Disproportionation of hydrocarbons

Randolph, Bruce B. ;   et al.

Patent Application Summary

U.S. patent application number 10/317567 was filed with the patent office on 2004-06-17 for disproportionation of hydrocarbons. Invention is credited to Johnson, Marvin M., Randolph, Bruce B., Sughrue, Edward L. II.

Application Number20040116764 10/317567
Document ID /
Family ID32506158
Filed Date2004-06-17

United States Patent Application 20040116764
Kind Code A1
Randolph, Bruce B. ;   et al. June 17, 2004

Disproportionation of hydrocarbons

Abstract

A novel hydrocarbon disproportionation process is provided and includes contacting a hydrocarbon feed comprising at least one paraffin with a disproportionation catalyst comprising a support component, a metal, and a halogen in a disproportionation reaction zone under disproportionation reaction conditions.


Inventors: Randolph, Bruce B.; (Bartlesville, OK) ; Johnson, Marvin M.; (Bartlesville, OK) ; Sughrue, Edward L. II; (Bartlesville, OK)
Correspondence Address:
    RICHMOND, HITCHCOCK
    FISH & DOLLAR
    P.O. Box 2443
    Bartlesville
    OK
    74005
    US
Family ID: 32506158
Appl. No.: 10/317567
Filed: December 12, 2002

Current U.S. Class: 585/708
Current CPC Class: C07C 2523/42 20130101; C07C 2521/04 20130101; C07C 2523/75 20130101; C07C 2521/12 20130101; C07C 2521/02 20130101; C07C 2523/06 20130101; C07C 2523/08 20130101; C07C 2523/755 20130101; C07C 2523/46 20130101; C07C 2521/06 20130101; C07C 2523/44 20130101; C07C 2527/06 20130101; C07C 6/10 20130101; C07C 2523/745 20130101; C07C 2529/04 20130101
Class at Publication: 585/708
International Class: C07C 006/08

Claims



That which is claimed:

1. A process for disproportionating hydrocarbons comprising contacting a hydrocarbon feed comprising at least one paraffin with a catalyst comprising: (a) a support component, (b) a metal selected from the group consisting of platinum, palladium, iron, cobalt, nickel, zinc, ruthenium, rhodium, osmium, iridium, and combinations of any two or more thereof, and (c) a halogen in a disproportionation reaction zone under disproportionation reaction conditions.

2. A process in accordance with claim 1 further comprising reactivating said catalyst by stripping said catalyst with hydrogen.

3. A process in accordance with claim 1 wherein said hydrocarbon feed further comprises an initiator selected from the group consisting of a chloroalkane, a branched paraffin, at least one olefin, and combinations of any two or more thereof.

4. A process in accordance with claim 3 wherein the concentration of said initiator in said disproportionation reaction zone, based on the combined weight of said hydrocarbon feed and said initiator in said reaction zone, is at least about 0.01 weight percent.

5. A process in accordance with claim 3 wherein the concentration of said initiator compound in said reaction zone, based on the combined weight of said hydrocarbon feed and said initiator in said reaction zone, is at least about 0.1 weight percent.

6. A process in accordance with claim 3 wherein the concentration of said initiator in said reaction zone, based on the combined weight of said hydrocarbon feed and said initiator in said reaction zone, is at least 0.9 weight percent.

7. A process in accordance with claim 3 wherein said at least one olefin has in the range of from 2 to 20 carbon atoms per molecule.

8. A process in accordance with claim 3 wherein said at least one olefin has in the range of from 3 to 8 carbon atoms per molecule.

9. A process in accordance with claim 3 wherein said at least one olefin has in the range of from 5 to 6 carbon atoms per molecule.

10. A process in accordance with claim 1 wherein said disproportionation reaction conditions include a temperature in the range of from about 75.degree. F. to about 500.degree. F.

11. A process in accordance with claim 1 wherein said disproportionation reaction conditions include a temperature in the range of from about 100.degree. F. to about 300.degree. F.

12. A process in accordance with claim 1 wherein said disproportionation reaction conditions include a temperature in the range of from 200.degree. F. to 300.degree. F.

13. A process in accordance with claim 1 wherein said metal of said catalyst is selected from the group consisting of platinum, palladium, and combinations thereof.

14. A process in accordance with claim 1 wherein said halogen of said catalyst is selected from the group consisting of chlorine, bromine and combinations thereof.

15. A process in accordance with claim 1 wherein said support component of said catalyst is selected from the group consisting of alumina, silica-alumina, a zeolite, zirconia, a borate, an aluminum borate, and combinations thereof.

16. A process in accordance with claim 1 wherein said metal of said catalyst comprises platinum, said halogen of said catalyst comprises chlorine, and said support component of said catalyst comprises alumina.

17. A process in accordance with claim 1 wherein said catalyst further comprises an element selected from the group consisting of boron, gallium, indium, thallium, and combinations of any two or more thereof.

18. A process in accordance with claim 17 wherein said element comprises gallium.
Description



[0001] This invention relates to the disproportionation of hydrocarbons. More particularly, this invention relates to the disproportionation of paraffins in the presence of an isomerization catalyst.

BACKGROUND OF THE INVENTION

[0002] The disproportionation of hydrocarbons is well known in the art. This process has gained importance due to governmental regulations requiring reduction of the amount of volatile C.sub.4 and C.sub.5 alkanes present in gasoline. Also, there is an incentive to convert isopentanes, for example, to higher isoparaffins, such as, isohexane which is a lower vapor pressure motor fuel component, and to isobutane which is a feedstock for alkylation with olefins to high octane alkylate and also for the production of MTBE.

[0003] Therefore, development of an improved process for disproportionating hydrocarbons would be a significant contribution to the art.

SUMMARY OF THE INVENTION

[0004] It is an object of the present invention to provide an improved process for disproportionating hydrocarbons.

[0005] It is another object of the present invention to provide an improved process for disproportionating hydrocarbons by contacting a hydrocarbon feedstock with a catalyst comprising a metal, a halogen, and a support component.

[0006] In accordance with the present invention, a process for disproportionating hydrocarbons has been discovered comprising contacting a hydrocarbon feed comprising at least one paraffin with a catalyst comprising a support component, a metal, and a halogen in a disproportionation reaction zone under disproportionation reaction conditions.

[0007] Other objects and advantages will become apparent from the detailed description and the appended claims.

DETAILED DESCRIPTION OF THE INVENTION

[0008] The process of the present invention comprises, consists of, or consists essentially of contacting a hydrocarbon feed comprising at least one paraffin with a catalyst comprising

[0009] (a) a support component,

[0010] (b) a metal selected from the group consisting of platinum, palladium, iron, cobalt, nickel, zinc, ruthenium, rhodium, osmium, iridium, and combinations of any two or more thereof, and

[0011] (c) a halogen in a disproportionation reaction zone under disproportionation reaction conditions.

[0012] The hydrocarbon feed can be any hydrocarbon-containing feed which comprises, consists of, or consists essentially of at least one paraffin. Preferably, the feed comprises at least one C.sub.4 or C.sub.5 paraffin including, but not limited to, normal butane, normal pentane, and isopentane. Most preferably, the feed comprises at least one isopentane.

[0013] The hydrocarbon feed can be a stream obtained from an alkylation process, or obtained from the processing of natural gas liquids, or a stream obtained from a thermal or catalytic cracking process.

[0014] The catalyst used in the inventive process can comprise, consist of, or consist essentially of (a) a support component, (b) a metal selected from the group consisting of platinum, palladium, iron, cobalt, nickel, zinc, ruthenium, rhodium, osmium, iridium, and combinations of any two or more thereof, and (c) a halogen. Preferably, the halogen is selected from the group consisting of chlorine, bromine, and combinations thereof, and the metal is selected from the group consisting of platinum, palladium, and combinations thereof, and the support component is selected from the group consisting of alumina, silica-alumina, a zeolite, zirconia, a borate, an aluminum borate, and combinations thereof. Most preferably, the support component comprises alumina, the metal comprises platinum, and the halogen comprises chlorine.

[0015] The process of this invention preferably employs an initiator, which is added to the hydrocarbon feed. The initiator is selected from the group consisting of a chloroalkane, a branched paraffin, at least one olefin, and combinations thereof. Preferably, the initiator comprises at least one olefin.

[0016] The initiator useful in the present invention can be any compound capable of initiating a hydrogen transfer reaction. The chloroalkane preferably comprises a compound selected from the group consisting of chloropropane, chlorobutanes, chloropentanes, and combinations of any two or more thereof. The branched paraffin preferably comprises a multi-branched paraffin having a different molecular weight than the primary component in the hydrocarbon feed. The at least one olefin preferably has in the range of from 2 to 20 carbon atoms per molecule, and combinations of any two or more thereof. More preferably, the at least one olefin has in the range of from 3 to 8 carbon atoms per molecule. Most preferably, the at least one olefin has in the range of from 5 to 6 carbon atoms per molecule.

[0017] When present, the concentration of the initiator in the disproportionation reaction zone, based on the combined weight of the hydrocarbon feed and initiator in the disproportionation reaction zone, is at least about 0.01 weight percent, preferably at least about 0.1 weight percent and most preferably at least 0.9 weight percent.

[0018] In another embodiment of the invention, the catalyst comprises, consists of, or consists essentially of a) a support component, b) a metal selected from the group consisting of platinum, palladium, iron, cobalt, nickel, zinc, ruthenium, rhodium, osmium, iridium, and combinations of any two or more thereof, c) a halogen and d) an element selected from the group consisting of boron, gallium, indium, thallium, and combinations of any two or more thereof Preferably, the element is gallium.

[0019] The disproportionation reaction takes place in a disproportionation reaction zone. The disproportionation reaction zone can be any reactor system known to those skilled in the art to be suitable for use in disproportionating hydrocarbons in the presence of a catalyst. Typical reactor systems useful in the present invention include, but are not limited to, batch type operations, a fixed bed system, a moving bed system, and a fluidized bed system.

[0020] The disproportionation reaction conditions can be any conditions suitable for disproportionating hydrocarbons. Preferably, the disproportionation reaction conditions include a temperature in the range of from about 75.degree. F. to about 500.degree. F., more preferably from about 100.degree. F. to about 300.degree. F., and most preferably from 200.degree. F. to 300.degree. F. Also, the disproportionation reaction conditions include a contact time of the hydrocarbon feed with the disproportionation catalyst in the range of from about 30 seconds to about 2 hours, preferably from about 5 minutes to about 1 hour, and most preferably from 20 minutes to 50 minutes, and, optionally, include the presence of the above described initiator.

[0021] The catalyst can be reactivated by being stripped with hydrogen.

[0022] The following examples demonstrate the advantages of the present invention. The examples are for illustration purposes only and are not intended to limit the invention as set out in the specification and the appended claims.

EXAMPLE I

[0023] A 20 mL sample of a catalyst containing 1.5% Ga.sub.2O.sub.3 on Al.sub.2O.sub.3 with 0.3% platinum was placed into a tubular reactor with an inert support above and below the catalyst. A nitrogen feed was set at 50 sccm and the temperature was set at 500.degree. F. A 3.4 gram quantity of carbon tetrachloride was charged to the reactor at a rate of 0.1 mL/min. After this catalyst was chlorided, as described above, an isopentane feed was charged to the reactor at a feed rate of 42.4 mL/hr (LHSV=2 hr.sup.-1). Initial temperature was set at 250.degree. F. and a hydrogen co-feed was set at 2.5 sccm. Table I shows the results for five different samples taken approximately after 1 hour, 2 hours, 3 hours, 4.5 hours and 5.5 hours on stream, respectively.

1TABLE I iC.sub.5 Disproportionation Results from Platinum on Chlorided Alumina Catalyst with Gallium Time On-Stream, Hours Feed 1 Hour 2 Hours 3 Hours 4.5 Hours 5.5 Hours Product (wt %) propane 0 0.089 0.007 0.004 0.002 0.001 isobutane 0.053 10.932 3.100 1.778 0.903 0.636 butene 0 0.002 0 0.001 0 0 normal butane 0.084 0.406 0.105 0.100 0.091 0.088 neo-pentane 0.193 0.209 0.19456 0.194 0.193 0.193 isopentane 99.235 78.384 91.126 94.155 96.690 97.444 normal pentane 0.414 1.580 0.892 0.757 0.652 0.634 Unknown C.sub.1-C.sub.5 0.021 0.017 0.021 0.020 0.020 0.019 2,2-dimethylbutane 0 0.254 0.042 0.035 0.02 0.010 2,3-dimethylbutane 0 0.879 0.413 0.257 0.116 0.083 2-methylpentane 0 3.602 2.026 1.354 0.663 0.475 3-methylpentane 0 1.805 1.11 0.758 0.377 0.276 normal hexane 0 0.256 0.086 0.047 0.018 0.012 Unknown C.sub.6 0 0.004 0 0 0 0 2,2-dimethylpentane 0 0.018 0.004 0.002 0.001 0 2,4-dimethylpentane 0 0.182 0.074 0.044 0.016 0.008 2,2,3-trimethylbutane 0 0.035 0.011 0.007 0.003 0.001 3,3-dimethylpentane 0 0.037 0.038 0.007 0.010 0.003 2-methylhexane 0 0.36 0.17 0.102 0.037 0.018 2,3-dimethylpentane 0 0.115 0.055 0.033 0.012 0.006 3-methylhexane 0 0.282 0.142 0.084 0.030 0.015 3-ethylpentane 0 0.014 0.008 0.004 0.001 0 2,2,4-trimethylpentane 0 0.003 0 0 0 0 normal C.sub.7 0 0.044 0.018 0.010 0.004 0.002 Unknown C.sub.7 0 0.023 0.008 0.006 0.004 0.002 2,2-dimethylhexane 0 0.014 0.006 0.004 0.002 0.001 2,5-dimethylhexane 0 0.038 0.017 0.011 0.005 0.002 2,4-dimethylhexane 0 0.037 0.018 0.011 0.005 0.002 3,3-dimethylhexane 0 0.004 0.001 0.001 0 0 2,3,4-trimethylpentane 0 0.002 0 0 0 0 2,3,3-trimethylpentane 0 0.001 0 0 0 0 2,3-dimethylhexane 0 0.012 0.006 0.004 0.002 0 2-methylheptane 0 0.044 0.023 0.015 0.006 0.002 4-methylheptane 0 0.013 0.007 0.004 0.002 0 3,4-dimethylhexane 0 0.004 0.002 0.001 0 0 3-methylheptane 0 0.040 0.022 0.014 0.006 0.002 Unknown C.sub.8 0 0.001 0.001 0.001 0.001 0.001 C.sub.9.sup.+ 0 0.254 0.244 0.172 0.108 0.064

[0024] The catalyst underwent hydrogen stripping for 65 hours at a hydrogen flow rate of 50 sccm with temperature set at 300.degree. F. After reactivation, an isopentane feed was once again charged to the reactor at a feed rate of 42.4 mL/hr (LHSV=2 hr.sup.-1). Initial temperature was set at 270.degree. F. and a hydrogen co-feed was set at 2.5 sccm. Table II shows the results for 5 different samples taken approximately 1, 2, 3, 4 and 5 hours after reactivation, respectively.

2TABLE II iC.sub.5 Disproportionation Results from Platinum on Chlorided Alumina Catalyst with Gallium Time Since Reactivation, Hours Feed 1 Hour 2 Hours 3 Hours 4 Hours 5 Hours Product (wt %) Propane 0 0.058 0.010 0.005 0.003 0.006 Isobutane 0.053 9.389 4.350 2.754 1.946 2.378 Butene 0 0.002 0.001 0 0.001 0.001 normal butane 0.084 0.265 0.109 0.097 0.093 0.097 neo-pentane 0.193 0.202 0.195 0.194 0.194 0.194 Isopentane 99.235 79.064 88.199 91.422 93.854 93.051 normal pentane 0.414 2.313 1.383 1.187 1.094 1.214 Unknown C.sub.1-C.sub.5 0.021 0.020 0.022 0.022 0.024 0.021 2,2-dimethylbutane 0 0.178 0.066 0.036 0.021 0.044 2,3-dimethylbutane 0 0.098 0.594 0.433 0.277 0.324 2-methylpentane 0 3.794 2.618 2.019 1.36 1.45 3-methylpentane 0 2.083 1.456 1.129 0.767 0.809 normal hexane 0 0.339 0.163 0.104 0.060 0.092 Unknown C.sub.6 0 0.002 0 0 0 0 2,2-dimethylpentane 0 0.014 0.005 0.003 0.001 0.002 2,4-dimethylpentane 0 0.159 0.094 0.063 0.028 0.036 2,2,3-trimethylbutane 0 0.034 0.016 0.010 0.004 0.007 3,3-dimethylpentane 0 0.020 0.009 0.006 0.002 0.004 2-methylhexane 0 0.348 0.217 0.146 0.069 0.080 2,3-dimethylpentane 0 0.124 0.074 0.049 0.022 0.028 3-methylhexane 0 0.297 0.185 0.124 0.059 0.668 3-ethylpentane 0 0.017 0.010 0.007 0.003 0.004 2,2,4-trimethylpentane 0 0 0 0 0 0 normal C.sub.7 0 0.054 0.028 0.019 0.008 0.011 Unknown C.sub.7 0 0 0 0 0 0 2,2-dimethylhexane 0 0.012 0.01 0.005 0.003 0.002 2,5-dimethylhexane 0 0.024 0.016 0.011 0.005 0.004 2,4-dimethylhexane 0 0.027 0.175 0.012 0.005 0.004 3,3-dimethylhexane 0 0.002 0.002 0.001 0 0 2,3-dimethylhexane 0 0.01 0.006 0.004 0.002 0.002 2-methylheptane 0 0.033 0.022 0.016 0.007 0.006 4-methylheptane 0 0.011 0.007 0.005 0.002 0.002 3,4-dimethylhexane 0 0.004 0.002 0.002 0 0 3-methylheptane 0 0.033 0.022 0.016 0.007 0.006 Unknown C.sub.8 0 0.002 0.001 0.001 0.001 0 C.sub.9.sup.+ 0 0.009 0.091 0.09 0.075 0.057

[0025] The catalyst was once again reactivated. After reactivation an isopentane feed was charged to the reactor at a feed rate of 21.2 mL/hr (LHSV=1 hr.sup.-1). Initial temperature was set at 270.degree. F. and a hydrogen co-feed was set at 2.5 sccm. Table III shows the results for five different samples taken approximately two hours, three hours, four hours, five hours, and six hours after reactivation, respectively.

3TABLE III iC.sub.5 Disproportionation Results from Platinum on Chlorided Alumina Catalyst with Gallium Time Since Reactivation, Hours Feed 2 Hour 3 Hours 4 Hours 5 Hours 6 Hours Product (wt %) ethane 0 0 0.008 0.001 0.001 0.002 propane 0 0.049 0.020 0.014 0.013 0.018 isobutane 0.053 9.501 7.692 6.262 6.127 6.967 butene 0 0.001 0.001 0.001 0.001 0.001 normal butane 0.084 0.225 0.131 0.118 0.117 0.125 neo-pentane 0.193 0.201 0.193 0.194 0.194 0.194 isopentane 99.235 77.846 79.659 82.890 83.390 81.726 normal pentane 0.414 2.243 1.975 1.748 1.728 1.697 Unknown C.sub.1-C.sub.5 0.021 0.015 0.021 0.024 0.026 0.028 2,2-dimethylbutane 0 0.149 0.101 0.073 0.071 0.086 2,3-dimethylbutane 0 1.148 1.179 0.991 0.945 1.031 2-methylpentane 0 4.346 4.593 4.012 3.895 4.204 3-methylpentane 0 2.385 2.525 2.195 2.128 2.289 normal hexane 0 0.349 0.303 0.229 0.217 0.248 Unknown C.sub.6 0 0.004 0.002 0 0.002 0.002 2,2-dimethylpentane 0 0.013 0.007 0.005 0.004 0.006 2,4-dimethylpentane 0 0.18 0.190 0.146 0.132 0.161 2,2,3-trimethylbutane 0 0.037 0.032 0.023 0.020 0.026 3,3-dimethylpentane 0 0.019 0.014 0.010 0.009 0.012 2-methylhexane 0 0.404 0.429 0.333 0.306 0.367 2,3-dimethylpentane 0 0.145 0.151 0.116 0.105 0.127 3-methylhexane 0 0.346 0.367 0.283 0.260 0.311 3-ethylpentane 0 0.020 0.020 0.016 0.014 0.017 Normal C.sub.7 0 0.059 0.052 0.038 0.032 0.041 2,2-dimethylhexane 0 0.014 0.012 0.009 0.008 0.010 2,5-dimethylhexane 0 0.030 0.032 0.024 0.022 0.027 2,4-dimethylhexane 0 0.033 0.035 0.027 0.024 0.030 3,3-dimethylhexane 0 0.003 0.002 0.002 0.002 0.002 2,3-dimethylhexane 0 0.012 0.013 0.010 0.009 0.011 2-methylheptane 0 0.042 0.045 0.034 0.031 0.038 4-methylheptane 0 0.014 0.015 0.011 0.010 0.013 3,4-dimethylhexane 0 0.004 0.005 0.004 0.003 0.004 3-methylheptane 0 0.042 0.045 0.034 0.031 0.038 Unknown C.sub.8 0 0.005 0.004 0.004 0.004 0.005 C.sub.9.sup.+ 0 0.112 0.123 0.117 0.118 0.131

[0026] As is evident from the results, the catalyst can still convert isopentane even after two reactivations.

EXAMPLE II

[0027] An 11 mL sample of a catalyst containing 18% gallium in a mixed (Ga/Al).sub.2O.sub.3 support with 0.5% platinum was placed into a tubular reactor with an inert support above and below the catalyst. A nitrogen feed was set at 50 sccm and the temperature was set at 500.degree. F. A 2.52 gram quantity of carbon tetrachloride was charged to the reactor at a rate of 0.035 mL/min. After this catalyst was chlorided, as described above, a pure isopentane feed was charged to the reactor at a feed rate of 22 mL/hr (LHSV=2 hr.sup.-1). The initial pressure was set at 300 psig. Initial temperature was set at 235.degree. F. and a hydrogen co-feed was set at 2.5 sccm. Table IV shows the results for five different samples taken approximately after 1, 2, 3, 4 and 5 hours on stream, respectively.

4TABLE IV iC.sub.5 Disproportionation Results from Platinum on Chlorided Alumina Catalyst with Gallium Time On-Stream, Hours 1 Hour 2 Hours 3 Hours 4 Hours 5 Hours Total Product (wt %) Propane 0.03 0.01 0.01 0.00 0.00 Isobutene 14.18 5.27 5.13 2.63 1.64 Isobutene 0.00 0.00 0.00 0.00 0.00 Normal Butane 0.22 0.11 0.12 0.09 0.09 Neo-pentane 0.22 0.21 0.20 0.21 0.22 Isopentane 57.40 81.26 81.79 91.35 94.13 Normal Pentane 1.92 1.46 1.45 1.02 1.03 Unknown C.sub.1-C.sub.5 0.05 0.04 0.03 0.02 0.02 2,2-dimethylbutane 0.84 0.29 0.32 0.08 0.03 2,3-dimethylbutane 2.27 1.14 1.03 0.45 0.28 2-methylpentane 7.02 4.07 3.77 1.91 1.34 3-methylpentane 3.17 1.86 1.80 0.93 0.67 Normal Hexane 0.38 0.14 0.14 0.05 0.03 C.sub.7.sup.+ 12.30 4.13 4.22 1.25 0.54 Total C.sub.6.sup.+ 25.98 11.63 11.28 4.66 2.88 C.sub.6 Selectivity 52.7 64.5 62.5 73.3 81.2

[0028] As is evident from the results, the catalyst as prepared in Example II is also useful for converting isopentane.

[0029] The pressure was then decreased to 25 psig. The hydrogen co-feed was set at 5 sccm. Table V shows the results for three different samples taken after approximately 6 hours, 8 hours, and 10 hours on stream, respectively.

5TABLE V i-C.sub.5 Disproporationation Results from Platinum on Chlorided Alumina Catalyst with Gallium Time on Stream Hours 6 Hours 8 Hours 10 Hours Liquid Product (wt %) Propane 0.001 0 0 Isobutane 0.356 0.257 0.285 Normal Butane 0.078 0.079 0.082 Neo-pentane 0.204 0.208 0.212 Isopentane 95.494 98.200 98.503 Normal Pentane 0.42 0.428 0.432 2,2-dimethylbutane 0.001 0 0 2,3-dimethylbutane 0.046 0.031 0.028 2-methylpentane 0.308 0.233 0.224 3-methylpentane 0.187 0.135 0.130 Normal Hexane 0.002 0.001 0.001 C.sub.7.sup.+ 2.902 0.429 0.103 Offgas (wt %) Propane 0.304 0.136 0.066 Isobutane 12.401 6.403 3.651 Normal Butane 0.292 0.243 0.232 Neo-pentane 0 0.332 0.377 Isopentane 72.047 83.163 90.403 Normal Pentane 1.075 0.529 0.400 2,2-dimethylbutane 0 0.063 0.035 2,3-dimethylbutane 0.616 0.254 0.125 2-methylpentane 2.022 0.798 0.410 3-methylpentane 1.095 0.352 0.190 Normal Hexane 0 0.068 0.034 C.sub.7.sup.+ 10.149 7.659 4.075 Combined (wt %) Propane 0.128 0.028 0.010 Isobutane 5.423 1.525 0.781 Normal Butane 0.168 0.113 0.104 Neo-pentane 0.118 0.234 0.236 Isopentane 85.630 95.098 97.309 Normal Pentane 0.696 0.448 0.427 2,2-dimethylbutane 0.001 0.013 0.005 2,3-dimethylbutane 0.286 0.077 0.042 2-methylpentane 1.029 0.349 0.251 3-methylpentane 0.569 0.179 0.139 Normal Hexane 0.001 0.015 0.006 C.sub.7.sup.+ 5.951 1.920 0.689 Isopentane Conversion 14.5% 4.0% 2.5%

[0030] As is evident from Table V, the catalyst as prepared in Example II can also convert isopentane after being reactivated.

[0031] Whereas this invention has been described in terms of the preferred embodiments, reasonable variations and modifications are possible by those skilled in the art. Such modifications are within the scope of the described invention and appended claims.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed