Reproducing Apparatus Capable Of Controlling Amplitude And Phase Characteristics Of Reproduced Signals

KOBAYASHI, KIWAMU ;   et al.

Patent Application Summary

U.S. patent application number 08/975716 was filed with the patent office on 2002-04-11 for reproducing apparatus capable of controlling amplitude and phase characteristics of reproduced signals. Invention is credited to KOBAYASHI, KIWAMU, NAITOH, TATSUYA.

Application Number20020041458 08/975716
Document ID /
Family ID17053568
Filed Date2002-04-11

United States Patent Application 20020041458
Kind Code A1
KOBAYASHI, KIWAMU ;   et al. April 11, 2002

REPRODUCING APPARATUS CAPABLE OF CONTROLLING AMPLITUDE AND PHASE CHARACTERISTICS OF REPRODUCED SIGNALS

Abstract

In a reproducing apparatus, an equalizing system including a plurality of elements to be controlled is arranged to have its equalizing characteristic simply variable by controlling, with a single parameter, the plurality of elements to be controlled. Further, circuit characteristics of the equalizing system which are based on resonance frequencies and quality factors (Q) are controlled by controlling the resonance frequencies and the quality factors (Q) through the control performed with the single parameter over the plurality of elements to be controlled.


Inventors: KOBAYASHI, KIWAMU; (KANAGAWA-KEN, JP) ; NAITOH, TATSUYA; (TOKYO, JP)
Correspondence Address:
    FITZPATRICK CELLA HARPER & SCINTO
    30 ROCKEFELLER PLAZA
    NEW YORK
    NY
    10112
    US
Family ID: 17053568
Appl. No.: 08/975716
Filed: November 21, 1997

Related U.S. Patent Documents

Application Number Filing Date Patent Number
08975716 Nov 21, 1997
08534168 Sep 26, 1995

Current U.S. Class: 360/65 ; G9B/20.01; G9B/5.015; G9B/5.032
Current CPC Class: G11B 20/10009 20130101; G11B 5/0086 20130101; G11B 5/035 20130101; G11B 20/10046 20130101
Class at Publication: 360/65
International Class: G11B 005/035

Foreign Application Data

Date Code Application Number
Oct 4, 1994 JP HEI 06-240039

Claims



What is claimed is:

1. A reproducing apparatus comprising: a) reproducing means for reproducing a signal; b) equalizing means, having a plurality of controllable elements, for equalizing the signal reproduced by the reproducing means; and c) control means for controlling an equalizing characteristic of said equalizing means by controlling, with a single parameter, the plurality of controllable elements of said equalizing means.

2. An apparatus according to claim 1, wherein said equalizing means includes a circuit having a resonance frequency and a quality factor (Q) which are controllable, and wherein said control means controls the resonance frequency and the quality factor (Q) by using said parameter.

3. An apparatus according to claim 2, wherein said equalizing means further includes a plurality of circuits having respective different resonance frequencies and respective different quality factors (Q), and wherein said control means controls the resonance frequencies and the quality factors (Q) b using said parameter.

4. An apparatus according to claim 1, wherein said equalizing means includes amplitude equalizing means for controlling an amplitude of the reproduced signal and phase equalizing means for controlling a phase of the reproduced signal and wherein said control means controls said amplitude equalizing means and said phase equalizing means by using said parameter.

5. An apparatus according to claim 4, wherein said amplitude equalizing means includes a circuit for emphasizing a low frequency component of the reproduced signal.

6. An apparatus according to claim 4, wherein said reproducing means reproduces a signal from a recording medium, and wherein said control means further controls an equalizing characteristic of sad phase equalizing means according to a kind of the recording medium.

7. An apparatus according to claim 1, further comprising error detecting means for detecting errors included in the reproduced signal, wherein said control means determines a value of said parameter according to an output of sail error detecting means.

8. An apparatus according to claim 7, wherein said control means determines of said parameter in such a way as to cause a count value obtained by counting the output of said error detecting means for a predetermined period of time to become smaller.

9. A signal processing device comprising: a) processing means for processing an input signal, said process means including a processing circuit having a plurality of elements to be controlled; and b) control means for controlling a resonance frequency and a quality factor Q) of said processing circuit by controlling, with a single parameter, the plurality of elements to be controlled.

10. A device according to claim 9, wherein said processing means controls amplitude of the input signal.

11. A device according to claim 9 wherein said processing means controls a phase of the input signal.

12. A signal processing device comprising: a) processing means for processing an input signal, said processing means including a plurality of processing circuits having respective elements to be controlled; and b) means for controlling at least one of a resonance frequency and a quality factor (Q) of each of said plural of processing circuits by controlling, with a single parameter, the elements to be controlled of said plurality of processing circuits.

13. A device according to claim 12, wherein said plurality of processing circuits have respective different resonance frequencies and respective different quality factors (Q).

14. A device according to claim 12, wherein each of said plurality of processing circuits has a plurality of elements to be controlled, and wherein said control means controls, with said parameter, said plurality of elements to be controlled.

15. A device according to claim 12, wherein said plurality of processing circuits includes a circuit for emphasizing a low frequency component of the input signal and a circuit for emphasizing high frequency component of the input signal.

16. A device according to claim 12, wherein said plurality of processing circuits include a circuit for controlling a phase of the input signal.

17. A device according to claim 12, wherein said processing means equalizes the input signal, and wherein said control means controls an equalizing characteristic of said processing means by controlling the elements to be controlled of said plurality of processing circuits.

18. A device according to claim 12, wherein said plurality of processing circuits include an integrating circuit, n steps of second-order low-pass filters (n being an integer not less than 1), and n steps of second-order low-pass filters each having a transmission zero point.

19. A device according to claim 12, wherein said plurality of processing circuits include n steps of phase shift filters of m-th order (n and m each being an integer not less than 1).

20. A reproducing apparatus comprising: a) reproducing means for reproducing a signal from a recording medium; and :b) equalizing means for equalizing the reproduced signal, said equalizing means including an integral equalizing circuit, n steps of second-order low-pass filters (n being an integer not less than 1) each having a resonance frequency and a quality factor (Q) controllable, and n steps of second-order low-pass filters each having a resonance frequency and a quality factor (Q) controllable and each having a transmission zero point.

21. An apparatus according to claim 20, wherein said equalizing means includes a second-order phase shift filter having a quality factor (Q) controllable.

22. An apparatus according to claim 20, wherein said equalizing means includes n steps of first-order phase shift filters having respective different cutoff frequencies.

23. An apparatus to claim 20, further comprising control means for varying an equalizing characteristic of said equalizing means by controlling, with a single parameter, at least one of the resonance frequency and the quality factor (Q) of each of said second-order low-pass filters and said second-order low-pass filters each having a transmission zero point.

24. An apparatus according to claim 23, wherein said equalizing means includes a second-order phase shift filter having a quality factor (Q) controllable, and wherein said control means controls also the quality factor (Q) of said phase shift filter with said single parameter.

25. An apparatus according to claim 24, wherein said control means controls the quality factor (Q) of said phase shift filter according to kind of the recording medium.

26. An apparatus according to claim 20, further comprising data detecting means for restoring a signal outputted from said equalizing means to a form of digital data.
Description



BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] This invention relates to a reproducing apparatus and more particularly to a reproduction equalizing process for a digital signal reproduced from a recording medium.

[0003] 2. Description of the Related Art

[0004] In transmitting signals, it has generally been practiced to carry out an equalizing process, on the signal receiving side, to compensate for any loss for obtaining good signals by controlling the frequency characteristic of signal resulting from a transmission system.

[0005] Known transmitting apparatuses of the kind mentioned above include, for example, a digital VTR which records and reproduces a video signal in the form of a digital signal on and from a magnetic tape and is also arranged to perform an equalizing process on reproduced signals.

[0006] A magnetic recording/reproducing apparatus such as the digital VTR has such a transmission characteristic that the signal transmitted deteriorates in low and high frequency domains. The deterioration in the low frequency domain is attributable to a differential characteristic which is intrinsic to an induction coil type magnetic head and also a low-band cutoff characteristic of a rotary transformer. The deterioration in the high frequency domain is caused by a loss resulting from the wavelength dependency of the recording medium, a core loss of the magnetic headland a spacing loss between the magnetic head and the recording medium.

[0007] In the case of the digital VTR or a digital data recorder, if the deterioration of such characteristics is excessive, there arises some waveform distortion such as intersymbol interference or the like, which greatly deteriorates the transmission characteristic.

[0008] In view of the above, digital VTRs have been arranged to use a waveform equalizing circuit to make the reproduced signal have an adequate waveform by compensating for signal deterioration resulting from the above-stated factors. FIG. 1 shows in a block diagram the arrangement of the conventional digital VTR.

[0009] Referring to FIG. 1, a signal reproduced from a tape T by a head 1 is supplied via a rotary transformer 2 to a preamplifier 3 to be amplified there. The amplified reproduced signal is supplied to an integrating circuit 4. The integrating circuit 4 processes the signal to compensate mainly for deterioration of the low frequency domain of the signal. The signal thus compensated is supplied to an amplitude equalizer 5 to be compensated for deterioration of the high frequency domain. The signal is then supplied to a phase equalizer 6.

[0010] The phase equalizer 6 processes the signal from the amplitude equalizer 5 to make compensation for a phase deviation of a whole circuit resulting from magnetic recording and reproducing characteristics and the characteristic of the circuit. A signal 7 is thus obtained as an output of the phase equalizer 6. The signal 7 is supplied to a circuit of a subsequent stage. The circuit of the subsequent stage then restores the signal 7 to its original state of digital data.

[0011] Generally, the frequency characteristic of each of the integrating circuit 4, the amplitude equalizer 5 and the phase equalizer 6 is arranged to be controllable. A desired frequency characteristic can be obtained by adjusting a plurality of control points within each of these circuits according to the state of the reproduced signal and the kind of the magnetic tape in use.

[0012] In the case of the VTR of the above-stated kind, however, it is hardly possible to adequately adjust the frequency characteristic of the integrating circuit and those of the equalizers since the plurality of adjusting points are affected by each other. In other words, in individually adjusting the plurality of adjusting parts for each of these circuits, after the frequency characteristic is controlled and adjusted to an optimum characteristic for one adjusting part, the characteristic of this part would be affected by the adjustment made for another adjusting part, thereby necessitating readjustment.

[0013] Therefore, according to the arrangement of the conventional digital VTR, the frequency characteristic either cannot be adjusted as desired or necessitates much time and labor for adjustment.

SUMMARY OF THE INVENTION

[0014] This invention is directed to the solution of the problem of the prior art mentioned above.

[0015] It is, therefore, an object of this invention to provide an apparatus which is arranged to be capable of obtaining an optimum equalizing characteristic through a simple control.

[0016] To attain this object, a reproducing apparatus arranged according to this invention is provided with reproducing means for reproducing a signal, equalizing means, having a plurality of controllable elements, for equalizing the signal reproduced by the reproducing means, and control means for controlling an equalizing characteristic of the equalizing means by controlling, with a single parameter, the plurality of controllable elements of the equalizing means.

[0017] It is another object of this invention to provide an apparatus arranged to control and optimize characteristics of circuits resulting from a resonance frequency and a quality factor (Q).

[0018] These and other objects and features of this invention will become apparent from the following detailed description of embodiments thereof taken in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. 1 is a block diagram of the arrangement of the conventional digital VTR.

[0020] FIG. 2 is a block diagram of the arrangement of a digital VTR arranged as an embodiment of this invention.

[0021] FIG. 3 shows transfer functions of circuits included in the embodiment of this invention.

[0022] FIG. 4 shows the frequency control characteristic of an integral equalizing circuit shown in FIG. 2.

[0023] FIG. 5 shows the frequency control characteristic of an LPF shown in FIG. 2.

[0024] FIG. 6 shows the frequency control characteristic of another LPF which is also shown in FIG. 2 and arranged to have a transmission zero point.

[0025] FIG. 7 shows the frequency control characteristic of an amplitude equalizing system shown in FIG. 2.

[0026] FIG. 8 shows the delay characteristic of a phase shift filter shown in FIG. 2.

[0027] FIG. 9 shows the delay characteristic of each step of the phase shift filter shown in FIG. 2.

[0028] FIG. 10 is a block diagram of the arrangement of a reproduction system of the digital VTR which is the embodiment of this invention.

[0029] FIG. 11 shows a relationship in the embodiment of this invention between control signals (CTL) and electromagnetic Conversion characteristics.

[0030] FIG. 12 shows the characteristic of a delay equalizing system shown in FIG. 2.

[0031] FIG. 13 shows the delay characteristic of a phase shift filter of a first stage shown in FIG. 2.

[0032] FIG. 14 shows how the resonance frequency of the integral equalizing circuit shown in FIG. 2 is controlled.

[0033] FIG. 15, shows how the resonance frequency of the LPF shown in FIG. 2 is controlled.

[0034] FIG. 16 shows how the quality factors (Q) of the LPF shown in FIG. 2 are controlled.

[0035] FIG. 17 shows how the quality factor of a phase shift filter of a first stage shown in FIG. 2 is controlled.

[0036] FIG. 18 shows how the quality factor of a phase shift filter of a second stage of FIG. 2 is controlled.

[0037] FIG. 19 shows how the quality factor of a phase shift filter of a third stage of FIG. 2 is controlled.

[0038] FIG. 20 is a circuit diagram showing the details of the amplitude equalizing system shown in FIG. 2.

[0039] FIG. 21 is a circuit diagram showing the details of a delay equalizing system shown in FIG. 2.

[0040] FIG. 22 shows by way of example the arrangement of inductors included in the circuits of FIGS. 20 and 21.

[0041] FIG. 23 shows another example of arrangement of inductors included in the circuits of FIGS. 20 and 21.

[0042] FIG. 24 shows a further example of arrangement of inductors included in the circuits of FIGS. 20 and 21.

[0043] FIG. 25 shows by way of example the arrangement of a second-order phase shift filter.

[0044] FIG. 26 shows another example of arrangement of the second-order phase shift filter.

[0045] FIG. 27 shows by way of example arrangement of a first-order phase shift filter.

[0046] FIG. 28 shows another example of arrangement of the first-order phase shift filter.

[0047] FIG. 29 shows the arrangement of a gm filter usable for the embodiment of this invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0048] The following describes an embodiment of this invention in detail with reference to the drawings.

[0049] In the case of the embodiment, this invention is applied to a digital VTR. FIG. 2 is a block diagram of the arrangement of a reproduction system of the digital VTR.

[0050] Referring to FIG. 2, a signal reproduced from a tape T by a head 1 is supplied via a rotary transformer 2 to a preamplifier 3. The preamplifier 3 amplifies the reproduced signal up to a predetermined level and then supplies the amplified signal to an integral equalizing circuit 8. The integral equalizing circuit 8 compensates for a differential characteristic of the reproduced signal and then supplies the compensated signal to a second-order low-pass filter (hereinafter referred to as LPF) 9. The second-order LPF 9 and another second-order LPF 10 which has a transmission zero point are arranged to compensate for a high frequency component of the reproduced signal and to attenuate, at the same time, an unnecessary low frequency component of the reproduced signal.

[0051] The integral equalizing circuit 8 and the LPFs 9 and 10 respectively have transfer characteristics which are shown in FIG. 3. A part (a) of FIG. 3 shows the transfer characteristic of the integral equalizing circuit 8 and parts (b) and (c) show the transfer characteristics of the LPFs 9 and 10, respectively. In FIG. 3, a symbol 6 denotes a resonance frequency of the applicable circuit and Q denotes a quality factor.

[0052] The frequency characteristics of these circuits 8, 9 and 10 are shown by full lines in FIGS. 4, 5 and 6, respectively. As apparent from FIGS. 4, 5 and 6, the integral equalizing circuit 8 compensates for a loss in the low frequency component of the reproduced signal, while the LPFs 9 and 10 compensate for deterioration of the high frequency component. FIG. 7 shows a frequency characteristic obtained with the integral equalizing circuit 8 and the LPFs 9 and 10 considered by the lump.

[0053] The reproduced signal outputted from the LPF 10 is supplied to a second-order phase shift filter 11. In the case of this particular embodiment, other phase shift filters 12 and 13 are likewise arranged in two steps. The phase shift filters 11, 12 and 13 are thus arranged stepwise, in a total of three steps, to make compensations for differences of a phase characteristic varying with the recording medium and also for the phase characteristics of the LPFs 9 and 10.

[0054] The transfer function of the phase shift filter of this kind (second-order) is shown at a part (d) in FIG. 3. The phase shift filter of this kind generally has a delay characteristic which is shown in FIG. 8.

[0055] Referring to FIG. 8, the amount of delay of a band in the neighborhood of a resonance frequency co .omega..sub.2D increases accordingly as a value Q2D of the phase shift filter of this kind is larger. The amount of delay of a low frequency band, on the other hand, increases H accordingly as the value Q.sub.2D is smaller. In the case of this embodiment, the phase shift filters 11, 12 and 13 are arranged to share with each other an action of making compensating for a phase deviation of the signal of each frequency band in a manner as shown in FIG. 9.

[0056] More specifically, the phase shift filters 12 and 13 are arranged to make the value Q.sub.2D relatively large in such a way as to have a maximum amount of delay in the neighborhood of the resonance frequency. The phase shift filter 11 is arranged to make the value Q.sub.2D relatively small in such a way as to increase the amount of delay of the low frequency band. Further, the phase shift filter 11 is arranged on a theoretical basis to have its resonance frequency .omega..sub.2D set at a frequency higher than that of the phase shift filter 13.

[0057] The reproduced signal is processed to equalize the amplitude and the phase thereof by the above-stated circuits 8 to 13. The signal thus processed is outputted through a terminal 14 to a circuit of a subsequent stage. The characteristics of the circuits 8 to 13 are arranged to be controlled by a control signal CTL1. Of these circuits, the phase shift filter 11 is arranged to have its characteristic controlled not only by the control Signal CTL1 but also by another control signal CTL2. Further, the integral equalizing circuit 8, the second-order LPFs 9 and 10 and the second-order phase shift filters 11, 12 and 13 jointly form a waveform equalizing circuit 17.

[0058] Control over the frequency characteristics of the equalizing circuits arranged as described above is next described as follows: FIG. 10 shows in a block diagram the arrangement of the whole reproduction system of the digital VTR which includes the equalizing circuits of FIG. 2. Referring to FIG. 10, the reproduced signal is amplified to a predetermined level by the preamplifier 3 as mentioned in the foregoing. The waveform of the amplified signal is converted by the waveform equalizing circuit 17 into a waveform suited for reproduction. The circuits shown in FIG. 2 are used for the waveform equalizing circuit 17 as mentioned in the foregoing. The signal which has been waveform-equalized by the waveform equalizing circuit 17 is supplied to a detecting circuit 18.

[0059] The detecting circuit 18 restores the waveform-equalized reproduced signal to its original digital data and supplies it to an error correcting circuit 19. In other words, although the signal reproduced by the head 1 is a digital signal, the reproduced signal has a waveform the amplitude of which continuously varies in an analogous manner. The signal outputted from the waveform equalizing circuit 17 has its amplitude vary also in an analogous manner. The detecting circuit 18 is, therefore, arranged to restore the reproduced signal to an original form of a digital signal consisting of "1" and "0". The error correcting circuit 19 is arranged to correct any code error taking place during the process of transmission of the reproduced signal and to generate an error flag for any uncorrectable data if there is any data that is not correctable. The error flags thus generated are supplied to a control circuit 23.

[0060] The waveform equalizing circuit 17 varies its circuit characteristic under the control of the control signals CTL1 and CTL2 as mentioned above. The values of the control signals CTL1 and CTL2 are set beforehand and are stored respectively in storage circuits 26 and 27. The control signals CTL1 and CTL2 are supplied to the waveform equalizing circuit 17 according to instructions given from the control circuit 23. More specifically, the control circuit 23 sends information on selection addresses to the storage circuits 26 and 27 to cause them to output values according to the selection addresses.

[0061] According to this method of control, the control value is selected in the following manner: The error flags are counted for a predetermined period of time and the control value is set in such a way as to minimize the count value thus obtained. To the control circuit 23 is inputted also information on replacement of one cassette with another. The control value is set every time the cassette is replaced with another cassette.

[0062] The values of the control signals CTL1 and CTL2 which are parameters for control over the waveform equalizing circuit 17 are determined as follows:

[0063] The amplitude transmitting characteristic of the magnetic recording/reproducing system is first proximately expressed by a formula (1) as follows: 1 Vout = V 1 1 exp ( 2 d / ) = V 1 ' f exp ( 2 fd / v ) ( 1 )

[0064] wherein .lambda. represents recording wavelength [.mu.m]; f frequency [Hz]; V relative velocity [.mu.m/s]; V, V' reference levels [V]; and d decrease [.mu.m].

[0065] The formula (1) above is based on the concept of proximately replacing, with exponential functions, all the adverse effects of losses of varied kinds relative to the recording wavelength. In the formula (1), "d" is a parameter indicative of a decrease in the frequency characteristic in the magnetic recording/reproducing system. In other words, the frequency characteristic increases accordingly as the parameter d is smaller.

[0066] In the case of this embodiment, the parameter d is considered to vary with the kind of the recording medium, the lapse of time, a difference in recording mode of the recording apparatus, etc. On this concept, a parameter Ad is defined by a formula (2) as follows:

d=d.sub.0+.DELTA.d.ident.d.sub.0+CTL1... (2)

[0067] In the case of this embodiment, the parameter d is used as a control parameter (signal) CTL1. FIG. 11 shows how the control waveform of the control parameter CTL1 varies in relation to changes of the electromagnetic conversion characteristic in the embodiment.

[0068] Another control signal CTL2 is next described. In the case of this embodiment, the control signal CTL2 is defined as a parameter representing a difference of phase characteristic resulting from the kind and the manufacturing method of the recording medium to be used. The control signal CTL2 is arranged to be a parameter of a binary value to be used in selecting the conditions of the phase shift filter 11.

[0069] The details of control to be performed over the characteristic of the waveform equalizing circuit 17 by using the control signals CTL1 and CTL2 are next described as follows: In the case of the embodiment, the amplitude equalizing process shown at the first half portion in FIG. 2 is first controlled with the control signal CTL1. Then, to compensate for the phase characteristic resulting from the control over the first half portion, the delay equalizing process shown at the latter half portion in FIG. 2 is controlled also with the control signal CTL1.

[0070] The control signal CTL2 is used for control over the first step of the delay equalizing process only, i.e., only for the phase shift filter 11. As mentioned above, the control by the control signal CTL2 is performed for selecting the condition which varies according to the kind and the method of manufacture of the medium in use.

[0071] Each of the circuits is controlled as follows:

[0072] The integral equalizing circuit 8 is controlled by the control signal CTLI as shown in FIG. 4. The second-order LPFs 9 and 10 are controlled by the control signal CTL1 as shown in FIGS. 5 and 6. Then, the amplitude equalizing system as a whole is controlled by the control signal CTL1 in a manner as shown in FIG. 7. Further, the delay equalizing system as a whole is controlled by the control signal CTL1 as shown in FIG. 12 and also controlled by the other control signal CTL2 as shown in FIG. 13.

[0073] In the case of this embodiment, the control functions are set beforehand for the resonance frequency .omega. and Q the quality factor Q. The characteristics of the applicable circuits are controlled by varying the values of .omega. and Q by the control signal CTL1 on the basis of the control functions set beforehand. The details of the control are as shown in FIGS. 14 to 19.

[0074] FIG. 14 shows how the resonance frequency of the integral equalizing circuit 8 changes. As shown, the resonance frequency is controlled linearly as in relation to the control signal CTL1. FIG. 15 shows how the resonance frequencies of the LPFs 9 and 10 change. FIG. 16 shows the changes of the quality factor Q of the LPFs 9 and 10. The resonance frequency and the quality factor Q of each of the LPFs 9 and 10 are linearly controlled in relation to the control signal CTL1.

[0075] FIG. 17 shows how the resonance frequency of the phase shift filter 11 changes. The phase shift filter 11 is controlled linearly in relation to the control signal CTL1 and selectively by the control signal CTL2. FIGS. 18 and 19 respectively show how the phase shift filters 12 and 13 change. As shown, they are controlled linearly in relation to the control signal CTL1 Further, the resonance frequency of each circuit of the delay equalizing system is arranged to be unvarying.

[0076] According to the arrangement of this embodiment, as described above, the characteristic of each circuit can be univocally determined for a single parameter as shown in FIGS. 7 and 12. A desired equalizing Characteristic, therefore, can be very simply obtained by just varying a single parameter. The quality of the reproduced signal thus can be prevented from deteriorating.

[0077] The details of the amplitude equalizing system and the delay equalizing system mentioned above are as shown in FIGS. 20 and 21. In the case of the embodiment, each of the equalizing circuits is composed of an LC filter. FIG. 20 shows the arrangement of the amplitude equalizing system. FIG. 21 shows the arrangement of the delay equalizing system.

[0078] Control over the resonance frequency of the integral equalizing circuit shown at the part (a) of FIG. 3 is performed by controlling an element CO shown in FIG. 20 with the control signal CTL1. Control over the resonance frequency and the quality factor Q of the LPF shown at the part (b) of FIG. 3 is performed by controlling elements R1 and L1 shown in FIG. 20 with the control signal CTL1. Control over the resonance frequency and the quality factor Q of the LPF shown at the part (c) of FIG. 3 is performed by controlling elements R2 and L2 shown in FIG. 20 with the control signal CTL1.

[0079] The quality factor Q of the phase shift filter shown at the part (d) of FIG. 3 is controlled by controlling elements R3 to R6 shown in FIG. 21 with the control signal CTL1. Further, the characteristic of the phase shift filter 11 is selected by switching the position of a switch SW1 shown in FIG. 21 with the control signal CTL2.

[0080] For control over the inductance of each circuit, it is preferable to use a simulated inductor on account of the easiness of the control and reduction in size of the circuit. Further, with respect to an adjustable resistor, it is preferable to use an electronic volume. FIGS. 22, 23 and 24 show the arrangement of some of simulated inductors used in general.

[0081] FIG. 22 shows a simulated inductor using a gyrator. FIG. 23 shows a simulated inductor using a GIC (generalized immittance converter) active filter. FIG. 24 shows a simplified type simulated inductor using an operational amplifier.

[0082] FIGS. 25 and 26 show some other examples of arrangement of the second-order phase shift filter.

[0083] While second-order phase shift filters are used in the embodiment described above, it is possible to use first-order phase shift filters according to this invention. FIGS. 27 and 28 show some examples of the arrangement of the first-order phase shift filters. In a case where the first-order phase shift filters are used, the cutoff frequency of the phase shift filter of one step is arranged to differ from that of the phase shift filter of another step.

[0084] FIG. 29 shows by way of example the arrangement of a gm filter which is usable as a part of each circuit of the amplitude equalizing system shown in FIG. 2.

[0085] In using the circuit of FIG. 29, the embodiment is arranged to be capable of controlling the resonance frequency and the quality factor Q of the second-order LPF obtained, for example, with a terminal 102 used as an input terminal and a terminal 105 as an output terminal, by controlling a reference current source 101 with the control signal CTL1.

[0086] While this invention is applied to a digital VTR in the case of the embodiment described, this invention is not limited to digital VTRs. The same advantageous effect is attainable by applying this invention to any other apparatus as long as it is arranged to control the frequency characteristic of a signal reproduced from a recording medium other than a tape.

[0087] In accordance with the arrangement of this invention, as apparent from the foregoing description, an equalizing characteristic can be very simply changed by controlling a plurality of controlled elements of an equalizing means with a single parameter.

[0088] Therefore, an optimum equalizing characteristic an be obtained through a simple process, and the reproduced signal can be prevented from deteriorating.

[0089] With the resonance frequency and the quality factor Q controlled by controlling a plurality of controlled elements of circuits with a single parameter, the circuit characteristic based on the resonance frequency and the quality factor Q can be controlled in a very simple manner.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed