Method And Apparatus For Filtering Radio Frequency Signals

WALTMAN, STEVEN D.

Patent Application Summary

U.S. patent application number 09/430922 was filed with the patent office on 2001-11-22 for method and apparatus for filtering radio frequency signals. Invention is credited to WALTMAN, STEVEN D..

Application Number20010043116 09/430922
Document ID /
Family ID23709655
Filed Date2001-11-22

United States Patent Application 20010043116
Kind Code A1
WALTMAN, STEVEN D. November 22, 2001

METHOD AND APPARATUS FOR FILTERING RADIO FREQUENCY SIGNALS

Abstract

A variable frequency active filter circuit for tuning in a specific bandpass frequency is disclosed. The active filter incorporates a controlled oscillator circuit for tuning into a specific frequency range. A frequency input signal controls the active filter bandpass frequency by tuning the oscillator circuit to a desired frequency. The controlled oscillator circuit further includes a gain input. The gain input is set to a value just below where the oscillator circuit would oscillate.


Inventors: WALTMAN, STEVEN D.; (BOULDER, CO)
Correspondence Address:
    JAMES Y. GO
    BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN LLP
    12400 WILSHIRE BOULEVARD
    SEVENTH FLOOR
    LOS ANGELES
    CA
    90025-1026
    US
Family ID: 23709655
Appl. No.: 09/430922
Filed: November 1, 1999

Current U.S. Class: 327/559
Current CPC Class: H03B 2201/0208 20130101; H03B 5/1847 20130101; H03J 3/08 20130101
Class at Publication: 327/559
International Class: H03B 001/00

Claims



We claim:

1. A method of filtering an input signal, said method comprising: setting a frequency input on a controlled oscillator circuit to a desired frequency; coupling an input signal to said controlled oscillator circuit; setting a gain input on said controlled oscillator circuit to a value just below where said oscillator circuit would oscillate; coupling an output signal to said controlled oscillator circuit.

2. The method as claimed in claim 1, said method further comprising: determining a gain value by feeding a reference oscillator signal through said input signal.

3. The method as claimed in claim 1 wherein said coupling is performed using coupled microstrips.

4. The method as claimed in claim 1 wherein said coupling is performed using a pair of coupled stripline transmission lines.

5. The method as claimed in claim 1 wherein said controlled oscillator circuit comprises a voltage controlled oscillator.

6. The method as claimed in claim 1 wherein said voltage controlled oscillator comprises a resonator and a negative resistance circuit.

7. An active filter circuit for filtering an input signal, said circuit comprising: an oscillator circuit, said oscillator circuit coupled to said input signal, said oscillator circuit having a frequency input and a gain input, said gain input set to a gain value just below where said oscillator circuit would oscillate; and an output signal, said output signal coupled to said oscillator circuit.

8. The apparatus as claimed in claim 7 further comprising: an oscillation detection circuit.

9. The apparatus as claimed in claim 7 wherein said oscillator is coupled to said input signal using microstrips.

10. The apparatus as claimed in claim 7 wherein said oscillator is coupled to said input signal using a pair of coupled stripline transmission lines.

11. The apparatus as claimed in claim 7 wherein said oscillator circuit comprises a voltage controlled oscillator.

12. The method as claimed in claim 1 wherein said voltage oscillator comprises a resonator and a negative resistance circuit.
Description



FIELD OF THE INVENTION

[0001] The present invention relates to the field of radio frequency electronics. In particular the present invention discloses an active filter for filtering signals over a relatively large bandwidth range.

BACKGROUND OF THE INVENTION

[0002] Computer and digital communication networks have traditionally been constructed using wired network technologies. However, the expense and difficulty of installing a wired network has sped the growth of a wireless digital communication industry. Cellular telephone networks, satellite communication networks, and wireless computer networks all now use digital wireless communication technologies.

[0003] The military and large corporations have used digital wireless communication systems for many years now. However, the consumer market for digital wireless communications is still relatively young. To penetrate the consumer market, digital wireless communication systems must be simple, reliable, and most importantly inexpensive. Therefore, it would be desirable to improve the designs of wireless communication circuitry such that the wireless communication circuitry can be used in the consumer market.

SUMMARY OF THE INVENTION

[0004] A variable frequency active filter circuit for tuning in a specific bandpass frequency is disclosed. The active filter incorporates a controlled oscillator circuit for tuning into a specific frequency range. A frequency input signal controls the active filter bandpass frequency by tuning the oscillator circuit to a desired frequency. The controlled oscillator circuit further includes a gain input. The gain input is set to a value just below where the oscillator circuit would oscillate.

[0005] Other objects, features, and advantages of present invention will be apparent from the company drawings and from the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The objects, features, and advantages of the present invention will be apparent to one skilled in the art, in view of the following detailed description in which:

[0007] FIG. 1 illustrates a satellite data distribution system with an uplink transmitter, a communications satellite, and a number of receiver systems.

[0008] FIG. 2 illustrates a block diagram of a typical satellite receiver system that receives, demodulates, and decodes digital satellite signals.

[0009] FIG. 3 illustrates a bandwidth diagram of twenty-four transponders with a bandwidth of thirty-six megahertz each on a communication satellite where half of the transponders in the horizontal polarization and half of the transponders in the vertical polarization.

[0010] FIG. 4 illustrates a block diagram of a receiver circuit that uses a bandpass filter.

[0011] FIG. 5 illustrates a block diagram of a receiver circuit that uses a variable active filter circuit.

[0012] FIG. 6 illustrates a block diagram of one embodiment of a variable active filter circuit.

[0013] FIG. 7 illustrates a simple block diagram of an oscillator circuit.

[0014] FIG. 8 illustrates one embodiment of an Ultra-high Frequency (UHF) voltage controlled oscillator circuit.

[0015] FIG. 9 illustrates one embodiment of an active filter circuit that uses a voltage controlled oscillator circuit.

[0016] FIG. 10 illustrates a block diagram of a receiver with two voltage controlled oscillator based active filter circuits such that one active filter is used to calibrate the gain signal to be applied to the other active filter circuit.

[0017] FIG. 11 illustrates an embodiment of a tunable bandpass filter circuit that may or may not filter an RF signal.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0018] A method and apparatus for implementing an active filter circuit for receiving radio frequency signals across a wide frequency range is disclosed. In the following description, for purposes of explanation, specific nomenclature is set forth to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that these specific details are not required in order to practice the present invention. For example, the present invention has been described with reference to filtering digital satellite signals. However, the same techniques can easily be applied to other types of radio frequency signals.

Satellite Communications

[0019] FIG. 1 illustrates a conceptual diagram of a typical satellite communication system 100. In the typical satellite communication system 100 of FIG. 1, an uplink earth station 110 modulates and transmits an uplink signal 115 to a communication satellite 120. The communication satellite 120 transmits the received signal back down to a plurality of receivers 151, 153, 155, and 157 with a downlink signal 125. In a Ku-band satellite system, the downlink signal 125 is in the frequency range of 10.7 to 15.0 GHz. The receivers 151, 153, 155, and 157 demodulate the downlink signal 125 to extract the encoded information.

[0020] FIG. 2 illustrates a block diagram of a typical satellite receiver system 200. In the satellite receiver system 200 of FIG. 2, a dish antenna 210 receives a downlink signal transmitted by a communications satellite. The dish antenna usually includes a low-noise block down converter (LNB) 220 that translates the high frequency satellite carrier signal to a lower intermediate frequency (IF) that will be used for signal processing. In a typical consumer satellite receiver system, the downlink signal is down-converted to an L-band signal in the range of 950 to 2150 MHz. The down-conversion allows the signal to be carried on coaxial cables 231 and 233 to a receiver unit 240. Instead of using two coaxial cables 231 and 233, a single coaxial cable may be used with DC voltage used to switch between polarizations.

[0021] A receiver circuit 250 in the receiver unit 250 amplifies the signal and tunes into a specific frequency using bandpass filters and a tuner circuit. The receiver circuit 250 outputs an In-phase (I) data signal and a Quadrature (Q) data signal. The I and Q data signals are demodulated by a demodulator circuit 260. Many satellite communication systems, such as direct broadcast satellite television systems, use Quadrature phase shift keying (QPSK) modulation. Quadrature phase shift keying (QPSK) is used in satellite communication because of its power efficiency and its robustness against phase noise. The demodulator circuit 260 outputs an encoded data stream. The encoded data stream usually comprises a forward error correction encoded (FEC) data stream. A decoder circuit 270 decodes the encoded data stream to generate a decoded data stream.

[0022] Communication satellites carry a number of different transponder units that receive and retransmit a number of different frequency ranges. Many communication satellites contain twenty-four (24) different transponders that each broadcast 36 Mhz wide frequency "channels". FIG. 3 illustrates a diagram that graphically illustrates the frequency channels in a twenty-four transponder satellite embodiment. As illustrated in FIG. 3, a first set of twelve channels use horizontal polarization and a second set of channels use a vertical polarization. In the diagram of FIG. 3, each channel is 36 Mhz wide. To prevent interference between the transponders, the channels using the same polarity are separated with a four MHz guard band. Note that many different satellite transponder embodiments exist.

[0023] To tune into a specific frequency channel, most RF receiver systems (such as satellite receiver systems) use a fixed bandpass filter that eliminates signals outside of the desired frequency range. For example, FIG. 4 illustrates a block diagram of the receiver system that uses a fixed bandpass filter 420 to tune into a specific transponder frequency. By eliminating the signals outside of the desired frequency range, the receiver will be able to better demodulate the desired signal. In receiver systems with a fixed bandpass filter, the receiver may only access a few transponders within the limited bandpass frequency range of the bandpass filter.

A Tunable Bandpass Filter

[0024] To be able to tune into all the transponders on a satellite with sufficient signal quality at any transponder frequency range, the present invention introduces a variable bandpass filter that allows the tuner to tune into any transponder. FIG. 5 illustrates a block diagram of a receiver with the variable bandpass filter 510. In the tuner circuit of FIG. 5, the variable bandpass filter 510 provides a high quality input signal for any of the transponders on a communications satellite since the variable bandpass filter 510 filters out signals from the transponders not being tuned.

[0025] FIG. 6 illustrates a block diagram of one embodiment of a variable bandpass tuner 610. The variable bandpass tuner 610 receives the radio frequency input signal 605 from the satellite antenna and outputs a filtered radio frequency signal 695. The main feature of bandpass filter 610 is the active filter circuit 620. The active filter circuit 620 is used to filter out signals that are not within a specified pass band and provide some gain for signals within the pass band. If the entire satellite transponder spectrum is to be examined, the active filter circuit 620 may be by passed using the full bandwidth bypass 630 under the control of a wideband/narrowband control signal 635.

[0026] The active filter circuit 620 is controlled with two input signals. The first input signal is a frequency control input signal 640. The frequency control input signal 640 is used to select the desired transponder frequency.

[0027] The second control signal of the active filter circuit 620 is a gain control input signal 650. The gain control input signal 650 determines a gain setting for the active filter circuit 620. Due to the new active filter design of active filter circuit 620, the new active filter design of the active filter circuit 620 must be calibrated to set the gain value of the gain control input signal 650.

[0028] To calibrate the active filter circuit 620 to set the gain value, a calibration control signal 660 is activated in order to have multiplexor 680 direct an oscillator signal 670 into the active filter circuit 620. Referring back to FIG. 5, the oscillator signal 670 is from the oscillator 550 used by the tuner circuit 530. While the oscillator signal 670 passes through the active filter circuit 620, a calibration system adjusts the gain control input 650 to a proper setting as set forth in the following section.

New Active Filter Design

[0029] The present invention introduces a new type of variable active filter circuit design. In the new active filter design of the present invention, an oscillator circuit is used to provide gain such that there is minimal signal loss at the desired frequency. However, the oscillator circuit is not allowed to oscillate since oscillations would distort the received input signal.

[0030] FIG. 7 illustrates a block diagram of a standard negative resistance oscillator. Referring to the diagram of FIG. 7, a resonator 710 that experiences some loss is coupled to a "negative" resistance unit 720 that provides gain. The resonator 710 provides an oscillating signal. The negative resistance unit 720 amplifies the oscillating signal by a set gain. The resultant oscillating signal is passed to an output with a matched coupling.

[0031] FIG. 8 illustrates a typical circuit embodiment of the negative resistance oscillator of FIG. 7. The oscillator circuit of FIG. 8 is a typical Ultra-High Frequency (UHF) voltage controlled oscillator (VCO) circuit 800. Referring to FIG. 8, a transmission line resonator 810 is coupled to a negative resistance circuit 840 that provides gain. The output signal from the oscillator circuit 800 is from an output capacitor C.sub.out. Note that the oscillator circuit 800 of FIG. 8 includes a tuning voltage V.sub.t that is used to select the oscillation frequency of the voltage-controlled oscillator (VCO) circuit 800.

[0032] The variable active filter design of the present invention uses an oscillator circuit such as the oscillator circuit 800 in FIG. 8 to provide gain to the variable active filter circuit. FIG. 9 illustrates one possible embodiment of an active filter circuit constructed according to the teachings of the present invention.

[0033] In the active filter circuit of FIG. 9, a radio frequency input signal 905 is coupled to the resonator 910 of the oscillator type circuit. In one embodiment, the radio frequency input signal 905 and the resonator 910 are coupled using coupled microstrips or stripline transmission lines. The oscillator type circuit is controlled with a tuning voltage V.sub.t 960 that selects a desired filter frequency and an oscillator gain control V.sub.g 970 that selects a gain value. The output of the active filter circuit is obtained by coupling an output coupling 990 to the resonator 910 of the oscillator type circuit. The output signal 995 is a signal filtered at the desired tuning frequency as selected by the tuning voltage V.sub.t 960.

[0034] As set forth in the beginning of this section, the oscillator type circuit in the active filter should not be allowed to oscillate. To enforce this requirement, the present invention is calibrated to set the oscillator gain control V.sub.g 970 to a value just below where the oscillator would oscillate. Referring back to FIG. 6, a calibration is initiated by activating the calibration control signal 660. The activated calibration control signal 660 will cause multiplexor 680 to deliver the reference oscillator signal 670 through the active filter circuit 620. An oscillation detection circuit may be used to detect the gain control 650 setting where the active filter circuit 620 begins to oscillate. Then the oscillation detection circuit will reduce the gain control 650 setting to a voltage value just below the oscillation point.

[0035] When designing tunable active filters using negative resistance elements (such as the negative resistance element 720 of FIG. 7) with a large tuning range (i.e. e.g. 2:1), it can be challenging to avoid spurious oscillations due to resonance's caused by biasing elements. This design problem has already been solved in the case of broadly tunable voltage controlled oscillators (VCOs) for a variety of gain topologies. It is a much simpler problem to redesign VCOs to have barely insufficient gain to oscillate than to design tunable negative resistance elements without spurious gain. Since the active filter of the present invention relies VCOs instead of negative resistance elements, the present invention yields designs with unprecedented tunability. Specifically, the active filter design of the present invention has been used to create an active filter with a 2:1 frequency range.

An Alternate Receiver with Tunable Bandpass Filter Design

[0036] In the receiver system embodiment of FIG. 5 that includes an active bandpass filter 520, the receiver system may be periodically taken off-line to calibrate the variable bandpass filter 520. In an alternate embodiment disclosed in FIG. 10, the receiver circuit uses two active filter circuits such that one active filter circuit may be used to continually calibrate a gain signal for the other variable bandpass filter.

[0037] In the embodiment of FIG. 10, a first active filter circuit is used within a tunable bandpass filter 1020 to filter the signals received by the tuner 1030. FIG. 11 illustrates an embodiment of the tunable bandpass filter circuit 1020. The active bandpass filter circuit 1125 in the tunable bandpass filter circuit 1020 can be constructed according to the teachings in FIG. 9.

[0038] Referring back to FIG. 10, a second active filter circuit, active filter clone circuit 1090, is coupled to receive a reference signal from oscillator 1050. The active filter clone circuit 1090 is built identical to the first active filter circuit in tunable bandpass filter 1020.

[0039] An oscillation detection and control circuit 1095 monitors the output of the active filter clone circuit 1090. The oscillation detection and control circuit 1095 analyzes the output of the active filter clone circuit 1090 and generates a gain input into active filter clone circuit 1090 that causes the oscillator in the active filter clone circuit 1090 to begin oscillating. The oscillation detection and control circuit 1095 uses a gain input slightly

[0040] The foregoing has described an active filter circuit for filtering signals across a wide frequency range is disclosed. It is contemplated that changes and modifications may be made by one of ordinary skill in the art, to the materials and arrangements of elements of the present invention without departing from the scope of the invention.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed