2022/2/7 Getting Started | Taichi Docs

On this page v

Getting Started

Welcome to the Taichi Language documentation!

Installation

To get started with the Taichi Language, simply install it with : pip

python3 -m pip install taichi

() NOTE

Currently, Taichi only supports Python 3.6/3.7/3.8/3.9 (64-bit).

n Feedback

There are a few of extra requirements depend on which operating system you are using:

Arch Linux Windows

On Arch Linux, you need to install package from the Arch User Repository: ncursess-

compat-1libs yaourt -S ncurses5-compat-libs

Please refer to the Installation Troubleshooting section if you run into any issues when
installing Taichi.

Hello, world!

We introduce the Taichi programming language through a very basic fractal example.

Running the Taichi code below using either or (you can find more information about the
Taichi CLI in the Command line utilities section) will give you an animation of Julia

set:python3 fractal.py ti example fractal

https://docs.taichi.graphics 1/10

https://docs.taichi.graphics/lang/articles/misc/install
https://docs.taichi.graphics/lang/articles/misc/cli_utilities
https://en.wikipedia.org/wiki/Julia_set

2022/2/7 Getting Started | Taichi Docs

fractal.py

import taichi as ti

ti.init(arch=ti.gpu)

e
o
©

Qo

o
(]
(6]

L

a

= 320
pixels = ti.field(dtype=float, shape=(n * 2, n))

@ti.func
def complex_sqr(z):
return ti.Vector([z[O]**2 - z[1]**2, z[1] * z[@] * 2])

@ti.kernel
def paint(t: float):
for i, j in pixels:
c = ti.Vector([-0.8, ti.cos(t) * 0.2])
z = ti.Vector([1i / n -1, j/ n - 0.5]) * 2
iterations = ©
while z.norm() < 20 and iterations < 50:
z = complex_sqr(z) + ¢
iterations += 1

pixels[i, j] = 1 - iterations * 0.02
gui = ti.GUI("Julia Set", res=(n * 2, n))

for i in range(1000000) :

https://docs.taichi.graphics

2022/2/7 Getting Started | Taichi Docs

paint(i * 9.03)
gui.set_image(pixels)

gui.show()

Let's dive into this simple Taichi program.

import taichi as ti
Taichi is a domain-specific language (DSL) embedded in Python.

To make Taichi as easy to use as a Python package, we have done heavy engineering with
this goal in mind - letting every Python programmer write Taichi programs with minimal
learning effort.

You can even use your favorite Python package management system, Python IDEs and
other Python packages in conjunction with Taichi.

n Feedback

i.init(arch=ti.

i.init(arch=ti.

i.init(arch=ti.

i.init(arch=ti.

i.init(arch=ti.

@ INFO

Supported backends on different platforms:

platform CPU CUDA OpenGL Metal C source

Windows OK OK OK N/A N/A

https://docs.taichi.graphics 3/10

2022/2/7 Getting Started | Taichi Docs

platform CPU CUDA OpenGL Metal C source

Linux OK OK OK N/A OK

macOS OK N/A N/A OK N/A

(OK: supported; N/A: not available)

With , Taichi will first try to run with CUDA. If CUDA is not supported on your
machine, Taichi will fall back on Metal or OpenGL. If no GPU backend (CUDA, Metal,
or OpenGLl) is supported, Taichi will fall back on CPUs. arch=ti.gpu

() NoOTE

When used with the CUDA backend on Windows or ARM devices (e.g., NVIDIA
Jetson), Taichi allocates 1 GB GPU memory for field storage by default.

You can override this behavior by initializing with to allocate GB GPU memory, or to
allocate of the total GPU memory. ti.init(arch=ti.cuda,

n Feedback

device_memory GB=3.4) 3.4 ti.init(arch=ti.cuda,

device memory fraction=0.3) 30%

On other platforms, Taichi will make use of its on-demand memory allocator to
allocate memory adaptively.

Fields

Taichi is a data-oriented programming language where dense or spatially-sparse fields
are the first-class citizens.

In the code above, allocates a 2D dense field named of size and element data type
.pixels = ti.field(dtype=float, shape=(n * 2, n)) pixels (640, 320) float

Functions and kernels
Computation resides in Taichi kernels and Taichi functions.

Taichi kernels are defined with the decorator . They can be called from Python to
perform computation. Kernel arguments must be type-hinted (if any).@ti.kernel

https://docs.taichi.graphics 4/10

2022/2/7 Getting Started | Taichi Docs

Taichi functions are defined with the decorator . They can only be called by Taichi kernels
or other Taichi functions.@ti. func

See syntax for more details about Taichi kernels and functions.

The language used in Taichi kernels and functions looks exactly like Python, yet the Taichi
frontend compiler converts it into a language that is compiled, statically-typed,
lexically-scoped, parallel and differentiable.

@ INFO
Taichi-scopes v.s. Python-scopes:

Everything decorated with and is in Taichi-scope and hence will be compiled by the
Taichi compiler.@ti.kernel @ti.func

Everything else is in Python-scope. They are simply Python native code.

A\ cAuTION

Feedback

Taichi kernels must be called from the Python-scope. Taichi functions must be called
from the Taichi-scope.

Q i

For those who come from the world of CUDA, corresponds to while corresponds to

.ti.func _ device ti.kernel _global _

@ NOTE

Nested kernels are not supported.
Nested functions are supported.

Recursive functions are not supported for now.

Parallel for-loops

For loops at the outermost scope in a Taichi kernel is automatically parallelized. For
loops can have two forms, i.e. range-for loops and struct-for loops.

https://docs.taichi.graphics 5/10

https://docs.taichi.graphics/lang/articles/basic/syntax

2022/2/7 Getting Started | Taichi Docs

Range-for loops are no different from Python for loops, except that they will be
parallelized when used at the outermost scope. Range-for loops can be nested.

@ti.kernel
def fill():
for i in range(10):
x[i] += 1

S =0

for j in range(5):
S += J

y[i] =s

@ti.kernel
def fill 3d():

for i, j, k in ti.ndrange((3, 8), (1, 6), 9):
x[i, j, k] =1+ J + k

e
[&)
©

Qo

©
(3]
(0]

L

a

@ NOTE

It is the loop at the outermost scope that gets parallelized, not the outermost loop.

@ti.kernel
def foo():
for i in range(10):

@ti.kernel
def bar(k: ti.i32):
if k > 42:
for i in range(10):

https://docs.taichi.graphics

2022/2/7 Getting Started | Taichi Docs

Struct-for loops are particularly useful when iterating over (sparse) field elements. In the
above, loops over all the pixel coordinates, i.e., . fractal.py for i, j in pixels (0, 0),

(0, 1), (8, 2), ... , (0, 319), (1, @), ..., (639, 319)

G) NOTE

Struct-for is the key to sparse computation in Taichi, as it will only loop over active
elements in a sparse field. In dense fields, all elements are active.

A\ cAUTION

Struct-for loops must live at the outer-most scope of kernels.

It is the loop at the outermost scope that gets parallelized, not the outermost loop.

@ti.kernel
def foo():
for i in x:

n Feedback

@ti.kernel

def bar(k: ti.i32):

if k > 42:
for i in x:

A\ CAUTION

break is not supported in parallel loops:

@ti.kernel
def foo():

for i in x:

https://docs.taichi.graphics 710

https://docs.taichi.graphics/lang/articles/advanced/sparse

2022/2/7 Getting Started | Taichi Docs
break

for i in range(10):

break

@ti.kernel

def foo():
for i in x:

for j in range(10):

break

GUI system

Taichi provides a cpu-based GUI system for users to render their results on the screen.

gui = ti.GUI("Julia Set", res=(n * 2, n))

n Feedback

for i in range(1000000) :
paint(i * 9.03)
gui.set_image(pixels)

gui.show()

Interacting with other Python packages

Python-scope data access

Everything outside Taichi-scopes (.and) is simply Python code. In Python-scopes, you
can access Taichi field elements using plain indexing syntax. For example, to access a
single pixel of the rendered image in Python-scope, you can simply

use: ti.func ti.kernel

import taichi as ti

pixels = ti.field(ti.f32, (1024, 512))

https://docs.taichi.graphics 8/10

https://docs.taichi.graphics/lang/articles/misc/gui

2022/2/7 Getting Started | Taichi Docs

pixels[42, 11] = 0.7
print(pixels[42, 11])

Sharing data with other packages

Taichi provides helper functions such as and to transfer data between Taichi fields and
NumPy arrays, so that you can also use your favorite Python packages (e.g., , ,) together
with Taichi as below: from_numpy to_numpy numpy pytorch matplotlib

import taichi as ti
pixels = ti.field(ti.f32, (1024, 512))

import numpy as np
arr = np.random.rand(1024, 512)

pixels.from_numpy(arr)

import matplotlib.pyplot as plt

n Feedback

arr = pixels.to_numpy()
plt.imshow(arr)
plt.show()

import matplotlib.cm as cm
cmap = cm.get_cmap('magma’)
gui = ti.GUI('Color map')
while gui.running:
render_pixels()
arr = pixels.to_numpy()

gui.set_image(cmap(arr))

gui.show()

See Interacting with external arrays for more details.

What's next?

Now we have gone through core features of the Taichi programming language using the
fractal example, feel free to dive into the language concepts in the next section, or jump

https://docs.taichi.graphics 9/10

https://docs.taichi.graphics/lang/articles/basic/external#interacting-with-external-arrays

2022/2/7 Getting Started | Taichi Docs

to the advanced topics, such as the Metaprogramming or Differentiable programming.

Remember that you can use the search bar at the top right corner to search for topics or
keywords at any time!

If you are interested in joining the Taichi community, we strongly recommend you take
some time to familiarize yourself with our contribution guide.

We hope you enjoy your adventure with Taichi!

/' Edit this page
Last updated on 1/27/2022 by Taichi Gardener

ﬂ Feedback

https://docs.taichi.graphics 10/10

https://docs.taichi.graphics/lang/articles/advanced/meta
https://docs.taichi.graphics/lang/articles/advanced/differentiable_programming
https://docs.taichi.graphics/lang/articles/contribution/contributor_guide
https://github.com/taichi-dev/taichi/edit/master/docs/lang/articles/get-started.md

