Optical fiber

Chiang, Kin Seng ;   et al.

Patent Application Summary

U.S. patent application number 10/316972 was filed with the patent office on 2004-06-17 for optical fiber. Invention is credited to Chiang, Kin Seng, Rastogi, Vipul.

Application Number20040114892 10/316972
Document ID /
Family ID32506032
Filed Date2004-06-17

United States Patent Application 20040114892
Kind Code A1
Chiang, Kin Seng ;   et al. June 17, 2004

Optical fiber

Abstract

An optical fiber is described in which the cladding is provided with a refractive index that increases in a radially outward direction. In particular embodiments the refractive index of the cladding increases monotonically from a low value to a value close to or higher Than the refractive index of the core. Such a fiber can be formed that can be operated in an effective single mode manner or in multimode operation and which is very suitable for use in high-bit-rate communication systems


Inventors: Chiang, Kin Seng; (Kowloon, HK) ; Rastogi, Vipul; (Uttar Pradesh, IN)
Correspondence Address:
    INTELLECTUAL PROPERTY GROUP
    FREDRIKSON & BYRON, P.A.
    4000 PILLSBURY CENTER
    200 SOUTH SIXTH STREET
    MINNEAPOLIS
    MN
    55402
    US
Family ID: 32506032
Appl. No.: 10/316972
Filed: December 11, 2002

Current U.S. Class: 385/123 ; 385/124
Current CPC Class: G02B 6/0283 20130101; G02B 6/03688 20130101; G02B 6/03605 20130101; G02B 6/03627 20130101
Class at Publication: 385/123 ; 385/124
International Class: G02B 006/16; G02B 006/18

Claims



1. An optical fiber comprising a central step-index or graded-index core region surrounded by an annular cladding region, wherein said cladding region is formed with a refractive index that increases in a radially outward direction.

2. An optical fiber as claimed in claim 1 wherein the refractive index of said cladding region increases from a low value to a value close to or greater than the peak refractive index in the core.

3. An optical fiber as claimed in claim 1 wherein said refractive index of said cladding region increases monotonically.

4. An optical fiber as claimed in claim 1 wherein said refractive index of said cladding region increases in a step-like manner.

5. An optical fiber as claimed in claim 1 wherein said refractive index of said cladding region increases in accordance with a power law, wherein: 6 n 2 ( r ) = n 1 2 [ 1 - 2 ( b a - r a b a - 1 ) q ] where n(r)=the refractive index at a radius r n.sub.1=the refractive index in the core n.sub.2=the refractive index at radius a a=the radius of the core b=the radius of the cladding region, and e=the profile shape parameter (q>0), and 7 = n 1 2 - n 2 2 2 n 1 2 .

6. An optical fiber as claimed in claim 1 wherein the refractive index of said cladding region increases exponentially or in a Gaussian manner.

7. An optical fiber as claimed in claim 1 wherein said fiber is adapted to be operated in effective single-mode operation.

8. An optical fiber as claimed in claim 1 wherein said fiber is adapted to be operated in effective multimode operation.

9. A method of transmitting data through an optical fiber, comprising providing a fiber having a central step-index or graded-index core region surrounded by an annular cladding region, wherein said cladding region is formed with a refractive index that increases in a radially outward direction, and operating said fiber in an effective single-mode manner.

10. A method of transmitting data through an optical fiber, comprising providing a fiber having a central step-index or graded-index core region surrounded by an annular cladding region, wherein said cladding region is formed with a refractive index that increases in a radially outward direction, and operating said fiber in a multimode manner.
Description



FIELD OF THE INVENTION

[0001] This invention relates to a novel design for an optical fiber, and in particular to designs for optical fibers that provide a large core single-mode fiber or multimode fiber for high capacity transmission.

BACKGROUND OF THE INVENTION

[0002] The most effective way of increasing the transmission capacity of an optical fiber communication system is to use the extremely wide bandwidth of a single-mode fiber and to feed a large number of channels as is practicable into the fiber. As a consequence of this, the trend has been to extend the communication window from the C-Band to the L-Band and the S-Band so that the communication window covers a total range of about 200 nm.

[0003] However, a major obstacle to the development of ultra-wide-band dense wavelength division multiplexing (DWDM) systems are non-linear effects, and in particular the Raman effect, which cannot be managed with dispersion. Non-linear effects can cause distortion and cross-talk for example. A direct way to manage such non-linear effects is to use a single-mode fiber with a large effective core area, and therefore recently much work has been done on developing such fibers.

[0004] At the same time, there is an increasing interest in expanding the bandwidth of a multimode fiber to meet the demand for short-distance broadband applications, such as broadband Internet and local-area networks. For such applications, the very large core size of a multimode fiber proves to be important because it can ease the optical alignment and lower the fiber connection cost (and hence, the system cost). Unfortunately, the bandwidth of a conventional step-index multimode fiber, especially a large-core multimode fiber, is very limited and cannot meet future demand. It is desirable to design a multimode fiber that has a very large core size yet provides a sufficiently large bandwidth.

PRIOR ART

[0005] The effective core area of a conventional dispersion-shifted single-mode fiber is about 50 .mu.m.sup.2. In 1996 Corning Inc. developed a large-effective-area dispersion-shifted fiber (LEAF) which had an effective core area of about 80 .mu.m.sup.2, and there arc other designs for large-effective-area fibers, one of which shows an effective area of about 100 .mu.m.sup.2. A single material photonic crystal fiber, a so-called holey fiber, is characterized by a distribution of air holes in the cladding running through the entire length of the cladding and has attracted considerable attention in recent years because it is capable of single-mode operation over a wide range of wavelengths. However, it is difficult to keep the birefringence, and hence the polarization mode dispersion in the fiber, low because of the large index contrast introduced by the air holes.

[0006] The core area of a commercial multimode fiber is of the order of 1000-100000 .mu.m.sup.2. The bandwidth problem is solved by introduction of a suitable graded refractive-index profile in the core of the fiber. However, to obtain a bandwidth that is much wider than that of a step-index fiber of the same core size, an accurate control of the profile shape in the core is required, which is difficult to achieve, especially when the core is very large.

SUMMARY OF THE INVENTION

[0007] According to the present invention there is provided an optical fiber comprising a central step-index or graded-index core region surrounded by an annular cladding region, wherein said cladding region is formed with a refractive index that increases in a radially outward direction.

[0008] An advantage of the present invention, at least in preferred forms, is that the size of the core region can be small enough to guarantee effective single-mode operation, or large-enough to provide effective multimode operation.

[0009] Preferably the refractive index of the cladding region increases from a low value to a value close to or greater than the peak refractive index in the core region.

[0010] In preferred embodiments of the invention the refractive index of the cladding region increases monotonically. For example, in accordance with a power law, or alternatively, the refractive index of said cladding region may increase in a step-like manner.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Some embodiments of the invention will now be described by way of example and with reference to the accompanying drawings, in which:--

[0012] FIG. 1 is a plot showing a selection of possible refractive-index profiles for fibers in accordance with embodiments of the invention,

[0013] FIG. 2 shows the effects the profile parameter and the cladding-core radius ratio on the real part of the normalized propagation constant for fibers in accordance with embodiments of the invention,

[0014] FIG. 3 shows the effects of the profile parameter on the loss of the fundamental mode and the first higher-order mode,

[0015] FIG. 4 is a comparison of the bandwidth-length product of a conventional fiber with fibers according to embodiments of the present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0016] As will be seen from the following, the present invention provides, at least in its preferred forms, an optical fiber with a cladding refractive-index profile that increases monotonically away from the center in the radial direction. The advantage of this structure is that it is possible to provide a fiber with an effective single-mode operation at a desired wavelength (e.g. 1550 nm communication window) with a very large effective mode area. A radially rising cladding profile makes the fiber essentially a leaky structure. An appropriate choice of the cladding profile causes the first higher-order mode of the fiber to leak away very quickly while offering a very low leakage loss to the fundamental mode. The fiber, thus, stays effectively single-moded even with a very large core size.

[0017] FIG. 1 shows some typical refractive-index profiles for fibers according to embodiments of this invention with the refractive index increasing monotonically. In practice, however, the manufacture of a fiber with a smoothly increasing refractive index may not always be straightforward, and instead the refractive-index may increase in a stop-like manner, and therefore FIG. 1 also includes such a "stair-case" profile. Where the refractive-index increases in a step-like manner the number of steps can be varied, and it is not necessary for each step to be the same height or the same length. The number of steps, their length and their height can be varied as desired to approximate a smoothly-increasing profile.

[0018] The refractive-index distribution profile in the cladding can be of any shape (possibilities include exponential and Gaussian profiles in addition to the following examples), provided that it increases in the radially outward direction from a low value to a value that is close to or larger than the peak index in the core. For illustrative purposes in some embodiments of the invention, the refractive-index distribution can be expressed as 1 n 2 ( r ) = n 1 2 r < a and r > b n 2 ( r ) = n 1 2 [ 1 - 2 ( b a - r a b a - 1 ) q ] a < r < b ( 1 )

[0019] where the region r<a represents the core and the region a<r<b represents the cladding of the fiber. The cladding of the fiber in truncated at r-b, beyond which there is a high-index region n.sub.1. The profile in the core (r<a) or outside the cladding (r>b) may either be graded-index or step index. For simplicity, a step-index profile may be chosen in these regions. The profile in the cladding is a power-law profile with profile shape parameter q. 2 = n 1 2 - n 2 2 2 n 1 2

[0020] is the relative core-cladding index difference with n.sub.2 being the minimum value of the cladding index.

[0021] The fiber can be characterized by using the normalized parameters 3 V = 2 a n 1 2 ,

[0022] which is the normalized frequency, and 4 B = n eff 2 - n 2 2 n 1 2 - n 2 2 ,

[0023] the normalized propagation constant, where n.sub.eff is the mode index. Since the fiber is a leaky structure, B is complex, whose real part B.sub.r gives the value of the mode index and imaginary part B.sub.i measures the leakage loss. The actual leakage loss of the fiber can be calculated from B.sub.i by 5 = 8.686 .times. 10 12 2 n 1 B i

[0024] in dB,km, where .lambda. is the free-space optical wavelength in nm.

[0025] Fibers according to embodiments of the invention may be analysed using the matrix method described by K. Thyagarajan, S. Diggavi, A. Taneja, and A. K. Ghatak. Appl. Opt. 30 (1991) 3877 and shown in FIG. 2 and FIG. 3 are the B.sub.r and B.sub.i of the LP.sub.01 and LP.sub.11 modes as a function of the profile parameter q for different values of V and b/a. FIG. 2 shows that the effective index of the mode is hardly affected by the profile shape parameter q. The value of b/a also has little effect on B.sub.r. It can also be seen that the values of B.sub.r for a given V are very close to those of the corresponding step-index fiber. The fact that the radially rising profile in the cladding does not greatly affect the effective indices of the modes indicates the possibility of tailoring the chromatic dispersion characteristics of the fiber with a suitable refractive-index profile in the core, as in conventional fiber designs.

[0026] On the other hand, the radially rising profile in the cladding has a significant effect on the leakage loss of the modes, as shown in FIG. 3. It can be seen that, even for a large V (much higher than the single-mode limit 2.4048 of a conventional step-index fiber), with an appropriate choice of the cladding profile, the leakage loss of the fundamental mode can stay very low while that of the first higher-order mode is orders of magnitude higher. The fiber, thus, shows effective single-mode operation. It can also be seen that for a given profile q, an increase in b/a increases the ratio of the leakage loss of the LP.sub.11 mode to that of the LP.sub.01 mode by orders of magnitudes. For example, this ratio for q=1 and V=4 increases from 10.sup.4 to 10.sup.5 when b/a is increased from 5.0 to 6.25, and to 10.sup.6 for b/a=7.5, clearly distinguishing the two modes in terms of guidance. A very large V value or a very low q value results in a very low loss even for the LP.sub.11 mode. Therefore, the values of V and q should be chosen to give a sufficiently high leakage loss for the LP.sub.11 mode and, at the same time, a sufficiently low loss for the LP.sub.01 mode.

[0027] To provide an estimate of the practical values of the leakage losses, we consider a silica fiber with .DELTA.=00023. The loss of this fiber at 1550 nm in terms of B.sub.i is given as .alpha.=1.17.times.10.su- p.8 B.sub.i in db/km. Therefore, in a silica fiber with q=4.0, a=20 .mu.m (an effective core area of .about.1000 .mu.m.sup.2), and b=100 .mu.m, which correspond to V=8 and b/a=5, for the LP.sub.01 mode with B.sub.1=3.7.times.10.sup.-9, the leakage loss is as small as 0.43 dB/km, while for the LP.sub.11 mode with B.sub.1=4.6.times.10.sup.-7, the leakage loss is as large as 54 dB/km. The fiber is practically a single-mode fiber.

[0028] For a typical silica fiber with core radius 10 .mu.m (an effective core area of .about.200 .mu.m.sup.2) cladding radius 62.5 .mu.m, and a radially rising stair-case profile, the leakage losses at the wavelength 1550 nm are 0.06 dB/km and 2000 dB/km for the fundamental mode and the first higher-order mode, respectively, and the fundamental mode has a Gaussian-like mode pattern of a conventional step-index fiber. It should be mentioned here that it is possible to design a fiber to give a much larger mode area, hut bending loss limits the maximum mode area that can be achieved in practice.

[0029] The same design as shown in FIG. 1 can be used to provide multimode operation with a wide bandwidth. By increasing the core radius or the index contrast sufficiently (e.g., a=100 .mu.m and .DELTA.=0.01), the value of V can become very large (V>>1) and the number of modes in the fiber increases at a rate proportional to the square of V. As implied by the results in FIG. 3, the leakage loss increases generally with the mode order. Therefore, a leakage loss distribution can be defined, which is a function that characterizes how the leakage loss varies with the mode order. Obviously, the form of the leakage loss distribution depends on the refractive-index profile of the cladding. In general, a higher-order mode, because of its larger leakage loss, leaks out from the fiber at a shorter distance than a lower-order mode. The fiber thus has the effect of stripping off the modes continuously along the transmission distance, starting from the modes of the highest orders. In other words, the effective number of modes propagating in the fiber decreases as the length of the fiber increases, This is equivalent to say, using the concept of geometric optics, that the effective numerical aperture of the fiber decreases as the length of the fiber increases because of the leakage mechanism. By reducing the effective numerical aperture (through gradual elimination of higher-order modes), the bandwidth-length product of the fiber increases with the length of the fiber.

[0030] On the other hand, the bandwidth-length product of a conventional multimode fiber, which has a uniform cladding, is a constant, which is equal to the initial bandwidth-length of the corresponding leaky fiber, as shown in FIG. 4. For the leaky fiber, the dependence of the bandwidth-length product on the fiber length is governed by the refractive-index profile of the cladding. It is possible to obtain a linear dependence by using a suitable index profile. In that case, the bandwidth (not the bandwidth-length product) of the fiber becomes a constant, which implies that the fiber can promise the same bandwidth regardless of its length.

[0031] It should be pointed out that the leaky multimode fiber is inherently more lossy than the conventional multimode fiber. The gain in bandwidth is traded with an increase in optical loss. The leaky fiber is therefore most suitable for short-distance high-capacity applications, where the transmission distance is limited by The dispersion instead of the attenuation in the fiber.

[0032] The present invention, at least in its preferred forms, provides a fiber that is easy to fabricate with the existing well-established technology for making graded-index fibers and should be very useful for high-bit-rate communication systems.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed