

# Confidential Project Piping Schedule Analysis

Discussion document

## Context: The most prevalent challenge on recent cracker and derivatives projects is field-erected piping

#### Schedule-related findings from recent cracker projects

- Actual cracker project durations were ~6-8 months longer than expected, primarily due to piping installation
- Several piping installations challenges were observed, including:
  - Schedule assumptions not matching reality for engineering, fabrication, and site installation
  - Actual production rates not meeting planned rates and sustained performance well below 90s crackers
  - Hydrotest and reinstatement taking ~6-8 weeks longer than anticipated

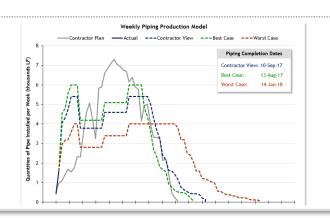
Given findings, the primary focus area for Westney's Confidential Project's schedule analysis was field-erected piping

#### Basis of analysis: Key Westney tools and data were utilized

#### Tool #1: ProjectPlanner™

### Tool #2: PipingPlanner™

## General tool use


- ProjectPlanner™ generates a set of EPC production profiles based on historical sequence and progress achieved
- Piping Planner™ generates piping installation curves based on a range of expected performance

# Application for Confidential Project

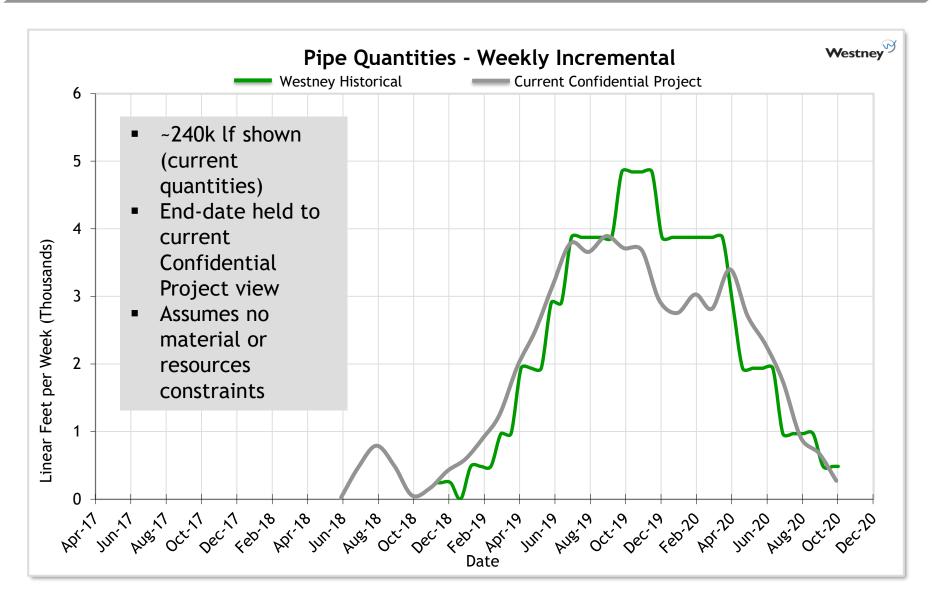
- Confidential Project's piping installation profiles for each pillar were compared to Westney's profiles
- Comparison reveals whether the shape of Confidential Project's profiles are realistic
- Confidential Project's overall piping installation curve was compared against 3 scenarios (high, low, and required)
- Scenarios provide varying piping completion dates that can be compared to Confidential Project's expected completion date

## Example output





## Summary of findings and recommendations (1/2)


| Analysis                                                        | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Slides  |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1 Piping installation profiles by pillar and overall summation  | <ul> <li>Holding to the current Confidential Project piping completion dates by pillar:         <ul> <li>ECU, PE 3, and Cogen profiles are similar to Westney's historical curves</li> <li>PE 1&amp;2 and OSBL profiles are more aggressive and likely haven't been leveled since pipe quantities increased</li> </ul> </li> <li>The peak production of both Confidential Project's (~18k lf/week) and Westney's (~15k lf/week) summation profiles are not likely to be achieved</li> </ul>     | 5 - 10  |
| Overall piping installation profile across Confidential Project | <ul> <li>PipePlanner™ indicates that if the quantities (pillars) could be leveled, the<br/>current schedule could be maintained with peak sustained production of ~12k<br/>lf/week and improved ~2 months if ~13k lf/week is achieved (which is<br/>reasonable production based on recent cracker and derivatives projects)</li> </ul>                                                                                                                                                          | 11      |
| 3 Potential impact of piping fabrication on installation        | <ul> <li>Westney's best practice indicates sustained piping production should not begin until ~60% of piping spools are at the site</li> <li>Following the 60% of spools onsite rule:         <ul> <li>Only PE3 and OSBL curves would shift</li> <li>The impact to the overall profile across Confidential Project is minor</li> </ul> </li> <li>Confidential Project spool deliveries are compressed into a tighter time frame than Westney's historical curves</li> </ul>                     | 12 - 14 |
| 4 Productivity and diameter-inches (DI) of weld                 | <ul> <li>Overall productivity is expected to be ~6 workhours/lf based on recent USGC cracker and derivatives projects         <ul> <li>Cracker and OSBL is expected to be ~7 workhours/lf</li> <li>PE 1&amp;2, PE 3, and Cogen is expected to be ~5 workhours/lf</li> </ul> </li> <li>Overall DI of weld is expected to be ~6 DI/day         <ul> <li>Cracker and OSBL is expected to be ~3-4 DI/day</li> <li>PE 1&amp;2, PE 3, and Cogen is expected to be ~8-10 DI/day</li> </ul> </li> </ul> | 15      |

## Summary of findings and recommendations (2/2)

| Analysis                         | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Slides |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 5 Piping FTEs required           | <ul> <li>Utilizing Westney's summation of piping profiles by pillar (analysis #1), a peak piping workforce of ~2,000 FTEs, including ~230 code welders, would be required</li> <li>If the pipe installation can be leveled, the number of required FTEs will fall proportionately</li> <li>The number of welders required reduces sharply with improved DI production</li> </ul>                                                                                                                                                 | 16     |
| 6 Thoughts on use of night-shift | <ul> <li>Recent projects that tried to use true second-shifts failed to produce economic results and had minimal schedule improvement</li> <li>Selective use of night shift for material distribution, welding, radiography, and the installation of supports, hangers and anchors has been effective</li> </ul>                                                                                                                                                                                                                 |        |
| 7 Thoughts on craft density      | <ul> <li>Craft density has not been an issue on recent projects</li> <li>Several projects had as many crafts at peak on their crackers alone, as proposed across all pillars in the current Confidential Project staffing plan</li> <li>Westney experience shows that the limiting factors to piping production are those sequential activities upstream of installing pipe (fabrication, materials management, equipment use), as well as the availability of crafts/trades and frontline leaders, not craft density</li> </ul> |        |



### ECU pipe curve shape is similar to historical progress

