HOME What is QuVue ?* **CASE STUDY* PUBLICATION DOWNLOAD** CONTACT HOME ## QuVue: A tool for uVSF(SkyView Ratio) Analysis QuVue is a tool for uVSF(SkyView Ratio) Analysis. It is a new index for measuring visible sky ratios that overcomes the major hurdles of current methods. It calculates the actual three-dimensional projection area of obstacles onto a virtual hemisphere, considering humans' downward view. | HOME | What is QuVue ?* | CASE STUDY* | PUBLICATION | DOWNLOAD | CONTACT | |--------|------------------|-------------|--|---|---| | | | | | | t design improvement, please contact us
is TRADEMARKED and its a free | | WHAT I | S QUVUE ?* | | occupants in have a positiv
productivity [2
environments | high density high
e relationship wit
29], and real esta
s, it is important t | igh a window is an important factor for
h-rise urban environments. Good views
rith occupants' health [28] and
ate values [30]. In highly dense urban
to consider the quantitative aspect of
tive scenery and access to the sky [31]. | | | | | Generally, the visible sky rat surrounding o | quantitative valu
io, which is signif
obstructions [1]. T | lue of view can be measured as the
ificantly affected by the arrangement of
The amount of visible sky is highly
lability, and thus is prescribed by building | | HOME | What is QuVue ?* | CASE STUDY* | PUBLICATION | DOWNLOAD | CONTACT | | |------|------------------|-------------|---|---|---|--| | | | | frequently dis
performance-
integrated at t
provide archit | cussed than sola
based building d
the early design s
ects with well-de | iled requirements have been less or access [31]. Thus, in terms of a esign process, view analysis should be stages of site planning in order to efined information and flexibility in the d ultimately improve occupant | | | | | | evaluation me approaches: 1 methods [14]. inaccuracy ori process, 2) an tracing, and 3 location, orien material prope 2). To overcon the visible sky algorithm gen obstructing be | ethods of quantity 2D projection, 2
The major limital ginating from distinability to include a dependency untation of observenties and form one these limitation of the contraction t | n on this topic categorized the ative visible sky into three different (2) 3D sky segmentation, and 3) DF-based tions of these methods include: 1) stortion during the 2D projection de the downward view via spherical raypon the sky model, geographical ation surface, the sun's position, and if the surroundings (see <u>Table 1</u> and <u>Fig.</u> ons, uVSF was developed to calculate imputational numerical model. The uVSF oundary surfaces to enclose an it the vertexes of the surrounding | |