High affinity ligands for nociceptin receptor ORL-1

Tulshian, Deen ;   et al.

Patent Application Summary

U.S. patent application number 09/769824 was filed with the patent office on 2001-08-02 for high affinity ligands for nociceptin receptor orl-1. Invention is credited to Bercovici, Ana, Chapman, Richard W., Cuss, Francis M., Hey, John A., Ho, Ginny D., Matasi, Julius J., McLeod, Robbie L., Silverman, Lisa S., Tulshian, Deen.

Application Number20010011092 09/769824
Document ID /
Family ID23415204
Filed Date2001-08-02

United States Patent Application 20010011092
Kind Code A1
Tulshian, Deen ;   et al. August 2, 2001

High affinity ligands for nociceptin receptor ORL-1

Abstract

Novel compounds of the formula 1 or a pharmaceutically acceptable salt or solvate thereof, wherein: the dotted line represents an optional double bond; X.sup.1 is optionally substituted alkyl, cycloalkyl, aryl, heteroaryl or heterocycloalkyl; x.sup.2 is --CHO, --CN, optionally substituted amino, alkyl, or aryl; or X.sup.1 is optionally substituted benzofused heterocyclyl and X.sup.2 is hydrogen; or X.sup.1 and X.sup.2 together form an optionally benzofused spiro heterocyclyl group R.sup.1, R.sup.2, R.sup.3 and R.sup.4 are independently H and alkyl, or (R.sup.1 and R.sup.4) or (R.sup.2 and R.sup.3) or (R.sup.1 and R.sup.3) or (R.sup.2 and R.sup.4) together can form an alkylene bridge of 1 to 3 carbon atoms; Z.sup.1 is optionally substituted alkyl, aryl, heteroaryl, cycloalkyl or heterocycloalkyl, or --CO.sub.2(alkyl or substituted amino) or CN ; Z.sup.2 is H or Z.sup.1; Z.sup.3 is H oralkyl; or Z.sup.1, Z.sup.2 and Z.sup.3, together with the carbon to which they are attached, form bicyclic saturated or unsaturated rings; pharmaceutical compositions therefore, and the use of said compounds as nociceptin receptor inhibitors useful in the treatment of pain, anxiety, cough, asthma, depression and alcohol abuse are disclosed.


Inventors: Tulshian, Deen; (Lebanon, NJ) ; Ho, Ginny D.; (Murray Hill, NJ) ; Silverman, Lisa S.; (Edison, NJ) ; Matasi, Julius J.; (Scotch Plains, NJ) ; McLeod, Robbie L.; (Branchburg, NJ) ; Hey, John A.; (Nutley, NJ) ; Chapman, Richard W.; (Somerville, NJ) ; Bercovici, Ana; (West Orange, NJ) ; Cuss, Francis M.; (Basking Ridge, NJ)
Correspondence Address:
    SCHERING-PLOUGH CORPORATION
    PATENT DEPARTMENT (K-6-1, 1990)
    2000 GALLOPING HILL ROAD
    KENILWORTH
    NJ
    07033-0530
    US
Family ID: 23415204
Appl. No.: 09/769824
Filed: January 25, 2001

Related U.S. Patent Documents

Application Number Filing Date Patent Number
09769824 Jan 25, 2001
09359771 Jul 26, 1999
60094240 Jul 27, 1998

Current U.S. Class: 514/235.8 ; 514/237.2; 514/249; 514/253.09; 514/253.12; 514/278; 514/299; 514/304; 514/315; 514/316; 514/317; 514/318; 514/322; 514/323; 514/326; 514/327; 514/329; 514/330; 514/331; 514/338; 544/129; 544/354; 544/360; 544/364; 546/112; 546/127; 546/17; 546/189; 546/192; 546/194; 546/199; 546/20; 546/213; 546/214; 546/215; 546/217; 546/225; 546/229; 546/232; 546/234; 546/236; 546/273.7
Current CPC Class: A61P 37/08 20180101; A61K 31/438 20130101; A61K 45/06 20130101; A61K 31/439 20130101; A61K 31/00 20130101; A61K 31/4535 20130101; A61K 31/451 20130101; A61P 43/00 20180101; A61P 11/14 20180101; A61K 31/454 20130101; A61P 11/06 20180101
Class at Publication: 514/235.8 ; 514/237.2; 514/249; 514/253.09; 514/253.12; 514/278; 514/299; 514/304; 514/315; 514/316; 514/317; 514/318; 514/322; 514/323; 514/326; 514/327; 514/329; 514/330; 514/331; 514/338; 544/129; 544/360; 544/364; 544/354; 546/17; 546/20; 546/112; 546/127; 546/273.7; 546/232; 546/189; 546/225; 546/215; 546/192; 546/199; 546/234; 546/229; 546/236; 546/213; 546/217; 546/214; 546/194
International Class: C07D 401/00; C07D 241/36; A61K 031/445; A61K 031/44; A61K 031/495; A61K 031/50; C07D 471/00; C07D 413/00; A61K 031/535; C07D 211/00

Claims



What is claimed is:

1. A compound represented by the formula 778or a pharmaceutically acceptable salt or solvate thereof, wherein: the dotted line represents an optional double bond; X.sup.1 is R.sup.5-(C.sub.1-C.sub.12)alkyl, R.sup.6-(C.sub.3-C.sub.12)cycloalkyl, R.sup.7-aryl, R.sup.8-heteroaryl or R.sup.1-(C.sub.3-C.sub.7)heterocycloalkyl; X.sup.2 is --CHO, --CN, --NHC(.dbd.NR.sup.26)NHR.sup.26, --CH(.dbd.NOR.sup.26), --NHOR.sup.26, R.sup.7-aryl, R.sup.7-aryl(C.sub.1-C.sub.6)alkyl, R.sup.7-aryl(C.sub.1-C.- sub.6)alkenyl, R.sup.7-aryl(C.sub.1-C.sub.6)-alkynyl, --(CH2).sub.vOR.sup.13, --(CH.sub.2).sub.vCOOR.sup.27, --(CH.sub.2).sub.vCONR.sup.14R.sup.15, --(CH.sub.2).sub.vNR.sup.21 R.sup.22 or --(CH.sub.2).sub.vNHC(O)R.sup.21, wherein v is zero, 1, 2 or 3 and wherein q is 1 to 3 and a is 1 or 2; or X.sup.1 is 779and X.sup.2 is hydrogen; or X.sup.1 and x.sup.2 together form a spiro group of the formula 780m is 1 or 2; n is 1, 2 or 3, provided that when n is 1, one of R.sup.16 and R.sup.17 is --C(O)R.sup.28; p is 0 or 1; Q is --CH.sub.2-, --O--, --S--, --SO--, --SO.sub.2- or --NR.sup.17-; R.sup.1, R.sup.2, R.sup.3 and R.sup.4 are independently selected from the group consisting of hydrogen and (C.sub.1-C.sub.6)alkyl, or (R.sup.1 and R.sup.4) or (R.sup.2 and R.sup.3) or (R.sup.1 and R.sup.3) or (R.sup.2 and R.sup.4) together can form an alkylene bridge of 1 to 3 carbon atoms; R.sup.5 is 1 to 3 substituents independently selected from the group consisting of H, R.sup.7-aryl, R.sup.6-(C.sub.3-C.sub.12)cycloalkyl, R.sup.8-heteroaryl, R.sup.1-(C.sub.3-C.sub.7) heterocycloalkyl, --NR.sup.19R.sup.20, --OR.sup.13 and --S(O).sub.0-2R.sup.13; R.sup.6 is 1 to 3 substituents independently selected from the group consisting of H, (C.sub.1-C.sub.6)alkyl, R.sup.7-aryl, --NR.sup.19R.sup.20, --OR.sup.13 and --SR.sup.13; R.sup.7 is 1 to 3 substituents independently selected from the group consisting of hydrogen, halo, (C.sub.1-C.sub.6)alkyl, R.sup.25-aryl, (C.sub.3-C.sub.12)cycloalkyl, --CN, --CF.sub.3, --OR.sup.19, --(C.sub.1-C.sub.6)alkyl-OR.sup.19, --OCF.sub.3, --NR.sup.19R.sup.20, --(C.sub.1-C.sub.6)alky NR.sup.19R.sup.20, --NHSO.sub.2R.sup.19, --SO.sub.2N(R.sup.26).sub.2, --SO.sub.2R.sup.19, --SOR.sup.19, --SR.sup.19, --NO.sub.2, --CONR.sup.19R.sup.20, --NR.sup.20COR.sup.19, --COR.sup.19, --COCF.sub.3, --OCOR.sup.19, --OCO.sub.2R.sup.19, --COOR.sup.19, --(C.sub.1-C.sub.6)alkyl-NHCOOC(CH.su- b.3).sub.3, --(C.sub.1-C.sub.6)alkyl-NHCOCF.sub.3, --(C.sub.1-C.sub.6)alky- l-NHSO.sub.2-(C.sub.1-C.sub.6)alkyl, --(C.sub.1-C.sub.6)alkyl-NHCONH-(C.su- b.1-C.sub.6)-alkyl or 781wherein f is 0 to 6; or R.sup.7 substituents on adjacent ring carbon atoms may together form a methylenedioxy or ethylenedioxy ring; R.sup.8 is 1 to 3 substituents independently selected from the group consisting of hydrogen, halo, (C.sub.1-C.sub.6)alkyl, R.sup.25-aryl, (C.sub.3-C.sub.12)cycloalkyl, --CN, --CF.sub.3, --OR.sup.19, --(C.sub.1-C.sub.6)alkyl-OR.sup.19, --OCF.sub.3, --NR.sup.19R.sup.20, --(C.sub.1-C.sub.6)alkyl-NR.sup.19R.sup.20, --NHSO.sub.2R.sup.19, --SO.sub.2N(R.sup.26).sub.2, --NO.sub.2, --CONR.sup.19R.sup.20, --NR.sup.20COR.sup.19, --COR.sup.19, --OCOR.sup.19, --OCO.sub.2R.sup.19 and --COOR.sup.19; R.sup.9 is hydrogen, (C.sub.1-C.sub.6)alkyl, halo, --OR.sup.19, --NR.sup.19R.sup.20, --NHCN, --SR.sup.19 or --(C.sub.1-C.sub.6)alkyl-NR.sup.19R.sup.20; R.sup.10 is H, (C.sub.1-C.sub.6)alkyl, --OR.sup.19, --(C.sub.1-C.sub.6)alkyl-OR.sup.19, --NR.sup.19R.sup.20 or --(C.sub.1-C.sub.6)alkyl-NR.sup.19R.sup.20; R.sup.11 is independently selected from the group consisting of H, R.sup.5-(C.sub.1-C.sub.6)alkyl, R.sup.6-(C.sub.3-C.sub.12)cycloalkyl, -(C.sub.1 -C.sub.6)alkyl(C.sub.3-C.- sub.1 2)cycloalkyl, --(C.sub.1-C.sub.6)alkyl-OR.sup.19, --(C.sub.1-C.sub.6)alkyl-NR.sup.19R.sup.20and 782wherein q and a are as defined above; R.sup.12 is H, (C.sub.1-C.sub.6)alkyl, halo, --NO.sub.2, --CF.sub.3, --OCF.sub.3, --OR.sup.19, --(C.sub.1-C.sub.6) alkyl-OR.sup.19, --NR.sup.19R.sup.20 or --(C.sub.1-C.sub.6)alkyl-NR.sup.1- 9R.sup.20; R.sup.13 is H, (C.sub.1-C.sub.6)alkyl, R.sup.7-aryl, --(C.sub.1-C.sub.6)alkyl-OR.sup.19, --(C.sub.1-C.sub.6)alkyl-NR.sup.19R.s- up.20 or --(C.sub.1-C.sub.6)alkyl-SR.sup.19; R.sup.14 and R.sup.15 are independently selected from the group consisting of H, R.sup.5-(C.sub.1-C.sub.6)alkyl, R.sup.7-aryl and 783wherein q and a are as defined above; R.sup.16 and R.sup.17 are independently selected from the group consisting of hydrogen, R.sup.5-(C.sub.1-C.sub.6)alkyl, R.sup.7-aryl, (C.sub.3-C.sub.12)cycloalkyl, R.sup.8-heteroaryl, R.sup.8-heteroaryl(C.sub.1-C.sub.6)alkyl, --C(O)R.sup.28, --(C.sub.1-C.sub.6)alkyl(C.sub.3-C.sub.7)-heterocycloalkyl, --(C.sub.1-C.sub.6)alkyl-OR.sup.19 and --(C.sub.1-C.sub.6)alkyl-SR.sup.19- ; R.sup.19 and R.sup.20 are independently selected from the group consisting of hydrogen, (C.sub.1-C.sub.6)alkyl, (C.sub.3-C.sub.12)cycloal- kyl, aryl and aryl(C.sub.1-C.sub.6)alkyl; R.sup.21 and R.sup.22 are independently selected from the group consisting of hydrogen, (C.sub.1-C.sub.6)alkyl, (C.sub.3-C.sub.12)cycloalkyl, (C.sub.3-C.sub.12)cycloalkyl(C.sub.1-C.sub.6) alkyl, (C.sub.3-C.sub.7)heterocycloalkyl, --(C.sub.1-C.sub.6)alkyl(C.sub.3-C.sub- .7)-heterocycloalkyl, R.sup.7-aryl, R.sup.7-aryl(C.sub.1-C.sub.6)alkyl, R.sup.8-heteroaryl(C.sub.1-C.sub.12)alkyl, --(C.sub.1-C.sub.6)alkyl-OR .sup.19, --(C.sub.1-C.sub.6)alkyl-NR.sup.19R.sup.20, --(C.sub.1-C.sub.6)alkyl-SR.sup.19, --(C.sub.1-C.sub.6)alkyl-NR.sup.18-(C .sub.1-C.sub.6)alkyl-O--(C.sub.1-C.sub.6)alkyl and --(C.sub.1-C.sub.6)alkyl-NR.sup.18-(C.sub.1-C.sub.6)alkyl-NR.sup.18-(C.su- b.1-C.sub.6) alkyl; R.sup.18 is hydrogen or (C.sub.1-C.sub.6)alkyl; Z.sup.1 is R.sup.5-(C.sub.1-C.sub.12)alkyl, R.sup.7-aryl, R.sup.8-heteroaryl, R.sup.6-(C.sub.3-C.sub.12)cyclo-alkyl, R.sup.10-(C.sub.3-C.sub.7)heterocycloalkyl, --CO.sub.2(C.sub.1-C.sub.6)al- kyl, CN or --C(O)NR.sup.19R.sup.20; Z.sup.2 is hydrogen or Z.sup.1; z.sup.3 is hydrogen or (C.sub.1-C.sub.6)alkyl; or Z.sup.1, Z.sup.2 and Z.sup.3, together with the carbon to which they are attached, form the group 784or 785wherein r is 0 to 3; w and u are each 0-3, provided that the sum of w and u is 1-3; c and d are independently 1 or 2; s is 1 to 5; and ring A is a fused R.sup.7-phenyl or R.sup.8-heteroaryl ring; R.sup.23 is 1 to 3 substituents independently selected from the group consisting of H, (C.sub.1-C.sub.6)alkyl, --OR.sup.19, --(C.sub.1-C.sub.6)alkyl-OR.su- p.19, --NR.sup.19R.sup.20 and --(C.sub.1-C.sub.6)alkyl-NR.sup.19R.sup.20; R.sup.24 is 1 to 3 substituents independently selected from the group consisting of R.sup.23, --CF.sub.3, --OCF.sub.3, NO.sub.2 or halo, or R.sup.24 substituents on adjacent ring carbon atoms may together form a methylenedioxy or ethylenedioxy ring; R.sup.25 is 1-3 substituents independently selected from the group consisting of H, (C.sub.1-C.sub.6)alkyl, (C.sub.1-C.sub.6)alkoxy and halo; R.sup.26 is independently selected from the group consisting of H, (C.sub.1-C.sub.6)alkyl and R.sup.25-C.sub.6H.sub.4-CH.sub.2-; R.sup.27 is H, (C.sub.1-C.sub.6)alkyl, R.sup.7-aryl(C.sub.1-C.sub.6)alkyl, or (C.sub.3-C.sub.12)cycloalkyl; R.sup.28 is (C.sub.1-C.sub.6)alkyl, --(C.sub.1-C.sub.6)alkyl(C.sub.3-C.sub.12)cycloalkyl, R.sup.7-aryl, R.sup.7-aryl-(C.sub.1-C.sub.6)alkyl, R.sup.8-heteroaryl, --(C.sub.1-C.sub.6)alkyl-NR.sup.19R.sup.20, --(C.sub.1-C.sub.6)alkyl-OR.s- up.19 or --(C.sub.1-C.sub.6)alkyl-SR.sup.19; provided that when X.sup.1 is 786or X.sup.1 and X.sup.2 together are 787and Z.sup.1 is R.sup.7-phenyl, Z.sup.2 is not hydrogen or (C.sub.1-C.sub.3)alkyl; provided that when Z.sup.1, Z.sup.2 and Z.sup.3, together with the carbon to which they are attached, form 788and X.sup.1 and X.sup.2 together are 789R.sup.11 is not H, (C.sub.1-C.sub.6)alkyl, (C.sub.1-C.sub.6)alkoxy(C.- sub.1-C.sub.6)alkyl or (C.sub.1-C.sub.6)hydroxyalkyl; provided that when R.sup.2 and R.sup.4 form an alkylene bridge, Z.sup.1, Z.sup.2 and Z.sup.3, together with the carbon to which they are attached, are not 790provided that when X.sup.1 is 791and Z.sup.1 is R.sup.6-(C.sub.3-C.sub.12)-cycloalkyl, Z.sup.2 is not H.

2. A compound of claim 1 wherein Z.sup.1 and Z.sup.2 are each R.sup.7-aryl.

3. A compound of claim 2 wherein Z.sup.1 and Z.sup.2 are each R.sup.7-phenyl.

4. A compound of claim 3 wherein R.sup.7 is selected from the group consisting of (C.sub.1-C.sub.6)alkyl and halo.

5. A compound of claim 1 wherein R.sup.1, R.sup.2, R.sup.3 and R.sup.4 are each hydrogen.

6. A compound of claim 1 wherein R.sup.1 and R.sup.3 are each hydrogen and R.sup.2 and R.sup.4 are an alkylene bridge of 2 or 3 carbons.

7. A compound of claim 1 wherein X.sup.1 is R.sup.7-aryl and and X.sup.2 is OH or --NC(O)R.sup.28.

8. A compound of claim 7 wherein X.sup.1 is R.sup.7-phenyl.

9. A compound of claim 1 wherein X.sup.1 is 792and X.sup.2 is hydrogen.

10. A compound of claim 9 wherein R.sup.12 is hydrogen and R.sup.11 is (C.sub.1-C.sup.6) alkyl, --(C.sub.1-C.sub.6) alkyl(C.sub.3-C.sub.12)cyclo- alkyl, --(C.sub.1-C.sub.6)alkyl-OR.sup.19 or --(C.sub.1-C.sub.6) alkyl-NR.sup.19R.sup.20.

11. A compound of claim 1 wherein X.sup.1 and X.sup.2 together form the spirocyclic group 793

12. A compound of claim 11 wherein m is 1,R.sup.17 is phenyl and R.sup.16 is --(C.sub.1-C.sub.6)alkyl-OR.sup.19 or --(C.sub.1-C.sub.6)alkyl-NR.sup.- 19R.sup.20.

13. A compound selected from the group consisting of 794

14. A pharmaceutical composition comprising a therapeutically effective amount of compound of claim 1 in combination with a pharmaceutically acceptable carrier.

15. A pharmaceutical composition comprising: a therapeutically effective amount of a nociceptin receptor ORL-1 agonist; a therapeutically effective amount of a second agent selected from the group consisting of: antihistamines, 5-lipoxygenase inhibitors, leukotriene inhibitors, H.sub.3 inhibitors, .beta.-adrenergic receptor agonists, xanthine derivatives, .alpha.-adrenergic receptor agonists, mast cell stabilizers, anti-tussives, expectorants, NK.sub.1, NK.sub.2 and NK.sub.3 tachykinin receptor antagonists, and GABA.sub.B agonists; and a pharmaceutically acceptable carrier.

16. A method of treating pain, anxiety, asthma, depression or alcohol abuse comprising administering an effective amount of a compound of claim 1 to a mammal in need of such treatment.

17. A method of treating cough comprising administering an effective amount of a nociceptin receptor ORL-1 agonist to a mammal in need of such treatment.

18. The method of claim 17, wherein in addition to the nociceptin receptor ORL-1 agonist, an effective amount of a second agent for treating cough, allergy or asthma symptoms selected from the group consisting of: antihistamines, 5-lipoxygenase inhibitors, leukotriene inhibitors, H.sub.3 inhibitors, .beta.-adrenergic receptor agonists, xanthine derivatives, (.alpha.-adrenergic receptor agonists, mast cell stabilizers, anti-tussives, expectorants, NK.sub.1, NK.sub.2 and NK.sub.3 tachykinin receptor antagonists, and GABA.sub.B agonists is administered.
Description



BACKGROUND

[0001] The nociceptin receptor ORL-1 has been shown to be involved with modulation of pain in animal models. ORL-1 (the nociceptin receptor) was discovered as an "orphan opioid-like receptor" i.e. a receptor whose ligand was unknown. The nociceptin receptor is a G protein coupled receptor. While highly related in structure to the three classical opioid receptors, i.e. the targets for traditional opioid analgesics, it is not activated by endogenous opioids. Similarly, endogenous opioids fail to activate the nociceptin receptor. Like the classical opioid receptors, the nociceptin receptor has a broad distribution in the central nervous system.

[0002] In late 1995, nociceptin was discovered and shown to be an endogenous peptide ligand that activates the nociceptin receptor. Data included in the initial publications suggested that nociceptin and its receptor are part of a newly discovered pathway involved in the perception of painful stimuli. Subsequent work from a number of laboratories has shown that nociceptin, when administered intraspinally to rodents, is an analgesic. The efficacy of nociceptin is similar to that of endogenous opioid peptides. Recent data has shown that nociceptin acts as an axiolytic when administered directly into the brain of rodents. When tested in standard animals models of anxiety, the efficacy of nociceptin is similar to that seen with classical benzodiazapine anxiolytics. These data suggest that a small molecule agonist of the nociceptin receptor could have significant analgesic or anxiolytic activity.

[0003] Additional recent data (Rizzi, et al, Life Sci.. 64, (1999), p. 157-163) has shown that the activation of nociceptin receptors in isolated guinea pig bronchus inhibits tachykinergic non adrenergic-non cholinergic contraction, indicating that nociceptin receptor agonists could be useful in the treatment of asthma. Also, it has been reported (Ciccocioppo et al, Physchpharmacology. 141 (1999), p. 220-224) nociceptin reduces the rewarding properties of ethanol in msP alcohol preferring rats, suggesting that intervention of nociceptin could be useful in the treatment of alcohol abuse. In EP 856,514, 8-substituted 1,3,8-triazaspiro[ 4,5]decan-4-on derivatives were disclosed as agonists and/or antagonists of orphanin FQ (i.e., nociceptin) useful in the treatment of various disorders, including depression; 2-oxoimidazole derivatives disclosed in WO98/54168 were described as having similar utility. Earlier, benzimidazolyl piperidines were disclosed in U.S. Pat. No. 3,318,900 as having analgesic activity.

[0004] Potent analgesic agents such as traditional opioids, e.g. morphine, carry with them significant side-effects. Clinically relevant side-effects include tolerance, physical dependence, respiratory depression and a decrease in gastrointestinal motility. For many patients, particularly those subjected to chronic opioid therapy, i.e. cancer patients, these side effects limit the dose of opioid that can be administered. Clinical data suggests that more than one-third of cancer patients have pain which is poorly controlled by present agents. Data obtained with nociceptin suggest the potential for advantages over opioids. When administered chronically to rodents, nociceptin, in contrast to morphine, showed no addiction liability. Additionally, chronic morphine treatment did not lead to a "cross-tolerance" to nociceptin, suggesting that these agents act via distinct pathways.

[0005] In view of the current interest in pain relief, a welcome contribution to the art would be additional compounds useful for modifying the effect of nociceptin, a natural ligand to ORL-1 and therefore useful in the management of pain and anxiety. Such a contribution is provided by this invention.

SUMMARY OF THE INVENTION

[0006] Compounds of the present invention are represented by formula I 2

[0007] or a pharmaceutically acceptable salt or solvate thereof, wherein:

[0008] the dotted line represents an optional double bond;

[0009] X.sup.1 is R.sup.5-(C.sub.1-C.sub.12)alkyl, R.sup.6-(C.sub.3-C.sub.- 12)cycloalkyl, R.sup.7-aryl, R.sup.8-heteroaryl or R.sup.10-(C.sub.3-C.sub- .7)heterocycloalkyl;

[0010] X.sup.2 is --CHO, --CN, --NHC(.dbd.NR.sup.26)NHR.sup.26, --CH(.dbd.NOR.sup.26), --NHOR.sup.26, R.sup.7-aryl, R.sup.7-aryl(C.sub.1-C.sub.6)alkyl, R.sup.7-aryl(C.sub.1-C.sub.6)alkenyl, R.sup.7-aryl(C.sub.1-C.sub.6)-alkynyl, --(CH.sub.2).sub.vOR.sup.13, --(CH.sub.2).sub.vCOOR.sup.27, --(CH.sub.2).sub.vCONR.sup.14R.sup.15, --(CH.sub.2).sub.vNR.sup.21R.sup.22 or --(CH.sub.2).sub.vNHC(O)R.sup.21, wherein v is zero, 1, 2 or 3 and wherein q is 1 to 3 and a is 1 or 2;

[0011] or X.sup.1 is 3

[0012] and X.sup.2 is hydrogen;

[0013] or X.sup.1 and X.sup.2 together form a spiro group of the formula 4

[0014] m is 1 or 2;

[0015] n is 1, 2 or 3, provided that when n is 1, one of R.sup.16 and R.sup.17 is --C(O)R.sup.28;

[0016] p is 0 or 1;

[0017] Q is --CH.sub.2-, --O--, --S--, --SO--, --SO.sub.2- or --NR.sup.17-;

[0018] R.sup.1, R.sup.2, R.sup.3 and R.sup.4 are independently selected from the group consisting of hydrogen and (C.sub.1-C.sub.6)alkyl, or (R.sup.1 and R.sup.4) or (R.sup.2 and R.sup.3) or (R.sup.1 and R.sup.3) or (R.sup.2 and R.sup.4) together can form an alkylene bridge of 1 to 3 carbon atoms;

[0019] R.sup.5 is 1 to 3 substituents independently selected from the group consisting of H, R.sup.7-aryl, R.sup.6-(C.sub.3-C.sub.12)cycloalkyl- , R.sup.8-heteroaryl, R.sup.10-(C.sub.3-C.sub.7) heterocycloalkyl, --NR.sup.19R.sup.20, --OR.sup.13 and --S(O).sub.0-2R.sup.13;

[0020] R.sup.6 is 1 to 3 substituents independently selected from the group consisting of H, (C.sub.1-C.sub.6)alkyl, R.sup.7-aryl, --NR.sup.19R.sup.20, --OR.sup.13 and --SR.sup.13;

[0021] R.sup.7 is 1 to 3 substituents independently selected from the group consisting of hydrogen, halo, (C.sub.1-C.sub.6)alkyl, R.sup.25-aryl, (C.sub.3-C.sub.12)cycloalkyl, --CN, --CF.sub.3, --OR.sup.19, --(C.sub.1-C.sub.6)alkyl-OR.sup.19, --OCF.sub.3, --NR.sup.19R.sup.20, --(C.sub.1-C.sub.6)alkyl-NR.sup.19R.sup.20, --NHSO.sub.2R.sup.19, --SO.sub.2N(R.sup.26).sub.2, --SO.sub.2R.sup.19, --SOR.sup.19, --SR.sup.19, --NO.sub.2, --CONR.sup.19R.sup.20, --NR.sup.20COR.sup.19, --COR.sup.19, --COCF.sub.3, --OCOR.sup.19, --OCO.sub.2R.sup.19, --COOR.sup.19, --(C.sub.1-C.sub.6)alkyl-NHCOOC(CH.su- b.3).sub.3, --(C.sub.1-C.sub.6)alkyl-NHCOCF.sub.3, --(C.sub.1-C.sub.6)alky- l-NHSO.sub.2-(C.sub.1-C.sub.6)alkyl, --(C.sub.1-C.sub.6)alkyl-NHCONH--(C.s- ub.1-C.sub.6)-alkyl or 5

[0022] wherein f is 0 to 6; or R.sup.7 substituents on adjacent ring carbon atoms may together form a methylenedioxy or ethylenedioxy ring;

[0023] R.sup.8 is 1 to 3 substituents independently selected from the group consisting of hydrogen, halo, (C.sub.1-C.sub.6)alkyl, R.sup.25-aryl, (C.sub.3-C.sub.12)cycloalkyl, --CN, --CF.sub.3, --OR.sup.19, --(C.sub.1-C.sub.6)alkyl-OR.sup.19, --OCF.sub.3, --NR.sup.19R.sup.20, --(C.sub.1-C.sub.6)alkyl-NR.sup.19R.sup.20, --NHSO.sub.2R.sup.19, --SO.sub.2N(R.sup.26).sub.2, --NO.sub.2, --CONR.sup.19R.sup.20, --NR.sup.20COR.sup.19, --COR.sup.19, --OCOR.sup.19, --OCO.sub.2R.sup.19 and --COOR.sup.19;

[0024] R.sup.9 is hydrogen, (C.sub.1-C.sub.6)alkyl, halo, --OR.sup.19, --NR19R.sup.20, --NHCN, --SR.sup.19 or --(C.sub.1-C.sub.6)alkyl-NR.sup.19- R.sup.20;

[0025] R.sup.10 is H, (C.sub.1-C.sub.6)alkyl, --OR.sup.19, --(C.sub.1-C.sub.6)alkyl-OR.sup.19, --NR.sup.19R.sup.20 or --(C.sub.1-C.sub.6)alkyl-NR.sup.19R.sup.20;

[0026] R.sup.11 is independently selected from the group consisting of H, R.sup.5-(C.sub.1-C.sub.6)alkyl, R.sup.6-(C.sub.3-C.sub.12)cycloalkyl, --(C.sub.1-C.sub.6)alkyl(C.sub.3-C.sub.12)cycloalkyl, --(C.sub.1-C.sub.6)alkyl-OR.sup.19, --(C.sub.1-C.sub.6)alkyl-NR.sup.19R.s- up.20 and 6

[0027] wherein q and a are as defined above;

[0028] R.sup.12 is H, (C.sub.1-C.sub.6)alkyl, halo, --NO.sub.2, --CF.sub.3, --OCF.sub.3, --OR.sup.19, --(C.sub.1-C .sub.6)alkyl-OR.sup.19, --NR.sup.19R.sup.20 or --(C.sub.1-C.sub.6)alkyl-N- R.sup.19R.sup.20;

[0029] R.sup.13 is H, (C.sub.1-C.sub.6)alkyl, R.sup.7-aryl, --(C.sub.1-C.sub.6) alkyl-OR.sup.19, -(C.sub.1-C.sub.6)alkyl-NR.sup.19R.s- up.20; --(C.sub.1-C.sub.6)alkyl-SR.sup.19; or aryl (C.sub.1-C.sub.6) alkyl;

[0030] R.sup.14 and R.sup.15 are independently selected from the group consisting of H, R.sup.5-(C.sub.1-C.sub.6)alkyl, R.sup.7-aryl and 7

[0031] wherein q and a are as defined above;

[0032] R.sup.16 and R.sup.17 are independently selected from the group consisting of hydrogen, R.sup.5-(C.sub.1-C6)alkyl, R.sup.7-aryl, (C.sub.3-C.sub.12)cycloalkyl, R.sup.8-heteroaryl, R.sup.8-heteroaryl(C.su- b.1-C.sub.6)alkyl, --C(O)R.sup.28, --(C.sub.1-C.sub.6)alkyl(C.sub.3-C.sub.- 7)heterocycloalkyl, --(C.sub.1-C.sub.6)alkyl-OR.sup.19 and --(C.sub.1-C.sub.6)alkyl-SR.sup.19;

[0033] R.sup.19 and R.sup.20 are independently selected from the group consisting of hydrogen, (C.sub.1-C.sub.6)alkyl, (C.sub.3-C.sub.12)cycloal- kyl, aryl and aryl(C.sub.1-C.sub.6)alkyl;

[0034] R.sup.21 and R.sup.22 are independently selected from the group consisting of hydrogen, (C.sub.1-C.sub.6)alkyl, (C.sub.3-C.sub.12)cycloal- kyl, (C.sub.3-C.sub.12)cycloalkyl(C.sub.1-C.sub.6) alkyl, (C.sub.3-C.sub.7)heterocycloalkyl, --(C.sub.1-C.sub.6)alkyl(C.sub.3-C.sub- .7)-heterocycloalkyl, R.sup.7-aryl, R.sup.7-aryl(C.sub.1-C.sub.6)alkyl, R.sup.8-heteroaryl(C.sub.1-C.sub.12)alkyl, --(C.sub.1-C.sub.6)alkyl-OR.su- p.19, --(C.sub.1-C.sub.6)alkyl-NR.sup.19R.sup.20, --(C.sub.1-C.sub.6)alkyl- -SR.sup.19, --(C.sub.1-C.sub.6)alkyl-NR.sup.18-(C.sub.1-C.sub.6) alkyl-O-(C.sub.1-C.sub.6)alkyl and --(C.sub.1-C.sub.6)alkyl-NR.sup.18-(C.- sub.1-C.sub.6)alkyl-NR.sup.18-(C.sub.1-C.sub.6) alkyl;

[0035] R.sup.18 is hydrogen or (C.sub.1-C.sub.6)alkyl;

[0036] Z.sup.1 is R.sup.5-(C.sub.1-C.sub.12)alkyl, R.sup.7-aryl, R.sup.8-heteroaryl, R.sup.6-(C.sub.3-C.sub.12)cyclo-alkyl, R.sup.10-(C.sub.3-C.sub.7)heterocycloalkyl, --CO.sub.2(C.sub.1-C.sub.6)al- kyl, CN or --C(O)NR.sup.19R.sup.20; Z.sup.2 is hydrogen or Z.sup.1; z.sup.3 is hydrogen or (C.sub.1-C.sub.6)alkyl; or Z.sup.1, Z.sup.2 and Z.sup.3, together with the carbon to which they are attached, form the group 8

[0037] wherein r is 0 to 3; w and u are each 0-3, provided that the sum of w and u is 1-3; c and d are independently 1 or 2; s is 1 to 5; and ring A is a fused R.sup.7-phenyl or R.sup.8-heteroaryl ring;

[0038] R.sup.23 is 1 to 3 substituents independently selected from the group consisting of H, (C.sub.1-C.sub.6)alkyl, --OR.sup.19, --(C.sub.1-C.sub.6)alkyl-OR.sup.19, --NR.sup.19R.sup.20 and --(C.sub.1-C.sub.6)alkyl-NR.sup.19R.sup.20;

[0039] R.sup.24 is 1 to 3 substituents independently selected from the group consisting of R.sup.23, --CF.sub.3, --OCF.sub.3, NO.sub.2 or halo, or R.sup.24 substituents on adjacent ring carbon atoms may together form a methylenedioxy or ethylenedioxy ring;

[0040] R.sup.25 is 1-3 substituents independently selected from the group consisting of H, (C.sub.1-C.sub.6)alkyl, (C.sub.1-C.sub.6)alkoxy and halo;

[0041] R.sup.26 is independently selected from the group consisting of H, (C.sub.1-C.sub.6)alkyl and P.sup.25-C.sub.6H.sub.4-CH.sub.2-;

[0042] R.sup.27 is H, (C.sub.1-C.sub.6)alkyl, R.sup.7-aryl(C.sub.1-C.sub.6- )alkyl, or (C.sub.3-C.sub.12)cycloalkyl;

[0043] R.sup.28 is (C.sub.1-C.sub.6)alkyl, --(C.sub.1-C.sub.6)alkyl(C.sub.- 3-C.sub.12)cycloalkyl, R.sup.7-aryl, R.sup.7-aryl-(C.sub.1-C.sub.6)alkyl, R.sup.8-heteroaryl, --(C.sub.1-C.sub.6)alkyl-NR.sup.19R.sup.20, --(C.sub.1-C.sub.6)alkyl-OR.sup.19 or --(C.sub.1-C.sub.6)alkyl-SR.sup.19;

[0044] provided that when X.sup.1 is 9

[0045] or X.sup.1 and X.sup.2 together are 10

[0046] and Z.sup.1 is R.sup.7-phenyl, Z.sup.2 is not hydrogen or (C.sub.1-C.sub.3)alkyl;

[0047] provided that when Z.sup.1, Z.sup.2 and Z.sup.3, together with the carbon to which they are attached, form 11

[0048] and X.sup.1 and X.sup.2 together are 12R.sup.11 is not H, (C.sub.1-C.sub.6)alkyl, (C.sub.1-C.sub.6)alkoxy(C.sub.1-C.sub.6)alkyl or (C.sub.1-C6)hydroxyalkyl;

[0049] provided that when R.sup.2 and R.sup.4 form an alkylene bridge, Z.sup.1, Z.sup.2 and Z.sup.3, together with the carbon to which they are attached, are not 13

[0050] provided that when X.sup.1 is 14

[0051] and Z.sup.1 is R.sup.6-(C.sub.3-C.sub.12)-cycloalkyl, Z.sup.2 is not H.

[0052] Preferred compounds of the invention are those wherein Z.sup.1 and Z.sup.2 are each R.sup.7-aryl, particularly R.sup.7-phenyl. Preferred R.sup.7 substituents are (C.sub.1-C.sub.6)alkyl and halo, with ortho-substitution being more preferred.

[0053] Compounds wherein R.sup.1, R.sup.2, R.sup.3 and R.sup.4 are each hydrogen are preferred, as well as compounds wherein R.sup.1 and R.sup.3 are each hydrogen and R.sup.2 and R.sup.4 are an alkylene bridge of 2 or 3 carbons.

[0054] Preferred are compounds wherein X.sup.1 is R.sup.7-aryl, for example R.sup.7-phenyl, and X.sup.2 is OH (i.e., X.sup.2 is .gtoreq.(CH.sub.2).sub.vOR.sup.13, wherein v is 0 and R.sup.13 is H) or --NC(O)R.sup.28, compounds wherein x.sup.1 is 15

[0055] wherein R.sup.12 is hydrogen and R.sup.11 is (C.sub.1-C.sub.6)alkyl, --(C.sub.1-C.sub.6) alkyl(C.sub.3-C.sub.12)cycloa- lkyl, --(C.sub.1-C.sub.6)alkyl-OR.sup.19 or --(C.sub.1-C.sub.6)alkyl-NR.su- p.19R.sup.20; and compounds wherein X.sup.1 and X.sup.2 together form the spirocyclic group 16

[0056] wherein m is 1, R.sup.17 is phenyl and R.sup.11 is --(C.sub.1-C.sub.6)alkyl-OR.sup.19 or --(C.sub.1-C.sub.6)alkyl-NR.sup.19R- .sup.20, or 17

[0057] In another aspect, the invention relates to a pharmaceutical composition comprising a compound of formula I and a pharmaceutically acceptable carrier.

[0058] The compounds of the present invention are agonists and/or antagonists of the ORL-1 receptor, and therefore, in another aspect, the invention relates to a method of treating pain, anxiety, cough, asthma, alcohol abuse or depression, comprising administering to a mammal in need of such treatment an effective amount of a compound of formula I.

[0059] In another aspect, the invention relates to a method of treating cough, comprising administering to a mammal in need of such treatment: (a) an effective amount of a nociceptin receptor ORL-1 agonist; and (b) an effective amount of a second agent for treating cough, allergy or asthma symptoms selected from the group consisting of: antihistamines, 5-lipoxygenase inhibitors, leukotriene inhibitors, H.sub.3 inhibitors, .beta.-adrenergic receptor agonists, xanthine derivatives, (.alpha.-adrenergic receptor agonists, mast cell stabilizers, anti-tussives, expectorants, NK.sub.1, NK.sub.2 and NK.sub.3 tachykinin receptor antagonists, and GABA.sub.B agonists.

[0060] In still another aspect, the invention relates to a pharmaceutical composition comprising a nociceptin receptor ORL-1 agonist and a second agent selected from the group consisting of: antihistamines, 5-lipoxygenase inhibitors, leukotriene inhibitors, H.sub.3 inhibitors, .beta.-adrenergic receptor agonists, xanthine derivatives, (.alpha.-adrenergic ireceptor agonists, mast cell stabilizers, anti-tussives, expectorants, NK.sub.1, NK.sub.2 and NK.sub.3 tachykinin receptor antagonists, and GABA.sub.A agonists.

[0061] In yet another aspect, the present invention relates to a novel compound not included in the structure of formula I, said compound being: 18

BRIEF DESCRIPTION OF THE DRAWINGS

[0062] FIG. 1 illustrates the effect in guinea pigs of Compounds A and B (see Example 12) compared to baclofen on capsaicin-induced cough.

[0063] FIGS. 2A and 2B show changes in Tidal Volume after administration of Compound A or baclofen, and FIG. 2C shows changes in frequency of breaths after administration of Compound A or baclofen.

DETAILED DESCRIPTION OF THE INVENTION

[0064] As used herein, the following terms are used as defined below unless otherwise indicated:

[0065] M+ represents the molecular ion of the molecule in the mass spectrum and MH+ represents the molecular ion plus hydrogen of the molecule in the mass spectrum;

[0066] Bu is butyl; Et is ethyl; Me is methyl; and Ph is phenyl;

[0067] alkyl (including the alkyl portions of alkoxy, alkylamino and dialkylamino) represents straight and branched carbon chains containing from 1 to 12 carbon atoms or 1 to 6 carbon atoms; for example methyl, ethyl, propyl, iso-propyl, n-butyl, t-butyl, n-pentyl, isopentyl, hexyl and the like;

[0068] alkenyl represents an alkyl chain of 2 to 6 carbon atoms comprising one or two double bonds in the chain, e.g., vinyl, propenyl or butenyl;

[0069] alkynyl represents an alkyl chain of 2 to 6 carbon atoms comprising one triple bond in the chain, e.g., ethynyl or propynyl;

[0070] alkoxy represents an alkyl moiety covalently bonded to an adjacent structural element through an oxygen atom, for example, methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy and the like;

[0071] aryl (including the aryl portion of arylalkyl) represents a carbocyclic group containing from 6 to 15 carbon atoms and having at least one aromatic ring (e.g., aryl is phenyl), wherein said aryl group optionally can be fused with aryl, (C.sub.3-C.sub.7)cycloalkyl, heteroaryl or hetero(C.sub.3-C.sub.7)cycloalkyl rings; and wherein R.sup.7-aryl means that any of the available substitutable carbon and nitrogen atoms in said aryl group and/or said fused ring(s) is optionally and independently substituted, and wherein the aryl ring is substituted with 1-3 R.sup.7 groups. Examples of aryl groups are phenyl, naphthyl and anthryl;

[0072] arylalkyl represents an alkyl group, as defined above, wherein one or more hydrogen atoms of the alkyl moiety have been substituted with one to three aryl groups; wherein aryl is as defined above;

[0073] aryloxy represents an aryl group, as defined above, wherein said aryl group is covalently bonded to an adjacent structural element through an oxygen atom, for example, phenoxy;

[0074] cycloalkyl represents saturated carbocyclic rings of from 3 to 12 carbon atoms, preferably 3 to 7 carbon atoms; wherein R.sup.6-cycloalkyl means that any of the available substitutable carbon atoms in said cycloalkyl group is optionally and independently substituted, and wherein the cycloalkyl ring is substituted with 1-3 R.sup.6 groups;

[0075] cycloalkylalkyl represents an alkyl group, as defined above, wherein one or more hydrogen atoms of the alkyl moiety have been substituted with one to three cycloalkyl groups, wherein cycloalkyl is as defined above;

[0076] halo represents fluoro, chloro, bromo and iodo;

[0077] heteroaryl represents cyclic groups having one to three heteroatoms selected from O, S and N, said heteroatom(s) interrupting a carbocyclic ring structure and having a sufficient number of delocalized pi electrons to provide aromatic character, with the aromatic heterocyclic groups containing from 5 to 14 carbon atoms, wherein said heteroaryl group optionally can be fused with one or more aryl, cycloalkyl, heteroaryl or heterocycloalkyl rings; and wherein any of the available substitutable carbon or nitrogen atoms in said heteroaryl group and/or said fused ring(s) may be optionally and independently substituted, and wherein the heteroaryl ring can be substituted with 1-3 R.sup.8 groups; representative heteroaryl groups can include, for example, furanyl, thienyl, imidazoyl, pyrimidinyl, triazolyl, 2-, 3- or 4-pyridyl or 2-, 3- or 4-pyridyl N-oxide wherein pyridyl N-oxide can be represented as: 19

[0078] heteroarylalkyl represents an alkyl group, as defined above, wherein one or more hydrogen atoms have been replaced by one or more heteroaryl groups, as defined above;

[0079] heterocycloalkyl represents a saturated ring containing from 3 to 7 carbon atoms, preferably from 4 to 6 carbon atoms, interrupted by 1 to 3 heteroatoms selected from --O--, --S-- and --NR.sup.21-, wherein R.sup.21 is as defined above, and wherein optionally, said ring may contain one or two unsaturated bonds which do not impart aromatic character to the ring; and wherein any of the available substitutable carbon atoms in the ring may substituted, and wherein the heterocycloalkyl ring can be substituted with 1-3 R.sup.10 groups; representative heterocycloalkyl groups include 2- or 3-tetrahydrofuranyl, 2- or 3- tetrahydrothienyl, 1-, 2-, 3- or 4-piperidinyl, 2- or 3-pyrrolidinyl, 1-, 2- or 3-piperizinyl, 2- or 4-dioxanyl, morpholinyl, 20

[0080] wherein R.sup.17 is as defined above and t is 0, 1 or 2.

[0081] When the optional double bond in the piperidinyl ring of formula I is present, one of X.sup.1 and X.sup.2 forms the bond with the 3-position carbon and the remaining X.sup.1 or X.sup.2 is not hydrogen.

[0082] When X.sup.1 and X.sup.2 form a spiro group as defined above, the wavy lines in the structures shown in the definition indicate the points of attachment to to the 4-position carbon of the piperidinyl ring, e.g., compounds of the following formulas are formed: 21

[0083] Certain compounds of the invention may exist in different stereoisomeric forms (e.g., enantiomers, diastereoisomers and atropisomers) . The invention contemplates all such stereoisomers both in pure form and in mixture, including racemic mixtures.

[0084] Certain compounds will be acidic in nature, e.g. those compounds which possess a carboxyl or phenolic hydroxyl group. These compounds may form pharmaceutically acceptable salts. Examples of such salts may include sodium, potassium, calcium, aluminum, gold and silver salts. Also contemplated are salts formed with pharmaceutically acceptable amines such as ammonia, alkyl amines, hydroxyalkylamines, N-methylglucamine and the like.

[0085] Certain basic compounds also form pharmaceutically acceptable salts, e.g., acid addition salts. For example, pyrido-nitrogen atoms may form salts with strong acid, while compounds having basic substituents such as amino groups also form salts with weaker acids. Examples of suitable acids for salt formation are hydrochloric, sulfuric, phosphoric, acetic, citric, oxalic, malonic, salicylic, malic, fumaric, succinic, ascorbic, maleic, methanesulfonic and other mineral and carboxylic acids well known to those skilled in the art. The salts are prepared by contacting the free base form with a sufficient amount of the desired acid to produce a salt in the conventional manner. The free base forms may be regenerated by treating the salt with a suitable dilute aqueous base solution such as dilute aqueous NaOH, potassium carbonate, ammonia and sodium bicarbonate. The free base forms differ from their respective salt forms somewhat in certain physical properties, such as solubility in polar solvents, but the acid and base salts are otherwise equivalent to their respective free base forms for purposes of the invention.

[0086] All such acid and base salts are intended to be pharmaceutically acceptable salts within the scope of the invention and all acid and base salts are considered equivalent to the free forms of the corresponding compounds for purpopses of the invention.

[0087] Compounds of the invention can be prepared by known methods from starting materials either known in the art or prepared by methods known in the art. Examples of general procedures and specific preparative examples are given below.

[0088] Typically, X.sup.1,X.sup.2-substituted piperidines are alkylated with Z.sup.1,Z.sup.2,Z.sup.3-substituted halomethanes in the presence of excess bases such as K.sub.2CO.sub.3 and Et.sub.3N, in solvents such as DMF, THF or CH.sub.3CN, at room temperature or at elevated temperatures.

[0089] X.sup.1,X.sup.2-substituted piperidines are either commercially available or made by known procedures. For example, 4-hydroxy-4-phenyl-piperidine can be converted to a 4-tBoc-amino-4-phenylpiperidine according to the following reaction scheme, wherein Bn is benzyl, Ph is phenyl and tBoc is t-butoxycarbonyl: 22

[0090] Commercially availble 4-phenyl-4-piperidinol is protected with a benzyl group and the resulting intermediate is then treated with Me.sub.3SiCN. The resultant amide is hydrolyzed with aqueous HCl in CH.sub.3OH to produce the 4-amino compound. The amino group is protected with tBoc and the N-benzyl group is removed by hydrogenolysis to produce the desired 4-amino-piperidine derivative.

[0091] The 4-(protected)amino-piperidine then can be reacted with a Z.sup.1,Z.sup.2,Z.sup.3-halomethane and the protecting group removed. The amine (i.e., X.sup.2 is --NH.sub.2) can undergo various standard conversions to obtain amine derivatives. For example, the amine of formula I can be reacted with a R.sup.22-carboxaldehyde in the presence of a mild reducing agent such as Na(OAc).sub.3BH or with a compound of the formula R.sup.22-L, wherein L is a leaving group such as Cl or Br, in the presence of a base such as Et.sub.3N.

[0092] An alternative method for preparing compounds of formula I wherein X.sup.1 is R.sup.7-aryl and X.sup.2 is OH involves alkylating a 4-piperidone hydrochloride with a Z.sup.1,Z.sup.2,Z.sup.3-halomethane, then reacting the ketone with an appropriately substituted R.sup.7-phenylmagnesium bromide or with a compound of the formula X.sup.1-L.sup.1, wherein L.sup.1 is Br or I, and n-butyl-lithium.

[0093] X.sup.1,X.sup.2-substituted compounds of formula I can be converted into other compounds of formula I by performing reactions well known in the art on the X.sup.1 and/or X.sup.2 substituents. For example, a carboxaldehyde-substituted piperidine (i.e., X.sup.2 is --CHO) can be converted to a substituted piperidine wherein X.sup.2 is R.sup.13-O--CH.sub.2-, as shown in the following procedure for a compound of formula I wherein X.sup.1 is phenyl, Z.sup.1 and Z.sup.2 are each phenyl, and R.sup.1, R.sup.2, R.sup.3 and R.sup.4, and Z.sup.3 are H: 23

[0094] A cyano-substituted piperidine (i.e., X.sup.2 is --CN) can be converted to a substituted piperidine wherein X.sup.2 is R.sup.21R.sup.22N--CH.sub.2- or X.sup.2 is R.sup.28C(O)NH--CH.sub.2-, as shown in the following procedure for a compound of formula I wherein X.sup.1 is phenyl, R.sup.21, R.sup.1, R.sup.2, R.sup.3 and R.sup.4, and Z.sup.3 are H, and L is a leaving group such as Cl or Br: 24

[0095] Compounds of formula I wherein X.sup.1 is a benzofused nitrogen-containing heterocycle having an R.sup.11 substituent other than hydrogen are prepared by reacting the corresponding compounds wherein R.sup.11 is hydrogen with a compound of the formula R.sup.11L (R.sup.11 is not H, and L is as defined above).

[0096] Alternatively, X.sup.1,X.sup.2-substituted piperidine starting materials can be converted into other X.sup.1,X.sup.2-substituted piperidines by similar procedures before reacting with the Z.sup.1,Z.sup.2,Z.sup.3-substituted halomethane.

[0097] For compounds of formula I wherein R.sup.1, R.sup.2, R.sup.3 and R.sup.4 variously form alkylene bridges, commercially available N-protected 4-piperidones are treated with phenyl lithium and resulting intermediate is deprotected to produce the desired compounds, for example: 25

[0098] wherein Pr is a N-protecting group, Ph is phenyl and z is 1-2.

[0099] The Z.sup.1,Z.sup.2,Z.sup.3-halomethyl derivatives wherein Z.sup.1 and Z.sup.2 are R.sup.7-phenyl are either commercially available or can be prepared using the procedure shown in the following reaction scheme: 26

[0100] Similar procedures, or others known in the art, can be used to prepare compounds wherein the Z substituents are other than phenyl.

[0101] Compounds of the present invention and preparative starting materials thereof, are exemplified by the following examples, which should not be construed as limiting the scope of the disclosure.

[0102] The following solvents and reagents are referred to herein by the abbreviations indicated: tetrahydrofuran (THF); ethanol (EtOH); methanol (MeOH); acetic acid (HOAc or AcOH); ethyl acetate (EtOAc); N,N-dimethylformamide (DMF); and diethyl ether (Et.sub.2O). Room temperature is abbreviated as rt.

EXAMPLE 1

[0103] 27

[0104] A mixture of 4-hydroxy-4-phenyl piperidine (1.5 g, 8.47 mmol) and K.sub.2CO.sub.3 (3.0 g, 21.73 mmol) in CH.sub.3CN was stirred at rt. To this was added .alpha.-bromo-diphenylmethane (2.5 g, 10.12 mmol) and the reaction was stirred overnight. The reaction mixture was concentrated, redissolved in CH.sub.2Cl.sub.2,washed with water, dried (MgSO.sub.4) and concentrated. Chromatography (SiO.sub.2, 9:1 hexane/EtOAc) gave the title compound (2.6 g, 90%). .sup.1H NMR (CDCl.sub.3): 61.80 (m, 2 H), 2.25 (m, 2 H), 2.42 (m, 2 H), 2.90 (m, 2 H), 4.40 (s,1 H), 7.2-7.6 (m, 15 H).

EXAMPLE 2

[0105] 28

[0106] Step 1: A solution of 4-piperidone monohydrate hydrochloride (5 g, 32.6 mmol) in CH.sub.3CN was alkylated using the procedure described in Example 1. Chromatography of the residue on silica (95:5 hexane/EtOAc) gave the desired compound.

[0107] Step 2: 4-Methylphenylmagnesium bromide (0.5 M in THF, 1.75 ml, 0.87 mmol) was added to a solution of product of Step 1 (191 mg, 0.72 mmol) in THF dropwise at 0.degree. C. The solution was stirred at 0.degree. for 2 h, quenched with ice-H.sub.2O, extracted with EtOAc, washed with H.sub.2O and brine, dried, and concentrated. Chromatography of the residue on silica (95:5 hexane/EtOAc, 93:7 hexane/EtOAc) gave the title compound (0.091 g, 30%). .sup.1H NMR (CDCl.sub.3) .delta.7.5 (m, 6 H, ArH), 7.3 (t, 4 H, ArH), 7.2 (t, 4 H, ArH), 4.35 (s,1 H), 2.8 (d, 2 H), 2.4 (m, 5 H), 2.2 (td, 2 H), 1.75 (d, 2 H); MS (Cl) 358 (M+1); Elemental analysis for C.sub.25H.sub.27NO.1.2 H.sub.2O: calcd: C 79.2, H 7.82, N 3.69; observed: C 78.90, H 8.02, N 3.85.

EXAMPLE 3

[0108] 29

[0109] Add n-BuLi (2.5 M, 0.38 ml. 0.95 mmol) to a solution of 3-bromo-thiophene (0.15 g, 0.95 mmol) in Et.sub.2O dropwise at -70.degree. C. and stir for 2 h. Add a solution of the product of Step 1 of Example 2 (230 mg, 0.87 mmol) in Et.sub.2O (4 ml) to the reaction mixture, slowly warm to rt over a period of 3 h, quench with ice-cooled NH.sub.4Cl (aq), extract with Et.sub.2O, wash with H.sub.2O and brine, dry, and concentrate. Chromatograph the residue (95:5 hexane/EtOAc) to give the title compound (90 mg). .sup.1H NMR (CDCl.sub.3) .delta.7.5 (d, 2 H), 7.35 (bt, 4 H), 7.25 (m, 3 H), 7.2 (m, 2 H), 4.4 (s,1 H), 2.8 (d, 2 H), 2.5 (t, 2 H), 2.3 (dt, 2 H), 2.0 (d, 2 H); MS (Cl) 350 (M+1); Elemental analysis for C.sub.22H.sub.22NOS.1.1 HCl.0.9 H.sub.2O: calcd: C 65.11, H 6.43, N 3.54, S 7.8, Cl 9.61; observed: C 65.27, H 6.54, N 3.45, S 7.30, Cl 9.43.

EXAMPLE 4

[0110] 30

[0111] Step 1: 4-Phenyl-4-piperidinecarboxaldehyde (1.0 g, 5.29 mM) was alkylated using the procedure of Example 1, Step 1, to obtain the desired product (1.69 g, 90%). .sup.1H NMR (CDCl.sub.3): .delta.2.40 (m, 4 H), 2.50 (m, 2 H), 2.85 (m, 2 H), 4.25 (s, 1 H), 7.20-7.50 (m, 15H), 9.42 (s,1 H).

[0112] Step 2: A solution of the product from Step 1 (3.0 g, 8.45 mmol) was cooled to 0.degree. C. and treated with NaBH.sub.4 (1.0 g, 26.32 mmol). After 0.5 h, reaction mixture was treated with 1 N HCl and concentrated. The residue was extracted with CH.sub.2Cl.sub.2, dried (MgSO.sub.4) and evaporated. Column chromatography on the residue (4:1 hexane:EtOAc) produced desired primary alcohol. .sup.1H NMR (CDCl.sub.3): .delta.2.00 (m, 2 H), 2.25 (m, 4 H), 2.65 (m, 2 H), 3.65 (d, 2 H), 4.20 (s, 1 H), 4.25 (d,1 H), 7.2-7.6 (m, 15 H).

[0113] Step 3: The product of Step 2 was treated with NaH in DMF at 0.degree. C. for 0.5 h. CH.sub.3I was added and reaction was warmed up to rt. After stirring overnight, the reaction mixture was poured on ice, extracted with Et.sub.2O, dried (MgSO.sub.4) and evaporated. Column chromatography on the residue produced the title compound. .sup.1H NMR (CDCl.sub.3): .delta.2.10 (m, 4 H), 2.40 (m, 2 H), 2.78 (m, 2 H), 2.90 (m, 2 H), 3.00(s, 3 H), 4.38 (s, 1 H), 7.21-7.52 (m, 15 H).

EXAMPLE 5

[0114] 31

[0115] Step 1: A solution of 4-cyano-4-phenylpiperidine hydrochloride (5.0 g, 22.4 mM) in DMF (30 ml) was treated with Et.sub.3N (7.20 ml, 47 mM) and bromodiphenylmethane (6.38 g, 25.80 mM) and stirred at rt under N.sub.2 for 20 h. The reaction mixture was concentrated in vacuo and partitioned between EtOAc and H.sub.2O. The organic layer was washed with twice with water, then brine, and dried (MgSO.sub.4), filtered and concentrated. Chromatography (SiO.sub.2, 19:1 hexane/EtOAc) gave 6.0 g (76%) of the desired product. .sup.1H NMR (CDCI.sub.3): .delta.2.21 (m, 4 H), 2.49 (t, J=12.3 Hz, 2 H), 3.11 (d, J=12.5 Hz, 2 H), 4.46 (s, 1H), 7.45 (m, 15 H).

[0116] Step 2: A solution of the product (6.0 g, 17 mM) of Step 1 in Et.sub.2O (40 ml) was cooled to 0.degree. C. and treated with a 1 M solution of of LAH (34.10 ml, 34 mM), dropwise, under N.sub.2, over 0.5 h. The reaction mixture was allowed to warm to rt and then refluxed for 4 h. The reaction mixture was cooled to 0.degree. C. and treated with water (8 eq.). The reaction mixture was allowed to warm to rt and was stirred for 1 h. The resultant solid was filtered off and rinsed with Et.sub.2O, and the filtrate was concentrated to yield 5.45 g (90%) of desired product. 1H NMR (CD.sub.3OD): .delta.1.84 (m, 2 H), 2.16 (m, 4 H), 2.56 (m, 2 H), 2.68 (m, 2 H), 4.07 (s,1 H), 7.25 (m, 15 H).

[0117] Step 3: A solution of the product (0.2 g, 0.56 mM) of Step 2 in CH.sub.2Cl.sub.2 (3 ml) was treated with benzoyl chloride (0.078 ml, 0.673 mM) and pyridine (0.045 g, 0.568 mM) at rt for 18 h under N.sub.2. The reaction mixture was concentrated, then partitioned between H.sub.2O and CH.sub.2Cl.sub.2. The organic layer was washed with water (2.times.) and brine, then dried (MgSO.sub.4), filtered and concentrated. Chromatography (SiO.sub.2, 3:1 hexane/EtOAc) gave 0.2 g (77%) of the desired product. .sup.1H NMR (CD.sub.3OD): .delta.2.13 (m, 6 H), 2.66 (m, 4 H), 3.50 (s, 2 H), 4.07 (s, 1 H), 7.11-7.65 (m, 20 H).

[0118] Step 4: A solution of the product (0.075 g, 0.16 mM) of Step 3 in THF (3 ml) was cooled to 0.degree. C. with stirring. LAH (solid, 0.025 g, 0.65 mM) was added under N.sub.2 and stirring was continued for 0.25 h. The reaction mixture was then refluxed for 5 h, then stirred at rt for 18h. The reaction mixture was cooled to 0.degree. C. and quenched with water (8 eq). The reaction mixture was allowed to warm to rt and was stirred for 1 h. The resultant solid was filtered off and rinsed with Et.sub.2O, the filtrate was dried (MgSO.sub.4) and concentrated. Chromatography (neutral Al.sub.2O.sub.3, CH.sub.2Cl.sub.2, then 3:1 CH.sub.2Cl.sub.2:EtOAc) gave 0.014 g (20%) of the title compound. .sup.1H NMR (CD.sub.3OD): .delta.1.90 (m, 2 H), 2.15 (m, 4 H), 2.48 (m, 2 H), 2.68 (s, 2 H), 3.53 (s, 2 H), 4.05 (s,1 H), 7.01-7.38 (m, 20 H).

EXAMPLE 6

[0119] 32

[0120] The product of Example 5, Step 2 (0.2 g, 0.561 mM), acetic anhydride (3 ml) and Et.sub.3N (0.096 ml, 0.67 mM) were combined and stirred at rt for 18 h. The reaction mixture was concentrated and partitioned between H.sub.2O and CH.sub.2Cl.sub.2. The organic layer was washed with water (2.times.), brine, then dried (MgSO.sub.4), filtered and concentrated to give 0.214 g (95%) of the title compound. H NMR (CD.sub.3OD): .delta.1.87 (m, 5 H), 2.16 (m, 4 H), 2.61 (m, 2 H), 3.31 (s, 2 H), 4.07 (s, 1 H), 7.12-7.40 (m, 20 H).

EXAMPLE 7

[0121] 33

[0122] Step 1: A solution of 4-phenyl-4-hydroxy piperidine (10.0 g, 56.4 mM) in DMF (60 ml) was treated with Et.sub.3N (8.28 ml, 59.2 mM) and benzyl bromide (7.37 ml, 62.10 mM) and stirred at rt under N.sub.2 for 20 h. The reaction mixture was concentrated in vacuo, basified to pH 8 with saturated NaHCO.sub.3 and partitioned between EtOAc and H.sub.2O. The organic layer was washed twice with water, then brine, and dried (MgSO.sub.4), filtered and concentrated. Chromatography (neutral Al.sub.2O.sub.3, hexane, then 1:1 hexane:EtOAc) gave 11.95 g (80%) of the desired product.

[0123] Step 2: To a mixture of the product (30.0 g, 0.112 mol) of Step 1 and (CH.sub.3).sub.3SiCN (59.94 ml, 0.448 mol), cooled to -15.degree. C. in an ethylene glycol/CO.sub.2 bath, under N.sub.2, is added glacial AcOH (47 ml) dropwise, while maintaining an internal temperature of -15.degree. C. Concentrated H.sub.2SO.sub.4 (47 ml, 0.34 M) is added dropwise, with vigorous stirring, while maintaining an internal temperature of -15.degree. C. The cooling bath was then removed and reaction mixture was stirred at rt for 18 h. The reaction mixture was poured on ice and adjusted to pH 7 with a 50% NaOH solution while maintaining a temperature of 25.degree. C. The reaction mixture was then extracted with CH.sub.2Cl.sub.2, and the organic layer was washed with water (2.times.), then brine, and dried (MgSO.sub.4), filtered and concentrated. Recrystalization with EtOAc/hexane (1:10) gave 22.35 g (68%) of desired compound. .sup.1H NMR (CD.sub.3OD): .delta.2.10 (m, 2 H), 2.40 (m, 4 H), 2.82 (d, J=11.50 Hz, 2 H), 3.57 (s, 2 H), 7.20-7.43 (m, 10 H), 8.05 (s,1 H).

[0124] Step 3: The product of Step 2 (20 g, 67.9 mM) and 5% (w/w) concentrated HCl (aq)/CH.sub.3OH (350 ml) were stirred under N.sub.2 for 48 h. The mixture was concentrated to yield a foam which was suspended in Et.sub.2O and concentrated to remove excess HCl. The resultant solid was resuspended in Et.sub.2O, collected by vacuum filtration, washed with Et.sub.2O and dried under vacuum to give (23 g, 100%) of desired product. .sup.1H NMR (CD.sub.3OD) of di-HCl salt: .delta.2.59 (t, J=13.3 Hz, 2 H), 2.93 (t, J= 13.3 Hz, 2 H), 3.07 (d, J=13.50 Hz, 2 H), 3.58 (d, J=13 Hz, 2 H), 4.26 (s, 2 H), 7.56 (m, 10 H).

[0125] Step 4: The product of Step 3 (24.10 g, 71 mM), CH.sub.2Cl.sub.2 (300 ml), 25 (tBoc).sub.20 (17.0 g, 78.1 mM) and Et.sub.3N (14.37 g, 0.142 M) were combined and stirred under N.sub.2, at rt, for 18 hrs. The reaction mixture was partitioned between CH.sub.2Cl.sub.2 and H.sub.2O, and the aqueous layer was extracted with CH.sub.2Cl.sub.2. The combined organic layers were washed with water (2.times.), then brine, and dried (MgSO.sub.4), filtered and concentrated. The resulting solid was suspended in Et.sub.2O and sonicated, filtered and dried to produce the desired compound (21.98 g, 90%). .sup.1H NMR (CD.sub.3OD): .delta.1.09 (bs, 2 H), 1.39 (s, 1 H), 2.05 (m, 2 H), 2.34 (m, 4H), 2.65 (d, J=11.8 Hz, 2 H), 3.56 (s, 2 H), 7.18-7.40 (m, 10 H).

[0126] Step 5: The product of Step 4 (5.22 g, 14.2 mM), CH.sub.3O H (430 ml). Pd(OH).sub.2/C (3.0 g) and NH.sub.4COOH (18.86 g, 0.298 M) were combined and refluxed under N.sub.2 for 8 h. The reaction mixture was filtered using celite, washing with CH.sub.3OH. The combined filtrates were concentrated to produce (3.90 g, 97%) of the desired product. .sup.1 H NMR (CD.sub.3OD): .delta. 1.10 (bs, 2 H), 1.39 (s, 7 H), 1.90 (m, 2 H), 2.26 (m, 4 H), 2.92 (m, 4 H), 7.17-7.41 (m, 5 H).

[0127] Step 6: The product of Step 5 (2.74 g, 9.91 mM), CH.sub.3CN (85 ml), Et.sub.3N (1.75 ml, 12.40 mM) and bromodiphenylmethane (2.70 g, 10.9 mM) were combined and stirred at rt under N.sub.2 for 18 hrs. The mixture was concentrated and the resultant residue was partitioned between H.sub.2O and EtOAc. The EtOAc layer was washed with water (2.times.), brine, then dried (MgSO.sub.4), filtered and concentrated. Chromatography (neutral Al.sub.2O.sub.3, hexane, then 4:1 hexane:EtOAc) gave 2.85 g (65%) of the desired product. .sup.1H NMR (CD.sub.3OD): .delta.1.07 (bs, 2 H), 1.37 (s, 7 H), 2.23 (m, 2 H), 2.24 (m, 4 H), 2.74 (d, J=12.1 Hz, 2 H), 4.27 (s,1 H), 7.10-7.47 (m,15 H).

[0128] Step 7: The product of Step 6 (4.6 g, 10 mM), 1,4-dioxane (38 ml) and 4 M HCl in 1,4-dioxane (25 ml, 101 mM) were combined and stirred at rt under N.sub.2 for 4 h. The mixture was concentrated and the residue was suspended in Et.sub.2O and re-concentrated. The resultant solid was resuspended in Et.sub.2O, sonicated and the product was collected by vacuum filtration and dried to give 3.27 g (80% of the desired product. .sup.1H NMR (CD.sub.3OD) of di-HCl salt: .delta.2.91(m, 8 H), 5.34 (s, 1 H), 7.37-7.77 (m, 15 H).

[0129] Step 8: To a suspension of the product of Step 7 (0.3 g, 0.722 mM) in CH.sub.2Cl.sub.2 (3 ml), under N.sub.2 at rt, was added 2-thiophenecarboxaldehyde (0.133 ml, 1.44 mM). The pH of the reaction was adjusted to 6 with Et.sub.3N and the mixture was stirred for 0.5 h. Na(OAc).sub.3BH (0.230 g, 1.08 mM) was then added and the reaction mixture was stirred at rt under N.sub.2 for 3 h. The reaction was quenched with saturated NaHCO.sub.3(aq) and partitioned between Et.sub.2O and H.sub.2O. The organic layer was washed with H.sub.2O (2.times.), brine, dried (MgSO.sub.4), filtered and concentrated. Chromatography (SiO.sub.2, toluene, then 1:19 EtOAc: toluene) gave 0.158 g (50%) of the desired product. .sup.1H NMR (CD.sub.3OD): .delta.1.96 (m, 2 H), 2.17 (m, 2 H), 2.52 (m, 4 H), 3.45 (s, 2 H), 4.24 (s,1 H), 6.76 (d. J=3.5 Hz,1 H), 6.85 (dd, J=3.6 Hz, 1 H), 7.13-7.50 (m, 16 H).

EXAMPLE 8

[0130] 34

[0131] Step 1: Alkylate a solution of 4-(2-oxo-1-benzimidazolyl)-piperidin- e in CH.sub.3CN using the procedure described in Step 1 of Example 1 to produce the desired compound.

[0132] Step 2: Add NaH to a solution of 3-[1-(diphenylmethyl)-4-piperidiny- l]-1, 3-dihydro-2 H-benzimidazo-1-one (2.5 g, 6.6 mmol) in DMF (25 ml) and stir at rt for 1 h. Add n-butyl iodide to the mixture at rt and stir overnight. Quench with ice-H.sub.2O, extract with EtOAc, wash with H.sub.2O and brine, dry (MgSO.sub.4) and concentrate. Chromatograph the residue on silica (1:9 EtOAc/hexane) to give the title compound (2.35 g). Dissolve the title compound in Et.sub.2O, add HCl in Et.sub.2O (8 ml, 1 M), stir for 1 h and filter to give the HCl salt. .sup.1H NMR (CDCI.sub.3) .delta.7.55 (m, 4 H, ArH), 7.35 (m, 5 H, ArH), 7.25 (m, 2 H, ArH), 7.15 (m, 2 H, ArH), 7.1 (m, 1 H, ArH), 4.4 (m, 2 H), 3.95 (t, 2 H), 3.15 (d, 2 H), 2.6 (dq, 2 H), 2.1 (t, 2 H, 1.8, m, 4 H), 1.5 (m, 2 H), 1.0 (t, 3 H); ESI-MS 440 (M+1); Elemental analysis for C.sub.29H.sub.33N.sub.3O. HCl.H.sub.2O: calcd: C 70.5, H 7.3, N 8.5, Cl 7.18; observed: C 70.48, H 7.28, N 8.49, Cl 7.49).

EXAMPLE 9

[0133] 35

[0134] Add SOCl.sub.2 (247 mg, 2.07 mmol) to a solution of 2-(chloro-phenyl) phenylmethanol (300 mg, 1.38 mmol) in CH.sub.2Cl.sub.2 at rt, stir at rt for 5 h and concentrate. Dissolve the residue in CH.sub.3CN, add K.sub.2CO.sub.3, 4-hydroxy-4-phenylpiperidine and Nal. Stir the solution at reflux overnight, filter and concentrate. Chromatograph the residue on silica (9:1 hexane/EtOAc) to give the title compound. .sup.1H NMR (CDCl.sub.3) .delta.7.91 (d, 1 H), 7.58 (d, 2 H), 7.54 (d, 2 H), 7.42 (t, 2 H), 7.32 (m, 5 H), 7.26 (t, 3 H), 7.16 (t, 3 H), 5.0 (s, 1 H), 2.8 (dd, 2 H), 2.5 (dq, 2 H), 2.2 (dt, 2 H), 1.75 (d, 2 H). Dissolve the title compound in ether, add HCl/Et.sub.2O (1 M) to give the HCl salt. MS Cl (378 (M+1); Elemental analysis for C.sub.24H.sub.24NOCI.HCl.0.2 H.sub.2O: calcd: C 68.97, H 6.13, N 3.35, Cl 16.96; observed: C 68.87, H 6.04, N 3.35, Cl 17.00.

EXAMPLE 10

[0135] 36

[0136] Step 1: Alkylate a solution of 4-piperidone monohydrate hydrochloride (880 mg, 5 mmol) in CH.sub.3CN with mandelonitrile (1 g, 7.51 mmol) using the procedure described in Example 9. Chromatography of the residue on silica followed by recrystallization (EtOAc) gives the desired compound (630 mg).

[0137] Step 2: Add a solution of 2-methoxyphenylmagnesium bromide in THF (24 ml, 0.5 M, 11.85 mmol) to a solution of the product of Step 1 (330 mg, 1.185 mmol) in THF at 0.degree. C. Remove the ice-bath and stir the reaction mixture at reflux for 6 h. Quench the reaction with NH.sub.4Cl (aq), extract with EtOAc, wash with brine, dry and concentrate. Chromatograph the residue (95:5, 9:1 hexane/EtOAc) to give the title compound (330 mg). .sup.1H NMR (CDCl.sub.3) .delta.7.76 (d, 1 H), 7.62 (d, 1 H), 7.55 (d, 1 H), 7.45 (t, 1 H), 7.34 (m, 3 H), 7.24 (m, 2 H), 7.03 (t,1 H), 6.90 (d, 2 H), 4.88 (s, 1 H), 3.89 (s, 3 H), 2.94 (d,1 H), 2.82 (d,1 H), 2.45 (td, 2 H), 2.26 (t, 2 H), 1.78 (d, 2 H). Dissolve the title compound in Et.sub.2O, add HCl in Et.sub.2O, stir for 1 h and filter to give the HCl salt. MS FAB 374.1 (M+1); elemental analysis for C.sub.25H.sub.27NO.sub.2.HCl.0.15H.sub.2O: calcd: C 72.77, H 6.91, N 3.39, Cl 8.59; obserbed: C 72.76, H 7.02, N 3.59, Cl 8.83.

EXAMPLE 11

[0138] 37

[0139] Step 1 Alkylate a solution of 1-phenyl-1,3,8-triazaspiro[4,5]decan-- 4-one (0.5 g) in CH.sub.3CN using the procedure described in Step 1 of Example 1 to produce desired compound.

[0140] Step 2 Alkylate the product from Step 1, 1-phenyl-8-(diphenylmethyl- )-1, 3,8-triazaspiro[4,5]decan-4-one (0.4 g) with CH.sub.3l using the procedure described in Step 2 of Example 1 to produce the title compound (0.25 g). .sup.1 H NMR (CDCl.sub.3) .delta.1.70 (d, 2 H), 2.85 (m, 6 H), 3.05(s, 3 H), 4.50 (s, 1 H), 4.72 (s, 2 H), 6.95 (t,1 H), 7.05(d 2 H), 7.20-7.60 (m, 12 H).

[0141] Using the procedures of Examples 1 to 11, employing the appropriate starting material, compounds shown in the following tables are prepared.

1TABLE 1 38 wherein X.sup.1 is as defined below: X.sup.1 Physical Data H C.sub.24H.sub.25N FAB 283.3 (100), 167.2 52) OMe C.sub.25H.sub.27NO FAB 358 (80), 167 (70) OEt C.sub.26N.sub.29NO:HCl FAB 342 (67) 167 (100) 39 C.sub.27H.sub.31NO ESI 434.2 (79), 167 (100) 40 C.sub.31H.sub.31NO:HCl ESI 434.2 (62), 167 (100) CN C.sub.25H.sub.24N.sub.2 FAB 353.2 (53), 275.10 (24). CHO C.sub.25H.sub.25NO Cl 356 (28), 167 (100) CH.sub.2OH C.sub.25H.sub.27NO Cl 358.1 (37), 167 (100) 41 C.sub.32H.sub.33NO:HCl FAB 448.1 (46), 167.2 (100) CH.sub.2OMe C.sub.25H.sub.27NO FAB 357.10 (10), 167 (100) CH.sub.2OEt C.sub.26H.sub.29NO Cl 373.3 (12), 372 (42), 167 (100) 42 C.sub.30H.sub.34NO Cl 440.25 (33), 439.2 (100), 167.2 (89) CH.sub.2NH.sub.2 C.sub.25H.sub.28N.sub.2:2HCl ESI 357.10 (37), 167 (100) CH.sub.2NHCOCH.sub.3 C.sub.27H.sub.30N.sub.2O ESI 399.1 (53), 167.0 (100) 43 C.sub.32H.sub.32N.sub.2O FAB 462.1 (15), 461.1 (41), 393 (8) 44 C.sub.32H.sub.34N.sub.2:HCl ESI 447.1 (100), 281.1 (29) 45 C.sub.33H.sub.32N.sub.2F.sub.3:HCl ESI 515 (100), 349.10 (33), 167 (49) CH.sub.2NHCH.sub.2CH.sub.3 C.sub.27H.sub.32N.sub.2:HCl ESI 385.1 (100), 219.10 (26), 167 (76) 46 C.sub.29H.sub.36N.sub.2O:HCl Cl 429 (53), 351 (100) 327 (13), 167 (34) 47 C.sub.28H.sub.32N.sub.2O.sub.- 2Cl 429 (100), 351 (9), 261 (11), 167 (81) 48 C.sub.28H.sub.34N.sub.2O:HCl Cl 415 (100), 327 (33), 167 (65) 49 C.sub.31H.sub.39N.sub.3O:HCl ESI 470 (100), 304 (51), 259 (16), 167 (46) 50 C.sub.31H.sub.41N.sub.3:HCl ESI 456 (100), 290 (11), 167 (11) 51 C.sub.30H.sub.30N.sub.2O.sub.2ESI 451 (100), 283 (8), 167 (94) 52 C.sub.34H.sub.43N.sub.3O:- HCl ESI 510 (88), 344 (73), 167 (100) 53 C.sub.32H.sub.41N.sub.3:HCl ESI 468 (98), 302 (22), 167 (100) 54 C.sub.31H.sub.31N.sub.3O:HCl Cl 462 (100), 384 (4), 167 (45) 55 C.sub.30H.sub.32N.sub.2O:Cl ESI 437 (100), 271 (11), 167 (41) 56 C.sub.30H.sub.32N.sub.2O:HCl ESI 437 (87), 271 (7), 167 (100) 57 C.sub.30H.sub.32N.sub.2S:HCl ESI 453 (92), 167 (100) 58 C.sub.30H.sub.32N.sub.2S:HCl ESI 453 (100), 287 (6), 167 (78) 59 C.sub.32H.sub.36N.sub.2S:HCl ESI 481 (69), 340 (5), 167 (100) 60 C.sub.29H.sub.36N.sub.2S:HCl ESI 445 (100), 399 (3), 279 (11), 167 (84) 61 C.sub.29H.sub.33N.sub.2F.sub.3:HCl ESI 467 (69), 167 (100) CH.sub.2NMe.sub.2 C.sub.27H.sub.32N:HCl FAB 385.3 (100), 219.2 (6), 162.2 (77) NH.sub.2 C.sub.24H.sub.26N.sub.2:HCl ESI 343 (48), 326 (70), 167 (100) NH(CH.sub.2).sub.3NEt.sub.2 C.sub.31H.sub.41N.sub.3:HCl ESI 456 (72), 326 (74), 167 (100) 62 C.sub.29H.sub.30N.sub.2O- :HCl Cl 423 (60), 326 (100), 167 (74) 63 C.sub.31H.sub.39N.sub.3:HCl ESI 454 (76), 326 (60), 167 (100) 64 C.sub.29H.sub.30N.sub.2S:HCl FAB 439 (90), 326 (25), 167 (100) NHMe C.sub.25H.sub.28N.sub.2:HCl ESI 357 (20), 326 (87), 167 (100) NMe.sub.2 C.sub.26H.sub.30N.sub.2:HCl ESI 371 (11), 326 (81), 167 (100)

[0142]

2TABLE 2 65 wherein X.sup.1 is as defined below X.sup.1 Physical Data 66 C.sub.24H.sub.25NO FAB 343.1 (13), 342.1 (26) 67 C.sub.24H.sub.24BrNO ESI 424 (20) 422 (18) 167-2 (92) 68 C.sub.24H.sub.24NOCl Cl 363 (43), 362 (22), 167.20 (100) 69 C.sub.24H.sub.24FNO 361 (22), 167.2 (75) Benzyl C.sub.25H.sub.27NO Cl 358.1 (62), 167 (78) n-Propyl- C.sub.27H.sub.31NO:HCl phenyl FAB 386.1 (46), 167 (100) 70 C.sub.25H.sub.23NOF.sub.3Cl EI 369 (3), 368 (14), 167 (100) 71 C.sub.25H.sub.24F.sub.3NO FAB 413 (31), 412 (57), 167 (100) 72 C.sub.25H.sub.27NO.sub.2Cl 374.45 (M + 1), 266.30 (39%), 167.25 (100%) 73 C.sub.26H.sub.30N.sub.2O FAB 387 (86%), 369 (22%) 74 C.sub.25H.sub.26NOF FAB 376.2 (68%), 375.2 (32%), 358.20 (6) 75 C.sub.25H.sub.27NO.sub.2Cl 374.45 (58%), 375.45 (27), 356.35 (29) 76 C.sub.24H.sub.24ClNO Cl 378.35 (31%), 377.35 (18%), 360.30 (22) 77 C.sub.25H.sub.27NO Cl 358.35 (68), 357.35 (38), 340.35 (47), 167.25 (100) 78 C.sub.24H.sub.23F.sub.2NO Cl 380.35 (28%), 379.35 (22), 362.35 (23), 167.25 (100) 79 C.sub.25H.sub.27NO Cl 358.35 (63), 357.35 (43), 340.35 (53), 167.25 (100) 80 C.sub.25H.sub.27NO Cl 358.35 (49), 357.35 (41), 340.35 (35), 167.25 (100) 81 C.sub.24H.sub.24FNO Cl 362.35 (41), 361.35 (218), 344.35 (39), 167.25 (100) 82 C.sub.26H.sub.25NO FAB 368 (37), 367 (38), 366 (100), 290 (41) 83 C.sub.25H.sub.27NSO FAB 375 (10), 374.20 (40), 306.7 (13) 84 C.sub.25H.sub.27NSO FAB 390 (22), 389 (27), 388 (100), 312 (48) 85 C.sub.24H.sub.23NOF.sub.2380.2 (11), 379.2 (16), 378.2 (31) 86 C.sub.26H.sub.29NO Cl 373.45 (22), 372.40 (82), 354.35 (60), 167.25 (100) 87 C.sub.24H.sub.31NO FAB 350.3 (4), 349.3 (7), 348 917) n Hexyl C.sub.24H.sub.33NO FAB 352 (85), 274 (189) n propyl C.sub.27H.sub.31NO ESI 386 (70), 167 (100) n butyl C.sub.28H.sub.33NO ESI 400.1 (68), 167 (100) 88 C.sub.21H.sub.25NO:HCl ESI 308.1 (32), 167.0 (100) 89 C.sub.22H.sub.23NO.sub.2:HCl Cl 334.25 (34), 333.25 (26), 316.25 (41), 167.25 (100) 90 C.sub.22H.sub.23NOS:HCl Cl 350.25 (32), 349.35 (24), 332.25 (41), 167.25 (100) 91 C.sub.22H.sub.23NOS:HCl Cl 350.25 (27), 349.35 (18), 332.25 (20), 167.25 (100) 92 C.sub.23H.sub.24N.sub.2O:HCl ESI 345.1 (68), 167 (100) 93 C.sub.22H.sub.23NO.sub.2Cl 334.25 (37), 333.25 (24), 316.25 (31), 167.25 (100) 94 C.sub.25H.sub.24N.sub.2O:HCl FAB 369.3 (3), 368.3 (6), 367.3 (13) 95 C.sub.21H.sub.27NO:HCl Cl 310.40 (38), 309.40 (25), 292.40 (33), 167.25 (100) 96 C.sub.24H.sub.24NOF:HCl FAB 362.1 (100), 232.1 (11) 97 C.sub.22H.sub.29NO:HCl FAB 324.30 (100) 98 C.sub.21H.sub.25NO:HCl Cl 308.2 (64), 307.2 (30), 290.2 (57), 167.25 (100) 99 C.sub.23H.sub.25NOS:HCl Cl 364.15 (69), 346.15 (71), 167.25 (100) 100 C.sub.21H.sub.22N.sub.2SO:HCl Cl 351.1 (52), 350.1 (8), 266.15 (12), 167.2 (100) 101 C.sub.27H.sub.28N.sub.2O:HCl FAB 397.2 (80), 167.2 (100) 102 C.sub.25H.sub.28N.sub.2O:HCl ESI 373.1 (28), 167 (100) 103 C.sub.25H.sub.27NO.sub.2:HCl ESI 374.1 (43), 167 (100)

[0143]

3TABLE 3 104 wherein Z.sup.1 and Z.sup.2 are as defined below: Z.sup.1 Z.sup.2 Physical Data 105 106 C.sub.24H.sub.24NOCl Cl 380 (30), 378.1 (100), 201 (100) 107 108 C.sub.24H.sub.23NOF.sub.2C- l 380.15 (79), 379.15 (47), 362.05 (100) 109 110 C.sub.23H.sub.24N.sub.2O:HCl ESI 345.1 (69), 327.1 (49), 168 (100) 111 112 C.sub.23H.sub.24N.sub.2O:HCl ESI 345.1 (58), 168 (100) 113 114 C.sub.25H.sub.27NO:HCl Cl 358.20 (60), 340.20 (51), 181.25 (100) 115 116 C.sub.24H.sub.24NOBr:HCl ESI 424.1 (17), 422 (17), 247.1 (100), 245.1 (99) 117 118 C.sub.25H.sub.27NO:HCl ESI 358.1 (32.70), 181 (100) 119 120 C.sub.24H.sub.24NOCl:HCl Cl 380.10 (30), 378.15 (100) 121 122 C.sub.26H.sub.29NO:HCl ESI 372,1 (24), 195.1 (100) 123 124 C.sub.25H.sub.27NO:HCl ESI 358.1 (48%), 181.1 (100) 125 126 C.sub.25H.sub.24ONF.sub.3:HCl ESI 412.1 (56), 235 (100) 127 128 C.sub.25H.sub.24ONF.sub.3:HCl ESI 412.1 (73), 235.1 (100) 129 130 C.sub.26H.sub.29NO:HCl ESI 372.1 (39), 195.1 (100) 131 132 C.sub.24H.sub.24NOBr:HCl ESI 424.10 (48), 422.1 (47), 245.1 (100) 133 134 C.sub.22H.sub.23NOS:HCl ESI 350.1 (31), 173 (100) 135 136 C.sub.25H.sub.24ONF.sub.3:HCl ESI 412.1 (54), 235.10 (100) 137 138 C.sub.24H.sub.24NOF:HCl ESI 362.1 (23), 185.1 (100) 139 140 C.sub.24H.sub.23NOF.sub.2:HCl Cl 380.15 (100), 362.15 (89), 203.25 (99) 141 142 C.sub.24H.sub.23NOCl.sub.2:HCl ESI 416.1 (7), 414 (32), 412 (45), 235.1 (100) 143 144 C.sub.25H.sub.24N.sub.2O.sub.2F.sub.2:HCl FAB 423.2 (100), 218.0 (18) 145 146 C.sub.24H.sub.23NOF.sub.2:HCl Cl 380.15 (79), 379.15 (45), 362.05 (100) 147 148 C.sub.26H.sub.29NO.sub.2:HCl FAB 388.3 (100), 266.1 (15) 149 150 C.sub.25H.sub.27NO.sub.2:HCl FAB 374.1 (100), 197 (73) 151 152 C.sub.24H.sub.24NOCl:HCl FAB 380.1 (27), 378.2 (80), 201.0 (100) 153 154 C.sub.25H.sub.27NO:HCl ESI 358.1 (15), 181.1 (100) Methyl 155 C.sub.19H.sub.23NO:HCl ESI 282.1 (100), 160.0 (84.5) Ethyl 156 C.sub.20H.sub.25NO:HCl ESI 296.1 (100), 160.0 (84) 157 158 C.sub.21H.sub.27NO:HCl ESI 310.1 (100), 160.1 (52) 159 160 C.sub.22H.sub.29NO:HCl ESI 324.1 (100), 160.1 (52) 161 162 C.sub.23H.sub.31NO:HCl Cl 338.3 (100), 266.20 (77), 160.35 (17) 163 164 C.sub.24H.sub.33NO:HCl ESI 352.1 (100), 160.0 (41.83) 165 166 C.sub.23H.sub.29NO:HCl ESI 336.1 (66.39), 160.0 (63), 159 (100) 167 168 C.sub.23H.sub.30N.sub.2O.sub.2:HCl ESI 367.1 (35), 190 (100) 169 170 C.sub.23H.sub.31NO:HCl ESI 338.1 (100), 161.0 (36), 160 (70)

[0144]

4TABLE 4 171 wherein X.sup.1, X.sup.2, Z.sup.1 and Z.sup.2 are as defined below X.sup.1 X.sup.2 Z.sup.1 Z.sup.2 Physical Data 172 NH.sub.2 173 174 C.sub.22H.sub.30N2:HCl ESI 323 (71), 306 (100), 160 (31) 175 176 177 178 C.sub.27H.sub.34N.sub.2S:HCl ESI 419 (23), 306 (100) 179 CH.sub.2NH.sub.2 180 181 C.sub.23H.sub.32N.sub.2:HCl ESI 337 (96), 174 (100), 160 (19) 182 183 184 185 C.sub.28H.sub.36N.sub.2S:HCl ESI 433 (100), 320 (65), 174 (58) 186 NH.sub.2 187 188 C.sub.25H.sub.28N.sub.2:HCl Cl 357 (47), 340 (24), 279 (8), 181 (100) 189 190 191 192 C.sub.28H.sub.36N.sub.2S:HCl ESI 433 (100), 320 (42), 174 (77) 193 194 195 196 C.sub.30H.sub.32N.sub.2S:HCl ESI 453 (24), 340 (27), 181 (100) 197 NH.sub.2 198 199 C.sub.26H.sub.30N.sub.2:HC- l ESI 371 (16) 195 (100) 200 201 202 203 C.sub.31H.sub.34N.sub.2S:HCl ESI 467 (25), 354 (30), 195 (100) 204 NH.sub.2 205 206 C.sub.24H.sub.24N.sub.2Cl.sub.2:HCl ESI 413 (18), 411 (26), 396 (39), 394 (51), 237 (69), 235 (100) 207 OH 208 209 C.sub.26H.sub.28BrNO:HCl 450 (12), 195.1 (100) 210 OH 211 212 C.sub.26H.sub.28FNO:HCl ESI 390.1 (9.6), 195.1 (100) 213 OH 214 215 C.sub.26H.sub.28ClNO:HCl 407.1 (5), 195.1 (100) 406.1 (16) 216 217 218 219 C.sub.31H.sub.32N.sub.2O- S ESI 481 (25), 195 (100) 220 221 222 223 C.sub.28H.sub.32N.sub.2O Cl 413 (31), 354 (8), 195 (100) 224 225 226 227 C.sub.29H.sub.28Cl.sub.2N.sub.2S:HCl ESI 509 (10), 507 (14), 396 (56), 394 (77), 237 (68), 235 (100) 228 OH 229 230 C.sub.25H.sub.26N.sub.2OCl.sub.2:HCl ESI 443 (42), 441 (56), 425 (31), 235 (100) 231 232 233 234 C.sub.30H.sub.36N.sub.2OS ESI 473 (39), 195 (100) 235 236 237 238 C.sub.33H.sub.34N.sub.2O ESI 475 (41), 195 (100) 239 240 241 242 C.sub.29H.sub.34N.sub.2O.sub.2ESI 443 (31), 195 (100) 243 244 245 246 C.sub.30H.sub.34N.sub.2O:HCl ESI 439 (17), 195 (100) 247 248 249 250 C.sub.34H.sub.42N.sub.2O:HCl ESI 495 (30), 195 (100) 251 252 253 254 C.sub.33H.sub.36N.sub.2:H- Cl ESI 461 (17), 354 (28), 195 (100) 255 256 257 258 C.sub.26H.sub.26N.sub.2OCl.sub.2ESI 455 (57), 453 (75), 396 (7), 394 (10), 237 (73), 235 (100) 259 OH 260 261 C.sub.29H.sub.31N.sub.2O.sub.3F.sub.3:HCl FAB 497.2 (507), 195.1 (100) 262 263 264 265 C.sub.24H.sub.32N.sub.2O:HCl ESI 365 (100), 219 (31), 160 (23) 266 267 268 269 C.sub.27H.sub.30N.sub.2O:HCl ESI 399 (60), 181 (100) 270 271 272 273 C.sub.29H.sub.34N.sub.2O:HCl ESI 427 (41), 195 (100) 274 275 276 277 C.sub.30H.sub.36N.sub.2O:HCl ESI 441 (47), 195 (100) 278 279 280 281 C.sub.28H.sub.32N.sub.3O:HCl ESI 428 (41), 195 (100) 282 OH 283 284 C.sub.27H.sub.30Cl.sub.2N.sub.2O FAB 469.2 (30), 235.1 (100) 285 OH 286 287 C.sub.28H.sub.32Cl.sub.2N.sub.2O.sub.3S Cl 549.15 (69), 548.15 (37), 547.15 (100) 288 OH 289 290 C.sub.28H.sub.32Cl.sub.2N.sub.2O.sub.3S FAB 549 (60), 547.1 (87) 291 OH 292 293 C.sub.27H.sub.30Cl.sub.2N.sub.2O.sub.3S FAB FAB 535 (78), 533 (100) 294 OH 295 296 C.sub.26H.sub.28Cl.sub.2N.- sub.2O.sub.3S FAB 523 (25) 297 OH 298 299 C.sub.30H.sub.35Cl.sub.2N.sub.3O FAB 524.40 (20), 330.3 (100) 300 OH 301 302 C.sub.36H.sub.39Cl.sub.2N.sub.3O FAB 600.5 (50), 330.4 (70) 303 OH 304 305 C.sub.25H.sub.27BrN.sub.2O FAB 453.2 (100), 245 (100) 306 OH 307 308 C.sub.25H.sub.26N.sub.2F.- sub.2O FAB 410.2 (25), 409.2 (100), 203.2 (50) 309 OH 310 311 C.sub.27H.sub.32N.sub.2O FAB 401.2 (95), 195 (100) 312 OH 313 314 C.sub.25H.sub.26Cl.sub.2N.sub.2O 441.1 (40), 235 (42), 157 (100) 315 OH 316 317 C.sub.25H.sub.27NO.sub.2Cl 374.25 (52), 356.2 (100), 178.25 (40), 160.25 (57) 318 OH 319 320 C.sub.25H.sub.25NO.sub.3FAB 388.23 (100), 210.8 (21), 168.28 (20) 321 OH 322 --(CH.sub.2).sub.4CH.sub.3 C.sub.24H.sub.34N.sub.2- O FAB 368.3 (30), 367.3 (100) 323 OH 324 --(CH.sub.2).sub.3CH.sub.3 C.sub.23H.sub.32N.sub.2O GAB 353.3 (100) 325 OH 326 327 C.sub.25H.sub.26N.sub.2F.sub.2O FAB 410.6 (35), 409.4 (98), 203.1 (65) 328 OH 329 330 C.sub.26H.sub.28Cl.sub.2N.sub.2O FAB 457.3 (70), 455.3 (100), 237 (30), 235.1 (52) 331 OH H 332 C.sub.19H.sub.23N.sub.2OCl FAB 331.2 (100), 333 OH 334 335 C.sub.27H.sub.32N.sub.2O FAB 402.1 (20.46), 401.1 (44.89), 195.1 (100) 336 OH 337 338 C.sub.25H.sub.27ClN.sub.2O ES 409.2 (55), 408.2 (45), 407.2 (95) 339 OH 340 341 C.sub.26H.sub.30N.sub.2O ES 387 (100) 342 OH 343 344 C.sub.25H.sub.25NO.sub.2Cl 372.15 (100), 354.15 (38), 195.15 (37) 345 OH 346 347 C.sub.26H.sub.29NO.sub.3FAB 404.3 (100), 227.1 (70) 348 OH H 349 C.sub.21H.sub.34N.sub.2O FAB 331.4 (100), 266.2 (20) 350 OH CH.sub.3(CH.sub.2).sub.3-- 351 C.sub.24H.sub.34N.sub.2O FAB 367.2 (100) 352 OH 353 354 C.sub.27H.sub.32N.sub.2O ES 401.1 (46), 195.1 (100) 355 OH 356 357 C.sub.31H.sub.38N.sub.2O- .sub.3ES 487 (100) 358 359 360 361 C.sub.27H.sub.29Cl.sub.- 2N.sub.3O ESI 484.2 (72), 482.2 (100), 237 (60), 235.0 (65) 362 363 364 365 C.sub.26H.sub.27Cl.sub.2N.sub.3O ESI 470.1 (80), 468.1 (100), 235 (78) 366 367 368 369 C.sub.26H.sub.27Cl.sub.2N- .sub.3O ESI 470.2 (78), 468.2 (90), 237.0 (65), 235 (100) 370 371 372 373 C.sub.29H.sub.35N.sub.3O ESI 442.3 (100) 374 OH 375 376 C.sub.25H.sub.26N.sub.2OBr.sub.2ESI 533 (55), 531 (100), 324.8 (30)

[0145]

5TABLE 5 377 wherein R.sup.11, Z.sup.1 and Z.sup.2 are as defined in the following table, wherein Ac is acetyl, Me is methyl and Et is ethyl: R.sup.11 CH(Z.sup.1)(Z.sup.2) Physical Data H Benzhydryl 378 Benzhydryl C.sub.32H.sub.37N.sub.3O:HCl Cl 480 (100), 167.25 (22) 379 Benzhydryl C.sub.29H.sub.31N.sub.3O.sub.3- :HCl Cl 470.15 (100), 167.25 (25) 380 Benzhydryl C.sub.29H.sub.31N.sub.3O:HCl Cl 438.20 (100), 167.25 (29) 381 Benzhydryl C.sub.30H.sub.33N.sub.3O:HCl FAB 452.3 (100), 167.0 (92) 382 Benzhydryl C.sub.29H.sub.33N.sub.3O:HCl Cl 440.20 (100), 167.25 (22) Me Benzhydryl C.sub.26H.sub.27N.sub.3O- :HCl Cl 398.15 (100), 167.25 (39) Ethyl Benzhydryl C.sub.27H.sub.29N.sub.3O:HCl Cl 412.15 (100), 167.25 (32) n propyl Benzhydryl C28H31N30:HCl ESI 426.1 (14), 167 (100) n butyl Benzhydryl C.sub.29H.sub.33N.sub.3O:HCl ESI 440.10 (100), 167.10 (33) isopropyl Benzhydryl C.sub.28H.sub.31N.sub.3O:H- Cl ESI 446.10 (28), 167. (100) 383 Benzhydryl C.sub.28H.sub.31N.sub.3O.sub.2:HCl ESI 442.10 (15), 167. (100) 384 Benzhydryl C.sub.27H.sub.29N.sub.3O.sub.2:HCl FAB 428.3 (65), 232.1 (57) H 385 C.sub.23H.sub.29N.sub.3O:HCl ESI 364.1 (58), 218.1 (100) 386 387 C.sub.25H.sub.33N.sub.3O.sub.2:- HCl ESI 408.1 (93), 262.1 (100) n pentyl Benzhydryl C.sub.30H.sub.35N.sub.3O:Hcl ESI 454.1 (46), 167.1 (100) n hexyl Benzhydryl C.sub.31H.sub.37N.sub.3O:HCl ESI 468.1 (26), 167 (100) 388 Benzhydryl C.sub.28H.sub.31N.sub.3O.sub.2:H- Cl ESI 442.10 (15), 167 (100) 389 390 C.sub.31H.sub.35N.sub.3O:HCl ESI 466.1 (44), 181.1 (100) 391 392 C.sub.29H.sub.33N.sub.3O.sub.2:HCl ESI 456.1 (48), 181.10 (100) H 393 C.sub.24H.sub.31N.sub.3O:HCl Cl 378.25 (100), 306.20 (22), 218.20 (24) H 394 C.sub.26H.sub.27N.sub.3O:HCl ESI 398.10 (44), 181.1 (100) 395 396 C.sub.27H.sub.33N.sub.3O- :HCl ESI 416.10 (36), 286.1 (39) 397 398 C.sub.30H.sub.31N.sub.3OCl.sub.2:HCl ESI 522.1 (79), 521.1 (48), 520 (100) 399 Benzhydryl C.sub.30H.sub.34N.sub.2O:HCl Cl 439.5 (100), 168.30 (20) H 400 C.sub.27H.sub.29N.sub.3O:H- Cl Cl 412.20 (32), 218.20 (42), 195.35 (100) 401 Benzhydryl C.sub.29H.sub.31N.sub.3O.sub.3:HCl ESI 470.1 (100), 167.1 (77.40) H 402 C.sub.25H.sub.23N.sub.3Cl.sub.2O:HCl ESI 452.1 (100), 235 (85) 403 404 C.sub.30H.sub.33N.sub.3O.su- b.2Cl.sub.2:HCl ESI 525.1 (39), 524.1 (82), 522 (100) 405 406 C.sub.28H.sub.29N.sub.3OCl.sub.2:HCl ESI 511.1 (46), 510 (100), 514 (20), 513.1 (33.50) 407 408 C.sub.32H.sub.29N.sub.3O:HCl ESI 482.1 (48), 195.1 (100) 409 410 C.sub.30H.sub.35N.sub.3O.sub.2:HCl ESI 471.1 (13), 470.1 (30), 195.1 (100) H 411 C.sub.25H.sub.24N.sub.3OCl:HCl FAB 420.2 (35), 418.2 (100), 201.0 (75) H 412 C.sub.25H.sub.24N.sub.3OF:HCl Elemental Analysis C: 68.12; H: 5.83; N: 9.48; Cl: 8.21; F;: 4.59 413 Benzhydryl C.sub.28H.sub.32N.sub.4O:HCl ESI 442.1 (39), 441.1 (92), 167 (100) 414 Benzhydryl C.sub.29H.sub.34N.sub.4O:HCl ESI 455.1 (100), 290.1 (14), 289.1 (57.88), 167 (94) 415 Benzhydryl C.sub.27H.sub.30N.sub.4O:HCl ESI 428.1 (42), 427.1 (97), 167 (100) 416 Benzhydryl C.sub.30H.sub.36N.sub.4O.HCl ESI 470.1 (48), 469 (100), 303 (93), 167 (82.75) 417 Benzhydryl C.sub.29H.sub.34N.sub.4O:HCl ESI 457.1 (13), 456 (57), 455.1 (100), 167 (72) 418 Benzhydryl C.sub.28H.sub.29N.sub.3O.sub.3FAB 456.2 (78), 167.0 (100) 419 420 C.sub.22H.sub.23Cl.sub.2N- .sub.3O.sub.3FAB 450.1 (27), 448.0 (100) H 421 C.sub.24H.sub.31N.sub.3O FAB 378.4 (100), 218.2 (30) 422 Benzhydryl C.sub.31H.sub.35N.sub.3O.sub.3498.2 (100), 167.1 (90) 423 Benzhydryl C.sub.29H.sub.31N.sub.3O.sub.3ESI 470.1 (100), 167.1 (55) 424 425 C.sub.23H.sub.27Cl.sub.2N.sub.3O ESI 434.1 (80), 432.1 (100) 426 427 C.sub.22H.sub.25Cl.sub.2N- .sub.3O.sub.2ESI 436.1 (58), 434.1 (100) 428 429 C.sub.23H.sub.27Cl.sub.2N.sub.3O ESI 434.1 (35), 432.1 (100) 430 431 C.sub.24H.sub.27Cl.sub.2N.sub.3O ESI 446.1 (77)), 444.1 (100) 432 433 C.sub.21H.sub.22Cl.sub.2N.sub.4O.sub.2FAB 435.1 (78), 433.1 (100)

[0146]

6 H 434 C.sub.24H.sub.31N.sub.3O FAB 378.4 (100), 218.2 (30) 435 Benzhydryl C.sub.31H.sub.35N.sub.3O.sub.34- 98.2 (100), 167.1 (90) 436 Benzhydryl C.sub.29H.sub.31N.sub.3O.sub.3ESI 470.1 (100), 167.1 (55) 437 438 C.sub.23H.sub.27Cl.sub.2N.sub.3O ESI 434.1 (80), 432.1 (100) 439 440 C.sub.22H.sub.25Cl.sub.2N.sub.3O.sub.2ESI 436.1 (58), 434.1 (100) 441 442 C.sub.23H.sub.27Cl.sub.2N.sub.3O ESI 434.1 (35), 432.1 (100) 443 444 C.sub.24H.sub.27Cl.sub.2N- .sub.3O ESI 446.1 (77)), 444.1 (100) 445 446 C.sub.21H.sub.22Cl.sub.2N.sub.4O.sub.2FAB 435.1 (78), 433.1 (100)

[0147]

7TABLE 6 447 wherein .sup.R11, Z.sup.1 and Z.sup.2 are as defined in the following table: R.sup.11 CH(Z.sup.1)(Z.sup.2) Physical Data H Benzhydryl 448 Benzhydryl C.sub.29H.sub.33N.sub.3O ESI: 440 (100) 167 (80) 449 Benzhydryl C.sub.29H.sub.31N.sub.3O ESI: 438 (100) 167 (99) 450 Benzhydryl C.sub.30H.sub.35N.sub.3O ESI: 454 (100) 167 (94) 451 Benzhydryl C.sub.29H.sub.29N.sub.3O ESI: 436 (99) 167 (100) CH3 Benzhydryl C.sub.27H.sub.29N.sub.3O FAB: 412 (100) 452 Benzhydryl C.sub.28H.sub.31N.sub.3O FAB: 426 (100) 453 Benzhydryl C.sub.30H.sub.33N.sub.3O.sub.3FAB: 484 (7) 261 (14) 167 (100) 454 Benzhydryl C.sub.30H.sub.33N.sub.3O ESI: 452 (100) 167 (60) 455 Benzhydryl C.sub.33H.sub.39N.sub.3O ESI: 494 (100) 167 (30) 456 Benzhydryl C.sub.31H.sub.35N.sub.3O.HCl FAB: 466 (100) 457 Benzhydryl C.sub.30H.sub.33N.sub.3O.sub.3.HCl FAB: 484 (100) 167 (41) 458 Benzhydryl C.sub.33H.sub.38N.sub.4O.sub.2.HCl FAB: 523 (100) H 459 C.sub.26H.sub.25N.sub.3F.sub.2O.HCl ESI: 434 (29) 203 (100) H 460 C.sub.26H.sub.25N.sub.3F.sub.2O.HCl Cl: 434 (100) H 461 C.sub.26H.sub.26N.sub.3ClO.HCl ESI: 432 (60) 201 (100) 462 Benzhydryl C.sub.29H.sub.33N.sub.3- O.HCl ESI: 440 (100) 167 (89) 463 Benzhydryl C.sub.33H.sub.37N.sub.3O.sub.2.HCl ESI: 508 (100) 167 (35) H 464 C.sub.24H.sub.30N.sub.3ClO.HCl ESI: 412 (100) 232 (92) H 465 C.sub.24H.sub.31N.sub.3O.HCl ESI: 378 (100) 232 (82) H 466 C.sub.21H.sub.24N.sub.3ClO.HCl ESI: 370 (86) 265 (100) H 467 C.sub.24H.sub.30N.sub.3FO.HCl ESI: 396 (31) 232 (100) H 468 C.sub.24H.sub.30N.sub.3BrO.HCl ESI: 456 (39) 232 (100) H 469 C.sub.25H.sub.33N.sub.3O.HCl ESI: 392 (73) 232 (100) H 470 C.sub.25H.sub.31N.sub.3O.HCl FAB: 390 (100) 471 472 C.sub.28H.sub.39N.sub.3O.HCl ESI: 434 (68) 288 (100) 473 474 C.sub.31H.sub.43N.sub.3O.HCl ESI: 474 (90) 328 (100) 475 476 C.sub.27H.sub.37N.sub.3O.HCl ESI: 420 (81) 274 (100) H 477 C.sub.27H.sub.29N.sub.3O.HCl FAB: 412 (25) 181 (100) 478 479 C.sub.29H.sub.41N.sub.3O.HCl ESI: 448 (97) 288 (100) 480 481 C.sub.27H.sub.37N.sub.3O.HCl ESI: 420 (62) 274 (100) 482 483 C.sub.28H.sub.39N.sub.3O.HCl ESI: 434 (66) 274 (100) H 484 C.sub.25H.sub.33N.sub.3O.HCl ESI: 392 (59), 232 (100) 485 486 C.sub.31H.sub.37N.sub.3O- .HCl ESI: 468 (100) 322 (92) 487 488 C.sub.28H.sub.39N.sub.3O.HCl ESI: 434 (100) 274 (86) H 489 C.sub.22H.sub.25N.sub.3O.sub.3.HCl Cl: 380 (100) 490 491 C.sub.32H.sub.29N.sub.3O.HCl ESI: 482 (100) 322 (78) H 492 C.sub.21H.sub.25N.sub.3O.sub.2.HCl FAB: 352 (100) 493 494 C.sub.33H.sub.41N.sub.3O.HCl FAB: 496 (100) H 495 C.sub.28H.sub.31N.sub.3O.HCl ESI: 426 (19) 195 (100) H 496 C.sub.26H.sub.26N.sub.3Cl.sub.2O.HCl ESI: 466 (79) 235 (100) H 497 C.sub.25H.sub.32N.sub.4O.sub.2.HCl ESI: 421 (40) 190 (100) H 498 C.sub.26H.sub.26N.sub.3FO.HCl FAB: 416 (100) H 499 C.sub.26H.sub.25N.sub.3Cl.sub.2O.HCl ESI: 466 (100) 235 (60) H 500 C.sub.26H.sub.26N.sub.3ClO.HCl ESI: 432 (48) 201 (100) H 501 C.sub.26H.sub.26N.sub.3F.sub.2O.HCl ESI: 434 (69) 203 (100) 502 503 C.sub.29H.sub.37N.sub.3O.HCl ESI: 444 (52) 326 (100) 504 505 C.sub.27H.sub.33N.sub.3O.HCl ESI: 416 (33) 300 (100) 506 507 C.sub.28H.sub.29N.sub.3Cl- .sub.2O.sub.2.HCl ESI: 510 (100) 508 509 C.sub.31H.sub.33N.sub.3Cl.sub.2O.sub.2.HCl ESI: 550 (100) 510 511 C.sub.30H.sub.33N.sub.3Cl.sub.2O.HCl ESI: 522 (100) 512 513 C.sub.31H.sub.35N.sub.3Cl.sub.2O.HCl ESI: 536 (100) 514 515 C.sub.29H.sub.29N.sub.3Cl.sub.2O.sub.3.HCl FAB: 538 (100) 516 517 C.sub.29H.sub.31N.sub.3Cl.sub.2O.sub.2.HCl ESI: 524 (100) 518 519 C.sub.32H.sub.36N.sub.4Cl.sub.2O.HCl FAB: 563 (100) 235 (55) 520 521 C.sub.27H.sub.37N.sub.3O.sub.2- .HCl FAB: 436 (100) 522 523 C.sub.24H.sub.31N.sub.3O.sub.3- .HCl FAB: 410 (100) 524 525 C.sub.25H.sub.33N.sub.3O.sub.2- .HCl FAB: 408 (100) 526 527 C.sub.26H.sub.35N.sub.3O.sub.2- .HCl FAB: 422 (100) 528 529 C.sub.29H.sub.32N.sub.4Cl.sub.- 2O.2HCl FAB: 523 (100) 530 531 C.sub.31H.sub.36N.sub.4Cl.s- ub.2O.2HCl FAB: 551 (100) 532 533 C.sub.30H.sub.34N.sub.4C- l.sub.2O.2HCl FAB: 537 (100) 534 535 C.sub.30H.sub.34N.sub.4Cl.sub.2O.2HCl FAB: 537 (100) 536 537 C.sub.29H.sub.38N.sub.4O.2HCl FAB: 459 (100) 538 539 C.sub.33H.sub.38N.sub.4Cl.sub.2O.2HCl ESI: 577 (56) 343 (100) 540 541 C.sub.33H.sub.38Cl.sub.2N.sub.4O ESI 577 (100), 343 (45) 542 543 C.sub.33H.sub.38Cl.sub.2N.sub.4O ESI 577 (100), 343 (45) 544 545 C.sub.34H.sub.40Cl.sub.2N.sub.4O ESI 591 (100), 357 (81) 546 547 C.sub.31H.sub.44N.sub.4O ESI 487 (100), 327 (51) 548 549 C.sub.33H.sub.39Cl.sub.2N.sub.5O ESI 592 (100), 358 (71), 235 (64) 550 551 C.sub.31H.sub.34Cl.sub.2N.sub.4O ESI 549 (100), 315 (52) 552 553 C.sub.31H.sub.42N.sub.4O ESI 487 (100), 329 (85) 554 555 C.sub.31H.sub.44N.sub.4O ESI 489 (100), 331 (99) 556 557 C.sub.33H.sub.38Cl.sub.2N.sub.4O.sub.2ESI 593 (100), 359 (45), 297 (45) 558 559 C.sub.34H.sub.40Cl.sub.2N.sub.4O ESI 591 (100), 357 (82), 235 (99) 560 561 C.sub.34H.sub.39Cl.sub.- 2N.sub.5O.sub.2ESI 620 (100), 386 (12), 235 (28) 562 563 C.sub.32H.sub.38Cl.sub.2N.sub.4O ESI 565 (100), 331 (56), 235 (52) 564 565 C.sub.32H.sub.36Cl.sub.2N.sub.4O.sub.2ESI 579 (100), 345 (51), 235 (76) 566 567 C.sub.33H.sub.38Cl.sub.2N.sub.4O.s- ub.2ESI 593 (100), 359 (63), 235 (90) 568 569 C.sub.35H.sub.42Cl.sub.2N.sub.4O ESI 605 (100), 371 (83) 570 571 C.sub.37H.sub.44Cl.sub.2N.sub.4O.sub.3FAB 663 (100), 234 (42) 572 573 C.sub.25H.sub.32Cl.sub.2N.sub.4O.sub.2ESI 491 (100), 333 (29) 574 575 C.sub.26H.sub.32Cl.sub.2N.sub.4O ESI 487 (100), 319 (31) 576 577 C.sub.26H.sub.34Cl.sub.2N.sub.4O ESI 489 (100), 331 (18) 578 579 C.sub.32H.sub.46N.sub.4O.- sub.2ESI 519 (91), 361 (100) 580 581 C.sub.25H.sub.32N.sub.4Cl.sub.2O ESI 475 (100), 317 (24), 159 (69) 582 583 C.sub.28H.sub.38N.sub.4O FAB 447.3 (100), 289.2 (25), 242.2 (36) 584 585 C.sub.29H.sub.40N.sub.4O FAB 461.2 (100), 303.2 (20) 586 587 C.sub.31H.sub.42N.sub.4O.sub.2E- SI 503.2 (100), 345.1 (95) 588 589 C.sub.30H.sub.42N.sub.4- O ESI 475.1 (99), 317.1 (100) 590 591 C.sub.30H.sub.42N.sub.4O ESI 475.1 (89), 317.1 (100) 592 593 C.sub.33H.sub.48N.sub.4O.sub.2ESI 519.1 (95), 361.1 (100) 256.1 (12) 594 595 C.sub.29H.sub.40N.sub.4O.sub.2ESI 477.1 (100), 319.1 (100) 596 597 C.sub.31H.sub.42N.sub.4O ESI 487.10 (100), 329.1 (88) 598 599 C.sub.28H.sub.38N.sub.4O FAB 447 (100), 391 (30), 317 (20) 600 601 C.sub.29H.sub.41N.sub.5O FAB 476 (100), 346 (40) 602 603 C.sub.29H.sub.40N.sub.4O FAB 461 (100), 391 (40), 167 (22) 604 605 C.sub.28H.sub.38N.sub.4O FAB 447 (100), 391 (60) 606 607 C.sub.31H.sub.42N.sub.4O ESI 487.1 (100), 329.1 (86) 608 609 C.sub.30H.sub.42N.sub.4O.sub.2ESI 491.1 (63), 333.10 (100) 610 611 C.sub.34H.sub.48N.sub.4O ESI 529.1 (79), 371.1 (100) 612 613 C.sub.31H.sub.45N.sub.5O ESI 504.1 (99), 358.1 (100) 614 615 C.sub.32H.sub.45N.sub.5O ESI 516.1 (92), 358.1 (100), 251.1 (28) 616 617 C.sub.25H.sub.32Cl.sub.2N- .sub.4O ESI 475 (100), 317 (16) 618 619 C.sub.24H.sub.30Cl.sub.2N.sub.4O ESI 461 (100), 303 (25) 620 621 C.sub.23H.sub.28Cl.sub.2N.sub.4O ESI 447 (100), 224 (64) 622 623 C.sub.26H.sub.34Cl.sub.2N.sub.4O ESI 489 (100), 331 (33) 624 625 C.sub.27H.sub.25F.sub.4N.sub.3O ESI 484 (100) 626 627 C.sub.26H.sub.32Cl.sub.2N.sub.4O ESI 487 (100), 433 (39) 628 629 C.sub.26H.sub.32Cl.sub.2N.sub.4O ESI 487 (100), 433 (46) 630 631 C.sub.31H.sub.44N.sub.4O ESI 489.1 (100), 331.1 (68) 632 633 C.sub.30H.sub.40N.sub.4O ESI 473.1 (100), 315.1 (55) 634 635 C.sub.32H.sub.46N.sub.4O ESI 503.1 (100), 345.1 (834) 636 637 C.sub.33H.sub.46N.sub.4O ESI 515.1 (73), 357.1 (100), 258.1 (9) 638 639 C.sub.32H.sub.40N.sub.4OS ESI 433.1 (22), 371.1 (83) 640 641 C.sub.32H.sub.44N.sub.4O ESI 501.1 (80), 343.1 (100), 251.1 (7), 159.1 (69) 642 643 C.sub.32H.sub.40N.sub.4O.sub.2ESI 513.1 (87), 433.1 (32), 355.1 (100), 275.1 (12) 644 645 C.sub.34H.sub.42N.sub.4O ESI 523.1 (91), 365.1 (100) 646 647 C.sub.32H.sub.38Cl.sub.2N.sub.4- O ESI 565 (100), 331 (56), 235 (52) H 648 C.sub.26H.sub.27N.sub.3O ESI 398 (100), 397 (4) 649 650 C.sub.26H.sub.34FN.sub.4O ESI 457 (92), 229 (100) 651 652 C.sub.29H.sub.40N.sub.4O ESI 461 (99), 231 (100) 653 654 C.sub.30H.sub.42N.sub.4O.sub.2ESI 491.1 (90), 331.1 (65), 61 (100) 655 656 C.sub.31H.sub.43ClN.sub.4O ESI 525.1 (42), 524.1 (53), 523.1 (65), 331.1 (60), 193.1 (100) 657 658 C.sub.28H.sub.38N.sub.4O.sub.2ESI 463 (100), 331 (38) 659 660 C.sub.29H.sub.40N.sub.4O.sub.3ESI 494 (100), 247 (95) 661 662 C.sub.26H.sub.34Cl.sub.2N.sub.4O ESI 491 (86) 489 (100), 245 (72) 663 664 C.sub.28H.sub.38N.sub.4O ESI 447 (88), 224 (100) 665 666 C.sub.26H.sub.35ClN.sub.4O ESI 455 (100), 228 (85) 667 668 C.sub.26H.sub.35ClN.sub.4O ESI 455 (100), 228 (60) 669 670 C.sub.24H.sub.31ClN.sub.4O ESI 427 (100), 303 (10), 214 (48) 671 672 C.sub.23H.sub.29BrN.sub- .4O ESI 459 (99), 457 (100), 230 (45) 673 674 C.sub.26H.sub.35BrN.sub.4O FAB 501 (99), 499 (100), 235 (40) 675 676 C.sub.26H.sub.35BrN.sub.4O FAB 501 (99), 499 (100), 171 (28) 677 678 C.sub.26H.sub.35BrN.sub.4O FAB 499 (99), 497 (100), 171 (20) 679 680 C.sub.26H.sub.33FN.sub.4O FAB 439 (100), 220 (7) 681 682 C.sub.26H.sub.35FN.sub.4O FAB 439 (100), 220 (40) H 683 C.sub.21H.sub.25N.sub.3O FAB 336 (100), 171 (100) 684 685 C.sub.23H.sub.29FN.sub.4O FAB 397 (100), 242 (100) 686 687 C24H31FN4O FAB 411 (100), 242 (90) H 688 C.sub.19H.sub.27N.sub.3O FAB 314 (100), 247 (7) 689 690 C.sub.29H.sub.39FN.sub.4O ESI 479.1 (100), 424.1 (31), 331.1 (43), 203.1 (61) 691 692 C.sub.29H.sub.39FN.sub.4O ESI 479.1 (100), 424.1 (11), 331.1 (39), 203.1 (38) 693 694 C.sub.29H.sub.39ClN.sub.4O ESI 495.1 (70), 345.1 (37), 65.0 (100) H 695 C.sub.24H.sub.25N.sub.3O ESI 372.1 (100), 200.1 (4) 696 697 C.sub.30H.sub.38N.sub.4O ESI 471.1 (100), 331.1 (36) H 698 C.sub.20H.sub.29N.sub.3- O ESI 328 (100) H 699 C.sub.21H.sub.31N.sub.3O ESI 342 (100) H 700 C.sub.22H.sub.33N.sub.3O ESI 356.1 (100), 171.1 (5) 701 702 C.sub.24H.sub.37N.sub.3O ESI 370.1 (100), 247.1 (20)

[0148]

8TABLE 7 compounds of the formula shown, wherein Ph is phenyl Compound Physical Data 703 C.sub.25H.sub.27NO.HCl ESI 358.1 (44.50), 167.0 (100) 704 C.sub.25H.sub.27NO.HCl FAB 358.2 (100), 232.1 (23.70) 705 C.sub.27H.sub.29NO.HCl Cl 348.20 (58), 366.25 (48) 706 C.sub.26H.sub.27NO.HCl FAB 370.1 (100), 167.0 (100) 707 C.sub.28H.sub.31NO.HCl FAB 398.1 (100), 195.1 (98) 708 C.sub.26H.sub.25NOCl.sub.2.HCl FAB 440.1 (65), 438.0 (100), 236.9 (38), 234.9 (60) 709 C.sub.25H.sub.23NO.sub.2.HCl FAB 370.2 (100), 292.2 (18) 710 C.sub.25H.sub.25NO.HCl ESI 356.1 (14.77), 168 (20.98), 167 (100) 711 C.sub.26H.sub.27N.HCl ESI 354.1 (55.06), 167.1 (100), 712 C.sub.26H.sub.25N.HCl ESI 352.1 (41.94), 167.1 (100) 713 C.sub.25H.sub.25NO.sub.2.HCl ESI 372.1 (15.42), 167 (100) 714 C.sub.26H.sub.27NO.sub.2.HCl Cl 386.10 (73), 354.05 (88), 167.25 (100), 715 C.sub.25H.sub.24N.sub.3Cl.HCl Cl 402 (55), 366.20 (77), 250.15 (34), 167.25 (100), 716 C.sub.24H.sub.27N.sub.3O.HCl Cl 398.05 (100), 232.10 (19), 167.25 (74), 717 C.sub.25H.sub.26N.sub.2Cl 356.2 (26) 355.2 (100), 167 (28) 718 C.sub.26H.sub.25N.sub.3O.sub.2:HCl ESI 412 (20), 167.1 (100) 719 C.sub.26H.sub.25F.sub.2NO ESI 406.1 (100), 203.1 (89.11) 720 C.sub.26H.sub.26ClNO ESI 406.1 (34.35), 404.10 (81.42), 201.10 (100) 721 C.sub.27H.sub.29NO ESI 384.1 (54.52), 181 (100) 722 C.sub.27H.sub.28Cl.sub.2N.sub.2O ESI 399.1 (13.87), 398.1 (56.98), 397.1 (100) 723 C.sub.26H.sub.26FNO ESI 388.2 (90), 185.0 (100) 724 C.sub.29H.sub.34N.sub.2O ESI 429.1 (8.33) 428.10 (36.55), 427.1 (74.28) 725 C.sub.24H.sub.31NO FAB 350.4 (100), 204.3 (18) 726 C.sub.25H.sub.33NO FAB 364.40 (100), 204.3 (20) 727 C.sub.27H.sub.28F.sub.2N.sub.2O FAB 435.2 (100), 203.1 (55) 728 C.sub.26H.sub.26BrNO FAB 448.1 (100), 247.0 (58), 166.1 (38) 729 C.sub.26H.sub.25Br.sub.2NO ESI 528 (100), 325.1 (54.35) 730 C.sub.27H.sub.28Br.sub.2N.sub.2O FAB 560 (20), 557 (100), 324.8 (60) 731 C.sub.27H.sub.27NO.sub.3Cl 414.20 (100), 396.20 (34), 211.15 (47), 186.15 (30) 732 C.sub.19H.sub.19N.sub.3O ESI 306.1 (100) 733 C.sub.21H.sub.29N.sub.3O ESI 341.1 (30.27), 340.1 (100) 734 C.sub.23H.sub.33N.sub.3O ESI 369.1 (39.66), 368.1 (100) 735 C.sub.28H.sub.31NO.sub.3ES- I 430.1 (100), 204.1 (52.46) 736 C.sub.28H.sub.27NO.sub.3F- AB 426.3 (100), 225.0 (18), 195 (18) 737 C.sub.30H.sub.35NO ESI 426.1 (100), 408 (11), 223.0 (43) 738 C.sub.28H.sub.31NO.sub.3ESI 430.1 (100), 412.1 (11.0) 227.0 (24.2) 739 C.sub.25H.sub.33NO ESI 364.10 (100), 346 (7) 740 C.sub.21H.sub.23NO.sub.3FAB 338.1 (100) 741 C.sub.21H.sub.21F.sub.4NO.sub.2ESI 396.1 (100) 742 C.sub.22H.sub.27NO.sub.3Cl 354 (100), 336 (78) 743 C.sub.21H.sub.21F.sub.4NO ESI 380.1 (100)

[0149]

9TABLE 8 744 wherein Z.sup.1 and Z.sup.2 are as defined in the following table: Z.sup.1 Z.sup.2 Physical Data 745 746 C.sub.25H.sub.24N.sub.2O.HCl FAB 369.2 (75), 167.1 (100) 747 748 C.sub.27H.sub.28N.sub.2O.HCl FAB 397.2 (40), 195.1 (100) 749 750 C.sub.26H.sub.26N.sub.2O.HCl ESI 383.1 (11.64), 181.1 (100) 751 752 C.sub.25H.sub.24N.sub.2Cl.sub.2O.HCl ESI 441.1 (11.05) 440.1 (15.61), 439.1 (48.02), 438.1 (23.94), 437.1 (64.05), 235.1 (100) 753 754 C.sub.25H.sub.25N.sub.2OF.sub.2.HCl FAB 405.2 (100), 203.1 (76) 755 756 C.sub.25H.sub.23ClN.sub.2O:HCl FAB 403.1 (100) 201 (70)

ASSAYS

Nociceptin binding assay

[0150] CHO cell membrane preparation expressing the ORL-1 receptor (2 mg) was incubated with varying concentrations of [.sup.125 I][Tyr.sup.14]nociceptin (3-500 pM) in a buffer containing 50 mM HEPES (pH 7.4), 10 mM NaCl, 1 mM MgCl.sub.2, 2.5 mM CaCl.sub.2, 1 mg/ml bovine serum albumin and 0.025% bacitracin. In a number of studies, assays were carried out in buffer 50 mM tris-HCl (pH 7.4), 1 mg/ml bovine serum alumbin and 0.025% bacitracin. Samples were incubated for 1 h at room temperature (22.degree. C.). Radiolabelled ligand bound to the membrane was harvested over GF/B filters presoaked in 0.1% polyethyleneimine using a Brandell cell harvester and washed five times with 5 ml cold distilled water. Nonspecific binding was determined in parallel by similar assays performed in the presence of 1 .mu.M nociceptin. All assay points were performed in duplicates of total and non-specific binding.

[0151] Calculations of Ki were made using methods well known in the art.

[0152] For compounds of this invention, Ki values were determined to be in the range of 0.6 to 3000 nM, with compounds having a Ki value less than 10 nM being preferred. Ki values for representative compounds of the invention are as follows:

10 Compounds Ki (nM) 757 13 758 200 759 60 760 0.6 761 2.3 762 77 763 18 764 3,000

[0153] Using the procedures described the European Journal of Pharmacology, 336 (1997), p. 233-242, the agonist activity of compounds of the invention was determined.

11 % Stimulation of [.sup.35S]-GTP.gamma.S binding to hu- man ORL-1 re- ceptor @ Compound 100 nM 765 77 766 43 767 59 768 102 769 71 770 43 771 15 772 95 773 107 774 120 775 70 776 101

EXAMPLE 12

[0154] Cough Studies

[0155] The effects of nociceptin agonist Compound A (0.3 - 10 mg/kg, p.o.) and Compound B (10 mg/kg, p.o.) 777

[0156] were evaluated in capsaicin-induced cough in the guinea pig according to the methods of Bolser et al. British Journal of Pharmacology (1995) 114, 735-738. This model is a widely used method to evaluate the activity of potential antitussive drugs. Overnight fasted male Hartley guinea pigs (350-450 g, Charles River, Bloomington, Mass., USA) were placed in a 12".times.14" transparent chamber. The animals were exposed to aerosolized capsaicin (300 .mu.M, for 4 min) produced by a jet nebulizer (Puritan Bennett, Lenexa, Kans., USA) to elicit the cough reflex. Each guinea pig was exposed only once to capsaicin. The number of coughs were detected by a microphone placed in the chamber and verified by a trained observer. The signal from the microphone was relayed to a polygraph which provided a record of the number of coughs. Either vehicle (methylcellulose 1 ml/kg, p.o.) or Compound A or Compound B were given 2 hours before aerosolized capsaicin. The antitussive activity of baclofen (3 mg/kg, p.o.) was also tested as a positive control. The results are summarized in the bar graph in FIG. 1.

EXAMPLE 13

[0157] Respiratory Measurements

[0158] Studies were performed on male Hartley guinea pigs ranging in weight from 450 to 550 g. The animals were fasted overnight but given water and libitum. The guinea pigs were placed in a whole-body, head-out plethysmograph and a rubber collar was placed over the animal's head to provide an airtight seal between the guinea pig and the plethysmograph. Airflow was measured as a differential pressure across a wire mesh screen which covered a 1-in hole in the wall of the plethysmograph. The airflow signal was integrated to a signal proportional to volume using a preamplifier circuit and a pulmonary function computer (Buxco Electronics, Sharon, Conn., model XA). A head chamber was attached to the plethysmograph and air from a compressed gas source (21%O.sub.2, balance N.sub.2) was circulated through the head chamber for the duration of study. All respiratory measurements were made while the guinea pigs breathed this circulating air.

[0159] The volume signal from each animal was fed into a data acquisition/analysis system (Buxco Electronics, model XA) that calculated tidal volume and respiratory rate on a breath-by-breath basis. These signals were visually displayed on a monitor. Tidal volume and respiratory rate were recorded as an average value every minute.

[0160] The guinea pigs were allowed to equilibrate in the plethysmograph for 30 min. Baseline measurements were obtained at the end of this 30 min period. The guinea pigs were then removed from the plethysmograph and orally dosed with Compound A from Example 12 (10 mg/kg, p.o.), baclofen (3 mg/kg, p.o.) or a methylcellulose vehicle placebo (2 ml/kg, p.o.). Immediately after dosing, the guinea pigs were placed into the plethysmograph, the head chamber and circulating air were reconnected and respiratory variables were measured at 30, 60, 90 and 120 min post treatment. This study was performed under ACUC protocol #960103.

[0161] Data Analysis

[0162] The data for tidal volume (V.sub.T), respiratory rate (f) and minute volume (MV=VT.times.f) were made for the baseline condition and at each time point after the drug or vehicle. The results are expressed as the mean .+-. SEM. The results are shown in FIGS. 2A, 2B and 2C. FIG. 2A shows the change in Tidal Volume, FIG. 2B shows the change in Tidal Volume and FIG. 2C shows the change in frequency of breaths.

[0163] We have surprisingly discovered that nociceptin receptor ORL-1 agonists exhibit anti-tussive activity, making them useful for suppressing coughing in mammals. Non-limitative examples of nociceptin receptor ORL-1 agonists include the nociceptin receptor ORL-1 agonist compounds described herein. For mammals treated for coughing, the nociceptin receptor ORL-1 agonists may be administered along with one or more additional agents for treating cough, allergy or asthma symptoms selected from antihistamines, 5-lipoxygenase inhibitors, leukotriene inhibitors, H.sub.3 inhibitors, .beta.-adrenergic receptor agonists, xanthine derivatives, (.alpha.-adrenergic receptor agonists, mast cell stabilizers, anti-tussives, expectorants, NK.sub.1, NK.sub.2 and NK.sub.3 tachykinin receptor antagonists, and GABA.sub.B agonists.

[0164] Non limitative examples of antihistamines include: astemizole, azatadine, azelastine, acrivastine, brompheniramine, certirizine, chlorpheniramine, clemastine, cyclizine, carebastine, cyproheptadine, carbinoxamine, descarboethoxyloratadine (also known as SCH-34117), doxylamine, dimethindene, ebastine, epinastine, efletirizine, fexofenadine, hydroxyzine, ketotifen, loratadine, levocabastine, mizolastine, equitazine, mianserin, noberastine, meclizine, norastemizole, picumast, pyrilamine, promethazine, terfenadine, tripelennamine, temelastine, trimeprazine and triprolidine.

[0165] Non-limitative examples of histamine H.sub.3 receptor antagonists include: thioperamide, impromidine, burimamide, clobenpropit, impentamine, mifetidine, S-sopromidine, R-sopromidine, SKF-91486, GR-175737, GT-2016, UCL-1199 and clozapine. Other compounds can readily be evaluated to determine activity at H.sub.3 receptors by known methods, including the guinea pig brain membrane assay and the guinea pig neuronal ileum contraction assay, both of which are described in U.S. Pat. No. 5,352,707. Another useful assay utilizes rat brain membranes and is described by West et al., "Identification of Two-H.sub.3-Histamine Receptor Subtypes," Molecular Pharmacology, Vol. 38, pages 610-613 (1990).

[0166] The term "leukotriene inhibitor" includes any agent or compound that inhibits, restrains, retards or otherwise interacts with the action or activity of leukotrienes. Non-limitative examples of leukotriene inhibitors include montelukast [R-(E)]-1[[[1-[3-[2-(7-chloro-2-quinolinyl- )-ethenyl] phenyl]-3[2-(1 -hydroxy-1-methylethyl)phenyl]propyl]thio]methyl- ]cyclo-propaneacetic acid and its sodium salt, described in EP 0 480 717; 1-(((R)-(3-(2-(6,7-difluoro-2-quinolinyl)ethenyl)phenyl)-3-(2-(2-hydroxy-- 2-propyl) phenyl)thio) methylcyclopropaneacetic acid, and its sodium salt, described in WO 97/28797 and U.S. Pat. No. 5,270,324; 1-(((1(R)-3(3-(2-(2, 3-dichlorothieno[3,2-b]pyridin-5-yl)-(E)-ethenyl)phe- nyl)-3-(2-(1 -hydroxy-1 -methylethyl)phenyl) propyl)thio) methyl)cyclopropaneacetic acid, and its sodium salt, described in WO 97/28797 and U.S. Pat. No. 5,472,964; praniukast, N-[4-oxo-2-(1 H-tetrazol-5-yl)-4 H-1-benzopyran-8-yl ]-p-(4-phenylbutoxy) benzamide) described in WO 97/28797 and EP 173,516; zafirlukast, (cyclopentyl-3-[2-methoxy-4-[(o-tolylsulfonyl) carbamoyl]benzyl]-1-methyl- indole-5-carbamate) described in WO 97/28797 and EP 199,543; and [2-[[2(4-tert-butyl-2-thiazolyl)-5-benzofuranyl ] oxymethyl]phenyl]acetic acid, described in U.S. Pat. No. 5,296,495 and Japanese patent JP08325265 A.

[0167] The term "5-lipoxygenase inhibitor" or "5-LO inhibitor" includes any agent or compound that inhibits, restrains, retards or otherwise interacts with the enzymatic action of 5-lipoxygenase. Non-limitative examples of 5-lipoxygenase inhibitors include zileuton, docebenone, piripost, ICI-D2318, and ABT 761.

[0168] Non-limitative examples of .beta.-adrenergic receptor agonists include: albuterol, bitolterol, isoetharine, mataproterenol, perbuterol, salmeterol, terbutaline, isoproterenol, ephedrine and epinephrine.

[0169] A non-limitative example of a xanthine derivative is theophylline.

[0170] Non-limitative examples of .alpha.-adrenergic receptor agonists include arylalkylamines, (e.g., phenylpropanolamine and pseudephedrine), imidazoles (e.g., naphazoline, oxymetazoline, tetrahydrozoline, and xylometazoline), and cycloalkylamines (e.g., propylhexedrine).

[0171] A non-limitative example of a mast cell stabilizer is nedocromil sodium.

[0172] Non-limitative examples of anti-tussive agents include codeine, dextromethorphan, benzonatate, chlophedianol, and noscapine.

[0173] A non-limitative example of an expectorant is guaifenesin.

[0174] Non-limitative examples of NK.sub.1, NK.sub.2 and NK.sub.3 tachykinin receptor antagonists include CP-99,994 and SR 48968.

[0175] Non-limitatve examples of GABA.sub.B agonists include baclofen and 3-aminopropyl-phosphinic acid.

[0176] For preparing pharmaceutical compositions from the compounds described by this invention, inert, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, dispersible granules, capsules, cachets and suppositories. The powders and tablets may be comprised of from about 5 to about 70 percent active ingredient. Suitable solid carriers are known in the art, e.g. magnesium carbonate, magnesium stearate, talc, sugar, lactose. Tablets, powders, cachets and capsules can be used as solid dosage forms suitable for oral administration.

[0177] For preparing suppositories, a low melting wax such as a mixture of fatty acid glycerides or cocoa butter is first melted, and the active ingredient is dispersed homogeneously therein as by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool and thereby solidify.

[0178] Liquid form preparations include solutions, suspensions and emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral injection.

[0179] Liquid form preparations may also include solutions for intranasal administration.

[0180] Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier, such as an inert compressed gas.

[0181] Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration. Such liquid forms include solutions, suspensions and emulsions.

[0182] The compounds of the invention may also be deliverable transdermally. The transdermal compositions can take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.

[0183] Preferably the compound is administered orally.

[0184] Preferably, the pharmaceutical preparation is in unit dosage form. In such form, the preparation is subdivided into unit doses containing appropriate quantities of the active component, e.g., an effective amount to achieve the desired purpose.

[0185] The quantity of active compound in a unit dose of preparation may be varied or adjusted from about 0.1 mg to 1000 mg, more preferably from about 1 mg. to 300 mg, according to the particular application.

[0186] The actual dosage employed may be varied depending upon the requirements of the patient and the severity of the condition being treated. Determination of the proper dosage for a particular situation is within the skill of the art. Generally, treatment is initiated with smaller dosages which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day if desired.

[0187] The amount and frequency of administration of the compounds of the invention and the pharmaceutically acceptable salts thereof will be regulated according to the judgment of the attending clinician considering such factors as age, condition and size of the patient as well as severity of the symptoms being treated. A typical recommended dosage regimen is oral administration of from 10 mg to 2000 mg/day preferably 10 to 1000 mg/day, in two to four divided doses to provide relief from pain, anxiety, depression, asthma or alcohol abuse. The compounds are non-toxic when administered within this dosage range.

[0188] For treating cough, the amount of nociceptin receptor ORL-1 agonist in a unit dose is preferably from about 0.1 mg to 1000 mg, more preferably, from about 1 mg to 300 mg. A typical recommended dosage regimen is oral administration of from 1 mg to 2000 mg/day, preferably 1 to 1000 mg/day, in two to four divided doses. When treating coughing, the nociceptin receptor ORL-1 agonist may be administered with one or more additional agents for treating cough, allergy or asthma symptoms selected from the group consisting of: antihistamines, 5-lipoxygenase inhibitors, leukotriene inhibitors, H.sub.3 inhibitors, .beta.-adrenergic receptor agonists, xanthine derivatives, .alpha.-adrenergic receptor agonists, mast cell stabilizers, anti-tussives, expectorants, NK.sub.1, NK.sub.2 and NK.sub.3 tachykinin receptor antagonists, and GABA.sub.B agonists. The nociceptin receptor ORL-1 agonist and the additional agents are preferably administered in a combined dosage form (e.g., a single tablet), although they can be administered separately. The additional agents are administered in amounts effective to provide relief from cough, allergy or asthma symptoms, preferably from about 0.1 mg to 1000 mg, more preferably from about 1 mg to 300 mg per unit dose. A typical recommended dosage regimen of the additional agent is from 1 mg to 2000 mg/day, preferably 1 to 1000 mg/day, in two to four divided doses.

[0189] The following are examples of pharmaceutical dosage forms which contain a compound of the invention. The scope of the invention in its pharmaceutical composition aspect is not to be limited by the examples provided.

12 Pharmaceutical Dosage Form Examples EXAMPLE A-Tablets No. Ingredients mg/tablet mg/tablet 1. Active compound 100 500 2. Lactose USP 122 113 3. Corn Starch, Food Grade, as a 30 40 10% paste in Purified Water 4. Corn Starch, Food Grade 45 40 5. Magnesium Stearate 3 7 Total 300 700

Method of Manufacture

[0190] Mix Item Nos. 1 and 2 in a suitable mixer for 10-15 minutes. Granulate the mixture with Item No. 3. Mill the damp granules through a coarse screen (e.g., 1/4", 0.63 cm) if necessary. Dry the damp granules. Screen the dried granules if necessary and mix with Item No. 4 and mix for 10-15 minutes. Add Item No. 5 and mix for 1-3 minutes. Compress the mixture to appropriate size and weigh on a suitable tablet machine.

13 EXAMPLE B-Capsules No. Ingredient mg/capsule mg/capsule 1. Active compound 100 500 2. Lactose USP 106 123 3. Corn Starch, Food Grade 40 70 4. Magnesium Stearate NF 7 7 Total 253 700

[0191] Method of Manufacture

[0192] Mix Item Nos. 1, 2 and 3 in a suitable blender for 10-15 minutes. Add Item No. 4 and mix for 1-3 minutes. Fill the mixture into suitable two-piece hard gelatin capsules on a suitable encapsulating machine.

[0193] While the present invention has been described in conjunction with the specific embodiments set forth above, many alternatives, modifications and variations thereof will be apparent to those of ordinary skill in the art. All such alternatives, modifications and variations are intended to fall within the spirit and scope of the present invention.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed