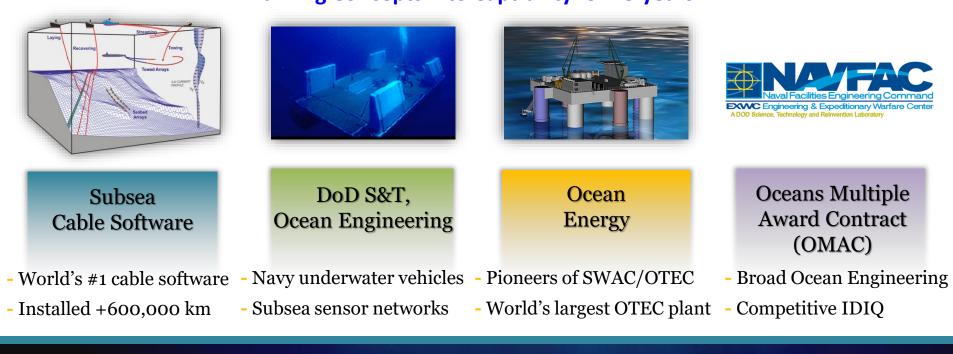


MAKAI OCEAN ENGINEERING

Ultra-Compact Heat Exchangers for Northrop Grumman


17 December 2018

Who is Makai?

Innovative Ocean Technology Company

Founded 1973
34 employees (and growing!)
Turning Concepts into Capability for 45 years

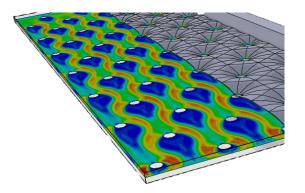
Heat Exchanger Technologies

Marine Heat Exchanger Testing

- Testing at OTEC facility in Kona
 - ~12,000 gal/min seawater
 - High accuracy instrumentation
 - Fully automatic controls
- HX Performance
 - Heat transfer coefficients
 - Pressure drop
 - Design optimization

Makai Proprietary Information – DISTRIBUTION STATEMENT D PROPRIETARY The

- Manufacturing Laboratory at OTEC facility in Kona
- 100kW Test Station
 - Rapid prototyping
 - Air/liquid/refrigerant
- Performance predictions and data based models



Makai Proprietary Information – DISTRIBUTION STATEMENT D

- Ultra-compact Heat Exchangers
 - Applications include
 - Airborne
 - Subsea
 - Industry
 - Ongoing ONR funding
 - ONR funded since 2009
 - Advanced Manufacturing Lab
 - 100kW test facility
 - USAF Phase I SBIR
 - Phase II anticipated in 2019-2021

OPPORTUNITY: Traditional Plate Frame HXs are 100 m²/m³. Radiators generally limited to approximately 6,000 m²/m³ heat transfer area, utilizing large fin effectiveness to compensate for low air-side convection. These designs do not allow for ste-change improvements in compactness.

Makai Proprietary Information – DISTRIBUTION STATEMENT D

The Future of Ocean Innovation | 7

Makai Proprietary Information – DISTRIBUTION STATEMENT D

PROPRIETARY

Makai's Thin Foil Heat Exchanger (TFHX)

U.S. Air Force SBIR

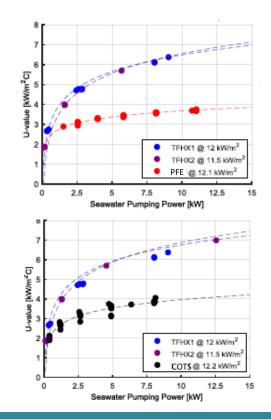
- Titanium foil construction
 - Lightweight
 - Corrosion Resistant
- Rapid, advanced manufacturing
- Form fitting
- Custom, Optimized flow & convection
- Holds internal pressure
 - Tested to >500 psi

Up to 3x more compact than leading state-of-the-art COTS for air-cooled condenser applications.

Air Heat-Transfer Coefficient	$250 - 500 \text{ W}//m^2 K^*$
Refrigerant Condensation Heat-Transfer Coefficient	1500 - 2000 $(W/m^2 K)^{**}$
Internal Pressure Expected	> 500 psi
Heat Transfer Area Density	2000 to 4000 m^2/m^3
Flow Channels	0.1 – 2.0 mm
Plate Dimensions	1cm to 1m scale
Flow Channel Roughness	< 4 µm
Material Consumption	80% less

*Operating with 20-60 m/s air speed **Representative of R-245 refrigerant / similar

Makai Proprietary Information – DISTRIBUTION STATEMENT D


Makai's Thin Foil Heat Exchanger (TFHX)

Liquid Cooled Applications

- Titanium foil construction
 - Lightweight, Corrosion Resistant
- Holds internal pressure
 - Tested to >500 psi
- >4x more compact than COTS plateframe or brazed-fin HXers
- Optimized convection 2x heat transfer performance

Up to 6-8x more compact than leading state-of-the-art COTS for liquid-cooled condenser applications.

Makai Proprietary Information – DISTRIBUTION STATEMENT D

Water Heat-Transfer Coefficient	15 -60 kW/ $m^2 K^*$
Refrigerant Condensation Heat-Transfer Coefficient	1500 - 2000 $(W/m^2 K)^{**}$
Internal Pressure Expected	> 500 psi
Heat Transfer Area Density	400 - 2000 m^2/m^3
Flow Channels (mm)	0.5 – 4.0 mm
Plate Dimensions	1cm to 1m scale
Flow Channel Roughness	< 4 µm
Material Consumption	80% less

*Operating with 20-60 m/s air speed **Representative of R-245 refrigerant / similar

Makai Proprietary Information – DISTRIBUTION STATEMENT D

MAKAI OCEAN ENGINEERING

MAHALO!

Manager Sales and Business Dev:Hermann.Kugeler@makai.comDirector of Marketing and Strategies:Ingrid.Hillhouse@makai.comDirector of Engineering:Greg.Rocheleau@makai.com