MX ©2011-2019 MX - All Rights Reserved - Confidential Information

MONEYMAP

GETTING STARTED INTEGRATION GUIDES APl GUIDES DOCS CHANGELOG

Introduction

Authentication

Available Widgets

Mini Widgets

Implementing Mobile Widgets

Embedding a Desktop Widget

Advanced Desktop Widget Usage

PostMessage Events

PostMessage alternative for
WebView-only implementations

Notifications

Pulse

Changelog

INTRODUCTION

& — Historically, the software outlined in this guide has been called “MoneyDesktop,” or “DMM’, but MX now uses the name
MoneyMap. You'll still find many references to “MoneyDesktop” throughout this guide, including in URLs, class names, etc.

MoneyMap is MX’s digital money management software. It consists of several widgets, each of which can be displayed alone or in conjunction with
other widgets. This allows for a customizable and configurable product that fits the needs of both MX’s partners and their end users.

Widgets are designed to work seamlessly in either a mobile or desktop environment on top of a single codebase. Most widgets are built with a
responsive design using the React Javascript framework.

Two small, lightweight mini widgets are also available for use in more restrictive situations; these have an independent codebase and are not
responsive.

This guide will take you through the steps required to embed widgets and mini widgets into your mobile or desktop application.

AUTHENTICATION

All widgets are authenticated through user-specific, tokenized URLs provided by our SSO API. These tokenized URLs expire after 10 minutes and are
single-use. A new URL must be requested each time the page is rendered. This will include cases such as the user clicking refresh or the user
navigating away from the page and then returning to it. Any time the page is re-loaded for any reason it must be done with a fresh widget URL.

— Warning: Do not attempt to alter the URLs provided through the SSO API. Altering them can cause widgets to break.

AVAILABLE WIDGETS

The table below lists the widgets available to be embedded either individually or as part of the Master widget.

Strictly speaking, all widgets use a responsive design and will automatically adjust their look and functionality to accommodate the size of their
container. However, widgets labeled as “available on mobile” have been optimized to look and work well when used in smaller, mobile-sized
containers; those unavailable on mobile are still in this process of optimization.

@ —inorderto get accurate analytics data from MX systems, certain widgets must be called using mobile-specific URLs when used in
mobile contexts such as WebViews. Analytics data on mobile vs. desktop visits is unavailable for widgets without a mobile-specific URL

Nevertheless, widgets will display properly even if the standard URL is used in a mobile context.

Widget f‘n‘:ﬂ“ﬂge l Notes
Accounts Yes For analytics purposes, a mobile-specific URL is available for this widget.
Budgets Yes For analytics purposes, a mobile-specific URL is available for this widget.
Cash Flow Yes
Connect Yes
Connections Yes
Debts Yes
Goals Yes
Help Yes Not all help material is available on mobile.
Investments No Investments is still in mobile development.
The Master widget can display all or any combination of widgets; the mobile Master widget is
Master Yes limited only to widgets available on mobile.
widget
For analytics purposes, a mobile-specific URL is available for this widget.
Misi Yes This is a lightweight, smaller version of the Budgets widget.
Budgets
Mini Net Yes This is a lightweight, smaller version of the Net Worth widget.

Worth

Mini

spending Yes This is a lightweight, smaller version of the Spending widget.

Net Worth Yes

Notifications Yes

Settings

Pulse Yes The pulse widget is only available when pulse functionality is enabled for the client.
Settings Yes

Spending Yes For analytics purposes, a mobile-specific URL is available for this widget.
Transactions Yes For analytics purposes, a mobile-specific URL is available for this widget.

Trends Yes

Minimum Dimensions

MX'’s widgets implement a responsive design, meaning they will change in appearance when viewed at different widths. Page styles and layout are
subject to change, and elements may become hidden or visible at different widths.

The following are the minimum dimensions supported for mobile/desktop widgets:

* Minimum height: 550px
* Desktop Master Widget minimum height: 600px
e Minimum width: 320px

Responsive Breakpoints

The image below shows the width breakpoints at which the design will change. These are based on typical industry device resolutions.

* Small: 320px to 767px
* Medium: 768px to 1199px
* Large: 1200px or greater

= =]

SMALL SCREENS MEDIUM SCREENS LARGE SCREENS

“Mobile Widgets™
320px 768 px 1200 px

MINI WIDGETS

There are three small, lightweight, mini widgets available as well: Budgets, Net Worth, and Spending. These reflect the same design principles as the
mobile/desktop widgets, but they do not share the same codebase and are not responsive.

They are suitable for both mobile and desktop applications.

@ — 7he Transactions and Accounts mini widgets have been deprecated and are no longer supported.

Minimum Mini Widget Dimensions

Because mini widgets are designed to be lightweight for specialized situations, they are more restricted in size.

Budgets and Spending

* Minimum height: 300px
* Supported widths: 180px to 750px

a Doarcnmmondad widthe far hoact roaciilte: 200nyv tn ABROAY

* Recommended widths for best results: 300px to 450px

Net Worth

e Minimum height: 400px
e Supported widths: 300px to 750px
* Recommended widths for best results: 300px to 450px

IMPLEMENTING MOBILE WIDGETS

Broadly speaking, there are two steps involved in implementing widgets in a mobile context:

1. Get a widget URL through the SSO API (and remember that there are several mobile-specific widget URLS used for analytics purposes);
2. Load that URL into a WebView.

Below, we outline solutions to several common problems that occur during step 2.

Minimum Size Problems

In order to embed our mobile widgets into a WebView, one of the requirements is a device width of at least 320 pixels. Depending on the
implementation of the WebView, smaller devices may not be provided the full width, leading to display issues.

iOS — WKWebView vs. UlWebView

In apps that run in iOS 8 and later, MX only supports WKWebView.
All partners who have previously previous implemented UIWebView should update their implementation to use WKWebView.

This change in support was made because MX has seen far fewer issues when partners use the WKWebView class. Apple also makes this
recommendation. For more information see Apple’s developer documentation for UlWebView and WKWebView.

iOS — Default Padding Problems

iOS will add additional padding to its WebViews by default; this sometimes causes problems.

@ — Android does not typically have default padding on WebViews. MX recommends partners ensure they are not adding padding
explicitly.

To fix this, follow these simple steps:

1. Select the WebView providing the widgets in your application and navigate to the size inspector;

hbea ¢ 0 0

2. Change the layout margins from “Default” to “Explicit”;

Arrange Position View n
Layout Margins Explicit Bl
. n”~ RIi*

3. Update the left and right margins to “0”;

Layout Margins = Explicit

o Height

iOS and Android — Default Margin Problems

Whether using WebViews on Android or iOS, most browsers will have a default margin (set in the user agent stylesheet) on the body element when
rendering the HTML page responsible for loading a widget. This margin is deducted from the total available width of the containing element, which
will cause a problem.

To fix this, follow these simple steps:

1. Determine the computed width available on the body element;

(Click to enlarge.)

@ — The width available to the iframe can be confirmed by inspecting the iframe injected by MX and typing window. innerWidth in the javascript
console. The width available to the iframe must be at least 320 pixels.

i Console Anmatons Neworkcondtons Search x
© ¥ Mamenumi v [Preserve log
> window. inaerkidth
304
>

(Click to enlarge.)

2. Confirm the body and HTML elements have their padding and margin set to “0.”

iOS and Android — Viewport problems

In order for mobile widgets to render properly, the viewport must be set in a meta tag on the HTML page used to load the widget URL.
The viewport is the size of the window through which a page is seen; it can be smaller or /arger than the actual size of a page or device screen.

On most mobile devices, the virtual viewport is larger than the actual screen size; web pages are rendered according to the viewport size, then
shrunk down to the actual screen size. This helps when viewing pages that aren’t optimized for mobile, but for pages that are optimized for mobile
(like the mobile widgets), the viewport meta tag is used to guarantee that the page is rendered properly.

Set a meta tag within the <head> element as follows:

<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no">

