Digital signal recording method and apparatus and recording medium therefor

Higurashi, Seiji ;   et al.

Patent Application Summary

U.S. patent application number 09/767544 was filed with the patent office on 2001-09-13 for digital signal recording method and apparatus and recording medium therefor. This patent application is currently assigned to U.S. Philips Corporation. Invention is credited to Harumatsu, Mitsuo, Higurashi, Seiji, Ohishi, Takeo.

Application Number20010021306 09/767544
Document ID /
Family ID24187093
Filed Date2001-09-13

United States Patent Application 20010021306
Kind Code A1
Higurashi, Seiji ;   et al. September 13, 2001

Digital signal recording method and apparatus and recording medium therefor

Abstract

A format for the recording of trick play signals is proposed in which trick play segments comprising sync blocks of information of a trick play signal are recorded in groups of p successive tracks. At least first and second trick play signals are recorded on the record carrier. The first trick play signal is meant for reproduction in a reproduction apparatus at a reproduction speed n1 times the recording speed with which the trick play signals are recorded on the record carrier. The second trick play signal is meant for reproduction in the said reproduction apparatus at a reproduction speed -n1 times the recording speed. The first trick play signal is recorded using a first head having a first azimuth angle and the second trick play signal is recorded using a second write head having a second azimuth angle different from the first azimuth angle.


Inventors: Higurashi, Seiji; (Fuchu-Shi, JP) ; Ohishi, Takeo; (Yokohama-Shi, JP) ; Harumatsu, Mitsuo; (Yokohama-Shi, JP)
Correspondence Address:
    Corporate Patent Counsel
    U.S. Philips Corporation
    580 White Plains Road
    Tarrytown
    NY
    10591
    US
Assignee: U.S. Philips Corporation

Family ID: 24187093
Appl. No.: 09/767544
Filed: January 23, 2001

Related U.S. Patent Documents

Application Number Filing Date Patent Number
09767544 Jan 23, 2001
09548019 Apr 12, 2000
09548019 Apr 12, 2000
08623297 Mar 28, 1996
6026213

Current U.S. Class: 386/208 ; 375/E7.267; 386/323; 386/350; 386/E9.013
Current CPC Class: H04N 5/783 20130101; B65G 47/962 20130101; H04N 7/52 20130101; B65G 43/00 20130101; H04N 9/8042 20130101; B65G 45/10 20130101; B61D 15/08 20130101
Class at Publication: 386/68 ; 386/74; 386/81
International Class: H04N 005/783

Foreign Application Data

Date Code Application Number
Mar 28, 1995 JP 96179/1995

Claims



1. An apparatus for recording a first and a second digital information signal in slant tracks on a magnetic record carrier, the apparatus comprising input means for receiving the first and second digital information signal, signal processing means for processing the first and second digital signal into first and second trick play signals respectively, suitable for recording in the tracks, writing means for writing at a recording speed of the record carrier, the first and second trick play signals so as to obtain trick play segments located at specific positions in said tracks, the writing means comprising at least a first and a second write head located on a rotatable head drum, the first head having a gap with a first azimuth angle and the second head having a gap with a second azimuth angle which is different from the first azimuth angle, the first digital information signal being meant for enabling a replay in a reproduction apparatus at a trick play reproduction speed which equals n1 times the recording speed, the second digital information signal being meant for enabling a replay in said reproduction apparatus at a trick play reproduction speed which equals -n1 times the recording speed, where n1 is a positive integer unequal to 0 and 1, characterized in that the first and second trick play signals comprise sync blocks of information of the first and second digital information signal, respectively, and that the writing means are adapted to write sync blocks of the first trick play signal into first trick play segments in tracks on the record carrier using said first write head, without using said second write head, and to write sync blocks of the second trick play signal into second trick play segments in tracks on the record carrier using said second write head, without using said first write head. (v=+4.times. and v=-4.times., or v=+12.times. and v=-12.times., or v=-24.times. and v=+24.times.)

2. Apparatus as claimed in claim 1, characterized in that the writing means are adapted to write the sync blocks of the first trick play signal and the sync blocks of the second trick play signal on the record carrier, so as to enable, during reproduction at said trick play speed n1 times the recording speed in said reproduction apparatus, which is provided with reading means for reading the first and second trick play segments, said reading means comprising at least a first and a second read head located on a rotatable head drum, said first read head having a gap with an azimuth angle substantially equal to said first azimuth angle and the second read head having a gap with an azimuth angle substantially equal to said second azimuth angle, the reading of the first trick play signal from first trick play segments using said first read head, without using said second read head, and to enable, during reproduction at said trick play speed -n1 times the recording speed, the reading of the second trick play signal from second trick play segments using said second read head, without using said first read head.

3. Apparatus as claimed in claim 1 or 2, characterized in that n1=4, 12 or 24.

4. Apparatus as claimed in claim 1, characterized in that the input means are further adapted to receive a third and a fourth digital information signal, the signal processing means further being adapted to process the third and fourth digital signals into a third and a fourth trick play signal, respectively, suitable for recording in the tracks, the writing means further being adapted to write, at said recording speed of the record carrier, the third trick play signal so as to obtain third trick play segments located at specific positions in said tracks and to write the fourth trick play signal so as to obtain fourth trick play segments located at specific positions in said tracks, the third digital information signal being meant for enabling a replay in the said reproduction apparatus at a trick play reproduction speed which equals n2 times the recording speed, the fourth digital information signal being meant for enabling a replay in the said reproduction apparatus at a trick play reproduction speed which equals -n2 times the recording speed, where n2 is a positive integer unequal to n1 and unequal to 0 and 1, that the third trick play signal comprise sync blocks of information of the third digital information signal, and that the writing means are adapted to write sync blocks of the third trick play signal into third trick play segments using the first write head, without using said second write head, and that the fourth trick play signal comprise sync blocks of information of the fourth digital information signal, and that the writing means are adapted to write sync blocks of the fourth trick play signal into fourth trick play segments using the second write head, without using said first write head.

5. Apparatus as claimed in claim 4, characterized in that the writing means are adapted to write the sync blocks of the third trick play signal and the sync blocks of the fourth trick play signal on the record carrier, so as to enable, during reproduction at said trick play speed n2 times the recording speed in said reproduction apparatus, the reading of the third trick play signal from third trick play segments using said first read head, without using said second read head, and to enable, during reproduction at said trick play speed -n2 times the recording speed, the reading of the fourth trick play signal from fourth trick play segments using said second read head, without using said first read head.

6. Apparatus as claimed in claim 4, characterized in that the writing means are adapted to write trick play signals for all possible trick play speeds in one direction using said first write head, without using said second write head, and to write trick play signals for all possible trick play speeds in the direction reverse to said one direction using said second write head, without using said first write head.

7. Record carrier obtained with the apparatus as claimed in anyone of the preceding claims.

8. Method of recording a first and a second digital information signal in slant tracks on a magnetic record carrier, the method comprising the steps of receiving the first and second digital information signal, processing the first and second digital signal into first and second trick play signals respectively, suitable for recording in the tracks, writing at a recording speed of the record carrier, the first and second trick play signals so as to obtain trick play segments located at specific positions in said tracks using writing means, the writing means comprising at least a first and a second write head located on a rotatable head drum, the first head having a gap with a first azimuth angle and the second head having a gap with a second azimuth angle which is different from the first azimuth angle, the first digital information signal being meant for enabling a replay in a reproduction apparatus at a trick play reproduction speed which equals n1 times the recording speed, the second digital information signal being meant for enabling a replay in said reproduction apparatus at a trick play reproduction speed which equals -n1 times the recording speed, where n1 is a positive integer unequal to 0 and 1, characterized in that the first and second trick play signals comprise sync blocks of information of the first and second digital information signal, respectively, and that the writing step comprises writing the sync blocks of the first trick play signal into first trick play segments in tracks on the record carrier using said first write head, without using said second write head, and writing the sync blocks of the second trick play signal into second trick play segments in tracks on the record carrier using said write head, without using said first write head. (v=+4.times. and v=-4.times., or v=+12.times. and v=-12.times., or v=-24.times. and v=+24.times.)
Description



BACKGROUND OF THE INVENTION

[0001] The present invention relates to a digital information signal recording method and recording apparatus and a record carrier therefor. More specifically this invention relates to a digital information signal recording method and apparatus for recording a normal reproduction digital signals and special reproduction digital signals on a tapeform record carrier by use of a rotary head, and a record carrier used for the digital information signal recording method and apparatus.

[0002] In general, digital information signals are recorded in units of data blocks on and reproduced from a tape-form record carrier such a magnetic tape by use of a rotary head. In the case of a trick play reproduction (special reproduction), digital information signals are reproduced at a speed different from the speed at which the digital information signals are recorded. During trick play reproduction, the data recorded for the normal reproduction is reproduced discontinuously, because of the fact that the scanning pattern of the rotary head across the tape-form recording medium is different from the scanning pattern when the digital signals are reproduced in the normal reproduction mode. It is thus difficult to obtain the trick play reproduction signals without any additional processing.

[0003] Therefore, conventionally, there has been known a digital signal recording method for enabling the special reproduction as disclosed in Japanese Patent-Laid Open No. 1994-261278. This teaches that digital trick play signals for the special reproduction mode are arranged and recorded on tracks on which normal reproduction digital signals are recorded along the rotary head scanning pattern that is followed by the rotary head in the special reproduction mode.

[0004] In such a digital signal recording method, the recording format of the digital signals recorded on each track of a tape-form recording medium is kept constant. It is thus impossible to record digital signals of desired systems in various formats (e.g., such a format that a plurality of data areas are arranged on a single track so that digital signals can be recorded and reproduced independently) by use of a signal apparatus.

[0005] In addition, the digital signals for the normal reproduction mode and the special reproduction mode are recorded on the recording medium under mixed conditions. The data rate of the special reproduction digital signals and the arrangement positions of the special reproduction digital signals in this case are different from each other, because of the fact that the recording formats of the digital signals are different from each other. There arises a problem in that a circuit for forming the special reproduction digital signals and a circuit for recording the special reproduction digital signals at specific positions on the tape-form recording medium are both complicated in circuit construction.

SUMMARY OF THE INVENTION

[0006] With these problems in mind, therefore, it is an object of the present invention to provide a digital information signal recording method and apparatus and a record carrier used therefor, by which the normal reproduction digital signals and the special reproduction digital signals can be recorded in accordance with mutually different formats under mixed conditions.

[0007] Further, another object of the present invention is to provide a digital information signal recording method and apparatus and a record carrier used therefor, by which when the normal reproduction digital signals and the special reproduction digital signals are recorded on a recording medium under mixed conditions, the circuits for forming and recording the special reproduction digital signals can be simplified in circuit construction.

[0008] To achieve the above-mentioned object, the present invention provides an apparatus for recording a first and a second digital information signal in slant tracks on a magnetic record carrier, the apparatus comprising

[0009] input means for receiving the first and second digital information signal,

[0010] signal processing means for processing the first and second digital signal into first and second trick play signals respectively, suitable for recording in the tracks,

[0011] writing means for writing at a recording speed of the record carrier, the first and second trick play signals so as to obtain trick play segments located at specific positions in said tracks, the writing means comprising at least a first and a second write head located on a rotatable head drum, the first head having a gap with a first azimuth angle and the second head having a gap with a second azimuth angle which is different from the first azimuth angle, the first digital information signal being meant for enabling a replay in a reproduction apparatus at a trick play reproduction speed which equals n1 times the recording speed, the second digital information signal being meant for enabling a replay in said reproduction apparatus at a trick play reproduction speed which equals -n1 times the recording speed, where n1 is a positive integer unequal to 0 and 1,

[0012] characterized in that the first and second trick play signals comprise sync blocks of information of the first and second digital information signal, respectively, and that the writing means are adapted to write sync blocks of the first trick play signal into first trick play segments in tracks on the record carrier using said first write head, without using said second write head, and to write sync blocks of the second trick play signal into second trick play segments in tracks on the record carrier using said second write head, without using said first write head.

[0013] By doing so, the trick play signals for the forward and reverse direction will be recorded in tracks with different azimuth, so that they will never interfere with each other. This results in a simplification of the trick play signal generation for the two trick play directions. Further, with an equal bitrate for both trick play speeds in the forward and reverse direction, respectively, the overhead of the trick play information to be recorded is equally distributed over the tracks with the one and the other azimuth.

[0014] Further, the present invention provides a method of recording the digital information signal and the at least two trick play signals on a record carrier. In addition, the present invention provides a record carrier on which the digital information signal and the at least two trick play signals are recorded.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG. 1 is a block diagram showing an embodiment of the digital signal recording method and apparatus according to the present invention;

[0016] FIG. 2 is an illustration showing an example of data block format formed by the method according to the present invention;

[0017] FIG. 3 is an illustration showing an example of a first-system track format formed by the method according to the present invention;

[0018] FIG. 4 is an illustration showing an example of a second-system track formed by the method according to the present invention;

[0019] FIG. 5 is an illustration showing a track format of an embodiment of the recording medium according to the present invention; and

[0020] FIG. 6 is a block diagram showing an embodiment of the digital signal reproducing apparatus according to the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0021] An embodiment of the present invention will be described hereinbelow with reference to the attached drawings.

[0022] FIG. 1 is a block diagram showing a recording apparatus for assistance in explaining the digital signal recording method and apparatus according to the present invention. In FIG. 1, digital signals for first-system normal reproduction (referred to as the normal reproduction data, hereinafter) to be recorded in a first track format are inputted through an input terminal 1. Second-system normal reproduction data to be recorded in a second track format are inputted through an input terminal 2a. Further, auxiliary data (AUX) to be recorded and reproduced in the second format separately from the second-system normal reproduction data are inputted through an input terminal 2b. These auxiliary data (AUX) are audio signals or other.

[0023] Here, in the present embodiment, the digital signals are recorded on tracks formed by a helical scanning type magnetic recording and reproducing apparatus (VTR). In this VTR, digital signals are recorded and reproduced on and from a magnetic tape wound obliquely around an outer circumferential side surface of a rotary body over about an 180-degree angular range thereof. Further, the recording and reproduction are done while the magnetic tape is running at a constant speed, by use of two opposing rotary heads attached to the rotary body 180 degrees away from each other and having two different azimuth angles. Each track is constructed by arranging a plurality of data areas of a constant data rate (referred to as sync blocks) corresponding to the afore-mentioned data blocks in accordance with the scanning operation of the rotary head.

[0024] FIG. 2 shows an example of the format of a sync block. As shown, one sync block (i.e., a data block) is a 112-byte area formed by synthesizing, in time series manner, a two-byte synchronizing signal (Sync) area 21 for reproducing the sync block, a three-byte address (ID) area 22, a three-byte header storing area 23 for storing various data, a 96-byte data storing area 24, and an eight-byte parity area 25 for correcting any error of the sync block data.

[0025] In this embodiment, for instance, digital signals of a transport packet (TP) transmission system of MPEG2 (Moving Picture Expert Group 2) are recorded in the above-mentioned data storing area 24, as the normal reproduction data or special reproduction data. Further, a single track is formed by synthesizing a plurality of the sync blocks in time series manner.

[0026] With respect to the track format, in the case of the first system digital signal recording, a first track format as shown in FIG. 3 is formed. Further, in the case of the second system digital signal recording or the auxiliary signal recording, a second track format as shown in FIG. 4 is formed.

[0027] The first track format as shown in FIG. 3 is composed of a margin area 31, a pre-amble area 32, a subsidiary code area 33, a post-amble area 34, an IBG (interblock gap) area 35, a pre-amble area 36, a data area 37, an error correction code area 38, a post-amble area 39, and a margin area 40. Here, the data area 37 and the error correction code area 38 constitute a major data area. This data area 37 is composed of 306 sync blocks, in which the first system digital signals (the normal reproduction data or the special reproduction data) DATA1 of 306 sync blocks are recorded. Further, the error correction code area 38 is composed of 30 sync blocks, in which external codes (C3 codes) for correcting errors of the first system digital signals DATA1 are recorded.

[0028] Next, the second track format shown in FIG. 4 is used for the second system digital signals and auxiliary signals, in which the same reference numerals have been retained for the same composing areas shown in FIG. 3. The second track format as shown in FIG. 4 is composed of a margin area 31, a pre-amble area 32, a subsidiary code area 33, a post-amble area 34, an IBG area 35, a pre-amble area 36, a first data area 41, a post-amble area 42, an IBG area 43, a pre-amble area 44, a second data area 45, an error correction code area 46, a post-amble area 39, and a margin area 40.

[0029] Here, the first data area 41, the post-amble area 42, the IBG area 43, the pre-amble area 44, and the second data area 45 are constructed by 306 sync blocks which is the same as the data area 37 shown in FIG. 3. In the 306 sync blocks, the first data area 41 is composed of 23 sync blocks, in which the auxiliary signals AUX are recorded. Further, the post-amble area 42, the IBG area 43, and the pre-amble area 44 are composed of two sync blocks, three sync blocks, and one sync block, respectively, so as to construct a rewritable edition gap area of six sync blocks as a whole.

[0030] Further, in the second data area 45, the second system digital signals (the normal reproduction data or the special reproduction data) DATA2 of 277 sync blocks are recorded. Further, in the error correction code area 46, external codes (C3 codes) for correcting errors of the second system digital signals DATA2 are recorded. In more detail, error correction codes of 30 sync blocks formed for the data of 306 sync blocks in total (an addition of the 277 sync block DATA2 and the 29 sync block "0" data) are recorded in this error correction code area 46.

[0031] Returning to FIG. 1 again, when the first system normal reproduction data are inputted through the input terminal 1, the inputted data are written in an input buffer memory 3, and further applied to a system detecting circuit 4 and a data rate calculating circuit 5. The system detecting circuit 4 detects the system of the inputted data. The data rate calculating circuit 5 calculates the data rate of the first system normal reproduction data. Further, when the second system normal reproduction data and the auxiliary signals are inputted through the input terminals 2a and 2b, respectively, the inputted data and the auxiliary signals are written in the input buffer memory 3, and further applied to the system detecting circuit 4. The second system normal reproduction data is also applied to the data rate calculating circuit 5.

[0032] In accordance with the detected system, the system detecting circuit 4 applies one-bit detection signal to a control circuit 6. In response to the one-bit detection signal, the control circuit 6 forms and outputs various signals such as a read control signal applied to the input buffer memory 3, a select signal applied to a selecting circuit 9, header data, a synchronizing signal, address data, etc. all applied to a selecting circuit 9.

[0033] The data rate detecting circuit 5 calculates the data rate of the inputted normal reproduction data, and compares the calculated data rate with a plurality of previously determined reference values to detect a set data rate range to which the inputted normal reproduction data belongs. The data rate detecting circuit 5 then outputs a select signal according to the detected data rate to the selecting circuit 9.

[0034] After having been stored in the input buffer memory 3, the first or second system normal reproduction data are read in response to the read control signal applied by the control circuit 6 and then supplied to a trick play data forming circuit 7 and the selecting circuit 9. Further, when the auxiliary signals are stored in the input buffer memory 3, the auxiliary signals are supplied to a header adding circuit 10.

[0035] On the basis of the inputted normal reproduction data, the trick play data forming circuit 7 forms of six sorts of trick playing (special reproduction) data, and multiplexes four-byte additional data (e.g, packet arrival time and other data) with the formed trick playing data as an additional header, respectively. The trick play data forming circuit 7 then outputs the six sorts of data in parallel to write these data in six dedicated buffer memories 8 (TP1B to TP6B), respectively.

[0036] More in detail, the trick play data forming circuit 7 decodes the inputted normal reproduction data (MPEG transport stream), takes away some frames of the inputted data in accordance with trick play reproduction speeds, and encodes the data. Instead of that, the trick play data forming circuit 7 may take out packets including independently reproducible blocks in accordance with trick play reproduction speeds. Further, the trick play data forming circuit 7 is not required when data of normal reproduction data and previously formed trick play data being time-division multiplexed with each other via input terminal 1 are distributed to the input buffer memory 3 and buffer memories 8, respectively.

[0037] The construction of the same sorts of the special reproduction data is the same in both the cases where the first and second system digital signals are recorded.

[0038] The respective data stored in the six buffer memories 8 (TP1B to TP6B) are read on the basis of the read signal applied by the control circuit 6, and then inputted to the selecting circuit 9. The selecting circuit 9 selects any of the normal reproduction data and the six sorts of the special reproduction data TP1 to TP6 on the basis of both select signals applied by the control circuit 6 and the data rate calculating circuit 5. The selecting circuit 9 then supplies the selected data to the header adding circuit 10.

[0039] In other words, the selecting circuit 9 selects and outputs any of the normal reproduction data and the six sorts of the special reproduction data TP1 to TP6 in a previously determined specific sequence. Further, when any of the six sorts of the special reproduction digital signals are outputted, any of the special reproduction data and the normal reproduction data are selected and outputted according to the data rate of the normal reproduction data detected by the data rate calculating circuit 5. In this case, as the data rate of the normal reproduction data increases, the normal reproduction data are selected, instead of the special reproduction data (e.g., TP1 to TP6) of a lower priority.

[0040] Further, when the special reproduction data TP2 to TP6 are selected and outputted, as described later in further detail, the selecting circuit 9 selects those data in such a way that: a plurality of data blocks of the special reproduction data recorded under overlapped conditions are arranged in both front and rear of a plurality of data blocks of the special reproduction data recorded once without being overlapped.

[0041] The normal reproduction data and the special reproduction data TP1 to TP6 or time-series synthesized data formed of parts of these data all outputted by the selecting circuit 9 are supplied to the header adding circuit 10. The header adding circuit 10 adds three-byte header data applied by the control circuit 6 to the head of these data. The header data are stored in the header storing area 23 shown in FIG. 2. In this embodiment, the header data includes at least map data and a discriminate data. The map data indicates a track pattern (e.g., as shown in FIG. 5) in which the six-sorts of special reproduction data TP1 to TP6 are arranged and recorded on a specific area previously determined on the tape-form recording medium 18. The discriminate data discriminates which one of the special reproducing data TP1 to TP6 and the normal reproduction data are selected and recorded on the six-sorts of special reproduction data (TP1 to TP6) recording areas, respectively.

[0042] The 99-byte digital signals composed of the header and the normal reproduction data or the special reproduction data both read by the header adding circuit 10 are supplied to an external code forming circuit 11. This external code forming circuit 11 forms 30 sync block external codes as the error correcting codes for the sync block data recorded on one-track data area. The sync block data are 306 sync block data stored in the data area 37 shown in FIG. 3 in the case of the first system. Or, the sync block data are 277 sync block data stored in the data area 45 shown in FIG. 4 in the case of the second system.

[0043] In the second system, the external code forming circuit 11 forms an external code for 306 (in total) sync block data obtained by adding the 277 sync block input digital signals and 29 sync block "0" data corresponding to 29 sync blocks of the data area 41, the post-amble area 42, the IBG area 43, and the pre-amble area 44 shown in FIG. 4. The external code is stored in the error correcting code area 38 shown in FIG. 3 in the case of the first system digital signals. Or, the external code is stored in the error correcting code area 46 shown in FIG. 4 in the case of the second system digital signals.

[0044] The digital signals composed of the header, the digital data and the external codes formed by the external code forming circuit 11 are supplied to an internal code forming circuit 13. The internal code forming circuit 13 forms an eight-byte parity as an internal code in unit of 99 bytes. Further, the header and the auxiliary data (AUX) read by the header adding circuit 10 are inputted to another external code forming circuit 12. The external code forming circuit 12 forms 5 sync block external codes for each 18 sync blocks. The auxiliary data of 23 sync blocks are supplied to another internal code forming circuit 14, to form an eight-byte parity as an internal code in unit of 99 bytes.

[0045] The digital signals of data, a header, external codes, and internal codes formed by the internal code forming circuits 13 and 14 are supplied to an adder circuit 15. The adder circuit 15 forms sync blocks by adding the two-byte synchronizing signal as shown by Sync and the three-byte address data as shown by ID both in FIG. 2 to the supplied digital signals. After that, the digital signals are supplied to another selecting circuit 16 in unit of sync blocks. When the first system normal reproduction data are inputted through the input terminal 1, in response to the select signal applied by the control circuit 6, the selecting circuit 16 selects the sync blocks including the first system normal reproduction data or the special reproduction data. These are the data inputted through the internal code forming circuit 13 and the adder circuit 15, respectively. On the other hand, when the second system normal reproduction data and the auxiliary data (AUX) are inputted through the input terminals 2a and 2b, respectively, in response to the select signal applied by the control circuit 6, the selecting circuit 16 selects the sync blocks including the second system normal reproduction data or the special reproduction data or the auxiliary data (AUX). These are the data inputted through the internal code forming circuit 13 and 14 and the adder circuit 15, respectively.

[0046] The output signals of the selecting circuit 16 are multiplexed with a pre-amble signal, a subsidiary code signal, a post-amble signal, etc., to be recorded in the areas 32, 33, 34, 39, 42, 44, etc. shown in FIGS. 3 and 4. The multiplexed data are then modulated and amplified by a signal recording circuit 17. Further, the modulated and amplified signals are recorded on the recording medium 18 (a magnetic tape, in this embodiment) by a recording mechanism using a well-known rotary head (not shown). As described above, the normal reproduction data and the special reproduction data TP1 to TP6 can be recorded by forming the track pattern as shown in FIG. 5. Further, the normal reproduction data are recorded, instead of a part or all of the special reproduction data TP1 to TP6, according to the data rate of the normal reproduction data.

[0047] Further, in the case where the second system digital signals are recorded, only one of the second system normal reproduction data inputted through the input terminal 2a and the auxiliary data (AUX) inputted through the input terminal 2b can be recorded independently.

[0048] The track pattern of an embodiment of the recording medium according to the present invention will be described hereinbelow with reference to FIG. 5. FIG. 5 shows 24 pairs of tracks (i.e., 48 tracks) recorded by a first rotary head having a positive azimuth angle and a second rotary head having a negative azimuth angle. Further, each track shows the 336 sync blocks composed of the 306 sync block data area 37 and the 30 sync block error correcting code area 38 both shown in FIG. 3. Or, each track shows the 336 sync blocks composed of the data areas from the first data area 41 to the error correcting code area 46 shown in FIG. 4.

[0049] As understood by FIG. 5, the special reproduction data TP1 to TP6 are arranged and recorded at previously determined specific positions. The recording ranges are set to the second data area 45 of 277 sync blocks (excluding the first data area 41 of 23 sync blocks and the editing gap of six sync blocks composed of the areas 42 to 44). Also in the case of recording the first system digital signals, the special reproduction data TP1 to TP6 are recorded at a part of the 277 sync block range excluding the 29 head sync blocks from the data area 37 of 306 sync blocks shown in FIG. 3.

[0050] In this embodiment shown in FIG. 5, various data are recorded at previously determined specific positions, respectively. These various data are the first special reproduction data TP1 of four-time (4.times.) speed in the forward direction, the second special reproduction data TP2 of 12-time (12.times.) speed in the forward direction, the third special reproduction data TP3 of 24-time (24.times.) speed in the forward direction, the fourth special reproduction data TP4 of four-time (-4.times.) speed in the reverse direction, the fifth special reproduction data TP5 of 12-time (-12.times.) speed in the reverse direction, and the six special reproduction data TP4 of 24-time (-24.times.) speed in the reverse direction.

[0051] Here, the first special reproduction data TP1 are composed of 45 sync blocks; the second special reproduction data TP2 are composed of 46 sync blocks; the third special reproduction data TP3 are composed of 14 sync blocks; the fourth special reproduction data TP4 are composed of 58 sync blocks; the fifth special reproduction data TP5 are composed of 23 sync blocks; and the six special reproduction data TP6 are composed of 13 sync blocks, respectively. The block lengths of these special reproduction data are set in such a way that the data can be reproduced even if the rotary head scanning is slightly shifted from the predetermined pattern in the trick playing operation.

[0052] Further, in FIG. 5, the portions where the special reproduction data TP1 to TP6 are not recorded indicate the track portions where the normal reproduction data are recorded. In addition, two white portions between which each special reproduction data TP2 to TP6 is sandwiched are sync blocks where the same data are recorded.

[0053] Table 1 lists the number of sync blocks, the recording data rate, the reproducing data rate, etc. of the respective special reproduction data on the track pattern shown in FIG. 5. In Table 1, SB is an abbreviation of sync block, and the number of sync blocks are calculated on the condition that one SB is 94 bytes on an average.

1TABLE 1 BU- S- S- REC REP SP RST/S B(a)/ B(b)/ REC REP D-RT D-RT R CN SCN SCN SB/TPF SB/SCN kbps kbps +4 2 45 0 90 90 507.6 2.03 +12 3 14 16 138 90 259.44 2.03 +24 9 6 4 126 90 118.44 2.03 -4 2 32 13 116 90 654.24 2.03 -12 5 13 5 115 90 216.2 2.03 -24 9 7 3 117 90 109.98 2.03 (SP R: a speed ratio; SCN: scanning; REC: recording; REP: reproduction; and D-RT: data rate)

[0054] Further, SB(a) denotes the number of sync blocks in which data is recorded once in the special reproduction data blocks; SB(b) denotes the number of sync blocks in which the same data are recorded twice in the special reproduction data blocks; and TPF implies trick play frame; and SCN implies one revolution of a rotary body (e.g., a rotary drum).

[0055] When all the six sorts of special reproduction data TP1 to TP6 are recorded as shown in FIG. 5 in accordance with Table 1, the ratio of all the special reproduction data rate to all the recorded data rate (60.times.306 (SB/s)) is 13.5%. This is because all the special reproduction data are recorded at a speed of 2481.25 SB per second. In this case, the recordable data rate of the normal reproduction data is 11.9 Mbps.

[0056] The embodiment is described under the condition that the data rate of the normal reproduction data is changed.

[0057] And, the recorded data rate of the special reproduction data is reduced when the data rate of the normal reproduction data becomes higher than 11.9 Mbs. In this case, during reproduction, the special reproduction data TP1 to TP6 are reduced beginning from the lower priority order in sequence.

[0058] In the embodiment, the priority order of the 24-time speed special reproduction data TP3 and TP6 is the lowest priority. Further the priority increases in the order of the reverse-direction four-time speed special reproduction data TP4, the forward-direction four-time special reproduction data TP1, the reverse-direction 12-time speed special reproduction data TP5, the forward-direction 12-time special reproduction data TP2. Then, as the data rate of the normal reproduction data increases beyond 11.9 Mbps, the special reproduction data recording is omitted in the order of (1)TP3 and TP6, (2)TP4, (3)TP1, (4)TP5, (5)TP2. Further, finally, all the special reproduction data recordings are omitted, and only the normal reproduction data are recorded.

[0059] Table 2 lists the recorded special reproduction data, the proportion occupied by the special reproduction data, and the data rate of the recordable normal reproduction data.

2TABLE 2 RATIO OCCUPIED RECORDABLE NOR RECORDED SPL DATA BY SPL DATA (%) DATA RATE (Mbps) NONE 0 13.8 TP2 1.9 13.5 TP2, TP5 3.4 13.3 TP2, TP5, TP1 7.1 12.8 TP2, TP5, TP1, TP4 11.9 12.2 TP2, TP5, TP1, TP4, TP3, 13.5 11.9 TP6

[0060] In the above Table 2, the recordable and reproducible normal reproduction data rate is the data rate of the first-system normal reproduction data recorded by the first format. Therefore, the second-system normal reproduction data recorded by the second format becomes smaller than these listed values by about 1.31 Mbps (=(23+6) SB/track.times.60 track/s.times.94 byte/SB.times.8 bit/byte).

[0061] In the present embodiment, in both the cases where the first-system digital signals and the second-system digital systems are recorded, the data rate required for the special reproduction data TP1 to TP6 is the same as far as the same sort of the special reproduction data are recorded. It is thus possible to use the trick play data forming circuit 7 for forming the special reproduction data in common for both the first and second system digital signals. This results in the forming circuit being simplified to that extent.

[0062] Further, in the present embodiment, in both the cases where the first-system digital signals and the second-system digital signals are recorded, the recording positions where the special reproduction data TP1 to TP6 are recorded are fixedly determined as shown in FIG. 5. It is thus possible to simplify the function required for the circuit for arranging and recording the special reproduction data TP1 to TP6 on the track to that extent.

[0063] Now, the construction and operation of the digital signal reproducing apparatus for reproducing the recording medium according to the present invention will be described hereinbelow with reference to FIG. 6.

[0064] A recording medium 51 is the same as the recording medium 18 shown in FIG. 1, which is formed with a track pattern as shown in FIG. 5. After having been reproduced by use of a well-known reproducing mechanism (including the rotary head), the reproduced digital signals are amplified and demodulated by a signal reproducing circuit 52. And then the demodulated signals are applied to an ID detecting circuit 53 to detect the address data (ID). On the basis of the ID detected by the ID detecting circuit 53, the digital signals stored in the data area 37 and the error correction code area 38 shown in FIG. 3 are supplied to an error correcting circuit 54. Further, On the basis of the ID, the digital signals stored in the data area 45 and the error correction code area 46 shown in FIG. 4 are also supplied to the error correcting circuit 54. On the other hand, the reproduced digital data (AUX) stored in the data area 41 shown in FIG. 4 are supplied to another error correcting circuit 55.

[0065] The reproduced digital signals error-corrected by the error correcting circuit 54 are supplied to a control circuit 56 and further to a data distributing circuit 57. Further, the reproduced digital signals error-corrected by the error correcting circuit 55 are supplied to an AUX buffer memory 58.

[0066] The control circuit 56 analyzes the header of the reproduced digital signals and outputs a control signal to the data distributing circuit 57. Further, the control circuit 56 generates write control signals WTP1 to WTP6, WN and WA applied to buffer memories 59-1 to 59-6, a normal buffer memory 60 and an AUX buffer memory 58, respectively. In addition, the control circuit 56 analyzes the four-byte additional data (additional header) of the reproduced digital signals to detect the data arrival time, and generates read-out control signals RTP1 to RTP6 and RN and RA, so that all the data can be read at the same timing.

[0067] On the basis of the control signals, when the inputted reproduced digital signals are of the special reproduction data TP1 to TP6, the data distributing circuit 57 distributes the reproduced digital signals to each of the dedicated buffer memory 59-1 to 59-6. Further, when the inputted reproduced digital signals are of the normal reproduction data, the data distributing circuit 57 supplies the reproduced digital signals to the normal buffer memory 60. In the case of the special reproduction data TP2 to TP6, only one of the two places (the white portions in FIG. 5) where the same data blocks of the special reproduction data are recorded is selected and outputted. Therefore, even if the head scanning is slightly shifted away from the predetermined pattern, it is possible to reproduce the special reproduction data under excellent conditions.

[0068] The special reproduction data TP1 to TP6 stored in the buffer memories 59-1 to 59-6, respectively, and the normal reproduction data stored in the buffer memory 60 are read on the basis of read control signals RTP1 to RTP6 and RN. And the read signals are inputted to a selecting circuit 61. The selecting circuit 61 selects one sort of data designated by the control circuit 56 and outputs the selected data as the reproduction data. On the other hand, when the auxiliary data (AUX) are reproduced, the control circuit 56 supplies a read control signal RA to the AUX buffer memory 58 that outputs the reproduced auxiliary data.

[0069] Further, the present invention is not limited only to the above-mentioned description. For instance, the present embodiment has been explained by taking the case where digital signals are recorded and reproduced in accordance with any one of the two-system formats. However, the present invention can be applied to the case of three or more system formats by recording the special reproduction data at a part of the area common for all the systems.

[0070] Further, in the above-mentioned embodiment, any one of the first system and the second system is decided automatically by the system detecting circuit 4. Without being limited only thereto, the system can be of course decided manually. Further, in the above-mentioned embodiment, the special reproduction data are formed on the basis of the normal reproduction data. It is also possible to form and input the special reproduction data separately from the normal reproduction data.

[0071] As described above, in the digital signal recording method and apparatus according to the present invention, the same area for recording the special reproduction digital signals are used in common for both the first and second format recordings. It is thus possible to use the circuit for arranging and recording the special reproduction digital signals on the tracks in common for each format recording. This results in the simplified circuit construction.

[0072] Further, in the digital signal recording method and apparatus according to the present invention, the special reproduction digital signals are recorded in the same construction in both the first and second format recordings. Further, the data rate of the special reproduction digital signals is equalized in both the first and second format recordings. It is thus possible to use the circuit for forming the special digital signals in common for each format recording. This results in the simplified circuit construction.

[0073] Further, in the digital signal recording method and apparatus according to the present invention, any of the special reproduction digital signals and the normal reproduction digital signals are selected and recorded at the recording area for the special reproduction digital signals, according to the data rate of the normal reproduction digital signals. It is thus possible to eliminate the switching of the circuits (for addressing) for arranging the special reproduction digital signals. This results in the circuit function being reduced markedly.

[0074] Further, in the recording medium according to the present invention, the special reproduction digital signals (instead of the normal reproduction digital signals) are recorded in a specific area previously determined in the digital signal recording area used in common for both the first and second formats on the respective tracks. It is thus possible to reproduce the special reproduction digital signals from the same area in any format reproduction by the reproducing apparatus.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed