 5'-T, C, G-3'.

32. The method of claim 19, wherein the individual has a viral infection.

33. The method of claim 19, wherein said delivery complex is less than 10 .mu.m in size.
Description



RELATED APPLICATIONS

[0001] This application is a divisional of co-pending U.S. patent application Ser. No. 08/738,652, filed Oct. 30, 1996, which is a continuation-in-part of U.S. patent application Ser. No. 08/386,063, filed Feb. 7, 1995, now issued as U.S. Pat. No. 6,194,388, which is a continuation-in-part of U.S. patent application Ser. No. 08/276,358, filed Jul. 15, 1994, now abandoned.

BACKGROUND OF THE INVENTION

[0003] DNA binds to cell membranes and is internalized In the 1970's, several investigators reported the binding of high molecular weight DNA to cell membranes (Lerner, R. A., W. Meinke, and D. A. Goldstein. 1971. "Membrane-associated DNA in the cytoplasm of diploid human lymphocytes". Proc. Natl. Acad. Sci. USA 68:1212; Agrawal, S. K., R. W. Wagner, P. K. McAllister, and B. Rosenberg. 1975. "Cell-surface-associated nucleic acid in tumorigenic cells made visible with platinum-pyrimidine complexes by electron microscopy". Proc. Natl. Acad. Sci. USA 72:928). In 1985, Bennett et al. presented the first evidence that DNA binding to lymphocytes is similar to a ligand receptor interaction: binding is saturable, competitive, and leads to DNA endocytosis and degradation into oligonucleotides (Bennett, R. M., G. T. Gabor, and M. M. Merritt. 1985. "DNA binding to human leukocytes. Evidence for a receptor-mediated association, internalization, and degradation of DNA". J. Clin. Invest. 76:2182). Like DNA, oligodeoxyribonucleotides (ODNs) are able to enter cells in a saturable, sequence independent, and temperature and energy dependent fashion (reviewed in Jaroszewski, J. W., and J. S. Cohen. 1991. "Cellular uptake of antisense oligodeoxynucleotides". Advanced Drug Delivery Reviews 6:235; Akhtar, S., Y. Shoji, and R. L. Juliano. 1992. "Pharmaceutical aspects of the biological stability and membrane transport characteristics of antisense oligonucleotides". In: Gene Regulation: Biology of Antisense RNA and DNA. R. P. Erickson, and J. G. Izant, eds. Raven Press, Ltd. New York, pp. 133; and Zhao, Q., T. Waldschmidt, E. Fisher, C. J. Herrera, and A. M. Krieg., 1994. "Stage specific oligonucleotide uptake in murine bone marrow B cell precursors". Blood, 84:3660). No receptor for DNA or ODN uptake has yet been cloned, and it is not yet clear whether ODN binding and cell uptake occurs through the same or a different mechanism from that of high molecular weight DNA.

[0004] Lymphocyte ODN uptake has been shown to be regulated by cell activation. Spleen cells stimulated with the B cell mitogen LPS had dramatically enhanced ODN uptake in the B cell population, while spleen cells treated with the T cell mitogen Con A showed enhanced ODN uptake by T but not B cells (Krieg, A. M., F. Gmelig-Meyling, M. F. Gourley, W. J. Kisch, L. A. Chrisey, and A. D. Steinberg. 1991. "Uptake of oligodeoxyribonucleotides by lymphoid cells is heterogeneous and inducible". Antisense Research and Development 1:161).

[0005] Immune Effects of Nucleic Acids

[0006] Several polynucleotides have been extensively evaluated as biological response modifiers. Perhaps the best example is poly (I,C) which is a potent inducer of IFN production as well as a macrophage activator and inducer of NK activity (Talmadge, J. E., J. Adams, H. Phillips, M. Collins, B. Lenz, M. Schneider, E. Schlick, R. Ruffmann, R. H. Wiltrout, and M. A. Chirigos. 1985. "Immunomodulatory effects in mice of polyinosinic-polycytidylic acid complexed with poly-L-lysine and carboxymethylcellulose". Cancer Res. 45:1058; Wiltrout, R. H., R. R. Salup, T. A. Twilley, and J. E. Talmadge. 1985. "Immunomodulation of natural killer activity by polyribonucleotides". J. Biol. Resp. Mod. 4:512; Krown, S. E. 1986. "Interferons and interferon inducers in cancer treatment". Sem. Oncol. 13:207; and Ewel, C. H., S. J. Urba, W. C. Kopp, J. W. Smith II, R. G. Steis, J. L. Rossio, D. L. Longo, M. J. Jones, W. G. Alvord, C. M. Pinsky, J. M. Beveridge, K. L. McNitt, and S. P. Creekmore. 1992. "Polyinosinic-polycytidylic acid complexed with poly-L-lysine and carboxymethylcellulose in combination with interleukin-2 in patients with cancer: clinical and immunological effects". Canc. Res. 52:3005). It appears that this murine NK activation may be due solely to induction of IFN-.beta. secretion (Ishikawa, R., and C. A. Biron. 1993. "IFN induction and associated changes in splenic leukocyte distribution". J. Immunol. 150:3713). This activation was specific for the ribose sugar since deoxyribose was ineffective. Its potent in vitro antitumor activity led to several clinical trials using poly (I,C) complexed with poly-L-lysine and carboxymethylcellulose (to reduce degradation by RNAse) (Talmadge, J. E., et al., 1985. cited supra; Wiltrout, R. H., et al., 1985. cited supra); Krown, S. E., 1986. cited supra); and Ewel, C. H., et al., 1992. cited supra). Unfortunately, toxic side effects have thus far prevented poly (I,C) from becoming a useful therapeutic agent.

[0007] Guanine ribonucleotides substituted at the C8 position with either a bromine or a thiol group are B cell mitogens and may replace "B cell differentiation factors" (Feldbush, T. L., and Z. K. Ballas. 1985. "Lymphokine-like activity of 8-mercaptoguanosine: induction of T and B cell differentiation". J. Immunol. 134:3204; and Goodman, M. G. 1986. "Mechanism of synergy between T cell signals and C8-substituted guanine nucleosides in humoral immunity: B lymphotropic cytokines induce responsiveness to 8-mercaptoguanosine". J. Immunol. 136:3335). 8-mercaptoguanosine and 8-bromoguanosine also can substitute for the cytokine requirement for the generation of MHC restricted CTL (Feldbush, T. L., 1985. cited supra), augment murine NK activity (Koo, G. C., M. E. Jewell, C. L. Manyak, N. H. Sigal, and L. S. Wicker. 1988. "Activation of murine natural killer cells and macrophages by 8-bromoguanosine". J. Immunol. 140:3249), and synergize with IL-2 in inducing murine LAK generation (Thompson, R. A., and Z. K. Ballas. 1990. "Lymphokine-activated killer (LAK) cells. V. 8-Mercaptoguanosine as an IL-2-sparing agent in LAK generation". J. Immunol. 145:3524). The NK and LAK augmenting activities of these C8-substituted guanosines appear to be due to their induction of IFN (Thompson, R. A., et al. 1990. cited supra). Recently, a 5' triphosphorylated thymidine produced by a mycobacterium was found to be mitogenic for a subset of human .gamma..delta. T cells (Constant, P., F. Davodeau, M. -A. Peyrat, Y. Poquet, G. Puzo, M. Bonneville, and J. -J. Foumie. 1994. "Stimulation of human .gamma..delta. T cells by nonpeptidic mycobacterial ligands" Science 264:267). This report indicated the possibility that the immune system may have evolved ways to preferentially respond to microbial nucleic acids.

[0008] Several observations suggest that certain DNA structures may also have the potential to activate lymphocytes. For example, Bell et al. reported that nucleosomal protein-DNA complexes (but not naked DNA) in spleen cell supernatants caused B cell proliferation and immunoglobulin secretion (Bell, D. A., B. Morrison, and P. VandenBygaart. 1990. "Immunogenic DNA-related factors". J. Clin. Invest. 85:1487). In other cases, naked DNA has been reported to have immune effects. For example, Messina et al. have recently reported that 260 to 800 bp fragments of poly (dG).multidot.(dC) and poly (dG.multidot.dC) were mitogenic for B cells (Messina, J. P., G. S. Gilkeson, and D. S. Pisetsky. 1993. "The influence of DNA structure on the in vitro stimulation of murine lymphocytes by natural and synthetic polynucleotide antigens". Cell. Immunol. 147:148). Tokunaga, et al. have reported that dG.multidot.dC induces IFN-.gamma. and NK activity (Tokunaga, S. Yamamoto, and K. Namba. 1988. "A synthetic single-stranded DNA, poly(dG,dC), induces interferon-.alpha./.beta. and -.gamma., augments natural killer activity, and suppresses tumor growth" Jpn. J Cancer Res. 79:682). Aside from such artificial homopolymer sequences, Pisetsky et al. reported that pure mammalian DNA has no detectable immune effects, but that DNA from certain bacteria induces B cell activation and immunoglobulin secretion (Messina, J. P., G. S. Gilkeson, and D. S. Pisetsky. 1991. "Stimulation of in vitro murine lymphocyte proliferation by bacterial DNA". J. Immunol. 147:1759). Assuming that these data did not result from some unusual contaminant, these studies suggested that a particular structure or other characteristic of bacterial DNA renders it capable of triggering B cell activation. Investigations of mycobacterial DNA sequences have demonstrated that ODN which contain certain palindrome sequences can activate NK cells (Yamamoto, S., T. Yamamoto, T. Kataoka, E. Kuramoto, O. Yano, and T. Tokunaga. 1992. "Unique palindromic sequences in synthetic oligonucleotides are required to induce INF and augment INF-mediated natural killer activity". J. Immunol. 148:4072; Kuramoto, E., O. Yano, Y. Kimura, M. Baba, T. Makino, S. Yamamoto, T. Yamamoto, T. Kataoka, and T. Tokunaga. 1992. "Oligonucleotide sequences required for natural killer cell activation". Jpn. J. Cancer Res. 83:1128).

[0009] Several phosphorothioate modified ODN have been reported to induce in vitro or in vivo B cell stimulation (Tanaka, T., C. C. Chu, and W. E. Paul. 1992. "An antisense oligonucleotide complementary to a sequence in I.gamma.2b increases .gamma.2b germline transcripts, stimulates B cell DNA synthesis, and inhibits immunoglobulin secretion". J. Exp. Med. 175:597; Branda, R. F., A. L. Moore, L. Mathews, J. J. McCormack, and G. Zon. 1993. "Immune stimulation by an antisense oligomer complementary to the rev gene of HIV-1". Biochem. Pharmacol. 45:2037; McIntyre, K. W., K. Lombard-Gillooly, J. R. Perez, C. Kunsch, U. M. Sarmiento, J. D. Larigan, K. T. Landreth, and R. Narayanan. 1993. "A sense phosphorothioate oligonucleotide directed to the initiation codon of transcription factor NF.kappa.B T65 causes sequence-specific immune stimulation". Antisense Res. Develop. 3:309; and Pisetsky, D. S., and C. F. Reich. 1993. "Stimulation of murine lymphocyte proliferation by a phosphorothioate oligonucleotide with antisense activity for herpes simplex virus". Life Sciences 54:101). These reports do not suggest a common structural motif or sequence element in these ODN that might explain their effects.

[0010] The CREB/ATF Family of Transcription Factors and Their Role in Replication

[0011] The cAMP response element binding protein (CREB) and activating transcription factor (ATF) or CREB/ATF family of transcription factors is a ubiquitously expressed class of transcription factors of which 11 members have so far been cloned (reviewed in de Groot, R. P., and P. Sassone-Corsi: "Hormonal control of gene expression: Multiplicity and versatility of cyclic adenosine 3',5'-monophosphate-responsive nuclear regulators". Mol. Endocrin. 7:145, 1993; Lee, K. A. W., and N. Masson: "Transcriptional regulation by CREB and its relatives". Biochim. Biophys. Acta 1174:221, 1993.). They all belong to the basic region/leucine zipper (bZip) class of proteins. All cells appear to express one or more CREB/ATF proteins, but the members expressed and the regulation of mRNA splicing appear to be tissue-specific. Differential splicing of activation domains can determine whether a particular CREB/ATF protein will be a transcriptional inhibitor or activator. Many CREB/ATF proteins activate viral transcription, but some splicing variants which lack the activation domain are inhibitory. CREB/ATF proteins can bind DNA as homo- or hetero-dimers through the cAMP response element, the CRE, the consensus form of which is the umethylated sequence TGACGTC (binding is abolished if the CpG is methylated) (Iguchi-Ariga, S. M. M., and W. Schaffner: "CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation". Genes & Develop. 3:612, 1989.).

[0012] The transcriptional activity of the CRE is increased during B cell activation (Xie, H. T. C. Chiles, and T. L. Rothstein: "Induction of CREB activity via the surface Ig receptor of B cells". J. Immunol. 151:880, 1993.). CREB/ATF proteins appear to regulate the expression of multiple genes through the CRE including immunologically important genes such as fos, jun B, Rb-1, IL-6, IL-1 (Tsukada, J., K. Saito, W. R. Waterman, A. C. Webb, and P. E. Auron: "Transcription factors NF-IL6 and CREB recognize a common essential site in the human prointerleukin 1.beta. gene". Mol. Cell. Biol. 14:7285, 1994; Gray, G. D., O. M. Hernandez, D. Hebel, M. Root, J. M. Pow-Sang, and E. Wickstrom: "Antisense DNA inhibition of tumor growth induced by c-Ha-ras oncogene in nude mice". Cancer Res. 53:577, 1993), IFN-.beta. (Du, W., and T. Maniatis: "An ATF/CREB binding site protein is required for virus induction of the human interferon B gene". Proc. Natl. Acad. Sci. USA 89:2150, 1992), TGF-.beta.1 (Asiedu, C. K., L. Scott, R. K. Assoian, M. Ehrlich: "Binding of AP-1/CREB proteins and of MDBP to contiguous sites downstream of the human TGF-B1 gene". Biochim. Biophys. Acta 1219:55, 1994.), TGF-.beta.2, class II MHC (Cox, P. M., and C. R. Goding: "An ATF/CREB binding motif is required for aberrant constitutive expression of the MHC class II DRa promoter and activation by SV40 T-antigen". Nucl. Acids Res. 20:4881, 1992.), E-selectin, GM-CSF, CD-8.alpha., the germline Ig.alpha. constant region gene, the TCR V.beta. gene, and the proliferating cell nuclear antigen (Huang, D., P. M. Shipman-Appasamy, D. J. Orten, S. H. Hinrichs, and M. B. Prystowsky: "Promoter activity of the proliferating-cell nuclear antigen gene is associated with inducible CRE-binding proteins in interleukin 2-stimulated T lymphocytes". Mol. Cell. Biol. 14:4233, 1994.). In addition to activation through the cAMP pathway, CREB can also mediate transcriptional responses to changes in intracellular Ca.sup.++ concentration (Sheng, M., G. McFadden, and M. E. Greenberg: "Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB". Neuron 4:571, 1990).

[0013] The role of protein-protein interactions in transcriptional activation by CREB/ATF proteins appears to be extremely important. There are several published studies reporting direct or indirect interactions between NF.kappa.B proteins and CREB/ATF proteins (Whitley, et. al., (1994) Mol. & Cell. Biol. 14:6464; Cogswell, et al., (1994) J. Immun. 153:712; Hines, et al., (1993) Oncogene 8:3189; and Du, et al., (1993) Cell 74:887. Activation of CREB through the cyclic AMP pathway requires protein kinase A (PKA), which phosphorylates CREB.sup.341 on ser.sup.133 and allows it to bind to a recently cloned protein, CBP (Kwok, R. P. S., J. R. Lundblad, J. C. Chrivia, J. P. Richards, H. P. Bachinger, R. G. Brennan, S. G. E. Roberts, M. R. Green, and R. H. Goodman: "Nuclear protein CBP is a coactivator for the transcription factor CREB". Nature 370:223, 1994; Arias, J., A. S. Alberts, P. Brindle, F. X. Claret, T. Smea, M. Karin, J. Feramisco, and M. Montminy: "Activation of cAMP and mitogen responsive genes relies on a common nuclear factor". Nature 370:226, 1994.). CBP in turn interacts with the basal transcription factor TFIIB causing increased transcription. CREB also has been reported to interact with dTAFII 110, a TATA binding protein-associated factor whose binding may regulate transcription (Ferreri, K., G. Gill, and M. Montminy: "The cAMP-regulated transcription factor CREB interacts with a component of the TFIID complex". Proc. Natl. Acad. Sci. USA 91:1210, 1994.). In addition to these interactions, CREB/ATF proteins can specifically bind multiple other nuclear factors (Hoeffler, J. P., J. W. Lustbader, and C. -Y. Chen: "Identification of multiple nuclear factors that interact with cyclic adenosine 3',5'-monophosphate response element-binding protein and activating transcription factor-2 by protein-protein interactions". Mol. Endocrinol. 5:256, 1991) but the biologic significance of most of these interactions is unknown. CREB is normally thought to bind DNA either as a homodimer or as a heterodimer with several other proteins. Surprisingly, CREB monomers constitutively activate transcription (Krajewski, W., and K. A. W. Lee: "A monomeric derivative of the cellular transcription factor CREB functions as a constitutive activator". Mol. Cell. Biol. 14:7204, 1994.).

[0014] Aside from their critical role in regulating cellular transcription, it has recently been shown that CREB/ATF proteins are subverted by some infectious viruses and retroviruses, which require them for viral replication. For example, the cytomegalovirus immediate early promoter, one of the strongest known mammalian promoters, contains eleven copies of the CRE which are essential for promoter function (Chang, Y. -N., S. Crawford, J. Stall, D. R. Rawlins, K. -T. Jeang, and G. S. Hayward: "The palindromic series I repeats in the simian cytomegalovirus major immediate-early promoter behave as both strong basal enhancers and cyclic AMP response elements". J. Virol. 64:264, 1990). At least some of the transcriptional activating effects of the adenovirus E1A protein, which induces many promoters, are due to its binding to the DNA binding domain of the CREB/ATF protein, ATF-2, which mediates E1A inducible transcription activation (Liu, F., and M. R. Green: "Promoter targeting by adenovirus E1a through interaction with different cellular DNA-binding domains". Nature 368:520, 1994). It has also been suggested that E1A binds to the CREB-binding protein, CBP (Arany, Z., W. R. Sellers, D. M. Livingston, and R. Eckner: "E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators". Cell 77:799, 1994). Human T lymphotropic virus-I (HTLV-1), the retrovirus which causes human T cell leukemia and tropical spastic paresis, also requires CREB/ATF proteins for replication. In this case, the retrovirus produces a protein, Tax, oligonucleotides do not include a GCG trinucleotide sequence at or near the 5' and/or 3' terminals and/or the consensus mitogenic CpG motif is not a palindrome. Prolonged immunostimulation can be obtained using stabilized oligonucleotides, particularly phosphorothioate stabilized oligonucleotides.

[0015] In a second aspect, the invention features useful therapies, which are based on the immunostimulatory activity of the nucleic acid molecules. For example, the immunostimulatory nucleic acid molecules can be used to treat, prevent or ameliorate an immune system deficiency (e.g., a tumor or cancer or a viral, fungal, bacterial or parasitic infection in a subject). In addition, immunostimulatory nucleic acid molecules can be administered to stimulate a subject's response to a vaccine.

[0016] Further, by redirecting a subject's immune response from Th2 to Th1, the instant claimed nucleic acid molecules can be administered to treat or prevent the symptoms of asthma. In addition, the instant claimed nucleic acid molecules can be administered in conjunction with a particular allergen to a subject as a type of desensitization therapy to treat or prevent the occurrence of an allergic reaction.

[0017] Further, the ability of immunostimulatory nucleic acid molecules to induce leukemic cells to enter the cell cycle supports the use of immunostimulatory nucleic acid molecules in treating leukemia by increasing the sensitivity of chronic leukemia cells and then administering conventional ablative chemotherapy, or combining the immunostimulatory nucleic acid molecules with another immunotherapy.

[0018] Other features and advantages of the invention will become more apparent from the following detailed description and claims.

BRIEF DESCRIPTION OF THE FIGURES

[0019] FIG. 1A-C are graphs plotting dose-dependent IL-6 production in response to various DNA sequences in T cell depleted spleen cell cultures. A. E. coli DNA (.circle-solid.) and calf thymus DNA (.box-solid.) sequences and LPS (at 10.times. the concentration of E. coli and calf thymus DNA) (.diamond-solid.). B. Control phosphodiester oligodeoxynucleotide (ODN) .sup.5'ATGGAAGGTCCAGTGTTCTC.sup.3' (SEQ ID NO:1) (.box-solid.) and two phosphodiester CpG ODN.sup.5'ATCGACCTACGTGCGT- TCTC.sup.3' (SEQ ID NO:2) (.diamond-solid.) and .sup.5'TCCATAACGTTCCTGATGC- T.sup.3' (SEQ ID NO:3) (.circle-solid.). C. Control phosphorothioate ODN.sup.5'GCTAGATGTTAGCGT.sup.3' (SEQ ID NO:4) (.box-solid.) and two phosphorothioate CpG ODN.sup.5'GAGAACGTCGACCTTCGAT.sup.3' (SEQ ID NO:5) (.diamond-solid.) and .sup.5'GCATGACGTTGAGCT.sup.3' (SEQ ID NO:6) (.circle-solid.). Data present the mean.+-.standard deviation of triplicates.

[0020] FIG. 2 is a graph plotting IL-6 production induced by CpG DNA in vivo as determined 1-8 hrs after injection. Data represent the mean from duplicate analyses of sera from two mice. BALB/c mice (two mice/group) were injected iv. with 100 ill of PBS (.quadrature.) or 200 .mu.g of CpG phosphorothioate ODN 5' TCCATGACGTTCCTGATGCT 3' (SEQ ID NO:7) (.zeta.) or non-CpG phosphorothioate ODN 5' TCCATGAGCTTCCTGAGTCT 3' (SEQ ID NO:8) (.diamond-solid.).

[0021] FIG. 3 is an autoradiograph showing IL-6 mRNA expression as determined by reverse transcription polymerase chain reaction in liver, spleen, and thymus at various time periods after in vivo stimulation of BALB/c mice (two mice/group) injected iv with 100 .mu.l of PBS, 200 .mu.g of CpG phosphorothioate ODN 5' TCCATGACGTTCCTGATGCT 3' (SEQ ID NO:7) or non-CpG phosphorothioate ODN 5' TCCATGAGCTTCCTGAGTCT 3' (SEQ ID NO:8).

[0022] FIG. 4A is a graph plotting dose-dependent inhibition of CpG-induced IgM production by anti-IL-6. Splenic B-cells from DBA/2 mice were stimulated with CpG ODN.sup.5'TCCAAGACGTTCCTGATGCT.sup.3' (SEQ ID NO:9) in the presence of the indicated concentrations of neutralizing anti-IL-6 (.diamond-solid.) or isotype control Ab (.circle-solid.) and IgM levels in culture supernatants determined by ELISA. In the absence of CpG ODN, the anti-IL-6 Ab had no effect on IgM secretion (.box-solid.).

[0023] FIG. 4B is a graph plotting the stimulation index of CpG-induced splenic B cells cultured with anti-IL-6 and CpG S-ODN 5' TCCATGACGTTCCTGATGCT 3' (SEQ ID NO:7) (.diamond-solid.) or anti-IL-6 antibody only (.box-solid.). Data present the mean.+-.standard deviation of triplicates.

[0024] FIG. 5 is a bar graph plotting chloramphenicol acetyltransferase (CAT) activity in WEHI-231 cells transfected with a promoter-less CAT construct (pCAT), positive control plasmid (RSV), or IL-6 promoter-CAT construct alone or cultured with CpG 5' TCCATGACGTTCCTGATGCT 3' (SEQ ID NO:7) or non-CpG 5' TCCATGAGCTTCCTGAGTCT 3' (SEQ ID NO:8) phosphorothioate ODN at the indicated concentrations. Data present the mean of triplicates.

[0025] FIG. 6 is a schematic overview of the immune effects of the immunostimulatory unmethylated CpG containing nucleic acids, which can directly activate both B cells and monocytic cells (including macrophages and dendritic cells) as shown. The immunostimulatory oligonucleotides do not directly activate purified NK cells, but render them competent to respond to IL-12 with a marked increase in their IFN-.gamma. production. By inducing IL-12 production and the subsequent increased IFN-.gamma. secretion by NK cells, the immunostimulatory nucleic acids promote a Th1 type immune response. No direct activation of proliferation of cytokine secretion by highly purified T cells has been found. However, the induction of Th1 cytokine secretion by the immunostimulatory oligonucleotides promotes the development of a cytotoxic lymphocyte response.

[0026] FIG. 7 is an autoradiograph showing NF.kappa.B mRNA induction in monocytes treated with E. coli (EC) DNA (containing unmethylated CpG motifs), control (CT) DNA (containing no unmethylated CpG motifs) and lipopolysaccharide (LPS) at various measured times, 15 and 30 minutes after contact.

[0027] FIG. 8A shows the results from a flow cytometry study using mouse B cells with the dihydrorhodamine 123 dye to determine levels of reactive oxygen species. The dye only sample in Panel A of the figure shows the background level of cells positive for the dye at 28.6%. This level of reactive oxygen species was greatly increased to 80% in the cells treated for 20 minutes with PMA and ionomycin, a positive control (Panel B). The cells treated with the CpG oligo (TCCATGACGTTCCTGACGTT SEQ ID NO:10) also showed an increase in the level of reactive oxygen species such that more than 50% of the cells became positive (Panel D). However, cells treated with an oligonucleotide with the identical sequence except that the CpGs were switched (TCCATGAGCTTCCTGAGTGCT SEQ ID NO:11) did not show this significant increase in the level of reactive oxygen species (Panel E).

[0028] FIG. 8B shows the results from a flow cytometry study using mouse B cells in the presence of chloroquine with the dihydrorhodamine 123 dye to determine levels of reactive oxygen species. Chloroquine slightly lowers the background level of reactive oxygen species in the cells such that the untreated cells in Panel A have only 4.3% that are positive. Chloroquine completely abolishes the induction of reactive oxygen species in the cells treated with CpG DNA (Panel B) but does not reduce the level of reactive oxygen species in the cells treated with PMA and ionomycin (Panel E).

[0029] FIG. 9 is a graph plotting lung lavage cell count over time. The graph shows that when the mice are initially injected with Schistosoma mansoni eggs "egg", which induces a Th2 immune response, and subsequently inhale Schistosoma mansoni egg antigen "SEA" (open circle), many inflammatory cells are present in the lungs. However, when the mice are initially given CpG oligo (SEQ ID NO:10) along with egg, the

Sequence CWU 1

1

56 1 20 DNA Artificial Sequence Synthetic oligonucleotide 1 atggaaggtc cagtgttctc 20 2 20 DNA Artificial Sequence Synthetic oligonucleotide 2 atcgacctac gtgcgttctc 20 3 20 DNA Artificial Sequence Synthetic oligonucleotide 3 tccataacgt tcctgatgct 20 4 15 DNA Artificial Sequence Synthetic oligonucleotide 4 gctagatgtt agcgt 15 5 19 DNA Artificial Sequence Synthetic oligonucleotide 5 gagaacgtcg accttcgat 19 6 15 DNA Artificial Sequence Synthetic oligonucleotide 6 gcatgacgtt gagct 15 7 20 DNA Artificial Sequence Synthetic oligonucleotide 7 tccatgacgt tcctgatgct 20 8 20 DNA Artificial Sequence Synthetic oligonucleotide 8 tccatgagct tcctgagtct 20 9 20 DNA Artificial Sequence Synthetic oligonucleotide 9 tccaagacgt tcctgatgct 20 10 20 DNA Artificial Sequence Synthetic oligonucleotide 10 tccatgacgt tcctgacgtt 20 11 21 DNA Artificial Sequence Synthetic oligonucleotide 11 tccatgagct tcctgagtgc t 21 12 20 DNA Artificial Sequence Synthetic oligonucleotide 12 ggggtcaacg ttgagggggg 20 13 15 DNA Artificial Sequence Synthetic oligonucleotide 13 gctagacgtt agcgt 15 14 15 DNA Artificial Sequence Synthetic oligonucleotide 14 gctagacgtt agcgt 15 15 15 DNA Artificial Sequence Synthetic oligonucleotide 15 gctagacgtt agcgt 15 16 15 DNA Artificial Sequence Synthetic oligonucleotide 16 gcatgacgtt gagct 15 17 20 DNA Artificial Sequence Synthetic oligonucleotide 17 atggaaggtc cagcgttctc 20 18 20 DNA Artificial Sequence Synthetic oligonucleotide 18 atcgactctc gagcgttctc 20 19 20 DNA Artificial Sequence Synthetic oligonucleotide 19 atcgactctc gagcgttctc 20 20 20 DNA Artificial Sequence Synthetic oligonucleotide 20 atcgactctc gagcgttctc 20 21 20 DNA Artificial Sequence Synthetic oligonucleotide 21 atcgactctc gagcgttctc 20 22 20 DNA Artificial Sequence Synthetic oligonucleotide 22 atggaaggtc caacgttctc 20 23 20 DNA Artificial Sequence Synthetic oligonucleotide 23 gagaacgctg gaccttccat 20 24 20 DNA Artificial Sequence Synthetic oligonucleotide 24 gagaacgctc gaccttccat 20 25 20 DNA Artificial Sequence Synthetic oligonucleotide 25 gagaacgctc gaccttcgat 20 26 20 DNA Artificial Sequence Synthetic oligonucleotide 26 gagcaagctg gaccttccat 20 27 20 DNA Artificial Sequence Synthetic oligonucleotide 27 gagaacgctg gaccttccat 20 28 20 DNA Artificial Sequence Synthetic oligonucleotide 28 gagaacgctg gaccttccat 20 29 20 DNA Artificial Sequence Synthetic oligonucleotide 29 gagaacgatg gaccttccat 20 30 20 DNA Artificial Sequence Synthetic oligonucleotide 30 gagaacgctc cagcactgat 20 31 20 DNA Artificial Sequence Synthetic oligonucleotide 31 tccatgtcgg tcctgatgct 20 32 20 DNA Artificial Sequence Synthetic oligonucleotide 32 tccatgctgg tcctgatgct 20 33 20 DNA Artificial Sequence Synthetic oligonucleotide 33 tccatgtcgg tcctgatgct 20 34 20 DNA Artificial Sequence Synthetic oligonucleotide 34 tccatgtcgg tcctgatgct 20 35 20 DNA Artificial Sequence Synthetic oligonucleotide 35 tccatgacgt tcctgatgct 20 36 20 DNA Artificial Sequence Synthetic oligonucleotide 36 tccatgtcgg tcctgctgat 20 37 20 DNA Artificial Sequence Synthetic oligonucleotide 37 tccatgtcgg tcctgatgct 20 38 20 DNA Artificial Sequence Synthetic oligonucleotide 38 tccatgccgg tcctgatgct 20 39 20 DNA Artificial Sequence Synthetic oligonucleotide 39 tccatggcgg tcctgatgct 20 40 20 DNA Artificial Sequence Synthetic oligonucleotide 40 tccatgacgg tcctgatgct 20 41 20 DNA Artificial Sequence Synthetic oligonucleotide 41 tccatgtcga tcctgatgct 20 42 20 DNA Artificial Sequence Synthetic oligonucleotide 42 tccatgtcgc tcctgatgct 20 43 20 DNA Artificial Sequence Synthetic oligonucleotide 43 tccatgtcgt tcctgatgct 20 44 20 DNA Artificial Sequence Synthetic oligonucleotide 44 tccatgacgt tcctgatgct 20 45 20 DNA Artificial Sequence Synthetic oligonucleotide 45 tccataacgt tcctgatgct 20 46 20 DNA Artificial Sequence Synthetic oligonucleotide 46 tccatgacgt ccctgatgct 20 47 20 DNA Artificial Sequence Synthetic oligonucleotide 47 tccatcacgt gcctgatgct 20 48 15 DNA Artificial Sequence Synthetic oligonucleotide 48 gcatgacgtt gagct 15 49 15 DNA Artificial Sequence Synthetic oligonucleotide 49 gctagatgtt agcgt 15 50 20 DNA Artificial Sequence Synthetic oligonucleotide 50 ggggtcaagt ctgagggggg 20 51 15 DNA Artificial Sequence Synthetic oligonucleotide 51 gctagacgtt agtgt 15 52 15 DNA Artificial Sequence Synthetic oligonucleotide 52 gctagacctt agtgt 15 53 20 DNA Artificial Sequence Synthetic oligonucleotide 53 tccatgtcgt tcctgatgct 20 54 20 DNA Artificial Sequence Synthetic oligonucleotide 54 tccatgacgt tcctgatgct 20 55 18 DNA Artificial Sequence Synthetic oligonucleotide 55 tctcccagcg tgcgccat 18 56 18 DNA Artificial Sequence Synthetic oligonucleotide 56 catttccacg atttccca 18

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed