Processes for the production of substituted 2-(2-pyridylmethyl) sulfinyl-1H-benzimidazoles

Avrutov, Ilya ;   et al.

Patent Application Summary

U.S. patent application number 10/655645 was filed with the patent office on 2004-07-15 for processes for the production of substituted 2-(2-pyridylmethyl) sulfinyl-1h-benzimidazoles. Invention is credited to Avrutov, Ilya, Finkelstein, Nina, Mendelovici, Marioara.

Application Number20040138466 10/655645
Document ID /
Family ID32718861
Filed Date2004-07-15

United States Patent Application 20040138466
Kind Code A1
Avrutov, Ilya ;   et al. July 15, 2004

Processes for the production of substituted 2-(2-pyridylmethyl) sulfinyl-1H-benzimidazoles

Abstract

Improved processes for preparing substituted 2-(2-pyridylmethyl)sulfinyl-1- H-benzimidazoles are disclosed.


Inventors: Avrutov, Ilya; (Ontario, CA) ; Mendelovici, Marioara; (Rechovot, IL) ; Finkelstein, Nina; (Herzliya, IL)
Correspondence Address:
    KENYON & KENYON
    ONE BROADWAY
    NEW YORK
    NY
    10004
    US
Family ID: 32718861
Appl. No.: 10/655645
Filed: September 4, 2003

Related U.S. Patent Documents

Application Number Filing Date Patent Number
10655645 Sep 4, 2003
10066850 Feb 4, 2002
60408163 Sep 4, 2002
60266162 Feb 2, 2001

Current U.S. Class: 546/273.7
Current CPC Class: C07D 401/12 20130101
Class at Publication: 546/273.7
International Class: C07D 43/02

Claims



What is claimed is:

1. A process for preparing a thioester compound having formula A: 8wherein R.sub.1 is methyl, R.sub.2 is 2-trifluoroethoxy, R.sub.3 is hydrogen and R.sub.4 is hydrogen, comprising the steps of: a) reacting a thioether compound of formula B 9wherein R.sub.1 through R.sub.4 are as in formula A, with tert-butyl hydroperoixde in the presence of vanadium acetylacetonate in ethanol to produce selective oxidation of the thioether compound of formula B to form the thioester compound of formula A; and b) isolating the thioester compound of formula A, wherein the tert-butyl hydroperoixde is present in a mol/mol ratio of tert-butyl hydroperoxide to the compound of formula B of about 1.15 to about 4.5, and the vanadium acetylacetonate is present in a mole/mol ratio of vanadium acetylacetonate to the compound of formula B of about 0.01 to about 0.6.

2. The process of claim 1, wherein the tert-butyl hydroperoixde is present in a mol/mol ratio of tert-butyl hydroperoxide to the compound of formula B of about 1.96 and the vanadium acetylacetonate is present in a mole/mol ratio of vanadium acetylacetonate to the compound of formula B of about 0.015.

3. The process of claim 1, wherein the oxidation is performed at about 5.degree. C.

4. The process of claim 1, wherein the oxidation is performed for about 6 hours.

5. The process of claim 1, after the reacting step of a), further comprising the step of: a') neutralizing the tert-butylhydroperoxide.

6. The process of claim 5, wherein the neutralizing step is performed by adding sodium sulfite.

7. The process of claim 1, wherein the isolating step is performed by vacuum filtration followed by drying.

8. A process for preparing a thioester compound of formula A: 10wherein R.sub.1, R.sub.2, and R.sub.4 are each selected from the group consisting of hydrogen, substituted or unsubstituted lower alkyl and substituted lower alkoxy; and R.sub.3 is selected from the group consisting of hydrogen and substituted or unsubstituted lower alkyl, comprising reacting a thioether compound of formula B 11wherein R.sub.1 through R.sub.4 are as in formula A, with an oxidizing agent selected from the group consisting of tert-butyl hydroperoxide in the presence of a catalyst, OXONE.RTM. and potassium peroxymonosulfate to produce selective oxidation of the thioether compound of formula B to form the thioester compound of formula A.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This continuation-in-part application claims priority to the provisional application Serial No. 60/408,163 filed Sep. 4, 2002 and to the U.S. application Ser. No. 10/066,850 filed Feb. 4, 2002, which in turn claims priority to the provisional application Serial No. 60/266,162 filed Feb. 2, 2001; the disclosures of which are incorporated by reference in their entirety herein.

FIELD OF THE INVENTION

[0002] The present invention relates to novel processes of preparing substituted 2-(2-pyridylmethyl) sulfinyl-1H-benzimidazoles.

BACKGROUND OF THE INVENTION

[0003] Several substituted 2-(2-pyridylmethyl)sulfinyl-1H-benzimidazoles are known gastric proton pump inhibitors. These include omeprazole (5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridyl) methyl]sulfinyl]-1H-ben- zimidazole), lansoprazole (2-[[[3-methyl-4-(2,2,2-trifluoro-ethoxy)-2-pyri- dinyl]methyl]sulfinyl]-1H-benzimidazole), pantoprazole (5-(difluoromethoxy)-2-[[(3,4-dimethoxy-2-pyridinyl)methyl]sulfinyl]-1H-b- enzimidazole, and rabeprazole (2-[[[4-(3-methoxy-propoxy)-3-methyl-2-pyidi- nyl]methyl]sulfinyl]-1H-benzimidazole. For example, omeprazole is a proton pump inhibitor commercially available for the treatment of gastric ulcers. The compound is disclosed in European Patent No. 5318.

[0004] The reported synthesis of these substituted 2-(2-pyridylmethyl)sulf- inyl-1H-benzimidazoles principally involves generally an oxidation process of a thioether moiety to form a thioester moiety of the compound of formula A: 1

[0005] Various methods employing various different oxidants to perform this oxidation are known. For example, Canadian Patent No. 1,263,119 describes the use of hydrogen peroxide over a vanadium catalyst (such as vanadium pentoxide, sodium vanadate and vanadium acteylacetonate). Canadian Patent No. 1,127,158 similarly describes the use of peracids, peresters, ozone, etc. European Patent Application, Publication No. 533,264 describes the use of magnesium monoperoxyphthalate as the oxidizing agent. PCT Publication No. WO91/18895 describes the use of m-chloroperoxy benzoic acid as the oxidizing agent. GB Pat. No. 2,069,492 generally describes this acid and other peroxy acids in the oxidation of substituted (phenylthiomethyl)pyridines.

[0006] Use of tert-butyl hydroperoxide (TBHP) as an oxidant has already been suggested for the performance of various organic oxidations. Sharpless et al., Aldrichimica Acta 12:63 (1979) review the use of THBP as an oxidant and compared with hydrogen peroxide and other peracids. Sharpless et al. describe the use of TBHP in the epoxidation of olefinic alcohols in the presence of VO(acac).sub.2 or Mo(CO).sub.5 catalysts. The oxidation of sulphides, however, is not described.

[0007] In an effort to develop a method for the selective oxidation of sulphides to sulphoxides, Choudray et al., J. Mol. Catalysts, 75:L7-L12 (1992) describe the use of TBHP in the presence of vanadium pillared clay. The results demonstrated selectivity for the oxidation to sulphoxide in preference to the sulphone far superior to that of known TBHP/vanadium catalysts. The use of VO(acac).sub.2 or V.sub.2O.sub.5 resulted in sulphones rather than sulfoxide predominating in the final product.

[0008] There has been a long felt need for efficient and safe methods for the selective oxidation of a thioether moiety of formula B to a thioester moiety of formula A. The present invention provides efficient and safe methods of preparing various substituted 2-(2-pyridylmethyl) sulfinyl-1H-benzimidazoles.

SUMMARY OF THE INVENTION

[0009] The present invention provides a process for preparing a thioester compound of formula A: 2

[0010] wherein R.sub.1, R.sub.2, and R.sub.4 are each selected from the group consisting of hydrogen, substituted or unsubstituted lower alkyl and substituted or unsubstituted lower alkoxy; and R.sub.3 is selected from the group consisting of hydrogen and substituted or unsubstituted lower alkyl, comprising reacting a thioether compound of formula B 3

[0011] wherein R.sub.1 through R.sub.4 are as in formula A, with an oxidizing agent to produce selective oxidation of the thioether compound of formula B to form the thioester compound of formula A.

[0012] The present invention further provides a process for preparing a thioester compound of compound of formula A, comprising reacting a thioether compound of formula B with Oxone.RTM. (Oxone monopersulphate).

[0013] The present invention further provides a process for preparing a thioester compound of compound of formula A, comprising reacting a thioether compound of formula B with tert-butyl hydroperoxide (TBHP) in the presence of a catalyst selected from the group consisting of vanadyl (IV) acetylacetonate, sodium metavanadate and vanadium pentoxide.

[0014] The present invention provides a process for preparing a thioester compound having formula A: 4

[0015] wherein R.sub.1 is methyl, R.sub.2 is 2-trifluoroethoxy, R.sub.3 is hydrogen and R.sub.4 is hydrogen, comprising the steps of:

[0016] a) reacting a thioether compound of formula B 5

[0017] wherein R.sub.1 through R.sub.4 are as in formula A, with tert-butyl hydroperoixde in the presence of vanadium acetylacetonate in ethanol to produce selective oxidation of the thioether compound of formula B to form the thioester compound of formula A; and

[0018] b) isolating the thioester compound of formula A.

[0019] Preferably, the tert-butyl hydroperoixde is present in a mol/mol ratio of tert-butyl hydroperoxide to the compound of formula B of about 1.15 to about 4.5, and the vanadium acetylacetonate is present in a mole/mol ratio of vanadium acetylacetonate to the compound of formula B of about 0.01 to about 0.6.

[0020] More preferably, the tert-butyl hydroperoixde is present in a mol/mol ratio of tert-butyl hydroperoxide to the compound of formula B of about 1.96 and the vanadium acetylacetonate is present in a mole/mol ratio of vanadium acetylacetonate to the compound of formula B of about 0.015.

[0021] Preferably, the oxidation is performed at about 5.degree. C. and for about 6 hours.

[0022] Preferably, after the reacting step of a), further comprising the step of neutralizing the tert-butylhydroperoxide. Preferably, the neutralizing step is performed by adding sodium sulfite. Preferably, the isolating step is performed by vacuum filtration followed by drying.

[0023] The substituted 2-(2-pyridylmethyl)sulfinyl-1H-benzimidazoles prepared according to the process of the present invention yield the desired products in a relatively high yield with only small amounts of the corresponding sulphone as by-product.

[0024] An object of the present invention is to provide an improved process of selective oxidation of 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2- -pyridyl)methyl]thio]-1H-benzimidazole (MPB) that utilizes a non-hazardous oxidant and results in the selective production of 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridyl)methyl]sulfinyl]-1H-benzi- midazole (omeprazole), i.e., the corresponding sulphoxide, with only minor amounts of 5-methoxy-2 [[(4-methoxy-3,5-dimethyl-2-pyridyl)methyl] sulphonyl]benzimidazole.

[0025] Another object of the present invention is to provide an improved process of selective oxidation of 2-[[[3-methyl-4-(2,2,2-trifluoro-ethoxy- )-2-pyridinyl]methyl]thio]-1H-benzimidazole that utilizes a non-hazardous oxidant and results in the selective production of 2-[[[3-methyl-4-(2,2,2-trifluoro-ethoxy)-2-pyridinyl]methyl]sulfinyl]-1H-- benzimidazole (lansoprazole), i.e., the corresponding sulphoxide, with only minor amounts of 2-[[[3-methyl-4-(2,2,2-trifluoro-ethoxy)-2-pyridiny- l]methyl]sulphonyl]-1H-benzimidazole.

[0026] Another object of the present invention is to provide an improved process of selective oxidation of 5-(difluoromethoxy)-2-[[(3,4-dimethoxy-- 2-pyridinyl)methyl]thio]-1H-benzimidazole that utilizes a non-hazardous oxidant and results in the selective production of 5-(difluoromethoxy)-2-[[(3,4-dimethoxy-2-pyridinyl)methyl]sulfinyl]-1H-be- nzimidazole (pantoprazole), i.e., the corresponding sulphoxide, with only minor amounts of 5-(difluoromethoxy)-2-[[(3,4-dimethoxy-2-pyridinyl)methy- l]sulphonyl]-1H-benzimidazole.

[0027] Another object of the present invention is to provide an improved process of selective oxidation of 2-[[[4-(3-methoxy-propoxy)-3-methyl-2-p- yidinyl]methyl]thio]-1H-benzimidazole that utilizes a non-hazardous oxidant and results in the selective production of 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridyl)methyl]sulfinyl]-1H-benzi- midazole (rabeprazole), i.e., the corresponding sulphoxide, with only minor amounts of 5-methoxy-2[[(4-methoxy-3,5-dimethyl-2-pyridyl)methyl] sulphonyl]-1H-benzimidazole.

[0028] Another object of the present invention is to provide an improved process of preparing omeprazole while the amount of 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridyl)methyl]sulphonyl]-1H-benz- imidazole (SOMP) as by-product when the reaction proceeds to completion, is typically within the range of about 1 to about 4.5% by weight of the crude product mixture.

[0029] Another object of the present invention is to provide an improved process of preparing lansoprazole while the amount of 2-[[[3-methyl-4-(2,2,2-trifluoro-ethoxy)-2-pyridinyl]methyl]sulphonyl]-1H- -benzimidazole as by-product when the reaction proceeds to completion, is typically within the range of about 1 to about 4.5% by weight of the crude product mixture.

[0030] Another object of the present invention is to provide an improved process of preparing pantoprazole while the amount of 5-(difluoromethoxy)-2-[[(3,4-dimethoxy-2-pyridinyl) methyl]sulphonyl]-1H-benzimidazole as by-product when the reaction proceeds to completion, is typically within the range of about 1 to about 4.5% by weight of the crude product mixture.

[0031] Another object of the present invention is to provide an improved process of preparing rabeprazole while the amount of 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl) methyl]sulphonyl]-1H-benzimidazole as by-product when the reaction proceeds to completion, is typically within the range of about 1 to about 4.5% by weight of the crude product mixture.

DETAILED DESCRIPTION OF THE INVENTION

[0032] Definitions: As used herein, the following abbreviations are used: "VO(acac).sub.2" is vanadium bis acetylacetonate; "TBHP" is tert-butyl hydroperoxide; "NaVO.sub.3" is sodium meta-vanadate; "V.sub.2O.sub.5" is vanadium pentoxide; "MPB" is 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyri- dyl)methyl]thio]benzimidazole; "OMP" is omeprazole; "SOMP" is 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridyl)methyl]sulphonyl]-1H-benz- imidazole; "Oxone.RTM." refers to a trademark name of an oxidizing agent under Du Pont for an acidic, white, granular, free-flowing solid containing the active ingredient potassium peroxymonosulfate; "TBAB" is tert-butyl ammonium bromide which is a quaternary ammonium salt that is one of the most common phase transfer catalysts; "substantially free" refers to sulphone by-product less than about 1 to about 4.5% by weight of the crude product mixture.

[0033] The present invention provides a process for preparing a thioester compound of formula A: 6

[0034] wherein R.sub.1, R.sub.2, and R.sub.4 are each selected from the group consisting of hydrogen, substituted or unsubstituted lower alkyl and substituted or unsubstituted lower alkoxy; and R.sub.3 is selected from the group consisting of hydrogen and substituted or unsubstituted lower alkyl, comprising reacting a thioether compound of formula B 7

[0035] wherein R.sub.1 through R.sub.4 are as in formula A, with an oxidizing agent to produce selective oxidation of the thioether compound of formula B to form the thioester compound of formula A.

[0036] Preferably, the present invention provides the preparation of substituted 2-(2-pyridylmethyl)sulfinyl-1H-benzimidazoles of formula A, wherein R.sub.1 is methyl; R.sub.2 is methoxy; R.sub.3 is methyl and R.sub.4 is methoxy. The compound is omeprazole.

[0037] Preferably, the present invention provides the preparation of substituted 2-(2-pyridylmethyl)sulfinyl-1H-benzimidazoles of formula A, wherein R.sub.1 is methyl; R.sub.2 is 2-trifluoroethoxy; R.sub.3 is hydrogen and R.sub.4 is hydrogen. The compound is lansoprazole.

[0038] Preferably, the present invention provides the preparation of substituted 2-(2-pyridylmethyl)sulfinyl-1H-benzimidazoles of formula A, wherein R.sub.1 is methoxy; R.sub.2 is methoxy; R.sub.3 is hydrogen and R.sub.4 is difluoromethoxy. The compound is pantoprazole.

[0039] Preferably, the present invention provides the preparation of substituted 2-(2-pyridylmethyl)sulfinyl-1H-benzimidazoles of formula A, wherein R.sub.1 is methyl; R.sub.2 is MeOCH.sub.2CH.sub.2CH.sub.2O, R.sub.3 is hydrogen and R.sub.4 is hydrogen. The compound is rabeprazole.

[0040] According to one embodiment, the oxidation is performed with tert-butyl hydroperoxide (TBHP) in the presence of a catalyst selected from the group consisting of vanadyl bis-acetylacetonate, sodium meta-vanadate and vanadium pentoxide. Preferably, the catalyst is vanadyl bis-acetylacetonate.

[0041] According to another embodiment, the molar ratio of tert-butyl hydroperoxide (TBHP) to a compound of formula B, is in the range of about 1.15 to about 4.5. Preferably, the compound of formula A includes 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridyl)methyl]thio]-1H-benzimida- zole, 2[[[3-methyl-4-(2,2,2-trifluoro-ethoxy)-2-pyridinyl]methyl]thio]-1H-- benzimidazole, 5-(difluoromethoxy)-2-[[3,4-dimethoxy-2-pyridinyl)methyl]th- io]-1H-benzimidazole, and 2-[[[4-(3-methoxy-propoxy)-3-methyl-2-pyridinyl]- methyl]thio]-1H-benzimidazole.

[0042] According to another embodiment, the molar ratio of vanadyl bis-acetylacetonate to the compound of formula B is from about 0.01 to about 0.6.

[0043] According to another embodiment, the oxidation by tert-butyl hydroperoxide (TBHP) in the presence of a catalyst is performed in an organic solvent selected from the group consisting of toluene, lower alkanols and ethyl acetate.

[0044] Another preferred embodiment of the present invention is that the oxidation is performed in an organic solvent such as toluene, a lower alkanol, preferably isopropanol or ethyl acetate. Most preferable solvent is toluene or isopropanol.

[0045] Preferably, the oxidation of substituted 2-(2-pyridylmethyl)sulfiny- l-1H-benzimidazoles of formula A is performed at temperature ranging from about -10.degree. C. to about 30.degree. C.

[0046] Preferably, the oxidation of substituted 2-(2-pyridylmethyl)sulfiny- l-1H-benzimidazoles of formula A is performed over a period of about 2 to about 10 hours.

[0047] According to another embodiment, the oxidation is performed in the presence of Oxone.RTM. (Oxone monopersulphate).

[0048] According to another embodiment, the molar ratio between Oxone.RTM. (Oxone monopersulphate) and the compound of formula B is from about 1.25 to about 1.6:1, most preferably about 1.4 to about 1.6:1.

[0049] According to another embodiment, the oxidation by Oxone.RTM. (Oxone monopersulphate) is performed in the presence of an aqueous organic solvent. Preferably, the organic solvent is acetone, methanol or in two-phase system (CH.sub.2Cl.sub.2/H.sub.2O, (ethyl acetate/H.sub.2O) in the presence of phase-transferred catalyst (e.g. TBAB). More preferably, the oxidation is performed in about 5% aqueous methanol.

[0050] Preferably, the oxidation of substituted 2-(2-pyridylmethyl)sulfiny- l-1H-benzimidazoles of formula A is performed in a two-phase system selected from (CH.sub.2Cl.sub.2/H.sub.2O) and (ethyl acetate/H.sub.2O).

[0051] Preferably, the oxidation of substituted 2-(2-pyridylmethyl)sulfiny- l-1H-benzimidazoles of formula A is performed in the presence of tert-butyl ammonium bromide (TBAB).

[0052] According to another embodiment, the oxidation by Oxone.RTM. (Oxone monopersulphate) is performed at a temperature ranging from about -10.degree. C. to about 30.degree. C. over a time period of about 2 to about 10 hours.

[0053] The oxidation conditions of the present invention result in the production of the compound of formula A, wherein the amount of sulphone derivative is less than about 0.5% (wt/wt) of the final product preferably less than 0.2% (wt/wt).

[0054] Preferably, the pure products prepared in according to the disclosed method include pantoprazole, lansoprazole, omeprazole and rabeprazole.

[0055] The invention will now be exemplified by the following non-limiting Examples.

EXAMPLES

Example 1

Selective Oxidation of 5-methoxy-2-F[(4-methoxy-3,5-dimethyl-2-pyridyl)met- hyl]thio]-1H-benzimidazole to Form 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2- -pyridyl)methyl]sulfinyl-1H-benzimidazole (Omeprazole)

[0056] 1.5 mg (0.6% molar) VO(acac).sub.2) was dissolved in 12 ml ethanol at room temperature. The solution was stirred and 3 grams of 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridyl)methyl]thio]benzimidazole (MPB) were added. 1.5 ml aqueous tert-butyl hydroperoxide (TBHP) (70%) was added over a 5-minute period at 16-17.degree. C. and the solution was then stirred for 3 hours. After completion of the reaction, the product mixture was cooled to about 15.degree. C. and treated with aqueous sodium metabisulphate. The resultant solid was filtered off, washed with cooled ethyl acetate to afford the end product as an almost white solid (2.5 grams, yield 79%).

Example 2

Selective Oxidation of 5-methoxy-2-r[(4-methoxy-3,5-dimethyl-2-pyridyl)met- hyl]thio]-1H-benzimidazole to Form 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2- -pyridyl)methyl]sulfinyl]-1H-benzimidazole (Omeprazole

[0057] 15 mg (0.6% molar) VO(acac).sub.2) in 5 ml toluene were added to a suspension of 3 grams of 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridyl)- methyl]thio]benzimidazole (MPB) in 30 ml toluene at a temperature of about 5.degree. C. 3.5 ml of tert-butyl hydroperoxide (TBHP) in toluene (3M, 115%) were added dropwise, while the temperature was maintained between 5 and 7.degree. C. Upon completing the addition of the TBHP, the temperature rose to 22.degree. C. The reaction was allowed to proceed to completion (about 3 hours), after which the cooled product mixture was treated with aqueous sodium metabisulphite. The solid product was filtered off, washed with cooled ethyl acetate and dried in an oven (yield 80.7%)

Example 3

Selective Oxidation of 2-[[[3-methyl-4-(2,2,2-trifluoro-ethoxy)-2-pyridiny- l]methyl]thio]-1H-benzimidazole to Form 2-[[[3-methyl-4-(2,2,2-trifluoro-e- thoxy)-2-pyridinyl]methyl]sulfinyl]-1H-benzimidazole (Lansoprazole)

[0058] 1.5 mg (0.6% molar) VO(acac).sub.2) is dissolved in 12 ml ethanol at room temperature. The solution is stirred and 3 grams of 2-[[[3-methyl-4-(2,2,2-trifluoro-ethoxy)-2-pyridinyl]methyl]thio]-1H-benz- imidazole are added. 1.5 ml aqueous tert-butyl hydroperoxide (TBHP) (70%) is added over a 5-minute period at 16-17.degree. C. and the solution is then stirred for 3 hours. After completion of the reaction, the product mixture is cooled to about 15.degree. C. and treated with aqueous sodium metabisulphate. The resultant solid is filtered off, washed with cooled ethyl acetate to afford the end product as an almost white solid (2.5 grams, yield 79%).

Example 4

Selective Oxidation of 5-(difluoromethoxy)-2-[[(3,4-dimethoxy-2-pyridinyl)- methyl]thio]-1H-benzimidazole to Form 5-(difluoromethoxy)-2-[[(3,4-dimetho- xy-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazole (Pantoprazole)

[0059] 1.5 mg (0.6% molar) VO(acac).sub.2) is dissolved in 12 ml ethanol at room temperature. The solution is stirred and 3 grams of 5-(difluoromethoxy)-2-[[(3,4-dimethoxy-2-pyridinyl]methyl]methyl]thio]-1H- -benzimidazole are added. 1.5 ml aqueous tert-butyl hydroperoxide (TBHP) (70%) is added over a 5-minute period at 16-17.degree. C. and the solution is then stirred for 3 hours. After completion of the reaction, the product mixture is cooled to about 15.degree. C. and treated with aqueous sodium metabisulphate. The resultant solid is filtered off, washed with cooled ethyl acetate to afford the end product as an almost white solid (2.5 grams, yield 79%).

Example 5

Selective Oxidation of 2-[[[4-(3-methoxy-propoxy)-3-methyl-2-pyidinyl]meth- yl]thio]-1H-benzimidazole to Form 2-[[[4-(3-methoxy-propoxy)-3-methyl-2-py- idinyl]meth]sulfinyl]-1H-benzimidazole (Rabeprazole)

[0060] 1.5 mg (0.6% molar) VO(acac).sub.2) is dissolved in 12 ml ethanol at room temperature. The solution is stirred and 3 grams of 2-[[[4-(3-methoxy-propxy)-3-methyl-2-pyidinyl]methyl]thio]-1H-benzimidazo- le are added. 1.5 ml aqueous tert-butyl hydroperoxide (TBHP) (70%) is added over a 5-minute period at 16-17.degree. C. and the solution is then stirred for 3 hours. After completion of the reaction, the product mixture is cooled to about 15.degree. C. and treated with aqueous sodium metabisulphate. The resultant solid is filtered off, washed with cooled ethyl acetate to afford the end product as an almost white solid (2.5 grams, yield 79%).

Example 6

Changes of Experimental Conditions and Yields

[0061] The above described processes of Example 1 and Example 2 were repeated while using the conditions given in Table I below, to give the following results:

1TABLE I Catalyst Type/amount TBHP HPLC of Product Mixture (mol %) Type/amount Solvent MPB Omeprazole Sulfone Yield % VO(acac).sub.2/0.6 Dry/115% Toluene 0.1 93.9 0.7 80.7 VO(acac).sub.2/0.6 Aq/115% Toluene 3.0 94.4 1.25 74.6 VO(acac).sub.2/0.25 Dry/150% Toluene 0.6 93.2 1.2 68.5 VO(acac).sub.2/0.08 Aq/150% i-PrOH 0.9 97.2 1.6 83.5 VO(acac).sub.2/0.05 Aq/150% MeOH 1.9 92.1 4.4 >50 VO(acac).sub.2/0.05 Aq/150% EtOH 0.7 95.6 3.3 63 V.sub.20.sub.5silica/0.05 Aq/450% EtOH abs 13.4 82.6 2.4 >50 NaVO.sub.3/0.6 Aq/115% EtOH abs 7.3 87.7 1.9 >50

Example 7

Comparison with the Method disclosed by Canadian Patent 1,263,119

[0062] 4 mg (0.06% molar) VO (acac).sub.2 were added to suspension of 9 grams of 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridyl)methyl]thio]-1H-- benzimidazole (MPB) in 66 ml ethanol at room temperature. 35 ml of 35% aqueous hydrogen peroxide (150% mol) was added at room temperature with no visible exotherm, the mixture was then stirred. After 12 hours the reaction mixture still contained 65% of untreated MPB and only 32% omeprazole. Prolongation of the reaction time did not lead to further production of omeprazole.

Example 8

Selective Oxidation By Oxone.RTM. of 5-methoxy-2-[[(4-methoxy-3,5-dimethyl- -2-pyridyl) methyl]thio]-1H-benzimidazole to form 5-methoxy-2-[[(4-methoxy- -3,5-dimethyl-2-pyridyl)methyl]sulfinyl]-1H-benzimidazole (Omeprazole)

[0063] A mixture of 3 grams 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridy- l)methyl] thio]benzimidazole (MPB), 3 grams NaHCO.sub.3 and 20 ml aqueous methanol was cooled to -2.degree. C. and 3.5 ml (5.69 mmol) Oxone.RTM. was added. The mixture was stirred for 4 hours at 0.degree. C. and a further 1 gram (mmol) Oxone.RTM. was added and stirring continued for 1.5 hours. A solution of 0.8 gram sodium metabisulfite in 20 ml water was added dropwise over 5-10 minutes. After further stirring the resultant precipitate was filtered, washed successively with water and 50% aqueous methanol and dried.

[0064] Yield 2.7 grams, 84% (purity 98.1%), SOMP 0.15%.

Example 9

Changes of Experimental Conditions and Yields

[0065] The above described reaction of Example 8 was repeated while using the conditions given in Table II below, to give the following results:

2TABLE II Oxone .RTM. (equivalents Temp Time to) Solvent (.degree. C.) (hours) % MPB % OMP % SOMP Yield % 1.25 5% -10(210 30.75 0.6 97.4 0.2 60.0 acetone 1.25 EA/H2O/ -0(5 2 0.2 94.1 -- 50.7 TBAB 1.25 + 0.35 5% -2(3 7.5 0.2 98.1 0.15 84.0 MeOH

Example 10

Selective Oxidation By Oxone.RTM. of 2-[[[3-methyl-4-(2,2,2-trifluoro-etho- xy)-2-pyridinyl]methyl]thio]-1H-benzimidazole to form of 2-[[[3-methyl-4-(2,2,2-trifluoro-ethoxy)-2-pyridinyl]methyl]sulfinyl]-1H-- benzimidazole (Lansoprazole)

[0066] A mixture of 3 grams 2-[[[3-methyl-4-(2,2,2-trifluoro-ethoxy)-2-pyr- idinyl] methyl] thio]-H-benzimidazole, 3 grams NaHCO.sub.3 and 20 ml aqueous methanol is cooled to -2.degree. C. and 3.5 ml (5.69 mmol) Oxone.RTM. is added. The mixture is stirred for 4 hours at 0.degree. C. and a further Igram (mmol) Oxone.RTM. is added and stirring continues for 1.5 hours. A solution of 0.8 gram sodium metabisulfite in 20 ml water is added dropwise over 5-10 minutes. After further stirring the resultant precipitate is filtered, washed successively with water and 50% aqueous methanol and dried. Purity is 98.1%.

Example 11

Selective Oxidation By Oxone.RTM. of 5-(difluoromethoxy)-2-[[(3,4-dimethyo- xy-2-pyridinjyl)methyl]thio]-1H-benzimidazole to form 5-(difluoromethoxy)-2-[[(3,4-dimethyoxy-2-pyridiniyl)methyl]sulfinyl]-1H-- benzimidazole (Pantoprazole)

[0067] A mixture of 3 grams 5-(difluoromethoxy)-2-[[(3,4-dimethyoxy-2-pyri- dinjyl)methyl] thio]-1H-benzimidazole, 3 grams NaHCO.sub.3 and 20 ml aqueous methanol is cooled to -2.degree. C. and 3.5 ml (5.69 mmol) Oxone.RTM. is added. The mixture is stirred for 4 hours at 0.degree. C. and a further 1 gram (mmol) Oxone.RTM. is added and stirring continues for 1.5 hours. A solution of 0.8 gram sodium metabisulfite in 20 ml water is added dropwise over 5-10 minutes. After further stirring the resultant precipitate is filtered, washed successively with water and 50% aqueous methanol and dried. Purity is 98.1%.

Example 12

Selective Oxidation By Oxone.RTM. of 2-[[[4-(3-methoxy-propoxy)-3-methyl-2- -pyridinyl]methyl]thio]-1H-benzimidazole to Form 2-[[[4-(3-methoxy-propoxy- )-3-methyl-2-pyridinyl]sulfinyl]-1H-benzimidazole (Rabeprazole)

[0068] A mixture of 3 grams 2-[[[4-(3-methoxy-propoxy)-3-methyl-2-pyridiny- l]methyl]thio]-1H-benzimidazole, 3 grams NaHCO.sub.3 and 20 ml aqueous methanol is cooled to -2.degree. C. and 3.5 ml (5.69 mmol) Oxone.RTM. is added. The mixture is stirred for 4 hours at 0.degree. C. and a further 1 gram (mmol) Oxone.RTM. is added and stirring continued for 1.5 hours. A solution of 0.8 gram sodium metabisulfite in 20 ml water is added dropwise over 5-10 minutes. After further stirring the resultant precipitate is filtered, washed successively with water and 50% aqueous methanol and dried. Purity is 98.1%.

Example 13

[0069] Into a flask 1L ethanol (95%) was charged and cooled under stirring to 5.degree. C. Under mixing 200 grams of LNPS (2-[[3-methyl-4-(2,2,2-tri- fluoroethoxy)-2-pyridinyl]thio]-1H benzimidazole) and 3 grams vanadium acetyl acetonate were added to form a suspension. 100 grams tert-butyl-hydroperoxide solution was dropped into the suspension. The suspension was maintained under mixing for 6 hours. 40 grams Na.sub.2SO3 (dissolved in 400 mL water) were added. 1L of water (pH=8-8.5; the pH was realized by the addition of NH.sub.4OH) was added to the suspension and the suspension was further mixed for 17 hours at 25.degree. C. The suspension was cooled to 5.degree. C. The solid phase was separated by vacuum filtration and was then dried. 178 grams LNP crude was obtained (yield: 85%). Sulfone: 0.15%.

[0070] The present invention is not to be limited in scope by the specific embodiments described herein. It will be understood that various modifications may be made without departing from the spirit and scope of the invention. The disclosures of cited references herein are incorporated by reference in their entireties.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed