Soldered integrated circuit connections

Regner, Richard ;   et al.

Patent Application Summary

U.S. patent application number 09/822551 was filed with the patent office on 2001-08-09 for soldered integrated circuit connections. Invention is credited to Blue, Carey, Butler, Scott, Regner, Richard.

Application Number20010011676 09/822551
Document ID /
Family ID25532533
Filed Date2001-08-09

United States Patent Application 20010011676
Kind Code A1
Regner, Richard ;   et al. August 9, 2001

Soldered integrated circuit connections

Abstract

Solder paste is deposited using a solder stencil with an aperture having a concave edge in order to reduce the formation of solder balls. The solder deposit may be formed on a pad such that the paste has a concave edge. Solder paste deposits may be made on adjacent pads with the concave surfaces facing one another.


Inventors: Regner, Richard; (Meridian, ID) ; Butler, Scott; (Greenleaf, ID) ; Blue, Carey; (Kuna, ID)
Correspondence Address:
    TROP PRUNER & HU, PC
    8554 KATY FREEWAY
    SUITE 100
    HOUSTON
    TX
    77024
    US
Family ID: 25532533
Appl. No.: 09/822551
Filed: March 30, 2001

Related U.S. Patent Documents

Application Number Filing Date Patent Number
09822551 Mar 30, 2001
09550784 Apr 17, 2000
6248452
09550784 Apr 17, 2000
09270695 Mar 17, 1999
6094832
09270695 Mar 17, 1999
08986541 Dec 8, 1997
6012231

Current U.S. Class: 228/248.1 ; 228/33; 428/596; 428/599
Current CPC Class: H05K 3/3442 20130101; Y10T 428/12361 20150115; H05K 2201/10636 20130101; Y10T 428/12063 20150115; H05K 2203/0545 20130101; Y10T 428/12382 20150115; H05K 3/3485 20200801; Y02P 70/50 20151101; H01L 2224/11472 20130101; H01L 2924/00014 20130101; H01L 2924/00014 20130101; H01L 2224/0401 20130101
Class at Publication: 228/248.1 ; 428/596; 428/599; 228/33
International Class: B23K 020/08; B32B 003/10; B21C 027/00; B21D 028/00; B21F 027/00

Claims



What is claimed is:

1. A solder stencil comprising a body having at least one solder aperture, said aperture having a concave edge profile.

2. The stencil of claim 1 wherein said concave edge is curved.

3. A solder stencil for depositing solder paste on a pad comprising a plate having at least one solder aperture, said aperture having an area less than the area of said pad.

4. The stencil of claim 3 wherein said aperture has a concave edge profile.

5. The stencil of claim 3 wherein said stencil includes a pair of apertures having concave edges, said concave edges being opposed.

6. A method of depositing solder paste comprising the step of forming a deposit of solder paste on a pad, said deposit having an area less than the area of said pad, and reflowing said solder paste.

7. The method of claim 6, including the step of forming a solder stencil with an aperture having a concave edge.

8. The method of claim 6, including the step of forming said deposit with an area approximately 70 to 80% of the area of said pad.

9. The method of claim 6, including the step of forming a pair of adjacent deposits of solder paste, each of said deposits having a concave edge, the concave edges of said adjacent paste deposits being opposed.

10. A pad for forming a soldered contact comprising: a pad; and a layer of solder paste on said pad, said layer having a concave edge.

11. The pad of claim 10, wherein said pad is incompletely covered by said layer of solder paste.

12. The pad of claim 10, wherein said concave edge is curved.

13. A pad for forming a soldered contact comprising: a pad; and a layer of solder paste on said pad, said layer leaving a concave portion of said pad uncovered by solder paste.

14. The pad of claim 13, wherein said layer of solder paste has a curved concave edge.

15. The pad of claim 13, wherein said pad is generally rectangular, said pad having a width and a length, the width of said pad being greater than the width of the solder paste.

16. The pad of claim 15 wherein said pad is formed of a size selected from the group consisting of 0603, 0805 and 1206 configurations.

17. The pad of claim 16 wherein said layer of paste has a radius of curvature of from about 0.0590 inches to about 0.092 inches.

18. The pad of claim 17 wherein the pads are rectangular and said layer is formed having a width and length, the length of said layer being from about 0.0125 to about 0.029 inches.

19. A method of depositing solder paste comprising the steps of: forming a deposit of solder paste with a concave edge; and depositing said paste on the pad.

20. The method of claim 19, including the step of forming said edge in a circular arc.

21. The method of claim 19, including the step of reflowing said paste and soldering a surface mount component to said pad.

22. A method of depositing solder paste comprising the steps of forming a solder paste deposit and depositing said solder paste on a pad such that the area of solder paste is less than the area of said pad.

23. The method of claim 22, including the step of forming a curved concave edge on said solder paste.

24. The method of claim 22, including the step of forming a pair of opposed solder paste deposits on a pair of adjacent pads, said solder paste deposits having concave edges, said concave edges of said adjacent solder paste deposits being opposed.

25. The method of claim 22 wherein said pad is formed of a size selected from the group consisting of 0603, 0805 and 1206 configurations.

26. The method of claim 25 including forming said deposit with a radius of curvature of from about 0.0590 to about 0.092 inches.

27. The method of claim 26 wherein the pads are rectangular and said deposit is formed having a width and length, the length of said deposit being from about 0.0125 to about 0.029 inches.
Description



[0001] This invention relates generally to a solder stencil for applying a solder paste to a pad in the manufacture of integrated circuits. More particularly, the present invention is directed to reducing the creation of solder balls.

BACKGROUND OF THE INVENTION

[0002] Solder stencils are generally utilized in the manufacture of contacts on printed circuit boards to define the shape of a solder paste on the surface to be soldered. Solder paste is a suspension of flux and small spheres of solder particles. When heated, the paste forms a solder which secures two metal pieces together. Solder paste is screen printed onto a circuit board using a stencil. The stencil is a thin sheet of metal that has a desired hole pattern formed in the stencil.

[0003] In a reflowing process, the solder melts, forming a mechanical and electrical connection between printed circuit board land pads and an electrical component. Flux encourages the formation of this connection. Flux may be removed through a cleaning process or left on the board with the so-called no clean process.

[0004] One problem which may occur with solder paste is the formation of solder balls. Solder balls are small spherical solder particles which are formed away from the main solder pool during reflow. If these balls become loose at any time after the product is manufactured, they can roll to a position where they can short an electrical component. Solder balling may occur around components and over the board. Large solder balls may be associated with small and low clearance passive components such as 0805 and 1206 resistor and capacitor connection sites. The large solder balls may not be removed in the cleaning process and will persist with the no-clean process.

[0005] In addition, excessive solder balling may prevent the solder from making a good solder joint fillet. Thus, the formation of solder balls may create reliability issues. There has been a continuous effort to minimize the occurrence of solder balling. See C. A. Harper, Electronic Packaging & Interconnection Handbook, 2d Edition, McGraw Hill (1997), at p. 5.54.

[0006] It would be highly desirable to have a technique for forming soldered connections using solder paste which reduces the occurrence of solder balling.

SUMMARY OF THE INVENTION

[0007] In accordance with one aspect of the present invention, a solder stencil includes a body having at least one solder aperture. The aperture has a concave edge profile.

[0008] In accordance with another aspect of the present invention, a solder stencil for depositing solder paste on a pad includes a plate having at least one solder aperture. The aperture has an area less than the area of the pad.

[0009] In accordance with still another aspect of the present invention, a method of depositing solder paste includes the step of forming a deposit of solder paste on the pad. The deposit has an area of less than the area of the pad.

[0010] In accordance with another aspect of the present invention, a pad for forming a soldered contact includes a pad and a layer of solder paste on the pad. The solder paste has a concave edge profile.

[0011] In accordance with yet another aspect of the present invention, a pad for forming a soldered contact includes a pad and a layer of solder paste on the pad. The layer leaves a concave portion of the pad uncovered by solder paste.

[0012] In accordance with but another aspect of the present invention, a method of depositing solder paste includes the step of forming a deposit of solder paste with a concave edge. The solder paste is then deposited on the pad.

[0013] In accordance with another aspect of the present invention, a method of depositing solder paste includes the step of forming a solder paste deposit. The solder paste is deposited on the pad such that the area of the solder paste is less than the area of the pad.

[0014] These aspects of the present invention may be advantageous for a number of reasons including reducing the occurrence of solder balls.

DESCRIPTION OF THE DRAWING

[0015] FIG. 1 is a top plan view of a solder stencil having solder apertures;

[0016] FIG. 2 is a top plan view of a pair of pads on a printed circuit board;

[0017] FIG. 3 is a ton plan view of solder paste on top of the solder pad shown in FIG. 2; and

[0018] FIG. 4 is a cross-sectional view taken generally along the line 4-4 in FIG. 3.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0019] Referring to the drawing wherein like reference characters are used for like parts throughout the several views, a solder stencil 10 shown in FIG. 1 may be used to apply solder paste to pads on printed circuit boards. The solder stencil 10 is conventionally made of a thin sheet of metal such as brass, stainless steel, molybdenum, alloy-42, or nickel.

[0020] The stencil 10 includes a hole pattern represented by the two holes 12 and 14 in FIG. 1. Each of the holes 12 and 14 is of a generally rectangular shape with facing edges 16 having a concave configuration. The holes 12, 14 may be formed by conventional techniques including chemical etching, laser cutting, electropolishing, electroplating and electroforming.

[0021] As used herein, "concave" refers to an inwardly directed configuration that would include curved configurations, V-shaped configurations and other like configurations.

[0022] A typical pair of bonding pads 18 of a type used for small passive components such as a capacitor or resistor may be positioned on a printed circuit board 19, as shown in FIG. 2. Each pad 18 has a width "X" and a length "Y". The pads 18 may, for example, be land pads on a conventional printed circuit board. The land pads are generally coated with a deposited layer of solder paste. The solder paste is reflowed to electrically connect a component to the pad 18. The soldering process creates both an electrical and a mechanical connection.

[0023] In accordance with one aspect of the present invention, the length Y of the bond pad 18 corresponds generally to the length Y of the solder stencil apertures 12, 14. However, the width X of the bond pad 18 is generally greater than the width of the stencil apertures 12, 14 as indicated in FIG. 2. Generally the width dimensions X of the solder apertures 12, 14 are about 20-30% less than the width X of the corresponding bond pad 18.

[0024] The radius of curvature "R" of the concave edge 16 extends from about 0.05 inches to about 0.1 inches and is roughly about twice the length Y of the aperture 12, 14. The distance between the outside edges of the land pads is indicated as "Z". Exemplary approximate dimensions in inches for a 0.006 inch stencil thickness are as follows:

1 X Y Z R 0603 Pad 0.0175 0.035 0.075 Stencil 0.0140 0.035 0.0591 0805 Pad 0.035 0.055 0.1 Stencil 0.0290 0.055 0.0781 1206 Pad 0.035 0.065 0.15 Stencil 0.0290 0.060 0.092

[0025] For a 0.008 inch stencil thickness the following are exemplary approximate dimensions for conventional 0603, 0805, 1206 components:

2 X Y Z R 0603 Pad 0.0175 0.035 0.075 Stencil 0.0125 0.035 0.0590 0805 Pad 0.035 0.055 0.1 Stencil 0.025 0.055 0.092 1206 Pad 0.035 0.065 0.15 Stencil 0.025 0.065 0.092

[0026] As shown in FIGS. 3 and 4, the deposited paste 20 does not completely cover the bond pad 18 but, instead, a concave-shaped exposed area 22 remains. As a result of the concave configuration of the deposited paste 20 and the apertures 12 in the stencil 10, the occurrence of solder balls decreases. This is particularly important in situations where no clean fluxes are utilized.

[0027] The prevention of solder balling is particularly applicable to forming solder connections with surface mount packaging. The surface mount components are placed onto a printed circuit board and into the deposited paste and then the paste is reflowed. As a result the surface mount components are secured to the pads.

[0028] While this invention has been described with respect to a limited number of preferred embodiments, those skilled in the art will appreciate numerous modifications and variations. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of the present invention.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed