In the Office Action, the Examiner preliminarily refused registration of the JELCO mark on the grounds that there is a likelihood of confusion with regard to U.S. Reg. No. 2452667 for the JEL mark, which is owned by Komet Group GmbH ("Komet"). Applicant respectfully submits that there is no potential for confusion to occur as the result of the coexistence of the JECLO mark and the JEL mark and requests that the Examiner withdraw the refusal and allow the Application to proceed to publication.

In evaluating the issue of likelihood of confusion, the Trademark Trial and Appeal Board has stated, "[w]here the goods in question are not identical or competitive, and are not related or marketed in such a way that they would be encountered by the same people in situations that could create the incorrect assumption that all the goods come from the same source, . . . even where the marks are identical, confusion is not likely." *In re Unilever Ltd.*, 222 U.S.P.Q. 981, 982-83 (T.T.A.B. 1984). In this instance, there is simply no overlap of goods/services and consumers such that the same consumers would even encounter both Applicant's goods and Komet's goods/services, let alone be confused by the coexistence of the parties' respective marks.

As demonstrated by Applicant's revised identification of goods, Applicant uses the JELCO mark in connection with a very specific line of goods, namely, safety harnesses and other fall protection equipment (collectively, the "Fall Protection Equipment"). This Fall Protection Equipment is used by lineman and other workers who will be suspended in the air or in high places and need protection to avoid falling. By way of example, submitted herewith as **Exhibit A** is a screenshot of Applicant's homepage, which includes more detail about Applicant and its products.¹

¹ This screenshot was taken of <u>http://jelco.ca/en/</u> on December 12, 2019.

Komet, on the other hand, uses the JEL mark in connection with very different products and services. While the registration covers three classes of goods/services, the identification makes it clear that Komet uses the JEL mark in connection with a variety of machine tool products that are used in boring, drilling, cutting, turning and milling applications, as well as related products, accessories, computer equipment, and services (collectively, the "Machine Tool Products and Services"). This fact is further supported by the most recent specimens that were filed by Komet to maintain the registration (copies of which are submitted herewith as collective **Exhibit B**), as well Komet's marketing materials for its Machine Tool Products and Services (a copy of a brochure is submitted herewith as **Exhibit C**).²

There is not even a tangential relationship between Applicant's Fall Protection Equipment and Komet's Machine Tool Products and Services. Applicant's Fall Protection Equipment is specialized equipment that is used for a particular purpose of protecting workers from falling while suspended or working in high places. This Fall Protection Equipment has absolutely no connection to Komet's Machine Tool Products and Services, which are used to cut and machine heavy-duty materials, such as aluminum and metal.

In addition to the differences between the parties' goods/services, the parties' respective goods/services are also marketed to very different "relevant persons." *See Electronic Design & Sales, Inc. v. Electronic Data Sys. Corp.*, 21 U.S.P.Q.2d 1388, 1393 (Fed. Cir. 1992) (no likelihood of between appellee's "EDS" mark and appellant's "E.D.S." mark, because appellant's goods were marketed and sold to different "relevant persons" than appellee's services). As the Federal Circuit has noted, an essential issue in determining whether consumers are likely to be confused by the coexistence of two marks is "whether there is likely to be sufficient overlap of the respective

² This advertising brochure was downloaded at <u>http://classic.komet.com/pdf/jel/JEL_Tapping.pdf</u> on December 12, 2019.

purchasers of the parties' goods and services to confuse actual and potential purchasers." *Id.* at 1390.

Here, Applicant's Fall Protection Equipment is promoted to companies that employ workers who will be suspended in the air or working in high places, such as utility companies, tree-trimming companies, and construction companies. Conversely, Komet is marketing its Machine Tool Products and Services to companies who need to cut or machine heavy-duty materials, such as aluminum and metal. These consumers are clearly very different.

Given the differences between the parties' respective goods/services and consumers, Applicant's JELCO mark and the Komet's JEL mark are unlikely to even be encountered by the same consumers. Even if they were encountered by the same consumers, given the differences between Applicant's Fall Protection Equipment and Komet's Machine Tool Products and Services, no reasonable consumer would conclude that they come from the same source.

As the Federal Circuit has stated, "[w]e are not concerned with the mere theoretical possibilities of confusion, deception, or mistake or with *de minimus* situations but with the practicalities of the commercial world, with which trademark laws deal." *Electronic Design & Sales, Inc. v. Electronic Data Sys. Corp.*, 21 U.S.P.Q.2d 1388, 1391 (Fed. Cir. 1992). In other words, likelihood of confusion must exist as a practical reality, not as a mere possibility. Further, superficial similarities in the marks will not prevent registration where the marketplace realities show that confusion is not likely. In this instance, Applicant submits that the evidence now of record, taken as a whole, establishes that confusion is not likely to occur as a result of the coexistence of the JELCO mark and the JEL mark. Accordingly, Applicant respectfully requests that the Examiner withdraw the likelihood of confusion objection.

Exhibit A

Exhibit B

KOMET*

Exhibit C

Example application – grey cast iron

Workpiece: Engine block Material: GG25

Tool: JEL® solid carbide taps (CM8-6HX IK VHM) Thread: Blind hole M8, drilling depth 20 mm, thread length 16 mm

Machine: Transfer line Cooling: Emulsion

Cutting speed: $v_c = 30$ m/min Tool life: > 75,000 threads

Machining threads

JEL[®] tap drills open up a wide range of applications in thread cutting operations.Whether you wish to machine wet, with internal coolant supply, use minimal lubrication or machine dry-we will supply you with the optimum tap drill.

Compared to HSS-E taps carbide taps have substantial advantages:

- Up to 20x longer tool life than HSS-E taps
- Fewer tool change times due to longer tool life
- Higher cutting speeds so shorter cycle times
- Significant reduction in production costs due to longer tool life, higher cutting speeds and fewer tool changes

Гарѕ	Page
Taps HSS	
M – Metric ISO thread DIN 13 DOREX, TINIB, FEDUB GG FEDUC FAREX	96 – 97 98 99 100
Taps HSS with central coolant supply	
M – Metric ISO thread DIN 13 GG FAREX	102 103
Solid carbide taps	
M – Metric ISO thread DIN 13 SIREX, SIREX SR, GG DOREX SIREX XH (hard machining ≥ 45 HRC) ME – Metric fine ISO thread DIN 13	104 – 105 106 107
SIREX SR	108 109

ap drill diameters	148–150

Technical notes	110
Guideline values for tapping	

```
Problems - Causes - Solutions
```


111

5

JEL[®] DOREX

HSS-E Taps

- for metric ISO thread DIN 13
- tools without internal coolant supply
- tolerance field ISO 2
- chamfer form B

						DOREX	DOREX VAV	DOREX TIN
	Cutting material				material 🕨	HSS-E	HSS-E	HSS-E
Nominal					Surface 🕨	uncoated	vaporized	LIN
Ø				Shank Ø [DIN 371 🕨			
d1	Р	11	12	d2.1	a1	Order No.	Order No.	Order No.
M1,4	0,30	40		2,5	2,1			
M1,6	0,35	40	8,0	2,5	2,1	20122001000005	20136001000005	
M1,7	0,35	40		2,5	2,1			
M1,8	0,35	40		2,5	2,1			
M2	0,40	45	8,0	2,8	2,1	20122001000008	20136001000008	
M2,2	0,45	45		2,8	2,1			
M2,3	0,40	45		2,8	2,1			
M2,5	0,45	50	9,0	2,8	2,1	20122001000011	20136001000011	
M2,6	0,45	50		2,8	2,1			
M3	0,50	56	11,0	3,5	2,7	20122001000013	20136001000013	20322001000013
M3,5	0,60	56		4,0	3,0			
M4	0,70	63	13,0	4,5	3,4	20122001000015	20136001000015	20322001000015
M4,5	0,75	70		6,0	4,9			
M5	0,80	70	16,0	6,0	4,9	20122001000017	20136001000017	20322001000017
M6	1,00	80	18,0	6,0	4,9	20122001000018	20136001000018	20322001000018
M7	1,00	80	18,0	7,0	5,5	20122001000019		
M8	1,25	90	18,0	8,0	6,2	20122001000020	20136001000020	20322001000020
M9	1,25	90		9,0	7,0			
M10	1,50	100	21,0	10,0	8,0	20122001000022	20136001000022	20322001000022
Nominal			0	Shank Ø [DIN 376 🕨			
d1	Р	11	12	d2.2	a2	Order No.	Order No.	Order No.
M11	1,50	100		8,0	6,2			
M12	1,75	110	24,0	9,0	7,0	20123001000024	20137001000024	20323001000024
M14	2,00	110	24,0	11,0	9,0	20123001000025	20137001000025	
M16	2,00	110	27,0	12,0	9,0	20123001000026	20137001000026	
M18	2,50	125	32,0	14,0	11,0	20123001000027	20137001000027	
M20	2,50	140	32,0	16,0	12,0	20123001000028	20137001000028	
M22	2,50	140	32,0	18,0	14,5	20123001000029		
M24	3,00	160	38,0	18,0	14,5	20123001000030		
M27	3,00	160		20,0	16,0			
M30	3,50	180		22,0	18,0			

JEL[®] TINIB, FEDUB

HSS-PM Taps

- for metric ISO thread DIN 13 \blacksquare
- tools without internal coolant supply \blacksquare
 - tolerance field ISO 2

1

2

3

4

5 6

7

8

chamfer form B ■

* without neck

						TINIB	FEDUB
				Cut	HSS-PM	HSS-PM	
Nominal					vaporized	vaporized	
Ø				Shan	k Ø DIN 371 ►		
d1	Р	1	12	d2.1	a1	Order No.	Order No.
M1,4	0,30	40		2,5	2,1		
M1,6	0,35	40		2,5	2,1		
M1,7	0,35	40		2,5	2,1		
M1,8	0,35	40		2,5	2,1		
M2	0,40	45	8,0	2,8	2,1	20194001000008*	
M2,2	0,45	45		2,8	2,1		
M2,3	0,40	45		2,8	2,1		
M2,5	0,45	50	9,0	2,8	2,1	20194001000011*	
M2,6	0,45	50		2,8	2,1		
M3	0,50	56	11,0	3,5	2,7	20194001000013*	20186001000013*
M3,5	0,60	56		4,0	3,0		
M4	0,70	63	13,0	4,5	3,4	20194001000015*	20186001000015*
M4,5	0,75	70		6,0	4,9		
M5	0,80	70	16,0	6,0	4,9	20194001000017*	20186001000017*
M6	1,00	80	18,0	6,0	4,9	20194001000018*	20186001000018*
M7	1,00	80		7,0	5,5		
M8	1,25	90	18,0	8,0	6,2	20194001000020	20186001000020
M9	1,25	90		9,0	7,0		
M10	1,50	100	21,0	10,0	8,0	20194001000022	20186001000022
Nominal Ø				Shan	k Ø DIN 376 ▶		
d1	Р	1	12	d2.2	a2	Order No.	Order No.
M11	1,50	100		8,0	6,2		
M12	1,75	110	24,0	9,0	7,0		20187001000024
M14	2,00	110		11,0	9,0		
M16	2,00	110		12,0	9,0		
M18	2,50	125		14,0	11,0		
M20	2,50	140		16,0	12,0		
M22	2,50	140		18,0	14,5		
M24	3,00	160		18,0	14,5		
M27	3,00	160		20,0	16,0		
M30	3,50	180		22,0	18,0		

HSS-E Taps

- for metric ISO thread DIN 13
- tools without internal coolant supply
- tolerance field ISO 2X
- chamfer form C

						GG TIN
					Cutting material	HSS-E
Nominal					Surrace 🕨	
Ø					Shank Ø DIN 371 ►	
d1	Р	1	12	d2.1	a1	Order No.
M1,4	0,30	40		2,5	2,1	
M1,6	0,35	40		2,5	2,1	
M1,7	0,35	40		2,5	2,1	
M1,8	0,35	40		2,5	2,1	
M2	0,40	45		2,8	2,1	
M2,2	0,45	45		2,8	2,1	
M2,3	0,40	45		2,8	2,1	
M2,5	0,45	50		2,8	2,1	
M2,6	0,45	50		2,8	2,1	
M3	0,50	56	11,0	3,5	2,7	20356001000013
M3,5	0,60	56		4,0	3,0	
M4	0,70	63	13,0	4,5	3,4	20356001000015
M4,5	0,75	70		6,0	4,9	
M5	0,80	70	16,0	6,0	4,9	20356001000017
M6	1,00	80	18,0	6,0	4,9	20356001000018
M7	1,00	80		7,0	5,5	
M8	1,25	90	18,0	8,0	6,2	20356001000020
M9	1,25	90		9,0	7,0	
M10	1,50	100	21,0	10,0	8,0	20356001000022
Nominal Ø					Shank Ø DIN 376 🕨	
d1	Р	1	12	d2.2	a2	Order No.
M11	1,50	100		8,0	6,2	
M12	1,75	110	24,0	9,0	7,0	20357001000024
M14	2,00	110		11,0	9,0	
M16	2,00	110		12,0	9,0	
M18	2,50	125		14,0	11,0	
M20	2,50	140		16,0	12,0	
M22	2,50	140		18,0	14,5	
M24	3,00	160		18,0	14,5	
M27	3,00	160		20,0	16,0	
M30	3,50	180		22,0	18,0	

5

JEL[®] FEDUC

HSS-PM Taps

- for metric ISO thread DIN 13 \blacksquare
- tools without internal coolant supply \blacksquare
 - tolerance field ISO 2
 - chamfer form C ■

1 78

2

3

4

5

6

7

8

* without neck

						FEDUC
					Cutting material	HSS-PM
Nominal					Surface	vaponzeu
Ø					Shank Ø DIN 371 ►	
d1	Р	1	12	d2.1	a1	Order No.
M1,4	0,30	40		2,5	2,1	
M1,6	0,35	40		2,5	2,1	
M1,7	0,35	40		2,5	2,1	
M1,8	0,35	40		2,5	2,1	
M2	0,40	45	8,0	2,8	2,1	20192001000008*
M2,2	0,45	45		2,8	2,1	
M2,3	0,40	45		2,8	2,1	
M2,5	0,45	50	9,0	2,8	2,1	20192001000011*
M2,6	0,45	50		2,8	2,1	
M3	0,50	56	11,0	3,5	2,7	20192001000013*
M3,5	0,60	56		4,0	3,0	
M4	0,70	63	13,0	4,5	3,4	20192001000015*
M4,5	0,75	70		6,0	4,9	
M5	0,80	70	16,0	6,0	4,9	20192001000017*
M6	1,00	80	18,0	6,0	4,9	20192001000018*
M7	1,00	80		7,0	5,5	
M8	1,25	90	18,0	8,0	6,2	20192001000020
M9	1,25	90		9,0	7,0	
M10	1,50	100	21,0	10,0	8,0	20192001000022
Nominal					Shank Ø DIN 376 🕨	
d1	Р	1	12	d2.2	a2	Order No.
M11	1,50	100		8,0	6,2	
M12	1,75	110	24,0	9,0	7,0	20193001000024
M14	2,00	110		11,0	9,0	
M16	2,00	110		12,0	9,0	
M18	2,50	125		14,0	11,0	
M20	2,50	140		16,0	12,0	
M22	2,50	140		18,0	14,5	
M24	3,00	160		18,0	14,5	
M27	3,00	160		20,0	16,0	
M30	3,50	180		22,0	18,0	

JEL[®] TAREX

HSS-E / HSS-PM Taps

- for metric ISO thread DIN 13
- tools without internal coolant supply

þ

- tolerance field ISO 2
- chamfer form C

M11 - M30

* without neck

□ a2

d2.2

DIN 376

	TAREX	TAREX VAV	TAREX TIN	TAREX OT TIN
Cutting material	HSS-E	HSS-E	HSS-E	HSS-PM
Nom	Uncoated	vaporized	LIN	LIN
Ø Shank Ø DIN 371				
d1 P l1 l2 d2.1 a	1 Order No.	Order No.	Order No.	Order No.
M1,4 0,30 40 2,5 2	1			
M1,6 0,35 40 2,5 2	1			
M1,7 0,35 40 2,5 2	1			
M1,8 0,35 40 2,5 2	1			
M2 0,40 45 4,0 2,8 2	1 2014600100008	20170001000008		
M2,2 0,45 45 2,8 2	1			
M2,3 0,40 45 2,8 2	1			
M2,5 0,45 50 4,0 2,8 2	1 20146001000011	20170001000011		
M2,6 0,45 50 2,8 2	1			
M3 0,50 56 5,0 3,5 2	7 20146001000013	20170001000013	20346001000013	20342001000013*
M3,5 0,60 56 5,0 4,0 3	0 20146001000014	20170001000014		
M4 0,70 63 7,0 4,5 3	4 20146001000015	20170001000015	20346001000015	20342001000015*
M4,5 0,75 70 6,0 4	9			
M5 0,80 70 8,0 6,0 4	9 20146001000017	20170001000017	20346001000017	20342001000017*
M6 1,00 80 10,0 6,0 4	9 20146001000018	20170001000018	20346001000018	20342001000018*
M7 1,00 80 7,0 5	5			
M8 1,25 90 12,0 8,0 6	2 20146001000020	20170001000020	20346001000020	20342001000020
M9 1,25 90 9,0 7	0			
M10 1,50 100 14,0 10,0 8	0 20146001000022	20170001000022	20346001000022	20342001000022
Nom. Ø Shank Ø DIN 376) <u>SSI</u> B	<u> </u>		<u> </u>
d1 P l1 l2 d2.2 a	2 Order No.	Order No.	Order No.	Order No.
M11 1,50 100 8,0 6	2			
M12 1,75 110 16,0 9,0 7	0 20147001000024	20171001000024	20347001000024	20343001000024
M14 2,00 110 20,0 11,0 9	0 20147001000025	20171001000025	20347001000025	
M16 2,00 110 20,0 12,0 9	0 20147001000026	20171001000026	20347001000026	
M18 2,50 125 24,0 14,0 11	,0 20147001000027	20171001000027	20347001000027	
M20 2,50 140 24,0 16,0 12	,0 20147001000028	20171001000028	20347001000028	
M22 2,50 140 24,0 18,0 14	,5 20147001000029			
M24 3,00 160 28,0 18,0 14	,5 20147001000030			
M27 3,00 160 20,0 16	,0			
M30 3,50 180 22,0 18	,0			

KOMET SERVICE ®

Comprehensive additional services and support

Using KOMET SERVICE[®], we provide our customers with additional service benefits in order to ensure that tools are consistently high-quality so that maximum process reliability can be provided in production.

BENEFITS for you:

- Standard tools and solid carbide special tools directly from your KOMET SERVICE [®] partner
- Personal attention from a regrinding expert in your local area
- Process reliability due to original quality and coating, if required
- Reduction in manufacturing and unit costs thanks to low new procurement volumes
- Save time using short channels
- Flexibility thanks to uncomplicated processing of orders
- Access to an efficient partner network (regrinding of solid carbide saw blades, prickers and various cutting tools for the wood, paper and plastics industry)

Can Individual solid Calific Research to sol

Further information can be found in section 9 or at www.kometservice.com

6

Ð

HSS-E Taps

■ for metric ISO thread DIN 13

- with central coolant supply
- tolerance field ISO 2X
- chamfer form C

					GG IK TIN	
				HSS-E TiN		
Nominal Ø				Shank	. Ø DIN 371 🕨	
d1	Р	11	12	d2.1	a1	Order No.
M4	0,70	63		4,5	3,4	
M4,5	0,75	70		6,0	4,9	
M5	0,80	70		6,0	4,9	
M6	1,00	80	18,0	6,0	4,9	20556001000018
M7	1,00	80		7,0	5,5	
M8	1,25	90	18,0	8,0	6,2	20556001000020
M9	1,25	90		9,0	7,0	
M10	1,50	100	21,0	10,0	8,0	20556001000022
Nominal Ø				Shank	Ø DIN 376 🕨	
d1	Р	1	12	d2.2	a2	Order No.
M11	1,50	100		8,0	6,2	
M12	1,75	110	24,0	9,0	7,0	20557001000024
M14	2,00	110		11,0	9,0	
M16	2,00	110		12,0	9,0	

JEL[®] TAREX

HSS-E Taps

- for metric ISO thread DIN 13 \blacksquare
- with central coolant supply \blacksquare
 - tolerance field ISO 2 \blacksquare
 - chamfer form C

				TAREX IK TIN		
				HSS-E TiN		
Nominal Ø				Shank	≪ Ø DIN 371 🕨	
d1	Р	11	12	d2.1	a1	Order No.
M4	0,70	63		4,5	3,4	
M4,5	0,75	70		6,0	4,9	
M5	0,80	70		6,0	4,9	
M6	1,00	80	10,0	6,0	4,9	20546001000018
M7	1,00	80		7,0	5,5	
M8	1,25	90	12,0	8,0	6,2	20546001000020
M9	1,25	90		9,0	7,0	
M10	1,50	100	14,0	10,0	8,0	20546001000022
Nominal Ø				Shank	≪ Ø DIN 376 ►	
d1	Р	1	12	d2.2	a2	Order No.
M11	1,50	100		8,0	6,2	
M12	1,75	110	16,0	9,0	7,0	20547001000024
M14	2,00	110		11,0	9,0	
M16	2,00	110		12,0	9,0	

JEL[®] SIREX, GG

Solid Carbide Taps

- for metric ISO thread DIN 13
- \blacksquare from nominal Ø M4 with central coolant supply
- tolerance field SIREX = ISO 2, GG = ISO 2X
- chamfer form C

					SIREX	GG	
				solid carbide	solid carbide		
					Surface 🕨	uncoated	uncoated
Nominal				Shank	Ø DIN 371 🕨		
d1	Ρ	11	12	d2.1	a1	Order No.	Order No.
M3	0,50	56	11,0	3,5	2,7	80420001000013	
M3,5	0,60	56		4,0	3,0		
M4	0,70	63	13,0	4,5	3,4	80420001000015	80456001000015
M5	0,80	70	16,0	6,0	4,9	80420001000017	80456001000017
M6	1,00	80	18,0	6,0	4,9	80420001000018	80456001000018
M7	1,00	80		7,0	5,5		
M8	1,25	90	18,0	8,0	6,2	80420001000020	80456001000020
M9	1,25	90		9,0	7,0		
M10	1,50	100	21,0	10,0	8,0	80420001000022	80456001000022
Nominal Ø				Shank	Ø DIN 376 🕨		
d1	Р	1	12	d2.2	a2	Order No.	Order No.
M11	1,50	100		8,0	6,2		
M12	1,75	110	24,0	9,0	7,0	80421001000024	80457001000024
M14	2,00	110		11,0	9,0		
M16	2,00	110		12,0	9,0		

JEL[®] SIREX SR

Solid Carbide Taps

- for metric ISO thread DIN 13 \blacksquare
- from nominal \varnothing M4 with central coolant supply
 - tolerance field ISO 2

1 78

2

3

6

						SIREX SR	SIREX SR
				solid carbide uncoated	solid carbide uncoated		
Nominal Ø				Shank	≪Ø DIN 371 ►		
d1	Р	1	12	d2.1	a1	Order No. chamfer form C	Order No. chamfer form E
M3	0,50	56	11,0	3,5	2,7	80444001000013	
M3,5	0,60	56		4,0	3,0		
M4	0,70	63	13,0	4,5	3,4	80444001000015	
M5	0,80	70	16,0	6,0	4,9	80444001000017	
M6	1,00	80	18,0	6,0	4,9	80444001000018	80416001000018
M7	1,00	80		7,0	5,5		
M8	1,25	90	18,0	8,0	6,2	80444001000020	80416001000020
M9	1,25	90		9,0	7,0		
M10	1,50	100	21,0	10,0	8,0	80444001000022	80416001000022
Nominal Ø				Shank	≪ Ø DIN 376 ►		
d1	Р	1	12	d2.2	a2	Order No.	Order No.
M11	1,50	100		8,0	6,2		
M12	1,75	110	24,0	9,0	7,0	80445001000024	
M14	2,00	110		11,0	9,0		
M16	2,00	110		12,0	9,0		

JEL[®] DOREX

Solid Carbide Taps

- for metric ISO thread DIN 13
- \blacksquare from nominal Ø M4 with central coolant supply
- tolerance field ISO 2
- chamfer form B

						DOREX
				solid carbide uncoated		
Nominal Ø				Shank	≪ Ø DIN 371 ►	
d1	Р	11	12	d2.1	a1	Order No.
M3	0,50	56		3,5	2,7	
M3,5	0,60	56		4,0	3,0	
M4	0,70	63		4,5	3,4	
M5	0,80	70		6,0	4,9	
M6	1,00	80	18,0	6,0	4,9	80418001000018
M7	1,00	80		7,0	5,5	
M8	1,25	90	18,0	8,0	6,2	80418001000020
M9	1,25	90		9,0	7,0	
M10	1.50	100	21.0	10.0	8.0	80418001000022

JEL® SIREX XH

Solid Carbide Taps

for metric ISO thread DIN 13

- for hard machining from 45 HRC hardness \blacksquare
 - tolerance field ISO 2X ■
 - chamfer form C and D \blacksquare

				SIREX XH \leq 58 HRC SIREX XH \leq 52 H							
				solid carbide TiAlN	solid carbide TiAlN						
Nominal Ø			SI	nank Ø similar	to DIN 371 🕨						
d1	Р	1	12	d2.1	a1	Order No. chamfer form D	Order No. chamfer form C				
M3	0,50	56		3,5	2,7						
M3,5	0,60	56		4,0	3,0						
M4	0,70	63	18,0	4,5	3,4	80126001000015	80128001000015				
M5	0,80	70	20,0	6,0	4,9	80126001000017	80128001000017				
M6	1,00	80	24,0	6,0	4,9	80126001000018	80128001000018				
M7	1,00	80		7,0	5,5						
M8	1,25	90	24,0	8,0	6,2	80126001000020	80128001000020				
M9	1,25	90		9,0	7,0						
M10	1,50	100	26,0	10,0	8,0	80126001000022	80128001000022				
Nominal Ø				Shank	Ø DIN 376 ►						
d1	Р	1	12	d2.2	a2	Order No.	Order No.				
M11	1,50	100		8,0	6,2						
M12	1,75	110	26,0	9,0	7,0	80127001000024	80129001000024				
M14	2,00	110	26,0	11,0	9,0	80127001000025	80129001000025				
M16	2,00	110	27,0	12,0	9,0	80127001000026	80129001000026				

JEL[®] SIREX

Solid Carbide Taps

- \blacksquare for metric fine ISO thread DIN 13
- with central coolant supply
- tolerance field ISO 2
- chamfer form C

					SIREX
				Cutting material	solid carbide
Nominal					
Ø				Shank Ø DIN 374 ►	
d1 × P	1	12	d2.1	a1	Order No.
M4×0,5	63	10	4,5	3,4	80420002000029
M5×0,5	70		6,0	4,9	
M6×0,5	80		6,0	4,9	
M6×0,75	80	14	6,0	4,9	80420002000048
M8×0,5	80		8,0	4,9	
M8×0,75	80		8,0	4,9	
M8×1	90	18	8,0	4,9	80420002000070
Nominal Ø				Shank Ø DIN 374 🕨	
d1 × P	1	12	d2.2	a2	Order No.
M10×0,75	90		7,0	5,5	
M10×1	90	18	7,0	5,5	80421002000094
M10×1,25	100		7,0	5,5	
M11×1	90		8,0	6,2	
M12×1	100		9,0	7,0	
M12×1,25	100		9,0	7,0	
M12×1,5	100	20	9,0	7,0	80421002000113
M14×1	100		11,0	9,0	
M14×1,25	100		11,0	9,0	
M14×1,5	100	20	11,0	9,0	80421002000131
M15×1	100		12,0	9,0	
M15×1,5	100		12,0	9,0	
M16×1	100		12,0	9,0	
M16×1,5	100	20	12,0	9,0	80421002000147
M18×1	110		14,0	11,0	
M18×1,5	110		14,0	11,0	
M20×1,5	125		16,0	12,0	

JEL[®] SIREX SR

Solid Carbide Taps

- for metric fine ISO thread DIN 13 \blacksquare
 - with central coolant supply \blacksquare
 - tolerance field ISO 2 \blacksquare
 - chamfer form C 🔳

2

3 1

4

5

6

0

8

					SIREX SR
				Cutting material Surface	solid carbide uncoated
Nominal Ø			Shank Ø DIN 374 ▶		
d1 × P	11	12	d2.1	a1	Order No.
M4×0,5	63	10	4,5	3,4	80444002000029
M5×0,5	70		6,0	4,9	
M6×0,5	80		6,0	4,9	
M6×0,75	80	14	6,0	4,9	80444002000048
M8×0,5	80		8,0	4,9	
M8×0,75	80		8,0	4,9	
M8×1	90	18	8,0	4,9	80444002000070
Nominal Ø				Shank Ø DIN 374 🕨	
d1 × P	1	12	d2.2	a2	Order No.
M10×0,75	90		7,0	5,5	
M10×1	90	18	7,0	5,5	80445002000094
M10×1,25	100		7,0	5,5	
M11×1	90		8,0	6,2	
M12×1	100		9,0	7,0	
M12×1,25	100		9,0	7,0	
M12×1,5	100	20	9,0	7,0	80445002000113
M14×1	100		11,0	9,0	
M14×1,25	100		11,0	9,0	
M14×1,5	100	20	11,0	9,0	80445002000131
M15×1	100		12,0	9,0	
M15×1,5	100		12,0	9,0	
M16×1	100		12,0	9,0	
M16×1,5	100	20	12,0	9,0	80445002000147
M18×1	110		14,0	11,0	
M18×1,5	110		14,0	11,0	
M20×1.5	125		16.0	12.0	

JEL[®] Taps

Technical notes

		Guio	leline	values for tapping	Cutting speed					Coolant				
				Cutting material	HSS-E Solid c			arbide						
		1 ²)		Surface	uncoated	coated	uncoated	coated						
2	2	nm/N												
010	2010	Rm (h	HB											
l ci a		gth F	less						lsion					
A ato	אומרי	Stren	Hardı	Matorial	V _C	V _C	V _C	V _C	Emu	Ī	Dry	Air		
	- 	≤400	_ ≤120	magnetic soft iron	15 - 30	20 - 50	11//11/11	11//11111	Y	Y				
	.2	<700	<200	structural case hardened steel	15 - 25	20 - 40				~				
	ω. –	< 850	<250	carbon steel	15 _ 20	20 - 35			~	· ·				
<u>ہ</u>	4.	<850	<250	alloy stool	10 - 15	20 - 30			· ·	· ·				
	5	>850	>250		T 10	15 20								
	6 1.	≤1200	≤350	alloy/neat treated steel	5 - 10	15 - 20			Y	Y				
_	7 1.	>1200	>350	alloy/heat treated steel	2 - 5	10 - 15				Y				
E		≤1400	≤400	hardened steel to 45 HRC				2 - 8		Y				
	1.8	≤2200	≤600	hardened steel to 58 HRC				2 - 5		Y				
	2.1	≤850	≤250	stainless steel, sulphuretted	5 - 10	10 - 25				Y				
≥	2.2	≤850	≤250	austentic	4 - 8	10 - 20				Y				
	2.3	≤1000	≤300	ferritic, ferritic & austentic, martensitic	3 - 5	7 - 12				Y				
	Э.1	≤500	≤150	grey cast iron	10 - 20	20 - 25	20 - 50		~		Y			
	3.2	>500 ≤1000	>150 ≤300	grey cast iron, heat treated	5 - 10	15 - 20	20 - 50		Y					
	3.3	400- 500	200- 250	vermicular cast iron										
¥	3.4	≤700	≤200	spheroidal graphite cast iron	10 - 20	20 - 40	20 - 50		Y					
	3.5	>700 ≤1000	>200 ≤300	spheroidal graphite cast iron, heat treated	5 - 10	10 - 15	20 - 50		Y	Y				
	3.6	≤700	≤200	malleable iron	10 - 15	30 - 40	20 - 50		Y	Y				
	3.7	>700 <1000	>200 ≤300	malleable iron heat treated	5 - 10	10 - 20	20 - 50		Y	Y				
	4.1	≤700	≤200	pure titanium	5 - 15	10 - 15			Y	Y				
	4.2	≤900	≤270	titanium alloys	3 - 10	10 - 15			V	Y				
	4.3	>900	>270 <300	titanium alloys	1 - 5	5 - 10				Y				
2	5.1	≤500	<u>≤150</u>	pure nickel	7 - 10	10 - 15				Y				
	5.2	≤900	<270	nickel alloys, heat resistant	4 - 8	5 - 10				Y				
	5.3	>900	>270	nickel alloys,	3 - 5	4 - 7				Y				
	6.1	≤350	≤100	non-alloy copper	10 - 15	15 - 20			Y	Y				
	6.2	≤700	≤200	short chip, brass, bronze, red	25 - 30	40 - 50	25 - 60		Y		Y			
	5.3	≤700	≤200	long chip brass	10 - 20	30 - 40			Y	Y				
	5.4 (≤500	≤470	Cu-Al-Fe alloy (Ampco)	2 - 5	5 - 8	5 - 9		Y	Y				
	7.1 (≤350	≤100	Al, Mg non-allov	10 - 15	20 - 50			Y					
	7.2	≤600	≤180	Al wrought alloy, breaking strain	15 - 20	20 - 40			Y					
Ζ	7.3	≤600	≤180	(A 5) <14 % Al wrought alloy, breaking strain	10 - 15	20 - 40			Y					
	7.4	≤600	≤180	(A 5) 214 % Al cast alloy, Si <10 %	20 - 30	25 - 50	25 - 80		Y					
	.5.7	≤600	≤180	Al cast alloy. Si ≥10 %	15 - 25	20 - 30	20 - 60		Y					
	.1.			thermoplastics	15 - 25	20 - 30			Y		Y			
	3.2			thermosetting plastics	5 - 10	10 - 15	10 - 30		V			V		
	∞			fibre reinforced plactics	3.5	8 _ 12	8 - 25		~			-		
1	00			nore remored plastics	5-5	0-12	0-25							

Cutting values shown are relating to the basic recommendations for cutting materials given.

$Problems \rightarrow possible \ causes \rightarrow solutions$

Oversized thread

- wrong tools \rightarrow select the right tools as shown in the catalogue
- cutting edge geometry not suitable for materials to be machined \rightarrow select the right tools as shown in the catalogue
- material built-up at tap flanks
 - \rightarrow improve coolant system
 - \rightarrow use coated tap
- minor diameter too small, tool is cutting full profile \rightarrow select correct core diameter
- chip jam
 - \rightarrow blind bore: increase spindle speed. Correct tool selection (spiral flute)
 - \rightarrow through hole: correct tool selection (spiral point)
- tolerance of tap drill to thread gauge does not agree \rightarrow use tap drill with right tolerance
- angular or positional error in core bore → adjust workpiece clamping, use tapping chuck with axis
 parallel float

1.

Thread too tigh

- tolerance of tap drill to thread gauge does not agree \rightarrow use tap drill with right tolerance
- wrong tool type \rightarrow select the right tools as shown in the catalogue

3.	

4

6.

7.

Thread is cut wrongly axially

• cutting lead pressure on tapping chuck too great \rightarrow select the right cutting lead pressure

Pitch distortion (plug gauge cann • tap is not cuttir

- (plug gauge cannot be screwed in over full thread length on the workpiece)
- tap is not cutting true to pitch
 - \rightarrow select right tool
 - \rightarrow select right cutting lead pressure
 - \rightarrow with length adjustment chucks reduce feed to 95%

Thread oversize at the entry

- wrong cutting lead pressure
 - \rightarrow use compensation chuck(tension)
 - \rightarrow use lead srcrew
 - ightarrow select right tool

Thread surface not clean

- wrong tool type \rightarrow select right tool
- chip jam \rightarrow see "thread too large chip jam"
- core diameter too small → select right core diameter
- material built-up on thread flanks
 → use tools with surface treatment
 - \rightarrow improve coolant system
- cutting speed to low \rightarrow increase cutting speed

No. of threads Tool life too short

- wrong tool type \rightarrow select right tool type
- cutting speed too high or too low \rightarrow adjust cutting speed
- composition and supply of coolant inadequate \rightarrow provide suitable, sufficient coolant
- premature wear due to lack of or unsuitable surface treatment \rightarrow use coated tools, if necessary solid carbide tools