Exhibit C

Software development

From Wikipedia, the free encyclopedia

Software development is the computer programming, documenting, testing, and bug fixing mvolved n creating
and maintaining applications and frameworks involved in a software release life cycle and resulting in a software
product. The term refers to a process of writing and maintaining the source code, but in a broader sense of the
term 1t includes all that is nvolved between the conception of the desired software through to the final

manifestation of the software, ideally in a planned and structured process.l! Therefore, software development
may include research, new development, prototyping, modification, reuse, re-engineering, maintenance, or any

other activities that result in software products. [

Software can be developed for a variety of purposes, the three most common being to meet specific needs ofa
specific client/business (the case with custom software), to meet a perceived need of some set of potential users
(the case with commercial and open source software), or for personal use (e.g. a scientist may write software to
automate a mundane task). Embedded software development, that is, the development of embedded
software such as used for controlling consumer products, requires the development process to be ntegrated
with the development of the controlled physical product. System software underlies applications and the
programming process itself, and 1s often developed separately.

The need for better quality control of the software development process has given rise to the discipline of
software engneering, which aims to apply the systematic approach exemplified n the engineering paradigm to
the process of software development.

There are many approaches to software project management, known as software development life cycle
models, methodologies, processes, or models. The waterfall model is a traditional version, contrasted with the
more recent innovation of agile software development.

Contents

= | Methodologies

= 2 Software development activities
= 2.1 Identification of need
= 2.2 Planning
= 2.3 Designing
= 2 4 Implementation, testing and documenting
= 2.5 Deployment and maintenance
= 2.6 Other

= 3 Subtopics
= 3.1 View model
= 3.2 Business process and data modelling
= 3.3 Computer-aided software engineering
= 3 4 Integrated development environment
= 3.5 Modeling language
= 3.6 Programming paradigm

= 3.7 Software framework
= 4 See also

= 4.1 Roles and ndustry

= 4.2 Specific applications
= 5 References
= 6 Further reading

Methodologies

A software development methodology (also known as a software development process, model, or life cycle) is
a framework that 1s used to structure, plan, and control the process of developing mformation systems. A wide
variety of such frameworks have evolved over the years, each with its own recognized strengths and
weaknesses. There are several different approaches to software development: some take a more structured,
engineering-based approach to developing business solutions, whereas others may take a more incremental
approach, where software evolves as it is developed piece-by-piece. One system development methodology is
not necessarily suitable for use by all projects. Each of the available methodologies is best suited to specific
kinds of projects, based on various technical, organizational, project and team considerations.

Most methodologies share some combination of the following stages of software development:

= Analyzing the problem

= Market research

= (Gathering requirements for the proposed business solution
= Devising a plan or design for the software-based solution
= [mplementation (coding) of the software

= Testing the software

= Deployment

= Mamtenance and bug fixing

These stages are often referred to collectively as the software development lifecycle, or SDLC. Different
approaches to software development may carry out these stages in different orders, or devote more or less time
to different stages. The level of detail of the documentation produced at each stage of software development
may also vary. These stages may also be carried out in turn (a “waterfall” based approach), or they may be
repeated over various cycles or iterations (a more "extreme" approach). The more extreme approach usually
involves less time spent on planning and documentation, and more time spent on coding and development of
automated tests. More “extreme” approaches also promote continuous testing throughout the development
lifecycle, as well as having a working (or bug-free) product at all times. More structured or “waterfall” based
approaches attempt to assess the majority of risks and develop a detailed plan for the software before
implementation(coding) begins, and avoid significant design changes and re-coding in later stages of the software
development life cycle planning.

There are significant advantages and disadvantages to the various methodologies, and the best approach to
solving a problem using software will often depend on the type of problem. Ifthe problem is well understood
and a solution can be effectively planned out ahead of time, the more "waterfall" based approach may work the
best. If, on the other hand, the problem 1s unique (at least to the development team) and the structure ofthe
software solution cannot be easily envisioned, then a more "extreme" incremental approach may work best.

Software development activities

Identification of need

The sources of ideas for software products are legion.l’] These ideas can come from market research including
the demographics of potential new customers, existing customers, sales prospects who rejected the product,
other internal software development staff, or a creative third party. Ideas for software products are usually first
evaluated by marketing personnel for economic feasibility, for fit with existing channels distribution, for possible
effects on existing product lines, required features, and for fit with the company's marketing objectives. In a
marketing evaluation phase, the cost and time assumptions become evaluated. A decision is reached early in the
first phase as to whether, based on the more detailed information generated by the marketing and development

staff, the project should be pursued further. !

In the book "Great Software Debates"”, Alan M. Davis states in the chapter "Requirements"”, subchapter
"The Missing Piece of Software Development"

Students of engmeering learn engmeering and are rarely exposed to finance or marketing, Students
of marketing learn marketing and are rarely exposed to finance or engineering. Most of us become
specialists in just one area. To complicate matters, few of us meet nterdisciplinary people in the
workforce, so there are few roles to mimic. Yet, software product planning is critical to the

development success and absolutely requires knowledge of multiple disciplines.[*]

Because software development may involve compromising or going beyond what is required by the client, a
software development project may stray into less technical concerns such as human resources, risk
management, intellectual property, budgeting, crisis management, etc. These processes may also cause the role
of’business development to overlap with software development.

Planning

Planning 1s an objective of each and every activity, where we want to discover things that belong to the project.

An important task in creating a software program is extracting the requirements or requirements analysis. *]
Customers typically have an abstract idea of what they want as an end result, but do not know what software
should do. Skilled and experienced software engineers recognize incomplete, ambiguous, or even contradictory
requirements at this pomnt. Frequently demonstrating live code may help reduce the risk that the requirements are
mncorrect.

Once the general requirements are gathered from the client, an analysis of the scope of the development should
be determined and clearly stated. This is often called a scope document.

Certain functionality may be out of scope of the project as a function of cost or as a result of unclear
requirements at the start of development. Ifthe development is done externally, this document can be
considered a legal document so that if there are ever disputes, any ambiguity of what was promised to the client
can be clarified.

Designing

Once the requirements are established, the design of the software can be established in a software design
document. This involves a preliminary, or high-level design of the main modules with an overall picture (such as a
block diagram) of how the parts fit together. The language, operating system, and hardware components should
all be known at this time. Then a detailed or low-level design is created, perhaps with prototyping as proof-of-
concept or to firm up requirements.

Implementation, testing and documenting

Implementation is the part ofthe process where software engineers actually program the code for the project.

Software testing is an integral and important phase of the software development process. This part of the
process ensures that defects are recognized as soon as possible. In some processes, generally known as test-
driven development, tests may be developed just before mplementation and serve as a guide for the
implementation's correctness.

Documenting the internal design of software for the purpose of future maintenance and enhancement is done
throughout development. This may also include the writing of an API, be it external or internal. The software
engneering process chosen by the developing team will determine how much mnternal documentation (if any) is
necessary. Plan-driven models (e.g, Waterfall) generally produce more documentation than Agile models.

Deployment and maintenance

Deployment starts directly after the code is appropriately tested, approved for release, and sold or otherwise
distributed mto a production environment. This may mvolve installation, customization (such as by setting
parameters to the customer's values), testing, and possibly an extended period of evaluation.

Software training and support is important, as software is only effective if it is used correctly.

Maintaining and enhancing software to cope with newly discovered faults or requirements can take substantial
time and effort, as missed requirements may force redesign of the software.

Other

= Performance engineering

Subtopics

View model

A view model 1s a framework that provides the viewpoints on the system and its environment, to be used n the
software development process. It is a graphical representation of the underlying semantics of a view.

The purpose of viewpoints and views is to enable human engineers to comprehend very complex systems, and
to organize the elements of the problem and the solution around domains of expertise. In the engineering of
physically intensive systems, viewpomts often correspond to capabilities and responsibilities within the
engineering organization. [°]

Most complex system specifications are so extensive that no one individual can fully comprehend all aspects of
the specifications. Furthermore, we all have different interests in a given system and different reasons for
examining the system's specifications. A business executive will ask different questions of a system make-up than

would a system implementer. The concept of viewpoints framework, therefore, is to provide separate
viewpoints into the specification of a given complex system. These viewpoints each satisfy an audience with
interest in some set of aspects of the system. Associated with each viewpomt is a viewpoint language that
optimizes the vocabulary and presentation for the audience of that viewpoint.

Business process and data modelling

Graphical representation of the current state of information provides a very effective means for presenting
mformation to both users and system developers.

= A business model illustrates the
functions associated with the business
process being modeled and the
organizations that perform these
functions. By depicting activities and
information flows, a foundation is
created to visualize, define, understand,
and validate the nature of'a process.

= A data model provides the details of
mformation to be stored, and is of
primary use when the final product is
the generation of computer software The TEAF Matrix of Views and Perspectives.
code for an application or the
preparation of a functional specification
to aid a computer software make-or-
buy decision. See the figure on the right
for an example of the mteraction

between business process and data
models.[”]

Usually, a model is created after conducting an

interview, referred to as business analysis. The

interview consists of a facilitator asking a

series of questions designed to extract

required information that describes a process.

The interviewer is called a facilitator to

emphasize that it is the participants who , , ,

provide the information. The facilitator should example of the interaction between business process and data
have some knowledge of the process of models. 17!

interest, but this is not as important as having a

structured methodology by which the questions are asked ofthe process expert. The methodology is important
because usually a team of facilitators is collecting information across the facility and the results of the information

from all the interviewers must fit together once completed.[”!

The models are developed as defining either the current state of the process, in which case the final product is
called the "as-is" snapshot model, or a collection of ideas of what the process should contain, resulting in a
"what-can-be" model. Generation of process and data models can be used to determmne if the existing processes
and mformation systems are sound and only need minor modifications or enhancements, or if re-engineering is
required as a corrective action. The creation of business models is more than a way to view or automate your
mformation process. Analysis can be used to fundamentally reshape the way your business or organization

conducts its operations.[”]
Computer-aided software engineering

Computer-aided software engineering (CASE), in the field software engineering is the scientific application ofa
set of tools and methods to a software which results in high-quality, defect-free, and maintainable software

products. [It also refers to methods for the development of information systems together with automated tools

that can be used in the software development process.[! The term "computer-aided software engineering"
(CASE) can refer to the software used for the automated development of systems software, i.e., computer
code. The CASE functions include analysis, design, and programming, CASE tools automate methods for

designing, documenting, and producing structured computer code in the desired programming language. 1!

Two key ideas of Computer-aided Software System Engineering (CASE) are:[!!]

= Foster computer assistance in software development and or software maintenance processes, and

= An engineering approach to software development and or maintenance.

Typical CASE tools exist for configuration management, data modeling, model transformation, refactoring,
source code generation.

Integrated development environment

An integrated development environment (IDE)
also known as integrated design
environment or integrated debugging
environment is a software application that
provides comprehensive facilities to computer
programmers for software development. An
IDE normally consists of a:

= source code editor,
= compiler and/or nterpreter,
= build automation tools, and
= debugger (usually).
IDEs are designed to maximize programmer
productivity by providing tight-knit Anjuta, a C and C++ IDE for the GNOME environment

components with similar user mterfaces.
Typically an IDE 1s dedicated to a specific programming language, so as to provide a feature set which most
closely matches the programming paradigms of the language.

Modeling language

A modeling language is any artificial language that can be used to express information or knowledge or systems
n a structure that is defined by a consistent set of rules. The rules are used for nterpretation of the meaning of

components in the structure. A modeling language can be graphical or textual.['?] Graphical modeling languages
use a diagram techniques with named symbols that represent concepts and lines that connect the symbols and
that represent relationships and various other graphical annotation to represent constraints. Textual modeling
languages typically use standardised keywords accompanied by parameters to make computer-interpretable
expressions.

Example of graphical modelling languages n the field of software engineering are:

= Business Process Modeling Notation (BPMN, and the XML form BPML) is an example of a process
modeling language.

» EXPRESS and EXPRESS-G (ISO 10303-11) is an international standard general-purpose data
modeling language.

= Extended Enterprise Modeling Language (EEML) is commonly used for business process modeling
across layers.

= Flowchart is a schematic representation of an algorithm or a stepwise process,

= Fundamental Modeling Concepts (FMC) modeling language for software-mtensive systems.

= [DEF is a family of modeling languages, the most notable of which include IDEFO for functional modeling,
IDEF1X for mformation modeling, and IDEF5 for modeling ontologies.

= [ePUS3 is an object-oriented visual Design Description Language and a formal specification language
that is suitable primarily for modelling large object-oriented (Java, C++, C#) programs and design
patterns.

= Specification and Description Language(SDL) is a specification language targeted at the unambiguous
specification and description of the behaviour of reactive and distributed systems.

= Unified Modeling Language (UML) is a general-purpose modeling language that is an ndustry standard
for specifying software-intensive systems. UML 2.0, the current version, supports thirteen different
diagram techniques, and has widespread tool support.

Not all modeling languages are executable, and for those that are, using them doesn't necessarily mean that
programmers are no longer needed. On the contrary, executable modeling languages are intended to amplify the
productivity of skilled programmers, so that they can address more difficult problems, such as parallel computing
and distributed systems.

Programming paradigm

A programming paradigm is a fundamental style of computer programming, which is not generally dictated by
the project management methodology (such as waterfall or agile). Paradigms differ in the concepts and
abstractions used to represent the elements of a program (such as objects, functions, variables, constraints) and
the steps that comprise a computation (such as assignations, evaluation, continuations, data flows). Sometimes
the concepts asserted by the paradigm are utilized cooperatively in high-level system architecture design; in other
cases, the programming paradigm's scope 1s limited to the mternal structure of a particular program or module.

A programming language can support multiple paradigms. For example programs written in C++ or Object
Pascal can be purely procedural, or purely object-oriented, or contain elements of both paradigms. Software
designers and programmers decide how to use those paradigm elements. In object-oriented programming,

programmers can think of'a program as a collection of interacting objects, while in functional programming a
program can be thought of as a sequence of stateless function evaluations. When programming computers or
systems with many processors, process-oriented programming allows programmers to think about applications
as sets of concurrent processes acting upon logically shared data structures.

Just as different groups in software engineering advocate different methodologies, different programming
languages advocate different programming paradigms. Some languages are designed to support one paradigm
(Smalltalk supports object-oriented programming, Haskell supports functional programming), while other
programming languages support multiple paradigms (such as Object Pascal, C++, C#, Visual Basic, Common
Lisp, Scheme, Python, Ruby, and Oz).

Many programming paradigms are as well known for what methods they forbid as for what they enable. For
instance, pure functional programming forbids using side-effects; structured programming forbids using goto
statements. Partly for this reason, new paradigms are often regarded as doctrinaire or overly rigid by those
accustomed to earlier styles. Avoiding certain methods can make it easier to prove theorems about a program's
correctness, or simply to understand its behavior.

Examples of high-level paradigms include:

= Aspect-oriented software development
= Domain-specific modeling
= Model-driven engineering
= Object-oriented programming methodologies
= Grady Booch's object-oriented design (OOD), also known as object-oriented analysis and design
(OOAD). The Booch model includes six diagrams: class, object, state transttion, interaction,
module, and process.!3!
= Search-based software engineering
= Service-oriented modeling
= Structured programming
= Top-down and bottom-up design
= Top-down programming: evolved in the 1970s by IBM researcher Harlan Mills (and Niklaus
Wirth) in developed structured programming,

Software framework

A software framework is a re-usable design for a software system or subsystem. A software framework may
include support programs, code libraries, a scripting language, or other software to help develop and glue
together the different components of'a software project. Various parts of the framework may be exposed via
an APL

See also

Best coding practices

Continuous integration

Custom software

Functional specification

