

Software
code to
import
framework

Software
code to
import
framework

Tutorial –
videos
detailing
steps to
import
framework
and design
software

Sample
code
available for
download

Website accessed: October 19, 2020

10/29/20, 1:52 PMCreating and Combining Views — SwiftUI Tutorials | Apple Developer Documentation

Page 2 of 18https://developer.apple.com/tutorials/swiftui/creating-and-combining-views

Step 1

Open Xcode and either click Create a new
Xcode project in Xcode s̓ startup window, or
choose File > New > Project.

Step 2

In the template selector, select iOS as the
platform, select the Single View App
template, and then click Next.

Step 3

Section 1

Create a New Project and
Explore the Canvas
Create a new Xcode project that uses SwiftUI. Explore the
canvas, previews, and the SwiftUI template code.

To preview and interact with views from the canvas in
Xcode, ensure your Mac is running macOS Catalina 10.15.

SwiftUI Tutorials

Creating and Combining Views Create a New Project and Explore the Canvas (1 of 7)! !

10/29/20, 1:52 PMCreating and Combining Views — SwiftUI Tutorials | Apple Developer Documentation

Page 3 of 18https://developer.apple.com/tutorials/swiftui/creating-and-combining-views

Enter “Landmarks” as the Product Name,
select SwiftUI for the user interface, and click
Next. Choose a location to save the
Landmarks project on your Mac.

Step 4

In the Project navigator, select ContentView
.swift.

By default, SwiftUI view files declare two
structures. The first structure conforms to the
View protocol and describes the view s̓
content and layout. The second structure
declares a preview for that view.

Step 5

In the canvas, click Resume to display the
preview.

Tip

If the canvas isnʼt visible, select Editor >
Editor and Canvas to show it.

Step 6

Inside the body property, change “Hello
World” to a greeting for yourself.

As you change the code in a view s̓ body
property, the preview updates to reflect your
changes.

Sample
Code for
download

Sample
Code for
download

10/29/20, 4:16 PMSwiftUI | Apple Developer Documentation

Page 1 of 3https://developer.apple.com/documentation/swiftui

Framework

SwiftUI
Declare the user interface and behavior for your app on every platform. Availability

iOS 13.0+

macOS 10.15+

Mac Catalyst 13.0+

tvOS 13.0+

watchOS 6.0+

Framework

SwiftUI

On This Page

Overview

Topics

!

!

Overview
SwiftUI provides views, controls, and layout structures for declaring your app s̓ user interface.
The framework provides event handlers for delivering taps, gestures, and other types of input to
your app, and tools to manage the flow of data from your app s̓ models down to the views and
controls that users will see and interact with.

Define your app structure using the App protocol, and populate it with scenes that contain the
views that make up your app s̓ user interface. Create your own custom views that conform to
the View protocol, and compose them with SwiftUI views for displaying text, images, and
custom shapes using stacks, lists, and more. Apply powerful modifiers to built-in views and your
own views to customize their rendering and interactivity. Share code between apps on multiple
platforms with views and controls that adapt to their context and presentation.

You can integrate SwiftUI views with objects from the UIKit, AppKit, and WatchKit frameworks to
take further advantage of platform-specific functionality. You can also customize accessibility
support in SwiftUI, and localize your app s̓ interface for different languages, countries, or
cultural regions.

Documentation SwiftUILanguage:
Swift

API Changes: Show "

Discover Design Develop Distribute Support Account

10/29/20, 4:16 PMSwiftUI | Apple Developer Documentation

Page 2 of 3https://developer.apple.com/documentation/swiftui

Topics

Essentials Introducing SwiftUI

SwiftUI is a modern way to declare user interfaces for any Apple platform. Create
beautiful, dynamic apps faster than ever before.

App Structure and Behavior

Define the entry point and top-level organization of your app.

User Interface Views and Controls

Present your content onscreen and handle user interactions.

View Layout and Presentation

Combine views in stacks, generate groups and lists of views dynamically, and define view
presentations and hierarchy.

Drawing and Animation

Enhance your views with colors, shapes, and shadows, and customize animated
transitions between view states.

Framework Integration

Integrate SwiftUI views into existing apps, and embed AppKit, UIKit, and WatchKit views
and controllers into SwiftUI view hierarchies.

Data and Events State and Data Flow

Control and respond to the flow of data and changes within your app s̓ models.

Gestures

Define interactions from taps, clicks, and swipes to fine-grained gestures.

Previews in Xcode Previews

Generate dynamic, interactive previews of your custom views.

