© Gittub - loomberg/memray: M X | voo- x

<« c @ github.com/bloomberg/memray G e %* » 0O 2
G Google @ Anaqua UserSignOn) United SttesPaten.. B US. Copyright Ofice) WHOIS Search | ICA.. () Corporate Peks (% Trademark Cleaing.. e hitps/aceanequa... B Legal-Home @ Q) General Matter Doc. Corsearch @3 DMCA Designated.. €2 CSC Domain Mara.. [l Verzon [} ISSN Uplik 43 INTA berg Volunta » | [Other bookmarks
' bloomberg/ memray | bublic L3 Notifications | ¥ Fork 285 | 57 Str 103k | - =

<> Code @ lssues 16 11 Pullrequests 5 O Discussions @ Actions @ Security L Insights

main ~ | P 2branches © 13 tags Go tofile m About

Memray is a memory profiler for Python

3

£ pablogsal Handle missing eval symbols in the hybrid stack with non entry frames . « ea22e61 lastweek {958 commits
bloomberg.github.io/memra
99 i
ithut ump pypa/cibuilduheel from 2.12.0 to 2. weeks ago
m gitub Bump pypa/cibuildwheel from 2.12.0 to 2.12.1 2 weeks ag T) — gem—
M benchmarks Format our Python files with the latest Black Iast month memory-profiler memory-leak
hacktoberfest | memoryleskcdetection
W docs Add instructions to how to configure debuginfod in the documentation last month
m news Handle missing eval symbols in the hybrid stack with non entry fram: last week 0 Readme
a5 Apache-2.0 license
» o Handle missing eval symbols in the hybrid stack with non entry frames last week
@ Code of conduct
| tests Stop treating import calls as import system frames 3 weeks ago Security polic
y policy
babelrc Migrate to @babel/preset-env 2yesrs ago 103k stars
igrate o @babel/p years ag
O bumprersioncig Prepare fo 1.7.0 release jstmontn | @ S4watehing
¥ 285 forks
[clang-format Memray open source bootstrap last year
O gitgnore Add a CMakelists.xt o build the extension as a static ibrary 5 months ago
Releases 1
(3 CONTREUTINGmd docs: Remove reference to type comments last year
© v17.0 (o)
O Dockerfie Update the Filesink and Filesource to use 14 10 months ago ———
O ucense Memray open source bootstrap lastyear |+ 10 releases
(3 MANIFESTin Add benchmarks from pyperformance 2 months ago
O Makefie flamegraph: Bootstrap new temporal_flamegraphhtml lastmonth Used by 109
O Newsrst Prepare for 170 release mtmon | SURE .
(3 ReADMEmd sk users for success stories in the README.md file S months ago
. Memray open source boots y ;
O ssvcontison lemray open source bootstrap styear | contributors 21
(3 packsge-lockjson Bump jsonS from 22,1 to 223 2 months ago 8 ? .
IxBD19$
O packsgejson Memray open source booltstrap lstyear | gm 2@
O pyprojectoml flamegraph Refactor JavaScript into two modules I
+10 contributors
[requirements-docsxt docs: Add documentation on our IPython magics 5 months ago
(3 requirements-extrate flamegraph: Omit unnecessary whitespace from JSON last month
Languages
[requirements-testixt Allow memray to be executed as an IPython extension 5 months ago
——— 1
O setupcty i Configure fake i setup.cig Bmonthsago | ® Byhon7i6h @ Cee 1923
Cthon48% © JavaScript 245%
O setuppy flamegraph: Omit unnecessary whitespace from JSON IStMOnth | g i oon e Mo o5
O toxini i Support tox 40 3 months ago Other 05%
O valgrindsupp Update the vendored libbacktrace fies vith the latest patch Iast month
(3 webpackconfigss flamegraph: Bootstrap new temporal_flamegraphhtml Iast month

© Gittub - loomberg/memay: M X |

< C @ github.com/bloomberg/memray

Io hipssiaceansque.. B Legal-Home @ @) General MatterDoc. Corsearch @@ DMCA Designated.. &2 T s NTA @ iManage Work € Bloomberg Volunta

wemray

[0S inux | 05 Hacos | pvion 5.8 13 1 3101 3:11 | mplementation coython donioads FoKlmont
S

@ Anaqua UserSgn On Q) Unied Staes Paten.. @ US. Copyright Ofice) WHOIS Search | ICA.

README.md

Memray is a memory profiler for Python. It can track memory allocations in Python code, in native extension modules,
and in the Python interpreter itself. It can generate several different types of reports to help you analyze the captured

memory usage data. While commonly used as a CLI tool, it can also be used as a library to perform more fine-grained
profiling tasks,
Notable features

o f& Traces every function call so it can accurately represent the call stack, unlike sampling profilers.

« © Also handles native calls in C/C++ libraries so the entire call stack is present in the results.

« s Blazing fast! Profiling slows the application only slightly. Tracking native code is somewhat slower, but this

can be enabled or disabled on demand.
« [It can generate various reports about the collected memory usage data, like flame graphs.

8 Works with Python threads.
« @ 8 Works with native-threads (e.. C++ threads in C extensions).

Memray can help with the following problems:

o Analyze allocations in applications to help discover the cause of high memory usage.

©) Gitrub - bloomberg/memeay: M. X |
« > c
G Googe

& github.com/bloomberg/memray

@ Anaqua UserSign On Q) United Staes Paten.. @ US. Copyright Office @ WHOIS Search | ICA.. (1 Corporate Perks % Trademark Clearng... o hitps/aceanaqua... B Legal-Home @ @ GeneralMatterDoc.. [@ Corsearch

= README.md
profiling tasks.
Notable features:

o f Traces every function call s

can accurately represent the call stack, unlike sampling profilers.
© © Also handles native calls in C/C++ libraries so the entire call stack is present in the results.

« s Blazing fast! Profiling slows the application only slightly. Tracking native code is somewhat slower, but this
can be enabled or disabled on demand.

« [It can generate various reports about the collected memory usage data, like flame graphs.
8 Works with Python threads.

« @ 8 Works with native-threads (e.. C++ threads in C extensions).

Memray can help with the following problems:

o Analyze allocations in applications to help discover the cause of high memory usage.
« Find memory leaks.

« Find hotspots in code that cause a lot of allocations.

@ Note Memray only works on

ux and MacOS, and cannot be installed on other platforms.

lana - Python Educator

Help us improve Memray!

We are constantly looking for feedback from our awesome community @. If you have used Memray to solve a

lease let us know! We would love to hear about

G OMCA Designsted..

© CSC Domin Mars.

M oo

T3 1SSN Uplink

2 INTA

© iManage Work 3 Bloomberg Volunta..

G

(4

x

* » 0 &

Other bookmarks.

© Gittub - loomberg/memray: M X | v o= x

<« C @ github.com/bloomberg/memray G e x »0Oa:

G Google @) Anaqua UserSignOn) Unied Sttesaten.. B US. Copyright Offce) WHOIS Search [ICA.. (1 Corporate Peks % Trodemark Cleaing.. s hitps//aceanequa... B Legal-Home @ @ GeneralMatterDoc.. [@ Corsearch (@ DMCA Designated... €2 CSCDomainMana... [l Verizon [ISSNUplink <3 INTA @ iManage Work ¢ Bloomberg Volunta. » | [Other bookmarks

READMEmd

Help us improve Memray!

We are constantly looking for feedback from our awesome community @. If you have used Memray to solve a
problem, profile an application, find a memory leak or anything else, please let us know! We would love to hear about
your experience and how Memray helped you.

Please, consider writing your story in the Success Stories discussion page

It really makes a difference!

Installation

Memray requires Python 3.7+ and can be easily installed using most common Python packaging tools. We
recommend installing the latest stable release from PyP! with pip:

python3 -m pip install memray

Notice that Memray contains a C extension so releases are distributed as binary wheels as well as the source code. If a
binary wheel is not available for your system (Linux x86/x64 or macOS). you'll need to ensure that all the
dependencies are satisfied on the system where you are doing the installation.

Building from source

If you wish to build Memray from source you need the following binary dependencies in your system:

o libunwind (for Linux)
o liblz4

Check your package manager on how to install these dependencies (for example apt-get install 1ibumind-dev
1iblz4-dev in Debian-based systems or brew install 1z4 in MacOS). Note that you may need to teach the
compiler where to find the header and library files of the dependencies. For example, in MacOS with breu you may
need to run:

export CFLAGS="-T§ (brew --prefix 1z4)/include” LDFLAG:

-L$(brew --prefix 124)/1ib -Wl,-rpath, $(brew --prefix

before installing menray . Check the documentation of your package manager to know the location of the header
and library files for more detailed information.

Once you have the binary dependencies installed, you can clone the repository and follow with the normal building
process

git clone git@github. com:bloonberg/menray . git memray
cd memray

python3 -m venv ../memray-env/ # just an
source ../memray-env/bin/activate

python3 -m pip install --upgrade pip
Python3 -m pip install -e . -r requirements-test.txt -r requirements-extra.txt

ample, put

s uherever you want

a x

mberg/memray: M X 4
G e w »0Oa

ISSN Uplink 43 INTA @ iMan 3 Bloomberg Volunta » Other bookmarks

<« C & github.com/bloomberg/memray
Trademark O Io hipssiaceansque.. B Legal-Home @ @) General MatterDoc. Corsearch €3 DMCA Designated.. €2 CSC Domain Maa

G Google @) Anaqua UserSignOn) Unied Sttes aten.. (B US. Copyright Ofice @ WHOIS Search [ICA.. (1 Corporate Perks

READMEmd

onment in development mode (the -e of the last pip install command).

This wil install Memray in the virtual en

Documentation

You can find the latest documentation available here.

Usage

There are many ways to use Memray. The easiest way is to use it as a command line tool to run your script.

application, or library.
usage: memray [-h] [-v] {run,flanegraph,table,live,tree,parse, sunmary, stats}

Memory profiler for Python applications

Run “memray run’ to generate a memory profile report, then use a reporter command
such as “memray flamegraph® or “memray table® to convert the results into HTML.

Exanple

$ python3 -m memray run -0 output.bin my_script.py
$ python3 -m memray flamegraph output.bin

positional anguments:
{run, flamegraph, table, 1ive, tree, parse, summary, stats}
Mode of operation
Run the specified application and track memory usage

run
Flamegraph Generate an HTML flane graph for peak memory usage

table Generate an HTML table with all records in the peak memory usage

Live Remotely monitor allocations in a text-based interface

tree Generate a tree view in the terminal for peak memory usage

parse Debug a results file by parsing and printing each record in it

summary Generate a terminal-based summary report of the functions that allocate most memory
stats Generate high level stats of the memory usage in the terminal

optional argunents:
Show this help message and exit
Increase verbosity. Option is additive and can be specified up to 3 times

verbose

Please submit feedback, ideas, and bug reports by filing a new issue at https://github.con/bloombeng/menray/i

To use Memray over a script or a single python file you can use
python3 -m memray run my_script.py

If you normally run your application with python3 -m my_module , you can use the -a flag with memray run :
python3 -m mearay run -m my_module

You can also invoke Memray as a command line tool without having to use -n to invoke it as a module:

a x

ub - bloomberg/memray: M X
G e w »0O 2

Other bookmarks

c @ github.com/bloomberg/memray
@ @ GeneralMateerDoc. Corsearch @3 DMCA Designated.. €2 CSC Domain Mara.. [l Verzon [} ISSNUplisk 43 INTA @ iManage Work 34 Bloomberg Volunta »

G & @ Anaqua UserSign On Q) United Staes Paten.. @ US. Copyright Office @ WHOIS Search | ICA. (1 Corporate Perks % Trademark Clearng... o hitps/ace.anaqu.

READMEmd

To use Memray over a script or a single python file you can use
python3 -m memray run my_script.py

If you normally run your application with python3 -m my_module , you can use the -a flag with memray run :
python3 -m mearay run -m my_module

You can also invoke Memray as a command line tool without having to use -n to invoke it as a module:

memray run my_script.py
memray run -m my_module

The output will be a binary file (like menray-my_script.2369.bin) that you can analyze in different ways. One way is

to use the menray flanegraph command to generate a flame graph:
menray flanegraph my_script.2369.bin

This will produce an HTML file with a flame graph of the memory usage that you can inspect with your favorite
browser. There are multiple other reporters that you can use to generate other types of reports, some of them
generating terminal-based output and some of them generating HTML files. Here s an example of a Memray

flamegraph:

[——

Pytest plugin

If you want an easy and convenient way to use memray in your test suite, you can consider using pytest-memray.
Once installed, this pytest plugin allows you to simply add --mearay to the command line invocation:

pytest --memray tests/

©) Githob - bloomberg/memray M x |+ 8 X
<« C & github.com/bloomberg/memray G e % » O & ¢
G egal-Home @) General Mater Doc. Corsearch @3 DMCA Designated.. €2 CSC Domain Mara.. [l Verzon [} ISSNUplisk 43 INTA @ iManage Work 34 Bloomberg Volunta » | [Other bookmarks

G Google @ Anaqua UserSignOn) Unied SttesPaten.. B US. Copyright Offce @ WHOIS Search [ICA.. (1 Corporate Peks % Trademark Cleaing.. e hitps//aceanequa... B

READMEmd

Pytest plugin

If you want an easy and convenient way to use memray. in your test suite, you can consider using pytest-memray.
Once installed, this pytest plugin allows you to simply add --nearay to the command line invocation:

pytest —-memray tests/
And will automatically get a report like this:

python3 -m pytest tests --memray

platform linux -- Python 3.8.10, pytest-6.2.4, py-1.10.9, pluggy-0.13.1
rootdir: /mypackage, configfile: pytest.ini

plugins: cov-2.12.6, memray-0.1.0

collected 21 items

tests/test_package.py

Allocations results for tests/test_package.py: :some_test_that_allocates

Total memory allocated: 24.4iB
N Total allocations: 33920
[l Histogram of allocation sizes: | B |
W siggest allocating functions
- parse: /opt/bb/11b/python3.8/ast.py:47 -> 3.0M18
- parse: /opt/bb/1ib/python3.8/ast .py:47 -> 2.3Mi8
- _visit:/opt/bb/1ib/python3.8/site-packages/astroid/transforms.py:62 -> 576.0KiB
- parse: /opt/bb/1ib/python3. 8/ast.p skie
- __init_:/opt/bb/1ib/python3. 8/site-packages/astroid/node_classes.py:1353 -> 512.0KiB

You can also use some of the included markers to make tests fail if the execution of said test allocates more memory
than allowed:

@pytest.mark. 1init_memory("24 HB")
def test_foobar():
do some stuff that allocates memory

To learn more on how the plugin can be used and configured check out the plugin documentation.

Native mode

Memray supports tracking native C/C = functions as well as Python functions. This can be especially useful when
profiling applications that have C extensions (such as numpy or pandas) as this gives a holistic vision of how much
memory is allocated by the extension and how much is allocated by Python itself.

To activate native tracking, you need to provide the --native argument when using the run subcommand:

memray run --native my_script.py

a

Oc
< G e % » O & ¢

C @ github.com/bloomberg/memray
NTA @ iManage Work 3 Bloomberg Volunta, » Other bookmarks

@ @ GeneralMateerDoc. Corsearch @3 DMCA Designated.. €2 CSC Domain Mana.. [l Verzon [} ISSN Uplink

st perks @) Trsdemark G Ia hips/iaceanaqua... B Legal-Home

G Google @) Anaqua UserSignOn) Unied SttesPaten.. B US. Copyright Offce @ WHOIS Search [ICA.. 1 Cor

READMEmd

Native mode

Memray supports tracking native C/C++ functions as well as Python functions. This can be especially useful when
profiling applications that have C extensions (such as numpy or pandas) as this gives a holistic vision of how much
memory is allocated by the extension and how much is allocated by Python itself

To activate native tracking, you need to provide the --native argument when using the run subcommand:
menray run --native my_script.py

This will automatically add native information to the result ile and it will be automatically used by any reporter (such
the flamegraph or table reporters). This means that instead of seeing this in the flamegraphs:

<root>.

runpy.run_path(args.script, run_name:
mandelbrot(800, 1000)
c=x+1jvy

You will now be able to see what's happening inside the Python calls

<root>
runpy.run_path(args.script, run_name:

builtin_exec at ..[Python/clinic/bltinmodule.c.h:396
builtin_exec_impl at ..[Python/bltinmodule.c:1035
mandelbrot(800, 1000)

=x+
PyNumber_Add at ../Objects/abstract.c:1018.
binary_op1 at ..[Objectsfabstract.c:869
array_add at <unknown>:0
ufunc_generic_fastcall at <unknown>:0
execute_ufunc_loop at <unknown>:0
Npylter_AdvancedNew at <unknown>:0
npyiter_new_temp_array.constprop.0 at <unknown>:0
PyArray_NewFromDescr at <unknown>:0
PyArray_NewFromDescr_int at <unknown>:0
PyDataMem_UserNEW at <unknown>:0
default_malloc at <unknown>:0.

Reporters display native frames in a different color than Python frames. They can also be distinguished by looking at
the file location in a frame (Python frames will generally be generated from files with a .py extension while native

frames will be generated from files with extensions like .c, .cpp or .h).

Live mode

C @ github.com/bloombe

memray G

G Google @) Anaqua UserSignOn) Unied Sttes aten.. (B US. Copyright Ofice @ WHOIS Search [ICA.. (1 Corporate Perks Io hipssiaceansaue.. B Legal-Home @ @

General Matter Doc. Corsearch @@ DMCA Designated.. &2

NTA @ iManage

4 Bloomberg Volunta
READMEmd

Live mode

FaaaE paeE 2

Memray's live mode runs a script or a module in a terminal-based interface that allows you to interactively inspect its

memory usage while it runs. This is useful for debugging scripts or modules that take a long time to run or that

exhibit multiple complex memory patterns. You can use the --1ive option to run the script or module in live mode:
mearay run --live my_script.py

or i you want to execute a module:

memray run --live -m my_nodule

This will show the following TUI interface in your terminal

urren e stan: 515,750 W e sz st 0

Sorting results

@ Anagus User Sign On

ub - bloomberg/memray: M X

@ github.com/bloomberg/memray

@ United Sates Paten.. @ US. Copyright Offce) WHOIS

hIICA.) Corporst Perks @ Trademrk Csring.

e hpsifac

© @ General ater Do

Corsearch

G OMCA Designsted

€ CSC Domin Mans.

a x

e % » 0O a :

B veizon [ISSNUpink 3 INTA @ ian 34 Bloomberg Volunta » | [Other bookmarks
READMEmd
e T
arrent o sae: o s o e sz s 15 e
ot ey Nt o

Sorting results

The results are displayed in descending order of total memory allocated by a function and the subfunctions called by
it. You can change the ordering with the following keyboard shortcuts:

o t(default: Sort by total memory
« 0: Sort by own memory
« a:Sort by allocation count

The sorted column is highlighted with < > characters around the title.
Viewing different threads

8y default, the live command wil present the main thread of the program. You can look at different threads of the
program by pressing the left and right arrow keys.

S Diration: 2. 1055 scun
et nep stas: 5 o e sz cen: 5
Lecation ota wwory> | o emary Hitoation comt

API

a x

©) Githob - bloomberg/memray M x |+
<« C & github.com/bloomberg/memray c e % »O& i
G Google @) Anaqua UserSignOn) United States Paten.. B US. Copyright Office @ WHOIS Search | ICA.. () Corporate Pets (% Trademark Claring.. e hitps//ace anaqua. egal-Home @) General Mater Doc. Corsearch @3 DMCA Designated.. €2 CSC Domain Mara.. [l Verzon [} ISSNUplisk 43 INTA @ iManage Work 34 Bloomberg Volunta » | [Other bookmarks

READMEmd

API

In addition to tracking Python processes from a CLI using memray run , it s also possible to programmatically enable

tracking within a running Python program.

inport memray

th memray . Tracker(“output_file.bin")

print(“Allocations will be tracked until the with block ends")

For details, see the API documentation.

License

Memray is Apache-20 licensed, as found in the LICENSE file.

Code of Conduct

 Code of Conduct

This project has adopted a Code of Conduct. If you have any concerns about the Code, or behavior that you have
experienced in the project, please contact us at opensource@bloomberg.net.

Security Policy

o Security Policy

If you believe you have identified a security vulnerability in this project, please send an email to the project team at
opensource@bloomberg.net, detailing the suspected issue and any methods you've found to reproduce it

Please do NOT open an issue in the GitHub repository, as we'd prefer to keep vulnerability reports private until we've

had an opportunity to review and address them.

Contributing

We welcome your contributions to help us improve and extend this project!

Below you will find some basic steps required to be able to contribute to the project. If you have any questions about
this process or any other aspect of contributing to a Bloomberg open source project, feel free to send an email to
opensource@bloomberg.net and we'll get your questions answered as quickly as we can.

Contribution Licensing

Since this project i distributed under the terms of an open source license, contributions that you make are licensed
under the same terms. In order for us to be able to accept your contributions, we will need explicit confirmation from
you that you are able and willing to provide them under these terms, and the mechanism we use to do this is called a

© Gittub - loomberg/memray: M X | v o= x

<« C @ githubcom/bloomberg/memray G e w »0O 2

G Google @) Anaqua UserSignOn) Unied Sttesaten.. B US. Copyright Offce) WHOIS Search [ICA.. (1 Corporate Peks % Trodemark Cleaing.. s hitps//aceanequa... B Legal-Home @ @ GeneralMatterDoc.. [@ Corsearch (@ DMCA Designated... €2 CSCDomainMana... [l Verizon [ISSNUplink <3 INTA @ iManage Work ¢ Bloomberg Volunta. » | [Other bookmarks

READMEmd

experienced in the project, please contact us at opensource@bloomberg.net.

Security Policy

o Security Policy

If you believe you have identified a security vulnerability in this project, please send an email to the project team at
opensource@bloombergnet, detailing the suspected issue and any methods you've found to reproduce it

Please do NOT open an issue in the GitHub repository, as we'd prefer to keep vulnerability reports private until we've
had an opportunity to review and address them.

Contributing

We welcome your contributions to help us improve and extend this project!

Below you will find some basic steps required to be able to contribute to the project. If you have any questions about
this process or any other aspect of contributing to a Bloomberg open source project, feel free to send an email to
opensource@bloomberg.net and we'll get your questions answered as quickly as we can,

Contribution Licensing

Since this project is distributed under the terms of an open source license, contributions that you make are licensed
under the same terms. In order for us to be able to accept your contributions, we will need explicit confirmation from
You that you are able and willing to provide them under these terms, and the mechanism we use to do this is called a
Developer's Certificate of Origin (DCO). This is very similar to the process used by the Linux(R) kernel, Samba, and
many other major open source projects.

To participate under these terms, all that you must do is include a line like the following as the last line of the commit
message for each commit in your contribution:

Signed-0ff-By: Random 3. Developer <randongdeveloper.exanple.org>

The simplest way to accomplish this is to add - o --signoff to your git comnit command.

You must use your real name (sorry, no and no

Steps

« Create an Issue, select ‘Feature Request’, and explain the proposed change.
« Follow the guidelines in the issue template presented to you.

o Submit the Issue.

« Submit a Pull Request and link it to the Issue by including “#" in the Pull Request summary.

Status About

1 Training

