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Fin

From Wikipedia, the free encyclopedia

For other uses, see Fin (disambiguation).
Afin is a thin component or appendage attached to a larger bedy or structure. Fins typically function as foils that preduce lift or thrust, or provide the ability to steer or stabilize motion while traveling in water, air, or
other fluids. Fins are also used to increase surface areas for heat transfer purposes, or simply as ormamentation. (2!
Fins first evolved on fish as a means of locomotion. Fish fins are used to generate thrust and control the subsequent motion. Fish, and other aquatic animals such as cetaceans, actively propel and steer —
themselves with pectoral and tail fins. As they swim, they use other fins, such as dorsal and anal fins, to achieve stability and refine their maneuvering. el v

Contents [hide]

Generating thrust

Controlling motion
Regulating temperature
Fins typically function as foils that provide lift or &7
thrust, or provide the abilty to steer or stabilize
motion in water o air

1
2

3

4 Omamentation and other uses
5 Evolution of fins

6 Robotic fins

7 Seealso

8 References

9 Further reading

10 External links

Generating thrust [edi]

Foil shaped fins generate thrust when moved, the Iift of the fin sets water or air in motion and pushes the fin in the opposite direction. Aquatic animals get significant thrust by moving fins back and forth in water. Often the tail fin is used, but some aquatic animals
generate thrust from pectoral fins.¥! Fins can also generate thrust if they are rotated in air or water. Turbines and propellers (and sometimes fans and pumps) use a number of rotating fins, also called foils, wings, arms or blades. Propellers use the fins to transiate
torquing force to lateral thrust, thus propelling an aircraft or Ship,ls] Turbines work in reverse, using the lift of the blades io generate torque and power from moving gases or water [%!

Moving fins can provide thrust

Stingrays get thrust
from large pectoral fins

Cetaceans get thrust moving
horizontal tail fins up and down

Fish get thrust
moving vertical tail
fins from side to side

Ship propelier Compressor fins (blades)

Airplane propelier

Cavitation can be a problem with high power applications, resulting in damage to propellers or turbines, as well as noise and loss of pcvwerm Cavitation occurs when negative pressure causes bubbles (cavities) to form in a liquid, which
then promptly and violently collapse. It can cause significant damage and wear. [ Cavitation damage can also occur fo the tail fins of powerful swimming marine animals, such as dolphins and tuna. Cavitation is more likely to occur near
the surface of the ocean, where the ambient water pressure is relatively low. Even if they have the power to swim faster. dolphins may have to restrict their speed because collapsing cavitation bubbles on their tail are too painful 8l
Cavitation also slows tuna, but for a different reason. Unlike dolphins, these fish do not feel the bubbles, because they have bony fins without nerve endings. Nevertheless, they cannot swim faster because the cavitation bubbles create a
vapor film around their fins that limits their speed. Lesions have been found on tuna that are consistent with cavitation damage.[a]

Scombrid fises (tuna, mackerel and bonito) are particularly high-performance swimmers. Aleng the margin &t the rear of their bodies is a line of small rayless, non-retractable fins, known as finlets. There has been much speculation
about the function of these finlets. Research done in 2000 and 2001 by Nauen and Lauder indicated that "the finlets have a hydrodynamic effect on local flow during steady swimming” and that "the most posterior finiet is oriented to
redirect flow into the developing tail vortex, which may increase thrust produced by the tail of swimming mackerer BI10111]

Fish use multiple ins, <o It is possible that a given fin can have & hydrodynamic interaction with another fin. In particular, the fins immediately upstream of the caudal (tail) fin may be proximate fins that can directly affect the flow
dynamics at the caudal fin. In 2011, researchers using volumelric imaging techniques were able (o generate "the first instantaneous three-dimensional views of wake structures as they are produced by freely swimming fishes”. They
found that "continuous tail beats resulted in the formation of a linked chain of vortex rings” and that "the dorsal and anal fin wakes are rapicly entrained by the caudal fin wake, approximalely within the timeframe of a subsequent tail
beatr [12]

Controlling motion [edit]

Cavitation damage is
evident on this propeller

7 ==

Draving by Dr Tony Ayiing
Finlets may influence the:
way a vortex develops
around the tail fin

Once motion has been established, the motion itself can be controlled with the use of other fins F115I11] Boats control direction (yaw) with fin-like rudders, and roll with stabilizer fins and keel fins %! Airplanes achieve similar
results with small specialised fins that change the shape of their wings and tail fins [

Specialised fins are used to control motion

v

Rotation

The dorsal fin of a white shark contain
dermal fibers that work "lie riggings
that stabilize a ship's mast”, and
stiffen dynamically as the shark swims
faster to control roll and yaw. %!

v v Bl

Arudder comrects  Afinkeel limits roll  Ship stabilising fins reduce roll
yaw and sideways drift

I I I

Allerons control roll

Fish. boats and airplanes need control
of three degrees of rotational
freedoml17I1BI1E]

Ci

Elevators control pitch  The rudder controls yaw

Fins are used by aquatic animals, &

such as this killer whale, to generate

thrust and control the subsequent
‘motion 131141

audal fin of a great white shark &9

Stabilising fins are used as fletching on arrows and some daris, " and at the rear of some bombs, missiles, rockets, and self-propelled torpedoes 1”223 These are typically planar and shaped like small wings, although grid fins are sometimes used.**! Static fins

have alse been used for one satellite, GOCE.



https://en.wikipedia.org/wiki/Fin

Static tail fins are used as stabilizers

Fletching on an arow Asymmetric stabilizing fins  Conventional “planar”
impart spin to this Soviet  fins on a RIM-7 Sea
artillery rocket Sparrow missile

Regulating temperature |[edit)

Engineering fins are also used as heat transfer fins to regulate temperature in heat sinks or fin radiators 21261

Fins can regulate temperature

Y

Motorbikes use fins to cool il heaters  Sailfish raise their dorsal fin to cool
the engine 71 convect  down or to herd schooling
with fins  fisni251281

Ornamentation and other uses [edi]

In biology., fins can have an adaptive significance as sexual ornaments. During courtship, the female cichlid, Pelvicachromis taeniatus, displays a large and visually amesting purple pelvic fin. "The researchers found that males clearly preferred females with a larger
pelvic fin and that pelvic fins grew in a more disproportionate way than other fins on female fish "P01311

Omamentation

S ¥ The huge theropod dinosaur
During courtship, the Spinosaurus may have used Car tail fins in the 1950s
female cichiid,

were largely decorative

its sail or dorsal fin to regulate e

its temperature, " or as &
courtship display (23128

Peivicachromis
taeniatus, displays her
visually arresting purple
pelvic fin

Reshaping human feet with swim fins, rather like the tail fin of a fish, add thrust and efficiency to the kicks of a swimmer or underwater diver®SIP8 Suriboard fins provide surfers with means to maneuver and control their boards. Contemporary surfboards often have a
centre fin and two cambered side fins.*7!

The bodies of reef fishes are often shaped differently from open water fishes. Open water fishes are usually built for speed, streamlined like torpedoes to minimise friction as they move through the water. Reef fish operate in the relatively confined spaces and
complex underwater landscapes of coral reefs. For this manoeuvrability is more important than straight line speed. so coral reef fish have developed bodies which optimize their ability to dart and change direction. They outwit predators by dodging into fissures in the
reef or playing hide and seek around coral heads.”® The pectoral and pelvic fins of many reef fish, such as butterflyfish, damselfish and angelfish, have evolved so they can act as brakes and allow complex maneuvers >l Many reef fish, such as butterflyfish,
damselfish and angeifish, have evolved bodies which are deep and laterally compressed like a pancake, and will fit into fissures in rocks. Their pelvic and pectoral fins are designed differently, so they act together with the flattened body to optimise
maneuverability. ?¢] Some fishes, such as puffer fish, filefish and trunkfish, rely on pectoral fins for swimming and hardly use tail fins at all. %!

Other uses

Swimfinsads  Surfboard fins  Insome Asian  In recent years, car fins
thrusttothe  allow surfersto  countries shark  have evelved into highly
kicks of a maneuver their  fins are a functional spoilers and
human boards culinary delicacy wings

swimmer Hoy

Many reef fish have Frog fish use their Flying fish use enlarged
pectoral and pelvicfins  Pectoral and peivic fins  pectoral fins to glide above
optimised for flattened 1o walk along the ocean the surface of the water 143
bodies (%] botiom 1421

Evolution of fins [edit]

There is an old theory, which has been often disregarded in science textbooks, "that fins and (later) limbs evolved from the gills of an extinct vertebrate”. Gaps in the fossil record had not allowed a definitive
conclusion. In 2009, researchers from the University of Chicago found evidence that the "genetic architecture of gills, fins and limbs is the same", and that "the skeleton of any appendage off the body of an animal
is probably patterned by the developmental genetic program that we have traced back to formation of gills in sharks" #51148147]

Fish are the ancestors of all mammals, reptiles, birds and amphibians. B8l particular, terrestrial tetrapods (four-legged animals) evolved from fish and made their first forays onto land 400 million years ago. They
used paired pectoral and pelvic fins for locomotion. The pectoral fins developed into forelegs (arms in the case of humans) and the pelvic fins developed into hind Iegs.[“] Much of the genetic machinery that builds
awalking limb in a tetrapod is already present in the swimming fin of a fish, 501511

Aquatic animals ty 1l fins for | i =
In 2011, researchers at Monash University in Australia used primitive but stil living lungfish "to trace the evolution of pelvic fin muscles to find out how the load-bearing hind limbs of the tetrapods evolved "53] (1“)”;;;:::":: : (:::f: ﬂ;' ZJZE)E p;”‘\flc",'m;:(:'::eﬁ)" &
Further research at the University of Chicago found bettom-walking lungfishes had already evolved characteristics of the walking gaits of terrestrial tetrapods 341551 dorsal fin, (4) adipose fin, (5) anal fin, (6) caudal (tail)
2
In a classic example of convergent evelution, the pectoral limbs of pierosaurs, birds and bals further evelved along independent paths into flying wings. Even with flying wings there are many similarities with -

walking legs, and core aspects of the genetic blueprint of the pectoral fin have been retaineq [5€157]

About 200 million years ago the first mammals appeared. A group of these mammals started returning to the sea about 52 million years ago, thus completing a circle. These are the cetaceans Aristotle recognised the distinction
(whales, dolphins and porpoises). Recent DNA analysis suggests that cetaceans evolved from within the even-toed ungulates, and that they share a common ancestor with the betwsen analogous and
hippopatamus 581591 About 23 million years aga another group of bearlike land mammals started returning to the sea. These were the seals % What had become walking limbs in cetaceans (T LI T ST ETTER, AIETD
- the following prophetic comparison:
and seals evolved further, independently in a reverse form of convergent evolution, back to new forms of swimming fins. The forelimbs became flippers and the hind limbs became a tail TrolE j;;ﬂ;emme )‘1;:195 o
terminating in two fins, called a fluke in the case of cetaceans "] Fish tails are usually vertical and move from side to side. Cetacean flukes are herizontal and move up and down, because birds have their wings in the upper
cetacean spines bend the same way as in ather mammals °215%] part of their bodies and fishes have
A. . Ichthyosaurs are ancient reptiles that resembled dolphins. They first appeared about 245 million years ago and disappeared about 90 million years ago. s el D ol ey
Comparison between A) the &1 bodies. Birds have feet on their
SN ML SE e Wobe fre “Thi file with terrestrial o d 50 strongly on fishes that it actually evolved a dorsal fin and tail in just the right pt d with just the right hycrological S e —
fich and B) the walking leg ofa is sea-going reptile with terrestrial ancestors converged so strongly on fishes that it actually evolved a dorsal fin and tail in just the right piace and with just the right hyarologica second pair of fis n thelr Under-
tetrapod. Bones considered to design. These structures are all the more remarkable because they evolved from nothing — the ancestral terestrial reptile had no hump on its back or blade on its tail to serve as a part and near their front fins.
correspond with each other precursor {84! )
T e — Avistotle, De incessu ammaﬂfm
The biologist Stephen Jay Gould said the ichthyosaur was his favorite example of convergent evolution 1851

Robotie fins [edi]

The use of fins for the propulsion of aquatic animals can be remarkably effective. It has been calculated that some fish can achieve a propulsive efficiency greater than 90%. Bl Fish can accelerate and maneuver much more
effectively than boats or submarine, and produce less water disturbance and noise. This has led to biomimetic studies of underwater robots which attempt to emulate the locomotion of aquatic animals. 58 an example is the
Robot Tuna built by the Institute of Field Robotics &, to analyze and mathematically model thunniform motion 187 1n 2005, the Sea Life London Aquarium displayed three robotic fish created by the computer science department

at the University of Essex. The fish were designed to be autonomous, swimming around and avoiding obstacles like real fish. Their creator claimed that he was trying to combine “the speed of tuna, acceleration of a pike, and In a parallel but independent =
the navigating skills of an el 536970 evolution, the ancient reptile

Iehthyosaurus communis developed
The AguaPenguin, developed by Festo of Germany, copies the streamlined shape and propulsion by front flippers of penguins.” 72! Festo also developed Aquaray, ™! AquaJel)y™ *! and AiraCuda ™ respectively emulating fins (or flippers) very similar to fish (or
the locomotion of manta rays, jellyfish and barracuda doiphins)

In 2004, Hugh Herr at MIT prototyped a biomechatronic rebetic fish with a living actuator by surgically transplanting muscles from frog legs to the robot and then making the robot swim by puising the muscle fibers with
electricity T8I77)

Robotic fish offer some research advantages, such as the ability to examine an individual part of a fish design in isolation from the rest of the fish. However, this risks oversimplifying the biology so key aspects of the animal
design are overlooked. Robotic fish also allow researchers to vary a single parameter, such as flexibility or a specific motion control. Researchers can directly measure forces, which is not easy to do in live fish. "Robotic devices
also facilitate three-dimensional kinematic studies and correlated hydrodynamic analyses, as the location of the locomotor surface can be known accurately. And., individual components of a natural motion (such as outstroke vs.
instroke of a flapping appendage) can be programmed separately, which is certainly difficult to achieve when working with a live animal "7




See also |edit]

i
In the 1990s the CIA builta =
robotic catfish called Charfie to test
the feasibility of unmanned
underwater vehicles

External video

5 Charlie the catfishe — CIA
video

5 AquaPenguin — Festo,
YouTube

5 AquaRay — Festo, YouTube
5 Aqualelly & — Festo, YouTube
f5 AiraCuda (- Festo, YouTube
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Aquatic locomotion

Fin and flipper locomotion
Fish locomotion

Robot locometion
RoboTuna

Sail (submarine)
Surfboard fin
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