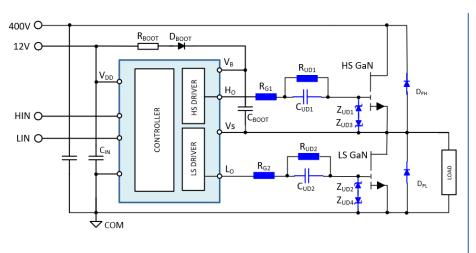
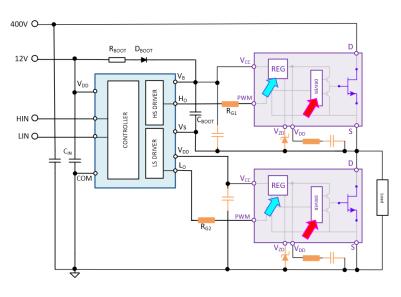


Overview

GaN Systems' **EZDrive**SM circuit is a low cost, easy way to implement a **GaN driving circuit**. It is adaptable to any power level, any frequency, and any LLC and PFC controller. The EZDriveSM circuit provides design control for the optimization of efficiency and EMI.

The **EZDrive**SM circuit allows the use of a standard MOSFET controller with integrated driver to drive GaN Systems' E-HEMTs. The table below summarizes the advantages of this circuit.


Application Considerations	Silicon MOSFETs	Monolithic-integrated Driver GaN	GaN Systems E-HEMTs
Total BoM Cost	Lowest	Highest	Low
Choice of devices to optimize design	Widest	Narrow	Wide range from 25 m Ω to 500 m Ω
Utilize controller driver, eliminate driver redundancy, ease-of-use	 Driver integrated in controller No redundant drivers	Driver integrated in controllerRedundant drivers in GaN device	 Driver integrated in controller No redundant drivers
EMI control	Adjustable EMI control with gate resistor R _G	Fixed – cannot control turn-off slew rate	Adjustable EMI control with gate resistor R _G
Power density	Low	High	High

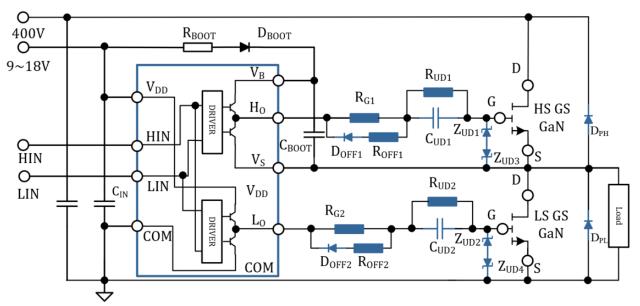

Comparing GaN Half Bridge Solutions

GaN Transistors + EZDrive SM circuit

vs Monolithic-integrated GaN transistors + drivers

Fewest circuit blocks + standard componentry

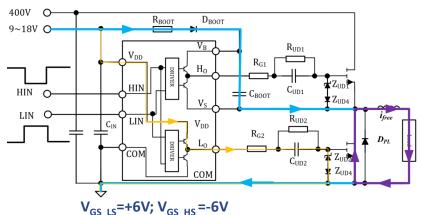
(cost effective)


Control Turn-on, turn-off, negative drive (optimized EMI and efficiency)

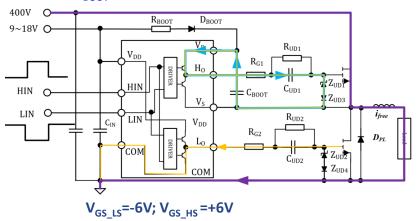
Integrated = 2 extra Drivers + 2 extra LDOs (higher cost and complexity)

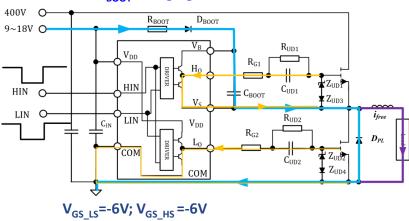
Control of turn-on only (sub-optimal performance)

GaN Systems EZDriveSM Solution for GaN HEMTs


Standard componentry: GaN + MOSFET controller + discrete

- Enable controller to drive GaN HEMT with a small number of external components
- Turn ON / OFF slew rate is controllable with external resistors to optimize EMI
- Applies to any controllers with single, dual, or high-side/low-side drivers

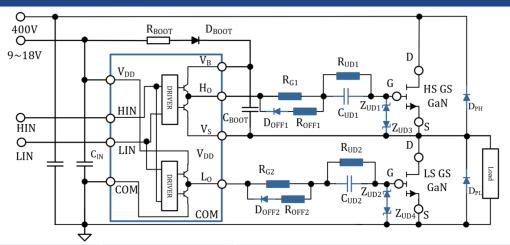

Operation Modes of EZDriveSM Solution


Mode 1: C_{BOOT} Charging (HS GaN: off; LS GaN: on)

Mode 3: C_{BOOT} Discharging (HS GaN: on; LS GaN: off)

Mode 2: C_{BOOT} Charging (HS GaN: off; LS GaN: off)

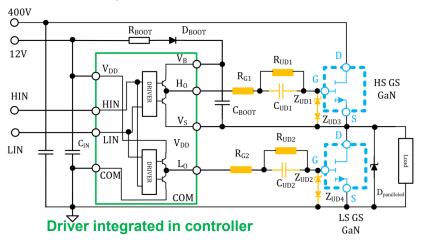
Power Flow


Gate Driving Current Flow

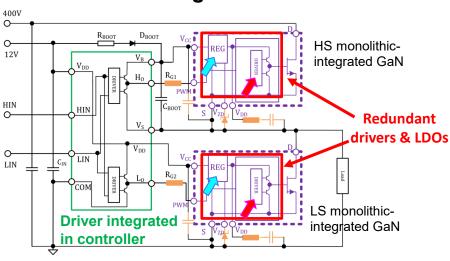
C_{BOOT} Current Flow

- EZDriveSM operation modes are similar to conventional non-isolated Bootstrap high side/low side driver
- Allows wide controller driving voltage range (9~18V)

Choosing EZDriveSM Circuit Component Values



Symbol	Rec. Value	Function
R _{G1,2}	5-10 Ω	Control turn ON speed
R _{UD1,2}	~ 10 kΩ	Keep the driving voltage
C _{UD1,2}	~ 47 nF	Hold negative voltage for turning off
$Z_{UD1,2}$	5.6 V Zener	Clamp the positive gate voltage
Z _{UD3,4}	9.1 V Zener	Clamp the negative gate voltage
D _{PL}	600V FRD 1A	Avoid C _{BOOT} overcharging, for reduced low side P _{DT} (Note 1)
D _{PH}	600V FRD 1A	Optional for reduced high side P _{DT} (Note 1)
D _{OFF1,2}	20V DIODE 1A	Enable independent turn-off speed control
R _{OFF1,2}	0 Ω	Control turn-off speed


Comparison with Monolithic-integrated GaN Solution

GaN Systems EZDriveSM Solution

Monolithic-integrated Solution

HV HB Bootstrap Driver
Simplified Diagram

GaN Systems' GaN

cost effective

External Components

Integrated = 2 extra Drivers + 2 extra LDOs (higher cost and complexity)

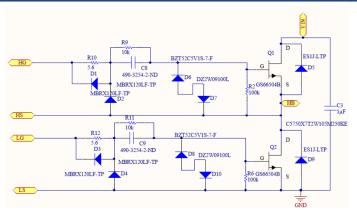
Integrated GaN + drivers

Control Turn-on, turn-off, negative drive (optimized EMI and efficiency)

Fewest circuit blocks + standard componentry

Control of turn-on only (sub-optimal performance)

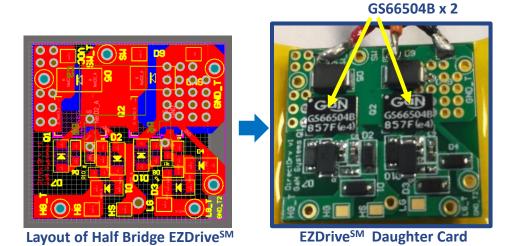
PFC/LLC controller tips for EZDriveSM Solution



Transistor	PFC/LLC Controller	External Driver	Integrated Driver in FETs	Multisource Devices	Transistor Range
Silicon MOSFET	Several available from ON Semi, TI, ST Micro and others. Examples include: PFC NCP1616, NCP1615, L6562A LLC NCP1399, NCP13992	NO	NO	YES	Widest
Monolithic- integrated GaN		NO	YES	NO	Narrow
GaN Systems		NO	NO	YES	25, 50, 67, 100, 150, 200, 225, 500 mΩ

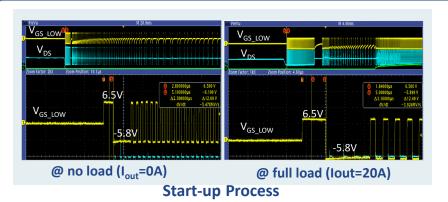
- Driving GaN transistors directly with controllers **simplifies and reduces the cost** of the circuit
- Using discrete GaN transistors provides customers
 - a wide range of products
 - multiple sources of GaN devices

Verification in LLC stage



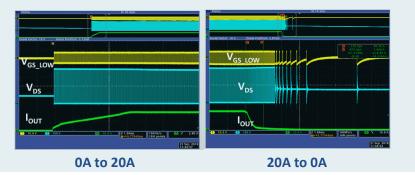
Schematic of EZDriveSM in Half Bridge

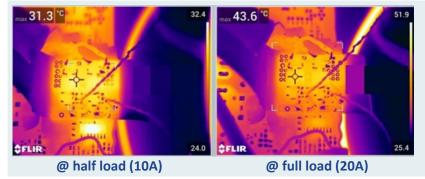
Test board (Top View)



Test board (Bottom View)

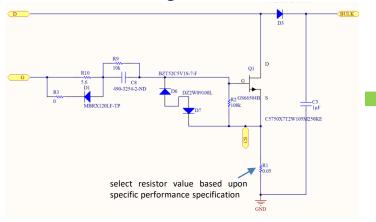
Verification in LLC stage



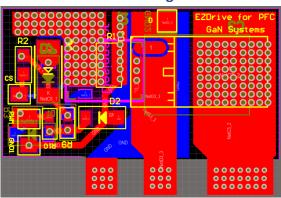


@ no load (I_{out}=0A)

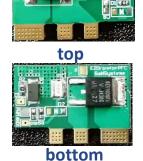
Load Step Change


Temperature Distribution

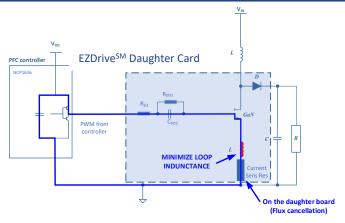
- No overshoot/undershoot on V_{GS} & V_{DS} in all operating conditions
- Low operating temperatures


Verification in PFC stage

EZDriveSM PFC daughter card

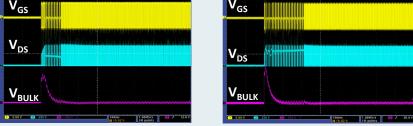

PFC with transition-mode controller L6562A (Top View)

PFC with transition-mode controller L6562A (Side View)

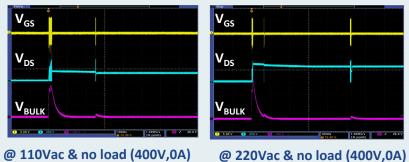


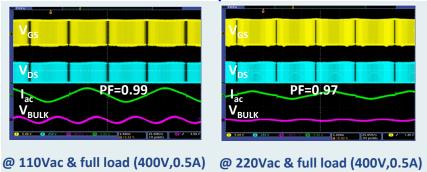
650V 15A GaN E-HEMT: GS66504B

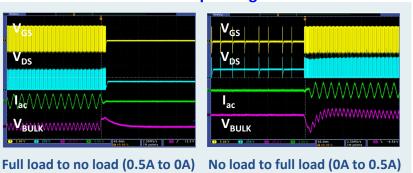
Suggestions for PFC Daughter Cards Layout



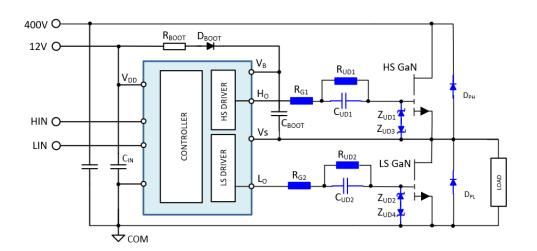
Recommendations for PFC daughter cards Layout	Objectives	
Shorten the trace length between the sensing resister and Power GND	Reduce trace inductance	
 Put the sensing resister and GaN back-to-back on the 2-layer board 2-layer PCB is the low cost solution, using 4-layer PCB will further reduce the common inductance and get better thermal performance 	Flux cancellation - reduce the mutual inductance	
SMD current sensing resister	Reduce the parasitic inductance	
 Avoid using probe with long ground wire to sense the signals, isolation probe for VDS measurements is recommended (Note 3) 	Avoid introducing the parasitics from the measurement	


Verification in PFC stage




@ 110Vac & full load (400V,0.5A) @ 220Vac & full load (400V,0.5A)

Load Step Change



No overshoot/undershoot on V_{GS} & V_{DS} in all operating conditions

Summary – GaN Systems' EZDriveSM Solution

- Universally converts any IC controller/driver to properly drive GaN Systems transistors
- Eliminates the redundant GaN drivers & LDOs of a monolithic integrated driver GaN device
- Turn ON / OFF slew rate is controllable with external resistors for complete control of EMI
- Applies to single, dual, or high-side/low-side controllers with drivers

- Simple
- Eliminates drivers
- Higher power density
- Lower Cost

