https://blog.roboflow.com/autodistill/
8/10/2023

roboflow

Product v Solutions v

Resources v Pricing

Latest Posts

Tutorials

Case Studies Product Updates ~ Greatest Hits Categories

Distill Large Vision Models into Smaller, Efficient Models
with Autodistill

(=)

A

James Gallagher
JUN 8,2023 | 12 MIN READ

LAUNCH

autodistill

Use Foundation Models to Train Any Vision Model
Without Labeling

Today we are announcing Autodistill, a new library for creating computer vision models without
labeling any training data. Autodistill allows you to use the knowledge of large foundation models
and transfer it to smaller models for building enterprise Al applications running in real-time or at the
edge.

2

0'(

RUN AUTODISTILL EDGE-READY MODEL

Advancements in Al research — particularly large, multipurpose, multimodal foundation models —
represent a fundamental shift in capabilities of machine learning. Al models are capable of handling
an unprecedented, wide array of tasks.

Meta Al's Segment Anything Model can segment the edges of a mechanical part or item on a shelf,
OpenAl's GPT-4 can write your dinner recipe and write your code (or, soon, even tell you why a
meme is funny), and BLIP2 by Salesforce can caption a scene of Olympians celebrating a gold
medal or describe a photo of your favorite shoe.

Large, foundation models represent a stepwise change in capabilities

Foundation models aren't perfect for every use case. They can be GPU compute-intensive, too slow
for real time use, proprietary, andfor only available via API. These limitations can restrict developers
from using models in low compute environments (especially edge deployment), creating their own
intellectual property, and/or deploying cost effectively.

If you're deploying a model to segment tennis players during a live broadcast to run real-time on an
edge device, Meta's SAM won't produce high enough throughput — even though it knows how to
segment where tennis players are zero-shet. If you're creating your own code completion model,
you could use GPT-4, though you're only leveraging a fraction of its knowledge.

Foundation models know a lot about a lot, and many real-world Al applications need to know a
lot about a little.

Fortunately, there is a way to benefit from the knowledge of large models without deploying them
explicitly: distillation. There have been recent breakthroughs in both knowledge distillation and
dataset distillation to help make distillation the best path for transferring the power of large models
to small models for real-world applications.

Introducing Autodistill

The Autodistill Python package labels images automatically using a foundation model, which
themselves are trained on millions of images and millions of dollars in compute consumption by the
world's largest companies (Meta, Google, Amazon, etc.), then trains a state-of-the-art model on the

raailtinn Aatacat

Build and deploy with
Roboflow for free

Use Roboflow to manage
datasets, train models in one-
click, and deploy to web,
mobile, or the edge.

SUBSCRIBE TO OUR NEWSLETTER

Enter email Subscribe

Unsubscribe at any time. Review our Privacy
Policy,

TABLE OF CONTENTS

Use Foundation Models to Train Any
Vision Model Without Labeling
Introducing Autodistill
How Autodistill Works

Autodistill Use Cases and Best
Practices

Train a Computer Vision Model with
No Labeling (Milk Detection Example)

Conclusion

RECOMMENDED READS

Prompting Google Bard with Images &
How It Compares to BIng

CVPR 2023 Highlights

‘What Is DINOv2? A Deep Dive

https://blog.roboflow.com/autodistill/
8/10/2023

iy
Distilling a large medel gives you:

1. A smaller, faster model with which to work;
2. Visibility into the training data used to create your model, and:
3. Full control over the output.

In this guide, we're going to showcase how to use the new Autodistill Python package with
Grounded SAM and YOLOV8.

Autodistill is launching with suppert for using:

1. Grounded SAM
2.OWLVIT
3. DETIC

To train:

1. YOLOVS
2. YOLO-NAS
3. YOLOVE

In the coming weeks, we will also announce support for CLIP and ViT for classification tasks.

With Autodistill, you get a new model that will be significantly smaller and more efficient for running
on the edge and in production, but at a fraction of the cost and training time as the foundation
models. You own your model and have insight into all of the data used to train it. And you will be
able to use your model as the starting point for an automated active learning pipeline to discover
and fix new edge cases it encounters in the wild.

This package is inspired by the “distillation” process in computer vision in which one takes the
knowledge from a larger model then “distills” the information into a smaller model.

Processes modeled on distillation have been used in natural language processing to create smaller
medels that learn their knowledge from larger models. One notable example of this is the Stanford
Alpaca model, released in March 2023. This model used OpenAl’s text-davinci-003 model to
generate 52,000 instructions using a seed set of data

These examples were then used to fine-tune the LLaMA model by Meta Research to generate a
new model: Alpaca. Knowledge from a large model — text-davinci-003 — was distilled into Alpaca.

How Autodistill Works

To get a model into production using Autodistill, all you need to do is collect images, describe what
you want to detect, configure Autodistill inputs, and then train and deploy.

Consider a scenario where you want to build a model that detects vehicles. Using Autodistill, you
could send images to a foundation model (i.e. Grounding DINO) with a prompt like “milk bottle™ or
“box” or “truck” to identify the vehicles you want to locate in an image. We call models like
Grounding DINO that can annotate images “Base Models” in autodistill.

With the right prompt, you can run the foundation model across your dataset, providing you with a
set of auto-labeled images. Autodistill provides a Python method for declaring prompts
(“Ontologies”); you can modify your ontology to experiment with different prompts and find the right
one to extract the correct knowledge from your foundation madel.

In this setup, you don't have to do any labeling, thus saving time on getting to the first version of
your computer vision model.

Next, you can use the images to train a new vehicle madel, using an architecture such as YOLOVS.
We refer to these supervised models as “Target Models” in autodistill. This new model will learn
from the vehicle annotations made by Grounding DINO. At the end, you will have a smaller model
that identifies milk containers and can run at high FPS on a variety of devices.

YoLovs

Gbject

Grounding
DINO

BASE MODEL

Pomert, hen tzobig
o s Seployrnt

YoLovs ermart

— YOLO-NAS

Autodistill Use Cases and Best Practices

You can use Autodistill to create the first version of your model without having to label any data
(although there are limitations, which will be discussed at the end of this section). This allows you to
get to a model with which you can experiment faster than ever.

Since Autodistill labels images you have specified, you have full visibility into the data used to train
your model. This is not present in most large models, where training datasets are private. By having
insight into training data used, you can debug model performance more efficiently and understand
the data changes you need to make to improve the accuracy of model predictions.

Automated labeling with Autodistill could enable you to label thousands of images, and then add
humans in the loep for classes where your foundation model is less performant. You can reduce
labeling costs by whatever percentage of your data Autodistill can label.

With that said, there are limitations to the base models supported at the time of writing. First, base
models may not be able to identify every class that you want to identify. For more obscure or
nuanced objects, base models may not yet be able to identify the objects you need to annotate (or
may take extensive experimentation to find the ideal prompts).

https://blog.roboflow.com/autodistill/

8/10/2023

Second, we have found that many zero-shot models that you can use for automatic labeling struggle
to correctly annotate classes whose labels are used in similar contexts in natural language (i.e.
distinguishing “paper cup” vs “plastic cup”).

We expect performance to improve as new foundation models are created and released and have
built Autodistill as a framework where future models can easily be slotted in. We've seen excellent
results within common domains and encourage you to see if your use case is the right match for
Autodistill. The epen source CVevals project is a useful tool for evaluating base models and
prompts

Train a Computer Vision Model with No Labeling (Milk
Detection Example)

4

Share

autodistill

Watch on [£3YouTube

In this guide, we're going to create a milk container detection model using Autodistill. The best part?
We're going to train a model with no labeling process. We will use Autodistill and a base model,
Grounded SAM, to label images automatically according to a prompt.

Our milk container detection model could be used by a food manufacturer to count liquid bottles
going through an assembly line, identify bottles without caps, and count bottles that enter the
packing line.

To build our model, we wi

1. Install and configure Autodistill;

2. Annotate milk containers in images using a base model (Grounded SAM);

3. Train a new target model (in this example, YOLOVS8) using the annotated images, and;
4. Test the new model.

We have prepared an accompanying notebook that you can use to follow along with this section.
We recommend writing the code in this guide in a notebook environment (i.e. Google Colab).

Step 1: Install Autodistill

First, we need to install Autodistill and the required dependencies. Autodistill each model
separately, so we also need to install the Autodistill packages that correspond with the models we
plan to use. In this guide, we'll be using Grounded SAM — a base model that combines Grounding
DINO and the Segment Anything Model — and YOLOvS.

Let's install the dependencies we need:

pip install -q autodistill autodistill-grounded-sam autodistill-yolovs supervision

In this example, we're going to annotate a dataset of milk bottles for use in training a model. To
download the dataset, use the following commands:

1 lwget --load-cookies /tmp/cookies.txt "https://docs.google.com/uctexport=dounloadiconfirn=5(uget -+

2| tunzip milk.zip

You can use any dataset you have with autodistill!

Step 2: Annotate Milk Bottles in Images with Grounded SAM

We are going to use Grounded SAM to annotate milk bottles in our images. Grounded SAM uses
SAM to generate segmentation masks for parts in an image and Grounding DINO to label the
contents of a mask. Given a text prompt (i.e. “milk bottle”) the model will return bounding boxes
around the instances of each identified object.

Our dataset contains videos of milk bottles on a preduction line. We can divide the videos into
frames using supervision | a Python package that provides helpful utilities for use in building

computer vision applications.

If you already have a folder of images, you can skip this step. But, you'll still need to set a variable
that records where the images are that you want to use to train your model:

IMAGE_DIR_PATH = f"{HOME}/images"

To create a list of video frames for use with training our model, we can use the following code:

1 import supervisien as sv

2 from tqdm.notebook import tqdm

4 VIDED_DIR_PATH = f"{HOME} videos"

5 IMAGE_DIR_PATH = £"{HOME}/images”

https://blog.roboflow.com/autodistill/
8/10/2023

7 video_paths = sv.list_files_with_extensions(
8 directory=VIDEO_DIR_PATH,
9 extensions=["mov", "mp4"])

11 TEST_VIDED_PATHS, TRAIN_VIDEO_PATHS = video_paths[:2], video_paths[2:]

13 for video_path in tqdm{TRAIN_VIDEQ_PATHS):

14 video_name - video_path.stem
15 image_name_pattern = video_name + "-{:@5d}.png"
16 with sv.ImageSink(target_dir_path=IMAGE_DIR_PATH, image name_pattern=image_name_pattern) as sir
17 for image in sv.get_video_frames_generator (source_path=str{video_path), stride=FRAME_STRIDE
18 sink.save_image (image=image)

4 »

Here is an example frame from a video:

F VLisses . 2

!

To tell Grounded SAM we want to annotate milk containers, we need to create an ontology. This
ontology is a structured representation that maps our prompts to the class names we want to use:

1 ontology = CaptionOntology({

2 "milk

3 “"blue

4 N

6 base_model = GroundedSAM{ontology=ontology)

When we first run this code, Grounding DINO and SAM will be installed and configured on our

system.

In the code above, we create an ontology that maps class names to prompt. The Grounded SAM
base model will be given the prompts “milk bottle™ and "blue cap”. Our code will return any instance
of “milk bottle” as "bottle” and "blue cap” as "cap”.

We now have a base model through which we can annotate images.

We can try a prompt on a single image using the predict() method:

detections = base_model.predict("image.png")

This method returns an object with information on the bounding box coerdinates returned by the
model. We can plot the bounding boxes on the image using the following code:

1 import supervision as sv

3 image = cv2.imread(test_inage)

5 classes = ["milk bottle", "blue cap"]

7 detections = base_model.predict(test_image)
9 box_annotator = sv.BoxAnnotator()

_ in detections]

11 labels = [f{classes[class_id]} {confidence:8.2F}" for _, _, confidence, class |

13 annotated_frame = box_annotator.annotate(scene=image.copy(), detections=detections, labels=labels)

15 sv.plot_image(annotated_frame)

If the returned bounding boxes are not accurate, you can experiment with different prompts to see
which one returns results closer to your desired outcome.

To annotate a folder of images, we can use this code:

1 DATASET_DIR_PATH = #"{HOME}/datase

3 dataset = base_model.label(
4 input_folder-IMAGE_DIR_PATH,

5 extensior

6 output_folder=DATASET_DIR_PATH)

https://blog.roboflow.com/autodistill/
8/10/2023

S 1116 UTLUUE W TUTE UUE UdSE HTUGEE UITEVELY IHdYE WL UIE BALEISIUN 28 11 UUL THdye

folder and save the prediction results into a folder called dataset

Step 3: Train a New Model Using the Annotated Images

Now that we have labeled our images, we can train a new model fine-tuned to our use case. In this

example, we'll train a YOLOvS model.
In the following code, we will:

1. Import the YOLOv8 Autodistill loader;
2. Load the pre-trained YOLOv8 weights;
3. Train a madel using our labeled context images for 200 epochs, and;

4. Export our weights for future reference.

1 from sutodistill_yolovB import YOLOVS

3 target_model = YOLOvE(“yolovan.pt™)
4 target_model.train(DATA_YAML_PATH, epochs=58)

To evaluate our model, we can use the following code (YOLOvV8 only: other models will likely have

different ways of accessing model evaluation metrics):

1 from IPython.display import Inage
2

3 Image(filename-f'{HOME}/runs/detect/train/confusion matrix.png’, width=600)

Confusion Matrix

0.8
06
£
- 0.4
= -02
2
E. s o
z
2
. . . -00
bottie cap background
True

To see example predictions for images in the validation dataset, run this code (YOLOV8 only; other

models will likely have different ways of accessing model evaluation metrics):

Tmage(filename=F' {HOME}/runs/detect /train/val_batchd_pred.jpg’, width=606)

/content
[
-] bottle 0,47 bottibatte 0,
] (4] frs

1]

ik

Step 4: Test the Model

We now have a trained medel that we can test. Let's test the model on images in our dataset:

1 SAMPLE SIZE = 8
3 image_names = list(dataset.images.keys())[:SAMPLE_SIZE]

5 mask_snnotator = sv.MaskAnnotator()

6 box_snnotator = su.BoxAmnotator()

& images =[]

9 for image name in image_names:

10 image = dataset.images[image_name]

1 annotations = dataset.annotations[image_name]

12 labels = [

https://blog.roboflow.com/autodistill/
8/10/2023

13 dataset.classes[class_id]

10 for class_id

15 in annotations.class_id]

16 annotates_image = mask_annotator.annotate(
17 scene=image. cop:

18 detections=annotations)

19 annotates_image = box_snnotator.annotate(
20 scenesannotates_inage,

7n detections=annotations,

2 1abels=labels)

23 images.append(annotates_image)

25 sv.plot_images_grid(

images=inages,

27 titles-inage_names,

2 grid_size=SANPLE_GRID SIZE,
29 size=SANPLE_PLOT_SIZE)

30

In this code, we use supervision to process predictions for eight images in our dataset, and plot all

of the predictions onto each image in a grid style:

milk-video-1-00016 jpg

ilk video-8-00013pg

milk-video-8-00030 jpg

Our model is able to successfully identify various bottles and bottle caps.

Here is an example of our new model running on a video:

We now have a small computer vision model that we can deploy to the edge, built with full visibility

into the data on which the model is trained.
From here, we can:

1. Run our model on a Luxonis OAK, NVIDIA Jetson, webcam, in a Python script, or using
another supported Roboflow deployment target;

2. Analyze our evaluation metrics to plan what we can do to improve our model, and;

3. Start gathering more data to use in the next version of the model.

Deploy the Model to Roboflow

You can upload your trained model directly to Roboflow for deployment on the edge. We currently

support uploading weights for the following Target Models:

YOLOVS Object Detection
YOLOVS Instance Segmentation
YOLOVS8 Object Detection
YOLOV8 Image Segmentation
YOLOV8 Classification

YOLOV7 Instance Segmentation

To do so, first create a new project in Roboflow and upload the data on which your model was
trained. Then, click "Generate” in the Roboflow dashboard to create a new project version with
which you will attach your weights:

Generating New Version

Prepare your images and data for training by compiling them into a version.
Experiment with different configurations to achieve better training results.

Q Source Images
° Train/Test Split

Images: 5616
Classes: 6

Training Set: 3.9k images
Validation Set: 1.1k images

Testing Set: 562 images

https://blog.roboflow.com/autodistill/
8/10/2023

v Preprocessing Auto-Orient: Applied cun
Resize: Stretch to 640x640

Augmentation Turned Off

@ Generate

Review your selections then click "Generate" to create a moment-in-time
snapshot of your dataset with the applied preprocessing steps.

Maximum Version Size: 5,616
See how this is calculated »

Generate

Next, run the following commands to deploy your model to Reboflow:

1 #rom roboflew import Roboflow
3 rf = Roboflow(api_key="APT_KEY")
5 project = rf.workspace().project("PROJECT_ID")

7 project.version(DATASET_VERSION) .deploy(model_type="yolovB", model_path=F"{HOME}/runs/detect/trains

Subtitute the API key, project ID, and dataset version with the versions associated with your project.
We have a guide on how to find these values in our documentation.

After you upload your weights, Roboflow will create a hosted model you can query, available for use
via our AP, Python package, and other SDKs.

Autodistill has enabled us to build the first version of a model that detects containers that we can
use as a strong foundation toward building a model precisely tuned for our use case.

Conclusion

Autodistill allows you to use a large vision model to train a smaller model fine-tuned for your use
case. This new model will be smaller and faster, which is ideal for deployment.

You will have full visibility into the training data used for the model. This means that you have the
information you need to investigate model performance and understand why your medel performs
in the way that it does and add new data to improve madel performance.

As more foundational models are released, we will add new base and target models so that you can
use the best available open source technology with Autodistill. We welcome contributions to add
new base and target models, too!

If you would like to help us add new models to Autodistill, leave an Issue on the project GitHub
repository. We'll advise if there is already work going on to add a model. If no work has started, you

can add a new model from scratch; if a contributor is already adding a model, we can point you to

where you can help. Check out the project contribution guidelines for more information.

Cite this post:
"James Gallagher." Roboflow Blog, Jun 8, 2023. https://blog.roboflow.com/autodistill/

Build and deploy computer
vision models with Roboflow

Join over 100,000 developers and top-tier companies from
Walmart to Cardinal Health building computer vision models
with Roboflow.

Get started

James Gallagher

James is a Technical Marketer at Roboflow, working toward democratizing access to

computer vision.
VIEW MORE POSTS
TOPICS:
News, Computer Vision, Dataset
MORE ABOUT NEWS VIEW ALL
Prompting Google Bard with 4 CVPR 2023 Highlights What Is DINOv2? A Deep Dive
Images & How It Compares to fVPR

Bing

JUN 232023 MAY 24.2023

https://blog.roboflow.com/autodistill/
8/10/2023

JuL 21,2023

What Is ImageBInd? A Deep Dive

@ Whatls Segment Anything
Model (SAM)? A Breakdown. @ GPT-4

Preview: Roboflow + GPT-4

MAY 12, 2023 APR7, 2023 MAR 29,2023

Want to learn more about Roboflow? Email sales@roboflow.com or book a demo with our sales team.

PRODUCT DEVELOPERS COMPANY
roboflow

User Forum

For sales inquiries: Anng
B3 sales@roboflow.com

9 Book a demo Train

Sitemap

ECOSYSTEM

INDUSTRIES

