Gate with dual gate dielectric layer and method of fabricating the same

Huang, Chung-Lin ;   et al.

Patent Application Summary

U.S. patent application number 10/443950 was filed with the patent office on 2004-03-25 for gate with dual gate dielectric layer and method of fabricating the same. This patent application is currently assigned to Nanya Technology Corporation. Invention is credited to Chuang, Ying-Cheng, Huang, Chung-Lin.

Application Number20040058498 10/443950
Document ID /
Family ID31989792
Filed Date2004-03-25

United States Patent Application 20040058498
Kind Code A1
Huang, Chung-Lin ;   et al. March 25, 2004

Gate with dual gate dielectric layer and method of fabricating the same

Abstract

A gate with dual gate dielectric layer and fabrication method thereof. A semiconductor substrate is provided, on which a dielectric layer and a patterned hard mask layer with an opening are sequentially formed. A spacer is formed on a sidewall of the opening. The semiconductor substrate is ion implanted, the spacer and the exposed dielectric layer are removed, and a gate oxide layer is formed on the bottom of the opening.


Inventors: Huang, Chung-Lin; (Taichung City, TW) ; Chuang, Ying-Cheng; (Taoyuan Hsien, TW)
Correspondence Address:
    QUINTERO LAW OFFICE
    1617 BROADWAY, 3RD FLOOR
    SANTA MONICA
    CA
    90404
    US
Assignee: Nanya Technology Corporation

Family ID: 31989792
Appl. No.: 10/443950
Filed: May 22, 2003

Current U.S. Class: 438/287 ; 257/411; 257/E21.335; 257/E21.434; 257/E29.152; 438/216
Current CPC Class: H01L 29/518 20130101; H01L 29/6653 20130101; H01L 29/66583 20130101; H01L 29/512 20130101; H01L 21/28202 20130101; H01L 29/4983 20130101; H01L 21/2822 20130101; H01L 29/513 20130101; H01L 21/26506 20130101; H01L 21/28194 20130101; H01L 29/66553 20130101
Class at Publication: 438/287 ; 438/216; 257/411
International Class: H01L 021/336; H01L 021/8238; H01L 029/76; H01L 031/062

Foreign Application Data

Date Code Application Number
Sep 25, 2002 TW 91121992

Claims



What is claimed is:

1. A method for fabricating a gate with dual gate dielectric layer, comprising: providing a semiconductor substrate, with a dielectric layer and a patterned hard mask layer with an opening sequentially formed thereon; forming a spacer on a sidewall of the opening; implanting nitrogen ions into the semiconductor substrate; removing the spacer and the exposed dielectric layer; and forming a gate oxide layer on a bottom of the opening.

2. The method for fabricating a gate with dual gate dielectric layer as claimed in claim 1, further comprising: filling a conducting layer in the opening; and removing the hard mask layer.

3. The method for fabricating a gate with dual gate dielectric layer as claimed in claim 1, wherein the dielectric layer is a pad oxide layer.

4. The method for fabricating a gate with dual gate dielectric layer as claimed in claim 1, wherein the patterned hard mask layer comprises a nitride layer.

5. The method for fabricating a gate with dual gate dielectric layer as claimed in claim 1, wherein a method for forming the gate oxide layer comprises thermal oxidation.

6. The method for fabricating a gate with dual gate dielectric layer as claimed in claim 1, wherein the conducting layer comprises a polysilicon layer or an exi-silicon layer.

7. A method for fabricating a gate with dual gate dielectric layer, comprising: providing a semiconductor substrate, with a dielectric layer, a hard mask layer, and a patterned photoresist layer with a first opening sequentially formed thereon, wherein the first opening exposes the hard mask layer; etching the hard mask layer to form a second opening using the patterned photoresist layer as a mask; removing the patterned photoresist layer; conformally forming an insulating layer over the hard mask layer and the second opening; anisotropically etching the insulating layer to form a spacer on a sidewall of the second opening; implanting nitrogen ions into the exposed semiconductor substrate using the hard mask layer and the spacer as masks; removing the spacer and the exposed dielectric layer; and thermally oxidizing the semiconductor substrate to form a gate oxide layer over a bottom of the second opening using the hard mask layer as a mask.

8. The method for fabricating a gate with dual gate dielectric layer as claimed in claim 7, further comprising: forming a conducting layer over the hard mask layer, the second opening filled with the conducting layer; planarizing the conducting layer to expose the hard mask layer; and removing the hard mask layer.

9. The method for fabricating a gate with dual gate dielectric layer as claimed in claim 7, wherein the dielectric layer comprises a pad oxide layer.

10. The method for fabricating a gate with dual gate dielectric layer as claimed in claim 7, wherein the hard mask layer comprises a nitride layer.

11. The method for fabricating a gate with dual gate dielectric layer as claimed in claim 7, wherein the insulating layer comprises an oxide layer.

12. The method for fabricating a gate with dual gate dielectric layer as claimed in claim 7, wherein the method of anisotropic etching comprises a reactive ion etching or a plasma etching.

13. The method for fabricating a gate with dual gate dielectric layer as claimed in claim 7, wherein the conducting layer comprises a polysilicon layer or an exi-silicon layer.

14. The method for fabricating a gate with dual gate dielectric layer as claimed in claim 7, wherein the method of planarizing comprises chemical mechanical polishing.

15. A gate with dual gate dielectric layer, comprising: a dual gate dielectric layer, formed over a semiconductor substrate, comprising an inner portion and a outer portion, wherein the inner portion is thinner than the outer portion; and a conducting layer, formed on the dual gate dielectric layer.

16. The gate with dual gate dielectric layer as claimed in claim 15, wherein the dual gate dielectric layer comprises a gate oxide layer.

17. A gate with dual gate dielectric layer, comprising: a semiconductor substrate; a dual gate dielectric layer, formed over the semiconductor substrate, comprising a first gate dielectric layer and a second gate dielectric layer, wherein the second gate dielectric layer is formed in an inner portion of the first gate dielectric layer, and the second gate dielectric layer is thinner than the first gate dielectric layer; and a conducting layer, formed on the dual gate dielectric layer.

18. The gate with dual gate dielectric layer as claimed in claim 17, wherein the first gate dielectric layer comprises a gate oxide layer.

19. The gate with dual gate dielectric layer as claimed in claim 17, wherein the second gate dielectric layer comprises a gate oxide layer.
Description



BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The invention relates to a method for fabricating a gate dielectric layer, and more particularly a dual gate dielectric layer.

[0003] 2. Description of the Related Art

[0004] A gate dielectric layer, such as silicon oxide layer, is a dielectric formed under a gate of a MOS. MOS evokes electric charge in a channel through the gate dielectric layer, improving the quality of the gate dielectric layer.

[0005] FIGS. 1a to 1e are cross-sections of a conventional method for fabricating a gate with a gate dielectric layer;

[0006] In FIG. 1a, a semiconductor substrate 101, such as silicon substrate, is provided. A dielectric layer 102, such as pad oxide layer, a hard mask layer 103, such as LPCVD nitride layer, and a patterned photoresist layer 104 with an opening 105 are sequentially formed on the surface of the semiconductor substrate 101, wherein the position of the opening 105 is the position a gate formed in the subsequent process.

[0007] In FIG. 1b, the hard mask layer 103 is etched to form an opening 106 using the patterned photoresist layer 104 as a mask, wherein the opening 106 exposes the surface of the semiconductor substrate 101.

[0008] In FIG. 1c, the semiconductor substrate 101 is thermally oxidized to form a gate dielectric layer 107, such as gate oxide layer, on the bottom surface of the opening 106.

[0009] In FIG. 1d, a conducting layer 108, such as polysilicon or exi-silicon, is formed on the hard mask layer 103, wherein the opening 106 is filled with the conducting layer 108.

[0010] In FIG. 1e, the conducting layer 108 is planarized to expose the surface of the hard mask layer 103. The hard mask layer 103 and the dielectric layer 102 are sequentially removed to leave the conducting layer 108a as a gate. S/D area is formed in the semiconductor substrate 101 in the subsequent process, and a MOS with gate with the gate dielectric layer 107 is complete.

[0011] The conventional method will fabricate a MOS with one gate dielectric thickness. The thickness of the gate dielectric layer is less when the size of the element is reduced. In order to reduce the GIDL (gate induced gate leakage) effect and gate to S/D leakage, after gate patterned, the gate is oxidized to gain a thicker dielectric thickness at the gate edge. This traditional gate re-oxidation method is hard to control the mini-bird-beak length into the gate at the gate edge. In this invention, a dual gate dielectric thickness to achieve thin dielectric thickness at gate center and thick dielectric thickness at gate edge is fabricated. The gate length of thick gate dielectric can be precisely controlled with a spacer implant mask, which means the device performance can be prcised controlled. Device fabrication with more process window will be achieved with the two independent gate dielectric thickness fabrication at the same time.

SUMMARY OF THE INVENTION

[0012] The present invention is directed to a gate with dual gate dielectric layer and a method of fabricating the same.

[0013] Accordingly, the present invention provides a method for forming a gate with dual gate dielectric layer. A semiconductor substrate is provided. A dielectric layer and a patterned hard mask layer with an opening are sequentially formed on the semiconductor substrate. A spacer is formed on a sidewall of the opening. Nitrogen ions are implanted into the semiconductor substrate. The spacer and the exposed dielectric layer are removed. A gate oxide layer is formed on a bottom of the opening. A conducting layer is formed in the opening. The hard mask layer is removed.

[0014] Accordingly, the present invention also provides a method for fabricating a gate with dual gate dielectric layer. A semiconductor substrate is provided. A dielectric layer, a hard mask layer, and a patterned photoresist layer with a first opening are sequentially formed on the semiconductor substrate, wherein the first opening exposes a partial surface of the hard mask layer. The hard mask layer is etched to form a second opening using the patterned photoresist layer as a mask, and the patterned photoresist layer is removed. An insulating layer is conformally formed on the surface of the hard mask layer and the second opening. The insulating layer is anisotropically etched to form a spacer on a sidewall of the second opening. Nitrogen ions are implanted into the semiconductor substrate using the hard mask layer and the spacer as masks. The spacer and the exposed dielectric layer are removed. The semiconductor substrate is thermally oxidized to form a gate oxide layer on the bottom of the second opening using the hard mask layer as a mask. A conducting layer is formed on the hard mask layer, and the second opening is filled with the conducting layer. The conducting layer is planarized to expose a surface of the hard mask layer, and the hard mask layer is removed.

[0015] Accordingly, the present invention provides a gate with dual gate dielectric layer, comprising a dual gate dielectric layer and a conducting layer. The dual gate dielectric layer is formed on the semiconductor substrate, comprising an inner portion and an outer portion, where the inner portion is thinner than the outer portion. The conducting layer is formed on the dual gate dielectric layer.

[0016] Accordingly, the present invention also provides a gate with dual gate dielectric layer, comprising a semiconductor substrate, a dual gate dielectric layer, and a conducting layer. The dual gate dielectric layer is formed on the semiconductor substrate. The dual gate dielectric layer comprises a first gate dielectric layer and a second gate dielectric layer, wherein the second gate dielectric layer is formed closer to the center than the first gate dielectric layer, and the thickness of the second gate dielectric layer is. thinner than the first gate dielectric layer. The conducting layer is formed on the dual gate dielectric layer.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] For a better understanding of the present invention, reference is made to a detailed description to be read in conjunction with the accompanying drawings, in which:

[0018] FIGS. 1a to 1e are cross-sections of a conventional method for fabricating a gate with a gate dielectric layer;

[0019] FIGS. 2a to 2l are cross-sections of the method for fabricating a MOS with dual gate dielectric layer of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0020] FIGS. 2a to 2l are cross-sections of the method for fabricating a MOS with dual gate dielectric layer of the present invention.

[0021] In FIG. 2a, a semiconductor substrate 201,such as silicon substrate, is provided, on which a dielectric layer 202, such as pad oxide layer, a hard mask layer 203, such as LPCVD nitride layer, and a patterned photoresist layer 204 with an opening 205 are sequentially formed. The LPCVD nitride layer is deposited using SiCl.sub.2H.sub.2 and NH.sub.3 as reactive gas at 250 to 400.degree. C. The position of the opening 205 is the position of a dual gate dielectric layer in the subsequent process, and the opening 205 exposes the surface of the hard mask layer 203.

[0022] In FIG. 2b, the hard mask layer 203 is etched using the patterned photoresist layer 204 to form an opening in the hard mask layer 203, wherein the opening exposes the surface of the semiconductor substrate 201.

[0023] In FIG. 2c, a first insulating layer 207, such as LPCVD oxide layer or PECVD oxide layer, is conformally formed on the surface of the hard mask layer 203 and the opening 206, wherein the LPCVD oxide layer or PECVD oxide layer is deposited at 350 to 850.degree. C.

[0024] In FIG. 2d, the insulating layer 207 is anisotropically etched to form a first spacer 207a on a sidewall of the opening 206, wherein the anisotropic etching comprises reactive ion and plasma etching.

[0025] In FIG. 2e, ions are implanted into the semiconductor substrate 201 to form an ion implanting area 208 using the hard mask 203 and the first spacer 207a as masks. The ion comprises nitrogen ion.

[0026] In FIG. 2f, the first spacer 207a is removed in the opening 206. The semiconductor substrate 201 is thermally oxidized to form a gate dielectric layer 209, such as gate oxide layer, on the bottom of the opening 206 at 750 to 950.degree. C. using the hard mask layer 203 as a mask.

[0027] In FIG. 2g, after a thermal oxidation, the second gate dielectric layer 209b on the semiconductor substrate 201 formed in the ion implanted area 208 is thinner than the first gate dielectric layer 209a on the semiconductor substrate 201 outside the ion implanted area 208 because the nitrogen ions in the ion implanted area 208 retard the oxidation speed on the semiconductor 201. Thus, the gate dielectric layer 209 comprises the first gate dielectric layer 209a and the second gate dielectric layer 209b, wherein the second gate dielectric layer 209b is formed closer to the center than the first gate dielectric layer 209a.

[0028] In FIG. 2h, with low pressure chemical vapor deposited to form a conducting layer 210, such as a polysilicon layer or a exi-silicon layer, on the hard mask layer 203 at 525 to 575.degree. C., wherein the opening 206 is filled with the conducting layer 210.

[0029] In FIG. 2i, the conducting layer 210 is planarized to expose the hard mask layer 203. The planarization comprises chemical mechanical polishing.

[0030] In FIG. 2j, the hard mask layer 203 and the dielectric layer 202 are sequentially removed to leave the conducting layer 210a and gate dielectric layer 209, wherein comprise the gate of a MOS structure.

[0031] In FIG. 2k, a second insulating layer 211, such as LPCVD oxide, LPCVD nitride, PECVD oxide, or PECVD nitride, is conformally formed on the surface of the conducting layer 210a and the semiconductor substrate 201 at 350 to 850.degree. C.

[0032] In FIG. 2l, the insulating layer 211 is anisotropically etched to form a second spacer 211a on the sidewall of the conducting layer 210a, wherein the anisotropic etching comprises reactive ion etching or plasma etching. The semiconductor substrate 201 is ion implanted to form a doped SID area using the conducting layer 210a and the second spacer 211a as masks. The doped S/D area is rapidly thermally annealed to activate ions in the doped S/D area. Thus, the gate with dual gate dielectric layer is completed.

[0033] The present invention provides a method for fabricating a dual gate dielectric layer using difference in oxidizing rate between the doped area and non-doped area of the semiconductor substrate. Integration of embodiments of the present invention is relatively easy, and does not require additional masking operations compared to conventional dual gate dielectric layer processes. Additionally, it does not require the use of marginal processes or unusual materials.

[0034] While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed