Clamping heat sinks to circuit boards over processors

Bookhardt, Gary L. ;   et al.

Patent Application Summary

U.S. patent application number 09/736987 was filed with the patent office on 2001-05-31 for clamping heat sinks to circuit boards over processors. Invention is credited to Bookhardt, Gary L., McEuen, Shawn S..

Application Number20010002160 09/736987
Document ID /
Family ID23786690
Filed Date2001-05-31

United States Patent Application 20010002160
Kind Code A1
Bookhardt, Gary L. ;   et al. May 31, 2001

Clamping heat sinks to circuit boards over processors

Abstract

A heat sink may be spring strapped onto a socketed processor using clips that engage the spring strap and that are pre-positioned on the circuit board. The clips may be C-shaped and may include an upper spring arm portion, a vertical portion, and a base which may be surface mounted to the circuit board. The upper spring arm of the C-shaped clip then releasably engages the spring strap to clamp the heat sink firmly onto the socketed processor.


Inventors: Bookhardt, Gary L.; (Aloha, OR) ; McEuen, Shawn S.; (Hillsboro, OR)
Correspondence Address:
    TROP PRUNER & HU, PC
    8554 KATY FREEWAY
    SUITE 100
    HOUSTON
    TX
    77024
    US
Family ID: 23786690
Appl. No.: 09/736987
Filed: December 14, 2000

Related U.S. Patent Documents

Application Number Filing Date Patent Number
09736987 Dec 14, 2000
09450080 Nov 29, 1999

Current U.S. Class: 361/704 ; 257/E23.086
Current CPC Class: H01L 2924/00 20130101; H05K 3/305 20130101; H01L 2924/0002 20130101; H05K 3/301 20130101; Y10T 24/44026 20150115; H01L 23/4093 20130101; H01L 2924/0002 20130101; Y10T 29/4913 20150115
Class at Publication: 361/704
International Class: H05K 007/20

Claims



What is claimed is:

1. A method comprising: securing at least two clips to a circuit board; and clamping a heat sink over a processor on said circuit board using said clips.

2. The method of claim 1 wherein securing at least two clips to a circuit board includes securing said clips to said circuit board using surface mount techniques.

3. The method of claim 2 wherein securing at least two clips to a circuit board includes using a pick and place machine to position said clips on said circuit board.

4. The method of claim 3 wherein securing at least two clips to a circuit board includes securing a plurality of clips to a tape.

5. The method of claim 4 wherein securing at least two clips to a circuit board includes removing said clips from said tape and positioning said clips on said circuit board using a pick and place machine.

6. An electronic device comprising: a circuit board; a processor socket secured to said circuit board; a processor mounted in said socket; a heat sink positioned over said socket and said processor; at least two clips mounted on said circuit board on two opposed sides of said heat sink; and a spring clamp extending from a clip on one side of said heat sink to a clip on the other side of said heat sink so as to resiliently clamp said heat sink onto said processor.

7. The device of claim 6 wherein said clips are C-shaped.

8. The device of claim 6 wherein said clips are secured to said circuit board using surface mount techniques.

9. The device of claim 8 wherein each clip is C-shaped including a base which is secured to said circuit board by surface mount techniques and a cantilevered leaf spring arm, which engages said spring clamp, said arm coupled to said base.

10. The device of claim 9 wherein said spring clamp includes an opening and said cantilevered leaf spring arm including a downwardly directed catch, said catch releasably engagable by said opening.

11. A system for clamping a heat sink over a socketed processor on a circuit board comprising: a spring clamp having at least two opposed spring arms, each spring arm including an opening; and a pair of C-shaped clips, each clip including a cantilevered spring arm, said spring arm including a catch, said catch releasably engagable in said opening, said clips including a base that may be secured to a circuit board.

12. The system of claim 11 wherein each clip includes a vertical portion coupling said base and said cantilevered spring arm.

13. The system of claim 12 wherein said catch is a downwardly turned portion of the end of said cantilevered spring arm.

14. The system of claim 13 wherein said base and said cantilevered spring arm are substantially planar and are substantially parallel to one another.

15. A clip for strapping heat sinks onto processors on circuit boards comprising: a substantially planar base; an upstanding portion coupled to said base; a cantilevered leaf spring coupled to said upstanding portion; and a catch on said spring to releasably engage a heat sink clamp.

16. The clip of claim 15 wherein said catch is a downwardly turned end portion of said cantilevered leaf spring.

17. The clip of claim 16 wherein said spring and said base are both substantially planar and are substantially parallel to one another.

18. The clip of claim 16 wherein said spring has a pair of opposed edges, one edge coupled to said portion and the other edge forming said catch.

19. The clip of claim 18 wherein said base has a pair of opposed edges, one of said edges coupled to said spring.

20. The clip of claim 15 being generally C-shaped.
Description



BACKGROUND

[0001] This invention relates generally to techniques for securing heat sinks to processors.

[0002] Conventionally, a processor is mounted in a socket on a motherboard such as a printed circuit board including a plurality of integrated circuits secured thereto. The integrated circuits may be electrically coupled by conductive lines printed on the circuit board. Heat dissipation affects the operation of the processor and thus it is desirable to have a highly effective and relatively compact heat sink for the processor.

[0003] Commonly clips are provided on the socket for the processor. Straps that connect to those clips are used to clamp a heat sink over the processor contained in the socket. This technique provides a firm spring attachment between the heat sink and the processor and is effective in dissipating heat from the processor.

[0004] However many available sockets do not include the clips for spring strapping the heat sink onto the socket. While it would be desired to use a spring clip strapping technique, there is no way to attach the strap so as to secure the heat sink over the processor.

[0005] Thus there is a need for a way to spring strap heat sinks onto processors secured in sockets without strap attaching clips.

SUMMARY

[0006] In accordance with one aspect, a method includes securing at least two clips to a circuit board. A heat sink is clamped over a processor on the circuit board using the clips.

[0007] Other aspects are set forth in the accompanying detailed description and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 a perspective view of a socketed processor secured to a circuit board, in accordance with one embodiment of the present invention;

[0009] FIG. 2 is a perspective view of a heat sink positioned atop the socketed processor shown in FIG. 1, in accordance with one embodiment of the present invention;

[0010] FIG. 3 is a perspective view of a heat sink clamped over a socketed processor, in accordance with one embodiment of the present invention;

[0011] FIG. 4 is a partial, enlarged cross-sectional view taken generally along the line 4-4 in FIG. 3;

[0012] FIGS. 4a, 4b are partial, enlarged cross-sectional view showing the sequence of attaching a spring loaded strap to a clip in accordance with one embodiment of the present invention;

[0013] FIG. 5 is a top plan view of a tape containing a plurality of clips in accordance with one embodiment of the present invention;

[0014] FIG. 6 is a cross-sectional view taken generally along the line 6-6 in FIG. 5 as the clip is being picked up by a pick and place machine; and

[0015] FIG. 7 is a cross-sectional view of one embodiment of the present invention showing the placement of a clip on a circuit board.

DETAILED DESCRIPTION

[0016] Referring to FIG. 1, a processor 11 is mounted in a socket 12 which is secured to a circuit board 14 such as a printed circuit board. The socket 12 may provide electrical connections between the processor 11 and the circuit board 14. A plurality of C-shaped clips 10 are secured to the circuit board 14 in an opposed relationship adjacent the socket 12. A screw attachment 16 may be utilized to fix the socket 12 on the circuit board 14. In one embodiment of the present invention, the circuit board 14 is a motherboard.

[0017] As shown in FIG. 2, a heat sink 18 may be positioned atop the socket 12 over the socketed processor 11. Any of variety of heat sinks may be utilized. The heat sink shown in FIG. 2 is a so-called low profile heat sink. However other heat sinks may be utilized including those which include upstanding heat dissipating fins.

[0018] The heat sink 18 may be clamped over the socketed processor 11 using a spring loaded clamp 20, as shown in FIG. 3. The clamp 20 may include a bowed, central leaf spring portion 28 and a pair of spring arms 24 and 26 which are opposed to a spring arm 22. The spring arm 22 engages the clip 10c, the spring arm 26 engages the clip 10b, and the spring arm 24 engages the clip 10a. While an embodiment using three spring arms 22, 24, and 26 is illustrated, more or fewer spring arms may be utilized in various embodiments.

[0019] The spring loaded strap 20 provides a spring force which securely presses the heat sink 18 into physical contact with the socketed processor 11. In this regard, the strap 20 is advantageously made of a highly resilient material such as spring steel. Likewise, the C-shaped clips 10 may provide a spring action between the point of securement of the clips to the circuit board 14 and the rest of the strap 20. That is, the clips 10 may act as leaf springs which act in concert with the spring action arising from the portion 28. Thus, the clips may also be made of a highly resilient material.

[0020] As shown in FIG. 4, each clip 10 includes an upper cantilevered leaf spring arm 34, a vertical arm 32, and a base 30. In addition, the spring arm 34 includes a catch 36 which may be turned downwardly relative to the arm 34. The arm 34 and base 30 may be substantially planar and substantially parallel to one another, in one embodiment of the invention.

[0021] Similarly, the arms 22, 24, and 26 may include a guide end 38 which is adjacent to an opening 40. The opening 40 is engaged by the catch 36 which is releasably locked to the strap 20 by the guide end 38.

[0022] Referring next to FIG. 3, the strap arms 24 and 26 may be hooked onto the clips 10a and lob so that the catches 36 of the clips 10a, 10b engage the openings 40 in the spring arms 24 and 26. The portion 28 is then rotated atop the heat sink 18. Thereafter, the spring arm 22 is deflected downwardly until its guide end 38 engages the top of the catch 36 as shown in FIG. 4a.

[0023] Because of the downwardly deflected configuration of the catch 36 this engagement causes the spring arm 34 to deflect downwardly and the spring arm 22 to deflect inwardly as indicated by the arrows in FIG. 4a Eventually the arms 34 and 22 slide past one another, as shown in FIG. 4b. Then, the catch 36 springs upwardly along the guide end 38. Eventually the catch 36 springs through the opening 40 and the guide end 38 then springs outwardly trapping the catch 36 in the opening 40, as shown in FIG. 4. The catch 36 is releasably constrained on the side 41 of the guide edge 38. In this way, a spring clamping force may be applied by opposed clips 10 to the strap 20 to securely press the heat sink 18 onto the processor 11.

[0024] The securement between the clip 10c and the strap 20 may be released by again depressing the spring arm 22, camming the catch 36 out of the opening 40 through the engagement of edge 44 with the top surface of the catch 36. When the spring arm 22 is released, it moves upwardly quickly, and the catch 36 does not reengage the opening 40.

[0025] Turning now to FIG. 5, a tape 50, which may be made of a relatively low cost material wound onto a reel (not shown), includes a plurality of clips 10 secured in rows and columns thereto. The clips 10 may be releasably secured to the tape 50 using a releasable adhesive.

[0026] The tape 50 may be unwound into a pick and place machine (not shown) which sequentially engages the clips 10 and places them in the correct positions on the circuit board 14. Thus, as shown in FIG. 6, a pick and place machine vacuum grabber A may engage the upper spring arm 34, lift the clip 10 off of the tape 50 and place the clip 10 at the appropriate position on the circuit board 14. Because of the horizontal, substantially planar configuration of the spring arm 34, the vacuum grabber A has a good surface to engage and lift the clip 10.

[0027] The pick and place machine vacuum grabber A may then place the clip 10 on the circuit board 14 in positions precisely preprogrammed into the pick and place machine. The base 30 of each clip 10 is then positioned atop a solder pad 54 defined on the circuit board 14, as shown in FIG. 7. The solder pad 54 may be defined using conventional solder masking techniques.

[0028] Thereafter, the circuit board 14 may be processed in a surface mount oven. All of the surface mount components on the circuit board 14 are then heat secured using surface mount technology to the circuit board 14. This means that the clips 10 are soldered to the circuit board 14. Alternatively, a heat activatable adhesive may be used in place of a solder material.

[0029] In this way, strapping clips 10 may be positioned on circuit boards in an automated, low cost fashion. The clips enable heat sinks to be quickly strapped onto the socketed processors in cases where clips are not provided with the sockets.

[0030] While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed