System and method for optical coherence imaging

Yun , et al. March 5, 2

Patent Grant RE44042

U.S. patent number RE44,042 [Application Number 12/277,178] was granted by the patent office on 2013-03-05 for system and method for optical coherence imaging. This patent grant is currently assigned to The General Hospital Corporation. The grantee listed for this patent is Brett Eugene Bouma, Johannes F. De Boer, Guillermo J. Tearney, Seok-Hyun Yun. Invention is credited to Brett Eugene Bouma, Johannes F. De Boer, Guillermo J. Tearney, Seok-Hyun Yun.


United States Patent RE44,042
Yun ,   et al. March 5, 2013

System and method for optical coherence imaging

Abstract

A system and method for imaging of a sample, e.g., biological sample, are provided. In particular, at least one source electro-magnetic radiation forwarded to the sample and a reference may be generated. A plurality of detectors may be used, at least one of the detectors capable of detecting a signal associated with a combination of at least one first electro-magnetic radiation received from the sample and at least one second electro-magnetic radiation received from the reference. At least one particular detector may have a particular electrical integration time, and can receive at least a portion of the signal for a time duration which has a first portion with a first power level greater than a predetermined threshold and a second portion immediately preceding or following the first portion. The second portion may have a second power level that is less than the predetermined threshold, and extends for a time period which may be, e.g., approximately more than 10% of the particular electrical integration time.


Inventors: Yun; Seok-Hyun (Cambridge, MA), Bouma; Brett Eugene (Quincy, MA), Tearney; Guillermo J. (Cambridge, MA), De Boer; Johannes F. (Amstelveen, NL)
Applicant:
Name City State Country Type

Yun; Seok-Hyun
Bouma; Brett Eugene
Tearney; Guillermo J.
De Boer; Johannes F.

Cambridge
Quincy
Cambridge
Amstelveen

MA
MA
MA
N/A

US
US
US
NL
Assignee: The General Hospital Corporation (Boston, MA)
Family ID: 36035635
Appl. No.: 12/277,178
Filed: November 24, 2008

Related U.S. Patent Documents

Application Number Filing Date Patent Number Issue Date
60608800 Sep 10, 2004
Reissue of: 11225840 Sep 12, 2005 7365859 Apr 29, 2008

Current U.S. Class: 356/497; 356/479
Current CPC Class: G01B 9/02091 (20130101); G01B 9/02014 (20130101); G01B 9/02044 (20130101); G01B 9/02077 (20130101); G01N 21/4795 (20130101); G01B 9/02069 (20130101); G01B 9/02004 (20130101); G01B 2290/70 (20130101); G01B 2290/45 (20130101)
Current International Class: G01B 11/02 (20060101)
Field of Search: ;356/450-521 ;600/476-480

References Cited [Referenced By]

U.S. Patent Documents
2339754 January 1944 Brace
3090753 May 1963 Matuszak et al.
3872407 March 1975 Hughes
4030831 June 1977 Gowrinathan
4140364 February 1979 Yamashita et al.
4224929 September 1980 Furihata
4295738 October 1981 Meltz et al.
4300816 November 1981 Snitzer et al.
4585349 April 1986 Gross et al.
4601036 July 1986 Faxvog et al.
4631498 December 1986 Cutler
4639999 February 1987 Daniele
4650327 March 1987 Ogi
4734578 March 1988 Horikawa
4744656 May 1988 Moran et al.
4751706 June 1988 Rohde et al.
4763977 August 1988 Kawasaki et al.
4770492 September 1988 Levin et al.
4827907 May 1989 Tashiro et al.
4834111 May 1989 Khanna et al.
4868834 September 1989 Fox et al.
4890901 January 1990 Cross, Jr.
4905169 February 1990 Buican et al.
4909631 March 1990 Tan et al.
4925302 May 1990 Cutler
4928005 May 1990 Lefevre et al.
4940328 July 1990 Hartman
4965441 October 1990 Picard
4966589 October 1990 Kaufman
4984888 January 1991 Tobias et al.
4993834 February 1991 Carlhoff et al.
4998972 March 1991 Chin et al.
5039193 August 1991 Snow et al.
5040889 August 1991 Keane
5045936 September 1991 Lobb et al.
5046501 September 1991 Crilly
5065331 November 1991 Vachon et al.
5085496 February 1992 Yoshida et al.
5120953 June 1992 Harris
5121983 June 1992 Lee
5127730 July 1992 Brelje et al.
5197470 March 1993 Helfer et al.
5202745 April 1993 Sorin et al.
5202931 April 1993 Bacus et al.
5208651 May 1993 Buican
5212667 May 1993 Tomlinson et al.
5214538 May 1993 Lobb
5217456 June 1993 Narciso, Jr.
5241364 August 1993 Kimura et al.
5248876 September 1993 Kerstens et al.
5250186 October 1993 Dollinger et al.
5251009 October 1993 Bruno
5262644 November 1993 Maguire
5275594 January 1994 Baker
5281811 January 1994 Lewis
5283795 February 1994 Fink
5291885 March 1994 Taniji et al.
5293872 March 1994 Alfano et al.
5293873 March 1994 Fang
5302025 April 1994 Kleinerman
5304173 April 1994 Kittrell et al.
5304810 April 1994 Amos
5305759 April 1994 Kaneko et al.
5317389 May 1994 Hochberg et al.
5318024 June 1994 Kittrell et al.
5321501 June 1994 Swanson et al.
5348003 September 1994 Caro
5353790 October 1994 Jacques et al.
5383467 January 1995 Auer et al.
5394235 February 1995 Takeuchi et al.
5404415 April 1995 Mori et al.
5419323 May 1995 Kittrell et al.
5424827 June 1995 Horwitz et al.
5439000 August 1995 Gunderson et al.
5441053 August 1995 Lodder et al.
5450203 September 1995 Penkethman
5454807 October 1995 Lennox et al.
5459325 October 1995 Hueton et al.
5459570 October 1995 Swanson et al.
5465147 November 1995 Swanson
5486701 January 1996 Norton et al.
5491524 February 1996 Hellmuth et al.
5491552 February 1996 Knuttel
5522004 May 1996 Djupsjobacka et al.
5526338 June 1996 Hasman et al.
5555087 September 1996 Miyagawa et al.
5562100 October 1996 Kittrell et al.
5565983 October 1996 Barnard et al.
5565986 October 1996 Knuttel
5566267 October 1996 Neuberger
5583342 December 1996 Ichie
5590660 January 1997 MacAulay et al.
5600486 February 1997 Gal et al.
5601087 February 1997 Gunderson et al.
5623336 April 1997 Raab et al.
5635830 June 1997 Itoh
5649924 July 1997 Everett et al.
5697373 December 1997 Richards-Kortum et al.
5698397 December 1997 Zarling et al.
5710630 January 1998 Essenpreis et al.
5719399 February 1998 Alfano et al.
5730731 March 1998 Mollenauer et al.
5735276 April 1998 Lemelson
5748318 May 1998 Maris et al.
5748598 May 1998 Swanson et al.
5752518 May 1998 McGee et al.
5784352 July 1998 Swanson et al.
5785651 July 1998 Baker et al.
5795295 August 1998 Hellmuth et al.
5801826 September 1998 Williams
5801831 September 1998 Sargoytchev et al.
5803082 September 1998 Stapleton et al.
5807261 September 1998 Benaron et al.
5810719 September 1998 Toida
5817144 October 1998 Gregory et al.
5836877 November 1998 Zavislan et al.
5840023 November 1998 Oraevsky et al.
5842995 December 1998 Mahadevan-Jansen et al.
5843000 December 1998 Nishioka et al.
5843052 December 1998 Benja-Athon
5847827 December 1998 Fercher
5865754 February 1999 Sevick-Muraca et al.
5867268 February 1999 Gelikonov et al.
5871449 February 1999 Brown
5877856 March 1999 Fercher
5887009 March 1999 Mandella et al.
5892583 April 1999 Li
5910839 June 1999 Erskine et al.
5912764 June 1999 Togino
5920373 July 1999 Bille
5920390 July 1999 Farahi et al.
5921926 July 1999 Rolland et al.
5926592 July 1999 Harris et al.
5949929 September 1999 Hamm
5951482 September 1999 Winston et al.
5955737 September 1999 Hallidy et al.
5956355 September 1999 Swanson et al.
5968064 October 1999 Selmon et al.
5975697 November 1999 Podoleanu et al.
5983125 November 1999 Alfano et al.
5987346 November 1999 Benaron et al.
5991697 November 1999 Nelson et al.
5994690 November 1999 Kulkarni et al.
5995223 November 1999 Power
6002480 December 1999 Izatt et al.
6004314 December 1999 Wei et al.
6006128 December 1999 Izatt et al.
6007996 December 1999 McNamara et al.
6010449 January 2000 Selmon et al.
6016197 January 2000 Krivoshlykov
6020963 February 2000 Dimarzio et al.
6025956 February 2000 Nagano et al.
6033721 March 2000 Nassuphis
6037579 March 2000 Chan et al.
6044288 March 2000 Wake et al.
6045511 April 2000 Ott et al.
6048742 April 2000 Weyburne et al.
6053613 April 2000 Wei et al.
6069698 May 2000 Ozawa et al.
6078047 June 2000 Mittleman et al.
6091496 July 2000 Hill
6091984 July 2000 Perelman et al.
6094274 July 2000 Yokoi
6107048 August 2000 Goldenring et al.
6111645 August 2000 Tearney et al.
6117128 September 2000 Gregory
6120516 September 2000 Selmon et al.
6134003 October 2000 Tearney et al.
6134010 October 2000 Zavislan
6134033 October 2000 Bergano et al.
6141577 October 2000 Rolland et al.
6151522 November 2000 Alfano et al.
6159445 December 2000 Klaveness et al.
6160826 December 2000 Swanson et al.
6161031 December 2000 Hochmann et al.
6166373 December 2000 Mao
6174291 January 2001 McMahon et al.
6175669 January 2001 Colston et al.
6185271 February 2001 Kinsinger
6191862 February 2001 Swanson et al.
6193676 February 2001 Winston et al.
6198956 March 2001 Dunne
6201989 March 2001 Whitehead et al.
6208415 March 2001 De Boer et al.
6208887 March 2001 Clarke
6245026 June 2001 Campbell et al.
6249349 June 2001 Lauer
6249381 June 2001 Suganuma
6249630 June 2001 Stock et al.
6263234 July 2001 Engelhardt et al.
6272376 August 2001 Marcu et al.
6282011 August 2001 Tearney et al.
6297018 October 2001 French et al.
6301048 October 2001 Cao et al.
6308092 October 2001 Hoyns
6324419 November 2001 Guzelsu et al.
6341036 January 2002 Tearney et al.
6353693 March 2002 Kano et al.
6374128 April 2002 Toida et al.
6377349 April 2002 Fercher
6384915 May 2002 Everett et al.
6393312 May 2002 Hoyns
6394964 May 2002 Sievert, Jr. et al.
6396941 May 2002 Bacus et al.
6421164 July 2002 Tearney et al.
6437867 August 2002 Zeylikovich et al.
6441892 August 2002 Xiao et al.
6441959 August 2002 Yang et al.
6445485 September 2002 Frigo et al.
6445939 September 2002 Swanson et al.
6445944 September 2002 Ostrovsky
6463313 October 2002 Winston et al.
6469846 October 2002 Ebizuka et al.
6475159 November 2002 Casscells et al.
6475210 November 2002 Phelps et al.
6477403 November 2002 Eguchi et al.
6485413 November 2002 Boppart et al.
6485482 November 2002 Belef
6501551 December 2002 Tearney et al.
6516014 February 2003 Sellin et al.
6517532 February 2003 Altshuler et al.
6538817 March 2003 Farmer et al.
6540391 April 2003 Lanzetta et al.
6549801 April 2003 Chen et al.
6552796 April 2003 Magnin et al.
6556305 April 2003 Aziz et al.
6556853 April 2003 Cabib et al.
6558324 May 2003 Von Behren et al.
6564087 May 2003 Pitris et al.
6564089 May 2003 Izatt et al.
6567585 May 2003 Harris
6593101 July 2003 Richards-Kortum et al.
6611833 August 2003 Johnson et al.
6615071 September 2003 Casscells, III et al.
6622732 September 2003 Constantz
6654127 November 2003 Everett et al.
6657730 December 2003 Pfau et al.
6658278 December 2003 Gruhl
6680780 January 2004 Fee
6685885 February 2004 Nolte et al.
6687007 February 2004 Meigs
6687010 February 2004 Horii et al.
6692430 February 2004 Adler
6701181 March 2004 Tang et al.
6721094 April 2004 Sinclair et al.
6738144 May 2004 Dogariu et al.
6757467 June 2004 Rogers
6806963 October 2004 Walti et al.
6816743 November 2004 Moreno et al.
6831781 December 2004 Tearney et al.
6839496 January 2005 Mills et al.
6882432 April 2005 Deck
6900899 May 2005 Nevis
6909105 June 2005 Heintzmann et al.
6949072 September 2005 Furnish et al.
6961123 November 2005 Wang et al.
6980299 December 2005 de Boer
6996549 February 2006 Zhang et al.
7006231 February 2006 Ostrovsky et al.
7006232 February 2006 Rollins et al.
7019838 March 2006 Izatt et al.
7027633 April 2006 Foran et al.
7061622 June 2006 Rollins et al.
7072047 July 2006 Westphal et al.
7075658 July 2006 Izatt et al.
7099358 August 2006 Chong et al.
7113288 September 2006 Fercher
7113625 September 2006 Watson et al.
7130320 October 2006 Tobiason et al.
7139598 November 2006 Hull et al.
7142835 November 2006 Paulus
7148970 December 2006 De Boer
7177027 February 2007 Hirasawa et al.
7190464 March 2007 Alphonse
7230708 June 2007 Lapotko et al.
7236637 June 2007 Sirohey et al.
7242480 July 2007 Alphonse
7267494 September 2007 Deng et al.
7272252 September 2007 De La Torre-Bueno et al.
7304798 December 2007 Izumi et al.
7330270 February 2008 O'Hara et al.
7336366 February 2008 Choma et al.
7342659 March 2008 Horn et al.
7355716 April 2008 De Boer et al.
7355721 April 2008 Quadling et al.
7359062 April 2008 Chen et al.
7366376 April 2008 Shishkov et al.
7382809 June 2008 Chong et al.
7391520 June 2008 Zhou et al.
7458683 December 2008 Chernyak et al.
7530948 May 2009 Seibel et al.
7539530 May 2009 Caplan et al.
7609391 October 2009 Betzig
7630083 December 2009 de Boer et al.
7643152 January 2010 de Boer et al.
7643153 January 2010 de Boer et al.
7646905 January 2010 Guittet et al.
7649160 January 2010 Colomb et al.
7664300 February 2010 Lange et al.
7733497 June 2010 Yun et al.
7782464 August 2010 Mujat et al.
7805034 September 2010 Kato et al.
2001/0036002 November 2001 Tearney et al.
2001/0047137 November 2001 Moreno et al.
2002/0016533 February 2002 Marchitto et al.
2002/0024015 February 2002 Hoffmann et al.
2002/0048025 April 2002 Takaoka
2002/0048026 April 2002 Isshiki et al.
2002/0052547 May 2002 Toida
2002/0057431 May 2002 Fateley et al.
2002/0085209 July 2002 Mittleman et al.
2002/0086347 July 2002 Johnson et al.
2002/0091322 July 2002 Chaiken et al.
2002/0109851 August 2002 Deck
2002/0122182 September 2002 Everett et al.
2002/0122246 September 2002 Tearney et al.
2002/0140942 October 2002 Fee et al.
2002/0158211 October 2002 Gillispie
2002/0161357 October 2002 Rox et al.
2002/0163622 November 2002 Magnin et al.
2002/0168158 November 2002 Furusawa et al.
2002/0183623 December 2002 Tang et al.
2002/0196446 December 2002 Roth et al.
2002/0198457 December 2002 Tearney et al.
2003/0001071 January 2003 Mandella et al.
2003/0013973 January 2003 Georgakoudi et al.
2003/0023153 January 2003 Izatt et al.
2003/0026735 February 2003 Nolte et al.
2003/0028114 February 2003 Casscells, III et al.
2003/0030816 February 2003 Eom et al.
2003/0043381 March 2003 Fercher
2003/0053673 March 2003 Dewaele et al.
2003/0067607 April 2003 Wolleschensky et al.
2003/0082105 May 2003 Fischman et al.
2003/0097048 May 2003 Ryan et al.
2003/0108911 June 2003 Klimant et al.
2003/0120137 June 2003 Pawluczyk
2003/0135101 July 2003 Webler
2003/0137669 July 2003 Rollins et al.
2003/0165263 September 2003 Hamer et al.
2003/0171691 September 2003 Casscells, III et al.
2003/0174339 September 2003 Feldchtein et al.
2003/0220749 November 2003 Chen et al.
2003/0236443 December 2003 Cespedes et al.
2004/0002650 January 2004 Mandrusov et al.
2004/0039298 February 2004 Abreu
2004/0054268 March 2004 Esenaliev et al.
2004/0072200 April 2004 Rigler et al.
2004/0075841 April 2004 Van Neste et al.
2004/0076940 April 2004 Alexander et al.
2004/0077949 April 2004 Blofgett et al.
2004/0085540 May 2004 Lapotko et al.
2004/0110206 June 2004 Wong et al.
2004/0126048 July 2004 Dave et al.
2004/0126120 July 2004 Cohen et al.
2004/0150829 August 2004 Koch et al.
2004/0150830 August 2004 Chan
2004/0152989 August 2004 Puttappa et al.
2004/0165184 August 2004 Mizuno
2004/0166593 August 2004 Nolte et al.
2004/0189999 September 2004 De Groot et al.
2004/0239938 December 2004 Izatt et al.
2004/0246490 December 2004 Wang
2004/0246583 December 2004 Mueller et al.
2004/0254474 December 2004 Seibel et al.
2004/0263843 December 2004 Knopp et al.
2005/0018133 January 2005 Huang et al.
2005/0018201 January 2005 de Boer et al.
2005/0035295 February 2005 Bouma et al.
2005/0036150 February 2005 Izatt et al.
2005/0046837 March 2005 Izumi et al.
2005/0057680 March 2005 Agan
2005/0057756 March 2005 Fang-Yen et al.
2005/0059894 March 2005 Zeng et al.
2005/0065421 March 2005 Burckhardt et al.
2005/0119567 June 2005 Choi et al.
2005/0128488 June 2005 Yelin et al.
2005/0165303 July 2005 Kleen et al.
2005/0171438 August 2005 Chen et al.
2005/0190372 September 2005 Dogariu et al.
2005/0254061 November 2005 Alphonse et al.
2006/0033923 February 2006 Hirasawa et al.
2006/0093276 May 2006 Bouma et al.
2006/0103850 May 2006 Alphonse et al.
2006/0146339 July 2006 Fujita
2006/0164639 July 2006 Horn et al.
2006/0171503 August 2006 O'Hara et al.
2006/0184048 August 2006 Saadat et al.
2006/0193352 August 2006 Chong et al.
2006/0244973 November 2006 Yun et al.
2007/0019208 January 2007 Toida et al.
2007/0038040 February 2007 Cense et al.
2007/0070496 March 2007 Gweon et al.
2007/0076217 April 2007 Baker et al.
2007/0086013 April 2007 De Lega et al.
2007/0086017 April 2007 Buckland et al.
2007/0091317 April 2007 Freischlad et al.
2007/0133002 June 2007 Wax et al.
2007/0188855 August 2007 Shishkov et al.
2007/0223006 September 2007 Tearney et al.
2007/0236700 October 2007 Yun et al.
2007/0258094 November 2007 Izatt et al.
2007/0291277 December 2007 Everett et al.
2008/0002197 January 2008 Sun et al.
2008/0007734 January 2008 Park et al.
2008/0049220 February 2008 Izzia et al.
2008/0094613 April 2008 de Boer et al.
2008/0094637 April 2008 de Boer et al.
2008/0097225 April 2008 Tearney et al.
2008/0097709 April 2008 de Boer et al.
2008/0100837 May 2008 de Boer et al.
2008/0152353 June 2008 de Boer et al.
2008/0154090 June 2008 Hashimshony
2008/0204762 August 2008 Izatt et al.
2008/0265130 October 2008 Colomb et al.
2008/0308730 December 2008 Vizi et al.
2009/0011948 January 2009 Uniu et al.
2009/0196477 August 2009 Cense et al.
2009/0273777 November 2009 Yun et al.
2009/0290156 November 2009 Popescu et al.
2010/0086251 April 2010 Xu et al.
2010/0094576 April 2010 de Boer et al.
2010/0150467 June 2010 Zhao et al.
Foreign Patent Documents
1550203 Dec 2004 CN
4309056 Sep 1994 DE
19542955 May 1997 DE
10351319 Jun 2005 DE
0110201 Jun 1984 EP
0617286 Feb 1994 EP
0728440 Aug 1996 EP
0251062 Jan 1998 EP
1324051 Jul 2003 EP
1426799 Jun 2004 EP
2738343 Aug 1995 FR
2209221 May 1989 GB
2298054 Aug 1996 GB
6073405 Apr 1985 JP
20040056907 Feb 1992 JP
4135550 May 1992 JP
4135551 May 1992 JP
5509417 Nov 1993 JP
02214127 Jul 2002 JP
20030035659 Feb 2003 JP
2004037165 Feb 2004 JP
2007271761 Oct 2007 JP
7900841 Oct 1979 WO
9201966 Feb 1992 WO
9216865 Oct 1992 WO
WO 9219930 Nov 1992 WO
WO 9303672 Mar 1993 WO
9216865 Oct 1993 WO
WO 9533971 Dec 1995 WO
2298054 Aug 1996 WO
WO 9732182 Sep 1997 WO
9800057 Jan 1998 WO
WO 9814132 Apr 1998 WO
WO 9835203 Aug 1998 WO
9848846 Nov 1998 WO
WO 9848838 Nov 1998 WO
9944089 Feb 1999 WO
WO 9944089 Sep 1999 WO
WO 9957507 Nov 1999 WO
WO 0058766 Oct 2000 WO
0101111 Jan 2001 WO
0127679 Apr 2001 WO
WO 0138820 May 2001 WO
WO 0142735 Jun 2001 WO
0237075 May 2002 WO
WO 0236015 May 2002 WO
WO 0238040 May 2002 WO
02053050 Jul 2002 WO
WO 02054027 Jul 2002 WO
02084263 Oct 2002 WO
WO 03020119 Mar 2003 WO
03046495 Jun 2003 WO
03046636 Jun 2003 WO
03062802 Jul 2003 WO
WO 03062802 Jul 2003 WO
03105678 Dec 2003 WO
2004057266 Jul 2004 WO
WO 2004105598 Dec 2004 WO
2005047813 May 2005 WO
2005082225 Sep 2005 WO
2006004743 Jan 2006 WO
2006039091 Mar 2006 WO
2006038876 Apr 2006 WO
2006059109 Jun 2006 WO
2006124860 Nov 2006 WO
2007028531 Mar 2007 WO
2007083138 Jul 2007 WO
2007084995 Jul 2007 WO

Other References

International Search Report and Written Opinion mailed Jun. 9, 2006 for PCT/US2005/032422. cited by applicant .
Notification of Transmittal of the International Preliminary Report of Patentability mailed Dec. 21, 2006 for PCT/US2005/032422. cited by applicant .
Amendment under Article 34 and reply to PCT Written Opinion mailed Sep. 7, 2006 for PCT/US2005/032422. cited by applicant .
Liptak David C. et al., (2007) "On the Development of a Confocal Rayleigh-Brillouin Microscope" American Institute of Physics vol. 78, 016106. cited by applicant .
Office Action mailed Oct. 1, 2008 for U.S. Appl. No. 11/955,986. cited by applicant .
Invitation of Pay Additional Fees mailed Aug. 7, 2008 for International Application No. PCT/US2008/062354. cited by applicant .
Invitation of Pay Additional Fees mailed Jul. 20, 2008 for International Application No. PCT/US2007/081982. cited by applicant .
International Search Report and Written Opinion mailed Mar. 7, 2006 for PCT/US2005/035711. cited by applicant .
International Search Report and Written Opinion mailed Jul. 18, 2008 for PCT/US2008/057533. cited by applicant .
Aizu, Y et al. (1991) "Bio-Speckle Phenomena and Their Application to the Evaluation of Blood Flow" Optics and Laser Technology, vol. 23, No. 4, Aug. 1, 1991. cited by applicant .
Richards G.J. et al. (1997) "Laser Speckle Contrast Analysis (LASCA): A Technique for Measuring Capillary Blood Flow Using the First Order Statistics of Laser Speckle Patterns" Apr. 2, 1997. cited by applicant .
Gonick, Maria M., et al (2002) "Visualization of Blood Microcirculation Parameters in Human Tissues by Time Integrated Dynamic Speckles Analysis" vol. 972, No. 1, Oct. 1, 2002. cited by applicant .
International Search Report and Written Opinion mailed Jul. 4, 2008 for PCT/US2008/051432. cited by applicant .
Jonathan, Enock (2005) "Dual Reference Arm Low-Coherence Interferometer-Based Reflectometer For Optical Coherence Tomography (OCT) Application" Optics Communications vol. 252. cited by applicant .
Motaghian Nezam, S.M.R. (2007) "increased Ranging Depth in optical Frequency Domain Imaging by Frequency Encoding" Optics Letters, vol. 32, No. 19, Oct. 1, 2007. cited by applicant .
Office Action dated Jun. 30, 2008 for U.S. Appl. No. 11/670,058. cited by applicant .
Office Action dated Jul. 7, 2008 for U.S. Appl. No. 10/551,735. cited by applicant .
Australian Examiner's Report mailed May 27, 2008 for Australian patent application No. 2003210669. cited by applicant .
Notice of Allowance mailed Jun. 4, 2008 for U.S. Appl. No. 11/174,425. cited by applicant .
European communication dated May 15, 2008 for European patent application No. 05819917.5. cited by applicant .
International Search Report and Written Opinion mailed Jun. 10, 2008 for PCT/US2008/051335. cited by applicant .
Oh. W.Y. et al (2006) "Ultrahigh-Speed Optical Frequency Domain Imaging and Application to laser Ablation Monitoring" Applied Physics Letters, vol. 88. cited by applicant .
Office Action dated Aug. 21, 2008 for U.S. Appl. No. 11/505,700. cited by applicant .
Sticker, Markus (2002) En Face Imaging of Single Cell layers by Differential Phase-Contrast Optical Coherence Microscopy) Optics Letters, col. 27, No. 13, Jul. 1, 2002. cited by applicant .
International Search Report and Written Opinion dated Jul. 17, 2008 for International Application No. PCT/US2008/057450. cited by applicant .
International Search Report and Written Opinion dated Aug. 11, 2008 for International Application No. PCT/US2008/058703. cited by applicant .
US National Library of Medicine (NLM), Bethesda, MD, US; Oct. 2007 (Oct. 2007), "Abstracts of the 19.sup.th Annual Symposium of Transcatheter Cardiovascular Therapeutics, Oct. 20-25, 2007, Washington, DC, USA." cited by applicant .
International Search Report and Written Opinion dated May 26, 2008 for International Application No. PCT/US2008/051404. cited by applicant .
Office Action dated Aug. 25, 2008 for U.S. Appl. No. 11/264,655. cited by applicant .
Office Action dated Sep. 11, 2008 for U.S. Appl. No. 11/624,334. cited by applicant .
Office Action dated Aug. 21, 2008 for U.S. Appl. No. 11/956,079. cited by applicant .
Gelikono, V. M. et al. Oct. 1, 2004 "Two-Wavelength Optical Coherence Tomography" Radio physics and Quantum Electronics, Kluwer Academic Publishers-Consultants. vol. 47, No. 10-1. cited by applicant .
International Search Report and Written Opinion for PCT/US2007/081982 dated Oct. 19, 2007. cited by applicant .
Database Compendex Engineering Information, Inc., New York, NY, US; Mar. 5, 2007, Yelin, Dvir et al: "Spectral-Domain Spectrally-Encoded Endoscopy". cited by applicant .
Database Biosis Biosciences Information Service, Philadelphia, PA, US; Oct. 2006, Yelin D. et al: "Three-Dimensional Miniature Endoscopy". cited by applicant .
International Search Report and Written Opinion mailed Mar. 14, 2005 for PCT/US2004/018045. cited by applicant .
Notification of the international Preliminary Report on Patentability mailed Oct. 21, 2005. cited by applicant .
Shim M.G. et al., "Study of Fiber-Optic Probes For In vivo Medical Raman Spectroscopy" Applied Spectroscopy. vol. 53, No. 6, Jun. 1999. cited by applicant .
Bingid U. et al., "Fibre-Optic Laser-Assisted Infrared Tumour Diagnostics (FLAIR); Infrared Tomour Diagnostics" Journal of Physics D. Applied Physics, vol. 38, No. 15, Aug. 7, 2005. cited by applicant .
Jun Zhang et al. "Full Range Polarization-Sensitive Fourier Domain Optical Coherence Tomography" Optics Express, vol. 12, No. 24. Nov. 29, 2004. cited by applicant .
Yonghua et al., "Real-Time Phase-Resolved Functional Optical Hilbert Transformation" Optics Letters, vol. 27, No. 2, Jan. 15, 2002. cited by applicant .
Siavash et al., "Self-Referenced Doppler Optical Coherence Tomography" Optics Letters, vol. 27, No. 23, Dec. 1, 2002. cited by applicant .
International Search Report and Written Opinion dated Dec. 20, 2004 for PCT/US04/10152. cited by applicant .
Notification Concerning Transmittal of International Preliminary Report on Patentability dated Oct. 13, 2005 for PCT/US04/10152. cited by applicant .
International Search Report and Written Opinion dated Mar. 23, 2006 for PCT/US2005/042408. cited by applicant .
International Preliminary Report on Patentability dated Jun. 7, 2007 for PCT/US2005/042408. cited by applicant .
International Search Report and Written Opinion dated Feb. 28, 2007 for International Application No. PCT/US2006/038277. cited by applicant .
International Search Report and Written Opinion dated Jan. 30, 2009 for International Application No. PCT/US2008/081834. cited by applicant .
Fox, J.A. et al; "A New Galvanometric Scanner for Rapid tuning of C02 Lasers" New York, IEEE, US vol. Apr. 7, 1991. cited by applicant .
Motaghian Nezam, S.M. et al: "High-speed Wavelength-Swept Semiconductor laser using a Diffrection Grating and a Polygon Scanner in Littro Configuration" Optical Fiber Communication and the National Fiber Optic Engineers Conference Mar. 29, 2007. cited by applicant .
International Search Report and Written Opinion dated Feb. 2, 2009 for International Application No. PCT/US2008/071786. cited by applicant .
Bilenca A et al: "The Role of Amplitude and phase in Fluorescence Coherence Imaging: From Wide Filed to Nanometer Depth Profiling", Optics IEEE, May 5, 2007. cited by applicant .
Inoue, Yusuke et al: "Varible Phase-Contrast Fluorescence Spectrometry for Fluorescently Strained Cells", Applied Physics Letters, Sep. 18, 2006. cited by applicant .
Bernet, S et al: "Quantitative Imaging of Complex Samples by Spiral Phase Contrast Microscopy", Optics Express, May 9, 2006. cited by applicant .
International Search Report and Written Opinion dated Jan. 15, 2009 for International Application No. PCT/US2008/074863. cited by applicant .
Office Action dated Feb. 17, 2009 for U.S. Appl. No. 11/211,483. cited by applicant .
Notice of Reasons for Rejection mailed Dec. 2, 2008 for Japanese patent application No. 2000-533782. cited by applicant .
International Search Report and Written Opinion dated Feb. 24, 2009 for PCT/US2008/076447. cited by applicant .
European Official Action dated Dec. 2, 2008 for EP 07718117.0. cited by applicant .
Barfuss et al (1989) "Modified Optical Frequency Domain Reflectometry with High spatial Resolution for Components of integrated optic Systems", Journal of Lightwave Technology, IEEE vol. 7., No. 1. cited by applicant .
Yun et al., (2004) "Removing the Depth-Degeneracy in Optical Frequency Domain Imaging with Frequency Shifting", Optics Express, vol. 12, No. 20. cited by applicant .
International Search Report and Written Opinion dated Jun. 10, 2009 for PCT/US08/075456. cited by applicant .
European Search Report issued May 5, 2009 for European Application No. 01991471.2. cited by applicant .
Motz, J.T. et al: "Spectral-and Frequency-Encoded Fluorescence Imaging" Optics Letters, OSA, Optical Society of America, Washington, DC, US, vol. 30, No. 20, Oct. 15, 2005, pp. 2760-2762. cited by applicant .
Japanese Notice of Reasons for Rejection dated Jul. 14, 2009 for Japanese Patent application No. 2006-503161. cited by applicant .
Office Action dated Aug. 18, 2009 for U.S. Appl. No. 12/277,178. cited by applicant .
Office Action dated Aug. 13, 2009 for U.S. Appl. No. 10/136,813. cited by applicant .
Office Action dated Aug. 6, 2009 for U.S. Appl. No. 11/624,455. cited by applicant .
Office Action dated May 15, 2009 for U.S. Appl. No. 11/537,123. cited by applicant .
Office Action dated Apr. 17, 2009 for U.S. Appl. No. 11/537,343. cited by applicant .
Office Action dated Apr. 15, 2009 for U.S. Appl. No. 12/205,775. cited by applicant .
Office Action dated Dec. 9, 2008 for U.S. Appl. No. 09/709,162. cited by applicant .
Office Action dated Dec. 23, 2008 for U.S. Appl. No. 11/780,261. cited by applicant .
Office Action dated Jan. 9, 2010 for U.S. Appl. No. 11/624,455. cited by applicant .
Office Action dated Feb. 18, 2009 for U.S. Appl. No. 11/285,301. cited by applicant .
Beddow et al, (May 2002) "Improved Performance Interferomater Designs for Optical Coherence Tomography", IEEE Optical Fiber Sensors Conference, pp. 527-530. cited by applicant .
Yaqoob et al., (Jun. 2002) "High-Speed Wavelength-Multiplexed Fiber-Optic Sensors for Biomedicine," Sensors Proceedings of the IEEE, pp. 325-330. cited by applicant .
Office Action dated Feb. 18, 2009 for U.S. Appl. No. 11/697,012. cited by applicant .
Zhang et al, (Sep. 2004), "Fourier Domain Functional Optical Coherence Tomography", Saratov Fall Meeting 2004, pp. 8-14. cited by applicant .
Office Action dated Feb. 23, 2009 for U.S. Appl. No. 11/956,129. cited by applicant .
Office Action dated Mar. 16, 2009 for U.S. Appl. No. 11/621,694. cited by applicant .
Office Action dated Oct. 1, 2009 for U.S. Appl. No. 11/677,278. cited by applicant .
Office Action dated Oct. 6, 2009 for U.S. Appl. No. 12/015,642. cited by applicant .
Lin, Stollen et al.,(1977) " A AW Tunable Near-infrared (1.085-1.175-um) Raman Oscillator," Optics Letters, vol. 1, 96. cited by applicant .
Summons to attend Oral Proceedings dated Oct. 9, 2009 for European patent application No. 06813365.1. cited by applicant .
Office Action dated Dec. 15, 2009 for U.S. Appl. No. 11/549,397. cited by applicant .
R. Haggitt et al., "Barrett's Esophagus Correlation Between Mucin Histochemistry, Flow Cytometry, and Histological Diagnosis for Predicting Increased Cancer Risk," Apr. 1988, American Journal of Pathology, vol. 131, No. 1, pp. 53-61. cited by applicant .
R.H. Hardwick et al., (1995) "c-erbB-2 Overexpression in the Dysplasia/Carcinoma Sequence of Barrett's Oesophagus," Journal of Clinical Pathology, vol. 48, No. 2, pp. 129-132. cited by applicant .
W. Polkowski et al, (1998) "Clinical Decision making in Barrett's Oesophagus can be supported by Computerized Immunoquantitation and Morphometry of Features Associated with Proliferation and Differentiation," Journal of pathology, vol. 184, pp. 161-168. cited by applicant .
J.R. Turner et al., MN Antigen Expression in Normal Preneoplastic, and Neoplastic Esophagus: A Clinicopathological Study of a New Cancer-Associated Biomarker,: Jun. 1997, Human Pathology, vol. 28, No. 6, pp. 740-744. cited by applicant .
D.J. Bowery et al., (1999) "Patterns of Gastritis in Patients with Gastro-Oesophageal Reflux Disease,", Gut, vol, 45, pp. 798-803. cited by applicant .
O'Reich et al., (2000) "Expression of Oestrogen and Progesterone Receptors in Low-Grade Endometrial Stromal Sarcomas,", British Journal of Cancer, vol. 82, No. 5, pp. 1030-1034. cited by applicant .
M.I. Canto et al., (1999) "Vital Staining and Barrett's Esophagus," Gastrointestinal Endoscopy, vol. 49, No. 3, Part 2, pp. S12-S16. cited by applicant .
S. Jackle et al., (2000) "In Vivo Endoscopic Optical Coherence Tomography of the Human Gastrointestinal Tract--Toward Optical Biopsy," Encoscopy, vol. 32, No. 10, pp. 743-749. cited by applicant .
E. Montgomery, et al., "Reproducibility of the Diagnosis of Dysplasia in Barrett Esophagus: A Reaffirmation," Apr. 2001, Human Pathology, vol. 32, No. 4, pp. 368-378. cited by applicant .
H. Geddert et al., "Expression of Cyclin B1 in the Metaplasia-Dysphasia-Carcinoma Sequence of Barrett Esophagus," Jan. 2002, Cancer, vol. 94, No. 1, pp. 212-2180. cited by applicant .
P. Pfau et al., (2003) "Criteria for the Diagnosis of Dysphasia by Endoscopic Optical Coherence Tomography," Gastrointestinal Endoscopy, vol. 58, No. 2, pp. 196-2002. cited by applicant .
R. Kiesslich et al., (2004) "Confocal Laser Endoscopy for Diagnosing Intraepithelial Neoplasias and Colorectal Cancer in Vivo," Gastroenterology, vol. 127, No. 3, pp. 706-713. cited by applicant .
X. Qi et al., (2004) "Computer Aided Diagnosis of Dysphasia in Barrett's Esophagus Using Endoscopic Optical Coherence Tomography," SPIE, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VIII. Proc. of Conference on., vol. 5316, pp. 33-40. cited by applicant .
Seltzer et al., (1991) "160 nm Continuous Tuning of a MQW Laser in an External Cavity Across the Entire 1.3 .mu.m Communications Window," Electronics Letters, vol. 27, pp. 95-96. cited by applicant .
Office Action dated Jan. 25, 2010 for U.S. Appl. No. 11/537,048. cited by applicant .
International Search Report dated Jan. 27, 2010 for PCT/US2009/050553. cited by applicant .
International Search Report dated Jan. 27, 2010 for PCT/US2009/047988. cited by applicant .
International Search Report dated Feb. 23, 2010 for U.S. Appl. No. 11/445,131. cited by applicant .
Office Action dated Mar. 18, 2010 of U.S. Appl. No. 11/844,454. cited by applicant .
Office Action dated Apr. 8, 2010 of U.S. Appl. No. 11/414,564. cited by applicant .
Japanese Office Action dated Apr. 13, 2010 for Japanese Patent application No. 2007-515029. cited by applicant .
International Search Report dated May 27, 2010 for PCT/US2009/063420. cited by applicant .
Office Action dated May 28, 2010 for U.S. Appl. No. 12/015,642. cited by applicant .
Office Action dated Jun. 2, 2010 for U.S. Appl. No. 12/112,205. cited by applicant .
Office Action dated Jul. 7, 2010 for U.S. Appl. No. 11/624,277. cited by applicant .
Montag Ethan D., "Parts of the Eye" online textbook for JIMG 774: Vision & Psycophysics, download on Jun. 23, 2010 from http://www.cis.rit.edu/people/faculty/montag/vandplite/pp./chap.sub.'8/ch- 8p3.html. cited by applicant .
Office Action dated Jul. 16, 2010 for U.S. Appl. No. 11/445,990. cited by applicant .
Office Action dated Jul. 20, 2010 for U.S. Appl. No. 11/625,135. cited by applicant .
Office Action dated Aug. 5, 2010 for U.S. Appl. No. 11/623,852. cited by applicant .
Chinese office action dated Aug. 4, 2010 for CN 200780005949.9. cited by applicant .
Chinese office action dated Aug. 4, 2010 for CN 200780016266.3. cited by applicant .
Zhang et al., "Full Range Polarization-Sensitive Fourier Domain Optical Coherence Tomography" Optics Express, Nov. 29, 2004, vol. 12, No. 24. cited by applicant .
Office Action dated Aug. 27, 2010 for U.S. Appl. No. 11/569,790. cited by applicant .
Office Action dated Aug. 31, 2010 for U.S. Appl. No. 11/677,278. cited by applicant .
Office Action dated Sep. 3, 2010 for U.S. Appl. No. 12/139,314. cited by applicant .
Yong Zhao et al: "Virtual Data Grid Middleware Services for Data-Intensive Science", Concurrency and Computation: Practice and Experience, Wiley, London, GB, Jan. 1, 2000, pp. 1-7, pp. 1532-0626. cited by applicant .
Swan et al., "Toward Nanometer-Scale Resolution in Fluorescence Microscopy using Spectral Self-Inteference" IEEE Journal. Selected Topics in Quantum Electronics 9 (2) 2003, pp. 294-300. cited by applicant .
Moiseev et al., "Spectral Self-Interfence Fluorescence Microscopy", J. Appl. Phys. 96 (9) 2004, pp. 5311-5315. cited by applicant .
Hendrik Verschueren, "Interference Reflection Microscopy in Cell Biology", J. Cell Sci. 75, 1985, pp. 289-301. cited by applicant .
Park et al., "Diffraction Phase and Fluorescence Microscopy", Opt. Expr. 14 (18) 2006, pp. 8263-8268. cited by applicant .
Swan et al. "High Resolution Spectral Self-Interference Fluorescence Microscopy", Proc. SPIE 4621, 2002, pp. 77-85. cited by applicant .
Sanchez et al., "Near-Field Fluorscence Microscopy Based on Two-Photon Excvitation with Metal Tips", Phys. Rev. Lett. 82 (20) 1999, pp. 4014-4017. cited by applicant .
Wojtkowski, Maciej, Ph.D. "Three-Dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography" Ophthalmology, Oct. 2005 112(10): 1734-1746. cited by applicant .
Vaughan, J.M. et al., "Brillouin Scattering, Density and Elastic Properties of the Lens and Cornea of the Eye", Nature, vol. 284, Apr. 3, 1980, pp. 489-491. cited by applicant .
Hess, S.T. et al. "Ultra-high Resolution Imaging by Fluorescence Photoactivation Localization Microscopy" Biophysical Journal vol. 91, Dec. 2006, 4258-4272. cited by applicant .
Fernandez-Suarez, M. et al., "Fluorescent Probes for Super-Resolution Imaging in Living Cells" Nature Reviews Molecular Cell Biology vol. 9, Dec. 2008. cited by applicant .
"In vivo imaging of blood flow in human retinal vessels using color Doppler optical coherence tomography" Yazdanfar et al, Part of the SPIE Conference on Coherence Domain Methods in Biomedical Science and Clinical Applications III * San Jose, California * Jan. 1999 177 SPIE vol. 3598 * 0277-786X199/$ 10.00. cited by examiner .
Fujimoto et al., "High Resolution in Vivo Intra-Arterial Imaging with Optical Coherence Tomography", Official Journal of the British Cardiac Society, vol. 82, pp. 128-133 Heart, 1999. cited by applicant .
D. Huang et al., "Optical Coherence Tomography", Science, vol. 254, pp. 1178-1181, Nov. 1991. cited by applicant .
Tearney et al., "High-Speed Phase -and Group Delay Scanning with a Grating Based Phase Control Line", Optics Letters, vol. 22, pp. 1811-1813, Dec. 1997. cited by applicant .
Rollins, et al., "In Vivo Video Rate Optical Coherence Tomography", Optics Express, vol. 3, pp. 219-229, Sep. 1998. cited by applicant .
Saxer, et al., High Speed Fiber-Based Polarization-Sensitive Optical Coherence Tomography of in Vivo Human Skin, Optical Society of America, vol. 25, pp. 1355-1357, Sep. 2000. cited by applicant .
Oscar Eduardo Martinez, "3000 Times Grating Compress or Positive Group Velocity Dispersion", IEEE, vol. QE-23, pp. 59-64, Jan. 1987. cited by applicant .
Kulkarni, et al., "Image Enhancement in Optical Coherence Tomography Using Deconvolution", Electronics Letters, vol. 33, pp. 1365-1367, Jul. 1997. cited by applicant .
Bashkansky, et al., "Signal Processing for Improving Field Cross-Correlation Function in Optical Coherence Tomography", Optics & Photonics News, vol. 9, pp. 8137-8138, May 1998. cited by applicant .
Yung et al., "Phase-Domain Processing of Optical Coherence Tomography Images", Journal of Biomedical Optics, vol. 4, pp. 125-136, Jan. 1999. cited by applicant .
Tearney, et al., "In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography", Science, vol. 276, Jun. 1997. cited by applicant .
W. Drexler et al. "In Vivo Ultrahigh-Resolution Optical Coherence Tomography", Opt. Lett. vol. 24, pp. 1221-1223, Sep. 1999. cited by applicant .
Nicusor V. Iftimia et al., "A Portable, Low Coherence Interferometry Based Instrument for Fine Needle Aspiration Biopsy Guidance" Accepted to Review to Scientific Instruments, 2005. cited by applicant .
Abbas, G.L., V.W.S. Chan et al., "Local-Oscillator Excess-Noise Suppression for Homodyne and Heterodyne-Detection", Optics Letters, vol. 8, pp. 419-421, Aug. 1982 issue. cited by applicant .
Agrawall, G.P., "Population Pulsation and Nondegenerate 4-Wave Mixing in Semiconductor-Lasers and Amplifiers", Journal Of The Optical Society Of America B-Optical Physics, vol. 5, pp. 147-159, Jan. 1998. cited by applicant .
Andretzky, P. et al., "Optical Coherence Tomography by Spectral Radar: Improvement of Signal-to-Noise Ration", The International Society for Optical Enguneering, USA, vol. 3915, 2000. cited by applicant .
Ballif, J. et al., "Rapid and Scalable Scans at 21 m/s in optical Low-Coherence Reflectometry", Optics Letters, vol. 22, pp. 757-759, Jun. 1997. cited by applicant .
Barfuss H. et al., "Modified Optical Frequency-Domain Reflectometry with High Spatial-Resolution for Components of Integrated Optics Systems", Journal Of Lightwave technologyvol. 7, pp. 3-10, Jan. 1989. cited by applicant .
Beaud, P. et al., "Optical Reflectometry with Micrometer Resolution for the Investigation of Integrated Optical-Devices", Leee Journal of Quantum Electronics, vol. 25, pp. 755-759, Apr. 1989. cited by applicant .
Bauma, Brett et al., "Power-Efficient Nonreciprocal Interferometer and Linear-Scanning Fiber-Optic Catheter for Optical Coherence Tomography", Optics Letters, vol. 24, pp. 531-533, Apr. 1999. cited by applicant .
Brinkmeyer, E., et al., "Efficient Algorithm for Non-Equidistant Interopolation of Sampled Data", Electronics Letters, vol. 28, p. 693, Mar. 1992. cited by applicant .
Brinkmeyer, E. et al., "High-Resolution OCDR in Dispersive Wave-Guides", Electronics Letters, vol. 26, pp. 413-414, Mar. 1990. cited by applicant .
Chinn, S.R. et al., "Optical Coherence Tomography Using a Frequency-Tunable Optical Source", Optical Letters, vol. 22, pp. 340-342, Mar. 1997. cited by applicant .
Danielson, B.L. et al., "Absolute Optical Ranging Using Low Coherence Interferometry", Applied Optics, vol. 30, p. 2975, Jul. 1991. cited by applicant .
Dorrer, C. et al., "Spectral Resolution and Sampling Issues in Fourier-Transform Spectral Interferometry", Journal of the Optical Society of America B-Optical Physics, vol. 17, pp. 1795-1802, Oct. 2000. cited by applicant .
Dudley, J. M. et al., "Cross-Correlation Frequency Resolved Optical Gating Analysis of Broadband Continuum Generation in Photonic Crystal Fiber: Simulations and Experiments", Optics Express, vol. 10, p. 125, Oct. 2002. cited by applicant .
Fercher, Adolf "Optical Coherence Tomography", Journal of Bio-medical Optics, vol. 1, pp. 157-173, Apr. 1996. cited by applicant .
Ferreira, L.A. et al., "Polarization-Intensive Fiberoptic White-Light Interferometry", Optics Communications, vol. 114, pp. 386-392, Feb. 1995. cited by applicant .
Fujii, Yohji, "High-Isolation Polarization-Independent Optical Circulator", Journal of Lightware Technology, vol. 9, pp. 1239-1243, Oct. 1991. cited by applicant .
Glance, B., "polarization Independent Coherent Optical Receiver", Journal of Light wave Technology, vol. LT-5, p. 274, Feb. 1987. cited by applicant .
Glombitza, U., "Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Wave Guides", Journal of Lightwave Technology, vol. 11, 1377-1384, Aug. 1993. cited by applicant .
Golubovic, B. et al., "Optical Frequency-Domain Reflectometry Using Rapid Wavelength Tuning of a Cr4+:Forsterite Laser", Optics Letters, vol. pp. 1704-1706, Nov. 1997. cited by applicant .
Haberland, U. H. P. et al., "Chirp Optical Coherence Tomography of Layered Scattering Media", Journal of Biomedical Optics, vol. 3, pp. 259-266, Jul. 1998. cited by applicant .
Hammer, Daniel X. et al., "Spectrally Resolved White-Light Interferometry for Measurement of Ocular Dispersion", Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 16, pp. 2092-2102, Sep. 1999. cited by applicant .
Harvey, K.C. et al., "External-Cavity Diode-Laser Using a Grazing-Incidence Diffraction Grating", Optics Letters, vol. 16, pp. 910-912, Jun. 1991. cited by applicant .
Hausler, Gerd et al., "`Coherence Radar` and `Spectral Radar` New Tools for Dermatological Diagnosis", Journal of Biomedical Optics, vol. 3, pp. 21-31, Jan. 1998. cited by applicant .
Hee , Michael R. et al., "Polarization-Sensitive Low-Coherence Reflectometer for Birefringence Characterization and Ranging", Journal of the Optical Society of America B (Optical Physics), vol. 9, p. 903-908, Jun. 1992. cited by applicant .
Hotate Kazuo et al., "Optical Coherence Domain Reflectometry by Synthesis of Coherence Function", Journal of Lightwave Technology, vol. 11, pp. 1701-1710, Oct. 1993. cited by applicant .
Inoue, Kyo et al., "Nearly Degenerate 4-Wave-Mixing in a Traveling-Wave Semiconductor-Laser Amplifier", Applied Physics Letters, vol. 51, pp. 1051-1053, 1987. cited by applicant .
Ivanov, A. P. et al., "New Method for High-Range Resolution Measurements of Light Scattering in Optically Dense Inhomogeneous Media", Optics Letters, vol. 1, pp. 226-228, Dec. 1977. cited by applicant .
Ivanov, A. P. et al., "Interferometric Study of the Spatial Structure of Light-Scattering Medium", Journal of Applied Spectroscopy, vol. 28, pp. 518-525, 1978. cited by applicant .
Kazovsky, L. G. et al., "Heterodyne Detection Through Rain, Snow, and Turbid Media: Effective Receiver Size at Optical Through Millimeter Wavelengths", Applied Optics, vol. 22, pp. 706-710, Mar. 1983. cited by applicant .
Kersey, A. D. et al., "Adaptive Polarization Diversity Receiver Configuration for Coherent Optical Fiber Communications", Electronics Letters, vol. 25, pp. 275-277, Feb. 1989. cited by applicant .
Kohlhaas, Andreas et al., "High-Resolution OCDR for Testing Integrated-Optical Waveguides: Dispersion-Corrupted Experimental Data Corrected by a Numerical Algorithm", Journal of Lightwave Technology, vol. 9, pp. 1493-1502, Nov. 1991. cited by applicant .
Larkin, Kieran G., "Efficient Nonlinear Algorithm for Envelope Detection in White Light Interofeometry", Journal of Optical Society of America A-Optics Image Science and Vision, vol. 13, pp. 832-843, Apr. 1996. cited by applicant .
Leitgeb, R. et al., "Spectral measurement of Absorption by Spectroscopic Frequency-Domain Optical Coherence Tomography", Optics Letters, vol. 25, pp. 820-822, Jun. 2000. cited by applicant .
Lexer, F. et al., "Wavelength-Turning Interferometry of Introacular Distances", Applied Optics, vol. 36, pp. 6548-6553, Sep. 1997. cited by applicant .
Mitsui, Takahisa, "Dynamic Range of Optical Reflectometry with Spectral Interferometry", Japanese Journal of Applied Physics Part I--Regular Papers Short Notes & Review Papers, vol. 38, pp. 6133-6137, 1999. cited by applicant .
Naganuma, Kazunori et al., "Group-Delay Measurement Using the Fourier-Transform of an Interferometric Cross-Correlation Generated by White Light", Optics Letters, vol. 15, pp. 393-395, Apr. 1990. cited by applicant .
Okoshi,Takanori, "Polarization-State Control Schemes for Heterodyne or Homodyne Optical Fiber Communications", Journal of Lightwave Technology, vol. LT-3, pp. 1232-1237, Dec. 1995. cited by applicant .
Passy, R. et al., "Experimental and Theoretical Investigations of Coherent OFDR with Semiconductor-Laser Sources", Journal of Lightwave Technology, vol. 12, pp. 1622-1630, Sep. 1994. cited by applicant .
Pololeanu, Adrian G., "Unbalanced Versus Balanced Operation in an Optical Coherence Tomography System", Applied Optics, vol. 39, pp. 173-182, Jan. 2000. cited by applicant .
Price, J. H. V. et al., "Tunable, Femtosecond Pulse Source Operating in the Range 1.06-1.33 mu m Based on an Yb3+-doped Holey Fiber Amplifier", Journal of the Optical Society of America B-Optical Physics, vol. 19, pp. 1286-1294, Jun. 2002. cited by applicant .
Schmitt, J. M. et al., "Measurement of Optical-Properties O Biological Tissues By Low-Coherence Reflectometry" Applied Optics, vol. 32, pp. 6032-6042, Oct. 1993. cited by applicant .
Silverberg, Y. et al., "Passive-Mode Locking of a Semiconductor Diode-Laser", Optics Letters, vol. 9, pp. 507-509, Nov. 1984. cited by applicant .
Smith, L. Montgomery et al., "Absolute Displacement Measurements Using Modulation of the Spectrum of White-Light in a Michelson Interferometer", Applied Optics, vol. 28, pp. 3339-3342, Aug. 1989. cited by applicant .
Sonnenschein, C. M. et al. , "Signal-To-Noise Relationships for Coaxial Systems that Heterodyne Backscatter from Atmosphere", Applied Optics, vol. 10, pp. 1600-1604, Jul. 1971. cited by applicant .
Sorin, W. V. et al., "Measurement of Rayleigh Backscattering at 1.55 mu m with 32 mu m Spatial Resolution", IEEE Photonics Technology Letters, vol. 4, pp. 374-376, Apr. 1992. cited by applicant .
Sorin, W. V. et al., "A Simple Intensity Noise-Reduction Technique for Optical Low-Coherence Reflectometry", IEEE Photonics Technology Letters, vol. 4, pp. 1404-1406, Dec. 1992. cited by applicant .
Swanson, E. A. et al., "High-Speed Optical Coherence Domair Reflectometry", Optics Letters, vol. 17, pp. 151-153, Jan. 1992. cited by applicant .
Takada, K. et al., "High-Resolution OFDR with Incorporated Fiberoptic Frequency Encoder", IEEE Photonics Technology Letters, vol. 4, pp. 1069-1072, Sep. 1992. cited by applicant .
Takada, Kazumasa et al., "Narrow-Band light Source with Acoustic Tunable Filter for Optical Low-Coherence Reflectometry", IEEE Photonics Technology Letters, vol. 8, pp. 658-660, May 1996. cited by applicant .
Takada, Kazumasa et al., "New Measurement System for Fault Location in Optical Wave-Guide Devices Based on an Interometric-Technique", Applied Optics, vol. 26, pp. 1603-1606, May 1987. cited by applicant .
Tateda, Mitsuhiro et al., "Interferometric Method for Chromatic Dispersion Measurement in a Single-Mode Optical Fiber", IEEE Journal of Quantum Electronics, vol. 17, pp. 404-407, Mar. 1981. cited by applicant .
Toide, M. et al., "Two-Dimensional Coherent Detection Imaging in Multiple Scattering Media Based the Directional Resolution Capability of the Optical Heterodyne Method", Applied Physics B (Photophysics and laser Chemistry), vol. B52, pp. 391-394, 1991. cited by applicant .
Trutna, W. R. et al., "Continuously Tuned External-Cavity Semi-conductor-Laser", Journal of Lightwave Technology, vol. 11, pp. 1279-1286, Aug. 1993. cited by applicant .
Uttam, Deepak et al., "Precision Time Domain Reflectometry in Optical Fiber Systems Using a Frequency Modulated Continuous Wave Ranging Technique", Journal of Lightwave Technology, vol. 3, pp. 971-977, Oct. 1985. cited by applicant .
Von Der Weid, J. P. et al., "On the Characterization of Optical Fiber Network Components with Optical Frequency Domain Reflectometry", Journal of Lightwave Technology, vol. 15, pp. 1131-1141, Jul. 1997. cited by applicant .
Wysocki, P.F. et al., "Broad-Spectrum, Wavelength-Swept, Erbium-Doped Fiber Laser at 1.55-Mu-M", Optics Letters, vol. 15, pp. 879-881, Aug. 1990. cited by applicant .
Youngquist, Robert C. et al., "Optical Coherence-Domain Reflectometry--A New Optical Evaluation Technique", Optics Letters, vol. 12, pp. 158-160, Mar. 1987. cited by applicant .
Yun, S. H. et al., "Wavelength-Swept Fiber Laser with Frequency Shifted Feedback and Resonantly Swept Intra-Cavity Acoustioopic Tunable Filter", IEEE Journal of Selected Topics in Quantium Electronics, vol. 3, pp. 1087-1096, Aug. 1997. cited by applicant .
Yun, S. H. et al., "Interrogation of Fiber Grating Sensor Arrays with a Wavelength-Swept Fiber Laser", Optics Letters, vol. 23, pp. 843-845, Jun. 1998. cited by applicant .
Yung, K. M., "Phase-Domain Processing of Optical Coherence Tomography Images", Journal of Biomedical Optics, vol. 4, pp. 125-136, Jan. 1999. cited by applicant .
Zhou, Xiao-Qun et al., "Extended-Range FMCW Reflectometry Using an optical Loop with a Frequency Shifter", IEEE Photonics Technology Letters, vol. 8, pp. 248-250, Feb. 1996. cited by applicant .
Zorabedian, Paul et al., "Tuning Fidelity of Acoustooptically Controlled External Cavity Semiconductor-Lasers", Journal of Lightwave Technology, vol. 13, pp. 62-66, Jan. 1995. cited by applicant .
Victor S. Y. Lin. et al., "A Porous Silicon-Based Optical Interferometric Biosensor", Science Magazine, vol. 278, pp. 840-843, Oct. 31, 1997. cited by applicant .
De Boer, Johannes F. et al., "Review of Polarization Sensitive Optical Coherence Tomography and Stokes Vector Determination," Journal of Biomedical Optics, vol. 7, No. 3, Jul. 2002, pp. 359-371. cited by applicant .
Jiao, Shuliang et al., "Depth-Resolved Two-Dimensional Stokes Vectors of Backscattered Light and Mueller Matrices of Biological Tissue Measured with Optical Coherence Tomography," Applied Optics, vol. 39, No. 34, Dec. 1, 2000, pp. 6318-6324. cited by applicant .
Park, B. Hyde et al., "In Vivo Burn Depth Determination by High-Speed Fiber-Based Polarization Sensitive Optical Coherence Tomography," Journal of Biomedical Optics, vol. 6 No. 4, Oct. 2001, pp. 474-479. cited by applicant .
Roth, Jonathan E. et al., "Simplified Methods for Polarization-Sensitive Optical Coherence Tomography," Optics Letters, vol. 26, No. 14, Jul. 25, 2001, pp. 1069-1071. cited by applicant .
Hitzenberger, Christopher K. et al., "Measurement and Imaging of Birefringence and Optic Axis Orientation by Phase Resolved Polarization Sensitive Optical Coherence Tomography," Optics Express, vol. 9, No. 13, Dec. 17, 2001, pp. 780-790. cited by applicant .
Wong, Brian J.F. et al., "Optical Coherence Tomography of the Rat Cochlea," Journal of Biomedical Optics, vol. 5, No. 4, Oct. 2000, pp. 367-370. cited by applicant .
Yao, Gang et al., "Propagation of Polarized Light in Turbid Media: Simulated Animation Sequences," Optics Express, vol. 7, No. 5, Aug. 28, 2000, pp. 198-203. cited by applicant .
Wang, Xiao-Jun et al., "Characterization of Dentin and Enamel by Use of Optical Coherence Tomography," Applied Optics, vol. 38, No. 10, Apr. 1, 1999, pp. 2092-2096. cited by applicant .
De Boer, Johannes F. et al., "Determination of the Depth-Resolved Stokes Parameterss of Light Backscattered from Turbid Media by use of Polarization-Sensitive Optical Coherence Tomography," Optics Letters, vol. 24, No. 5, Mar. 1, 1999, pp. 300-302. cited by applicant .
Ducros, Mathieu G. et al., "Polarization Sensitive Optical Coherence Tomography of the Rabbit Eye," Journal of Selected Topics in Quantum Electronics, vol. 5, No. 4, Jul./Aug. 1999, pp. 1159-1167. cited by applicant .
Groner, Warren et al., "Orthogonal Polarization Spectral Imaging: A New Method of Study of the Microcirculation," Nature Medicine Inc., vol. 5, No. 10, Oct. 1999, pp. 1209-1213. cited by applicant .
De Boer, Johannes F. et al., "Polarization Effects in Optical Coherence Tomography of Various Biological Tissues," IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, No. 4, Jul./Aug. 1999, pp. 1200-1204. cited by applicant .
Yao, Gang et al., "Two-Dimensional Depth-Resolved Mueller Matrix Characterization of Biological Tissue by Optical Coherence Tomography," Optics Letter, Apr. 15, 1999, vol. 24, No. 8, pp. 537-539. cited by applicant .
Lu, Shih-Yau et al., "Homogeneous and Inhomogeneous Jones Matrices," J. Opt. Soc. Am. A., vol. 11, No. 2, Feb. 1994, pp. 766-773. cited by applicant .
Brickel, S. William et al., "Stokes Vectors, Mueller Matrices, and Polarized Scattered Light," Am. J. Phys., vol. 53, No. 5, May 1985 pp. 468-478. cited by applicant .
Brehonnet, F. Le Roy et al., "Optical Media and Target Characterization by Mueller Matrix Decomposition," J. Phys. D: Appl. Phys. 29, 1996, pp. 34-38. cited by applicant .
Cameron, Brent D. et al., "Measurement and Calculation of the Two-Dimensional Backscattering Mueller Matrix of a Turbid Medium," Optics Letters, vol. 23, No. 7, Apr. 1, 1998, pp. 485-487. cited by applicant .
De Boer, Johannes F. et al., "Two-Dimensional Birefringence Imaging in Biological Tissue by Polarization-Sensitive Optical Coherence Tomography," Optics Letters, vol. 22, No. 12, Jun. 15, 1997, pp. 934-936. cited by applicant .
De Boer, Johannes F. et al., "Imaging Thermally Damage Tissue by Polarization Sensitive Optical Coherence Tomography," Optics Express, vol. 3, No. 6, Sep. 14, 1998, pp. 212-218. cited by applicant .
Everett, M.J. et al., "Birefringence Characterization of Biological Tissue by Use of Optical Coherence Tomography," Optics Letters, vol. 23, No. 3, Feb. 1, 1998, pp. 228-230. cited by applicant .
Hee, Michael R. et al., "Polarization-Sensitive Low-Coherence Reflectometer for Birefringence Characterization and Ranging," J. Opt. Soc. Am. B., vol. 4, No. 6, Jun. 1992, pp. 903-908. cited by applicant .
Barakat, Richard, "Statistics of the Stokes Parameters," J. Opt. Soc. Am. B., vol. 4, No. 7, Jul. 1987, pp. 1256-1263. cited by applicant .
Schmitt, J. M. et al., "Cross-Polarization Backscatter in Optical Coherence Tomography of Biological Tissue," Optics Letters, vol. 23, No. 13, Jul. 1, 1998, pp. 1060-1062. cited by applicant .
Schoenberger, Klaus et al., "Mapping of Birefringence and Thermal Damage in Tissue by use of Polarization-Sensitive Optical Coherence Tomography," Applied Optics, vol. 37, No. 25, Sep. 1, 1998, pp. 6026-6036. cited by applicant .
Piecer, Mark C., et al., "Simultaneous Intensity, Birefringence, and Flow Measurements with High-Speed Fiber-Based Optical Coherence Tomography," Optics Letters, vol. 27, No. 17, Sep. 1, 2002, pp. 1534-1536. cited by applicant .
De Boer, Johannes F. et al., "Review of Polarization Sensitive Optical Coherence Tomography and Stokes Vector Determination," Journal of Biomedical Optics, Jul. 2002, vol. 7, No. 3, pp. 359-371. cited by applicant .
Fried, Daniel et al., "Imaging Caries Lesions and Lesion Progression with Polarization Sensitive Optical Coherence Tomography," Journal of Biomedical Optics, vol. 7, No. 4, Oct. 2002, pp. 618-627. cited by applicant .
Jiao, Shuliang et al., "Two-Dimensional Depth-Resolved Mueller Matrix of Biological Tissue Measured with Double-Beam Polarization-Sensitive Optical Coherence Tomography," Optics Letters, vol. 27, No. 2, Jan. 15, 2002, pp. 101-103. cited by applicant .
Jiao, Shuliang et al., "Jones-Matrix Imaging of Biological Tissues with Quadruple-Channel Optical Coherence Tomography," Journal of Biomedical Optics, vol. 7, No. 3, Jul. 2002, pp. 350-358. cited by applicant .
Kuranov, R.V. et al., "Complementary Use of Cross Polarization and Standard OCT for Differential Diagnosis of Pathological Tissues," Optics Express, vol. 10, No. 15, Jul. 29, 2002, pp. 707-713. cited by applicant .
Cense, Barry et al., "In Vivo Depth-Resolved Birefringence Measurements of the Human Retinal Nerve Fiber Layer by Polarization-Sensitive Optical Coherence Tomography," Optics Letters, vol. 27, No. 18, Sep. 15, 2002, pp. 1610-1612. cited by applicant .
Ren, Hongwu et al., "Phase-Resolved Functional Optical Coherence Tomography: Simultaneous Imaging of In Situ Tissue Structure, Blood Flow Velocity, Standard Deviation, Birefringence, and Stokes Vectors in Human Skin," Optics Letters, vol. 27, No. 19, Oct. 1, 2002, pp. 1702-1704. cited by applicant .
Tripathi, Renu et al., "Spectral Shaping for Non-Gaussian Source Spectra in Optical Coherence Tomography," Optics Letters, vol. 27, No. 6, Mar. 15, 2002, pp. 406-408. cited by applicant .
Yasuno, Y. et al., "Birefringence Imaging of Human Skin by Polarization-Sensitive Spectral Interferometric Optical Coherence Tomography," Optics Letters, vol. 27, No. 20, Oct. 15, 2002, pp. 1803-1805. cited by applicant .
White, Brian R. et al., "In Vivo Dynamic Human Retinal Blood Flow Imaging Using Ultra-High-Speed Spectral Domain Optical Doppler Tomography," Optics Express, vol. 11, No. 25, Dec. 15, 2003, pp. 3490-3497. cited by applicant .
De Boer, Johannes F. et al., "Improved Signal-to-Noise Ratio in Spectral-Domain Compared with Time-Domain Optical Coherence Tomography," Optics Letters, vol. 28, No. 21, Nov. 1, 2003, pp. 2067-2069. cited by applicant .
Jiao, Shuling, et al., "Optical-Fiber-Based Mueller Optical Coherence Tomography," Optics Letters, vol. 28, No. 14, Jul. 15, 2003, pp. 1206-1208. cited by applicant .
Jiao, Shuliang et al., "Contrast Mechanisms in Polarization-Sensitive Muller-Matrix Optical Coherence Tomography and Application in Burn Imaging," Applied Optics, vol. 42, No. 25, Sep. 1, 2003, pp. 5191-5197. cited by applicant .
Moreau, Julien et al., "Fuel-Field Birefringence Imaging by Thermal-Light Polarization-Sensitive Optical Coherence Tomography. I. Theory," Applied Optics, vol. 42, No. 19, Jul. 1, 2003, pp. 3800-3810. cited by applicant .
Moreau, Julien et al., "Fuel-Field Birefringence Imaging by Thermal-Light Polarization-Sensitive Optical Coherence Tomography. II. Instrument and Results,"Applied Optics, vol. 42, No. 19, Jul. 1, 2003, pp. 3811-3818. cited by applicant .
Morgan, Stephen P. et al., "Surface-Reflection Elimination in Polarization Imaging of Superficial Tissue," Optics Letters, vol. 28, No. 2, Jan. 15, 2003, pp. 114-116. cited by applicant .
Oh, Jung-Taek et al., "Polarization-Sensitive Optical Coherence Tomography for Photoelasticity Testing of Glass/Epoxy Composites," Optics Express, vol. 11, No. 14, Jul. 14, 2003, pp. 1669-1676. cited by applicant .
Park, B. Hyle et al., "Real-Time Multi-Functional Optical Coherence Tomography," Optics Express, vol. 11, No. 7, Apr. 7, 2003, pp. 782-793. cited by applicant .
Shribak, Michael et al., "Techniques for Fast and Sensitive Measurements of Two-Dimensional Birefingence Distributions," Applied Optics, vol. 42, No. 16, Jun. 1, 2003, pp. 3009-3017. cited by applicant .
Somervell, A.R.D. et al., "Direct Measurement of Fringe Amplitude and Phase Using a Heterodyne Interferometer Operating in Broadband Light," Elsevier, Optics Communications, Oct. 2003. cited by applicant .
Stifter, D. et al., "Polarisation-Sensitive Optical Coherence Tomography for Medical Characterisation and Strain-Field Mapping," Applied Physics A 76, Materials Science & Processing, Jan. 2003, pp. 947-951. cited by applicant .
Dave, Digant P. et al., "Polarization-Maintaining Fiber-Based Optical Low-Coherence Reflectometer for Characterization and Ranging of Birefingence," Optics Letters, vol. 28, No. 19, Oct. 1, 2003, pp. 1775-1777. cited by applicant .
Yang, Ying et al., "Observations of Birefringence in Tissues from Optic-Fibre-Based Optical Coherence Tomography," Measurement Science and Technology, Nov. 2002, pp. 41-46. cited by applicant .
Yun. S.H. et al., "High-Speed Optical Frequency-Domain Imaging," Optics Express, vol. 11, No. 22, Nov. 3, 2003, pp. 2953-5963. cited by applicant .
Yun, S.H. et al., "High-Speed Spectral-Domain Optical Coherence Tomography at 1.3 .mu.m Wavelength," Optics Express, vol. 11, No. 26, Dec. 29, 2003, pp. 3598-3604. cited by applicant .
Zhang, Jun et al., "Determination of Birefringence and Absolute Optic Axis Orientation Using Polarization-Sensitive Optical Coherence Tomography with PM Fibers," Optics Express, vol. 11, No. 24, Dec. 1, 2003, pp. 3262-3270. cited by applicant .
Pircher, Michael et al., "Three Dimensional Polarization Sensitive OCT of Human Skin In Vivo," 2004, Optical Society of America. cited by applicant .
Gotzinger, Erich et al., "Measurement and Imaging of Birefringencement Properties of the Human Cornea with Phase-Resolved, Polarization-Sensitive Optical Coherence Tomography," Journal of Biomedical Optics, vol. 9, No. 1, Jan./Feb. 2004, pp. 94-102. cited by applicant .
Guo, Shuguang et al., "Depth-Resolved Birefringence and Differential Optical Axis Orientation Measurements with Fiber-based Polarization-Sensitive Optical Coherence Tomography," Optics Letters, vol. 29, No. 17, Sep. 1, 2004, pp. 2025-2027. cited by applicant .
Huang, Xiang-Run et al., "Variation of Peripapillary Retinal Nerve Fiber Layer Birefringence in Normal Human Subjects," Investigative Opthalmology & Visual Science, vol. 45, No. 9, Sep. 2004, pp. 3073-3080. cited by applicant .
Matcher, Stephen J. et al., "The Collagen Structure of Bovine Intervertebral Disc Studied Using Polarization-Sensitive Optical Coherence Tomography," Physics in Medicine and Biology, 2004, pp. 1295-1306. cited by applicant .
Nassif, Nader et al., "In Vivo Human Retinal Imaging by Ultrahigh-Speed Spectral Domain Optical Coherence Tomography," Optics Letters, vol. 29, No. 5, Mar. 1, 2004, pp. 480-482. cited by applicant .
Nassif, N.A. et al., "In Vivo High-Resolution Video-Rate Spectral-Domain Optical Coherence Tomography of the Human Retina and Optic Nerve," Optics Express, vol. 12, No. 3, Feb. 9, 2004, pp. 367-376. cited by applicant .
Park, B. Hyle et al., Comment on "Optical Fiber-Based Mueller Optical Coherence Tomography," Optics Letters, vol. 29, No. 24, Dec. 15, 2004, pp. 2873-2874. cited by applicant .
Park, B. Hyle et al., "Jone Matrix Analysis for a Polarization-Sensitive Optical Coherence Tomography System Using Fiber-Optic Components," Optics Letters, vol. 29, No. 21, Nov. 1, 2004, pp. 2512-2514. cited by applicant .
Pierce, Mark C. et al., "Collagen Denaturation can be Quantified in Burned Human Skin Using Polarization-Sensitive Optical Coherence Tomography," Elsevier, Burns, 2004, pp. 511-517. cited by applicant .
Pierce, Mark C. et al., "Advances in Optical Coherence Tomography Imaging for Dermatology," The Society for Investigative Dermatology, Inc. 2004, pp. 458-463. cited by applicant .
Pierce, Mark C. et al., "Birefringence Measurements in Human Skin Using Polarization-Sensitive Optical Coherence Tomography," Journal of Biomedical Optics, vol. 9, No. 2, Mar./Apr. 2004, pp. 287-291. cited by applicant .
Cense, Barry et al., "In Vivo Birefringence and Thickness Measurements of the Human Retinal Nerve Fiber Layer Using Polarization-Sensitive Optical Coherence Tomography," Journal of Biomedical Optics, vol. 9, No. 1, Jan./Feb. 2004, pp. 121-125. cited by applicant .
Pircher, Michael et al., "Imaging Of Polarization Properties of Human Retina in Vivo with Phase Resolved Transversal PS-OCT," Optics Express, vol. 12, No. 24, Nov. 29, 2004 pp. 5940-5951. cited by applicant .
Pitcher, Michael et al., "Transversal Phase Resolved Polarization Sensitive Optical Coherence Tomography," Physics in Medicine & Biology, 2004, pp. 1257-1263. cited by applicant .
Srinivas, Shyam M. et al., "Determination of Burn Depth by Polarization-Sensitive Optical Coherence Tomography," Journal of Biomedical Optics, vol. 9, No. 1, Jan./Feb. 2004, pp. 207-212. cited by applicant .
Strasswimmer, John et al., "Polarization-Sensitive Optical Coherence Tomography of Invasive Basal Cell Circonoma," Journal of Biomedical Optics, vol. 9, No. 2, Mar./Apr. 2004, pp. 292-298. cited by applicant .
Todorovi{hacek over (c)}, Milo{hacek over (s)} et al., "Determination of Local Polarization Properties of Biological Samples in the Presence of Diattenuation by use of Mueller Optical Coherence Tomography," Optical Letters, vol. 29, No. 20, Oct. 15, 2004, pp. 2402-2404. cited by applicant .
Yasuno, Yoshiaki et al., "Polarization-Sensitive Complex Fourier Domain Optical Coherence Tomography for Jones Matrix Imaging of Biological Samples," Applied Physics Letters, vol. 85, No. 15, Oct. 11, 2004, pp. 3023-3025. cited by applicant .
Acioli, L. H., M. Ulman, et al. (1991). "Femtosecond Temporal Encoding in Barium-Titante." Optics Letters 16(24): 1984-1986. cited by applicant .
Aigouy, L., A. Lahrech, et al., (1999). "Polarization effects in apertectureless scanning near-filed optical microscopy: an experimental study." Optics Letters 24(4): 187-189. cited by applicant .
Akiba, M., K. P. Chan, et al. (2003). "Full-filed optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras." Optics Letters 28(10): 816-818. cited by applicant .
Akkin, T., D. P. Dave, et al., (2004). "Detection of neural activity using phase-sensitive optical low-coherence reflectometry." Optics Express 12(11): 2377-2386. cited by applicant .
Akkin, T., D. P. Dave, et al. (2003). "Surface analysis using phase sensitive optical low coherence reflectometry." Lasers in Surgery and Medicine: 4-4. cited by applicant .
Akkin, T., D. P. Dave, et al. (2003). "Imaging tissue response to electrical and photothermal stimulation with nanometer sensivity." Lasers in Surgery and Medicine 33(4): 219-225. cited by applicant .
Akkin, T., T. E. Milner, et al. (2002). "Phase-sensitive measurement of birefringence change as an indication of neural functionality and diseases." Lasers in Surgery and Medicine: 6-6. cited by applicant .
Andretzky, P., Lindner, M.W., Herrmann, J.M., Schultz, A., Konzog, M., Kiesewetter, F., Haeusler, G. (1999). "Optical coherence tomography by `spectral radar`: Dynamic range estimation and in vivo measurements of skin." Proceedings of SPIE--The International Society for Optical Engineering 3567: pp. 78-87. cited by applicant .
Antcliff, R. J., T. J. ffytche, et al., (2000). "Optical coherence tomography of melanocytoma." American Journal of Ophthalmology 130(6): 845-7. cited by applicant .
Antcliff, R. J., M. R. Standford, et al. (2000). "Comparison between optical coherence tomography and fundus fluorescein angiography for the detection of cystoid mascular edema in patients with uveitis." Ophthalmology 107(3): 593-9. cited by applicant .
Anvari, B., T. E. Milner, et al. (1995). "Selective Cooling of Biological Tissues--Application for Thermally Mediated Therapeutic Procedures." Physics in Medicine and Biology 40(2): 241-252. cited by applicant .
Anvari, B., B. S. Tanenbaum, et al. (1995). "A Theoretical-Study of the Thermal Response of Skin of Cryogen Spray Cooling and Pulsed-Laser Irradiation--Implications for Treatment of Port-Wine Stain Birthmarks." Physics in Medicine and Biology 40(9): 1451-1465. cited by applicant .
Arend, O., M. Ruffer, et al. (2000). "Macular circulation in patients with diabetes mellitus with and without arterial hypertension." British Journal of Ophthalmology 84(12): 1392-1396. cited by applicant .
Arimoto, H. and Y. Ohtsuka (1997). "Measurements of the complex degree of spectral coherence by use of a wave-front-folded interferometer." Optics Letters 22(13):958-960. cited by applicant .
Azzolini, C., F. Patelli, et al. (2001). "Correlation between optical coherence tomography data and biomicroscopic interpretation of idiopathic macular hole." American Journal of Ophthalmology 132(3): 348-55. cited by applicant .
Baba, T., K. Ohno-Matsui, et al. (2002). "Optical coherence tomography of choroidal neovascularization in high myopia." Acta Ophthalmoloqica Scandinavica 80(1):82-7. cited by applicant .
Bail, M. A. H., Gerd; Herrmann, Jurgen M.; Lindner, Michael W.; Ringer, R. (1996). "Optical coherence tomography with the "spectral radar": fast optical analysis in volume scatters by short-coherence interferometry." Proc. SPIE, 2925: p. 298-303. cited by applicant .
Baney, D. M. and W. V. Sorin (1993). "Extended-Range Optical Low-Coherence Reflectometry Using a Recirculating Delay Technique." Ieee Photonics Technology Letters 5(9): 1109-1112. cited by applicant .
Baney, D. M., B. Szafraniec, et al. (2002). "Coherent optical spectrum analyzer." Ieee Photonics Technology Letters 14(3): 355-357. cited by applicant .
Barakat, R. (1981). "Bilinear Constraints between Elements of the 4by4 Mueller-Jones Transfer-Matrix of Polarization Theory." Optics Communications 38(3): 159-161. cited by applicant .
Barakat, R. (1993). "Analytic Proofs of the Arago-Fresnel Laws for the Interference of Polarized-Light." Journal of the Optical Society of America a-Optics Image Science and Vision 10(1): 180-185. cited by applicant .
Barbastathis, G. and D. J. Brady (1999). "Multidimensional tomographic imaging using volume halography." Proceedings of the Ieee 87(12) 2098-2120. cited by applicant .
Bardal, S., A. Kamal, et al. (1992). "Photoinduced Birefringence in Optical Fibers--a Comparative-Study of Low-Birefringence and High-Birefringence Fibers." Optics Letters 17(6): 411-413. cited by applicant .
Barsky, S. H., S. Rosen, et al. (1980). "Nature and Evolution of Port Wine Stains--Computer-Assisted Study." Journal of Investigative Dermatology 74(3): 154-157. cited by applicant .
Barton, J. K., J. A. Izatt, et al. (1999). "Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images." Dermatology 198(4): 355-361. cited by applicant .
Barton, J. K., A. Rollins, et al. (2001). "Photothermal coagulation of blood vessels: a comparison of high-sped optical coherence tomography and numerical modelling." Physics in Medicine and Biology 46. cited by applicant .
Barton, J. K., A. J. Welch, et al. (1988. "Investigating pulsed dye laser-blood vessel interaction with color Doppler optical coherence tomography," Optics Express 3. cited by applicant .
Bashkansky, M., M. D. Duncan, et al. (1997). "Subsurface defect detection in ceramics by high-speed resolution optical coherent tomography." Optics Letters 22 (1): 61-63. cited by applicant .
Bashkansky, M. and J. Reintjes (2000). "Statistics and reduction of speckle in optical coherence tomography." Optics Letters 25(8): 545-547. cited by applicant .
Baumgartner, A., S. Dichtl, et al. (2000). "Polarization-sensitive optical coherence tomography of dental structures." Caries Research 34(1): 59-69. cited by applicant .
Baumgartner, A., C. K. Hitzenberger, et al. (2000). "Resolution-improved dual-beam and standard optical coherence tomography: a comparison." Graefes Archive for Clinical and Experimental Ophthalmology 238(5): 385-392. cited by applicant .
Baumgartner, A., C. K. Hitzenberger, et al. (1998). "Signal and resolution enhancements in dual beam optical coherence tomography of the human eye." Journal of Biomedical Optics 3(1): 45-54. cited by applicant .
Beaurepaire, E., P. Gleyzes, et al. (1998) Optical coherence microscopy for the in-depth study of biological structures: System based on a parallel detection scheme, Proceedings os SPIE--The International Study for Optical Engineering. cited by applicant .
Beaurepaire, E., L. Moreaux, et al. (1999). "Combined scanning optical coherence and two-photon-excited fluorescence microscopy." Optical Letters 24(14): 969-971. cited by applicant .
Bechara, F. G., T. Gambichler, et al. (2004). "Histomorphologic correlation with routine histology and optical coherence tomography." Skin Research and Technology 10 (3): 169-173. cited by applicant .
Bechmann, M., M. J. Thiel, et al. (2000). "Central corneal thickness determined with optical coherence tomography in various types of glaucoma. [see comments]." British Journal of Ophthalmology 84(11): 1233-7. cited by applicant .
Bek, T. and M. Kandi (2000). "Quantitative anomaloscopy and optical coherence tomography scanning in central serous chorioretinopathy." Acta Ophthalmologica Scandinavica 78(6): 632-7. cited by applicant .
Benoit, A. M., K. Naoun, et al. (2001)."Linear dichroism of the retinal nerve fiber layer expressed with Mueller matrices." Applied Optics 40(4): 565-569. cited by applicant .
Bicout, D., C. Brosseau, et al. (1994). "Depolarization of Multiply Scattered Waves by Spherical Diffusers--Influence of the Size Parameter." Physical Review E 49(2): 1767-1770. cited by applicant .
Blanchot, L., M. Lebec, et al. (1997). Low-coherence in depth microscopy for biological tissues imaging. Design of a real time control system. Proceedings of SPIE--The International Society for Optical Engineering. cited by applicant .
Blumenthal, E. Z. and R. N. Weinreb (2001). "Assessment of the retinal nerve fiber layer in clinical trials of glaucoma neuroprotection. [Review] [36 refs]." Survey of Ophthalmology 45(Suppl 3): S305-12; discussion S332-4. cited by applicant .
Blumenthal, E. Z., J. M. Williams, et al. (2000). "Reproducibility of nerve fiber layer thickness measurement by use of optical coherence tomography." Ophthalmology 107(120: 2278-82. cited by applicant .
Boppart, S. A., B. E. Bauma, et al. (1996). "Imaging developing neural morphology using optical coherence tomography." Journal of Neuroscience Methods 70. cited by applicant .
Boppart, S. A., B. E. Bauma, et al. (1997). "Forward-imaging instruments for optical coherence tomography." Optics Letters 22. cited by applicant .
Boppart, S. A., B. E. Bauma, et al. (1998). "Intraoperative assessment of microsurgery with three-dimensional optical coherence tomography." Radiology 208: 81-86. cited by applicant .
Boppart, S. A., J. Herrmann, et al. (1999). "High-resolution optical coherence tomography-guided laser ablation of surgical tissue." Journal of Surgical Research 82(2): 275-84. cited by applicant .
Bouma, B. E. and J. G. Fujimoto (1996). "Compact Kerr-lens mode-locked resonators." Optics Letters 21. cited by applicant .
Bouma, B. E., L. E. Nelson, et al. (1998). "Optical coherence tomographic imaging of human tissue at 1.55 mu m and 1.81 mu m using Er and Tm-doped fiber sources." Journal of Biomedical Optics 3. cited by applicant .
Bouma, B. E., M. Ramaswamy-Paye, et al. (1997). "Compact resonator designs for mode-locked solid-state lasers." Applied Physics B (Lasers and Optics) B65. cited by applicant .
Bouma, B. E. and G. J. Tearney (2002). "Clinical imaging with optical coherence tomography." Academic Radiology 9(8): 942-953. cited by applicant .
Bouma, B. E., G. J. Tearney, et al. (1996). "Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography." Optics Letters 21(22): 1839. cited by applicant .
Bouma, B. E. G. J. Tearney, et al. (2000). "High-Resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography." Gastrointestinal Endoscopy 51(4): 467-474. cited by applicant .
Bouma, B. E., G. J. Tearney, et al. (2003). "Evaluation of intracoronary stenting by intravascular optical coherence tomography." Heart 89(3): 317-320. cited by applicant .
Bourquin, S., V. Monterosso, et al. (2000). "Video-rate optical low-coherence reflectometry based on a linear smart detector array." Optics Letters 25(2): 102-104. cited by applicant .
Bourquin, S., P. Seitz, et al. (2001). "Optical coherence topography based on a two-dimensional smart detector array." Optics Letters 26(8): 512-514. cited by applicant .
Bouzid, A., M. A. G. Abushagur, et al. (1995). "Fiber-optic four-detector polarimeter." Optics Communications 118(3-4): 329-334. cited by applicant .
Bowd, C., R. N. Weinreb, et al. (2000). "The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with optical coherence tomography." Archives of Ophthalmology 118(1): 22-6. cited by applicant .
Bowd, C., L. M. Zangwill, et al. (2001). "Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function." Investigative ophthalmology & Visual Science42(9): 1993-2003. cited by applicant .
Bowd, C., L. M. Zangwill, et al. (2002). "Imaging of the optic disc and the retinal nerve fiber layer: the effects of age, optic disc area, refractive error, and gender." Journal of the Optical Society of America, A, Optics, Image Science & Vision 19(1): 197-207. cited by applicant .
Brand, S., J. M. Poneros, et al. (2000). "Optical coherence tomography in the gastrointestinal tract." Endoscopy 32(10): 796-803. cited by applicant .
Brezinski, M. E. and J. G. Fujimoto (1999). "Optical coherence tomography: high-resolution imaging in nontransparent tissue." IEEE Journal of Selected Topics in Quantum Electronics 5(4): 1185-1192. cited by applicant .
Brezinski, M. E., G. J. Terney, et al. (1996). "Imaging of coronary artery microstructure (in vitro) with optical coherence tomography." American Journal of Cardiology 77(1): 92-93. cited by applicant .
Brezinski, M. E., G. J. Tearney, et al. (1996). "Optical coherence tomography for optical biopsy--Properties and demonstration of vascular pathology." Circulation 96(6): 1206-1213. cited by applicant .
Brezinski, M. E., G. J. Tearney, et al. (1997). "Assessing atherosclerotic plaque morphology: Comparison of optical coherence tomography and high frequency intravascular ultrasound." Heart 77(5): 397-403. cited by applicant .
Brink, H. B. K. and G. J. Vanblokland (1988). "Birefringence of the Human Foveal Area Assessed Invivo with Mueller-Matrix Ellipsometry." Journal of the Optical Society of America a-Optics Image Science and Vision 5(1): 49-57. cited by applicant .
Brosseau, C. and D. Biscout (1994). "Entropy Production in Multiple-Scattering of Light by a Spatially Random Medium." Physical Review E 50(6): 4997-5005. cited by applicant .
Burgoyne, C. F., D. E. Mercante, et al. (2002). "Change detection in regional and volumetric disc parameters using longitudinal confocal scanning laser tomography." Ophthalmology 109(3): 455-66. cited by applicant .
Candido, R. and T. J. Allen (2002). "Haemodynamics in microvascular complications in type 1 diabetes." Diabetes-Metabolism Research and Reviews 18(4): 286-304. cited by applicant .
Cense, B., T. C. Chen, et al. (2004). "Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography." Investigative Ophthalmology & Visual Science 45(8): 2606-2612. cited by applicant .
Cense, B., N. Nassif, et al. (2004). "Ultrahigh-Resolution High-Speed retinal Imaging Using Spectral-Domain Optical Coherence Tomography." Optics Express 12(11): 2435-24473. cited by applicant .
Chance, B., J. S. Leigh, et al. (1988). "Comparison of Time-Resolved and Time-Unresolved Measurements of Deoxyhemoglobin in Brain." Proceedings of the National Academy of Sciences of the United States of America 85(14): 4971-4975. cited by applicant .
Chang, E. P., D. A. Keedy, et al. (1974). "Ultrastructures of Rabbit Corneal Stroma--Mapping of Optical and Morphological Anisotropies." Biochemica Et Biophysica Acta 343(3): 615-626. cited by applicant .
Chartier, T., A. Hideur, et al. (2001). "Measurement of the elliptical birefringence of single-mode optical fibers." Applied Optics 40(30): 5343-5353. cited by applicant .
Chauhan, B. C., J. w. Blanchard, et al. (2000). "Technique for Detecting Serial Topographic Changes in the Optic Disc and Peripapillary Retina Using Scanning Laser Tomograph." Invest Ophthalmol Vis Sci 41:775-782. cited by applicant .
Chen, Z. P., T. E. Milner, et al. (1997). "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media." Optics Letters 22(1): 64-66. cited by applicant .
Chen, Z. P., T. E. Milner, et al., (1997). "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography." Optics Letters 22(14): 1119-1121. cited by applicant .
Chen, Z. P., Y. H. Zhao, et al. (1999). "Optical Doppler tomography." Ieee Journal of Selected Topics in Quantum Electronics 5(4): 1134-1142. cited by applicant .
Cheong, W. F., S. A. Prahl, et al. (1990). "A Review of the Optical-Properties of biological Tissues." Ieee Journal of Quantum Electronics 26(12): 2166-2185. cited by applicant .
Chernikov, S. V., Y. Zhu, et al. (1997). "Supercontinuum self-Q-switched ytterbium fiber laser." Optics Letters 22(5): 298-300. cited by applicant .
Cho. S. H., B. E. Bouma, et al. (1999). "Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti:AI/sub 2/0/sub 3/ laser with a multiple-pass cavity." Optics Letters 24(6): 417-419. cited by applicant .
Choma, M. A., M. V. Sarunic, et al. (2003). "Sensitivity advantage of swept source and Fourier domain optical coherence tomography ." Optics Express 11(18): 2183-2189. cited by applicant .
Choma, M. A., C. H. Yang et al. (2003). "Instantaneous quadrature low-coherence interferometry with 3.times.3 fiber-optic couplers." Optics Letters 28(22): 2162-2164. cited by applicant .
Choplin, N. T. and D. C. Lundy (2001). "The sensitivity and specificity of scanning laser polarimetry in the detection of glaucoma in a clinical setting." Ophthalmology 107 (5): 899-904. cited by applicant .
Christens Barry, W. A., W. J. Green, et al. (1996). "Spatial mapping of polarized light transmission in the central rabbit cornea." Experimental Eye Research 62(6): 651-662. cited by applicant .
Chvapil, M., D. P. Speer, et al. (1984). "Identification of the depth of burn injury by collagen stainability." Plastic & Reconstructive Surgery 73(3): 438-41. cited by applicant .
Cioffi, G. A. (2001). "Three common assumptions about ocular blood flow and glaucoma." Surgery of Ophthalmology 45: S325-S331. cited by applicant .
Coleman, A. L. (1999). "Glaucoma." Lancet 354(9192): 1803-10. cited by applicant .
Collaborative Normal-Tension Glaucoma Study Group (1998). "Comparision of Glaucomatous Progression Between Untreated Patients With Normal Tension Glaucoma and Patients with Therapeutically Reduced Intraocular Pressures." Am J Ophthalmol 126: 487-97. cited by applicant .
Collaborative Normal-Tension Glaucoma Study Group (1998). "The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma." Am J Ophthalmol 126: 498-505. cited by applicant .
Collaborative Normal-Tension Glaucoma Study Group (2001). "Natural History of Normal-Tension Glaucoma." Opthalmology 108: 247-253. cited by applicant .
Colston, B. W., M. J. Everett, et al. (1998). "Imaging of hard- and soft tissue structure in the oral cavity by optical coherence tomography." Applied Optics 37(16): 3582-3585. cited by applicant .
Colston, B. W., U. S. Sathyam, et al. (1998). "Dental OCT." Optics Express 3(6): 230-238. cited by applicant .
Congdon, N. G., D. S. Friedman, et al. (2003). "Important causes of visual impairment in the world today." Jama--Journal of the American Medical Association 290(15): 2057-2060. cited by applicant .
Cregan, R. F., B. J. Mangan, et al. (1999). "Single-mode photonic band gap guidance of light in air." Science 285(5433): 1537-1539. cited by applicant .
DalMolin, M., A. Galtrarossa, et al. (1997). "Experimental investigation of linear polarization in high-birefringence single-mode fibers." Applied Optics 36(12); 2526-2528. cited by applicant .
Danielson, B. L. and C. D. Whittenbrg (1987). "Guided-Wave Reflectometry with Micrometer Resolution." Applied Optics 26(14): 2836-2842. cited by applicant .
Dave, D. P. and T. E. Milner (2000). "Doppler-angle measurement in highly scattering media." Optics Letters 25(20): 1523-1525. cited by applicant .
de Boer, J. F., T. E. Milner, et al. (1998). Two dimensional birefringence imaging in biological tissue using phase and polarization sensitive optical coherence tomography. Trends in Optics and Photonics (TOPS): Advances in Optical Imaging and Photon Migration, Orlando, USA, Optical Society of America, Washington, DC 1998. cited by applicant .
de Boer, J. F., C. E. Saxer, et al. (2001). "Stable carrier generation and phase-resolved digital data processing in optical coherence tomography." Applied Optics 40(31): 5787-5790. cited by applicant .
Degroot, P. and L. Deck (1993). "3-Dimensional Imaging by Sub-Nyquist Sampling of White-Light Interferograms." Optics Letters 18(17): 1462-1464. cited by applicant .
Denk, W., J. H. Strickler, et al. (1990). "2-Photon Laser Scanning Fluorescence Microscopy." Science 248(4951): 73-76. cited by applicant .
Descour, M. R., A. G. H. O. Karkkainen, et al. (2002). "Toward the development of miniaturized Imaging systems for detection of pre-cancer." Ieee Journal of Quantum Electronics 38(2): 122-130. cited by applicant .
Dettwiller, L. (1997). "Polarization state interference: A general investigation." Pure and Applied Optics 6(1): 41-53. cited by applicant .
DiCarlo, C. D., W. P. Roach, et al. (1999). "Comparison of optical coherence tomography imaging of cataracts with histopathology." Journal of Biomedical Optics 4. cited by applicant .
Ding, Z., Y. Zhao, et al. (2002). "Real-time phase-resolved optical coherence tomography and optical Doppler tomography." Optics Express 10(5): 236-245. cited by applicant .
Dobrin, P. B. (1996). "Effect of histologic preparation of the cross-sectional area of arterial rings." Journal of Surgical Research 61(2): 413-5. cited by applicant .
Donohue, D. J., B. J. Stoyanov, et al. (1995). "Numerical Modeling of the Corneas Lamellar Structure and Birefringence Properties." Journal of the Optical Society of America a-Optics Image Science and Vision 12(7): 1425-1438. cited by applicant .
Doornbos, R. M. P., R. Lang, et al. (1999). "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy." Physics in Medicine and Biology 44(4): 967-981. cited by applicant .
Drexler, W., A. Baumgartner, et al. (1997). "Biometric investigation of changes in the anterior eye segment during accomodation." Vision Research 37(19): 2789-2800. cited by applicant .
Drexler, W., A. Baumgartner, et al. (1997). "Submicrometer precision biometry of the anterior segment of the human eye." Investigative Ophthalmology & Visual Science 38(7): 1304-1313. cited by applicant .
Drexler, W., A. Baumgartner, et al. (1998). "Dual beam optical coherence tomography: signal identification for ophthalmologic diagnosis." Journal of Biomedical Optics 3 (1): 55-65. cited by applicant .
Drexler, W., O. Findl, et al. (1998). "Partial coherence interferometry: A novel approach to biometry in cataract surgery." American Journal of Ophthalmology 126(4): 524-534. cited by applicant .
Drexler, W., O. Findl, et al. (1997). "Clinical feasibility of dual beam optical coherence topography and tomography for ophthalmologic diagnosis." Investigative Ophthalmology & Visual Science 38(4): 1038-1038. cited by applicant .
Drexler, W., C. K. Hitzenberger, et al. (1998). "Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry." Experimental Eye Research 66(1): 25-33. cited by applicant .
Drexler, W., C. K. Hitzenberger, et al. (1996). "(Sub)micrometer precision biometry of the human eye by optical coherence tomography and topography." Investigative Ophthalmology & Visual Science 37(3): 4374-4374. cited by applicant .
Drexler, W., C. K. Hitzenberger, et al. (1995). "Measurement of the Thickness of Fundus Layers by Partial Coherence Tomography." Optical Engineering 34(3): 701-710. cited by applicant .
Drexler, W., U. Morgner, et al. (2001). "Ultrahigh-resolution ophthalmic optical coherence tomography." Nature Medicine 7 (4): 502-507. cited by applicant .
Drexler, W., U. Morgner, et al. (2001). "Ultra-high resolution ophthalmic optical coherence tomography. [erratum appears in Nat Med 2001 May;7(5):636.]." Nature Medicine 7 (4): 502-7. cited by applicant .
Drexler, W., H. Sattmann, et al. (2003). "Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography." Archives of Ophthalmology 121(5): 695-706. cited by applicant .
Drexler, W., D. Stamper, et al. (2001). "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis." Journal of Rheumatology 28(6): 1311-8. cited by applicant .
Droog, E. J., W. Steenbergen, et al. (2001). "Measurement of depth of burns by laser Doppler perfusion imaging." Burns 27(6): 561-8. cited by applicant .
Dubois, A., K. Grieve, et al. (2004). "Ultrahigh-resolution full-field optical coherence tomography." Applied Optics 43(14): 2874-2883. cited by applicant .
Dubois, A., L. Vabre, et al. (2002). "High-resolution full-field optical coherence tomography with a Linnik microscope." Applied Optics 41(4): 805-812. cited by applicant .
Ducros, M., M. Laubscher, et al. (2002). "Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array." Optics Communications 202(1-3): 29-35. cited by applicant .
Ducros, M. G., J. D. Marsack, et al. (2001). "Primate retina imaging with polarization-sensitive optical coherence tomography." Journal of the Optical Society of America a-Optics Image Science and Vision 18(12): 2945-2956. cited by applicant .
Duncan, A., J. H. Meek, et al. (1995). "Optical Pathlength Measurements on Adult Head, Calf and Forearm and the Head of the Newborn-Infant Using Phase-Resolved Optical Spectroscopy." Physics in Medicine and Biology 40(2): 295-304. cited by applicant .
Eigensee, A., G. Haeusler, et al. (1996). "New method of short-coherence interferometry in human skin (in vivo) and in solid volume scaterers." Proceedings of the SPIE--The International Society for Optical Engineering 2925: 169-178. cited by applicant .
Eisnebeiss, W., J. Marotz, et al. (1999). "Reflection-optical multispectral imaging method for objective determination of burn depth." Burns 25(8): 697-704. cited by applicant .
Elbaum, M., M. King, et al. (1972). "Wavelength-Diversity Technique for Reduction of Speckle Size." Journal of the Optical Society of America 62(5): 732-&. cited by applicant .
Ervin, J. C., H. G. Lemij, et al. (2002). "Clinician change detection viewing longitudinal stereophotographs compared to confocal scanning laser tomography in the LSU Experimental Glaucoma (LEG) Study." Ophthalmology 109(3): 467-81. cited by applicant .
Essenprises, M., C. E. Elwell, et al. (1993). "Special Dependence of Temporal Point Spread Functions in Human Tissues." Applied Optics 32(4): 418-425. cited by applicant .
Eun, H. C. (1995). "Evaluation of skin blood flow by laser Doppler flowmetry. [Review] [151 refs]." Clinics in Dermatology 13(4): 337-47. cited by applicant .
Evans, J. A., J. M. Poneros, et al. (2004). "Application of a histopathologic scoring system to optical coherence tomography (OCT) images to identify high-grade dysplasia in Barrett's esophagus." Gastroenterology 126(4): A51-A51. cited by applicant .
Feldchtein, F. I., G. V. Gelikonov, et al. (1998). "In vivo OCT imaging of hard and soft tissue of the oral cavity." Optics Express 3(6): 239-250. cited by applicant .
Feldchtein, F. I., G. V. Gelikonov, et al. (1998). "Endoscopic applications of optical coherence tomography." Optics Express 3(6): 257-270. cited by applicant .
Fercher, A. F., W. Drexler, et al. (1997). "Optical ocular tomography." Neuro- Ophthalmology 18(2): 39-49. cited by applicant .
Fercher, A. F., W. Drexler, et al. (1994). Measurement of optical distances by optical spectrum modulation. Proceedings of the SPIE--The International Society for Optical Engineering. cited by applicant .
Fercher, A. F., W. Drexler, et al. (2003). "Optical coherence tomography--principles and applications." Reports on Progress in Physics 66(2): 239-303. cited by applicant .
Fercher, A. F., C. Hitzenberger, et al. (1991). "Measurement of Intraocular Optical Distances Using Partially Coherent Laser-Light." Journal of Modern Optics 38(7): 1327-1333. cited by applicant .
Fercher, A. F., K. Hitzenberger, et al. (1996). Ocular partial coherence interferometry. Proceedings of the SPIE--The International Society for Optical Engineering. cited by applicant .
Fercher, A. F., C. K. Hitzenberger, et al. (1993). "In-Vivo Optical Coherence Tomography." American Journal of Ophthalmology 116(1): 113-115. cited by applicant .
Fercher, A. F., C. K. Hitzenberger, et al. (1994). In-vivo dual-beam optical coherence tomography. Proceedings of SPIE--The International Society for Optical Engineering. cited by applicant .
Fercher, A. F., C. K. Hitzenberger, et al. (1995). "Measurement of Intraocular Distances by Backscattering Spectral Interferometry." Optics Communications 117(1-2): 43-48. cited by applicant .
Fercher, A. F., C. K. Hitzenberger, et al. (2000). "A thermal light source technique for optical coherence tomography." Optics Communications 185(1-3): 57-64. cited by applicant .
Fercher, A. F., C. K. Hitzenberger, et al. (2001). "Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography." Optics Express 9(12): 610-615. cited by applicant .
Fercher, A. F., C. K. Hitzenberger, et al. (2002). "Dispersion compensation for optical coherence tomography depth- scan signals by a numerical technique." Optics Communications 204(1-6): 67-67. cited by applicant .
Fercher, A. F., H. C. Li, et al. (1993). "Slit Lamp Laser-Doppler Interferometer." Lasers in Surgery and Medicine 13(4): 447-452. cited by applicant .
Fercher, A. F., K. Mengedoht, et al. (1988). "Eye-Length Measurement by Interferometry with Partially Coherent-Light." Optics Letters 13(3): 186-188. cited by applicant .
Ferro, P., M. Haelterman, et al. (1991). "All-Optical Polarization Switch with Long Low-Birefringence Fiber." Electronics Letters 27(16): 1407-1408. cited by applicant .
Fetterman, M. R., D. Goswami, et al. (1998). "Ultrafast pulse shaping: amplification and characterization." Optics Express 3(10): 366-375. cited by applicant .
Findl, O., W. Drexler, et al. (2001). "Improved prediction of intraocular lens power using partial coherence interferometry." Journal of Cataract and Refractive Surgery 27 (6): 861-867. cited by applicant .
Fork, R. L., C. H. B. Cruz, et al. (1987). "Compression of Optical Pulse to 6 Femtoseconds by Using Cubic Phase Compensation." Optics Letters 12(7): 483-485. cited by applicant .
Foshini, G. J. and C. D. Poole (1991). "Statistical-Theory of Polarization Dispersion in Single Mode Fibers." Journal of Lightwave Technology 9(11): 1439-1456. cited by applicant .
Francia, C., F. Bruyere, et al. (1998). "PMP second-order effects on pulse propagation in single-mode optical fibers." Ieee Photonics Technology Letters 10(12): 1739-1741. cited by applicant .
Fried, D., R. E. Glena, et al. (1995). "Nature of Light-Scattering in Dental Enamel and Dentin at Visible and near-Infrared Wavelengths." Applied Optics 34(7): 1278-1285. cited by applicant .
Fujimoto. J. G., M. E. Brezinski, et al. et al. (1995). "Optical Biopsy and Imaging Using Optical Coherence Tomography." Nature Medicine 1(9): 970-972. cited by applicant .
Fukasawa, A. and H. Iijima (2002). "Optical coherence tomography of choroidal osteoma." American Journal of Ophthalmology 133(3): 419-21. cited by applicant .
Fymat, A. L. (1981). "High-Resolution Interferometric Spectrophotopolarimetry." Optical Engineering 20(1): 25-30. cited by applicant .
Galtarossa, A., L. Palmieri, et al. (2000). "Statistical characterization of fiber random birefringence." Optics Letters 25(18): 1322-1324. cited by applicant .
Galtarossa, A., L. Palmieri, et al. (2000). "Measurements of beat length and perturbation length in long single-mode fibers." Optics Letters 25(6): 384-386. cited by applicant .
Gandjbakhche, A. H., P. Mills, et al. (1994). "Light-Scattering Technique for the Study of Orientation and Deformation of Red-Blood-Cells in a Concentrated Suspension." Applied Optics 33(6): 1070-1078. cited by applicant .
Garcia, N. and M. Nieto-Vesperinas (2002). "Left-handed materials do not make a perfect lens." Physical Review Letters 88(20). cited by applicant .
Gelikpnov, V. M., G. V. Gelikonov, et al. (1995). "Coherent Optical Tomography of Microscopic Inhomogheneities in Biological Tissue." Jept Letters 61(2): 158-162. cited by applicant .
George, N. and A. Jain (1973). "Speckle Reduction Using Multiple Tones of Illumination." Applied Optics 12(6): 1202-1212. cited by applicant .
Gibson, G. N., R. Klank, et al. (1996). "Electro-optically cavity-dumped ultrashort-pulse Ti:sapphire oscillatro." Optics Letters 21(4): 1055. cited by applicant .
Gil, J. J. (2000). "Characteristic properties of Mueller matrices." Journal of the Optical Society of America a-Optics Image Science and Vision 17(2): 328-334. cited by applicant .
Gil, J. J. and E. Bernabeu (1987). "Obtainment of the Polarizing and Retardation Parameters of Nondepolarizing Optical-System from the Polar Decomposition of Its Mueller Matrix." Optik 76(2): 67-71. cited by applicant .
Gladkova, N. D., G. A. Petrova, et al. (2000). "In vivo optical coherence tomography imaging of human skin: norm and pathology." Skin Research and Technology 6 (1): 6-16. cited by applicant .
Glaessl, A., A. G. Schreyer, et al. (2001). "Laser surgical planning with magnetic resonance imaging-based 3-dimensional reconstructions for intralesional Nd: YAG laser therapy of a venous malformation of the neck." Archives of Dermatology 137(10): 1331-1335. cited by applicant .
Gloesmann, M., B. Hermann, et al. (2003). "Histologic correlation of pig retina radial stratisification with ultrahigh-resolution optical coherence tomography." Investigative Ophthalmology & Visual Science 44(4): 1696-1703. cited by applicant .
Goldberg, L. and D. Mehuys (1994). "High-Power Superluminenscent Diode Source." Electronics Letter 30(20): 1682-1684. cited by applicant .
Goldsmith, J. A., Y. Li, et al. (2005). "Anterior chamber width measurement by high speed optical coherence tomography." Ophthalmology 112(2): 238-244. cited by applicant .
Goldstein, L. E., J. A. Muffat, et al. (2003). "Cytosolic beta-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer's disease." Lancet 361(9365): 1258-1265. cited by applicant .
Golubovic, B., B. E. Bouma, et al. (1996). "Thin crystal, room-temperature Cr/sup 4 +/:forstefite laser near-infrared pumping."0 Optics Letters 21(24): 1993-1995. cited by applicant .
Gonzalez, S. and Z. Tannous (2002). "Real-time, in vivo confocal reflectance microscopy of basal cell carcinoma." Journal of the American Academy of Dermatology 47(6): 869-874. cited by applicant .
Gordon, M. O. and M. A. Kass (1999). "The Ocular Hypertension Treatment Study: design and baseline description of the participants." Archives of Ophthalmology 117(5): 573-83. cited by applicant .
Grayson, T. P., J. R. Torgerson, et al. (1994). "Observation of the Nonlocal Pancharatnam Phase-Shift in the Process of Induced Coherence without Induced Emission." Physical Review A 49(1): 626-628. cited by applicant .
Greaney, M. J., D. C. Hoffman, et al. (2002). "Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma." Investigative Ophthalmology & Visual Science 43(1): 140-5. cited by applicant .
Greenfield, D. S., H. Bagga, et al. (2002). "Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography." Archives of Ophthalmology 121(1): 41-46. cited by applicant .
Greenfield, D. S., R. W. Knighton, et al. (2000). "Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry." America Journal of Ophthalmology 129(6): 715-722. cited by applicant .
Griffin, R. A., D. D. Sampson, et al. (1995). "Coherence Coding for Photonic Code-Division Multiple Networks." Journal of Lightwave Technology 13(9): 1826-1837. cited by applicant .
Guedes, V., J. S. Schuman, et al. (2003). "Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes." Ophthalmology 110(1): 177-189. cited by applicant .
Gueugniaud, P. Y., H. Carsin, et al. (2000). "Current advances in the initial management of major thermal burns. [Reviews] [76 refs]." Intensive Care Medicine 26(7): 848-56. cited by applicant .
Guido, S. and R. T. Tranquillo (1993). "A Methology for the Systematic and Quantitiative Study of Cell Contact Guidance in Oriented Collagen Gels--Correlation of Fibroblast Orientation and Gel Birefringence." Journal of Cell Science 106: 317-331. cited by applicant .
Gurses-Ozden, R., H. Ishikawa, et al. (1999). "Increasing sampling improves reprodicbility of optical coherence tomography measurements." Journal of Glaucoma 8(4): 238-41. cited by applicant .
Guzzi, R. (1998). "Scattering Theory from Homogeneous and Coated Spheres." 1-11. cited by applicant .
Haberland, U. B., Vladimir; Schmitt, Hans J. (1996). "Optical coherent tomography of scattering media using electrically tunable near-infrared semiconductor laser." Applied Optics Draft Copy. cited by applicant .
Haberland, U. R., Walter; Blazek, Vladimir Schmitt, Hans J. (1995). "Investigation of highly scattering media using near-infrared continuous wave tunable semiconductor laser." Proc. SPIE , 2389: 503-512. cited by applicant .
Hale, G. M. and M. R. Querry (1973). "Optical-Constants of Water in 200-Nm to 200-Mum Wavelength Region." Applied Optics 12(3): 555-563. cited by applicant .
Hammer, D. X., R. D. Ferguson, et al. (2002). "Image stabilization for scanning laser ophthalmoscopy." Optics Express 10(26): 1542. cited by applicant .
Hara, T., Y. Ooi, et al. (1989). "Transfer Characteristics of the Microchannel Spatial Light-Modulator." Applied Optics 28(22): 4781-4786. cited by applicant .
Harland, C. C., S. G. Kale, et al. (2000). "Differentiation of common benign pigmented skin lesions from melanoma by high-resolution ultrasound." British Journal of Dermatology 143(2): 281-289. cited by applicant .
Hartl, I. X. D. Li, et al. (2001). "Ultrahigh-resolution optical coherence tomography using continuum generation in air-silica microstructure optical fiber." Optical Letters 26(9): 608-610. cited by applicant .
Hassenstein, A., A. A. Bialasiewicz, et al. (2000). "Optical coherence tomography in uveitis patients." America Journal of Ophthalmology 130(5): 669-70. cited by applicant .
Hattenhauer, M. G., D. H. Johnson, et al. (1998). "The probability of blindness from open-angle glaucoma. [see comments]." Ophthalmology 105(1-1): 2099-104. cited by applicant .
Hausler, G., J. M. Herrmann, et al. (1996). "Observation of light propagation in volume scatters with 10(11)-fold slow motion." Optics Letters 21(14): 1087-1089. cited by applicant .
Hazebroek, H. F. and A. A. Holscher (1973). "Interferometric Ellipsometry." Journal of Physics E-Scientific Instruments 6(9): 822-826. cited by applicant .
Hazebroek, H. F. and W. M. Visser (1983). "Automated Laser Interfeometric Ellipsometry and Precision Reflectometry." Journal of Physics E-Scientific Instruments 16(7): 654-661. cited by applicant .
He, Z. Y., N. Mukohzaka, et al. (1997). "Selective image extraction by synthesis of the coherence function using two-dimensional optical lock-in amplifier with microchannel spatial light modulator." Ieee Photonics Technology Letters 9(4): 514-516. cited by applicant .
Hee, M. R., J. A. Izatt, et al. (1993). "Femtosecond Transillumination Optical Coherence Tomography." Optics Letters 18(12): 950-952. cited by applicant .
Hee, M. R., J. A. Izatt, et al. (1995). "Optical coherence tomography of the human retina." Archives of Ophthalmology 113(3): 325-32. cited by applicant .
Hee, M. R., C. A. Puliafito, et al. (1998). "Tomography of diabetic macular edema with optical coherence tomogrpahy." Ophthalmology 105(2): 360-70. cited by applicant .
Hee, M. R., C. A. Puliafito, et al. (1995). "Quantitative assessment of macular edema with optical coherence tomography." Archives of Ophthalmology 113(8): 1019-29. cited by applicant .
Hellmuth, T. and M. Well (1998). "Simultaneous measurement of dispersion, spectrum, and distance with a fourier transform spectrometer." Journal of Biomedical Optics 3(1): 7-11. cited by applicant .
Hemenger, R. P. (1989). "Birefringence of a medium of tenuous parallel cylinders." Applied Optics 28(18): 4030-4034. cited by applicant .
Henry, M. (1981). "Fresnel-Arago Laws for Interference in Polarized-Light--Demonstration Experiment." American Journal of Physics 49(7): 690-691. cited by applicant .
Herz, P. R., Y. Chen, et al. (2004). "Micromotor endoscope catheter for in vico, ultrahigh-resolution optical coherence tomography." Optics Letters 29(19): 2261-2263. cited by applicant .
Hirakawa, H., H. Iijima, et al. (1999). "Optical coherence tomography of cystoid masular edema associated with retinitis pigmentosa." American Journal of Ophthalmology 128(2): 185-91. cited by applicant .
Hitzenberger, C. K., A. Baumgartner, et al. (1994). "Interferometric Measurement of Corneal Thickness with Micrometer Precision." American Journal of Ophthalmology 118(4): 468-476. cited by applicant .
Hitzenberger, C. K., A. Baumgartner, et al. (1990). "Dispersion effects in partial coherence inferometry: Implications for intraocular ranging." Journal of Biomedical Optics 4(1): 144-151. cited by applicant .
Hitzenberger, C. K., A. Baumgartner, et al. (1998). "Dispersion induced multiple signal peak splitting in partial coherence interferometry." Optics Communications 154 (4): 179-185. cited by applicant .
Hitzenberger, C. K., M. Danner, et al. (1999). "Measurement of the spatial coherence of superluminescent diodes." Journal of Modern Optics 46(12): 1763-1774. cited by applicant .
Hitzenberger, C. K. and A. F. Fercher (1999). "Differential phase contrast in optical coherence tomography." Optics Letters 24(9): 622-624. cited by applicant .
Hitzenberger, C. K., M. Sticker, et al. (2001). "Differential phase measurements in low-coherence interferometry without 2 pi ambiguity." Optics Letters 26(23): 1864-1866. cited by applicant .
Hoeling, B. M., A. D. Fernandez, et al. (2000). "An optical coherence microscope for 3-dimensional imaging in developmental biology." Optics Express 6(7): 136-146. cited by applicant .
Hoerauf, H., C. Scholz, et al. (2002). "Transscleral optical coherence tomography: a new imaging method for the anterior segment of the eye." Archives of Ophthalmology 120(6): 816-9. cited by applicant .
Hoffmann, K., M. Happe, et al. (1998). "Optical coherence tomography (OCT) in dermatology." Journal of Investigative Dermatology 110(4): 583-583. cited by applicant .
Hoh, S. T., D. S. Greenfield, et al. (2000). "Optical coherence tomography and scanning laser polarimetry in normal, ocular hypertensive, and glaucomatous eyes." American Journal of Ophthalmology 129(2): 129-35. cited by applicant .
Hohenleutner, U., M. Hilbet, et al. (1995). "Epidermal Damage and Limited Coagulation Depth with the Flashlamp-Pumped Pulsed Dye-Laser--a Histochemical-Study." Journal of Investigative Dermatology 104(5): 798-802. cited by applicant .
Holland, A. J. A., H. C. O. Martin, et al. (2002). "Laser Doppler imaging prediction of burn wound outcome in children." Burns 28(1): 11-17. cited by applicant .
Hotake, K, and T. Okugawa (1994). "Optical Information-Processing by Synthesis of the Coherence Function." Journal of Lightwave Technology 12(7): 1247-1255. cited by applicant .
Hourdakis, C. J. and A. Perris (1995). "Monte-Carlo Estimation of Tissue Optical-Properties for Use in Laser Dosimetry." Physics in Medicine and Biology 40(3): 351-364. cited by applicant .
Hu, Z., F. Li, et al. (2000). "Wavelength-tunable narrow-linewidth semiconductor fiber-ring laser." IEEE Photonics Technology Letters 12(8): 977-979. cited by applicant .
Huang, F., W. Yang, et al. (2001). "Quadrature spectral interferometric detection and pulse shaping." Optics Letters 26(6): 382-384. cited by applicant .
Huang, X. R. and R. W. Knighton (2002). "Linear birefringence of the retinal fiber layer measured in vitro with a multispectral imaging micropolarimeter." Journal of Biomedical Optics 7(2): 199-204. cited by applicant .
Huber, R., M. Wojtkowski, et al. (2005). "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles." Optics Express 13(9): 3513-3528. cited by applicant .
Hunter, D. G., J. C. Sandruck, et al. (1999). "Mathematical modeling of retinal birefringence scanning." Journal of the Optical Society of America a-Optics Image Science and Vision 16(9): 2103-2111. cited by applicant .
Hurwitz, H. H. and R. C. Jones (1941). "A new calculus for the treatment of optical systems II. Proof of the general equivalence theorems." Journal of the Optical Society of America 31(7): 493-499. cited by applicant .
Huttner, B., C. De Barros, et al. (1999). "Polarization-induced pulse spreading in birefringent optical fibers with zero differential group delay." Optics Letters 24(6): 370-372. cited by applicant .
Huttner, B., B. Gisin, et al. (1999). "Distributed PMD measurement with a polarization-OTDR in optical fibers." Journal of Lightwave Technology 17(10): 1843-1848. cited by applicant .
Huttner, B., J. Reecht, et al. (1998). "Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry." Ieee Photonics Technology Letters 10(10): 1458-1460. cited by applicant .
Hyde, S. C. W., N. P. Barry, et al. (1995). "Sub-100-Mu-M Depth-Resolved Holographic Imaging through Scattering Media in the near-Infrared." Optics Letters 20(22): 2330-2332. cited by applicant .
Hyde, S. C. W., N. P. Barry, et al. (1995). "Depth-Resolved Holographic Imaging through Scattering Media by Photorefraction." Optics Letters 20(11): 1331-1333. cited by applicant .
Iftimia, N. V., B. E. Bouma, et al. (2004). "Adaptive ranging for optical coherence tomography." Optics Express 12(17): 4025-4034. cited by applicant .
Iida, T., N. Hagimura, et al. (2000). "Evaluation of central serous chorioretinopathy with optical coherence tomography." American Journal of Ophthalmology 129(1): 16-20. cited by applicant .
Imai, M., H. Iijima, et al. (2001). "Optical coherence tomography of tractional macular elevations in eyes with proliferative diabetic retinopathy, [republished in Am J Opthalmol. Sep. 2001; 132(3):458-61 ; 11530091.]." American Journal of Ophthalmology 132(1): 81-4. cited by applicant .
Indebetouw, G. and P. Klysubun (2000). "Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital halography." Optics Letters 25(4): 212-214. cited by applicant .
Ip, M. S., B. J. Baker, et al. (2002). "Anatomical outcomes of surgery for idiopathic macular hole as determined by optical coherence tomography." Archives of Ophthalmology 120(1): 29-35. cited by applicant .
Ismail, R., V. Tanner, et al. (2002). "Optical coherence tomography imaging of severe commotio retinae and associated macular hole." British Journal of Ophthalmology 86(4): 473-4. cited by applicant .
Izatt, J. A., M. R. Hee, et al. (1994). "Optical Coherence Microscopy in Scattering Media." Optics Letters 19(8): 590-592. cited by applicant .
Izatt, J. A., M. R. Hee, et al. (1994). "Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography." Archives of Ophthalmology 112 (12): 1584-9. cited by applicant .
Izatt, J. A., M. D. Kulkami, et al. (1997). "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography." Optics Letters 22(18): 1439-1441. cited by applicant .
Izatt, J. A., M. D. Kulkarni, et al. (1996). "Optical coherence tomography and microscopy in gastrointestinal tissues." IEEE Journal of Selected Topics in Quantum Electronics 2(4): 1017. cited by applicant .
Jacques, S. L., J. S. Nelson, et al. (1993). "Pulsed Photothermal Radiometry of Port-Wine-Stain Lesions." Applied Optics 32(13): 2439-2446. cited by applicant .
Jacques, S. L., J. R. Roman, et al. (2000). "Imaging superficial tissues with polarizedlight." Lasers in Surgery and Medicine 26(2): 119-129. cited by applicant .
Jang, I. K., B. E. Bouma, et al. (2002). "Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound." Journal of the American College of Cardiology 39(4): 604-609. cited by applicant .
Jang, I. K., B. D. MacNeill, et al. (2002). "In-vivo characterization of coronary plaques in patients with ST elevation acute myocardial infarction using optical coherence tomography (OCT)." Circulation 106(19): 698-698 3440 Suppl. S,. cited by applicant .
Jang, I. K., G. J. Tearney, et al. (2000). "Comparison of optical coherence tomography and intravascular ultrasound for detection of coronary plaques with large lipid-core in living patients." Circulation 102(18): 509-509. cited by applicant .
Jeng, J. C., A. Bridgeman, et al. (2003). "Laser Doppler imaging determines need for excision and grafting in advance of clinical judgment: a prospective blinded trail." Burns 29(7): 665-670. cited by applicant .
Jesser, C. A., S. A. Boppart, et al. (1999). "High resolution imaging of transitional cell carcinoma with optical coherence tomography: feasibility for the evaluation of bladder pathology." British Journal of Radiology 72: 1170-1176. cited by applicant .
Johnson, C. A., J. L. Keltner, et al. (2002). "Baseline visual field characteristics in the ocular hypertension treatment study." Ophthalmology 109(3): 432-7. cited by applicant .
Jones, R. C. (1941). "A new calculus for the treatment of the optical systems III. The Sohncke theory of optical activity." Journal of the Optical Society of America 31 (7): 500-503. cited by applicant .
Jones, R. C. (1941). "A new calculus for the treatment of optical systems I. Description and discussion of the calculus." Journal of the Optical Society of America 31(7): 488-493. cited by applicant .
Jones, R. C. (1942). "A new calculus for the treatment of optical systems. IV." Journal of the Optical Society of America 32(8): 486-493. cited by applicant .
Jones, R. C. (1947). "A New Calculus for the Treatment of Optical Systems .6. Experimental Determination of the Matrix." Journal of the Optical Society of America 37(2): 110-112. cited by applicant .
Jones, R. C. (1947). "A New Calculus for the Treatment of Optical Systems .5. A More General Formulation, and Description of Another Calculus." Journal of the Optical Society of America 37(2): 107-110. cited by applicant .
Jones, R. C. (1948). "A New Calculus for the Treatment of Optical Systems .7. Properties of the N-Matrices." Journal of the Optical Society of America 38(8): 671-685. cited by applicant .
Jones, R. C. (1956). "New Calculus for the Treatment of Optical Systems .8. Electromagnetic Theory." Journal of the Optical Society of America 46(2): 126-131. cited by applicant .
Jopson, R. M., L. E. Nelson, et al. (1999). "Measurement of second-order polarization-mode dispersion vectors in optical fibers." Ieee Photonics Technology Letters 11 (9): 1153-1155. cited by applicant .
Jost, B. M., A. V. Sergienko, et al. (1998). "Spatial correlations of spontaneous down-converted photon pairs detected with a single-photon-sensitive CCD camera." Optics Express 3(2): 81-88. cited by applicant .
Kaplan, B., E. Compain, et al. (2000). "Phase-modulated Mueller ellipsometry characterization of scattering of latex sphere suspensions." Applied Optics 39 (4): 629-636. cited by applicant .
Kass, M. A., D. K. Heuer, et al. (2002). "The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma." Archives of Ophthalmology 120(6): 701-13; discussion 829-30. cited by applicant .
Kasuga, Y. Y. Arai, et al. (2000). "Optical coherence tomography to confirm early closure of macular holes." American Journal of Ophthalmology 130(5): 675-6. cited by applicant .
Kaufman, T., S. N. Lusthaus, et al. (1990). "Deep Partial Skin Thickness Burns--a Reproducible Animal-Model to Study Burn Wound-Healing." Burns 16(1): 13-16. cited by applicant .
Kemp, N. J., J. Park, et al. (2005). "High-sensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography." Journal of the Optical Society of America a-Optics Image Science and Vision 22(3): 552-560. cited by applicant .
Kerrigan-Baumrind, L. A. H. A. Quigley, et al. (2000). "Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons." Investigative Ophthalmology & Visual Science 41(3): 741-8. cited by applicant .
Kesen, M. R., G. L. Spaeth, et al. (2002). "The Heidelberg Retina Tomograph vs clinical impression in the diagnosis of glaucoma." American Journal of Ophthalmology 133(5): 613-6. cited by applicant .
Kienle, A., and R. Hibst (1995). "A New Optimal Wavelength for Treatment of Port-Wine Stains." Physics in Medicine and Biology 40(10): 1559-1576. cited by applicant .
Kienle, A., L. Lilge, et al. (1996). "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue." Applied Optics 35(13): 2304-2314. cited by applicant .
Kim, B. Y. and S. S. Choi (1981). "Analysis and Measurement of Birefringence in Single-Mode Fibers Using the Backscattering Method." Optics Letters 6(11): 578-580. cited by applicant .
Kimel, S., L. O. Svaasand et al. (1994). "Differential Vascular-Response to Laser Photothermolysis." Journal of Investigative Dermatology 103(5): 693-700. cited by applicant .
Kloppemberg, F. W. H., G. Beerthuizen, et al. (2001). "Perfusion of burn wounds assessed by Laser Doppler Imaging is related to burn depth an healing time." Burns 27(4): 359-363. cited by applicant .
Knighton, R. W. and X. R. Huang (2002). "Analytical methods for scanning laser polarimetry." Optics Express 10(21): 1179-1189. cited by applicant .
Knighton, R. W., X. R. Huang, et al. (2002). "Analytical mode of scanning laser polarimetry for retinal nerve fiber layer assessment." Investigative Ophthalmology & Visual Science 43(2): 383-392. cited by applicant .
Knuettel, A. R. S., Joseph M.: Shay, M.; Knutson, Jay R. (1994). "Stationary low-coherence light imaging and spectroscopy using a CCD camera." Proc. SPIE, vol. 2135: p. 239-250. cited by applicant .
Knuttel, A. and M. Boehlau-Godau (2000). "Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography." Journal of Biomedical Optics 5(1): 83-92. cited by applicant .
Knuttel, A. and J. M. Schmitt (1993). "Stationary Depth-Profiling Reflectometer Based on Low-Coherence Interferometry." Optics Communications 102(3-4): 193-198. cited by applicant .
Knuttel, A., J. M. Schmitt, et al. (1994). "Low-Coherence Reflectometry for Stationary Lateral and Depth Profiling with Acoustoopic Deflectors and a Ccd Camera." Optics Letters 19(4): 302-304. cited by applicant .
Kobayashi, M., H. Hanafusa, et al. (1991). "Polarization-Independent Interferometric Optical-Time-Domain Reflectometer." Journal of Lightwave Technology 9(5): 623-628. cited by applicant .
Kolios, M. C., M. D. Sherar, et al. (1995). "Large Blood-Vessel Cooling in Heated Tissues--a Numerical Study." Physics in Medicine and Biology 40(4): 477-494. cited by applicant .
Koozekanani, D., K. Boyer, et al. (2001). "Retinal thickness measurements from optical coherence tomography using a Markov boundary model." Ieee Transactions on Medical Imaging 20(9): 900-916. cited by applicant .
Kop, R. H. J. and R. Sprik (1995). "Phase-sensitive Interferometry with ultrashort optical pulses." Review of Scientific Instruments 66(12): 5459-5463. cited by applicant .
Kramer, R. Z., J. Bella, et al. (1999). "Sequence dependent conformational variations of collagen triple-helical structure." Nature Structural Biology 6(5): 454-7. cited by applicant .
Kulkarni, M. D., T. G. van Leeuwen, et al. (1998). "Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography." Optics Letters 23(13): 1057-1059. cited by applicant .
Kwon, Y. H., C. S. Kim, et al. (2001). "Rate of visual field loss and long-term visual outcome in primary open-angle glaucoma." American Journal of Ophthalmology 132(1): 47-56. cited by applicant .
Kwong, K. F., D. Yankelevich, et al. (1993). "400-Hz Mechanical Scanning Optical Delay-Line." Optics Letters 18(7): 558-560. cited by applicant .
Landers, J., I. Goldberg, et al. (2002). "Analysis of risk factors that may be associated with progression from ocular hypertension to primary open angle glaucoma." Clin Experiment Ophthalmology 30(4): 242-7. cited by applicant .
Laszlo, A. and A. Venetianer (1998). Heat resistance in mammalian cells: Lessons and challenges. Stress of Life. 851: 169-178. cited by applicant .
Laszlo, A. and Venetianer (1998). "Heat resistance in mammalian cells: lesson and challenges. [Review] [52 refs]." Annals of the New York Academy of Sciences 851: 169-78. cited by applicant .
Laufer, J., R. Simpson, et al. (1998). "Effect of temperature on the optical properties of ex vivo human dermis and subdermis." Physics in Medicine and Biology 43(9): 2479-2489. cited by applicant .
Lederer, D. E., J. S. Shuman, et al. (2003). "Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography." American Journal of Ophthalmology 135(6): 838-843. cited by applicant .
Lee, P. P., Z. W. Feldman, et al. (2003). "Longitudinal prevalence of major eye diseases." Archives of Ophthalmology 121(9): 1303-1310. cited by applicant .
Lehrer, M. S., T. T. Sun, et al. (1998)."Strategies of opithelial repair: modulation of stem cell and transit amplifying cell proliferation." Journal of Cell Science 111(Pt 19): 2867-75. cited by applicant .
Leibowitz, H. M., D. E. Krueger, et al. (1980). "The Framingham Eye Study monograph: An ophthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973-1975." Survey of Ophthalmology 24(Suppl): 335-610. cited by applicant .
Leitgeb, R., C. K. Hitzenberger, et al. (2003). "Performance of fourier domain vs. time domain optical coherence tomography." Optics Express 11(8): 889-894. cited by applicant .
Leitgeb, R., L. F. Schmetterer, et al. (2002). "Flow velocity measurements by frequency domain short coherence interferometry." Proc. SPIE 4619: 16-21. cited by applicant .
Leitgeb, R. A., W. Drexler, et al. (2004). "Ultrahigh resolution Fourier domain optical coherence tomography." Optics Express 12(10): 2156-2165. cited by applicant .
Leitgeb, R. A., C. K. Hitzenberger, et al. (2003). "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography." Optics Letters 28(22): 2201-2203. cited by applicant .
Leitgeb, R. A., L. Schmetterer, et al. (2003). "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography." Optics Express 11(23): 3116-3121. cited by applicant .
Leitgeb, R. A., L. Schmetterer, et al. (2004). "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography." Optics Letters 29 (2): 171-173. cited by applicant .
LeRoyBrehonnet, F. and B. LeJeune (1997). "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties." Progress in Quantum Electronics 21(2): 109-151. cited by applicant .
Leske, M. C., A. M. Connell, et al. (1995). "Risk factors for open-angle glaucoma. The Barbados Eye Study. [see comments]." Archives of Ophthalmology 113(7): 918-24. cited by applicant .
Leske, M. C., A. M. Connell, et al. (2001). "Incidence of open-angle glaucoma: the Barbados Eye Studies. The Barbados Eye Studies Group. [see comments]." Archives Ophthalmology 119(1): 89-95. cited by applicant .
Leske, M. C., A. Heijl, et al. (1999). "Early Manifest Glaucoma Trial. Design and Baseline Data." Ophthalmology 106(11): 2144-2153. cited by applicant .
Lewis, S. E., J. R. DeBoer, et al. (2005). "Sensitive, selective, and analytical improvements to a porous silicon gas sensor." Sensors and Actuators B: Chemical 110(1): 54-65. cited by applicant .
Lexer, F., C. K. Hitzenberger, et al. (1999). "Dynamic coherent focus OCT with depth-independent transversal resolution." Journal of Modern Optics 46(3): 541-553. cited by applicant .
Li, X., C. Chudoba, et al. (2000). "Imaging needle for optical coherence tomography." Optics Letters 25: 1520-1522. cited by applicant .
Li, X., T. H. Ko, et al. (2001). "Intraluminal fiber-optic Doppler imaging catheter for structural and functional optical coherence tomography." Optics Letters 26: 1906-1908. cited by applicant .
Liddington, M. I. and P. G. Shakespeare (1996). "Timing of the thermographic assessment of burns." Burns 22(1): 26-8. cited by applicant .
Lindmo, T., D. J. Smithies, et al. (1998). "Accuracy and noise in optical Doppler tomography studied by Monte Carlo simulation." Physics in Medicine and Biology 43(10): 3045-3064. cited by applicant .
Liu, J., X. Chen, et al. (1999). "New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating." IEEE Transactions on Biomedical Engineering 46(4): 420-8. cited by applicant .
Luke, D. G., R. McBride, et al. (1995). "Polarization mode dispersion minimization in fiber-wound piezoeletric cylinders." Optics Letters 20(24): 2550-2552. cited by applicant .
MacNiell, B. D., I. K. Jang, et al. (2004). "Focal and multi-focal plaque distributions in patients with macrophage acute and stable presentations of coronary artery disease." Journal of the American College of Cardiology 44(5): 972-979. cited by applicant .
Mahgerefteh, D. and C. R. Menyuk (1999). "Effect of first-order PMD compensation on the statistics of pulse broadening in a fiber with randomly varying birefringence." Ieee Photonics Technology Letters 11(3): 340-342. cited by applicant .
Maitland, D. J. and J. T. Walsh, Jr. (1997). "Quantitative measurements of linear birefringence during heating of native collagen." Lasers in Surgery & Medicine 20 (3): 310-8. cited by applicant .
Majaron, B., S. M. Srinivas, et al. (2000). "Deep coagulation of dermal collagen with repetitive Er: YAG laser irradation." Lasers in Surgery and Medicine 26(2): 215-222. cited by applicant .
Mansuripur, M. (1991). "Effects of High-Numerical-Aperture Focusing on the State of Polarization in Optical and Magnetoopic Data Storage Systems." Applied Optics 30(22): 3154-3162. cited by applicant .
Marshall, G. W., S. J. Marshall, et al. (1997). "The dentin substrate: structure and properties related to bonding." Journal of Dentistry 25(6): 441-458. cited by applicant .
Martin, P. (1997). "Wound healing--Aiming for perfect skin regeneration." Science 276 (5309): 75-81. cited by applicant .
Martinez, O. E. (1987). "3000 Times Grating Compressor with Positive Group-Velocity Dispersion--Application to Fiber Compensation in 1.3-1.6 Mu-M region." Ieee Journal of Quantum Electronics 23(1): 59-64. cited by applicant .
Martinez, O. E., J. P. Gordon, et al. (1984). "Negative Group-Velocity Dispersion Using Refraction." Journal of the Optical Society of America a-Optics Image Science and Vision 1(10): 1003-1006. cited by applicant .
McKinney, J. D., M. A. Webster, et al. (2000). "Characterization and imaging in optically scattering media by use of laser speckle and a variable-coherence source." Optics Letters 25(1): 4-6. cited by applicant .
Miglior, A., M. Casula, et al. (2001). "Clinical ability of Heidelberg retinal tomograph examination to detect glaucomatous visual field changes." Ophthalmology 108 (9): 1621-7. cited by applicant .
Milner, T. E., D. M. Goodman, et al. (1996). "Imaging laser heated subsurface chromophores in biological materials: Determination of lateral physical dimensions." Physics in Medicine in Biology 41(1): 31-44. cited by applicant .
Milner, T. E., D. M. Goodman, et al. (1995). "Depth Profiling of Laser-Heated Chromophores in Biological Tissues by Pulsed Photothermal Radiometry." Journal of the Optical Society of America a-Optics Image Science and Vision 12 (7): 1479-1488. cited by applicant .
Milner, T. E., D. J. Smithies, et al. (1996). "Depth determination of chromophores in human skin by pulsed photothermal radiometry." Applied Optics 35(19): 3379-3385. cited by applicant .
Mishchenko. M. I. and J. W. Hovenier (1995). "Depolarization of Light Backscattered by Randomly Oriented Nonspherical Particles." Optics Letters 20(12): 1356-&. cited by applicant .
Mistlberger, A., J. M. Liebermann, et al. (1999). "Heidelberg retinal tomography and optical coherence tomography in normal, ocular-hypertensive, and glaucomatous eyes." Ophthalmology 106(10): 2027-32. cited by applicant .
Mitsui, T. (1999). "High-speed detection of ballistic photons propatating through suspensions using spectral interferometry." Japanese Journal of Applied Physics Part 1--Regular Papers Short Notes & review Papers 38(5A): 2978-2982. cited by applicant .
Molteno, A. C., N. J. Bosma, et al. (1999). "Otago glaucoma surgery outcome study: long-term results of trabeculectomy--1976 to 1995." Ophthalmology 106(9): 1742-50. cited by applicant .
Morgener, U., W. Drexler, et al. (2000). "Spectroscopic optical coherence tomography." Optics Letters 25(2): 111-113. cited by applicant .
Morgener, U., F. X. Kartner, et al. (1999) . "Sub-two-cycle pulses from a Kerr-lens mode-locked Ti : sapphire laser (vol. 24, p. 411, 1999)." Optics Letters 24(13): 920-920. cited by applicant .
Mourant, J. R., A. H. Hielscher, et al. (1998). "Evidence of intrinsic differences in the light scattering properties of tumorigenic and nontumorigenic cells." Cancer Cytopathology 84(6): 366-374. cited by applicant .
Muller, M., J. Squier, et al. (1998). "Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives." Journal of Microscopy-Oxford 191: 141-150. cited by applicant .
Muscat, S., N. McKay, et al. (2002). "Repeatability and reproducibility of corneal thickness measurements by optical coherence tomography." Investigative Ophthalmology & Visual Science 43(6): 1971-5. cited by applicant .
Musch, D. C., P. R. Lichter, et al. (1999). "The Collaborative Initial Glaucoma Treatment Study. Study Design, Methods, and Baseline Characteristics of Enrolled Patients." Ophthalmology 106: 653-662. cited by applicant .
Neerken, S., Lucassen, G. W., Bisschop, M.A., Lenderink, E., Nuijs, T.A.M. (2004). "Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography." Journal of Biomedical Optics 9(2): 274-281. cited by applicant .
Nelson, J. S., K. M. Kelly, et al. (2001). "Imaging blood flow in human port-wine stain in situ and in real time using optical Doppler tomography." Archives in Dermatology 137(6): 741-744. cited by applicant .
Newson T. P., F. Farashi, et al. (1988). "Combined Interferometric and Polarimetric Fiber Optic Temperature Sensor with a Short Coherence Length Source." Optics Communications 68(3): 161-165. cited by applicant .
November, L. J. (1993). "Recovery of the Matrix Operators in the Similarity and Congruency Transformations--Applications in Polarimetry." Journal of the Optical Society of America a-Optics Image Science and Vision 10(4): 719-739. cited by applicant .
Oh, W. Y., S. H. Yun, et al. (2005). "Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers." Ieee Photonics Technology Letters 17(3): 678-680. cited by applicant .
Oka, K. and T. Kato (1999). "Spectroscopic polarimetry with a channeled spectrum." Optics Letters 24(21): 1475-1477. cited by applicant .
Okugawa, T. and K. Rotate (1996). "Real-time optical image processing by synthesis of the coherence function using real-time holography." Ieee Photonics Technology Letters 8(2): 257-259. cited by applicant .
Oshima, M., R. Torii, et al. (2001). "Finite element simulation of blood flow in the cerebral artery." Computer Methods in Applied Mechanics and Engineering 191 (6-7): 661-671. cited by applicant .
Pan, Y. T., H. K. Xie, et al. (2001). "Endoscopic optical coherence tomography based on a microelectromechanical mirror." Optics Letters 26(24): 1966-1968. cited by applicant .
Parisi, V., G. Manni, et al. (2001). "Correlation between optical coherence tomography, pattern electroretinogram, and visual evoked potentials in open-angle glaucoma patients." Ophthalmology 108(5): 905-12. cited by applicant .
Park, B. H., M. C. Pierce, et al. (2005). "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 mu m." Optics Express 13(11): 3931-3944. cited by applicant .
Park, D. H., J. W. Hwang, et al. (1998). "Use of laser Doppler flowmetry for estimation of the depth of burn." Plastic and Reconstructive Surgery 101(6): 1516-1523. cited by applicant .
Pendry, J. B., A. J. Holden, et al. (1999). "Magnetism from conductors and enhanced nonlinear phenomena." Ieee Transactions on Microwave Theory and Techniques 47(11): 2075-2084. cited by applicant .
Penninckx, D. and V. Morenas (1999). "Jones matrix of polarization mode dispersion." Optics Letters 24(13): 875-877. cited by applicant .
Pierce, M. C., M. Shishkov, et al. (2005). "Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography." Optics Express 13(15): 5739-5749. cited by applicant .
Pircher, M., E. Gotzinger, et al. (2003). "Measurement and imaging of water concentration in human cornea with differential absorption optical coherence tomography." Optics Express 11(18): 2190-2197. cited by applicant .
Pircher, M., E. Gotzinger, et al. (2003). "Speckle reduction in optical coherence tomography by frequency compounding." Journal of Biomedical Optics 8(3): 565-569. cited by applicant .
Podoleanu, A. G., G. M. Dobre, et al. (1998). "En-face coherence imaging using galvanometer scanner modulation." Optics Letters 23(3): 147-149. cited by applicant .
Podoleanu, A. G. and D. A. Jackson (1999). "Noise analysis of a combined optical coherence tomograph and confocal scanning ophthalmoscope." Applied Optics 38(10): 2116-2127. cited by applicant .
Podoleanu, A. G., J. A. Rogers, et al. (2000). "Three dimensional OCT images from retina and skin." Optics Express 7(9): 292-298. cited by applicant .
Podoleanu, A. G., M. Seeger, et al. (1998). "Transversal and longitudinal images from the retina of the living eye using low coherence reflectomtry."Journal of Biomedical Optics 3(1): 12-20. cited by applicant .
Poole, C. D. (1988). "Statistical Treatment of Polarization Dispersion in Single-Mode Fiber." Optics Letters 13(8): 687-689. cited by applicant .
Povazay, B., K. Bizheva, et al. (2002). "Submicrometer axial resolution optical coherence tomography." Optics Letters 27(20): 1800-1802. cited by applicant .
Qi, B., A. P. Himmer, et al. (2004). "Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror." Optics Communications 232(1-6): 123-128. cited by applicant .
Radhakrishnan, S., A. M. Rollins, et al. (2001). "Real-time optical coherence tomography of the anterior segment at 1310 nm." Archives of Ophthalmology 119(8): 1179-1185. cited by applicant .
Rogers, A. J. (1981). "Polarization-Optical Time Domain Reflectometry--a Technique for the Measurement of Field Distributions." Applied Optics 20(6): 1060-1074. cited by applicant .
Rollins, A. M. and J. A. Izatt (1999). "Optimal interferometer designs for optical coherence tomography." Optics Letters 24(21): 1484-1486. cited by applicant .
Rollins, A. M., R. Ung-arunyawee, et al. (1999). "Real-time in vivo imaging in human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design." Optics Letters 24(19): 1358-1360. cited by applicant .
Rollins, A. M., S. Yazdanfar, et al. (2002). "Real-time in vivo colors Doppler optical coherence tomography." Journal of Biomedical Optics 7(1): 123-129. cited by applicant .
Rolllins, A. M., S. Yazdanfar, et al. (2000). "Imaging of human retinal hemodynamics using color Doppler optical coherence tomography." Investigative Ophthalmology & Visual Science 41(4): S548-S548. cited by applicant .
Sandoz, P. (1997). "Wavelet transform as a processing tool in white-light interferometry." Optics Letters 22(14): 1065-1067. cited by applicant .
Sankaran, V., M. J. Everett, et al. (1999). "Comparison of polarized-light propagation in biological tissue and phantoms." Optics Letters 24(15): 1044-1046. cited by applicant .
Sankaran, V., J. T. Walsh, et al. (2000). "Polarized light propagation through tissue phantom, ehms containing densely packed scatterers." Optics Letters 25(4): 239-241. cited by applicant .
Sarunic, M. V., M. A. Choma, et al. (2005). "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3.times.3 couplers." Optics Express 13(3): 957-967. cited by applicant .
Sathyam, U. S., B. W. Colston, et al. (1999). "Evaluation of optical coherence tomography quantitation of analytes in turbid media by use of two wavelengths." Applied Optics 38(10): 2097-2104. cited by applicant .
Schmitt, J. M. (1997). "Array detection for speckle reduction in optical coherence microscopy." Physics in Medicine and Biology 42(7): 1427-1439. cited by applicant .
Schmitt, J. M. (1999). "Optical coherence tomography (OCT): A review." Ieee Journal of Selected Topics in Quantum Electronics 5(4): 1205-1215. cited by applicant .
Schmitt, J. M. and A. Knuttel (1997). "Model of optical coherence tomography of heterogeneous tissue." Journal of the Optical Society of America a-Optics Image Science and Vision 14(6): 1231-1242. cited by applicant .
Schmitt, J. M., S. L. Lee, et al. (1997). "An optical coherence microscope with enhanced resolving power in thick tissue." Optics Communications 142(4-6): 203-207. cited by applicant .
Schmitt, J. M., S. H. Xiang, et al. (1998). "Differential absorption with optical coherence tomography." Journal of the Optical Society of America a-Optics Image Science and Vision 15(9): 2288-2296. cited by applicant .
Schmitt, J. M., S. H. Xiang, et al. (1999). "Speckle in optical coherence tomography." Journal of Biomedical Optics 4(1): 95-105. cited by applicant .
Schmitt, J. M., M. J. Yadlowsky, et al. (1995). "Subsurface Imaging of Living Skin with Optical Coherence Microscopy." Dermatology 191(2): 93-98. cited by applicant .
Shi, H., J. Finlay, et al. (1997). "Multiwavelength 10-GHz picosecond pulse generation from a single-stripe semiconductor diode laser." Ieee Photonics Technology Letters 9(11): 1439-1441. cited by applicant .
Shi. H., I. Nitta, et al. (1999). "Demonstration of phase correlation in multiwavelength mode-locked semiconductor diode lasers." Optics Letters 24(4): 238-240. cited by applicant .
Simon, R. (1982). "The Connection between Mueller and Jones Matrices of Polarization Optics." Optics Communications 42(5): 293-297. cited by applicant .
Smithies, D. J., T. Lindmo, et al. (1998). "Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation." Physics in Medicine and Biology 43(10): 3025-3044. cited by applicant .
Sorin, W. V., and D. F. Gray (1992). "Simultaneous Thickness and Group Index Measurement Using Optical Low-Coherence Reflectometry." Ieee Photonics Technology Letters 4(1): 105-107. cited by applicant .
Sticker, M., C. K. Hitzenberger, et al. (2001). "Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography." Optics Letters 26(8): 518-520. cited by applicant .
Sticker, M., M. Pircher, et al. (2002). "En face imaging of single cell layers by differential phase-contrast optical coherence microscopy." Optics Letters 27(13): 1126-1128. cited by applicant .
Stoller, P., B. B. M. Kim, et al. (2002). "Polarization-dependent optical second-harmonic imaging of a rat-tail tendon." Journal of Biomedical Optics 7(2): 205-214. cited by applicant .
Sun, C. S. (2003). "Multiplexing of fiber-optic acoustic sensors in Michelson interferometer configuration." Optics Letters 28(12): 1001-1003. cited by applicant .
Swanson, E. A., J. A. Izatt, et al. (1993). "In-Vivo Retinal Imaging by Optical Coherence Tomography." Optics Letters 18(21): 1864-1866. cited by applicant .
Takada, K., A. Himeno, et al. (1991). "Phase-Noise and Shot-Noise Limited Operations of Low Coherence Optical-Time Domain Reflectometry." Applied Physics Letters 59(20): 2483-2485. cited by applicant .
Takenaka, H. (1973). "Unified Formalism for Polarization Optics by Using Group-Theory I (Theory)," Japanese Journal of Applied Physics 12(2): 266-231. cited by applicant .
Tanno, N., T. Ichimura, et al. (1994). "Optical Multimode Frequency-Domain Reflectometer." Optics Letters 19(8): 587-589. cited by applicant .
Tan-no, T. Ichumura, et al. (1994). "Optical Multitude Frequency-Domain Reflectometer." Optics Letters 19(8): 587-589. cited by applicant .
Targowski, P., M. Wojtkowski, et al. (2004). "Complex spectral OCT in human eye imaging in vivo." Optics Communications 229(1-6): 79-84. cited by applicant .
Tearney, G. J., S. A. Boppart, et al. (1996). "Scanning single-mode fiber optic catheter- endoscope for optical coherence tomography (vol. 21, p. 543, 1996)." Optics Letters 21(12): 912-912. cited by applicant .
Tearney, G. J., B. E. Bouma, et al. (1996). "Rapid acquisition of in vivo biological images by use of optical coherence tomography." Optics Letters 21(17): 1408-1410. cited by applicant .
Tearney, G. J., B. E. Bouma, et al. (1997). "In vivo endoscopic optical biopsy with optical coherence tomography." Science 276(5321): 2037-2039. cited by applicant .
Tearney, G. J., M. E. Brezinski, et al. (1996). "Catheter-based optical imaging of a human coronary artery." Circulation 94(11): 3013-3013. cited by applicant .
Tearney, G. J., M. E. Brezinski, et al. (1997). "In vivo endoscopic optical biopsy with optical coherence tomography." Science 276(5321): 2037-9. cited by applicant .
Tearney, G. J., M. E. Brezinski, et al. (1997). "Optical biopsy in human gastrointestinal tissue using optical coherence tomography." American Journal of Gastroenterology 92(10): 1800-1804. cited by applicant .
Tearney, G. J., M. E. Brezinski, et al. (1995). "Determination of the refractive index of highly scattering human tissue by optical coherence tomography." Optics Letters 20(21): 2258-2260. cited by applicant .
Tearney, G. J., I. K. Jang, et al. (2000). "Porcine coronary imaging in vivo by optical coherence tomography." Acta Cardiologica 55(4): 233-237. cited by applicant .
Tearney, G. J., R. H. Webb, et al. (1998). "Spectrally encoded confocal microscopy." Optics Letters 23(15): 1152-1154. cited by applicant .
Tearney, G. J., H. Yabushita, et al. (2003). "Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography." Circulation 107(1): 113-119. cited by applicant .
Tower, T. T. and R. T. Tranquillo (2001). "Alignment maps of tissues: I. Microscopic elliptical polarimetry." Biophysical Journal 81(5): 2954-2963. cited by applicant .
Tower, T. T. and R. T. Tranquillo (2001). "Alignment maps of tissues: II. Fast harmonic analysis for imaging." Biophysical Journal 81(5): 2964-2971. cited by applicant .
Troy, T. L. and S. N. Thennadil (2001). "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm." Journal of Biomedical Optics 6 (2): 167-176. cited by applicant .
Vabre, L., A. Dubois, et al. (2002). "Thermal-light full-field optical coherence tomography." Optics Letters 27(7): 530-532. cited by applicant .
Vakhtin, A. B., D. J. Kane, et al. (2003). "Common-path interferometer for frequency-domain optical coherence tomography." Applied Optics 42(34): 6953-6958. cited by applicant .
Vakhtin, A. B., K. A. Peterson, et al. (2003. "Differential spectral interferometry: an imaging technique for biomedical applications," Optics Letters 28(15): 1332-1334. cited by applicant .
Vakoc, B. J., S. H. Yun, et al. (2005). "Phase-resolved optical frequency domain imaging." Optics Express 13(14): 5483-5493. cited by applicant .
van Leeuwen, T. G., M. D. Kulkami, et al. (1999). "High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography." Optics Letters 24(22): 1584-1586. cited by applicant .
Vansteenkiste, N., P. Vignolo, et al. (1993). "Optical Reversibility Theorems for Polarization--Application to Remote-Control of Polarization," Journal of the Optical Society of America a-Optics Image Science and Vision 10(10): 2240-2245. cited by applicant .
Vargas, O., E. K. Chan, et al. (1999). "Use of an agent scattering in skin." Lasers in Surgery and Medicine 24(2): 133-141. cited by applicant .
Wang, R. K. (1999). "Resolution improved optical coherence-gated tomography for imaging through biological tissues." Journal of Modern Optics 46(13): 1905-1912. cited by applicant .
Wang, X. J., T. E. Milner, et al. (1997). "Measurement of fluid-flow-velocity profile in turbid media by use of optical Doppler tomography." Applied Optics 36(1): 144-149. cited by applicant .
Wang, X. J., T. E. Milner, et al. (1995). "Characterization of Fluid-flow Velocity by Optical Doppler Tomography." Optics Letters 20(11): 1337-1339. cited by applicant .
Wang, Y. M., J. S. Nelson, et al. (2003). "Optimal wavelength for ultrahigh-resolution optical coherence tomography." Optics Express 11(12): 1411-1417. cited by applicant .
Wang, Y. M., Y. M. Zhao, et al. (2003). "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber." Optics Letters 28(3): 182-184. cited by applicant .
Watkins, L. R., S. M. Tan, et al. (1999). "Determination of interfererometer phase distributions by use of wavelets." Optics Letters 24(13): 905-907. cited by applicant .
Wetzel, J. (2001). "Optical coherence tomography in dermatology: a review." Skin Research and Technology 7(1): 1-9. cited by applicant .
Wentworth, R. H. (1989). "Theoretical Noise Performance of Coherence-Multiplexed Interferometric Sensors." Journal of Lightwave Technology 7(6): 941-956. cited by applicant .
Westphal, V., A. M. Rollins, et al. (2002). "Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle." Optics Express 10(9): 397-404. cited by applicant .
Westphal, V., S. Yazdanfar, et al. (2002). "Real-time, high velocity-resolution color Doppler optical coherence tomography." Optics Letters 27(1): 34-36. cited by applicant .
Williams, P. A. (1999). "Rotating-wave-plate Stokes polarimeter for differential group delay measurements of polarization-mode dispersion." Applied Optics 38(31): 6508-6515 cited by applicant .
Wojtkowski, M., T. Bajrazewski, et al. (2003). "Real-time in vivo imaging by high-speed spectral optical coherence tomography." Optics Letters 28(19): 1745-1747. cited by applicant .
Wojtkowski, M., A. Kowalczyk, et al. (2002). "Full range complex spectral optical coherence tomography technique in eye imaging." Optics Letters 27(16): 1415-1417. cited by applicant .
Wojtkowski, M., R. Leitgeb, et al. (2002). "In vivo human retinal imaging by Fourier domain optical coherence tomography." Journal of Biomedical Optics 7(3): 457-463. cited by applicant .
Wojtkowski, M., R. Leitgeb, et al. (2002). "Fourier domain OCT imaging of the human eye in vivo." Proc. SPIE 4619: 230-236. cited by applicant .
Wojtkowski, M., V. J. Srinivasan, et al. (2004). "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation." Optics Express 12(11): 2404-2422. cited by applicant .
Wong, B. J. F., Y. H. Zhao, et al. (2004). "Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 mu m and 1.3 mu m." Otolaryngology--Head and Neck Surgery 130(3): 334-338. cited by applicant .
Yang, C., A. Wax, et al. (2001). "Phase-dispersion optical tomography."Optic Letters 26(10): 686-688. cited by applicant .
Yang, C., Wax, et al. (2001). "Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics." Optics Letters 26(16): 1271-1273. cited by applicant .
Yang, C. H., A. Wax, et al. (2001). "Phase-dispersion optical tomography." Optics Letters 26(10): 686-688. cited by applicant .
Yang, C. H., A. Wax, et al. (2000). "Interferometric phase-dispersion microscopy." Optics Letters 25(20): 1526-1528. cited by applicant .
Yang, V. X. D., M. L. Gordon, et al. (2002). "Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation." Optics Communications 208(4-6): 209-214. cited by applicant .
Yang, V. X. D., M. L. Gordon, et al. (2003). "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance." Optics Express 11(7): 794-809. cited by applicant .
Yang, V. X. D., M. L. Gordon, et al. (2003). "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis." Optics Express 11(14): 1650-1658. cited by applicant .
Yang, V. X. D., M. L. Gordon, et al. (2003). "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rates and human gastrointestinal tracts." Optics Express 11(19): 2416-2424. cited by applicant .
Yang, V. X. D., B. Qi, et al. (2003). "In vivo feasibility of endoscopic catheter-based Doppler optical coherence tomography." Gastroenterology 124(4): A49-A50. cited by applicant .
Yao, G. and L. H. V. Wang (2000). "Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue." Applied Optics 39(4): 659-664. cited by applicant .
Yazdanfar, S. and J. A. Izatt (2002). "Self-reference Doppler optical coherence tomography." Optics Letters 27(23): 2085-2087. cited by applicant .
Yazdanfar, S., M. D. Kulkarni, et al. (1997). "High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography." Optics Express 1 (13): 424-431. cited by applicant .
Yazdanfar, S., A. M. Rollins, et al. (2000). "Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography." Optics Letters 25(19): 1448-1450. cited by applicant .
Yazdanfar, S., A. M. Rollins, et al. (2000). "Noninvasive imaging and velocimetry of human retinal blood flow using color Doppler optical coherence tomography" Investigative Ophthalmology & Visual Sciences 41(4): S548-S548. cited by applicant .
Yazdanfar, S., A. M. Rollins, et al. (2003). "In vivo imaging of human retinal flow dynamics in color Doppler optical coherence tomography." Archives of Ophthalmology 121(2): 235-239. cited by applicant .
Yazdanfar, S., C. H. Yang, et al. (2005). "Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound." Optics Express 13(2): 410-416. cited by applicant .
Yun, S. H., C. Boudoux, et al. (2004). "Extended-cavity semiconductor wavelength- swept laser for biomedical imaging." Ieee Photonics Technology Letters 16(1): 293-295. cited by applicant .
Yun, S. H., C. Boudoux, et al. (2003). "High-speed wavelength-swept semiconductor laser with polygon-scanner-based wavelength filter." Optics Letters 28(20): 1981-1983. cited by applicant .
Yun, S. H., G. J. Tearney, et al. (2004). "Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts." Optics Express 12(23): 5414-5624. cited by applicant .
Yun, S. H., G. J. Tearney, et al. (2004). "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting." Optics Express 12(20): 4822-4828. cited by applicant .
Yun, S. H., G. J. Tearney, et al. (2004). "Motion artifacts in optical coherence tomography with frequency-domain ranging." Optics Express 12(13): 2977-2998. cited by applicant .
Zhang, J., J. S. Nelson, et al. (2005). "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an elctro-optic phase modulator."Optics Letters 30(2): 147-149. cited by applicant .
Zhang, Y., M. Sato, et al. (2001). "Numerical investigations of optimal synthesis of several low coherence sources for resolution improvements." Optics Communications 192(3-6): 183-192. cited by applicant .
Zhang, Y., M. Sato, et al. (2001). "Resolution improvement in optical coherence tomography by optical synthesis of light-emitting diodes." Optics Letters 26(4): 205-207. cited by applicant .
Zhao, Y., Z. Chen, et al. (2002). "Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation." Optics Letters 27(2): 98-100. cited by applicant .
Zhao, Y. H., Z. P. Chen, et al. (2000). "Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow." Optics Letters 25(18): 1358-1360. cited by applicant .
Zhao, Y. H., Z. P. Chen, et al. (2000). "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity." Optics Letters 25(2): 114-116. cited by applicant .
Zhou, D., P. R. Prucnal, et al. (1998). "A widely narrow linewidth semiconductor fiber laser." IEEE Photonics Technology Letters 10(6): 781-783. cited by applicant .
Zuluaga, A. F. and R. Richards-Kortum (1999). "Spatially resolved spectral interferometry for determination of subsurface structure ." Optics Letters 24(8): 519-521. cited by applicant .
Zvyagin, A. V., J. B. FitzGerald, et al. (2000). "Real-time detection technique for Doppler optical coherence tomography." Optics Letters 25(22): 1645-1647. cited by applicant .
Marc Nikles et al., "Brillouin gain spectrum characterization in single-mode optical fibers", Journal of Lightwave Technology 1997, 15 (10): 1842-1851. cited by applicant .
Tsuyoshi Sonehara et al., "Forced Brillouin Spectroscopy Using Frequency-Tunable Continuous-Wave Lasers", Physical Review Letters 1995, 75 (23): 4234-42373. cited by applicant .
Hajime Tanaka et al., "New Method of Superheterodyne Light Beating Spectroscopy for Brillouin-Scattering Using Frequency-Tunable Lasers", Physical Review Letters 1995, 74 (9): 1609-1612. cited by applicant .
Webb RH et al. "Confocal Scanning Laser Ophthalmoscope", Applied Optics 1987, 26 (8): 1492-1499. cited by applicant .
Andreas Zumbusch et al. "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering", Physical Review Letters 1999, 82 (20): 4142-4145. cited by applicant .
Katrin Kneipp et al., "Single molecule detection using surface-enhanced Raman scattering (SERS)", Physical Review Letters 1997, 78 (9): 1667-1670. cited by applicant .
K.J. Koski et al., "Brillouin imaging" Applied Physics Letters 87, 2005. cited by applicant .
Boas, et al., "Diffusing temporal light correlation for burn diagnosis", SPIE, 1999, 2979:468-477. cited by applicant .
David J. Briers, "Speckle fluctuations and biomedical optics: implications and applications", Optical Engineering, 1993, 32 (2):277-283. cited by applicant .
Clark, et al., "Tracking Speckle Patterns with Optical Correlation", SPIE, 1992 1772:77-87. cited by applicant .
Facchini et al., "An endoscopic system for DSPI", Optik, 1993, 95(1):27-30. cited by applicant .
Hrabovsky, M., "Theory of speckle displacement and decorrelation: application in mechanics", SPIE, 1998, 3479:345-354. cited by applicant .
Sean J. Kirkpatrick et al., "Micromechanical behavior of cortical bone and inferred from laser speckle data", Journal of Biomedical Materials Research, 1998, 39(3):373-379. cited by applicant .
Sean J. Kirkpatrick et al., "Laser speckle microstain measurements in vascular tissue", SPIE, 1999, 3598:121-129. cited by applicant .
Loree et al., "Mechanical Properties of Model Atherosclerotic Lesion Lipid Pools", Ateriosclerosis and Thrombosis, 1994, 14(2):230-234. cited by applicant .
Podbielska, H. "Interferometric Methods and Biomedical Research", SPIE, 1999, 2732:134-141. cited by applicant .
Richards-Kortum et al., "Spectral diagnosis of atherosclerosis using an optical fiber laser catheter", American Heart Journal, 1989, 118(2):381-391. cited by applicant .
Ruth, B. "blood flow determination by the laser speckle method", Int J Microcirc: Clin Exp, 1990, 9:21-45. cited by applicant .
Shapo et al., "Intravascular strain imaging: Experiments on an Inhomogeneous Phantom", IEEE Ultrasonics Symposium 1996, 2:1177-1180. cited by applicant .
Shapo et al., "Ultrasonic displacement and strain imaging of coronary arteries with a catheter array", IEEE Ultrasonics Symposium 1995, 2:1511-1514. cited by applicant .
Thompson et al., "Imaging in scattering media by use of laser speckle", Opt. Soc. Am. A., 1997, 14(9):2269-2277. cited by applicant .
Thompson et al., "Diffusive media characterization with laser speckle", Applied Optics, 1997, 36(16):3726-3734. cited by applicant .
Tuchin, Valery V., "Coherent Optical Techniques for the Analysis of Tissue Structure and Dynamics," Journal of Biomedical Optics 1999, 4(1): 106-124. cited by applicant .
M. Wussling et al., "Laser diffraction and speckling studies in skeletal and heart musle", Biomed, Biochim, Acta, 1986, 45(1/2): S 23-S 27. cited by applicant .
T. Yoshimura et al., "Statistical properties of dynamic speckles", J. Opt. Soc. Am A. 196, 3(7):1032-1054. cited by applicant .
Zimnyakov et al., "Spatial speckle correlometry in applications to tissue structure monitoring", Applied Optics 1997, 36(22): 5594-5607. cited by applicant .
Zimnyakov et al., "A study of statistical properties of partially developed speckle fields as applied to the diagnosis of structural changes in human skin", Optics and Spectroscopy, 1994, 76(5): 747-753. cited by applicant .
Zimnyakov et al., "Speckle patterns polarization analysis as an approach to turbid tissue structure monitoring", SPIE 1999, 2981:172-180. cited by applicant .
Ramasamy Manoharan et al., "Biochemical analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy", Atherosclerosis, May 1993, 181-1930. cited by applicant .
N. V. Salunke et al., "Biomechanics of Atherosclerotic Plaque" Critical Reviews.TM. in Biomedical Engineering 1997, 25(3):243-285. cited by applicant .
D. Fu et al., "Non-invasive quantitative reconstruction of tissue elasticity using an iterative forward approach", Phys. Med. Biol. 2000 (45): 1495-1509. cited by applicant .
S.B. Adams Jr. et al., "The use of polarization sensitive optical coherence tomography and elastography to assess connective tissue", Optical Soc. of American Washington 2002, p. 3. cited by applicant .
Erdelyi et al. "Generation of diffraction-free beams for applications in optical microlithography", J. Vac. Sci Technol. B 15 (12), Mar./Apr. 1997, pp. 287-292. cited by applicant .
Tearney, et al., "Spectrally encoded miniature endoscopy" Optical Society of America; Optical Letters vol. 27, No. 6, Mar. 15, 2002; pp. 412-414. cited by applicant .
Yelin et al., "Double-clad Fiber for Endoscopy" Optical Society of America; Optical Letters vol. 29, No. 20, Oct. 16, 2005; pp. 2408-2410. cited by applicant .
PCT International Preliminary Report on Patentability for International Application No. PCT/US2004/038404 dated Jun. 2, 2006. cited by applicant .
Office Action dated Aug. 24, 2006 for U.S. Appl. No. 10/137,749. cited by applicant .
Barry Cense et al., "Spectral-domain polarization-sensitive optical coherence tomography at 850nm", Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, 2005, pp. 159-162. cited by applicant .
A. Ymeti et al., "Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor", Biosensors and Bioelectronics, Elsevier Science Publishers, 2005, pp. 1417-1421. cited by applicant .
PCT International Search Report for Application No. PCT/US2006/018865 filed May 5, 2006. cited by applicant .
International Written Opinion for International Patent application No. PCT/US2006/018865 filed May 5, 2006. cited by applicant .
John M. Poneros, "Diagnosis of Barrett's esophagus using optical coherence tomography", Gastrointestinal Endoscopy clinics of North America, 14 (2004) pp. 573-588. cited by applicant .
P.F. Escobar et al., "Diagnostic efficacy of optical coherence tomography in the management of preinvasive and invasive cancer of uterine cervix and vulva", Int. Journal of Gynecological Cancer 2004, 14, pp. 470-474. cited by applicant .
Ko T et al., "Ultrahigh resolution in vivo versus ex vivo OCT imaging and tissue preservation", Conference on Lasers and electroptics, 2001, pp. 252-253. cited by applicant .
Paul M. Ripley et al., "A comparison of Artificial Intelligence techniques for spectral classification in the diagnosis of human pathologies based upon optical biopsy", Journal of Optical Society of America, 2000, pp. 217-219. cited by applicant .
Wolfgang Drexler et al., "Ultrahigh-resolution optical coherence tomography", Journal of Biomedical Optics Spie USA, 2004, pp. 47-74. cited by applicant .
PCT International Search Report for Application No. PCT/US2006/016677 filed Apr. 28, 2006. cited by applicant .
International Written Opinion for International Patent application No. PCT/US2006/016677 filed Apr. 28, 2006. cited by applicant .
Office Action dated Nov. 13, 2006 for U.S. Appl. No. 10/501,268. cited by applicant .
Office Action dated Nov. 20, 2006 for U.S. Appl. No. 09/709,162. cited by applicant .
PCT International Search Report and Written Opinion for Application No. PCT/US2004/023585 filed Jul. 23, 2004. cited by applicant .
Office Action dated Dec. 6, 2006 for U.S. Appl. No. 10/997,789. cited by applicant .
Elliot, K. H. "The use of commercial CCD cameras as linear detectors in the physics undergraduate teaching laboratory", European Journal of Physics 19, 1998, pp. 107-117. cited by applicant .
Lauer, V. "New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope", Journal of Microscopy vol. 205, Issue 2, 2002, pp. 165-176. cited by applicant .
Office Action dated Dec. 18, 2006 for U.S. Appl. No. 10/501,276. cited by applicant .
Devesa, Susan S. et al. (1998) "Changing Pattern in the Incidence of Esophegeal and Gastric Carcinoma in the United States." American Cancer Society vol. 83, No. 10, pp. 2049-2053. cited by applicant .
Barr, H et al. (2005) "Endoscopic Therapy for Barrett's Oesophaugs" Gut vol. 54:875-884. cited by applicant .
Johnston, Mark H.(2005) "Technology Insight: Ablative Techniques for Barrett's Esophagus--Current and Emerging Trends" , www.Nature.com/clinicalpratice/gasthep. cited by applicant .
Falk, Gary W. et al. (1997) "Surveillance of Patients with Barrett's Esophagus for Dysplasia and Cancer with Balloon Cytology" Gastroenterology vol. 112, pp. 1787-1797. cited by applicant .
Sepchler, Stuart Jon. (1997) "Barrett's Esophagus: Should We Brush off this Ballooning Problem?" Gastroenterology vol. 112, pp. 2138-2152. cited by applicant .
Froehly, J. et al. (2003) "Multiplexed 3D Imaging Using Wavelength Encoded Spectral Interferometry: A Proof of Principle" Optics Communications vol. 22, pp. 127-136. cited by applicant .
Kubba A.K. et al. (1999) "Role of p53 Assessment in Management of Barrett's Esophagus" Digestive Disease and Sciences vol. 44, No. 4. pp. 659-667. cited by applicant .
Reid, Brian J. (2001) "p53 and Neoplastic Progression in Barrett's Esophagus" The American Journal of Gastroenterology vol. 96, No. 5, pp. 1321-1323. cited by applicant .
Sharma, P. et al.(2003) "Magnification Chromoendoscopy for the Detection of Intestinal Metaplasia and Dysplasia in Barrett's Oesophagus" Gut vol. 52, pp. 24-27. cited by applicant .
Kuipers E.J. et al. (2005) "Diagnostic and Therapeutic Endoscopy" Journal of Surgical Oncology vol. 92, pp. 203-209. cited by applicant .
Georgakoudi, Irene et al. (2001) "Fluorescence, Reflectance, and Light-Scattering Spectroscopy for Evaluating Dysplasia in Patients With Barrett's Esophagus" Gastroenterology vol. 120, pp. 1620-1629. cited by applicant .
Adrian, Alyn L. et al. (1997) "High-Resolution Endoluminal Sonography is a Sensitive Modality for the Identification of Barrett's Meaplasia" Gastrointestinal Endoscopy vol. 46, No. 2, pp. 147-151. cited by applicant .
Canot, Marcia Irene et al (1999) "Vital Staining and Barrett's Esophagus" Gastrointestinal Endoscopy vol. 49, No. 3, part 2, pp. 12-16. cited by applicant .
Evans, John A.. et al. (2006) "Optical Coherence Tomography to Identify Intramucosal Carcinoma and High-Grade Dysplasia in Barrett'Esophagus" Clinical Gastroenterology and Hepatology vol. 4, pp. 38-43. cited by applicant .
Poneros, John M. et al. (2001) "Diagnosis of Specialized Intestinal Metaplasia by Optical Coherence Tomography" Gastroenterology vol. 120, pp. 7-12. cited by applicant .
Ho. W. Y. et al. (2005) "115 KHz Tuning Repetition Rate Ultrahigh-Speed Wavelength-Swept Semiconductor Laser"Optics Letters col. 30, No. 23, pp. 3159-3161. cited by applicant .
Brown, Stanley B. et al. (2004) "The Present and Future Role of Photodynamic Therapy in Cancer Treatment" The Lancet Oncology vol. 5, pp. 497-508. cited by applicant .
Boogert, Jolanda Van Den et al. (1999) "Endoscopic Ablation Therapy for Barret's Esophagua with High-Grade Dysplasia: A Review" The American Journal of Gastroenterology vol. 94, No. 5, pp. 1153-1160. cited by applicant .
Sampliner, Richard E. et al. (1996) "Reversal of Barrett's Esophagus with Acid Suppression and Multipolar Electrocoagulation: Preliminary Results" Gastrointestinal Endoscopy vol. 44, No. 5, pp. 532-535. cited by applicant .
Sampliner, Richard E. (2002) "Endoscopic Ablative Therapy for Barrett's Esophagus: Current Status" Gastrointestinal Endoscopy vol. 59, No. 1, pp. 66-69. cited by applicant .
Soetikno, Roy M. et al. (2003) "Endoscopic Mucosal resection" Gastrointestinal Endoscopy vol. 57, No. 4, pp. 567-579. cited by applicant .
Ganz, Robert A. et al. (2004) "Complete Ablation of Esophageal Epithelium with a Balloon-based Bipolar Electrode: A Phased Evaluation in the Porcine and in the Human Esophagus" Gastrointestinal Endoscopy vol. 60, No. 6, pp. 1002-1010. cited by applicant .
Pfefer, Jorje et al. (2006) "Performance of the Aer-O-Scope, A Pneumatic, Self Propelling, Self Navigating Colonoscopy in Animal Experiments" Gastrointestinal Endoscopy vol. 63, No. 5, pp. AB223. cited by applicant .
Overholt, Bergein F. et al. (1999) "Photodynamic Therapy for Barrett'Esophagus: Follow-Up in 100 Patients" Gastrointestinal Endoscopy vol. 49, No. 1, pp. 1-7. cited by applicant .
Vogel, Alfred et al. (2003) "Mechanism of Pulsed Laser Ablation of Biological Tissues" American Chemical Society vol. 103, pp. 577-644. cited by applicant .
McKenzie, A. L. (1990) "Physics of Thermal Processes in Laser-Tissue Interaction" Phys. Med. Biol vol. 35, No. 9, pp. 1175-1209. cited by applicant .
Anderson, R. Rox et al. (1983) "Selective Photothermolysis Precise Microsurgery by Selective Absorption of Pulsed Radiation" Science vol. 220, No. 4596, pp. 524-527. cited by applicant .
Jacques, Stevens L. (1993) "Role of Tissue Optics and Pulsed Duration on Tissue Effects During High-Power Laser Irradiation" Applied Optics vol. 32, No. 13, pp. 2447-2454. cited by applicant .
Nahen, Kester et al. (1999) "Investigations on Acoustic On-Line Monitoring of IR Laser Ablation of burned Skin" Lasers in Surgery and Medicine vol. 25, pp. 69-78. cited by applicant .
Jerath, Maya R. et al. (1993) "Calibrated Real-Time Control of Lesion Size Based on Reflectance Images" Applied Optics vol. 32, No. 7, pp. 1200-1209. cited by applicant .
Jerath, Maya R. et al (1992) "Dynamic Optical Property Changes: Implications for Reflectance Feedback Control of Photocoagulation" Journal of Photochemical,.Photobiology, B: Biol vol. 16, pp. 113-126. cited by applicant .
Deckelbaum, Lawrence I. (1994) "Coronary Laser Angioplasty" Lasers in Surgery and Medicine vol. 14, pp. 101-110. cited by applicant .
Kim, B.M. et al. (1998) "Optical Feedback Signal for Ultrashort Laser Pulse Ablation of Tissue" Applied Surface Science vol. 127-129, pp. 857-862. cited by applicant .
Brinkman, Ralf et al. (1996) "Analysis of Cavitation Dynamics During Pulsed Laser Tissue Ablation by Optical On-Line Monitoring" IEEE Journal of Selected Topics in Quantum Electronics vol. 2, No. 4, pp. 826-835. cited by applicant .
Whelan, W.M. et al. (2005) "A novel Strategy for Monitoring Laser Thermal Therapy Based on Changes in Optothermal Properties of Heated Tissues" International Journal of Thermophyics vol. 26, No. 1, pp. 233-241. cited by applicant .
Thomsen, Sharon et al. (1990) "Microscopic Correlates of Macroscopic Optical Property Changes During Thermal Coagulation of Myocardium" SPIE vol. 1202, pp. 2-11. cited by applicant .
Khan, Misban Huzaira et al. (2005) "Intradermally Focused Infrared Laser Pulses: Thermal Effects at Defined Tissue Depths" Lasers in Surgery and Medicine vol. 36, pp. 270-280. cited by applicant .
Neumann, R.A. et al. (1991) "Enzyme Histochemical Analysis of Cell Viability After Argon Laser-Induced Coagulation Necrosis of the Skin" Journal of the American Academy of Dermatology vol. 25, No. 6, pp. 991-998. cited by applicant .
Nadkarni, Seemantini K. et al. (2005) "Characterization of Atherosclerotic Plaques by Laser Speckle Imaging" Circulation vol. 112, pp. 885-892. cited by applicant .
Zimnyakov, Dmitry A. et al. (2002) "Speckle-Contrast Monitoring of Tissue Thermal Modification" Applied Optics vol. 41, No. 28, pp. 5989-5996. cited by applicant .
Morelli, J. G., et al (1986) "Tunable Dye Laser (577 nm) Treatment of Port Wine Stains" Lasers in Surgery and Medicine vol. 6, pp. 94-99. cited by applicant .
French, P.M.W. et al. (1993) "Continuous-wave Mode-Locked Cr.sup.4+: YAG Laser" Optics Letters vol. 18, No. 1, pp. 39-41. cited by applicant .
Sennaroglu, Alphan at al. (1995) "Efficient Continuous-Wave Chromium-Doped YAG Laser" Journal of Optical Society of America vol. 12, No. 5, pp. 930-937. cited by applicant .
Bouma, B et al. (1994) "Hybrid Mode Locking of a Flash-Lamp-Pumped Ti: Al.sub.2O.sub.3 Laser" Optics Letters vol. 19, No. 22, pp. 1858-1860. cited by applicant .
Bouma, B et al. (1995) "High Resolution Optical Coherence Tomography Imaging Using a Mode-Locked Ti: Al.sub.2O.sub.3 Laser Source" Optics Letters vol. 20, No. 13, pp. 1486-1488. cited by applicant .
Fernandez, Cabrear Delia et al. "Automated detection of retinal layer structures on optical coherence tomography images" Optics Express vol. 13, No. 25, Oct. 4, 2005, pp. 10200-10216. cited by applicant .
Ishikawa, Hiroshi et al. "Macular Segmentation with optical coherence tomography", Investigative Ophthalmology & Visual Science, vol. 46, No. 6, Jun. 2005, pp. 2012-2017. cited by applicant.

Primary Examiner: Chowdhury; Tarifur
Assistant Examiner: Cook; Jonathon
Attorney, Agent or Firm: Dorsey & Whitney LLP

Parent Case Text



CROSS-REFERENCE TO RELATED APPLICATION(S)

The present invention claims priority from U.S. Patent Application Ser. No. 60/608,800 filed on Sep. 10, 2004, the entire disclosure of which incorporated herein by reference.
Claims



What is claimed is:

1. A system for imaging at least a portion of a sample, comprising: a source arrangement generating at least one source electro-magnetic radiation forwarded to the sample and a reference; .[.and.]. at least one detection arrangement including a plurality of detectors, at least one of the detectors capable of detecting a signal associated with a combination of at least one first electro-magnetic radiation received from the sample and at least one second electro-magnetic radiation received from the reference, .Iadd.wherein the signal is at least one of frequency components of the combination; at least one spectral separating unit which separates spectrum of at least one of the first electro-magnetic radiation, the second electro-magnetic radiation or the combination into the at least one of the frequency components,.Iaddend. wherein at least one particular detector of the detectors has a particular electrical integration time, wherein the at least one particular detector receives at least a portion of the signal for a time duration which has at least one first portion with at least one first power level greater than a predetermined threshold and at least one second portion immediately preceding or following the at least one first portion, the at least one second portion having at least one second power level less than the predetermined threshold, and wherein the at least one second portion is extended for a time period which is approximately at least 10% of the particular electrical integration time.Iadd.; and at least one processing arrangement which is configured to generate at least one image associated with the sample based on the detected signal which is provided for the particular electrical integration time, the at least one image including at least one portion associated with the sample below a surface thereof, and the at least one portion of the at least one image illustrates the sample at multiple depths thereof immediately below a surface location at which the forwarded radiation impacts the sample.Iaddend..

.[.2. The system according to claim 1, wherein the signal has frequency components of the combination..].

3. The system according to claim 1, wherein the source arrangement is a pulsed broadband source.

4. The system according to claim 1, wherein the detection arrangement includes at least one charged-coupled device.

5. The system according to claim .[.2.]. .Iadd.1.Iaddend., wherein the at least one particular detector receives the at least one of the frequency components.

6. The system according to claim 5, wherein the source arrangement is a pulsed broadband source.

7. The system according to claim 5, wherein the source arrangement includes an optical gating switch.

8. The system according to claim 5, wherein a frequency of the at least one source electro-magnetic radiation varies over time.

9. The system according to claim 5, wherein the detector arrangement further includes an electrical shutter that is adapted to gate a transmission of photoelectrons associated with the combination of the first and second electro-magnetic radiation, wherein a time period for the gating to allow the transmission of the photoelectrons is less than approximately 90% of the particular electrical integration time.

10. The system according to claim 5, wherein the sample is a biological sample.

11. The system according to claim 5, wherein the detection arrangement includes at least one charged-coupled device.

.[.12. The system according to claim 5, further comprising at least one spectral separating unit which separates spectrum of at least one of the first electro-magnetic radiation, the second electro-magnetic radiation and the combination into the at least one of the frequency components..].

13. The system according to claim 6, wherein the at least one source electro-magnetic radiation generated by the pulsed source is a single pulse per the particular electrical integration time.

14. The system according to claim 6, wherein the at least one source electro-magnetic radiation generated by the source arrangement is a burst of radiation that extends for at most approximately 90% of the particular electrical integration time.

15. The system according to claim 6, wherein the at least one source electro-magnetic radiation generated by the pulsed broadband source has a spectrum with a center wavelength between approximately 700 nanometers and 2000 nanometers.

16. The system according to claim 6, wherein a duration of the burst of radiation is approximately shorter than 1 .mu.sec.

17. The system according to claim 8, wherein a mean frequency of the at least one source electro-magnetic radiation changes substantially continuously over time at a tuning speed that is greater than 100 terahertz per millisecond.

18. The system according to claim 8, wherein the mean frequency changes repeatedly with a repetition period that is less than approximately 90% of the particular electrical integration time.

19. The system according to claim 8, wherein the at least one source electro-magnetic radiation generated by the source arrangement has a tuning range with a center wavelength between approximately 700 nanometers and 2000 nanometers.

20. The system according to claim 8, wherein the at least one source electro-magnetic radiation generated by the source arrangement has a timing range of approximately greater than 1% of the center wavelength.

21. The system according to claim 8, wherein the at least one source electro-magnetic radiation generated by the source arrangement has an instantaneous line width and a tuning range, the instantaneous line width being less than approximately 10% of the tuning range.

22. The system according to claim 8, wherein the source arrangement includes a tunable laser.

23. The system according to claim 8, wherein the source arrangement includes a tunable filter.

24. The system according to claim 8, wherein the source arrangement includes a medium, and wherein the source arrangement generates the at least one source electro-magnetic radiation based on a non-linearity associated with the medium.

25. The system according to claim 8, wherein the frequency varies substantially linearly with time.

26. The system according to claim 8, wherein the frequency varies substantially sinusoidally with time.

27. The system according to claim 13, wherein the pulsed source includes at least one of a Q-switched laser, a cavity-dumped mode-lock laser, and a gain-switched laser.

28. The system according to claim 13, wherein the at least one source electro-magnetic radiation generated by the pulsed broadband source has a pulse width approximately shorter than 1 .mu.sec.

29. The system according to claim 14, wherein the burst of radiation includes multiple pulses.

30. The system according to claim 15, wherein the at least one source electro-magnetic radiation generated by the pulsed broadband source has a spectrum with a spectral width of approximately greater than 1% of the center wavelength.

31. A method for imaging at least a portion of a sample, comprising: generating at least one source electro-magnetic radiation forwarded to the sample and a reference; .[.and.]. detecting at least a portion of a signal associated with a combination of at least one first electro-magnetic radiation received from the sample and at least one second electro-magnetic radiation received from the reference using at least one detector of a plurality of detectors of a detection arrangement, .Iadd.wherein the signal is at least one of frequency components of the combination; separating spectrum of at least one of the first electro-magnetic radiation, the second electro-magnetic radiation or the combination into the at least one of the frequency components,.Iaddend. wherein at least one particular detector of the detectors has a particular electrical integration time, and wherein the at least one particular detector receives at least a portion of the signal for a time duration which has a first portion with a first power level greater than a predetermined threshold and a second portion immediately preceding or following the first portion, the second portion having a second power level less than the predetermined threshold, and extending for a time period which is approximately more than 10% of the particular electrical integration time.Iadd.; and generating at least one image associated with the sample based on the detected signal which is provided for the particular electrical integration time, the at least one image including at least one portion associated with the sample below a surface thereof, and the at least one portion of the at least one image illustrates the sample at multiple depths thereof immediately below a surface location at which the forwarded radiation impacts the sample.Iaddend..

.[.32. The method according to claim 31, wherein the signal has frequency components of the combination..].

33. The method according to claim 31, wherein the generating step is performed by a source arrangement which is a pulsed broadband source.

34. The method according to claim 31, wherein the detection step is performed by a detection arrangement which includes at least one charged-coupled device.

35. The method according to claim .[.32.]. .Iadd.31.Iaddend., wherein the at least one particular detector receives the at least one of the frequency components.

36. The method according to claim 35, wherein the generating step is performed by a source arrangement which is a pulsed broadband source.

37. The method according to claim 35, wherein the source arrangement includes an optical gating switch.

38. The method according to claim 35, wherein a frequency of the at least one source electro-magnetic radiation varies over time.

39. The method according to claim 35, wherein the detector arrangement further includes an electrical shutter that is adapted to gate a transmission of photoelectrons associated with the combination of the first and second electro-magnetic radiation, wherein a time period for the gating to allow the transmission of the photoelectrons is less than approximately 90% of the particular electrical integration time.

40. The method according to claim 35, wherein the sample is a biological sample.

41. The method according to claim 35, wherein the detecting step is performed by a detection arrangement which includes at least one charged-coupled device.

.[.42. The method according to claim 35, further comprising the step of separating spectrum of at least one of the first electro-magnetic radiation, the second electro-magnetic radiation and the combination into the at least one of the frequency components..].

43. The method according to claim 36, wherein the at least one source electro-magnetic radiation generated by the pulsed source is a single pulse per the particular electrical integration time.

44. The method according to claim 36, wherein the at least one source electro-magnetic radiation generated by the source arrangement is a burst of radiation that extends for at most approximately 90% of the particular electrical integration time.

45. The method according to claim 36, wherein the at least one source electro-magnetic radiation generated by the pulsed broadband source has a spectrum with a center wavelength between approximately 700 nanometers and 2000 nanometers.

46. The method according to claim 36, wherein a duration of the burst of radiation is approximately shorter than 1 .mu.sec.

47. The method according to claim 38, wherein a mean frequency of the at least one source electro-magnetic radiation changes substantially continuously over time at a tuning speed that is greater than 100 terahertz per millisecond.

48. The method according to claim 38, wherein the mean frequency changes repeatedly with a repetition period that is less than approximately 90% of the particular electrical integration time.

49. The method according to claim 38, wherein the at least one source electro-magnetic radiation generated by the source arrangement has a tuning range with a center wavelength between approximately 700 nanometers and 2000 nanometers.

50. The method according to claim 38, wherein the at least one source electro-magnetic radiation generated by the source arrangement has a timing range of approximately greater than 1% of the center wavelength.

51. The method according to claim 38, wherein the at least one source electro-magnetic radiation generated by the source arrangement has an instantaneous line width and a tuning range, the instantaneous line width being less than approximately 10% of the tuning range.

52. The method according to claim 38, wherein the source arrangement includes a tunable laser.

53. The method according to claim 38, wherein the source arrangement includes a tunable filter.

54. The method according to claim 38, wherein the source arrangement includes a medium, and wherein the source arrangement generates the at least one source electro-magnetic radiation based on a non-linearity associated with the medium.

55. The method according to claim 38, wherein the frequency varies substantially linearly with time.

56. The method according to claim 38, wherein the frequency varies substantially sinusoidally with time.

57. The method according to claim 43, wherein the pulsed source includes at least one of a Q-switched laser, a cavity-dumped mode-lock laser, and a gain-switched laser.

58. The method according to claim 43, wherein the at least one source electro-magnetic radiation generated by the pulsed broadband source has a pulse width approximately shorter than 1 .mu.sec.

59. The method according to claim 44, wherein the burst of radiation includes multiple pulses.

60. The method according to claim 45, wherein the at least one source electro-magnetic radiation generated by the pulsed broadband source has a spectrum width a spectral width of approximately greater than 1% of the center wavelength.
Description



FIELD OF THE INVENTION

The present invention relates generally to optical coherence tomography imaging, and more particularly, to a system and method that uses optical coherence tomography that permits imaging of biological samples with high sensitivity and reduced artifacts, e.g., due to sample and probe motion.

BACKGROUND OF THE INVENTION

Image artifacts resulting from motion have been important issues of research in many medical imaging modalities because they may degrade the image quality and cause inaccurate clinical interpretation of images. Artifacts can arise when an object being imaged (sample) is moved during data acquisition but is assumed stationary in the image reconstruction process. In each imaging modality, motion artifacts can be present in different forms and with different magnitudes. Understanding basic motion effects in a particular imaging method is an essential step toward the development of techniques to avoid or compensate resulting artifacts. Optical interferometric imaging methods using frequency domain ranging have recently received considerable interest due to their high image acquisition speed and sensitivity.

Two frequency domain techniques have been demonstrated: spectral-domain optical coherence tomography (SD-OCT) as described in A. F. Fercher et al., "Measurements of intraocular distances by backscattering spectral interferometry," Opt. Comm. 117, 43-48 (1995), G. Hausler et al., "Coherence radar and spectral radar--new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998), M. Wojtkowski et al., "Real time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745-1747 (2003), N. Nassif et al., "In-vivo human retinal imaging by ultra high-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004), S. H. Yun et al., "High-speed spectral domain optical coherence tomography at 1.3 .mu.m wavelength," Opt. Express 11, 3598-3604 (2003), and optical frequency domain imaging ("OFDI") S. R. Chinn, E. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997), B. Golubovic et al., "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr.sup.4+:forsterite laser," Opt. Lett. 22, 1704-1706 (1997), F. Lexer et al., "Wavelength-tuning interferometry of intraocular distances," Appl. Opt. 36, 6548-6553 (1997), S. H. Yun et al, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003), the entire disclosures of all of which are incorporated herein by reference. Using the SD-OCT technique, the spectral interference fringe can be measured in the spatial domain by means of a diffraction grating and a charge-coupled device ("CCD") array. In exemplary OFDI techniques, the spectral fringe is mapped to the time domain by use of a frequency-swept light source and measured with a photodetector as a function of time. In both methods; axial reflectance profile (A-line) is obtained by performing a discrete Fourier transform of the acquired data. Since the Fourier transform process involves integration of the entire data set obtained in single A-line period, the signal-to-noise ratio ("SNR") is enhanced relative to time domain ranging, as described in S. H. Yun et al., "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003), R. Leitgeb, et al. "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), J. F. de Boer et al., "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003), and M. A. Choma et al., "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), the entire disclosures of all of which are incorporated herein by reference This improvement in SNR is particularly advantageous for applications requiring high image acquisition rates such as screening for disease and surveillance of large tissue volumes. It is, however, possible that the integration effect enhances the sensitivity to sample motion because the motion-induced change in signal is also integrated over the entire A-line acquisition period.

Spectral-domain optical coherence tomography ("SD-OCT") makes use of low-coherence spectral interferometry to obtain cross-sectional images of a biological sample. Interference fringes as a function of wavelength are measured using a broadband light source and a spectrometer based on a charge-coupled-device ("CCD") camera. The axial reflectivity profile of a sample, or an A-line, can be obtained by a discrete Fourier transform of the camera readout data. This imaging technique has recently gone through rapid technical development to demonstrate high quality imaging of biological samples with fast image acquisition time, an order of magnitude faster than state-of-the-art time-domain OCT systems. The recent advancement in imaging speed may lead to the utilization of SD-OCT in a number of clinical applications in the near future.

The SD-OCT systems that have been used to date utilized either a continuous-wave ("cw") broad-spectrum light source, such as super luminescent diodes ("SLD"), or ultrashort mode-locked pulses with a high repetition rate in the range of 10-100 MHz. In both cases, the CCD array is generally illuminated constantly, and therefore the exposure time of the CCD camera determines the signal acquisition time for a single A-line. In this case, a path length change in the interferometer during image acquisition results in phase drift in the interference fringe. If the phase drifts over more than .mu. during a single A-line acquisition, the interference fringe can be completely erased, resulting in a degradation of SNR. This motion artifact can be caused by axial motion of a sample relative to the probe beam. By comparison, transverse sample motion or transverse beam scanning does not result in fringe washout. However, the transverse motion can result in degradation in transverse resolution and SNR. In medical imaging in vivo, the motion effects can arise from various sources. The main causes include patient motion, physiological phenomena such as cardiac motion, blood flow, pulsation, and catheter movement associated with beam scanning or uncontrolled movement of operator's hand. Furthermore, environmental changes such as mechanical vibration, sound waves, and temperature drift can alter the path length difference in the interferometer, resulting in SNR degradation through fringe washout. Considering that cameras appropriate for SD-OCT typically provide exposures times longer than 10 .mu.s, a solution to the fringe washout problem will be required for biomedical applications where sample and probe motion is common.

Therefore, one of the objects of the present invention is to reduce or eliminate the motion artifacts.

SUMMARY OF THE INVENTION

According to the present invention, an imaging apparatus/system is provided which includes an optical source and at least one detector array. In one exemplary embodiment of the present invention, an optical source can emit a broadband spectrum in a pulsed mode, for example, by Q-switching or mode locking, with a pulse repetition rate preferably being equal to a readout rate of a detector array. The pulsed source can produce enough average optical power to provide sufficient signal to noise ratio required for imaging, while the relatively short duration of the output pulses results in an effective signal integration time substantially shorter than the detector's integration time, leading to high-sensitivity motion-artifact-free imaging. This pulsed-source approach may pertain to full-field optical coherence tomography and/or spectral-domain optical coherence tomography. In another exemplary embodiment of the present invention, the optical source is a wavelength-swept source emitting relatively narrowband spectrum swept over a wide range with a repetition rate preferably being equal to the readout rate of the detector array or A-line rate. This exemplary embodiment of the present invention allows the interference signal associated with each spectral component to be measured with an effective integration time substantially shorter than an A-line acquisition time. This exemplary scheme may also eliminate the fringe washout problem as in the prior art using continuous-wave broadband source or high-repetition mode-locked pulses. The above-described exemplary embodiments of the present invention may employ two or more detector arrays for dual-balanced detection and/or polarization diversity and further employ fiber-optic probes, allowing for medical imaging in vivo with high sensitivity, high speed, and the immunity from motion artifacts.

Accordingly, an exemplary embodiment of a system and method for imaging at least a portion of a sample are provided. In particular, at least one source electro-magnetic radiation can be generated and forwarded to the sample and a reference. A signal associated with a combination of at least one first electro-magnetic radiation received from the sample and at least one second electro-magnetic radiation received from the reference can be detected using at least one of a plurality of detectors. At least one particular detector can have a particular electrical integration time. Such detector may received at least a portion of the signal for a time duration which has at least one first portion with at least one first power level that is greater than a predetermined threshold and at least one second portion immediately preceding or following the at least one first portion. The second portion can have at least one second power level which is less than the predetermined threshold, and may be extended for a time period which is approximately at least 10% of the particular electrical integration time.

In addition, the signal may be at least one of frequency components of the combination, and the particular detector can receive such frequency component. The source electro-magnetic radiation can be generated by a source arrangement which may be a pulsed broadband source. The source electro-magnetic radiation generated by the pulsed source may be a single pulse per the particular electrical integration time. The pulsed source may be a Q-switched laser, a cavity-dumped mode-lock laser, and/or a gain-switched laser. The source electro-magnetic radiation generated by the source arrangement may be a burst of radiation that extends for at most approximately 90% of the particular electrical integration time. The burst of radiation may include multiple pulses. The source electro-magnetic radiation generated by the pulsed broadband source can have a spectrum with (i) a center wavelength between approximately 700 nanometers and 2000 nanometers, and/or (ii) a spectral width of approximately greater than 1% of the center wavelength. The source electro-magnetic radiation generated by the pulsed broadband source may have a pulse width approximately shorter than 1 .mu.sec. A duration of the burst of radiation can be approximately shorter than 1 .mu.sec.

According to another exemplary embodiment of the present invention, the source arrangement generating the source electro-magnetic radiation may include an optical gating switch. A frequency of the source electro-magnetic radiation can vary over time. A mean frequency of the source electro-magnetic radiation may change (i) substantially continuously over time at a tuning speed that is greater than 100 terahertz per millisecond, and/or (ii) with a repetition period that is less than approximately 90% of the particular electrical integration time. The source electro-magnetic radiation can have a tuning range (i) with a center wavelength between approximately 700 nanometers and 2000 nanometers, and/or (ii) of approximately greater than 1% of the center wavelength. The source electro-magnetic radiation may have an instantaneous line width and a tuning range, with the instantaneous line width being less than approximately 10% of the tuning range. The source arrangement may include (i)a tunable laser, (ii) a tunable filter, and/or (iii) a medium, and can generate the source electro-magnetic radiation based on a non-linearity associated with the medium. The frequency may vary substantially (i) linearly with time, and/or (ii) sinusoidally with time.

A detector arrangement which includes the detectors can be provided, that includes an electrical shutter that is adapted to gate a transmission of photoelectrons associated with the combination of the first and second electro-magnetic radiation, wherein a time period for the gating to allow the transmission of the photoelectrons is less than approximately 90% of the particular electrical integration time. The sample can be a biological sample. The detection arrangement may include at least one charged-coupled device. The source arrangement may be a pulsed broadband source. At least one spectral separating unit can be provided which separates spectrum of the first electro-magnetic radiation, the second electro-magnetic radiation and/or the combination into the at least one of the frequency components.

These and other objects, features and advantages of the present invention will become apparent upon reading the following detailed description of embodiments of the invention, when taken in conjunction with the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Further objects, features and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying figures showing illustrative embodiments of the invention, in which:

FIG. 1 is an exemplary schematic diagram of a conventional SD OCT system;

FIG. 2A is a set of exemplary graphs of spectral and temporal characteristics obtained from a conventional continuous-wave optical source;

FIG. 2B is a set of exemplary graphs of spectral and temporal characteristics obtained from a high-repetition rate mode locked laser source;

FIG. 3 is a set of exemplary graphs of spectrum and temporal characteristics obtained from a low-repetition rate broadband source;

FIGS. 4(a)-(c) are block diagrams of exemplary embodiments of low-repetition broadband source arrangements according to the present invention;

FIGS. 5(a)-(d) are exemplary graphs of spectrum and temporal characteristics obtained from an exemplary wavelength-swept source;

FIGS. 6(a)-(c) are block diagrams of exemplary embodiments of an exemplary wavelength-swept source arrangements according to the present invention;

FIG. 7(a) is an exemplary illustration of a detection signal of a cw light with a CCD array in a spectrometer;

FIG. 7(b) is an exemplary illustration of a detection signal of a pulsed light with a CCD array in a spectrometer;

FIG. 7(c) is an exemplary illustration of a detection signal of a swept light with a CCD array in a spectrometer;

FIG. 8(a) is a schematic of an exemplary pulsed ASE source;

FIG. 8(b) is a schematic of an exemplary wavelength-swept source;

FIGS. 9(a) and (b) are illustrations of signals of exemplary temporal and spectral output characteristics obtained from the exemplary pulsed ASE source;

FIGS. 9(c) and (d) are illustrations of signals of exemplary temporal and spectral output characteristics obtained from the exemplary swept source;

FIG. 10 is an exemplary block diagram of an exemplary embodiment of an SD OCT system according to the present invention;

FIG. 11 is an exemplary illustration of SD-OCT images of a paper, acquired when a sample is static (in sections a, c and e) and moving at 80 Hz over 0.8 mm (in sections b, d and f) with three different light sources;

FIG. 12(a) is an illustration of a variation of a total signal power, a sum of reflectivity of 256 depth points in each A-line, as a function of A-line index or time, obtained from images a and b shown in FIG. 11;

FIG. 12(b) is an illustration of a variation of a total signal power, a sum of reflectivity of 256 depth points in each A-line, as a function of A-line index or time, obtained from images c and d shown in FIG. 11;

FIG. 12(c) is an illustration of a variation of a total signal power, a sum of reflectivity of 256 depth points in each A-line, as a function of A-line index or time, obtained from images e and f shown in FIG. 11;

FIG. 13 is a set of illustrations of exemplary SD-OCT images of a human. coronary artery in vitro, obtained using an exemplary embodiment of the system according to the present invention, with a rotation speed of a catheter and the light source (Section A--4.5 rps, cw ASE source, Section B--37.9 rps, cw ASE source, Section C--4.5 rps, swept source, and Section C--37.9 rps, swept source);

FIG. 14 is a block diagram of another exemplary SD-OCT system that uses a line pulsed or swept source and a two-dimensional CCD array; and

FIG. 15 is a block diagram of an exemplary full-field OCT system that uses a pulsed source and a two-dimensional CCD array.

DETAILED DESCRIPTION

FIG. 1 depicts an exemplary basic configuration of a spectral-domain optical coherence tomography ("SD-OCT") system. Broadband light 10 is split by a coupler 20 into a sample arm 22 and a reference arm 24 that is terminated by a mirror 26 at its distal end. A probe 30 at the end of the sample arm delivers light to a sample 40, and receives the light backscattered from within the sample. The light returned from the two interferometer arms is recombined and directed via a circulator 44 to a spectrometer 50 consisting of a collimator 52, a diffraction grating 54, and a lens 56, a CCD array 60, and camera 62. Individual pixels of the CCD array 60 measure the optical power as a function of wave number, k=2.pi./.lamda. where .lamda. is the optical wavelength. The CCD output is digitized using a digitizer 70 and processed in a computer 74. A discrete Fourier transform ("DFT") of the CCD scan output produces an axial reflectance profile of the sample (A-line). A 2-D tomographic image can be obtained by acquiring multiple A-lines as the probe beam is scanned over the sample along a transverse direction. This exemplary architecture and the operating principle described above are well known in the art.

The broadband optical source used in prior art can be categorized into two types: continuous wave ("cw") as shown in FIG. 2A, and mode-locked pulsed source as shown in FIG. 2B. The cw source emits constant spectrum and constant output power. In this case, the integration time of OCT signals is equal to the exposure time of the detector array. Examples of such cw sources include super luminescent diodes, amplified spontaneous emission ("ASE") source, and supercontinuum source. On the other hand, the mode-locked source emits very short optical pulses with a duration ranging from sub nanoseconds to several femtoseconds and a relatively high repetition rate from 10 MHz to 1 GHz. The exposure time of CCD is typically in the order of 10 microseconds to 10 milliseconds. As a result, the mode-locked pulses essentially behave like continuous wave, illuminating the CCD array constantly over its entire exposure time. The use of the cw and mode-locked source in OCT has two shortcomings: (a) significant motion artifacts due to relatively long signal integration time and (b) SNR degradation in case <100% duty cycle of signal integration in the detector array. The exemplary embodiments according to the present inventions provide sample solutions to such problems.

One exemplary embodiment of the present invention relates to a system for imaging of a sample, e.g., biological sample, which may include a source arrangement that generates at least one source electro-magnetic radiation forwarded to the sample and a reference. Such exemplary system may include at least one detection arrangement that has a plurality of detectors, at least one of the detectors capable of detecting a signal associated with a combination of at least one first electro-magnetic radiation received from the sample and at least one second electro-magnetic radiation received from the reference. At least one particular detector may have a particular electrical integration time, and can receive at least a portion of the signal for a time duration which has a first portion with a first power level greater than a predetermined threshold and a second portion immediately preceding or following the first portion. The second portion may have a second power level that is less than the predetermined threshold, and extends for a time period which is approximately more than 10% of the particular electrical integration time.

The electro-magnetic radiation is preferably light with a center wavelength in the range of 700 to 2000 nm. The detector array is preferably charge-coupled devices ("CCD"). Using the exemplary SD-OCT system, the signal detected in the detector array is frequency components of the combination, or the spectrum. Typically the spectrum is obtained using a spectrally separating device such as a diffraction grating. A number of methods to obtain the spectrum with detector arrays are well known in the art. For full-field OCT, the signal is the optical power of the combination, which is linked to specific transverse locations in the sample.

In another exemplary embodiment of the present invention, the source arrangement can be a pulsed broadband source generating a single pulse per the particular electrical integration time or producing a burst of radiation that extends for at most approximately 90% of the particular electrical integration time. Each burst may include multiple ultrashort optical pulses in it. Examples of the pulsed sources include a Q-switched laser, a cavity-dumped mode-lock laser, and a gain-switched laser. Preferably, the spectrum of the pulsed source may have a spectral width of approximately greater than 1% of the center wavelength and a pulse width or a duration of the burst of radiation approximately shorter than 1 microseconds. The source arrangement may comprise a broadband cw source and an optical gating switch or electrical shutter integrated in the CCD array. The time window where the optical power is less than the threshold can be considered as OFF state, and the window where the power is greater than the threshold as ON state. The threshold is preferably less than 50% of the power level during ON state, however a typical pulsed source may provide much larger power extinction between the ON and OFF state. During a single detector integration time, one or multiple ON states may exist, however the total illumination span, or the duration from the start of the first ON state to the end of the last ON state is preferably shorter than 90% of the detector integration time. For example, the shorter the illumination span, the more suppression of motion artifacts can be obtained.

In yet another exemplary embodiment of the present invention, the source arrangement can be a wavelength swept source where a mean frequency of the output spectrum varies over time. The mean frequency of the source electro-magnetic radiation may change substantially continuously over time at a tuning speed that is greater than 100 terahertz per millisecond and repeatedly with a repetition period that is less than approximately 90% of the particular electrical integration time. The tuning range of the source electro-magnetic radiation may have a tuning range with a center wavelength between approximately 700 nanometers and 2000 nm, a tuning width of approximately greater than 1% of the center wavelength, and an instantaneous line width of less than approximately 10% of the tuning range. Such a source arrangement includes a tunable laser, soliton laser in conjunction with Raman self frequency shift, or cw broadband source in conjunction with a tunable filter. The mean frequency may vary substantially linearly or sinusoidally with time. As for the pulsed source, the time window where the optical power received by a specific pixel is less than the threshold can be considered as OFF state for the particular pixel, and the window where the power is greater than the threshold as ON state. The threshold is preferably less than 50% of the power level during ON state, however a typical pulsed source may provide much larger power extinction between the ON and OFF state. During the detector integration time of the pixel, one or multiple ON states may exist, however the total illumination span, or the duration from the start of the first ON state to the end of the last ON state is preferably shorter than 90% of the pixel integration time. The shorter the illumination span is, the more suppression of motion artifacts can be obtained.

According to still another exemplary embodiment of the present invention, a method may be provided for imaging of a sample, typically biological sample. For example, at least one source electro-magnetic radiation may be generated to be forwarded to the sample and a reference. At least a portion of a signal associated may be detected with a combination of at least one first electro-magnetic radiation received from the sample and at least one second electro-magnetic radiation received from the reference using at least one detector of a plurality of detectors of a detection arrangement. At least one particular detector may have a particular electrical integration time, and can receive at least a portion of the signal for a time duration which has a first portion with a first power level greater than a predetermined threshold and a second portion immediately preceding or following the first portion. The second portion may have a second power level less than the predetermined threshold, and can extend for a time period which is approximately more than 10% of the particular electrical integration time.

FIG. 3 illustrates sample outputs of one exemplary embodiment of a system and method according to the present invention that is based on a broadband pulsed source. Such source emits a single burst of optical energy, or simply "pulse", per each integration window of the detector array with timing synchronization between the pulses and integration window of the detector array, as illustrated in FIG. 3. Examples of such sources may include time-gated cw or mode-locked broadband source 200 using an external intensity modulator 210 (as shown in FIG. 4(a)), supercontinuum source based on a Q-switched pump laser 220 and supercontinuum generation medium 230 (as shown in FIG. 4(b)), self-Q-switched supercontinuum source or Raman source based on pump laser 240 and nonlinear medium 250 (as shown in FIG. 4(c)). The use of such source results in an effective signal integration time equal to the duration of the pulse, which may range from sub microseconds to sub nanoseconds, substantially shorter than the integration time of the detector array itself. Although a single pulse operation is described, other optical sources emitting multiple pulses per each integration time may be used if the pulses are generated within duration substantially shorter than the detector integration time. In exemplary clinical applications such as ophthalmology, the maximum optical energy or intensity level that can be illuminated to the retina is limited by potential damage to the tissue. Using the exemplary arrangement shown in FIG. 4(a), it is possible to use a broadband source emitting a high output power, such as SLD and Ti:Sapphire mode-locked laser, and time-gate the output to decrease the duty cycle and therefore an effective exposure energy level to the sample.

FIGS. 5(a)-(d) illustrate graphs to explain the principle of another exemplary embodiment of the present invention based on a wavelength-swept source which emits substantially narrowband spectrum that is swept over a wide spectral range, repeatedly in time. FIG. 5(c) show exemplary signals generated using a swept source with the output wavelength swept in a saw-tooth fashion. The tuning cycle is synchronized with the integration window of the detector array. In this exemplary case, each detector element can receive the light with corresponding wavelength during only a short period of time which determines the effective signal integration time. As a numerical example, when the total tuning range is 150 nm, centered at 1300 nm, and the instantaneous linewidth is 1 nm, the effective signal integration time can be only one hundredth of the detector integration time.

As shown in FIGS. 6(a)-(c), a wavelength-swept source may be implemented by using a conventional broadband source 300 followed by a wavelength scanning filter 310. According to an exemplary variant of the present invention, a wavelength-swept laser may be used using a gain medium 320, tunable filter 330 and output coupler 340 in a laser cavity 350. A wavelength-swept laser may be configured to yield a linewidth that is narrower than the resolution of the spectrometer; in this case the complexity and tolerance in spectrometer design may be relaxed. The combination of wavelength-swept source and detector array described above may be analogized with optical frequency domain imaging and exhibits motion artifacts such as Doppler distortion. To further reduce the motion artifacts, the wavelength-swept source may be operated in a low-duty-cycle or Q-switched regime, with an advantage of further reduction of effective signal integration time. Another possible source can includes a broadly tunable source based on soliton self frequency shift using a soliton source 360 and Raman medium 370.

Exemplary conventional SD-OCT systems utilize either a continuous-wave (cw) broad-spectrum light source, such as super luminescent diodes (SLD), or ultrashort mode-locked pulses with a high repetition rate in the range of 10-100 MHz. Full field OCT systems have typically employed cw thermal light source. For such conventional systems, the CCD array is illuminated constantly, and therefore the exposure time of the CCD camera determines the signal acquisition time for a single A-line. However, sample or probe motion during the A-line acquisition time can result in various undesirable artifacts such as signal fading and spatial resolution degradation. In particular, due to axial sample motion, the visibility of detected spectral fringes can diminish significantly resulting in significant image fading. Considering that cameras appropriate for SD-OCT typically provide exposures times longer than 10 .mu.s, a solution to the fringe washout problem is preferable for biomedical applications where sample and probe motion is common.

FIGS. 7(a)-(c) illustrates exemplary illustration of a detection signal with a CCD array in a spectrometer how the signal detection in the exemplary SD-OCT system for three different light sources: broadband cw source (see FIG. 7(a)), broadband pulsed source (see FIG. 7(a)), and narrowband wavelength-swept source (see FIG. 7(a)). In this figure, spectrally dispersed, broad-spectrum light 400 is incident on a CCD array 410 so that each CCD pixel receives a narrowband portion of the source light. The vertical bars 420 represent the time window during which the camera integrates photon-generated electrons. FIG. 7(a) shows the signals obtained using a common implementation of the SD-OCT system. The operational principles of the systems generating signals shown in FIGS. 7(b) and (c) are described below.

In particular, FIG. 7(b) depicts a train of short broadband pulses 430 with a repetition rate equal to the CCD readout rate. The integration time of this exemplary system is given by the pulse duration rather than the camera readout time. As a result, snap-shot A-line profiles can be obtained with freedom from sample or probe motion. This exemplary technique is conceptually similar to the use of stroboscopic illumination in photography. Although for most biomedical applications nanosecond pulses are sufficiently short to avoid motion artifacts, it is interesting to note that in principle, this approach could provide femtosecond temporal resolution A-line acquisition through the use of low-repetition mode locked lasers. The following analysis, however, pertains to an arbitrary pulsed source delivering either single bursts of short-duration broadband light or bursts comprising a brief train of mode locked pulses.

To understand the imaging characteristics of a pulsed-source SD-OCT system, the signal-to-noise ratio (SNR) for pulsed and cw operation in the presence of axial motion may be reviewed. For example, let T.sub.s and T.sub.e denote the duration of the pulse and the electrical integration time of the camera, respectively. For a sample moving axially in parallel to an optical probe beam with a speed v.sub.z, the signal power S, normalized to the signal at v.sub.z=0, is given by S.apprxeq.|.intg..sub.o.sup.T.sup.eP(t)e.sup.j2k.sup.o.sup.v.sup.z.sup.2d- t|.sup.2/.intg..sub.o.sup.T.sup.eP(t)dt.sup.2, (1) where P(t) represents time-varying optical power of the pulse, and k.sub.o=2.pi./.lamda..sub.o denotes the wave number corresponding to the center wavelength .lamda..sub.o. Equation 1 yields S.apprxeq.sin.sup.2 (k.sub.o.DELTA.z)/(k.sub.o.DELTA.z).sup.2 for a square pulse and S.apprxeq.exp[-k.sub.o.sup.2.DELTA.z.sup.2 /(2ln 2)]0 for a Gaussian pulse with T.sub.s as the full-width-at-half-maximum ("FWHM") pulse duration, where .DELTA.z=v.sub.zT.sub.s represents the total sample movement during pulse duration T.sub.s. These expressions imply that significant signal fading occurs if the sample movement is greater than a half optical wavelength during the pulse duration. Therefore, the short pulsed technique (T.sub.s<<T.sub.e) offers a significant advantage over the conventional cw operation in terms of motion-induced signal fading. Similarly, one can see that pulsed operation can also suppress other motion artifacts, such as spatial resolution degradation due to sample motion and transverse beam scanning.

The fundamental noise characteristics of pulsed operation are likely approximately identical to those of cw operation, because the detection bandwidth is solely determined by the integration time of the camera. If both a pulsed and cw sources produce the same average optical power and relative intensity noise ("RIN"), both would yield the same SNR in the limit of a stationary sample.

FIG. 7(c) shows signals generated using another exemplary techniques that uses another exemplary pulsed-source SD-OCT approach that is based on a narrowband, wavelength-swept source. Since the optical spectrum 440 incident to the CCD array 420 is continuously changed in time, each of the CCD pixels receives its corresponding spectral component only for a short time interval. As with pulsed broad bandwidth illumination, rapidly sweeping the wavelength allows the SD-OCT signal to be free from signal fading due to fringe washout. However, unlike pulsed operation, individual "spectrum pulses" do not arrive at the CCD pixels at the same time.

For a linear sweep shown in FIG. 7(c), the swept operation is approximately analogous to optical frequency domain imaging ("OFDI") as described in U.S. patent application No. 60/514,769 filed Oct. 27, 2003, the entire disclosure of which is incorporated herein by reference. In this exemplary swept operation, spectral fringes are measured as a function of time using a swept source and a standard photodiode. Therefore, both imaging techniques can exhibit similar motion artifacts. The generation of motion artifacts in produced by the exemplary OFDI system is known. The swept-source operation in the exemplary SD-OCT system, however, differs from the operations of the OFDI system in that it does not require a linear tuning slope or narrow instantaneous linewidth of the source because these specifications are governed by the detection spectrometer. Such distinctions are significant considering that tuning speed and power in wavelength swept lasers are often limited by constraints on linearity and instantaneous linewidth.

For example, pulsed and wavelength-swept sources may be constructed according to an exemplary embodiment of the present invention. A block diagram of the exemplary system of the present invention which includes a gating device is shown in FIG. 8(a). The pulsed broadband source can be provided by an external time-gating of cw broadband amplified spontaneous emission ("ASE") from a semiconductor optical amplifier 450 (e.g., SOA, Philips CQF 882/e). The output of the SOA, prior to the time gating, can be characterized as cw un-polarized ASE centered 1.3 .mu.m, with 7-mW total power at an injection current of 450 mA. The cw ASE can be coupled to an external optical gating device which includes a polygonal mirror scanner 460 and lenses 462, 464, in conjunction with a circulator 466. The polygonal mirror had 40 facets with a facet-to-facet angle of 9 degrees. The focal lengths of the collimating 462 and focusing 464 lenses can be 11 and 100 mm, respectively, to obtain a duty cycle of approximately 5% in the output. FIG. 9(a) shows an output pulse train measured with an InGaAs photodetector and oscilloscope (detection bandwidth=100 MHz) as the polygon scanner may be rotated at 474 revolutions per second to produce a pulse repetition rate of 18.94 kHz. The measured pulse width and corresponding duty cycle were 2.85 .mu.s (FWHM) and 5.4%, respectively. The average output power measured with a power meter can be 300 .mu.W. FIG. 9(b) shows the output spectrum measured with an optical spectrum analyzer. The spectrum may be approximately identical to that of the input ASE, with a center wavelength at 1300 nm and a FWHM of 66 nm.

FIG. 8(b) shows a block diagram of another exemplary embodiment of a system according to the present invention which includes the wavelength-swept laser. The laser employed the same SOA 450 and a scanning wavelength filter based on a polygonal mirror scanner 460 in a fiber-optic ring laser cavity 468. The scanning filter consisted of a diffraction grating 470 (830 lines per mm), two lenses in 4f configuration (472; f=60 mm, 474; f=63.5 mm), and the same 40-facet polygonal mirror scanner 460 as used for the pulsed source. The scanning filter can be configured to have a free spectral range of 275 nm centered at 1320 nm wavelength, which may result in a duty cycle of the laser output closely matched to that of the CCD camera (46%). When the pass band of the filter scans outside the gain bandwidth of the SOA, the source likely does not reach the lasing threshold and simply produces ASE. FIG. 9(c) shows the temporal characteristics of the laser output at a sweep repetition rate of 18.94 kHz. The region where the output power varies with a Gaussian-like profile corresponds to when the source was operated above the lasing threshold. Outside this region, the output is ASE with a constant power. To determine how much the ASE level contributed to the detected light during swept laser operation, the backward-propagating ASE power was measured by inserting a 5% tap coupler in the cavity between the filter and SOA (lower trace in FIG. 9(c), gray line). The ASE level dropped significantly during laser operation because ASE was suppressed due to gain saturation in the SOA. The laser-to-ASE ratio reached as high as 16 dB in the middle of the lasing tuning range. Horizontal bars (green) represent the integration window of the camera, which was synchronized with laser tuning. The average output power measured with a power meter was 18 mW.

FIG. 9(d) shows an exemplary output spectrum measured with the optical spectrum analyzer in a peak-hold mode. In a peak-hold mode, the contribution of ASE to the measurement would be negligible owing to its much lower spectral density than laser light at a given time. Therefore, the measured spectrum represents the tuning envelope of the swept laser. The tuning range was approximately 135 nm, centered at 1325 nm. An exemplary instantaneous linewidth of the swept output was approximately 0.4 nm, as determined by measuring the coherence length with a variable-delay interferometer.

FIG. 10 shows a block diagram of yet another exemplary embodiment of the system according to the present invention. This exemplary system includes an interferometer, a probe, and a detection spectrometer which have been described in detail in elsewhere in detail S. H. Yun et al., "High-speed spectral domain optical coherence tomography at 1.3 .mu.m wavelength," Opt. Express 11, 3598-3604 (2003). In summary, this exemplary system included a light source 500, scanner driver 502, scanner clock generator 504, optical trigger generator 510 comprising a 5% tap 512, an (optional) optical narrowband filter 514, photodetector 516, and a TTL generating circuit 518. The narrowband filter 514 is used for a swept source operation, but is not needed for the pulsed broadband source operation. The interferometer can include a circulator 520, polarization controllers 522, polarizer 524, 10/90 coupler 534, collimator 536, neutral density filter 538, reference mirror 540, galvanometer-mounted mirror 542, galvanometer driver 544, imaging lens 546, sample 550. The detection arm may include a spectrometer 560 that has a collimator 562, grating 564, imaging lens 566, CCD linear array 570, camera 572. A galvanometer can be used in the probe to provide transverse beam scanning across a sample with a FWHM beam diameter and confocal length of 18 .mu.m and 1.1 mm, respectively. The detection spectrometer 560, shown in the dash-dot box, consisted of a ruled diffraction grating 564 with 1,200 lines per mm, focusing lens 566 (f=150 mm), and a line scan camera (LSC) with a 512-element InGaAs CCD array (Sensors Unlimited Inc., SU512LX). Polarization controllers were adjusted to maximize the fringe visibility in the CCD. A total wavelength span of 106 nm centered at 1320 nm was projected to the 512-element CCD array with a spectral resolution of 0.1 nm.

The camera readout can be triggered by an external TTL signal generated from the source output. In the case of the pulsed light source, the electrical trigger pulses were generated directly from the optical pulses, as illustrated in the dotted box in FIG. 10. In the swept source case, the laser output may be transmitted through a combination of a circulator and a fiber Bragg grating reflector with 0.2 nm bandwidth and 90% reflectivity (the narrowband filter arrangement being presented by a small dotted box 510). The photodetector can then detect a train of short pulses generated when the output spectrum of the laser swept through the reflection band of the Bragg grating. From the photodetector output, TTL trigger pulses were generated with adjustable phase delay.

As described above, both lasers may be operated at a repetition rate of 18.939 kHz. This rate corresponded to the maximum readout rate of the camera. Upon receiving the trigger, the camera integrates photo-generated electrons for 24.4 .mu.s; in the subsequent 28.4 .mu.s period, the integrated voltage can be read out. By adjusting the phase delay in a PPL pulse generator, the integration time window of the camera was aligned to the output of the light sources, as shown in FIGS. 7(a) and (c). The camera output can be digitized with a 4-ch, 12-bit data acquisition board 582 (National Instruments, NI PCI-6115) and processed in a personal computer 584. The data processing may involve zero padding, interpolation and mapping to linear k-space, prior to a fast Fourier transform to create an image.

SD-OCT imaging can be performed using three different light sources: (a) the cw ASE obtained directly from the SOA, (b) the intensity-gated ASE pulses (as shown in FIG. 8(a)), and (c) the wavelength swept laser (as shown in FIG. 8(b)). In order to investigate motion artifacts, a sample can be constructed by mounting paper on an acoustic speaker. FIG. 11 shows exemplary images obtained with three different sources for comparison purposes. Shown on the left portion of FIG. 11 are exemplary OCT images acquired using cw, pulsed, and swept light, respectively, when the paper sample was kept stationary. Each image includes 256 axial and 500 transverse pixels, spans a depth of 2.1 mm and a width of 5 mm, and was acquired over a total time period of 26.4 ms. The images are generated using a logarithmic inverse grayscale over a dynamic range of 40 dB in reflectivity (as shown as a grayscale map in FIG. 11). For each of the light sources, the optical power illuminating the sample was adjusted approximately to the same level by using neutral density filters in the probe. The offset of the gray-scale map for each light source can be finely adjusted so that the three static images (See FIG. 11, sections a, c, and e) exhibited nearly the same contrast. Images of the axially moving sample (see FIG. 11, sections b, d, and f) may be acquired when the speaker was driven with a sinusoidal waveform at 80 Hz with peak-to-peak amplitude of 0.8 mm. Signal fading due to fringe washout is distinct for the case of the cw ASE source (see FIG. 11, section b). Except near the peaks and valleys of the oscillation when the axial velocity is zero, the image contrast and penetration depth may be noticeably degraded. In contrast, the image d can be obtained with the pulsed source and exhibits considerably reduced image fading. Signal fading may not be observed while using the wavelength swept source (see FIG. 11, section f).

To quantify the amount of signal fading, a sum of the pixel values in the unit of linear power along each A-line may be obtained from the exemplary images shown in FIG. 11, representing a total signal power in the particular A-line. A total of 200 pixels, from the 31.sup.st to 230.sup.th elements, were considered in the summation. The results thereof are shown in FIGS. 12(a)-(c), such that the results in FIG. 12(a) corresponds to the signals obtained using to the cw source (see FIG. 11, sections a and b), the results in FIG. 12(b) corresponds to the signals obtained using the pulsed source (see FIG. 11, sections c and d), and the results in FIG. 12(c) corresponds to the signals obtained using the swept source (see FIG. 11, section e and 1).

In each graph, the integrated signal power is plotted as a function of A-line index for the stationary-sample image (a lighter line) and the moving-sample image (a darker line). As depicted by the lighter lines, the signal power for the stationary sample exhibits random fluctuation due to speckle as the probe beam is scanned across the sample with standard deviation of approximately 2 dB. The speckle-averaged mean value varies linearly over transverse locations of the sample, a variation that was attributed to the finite confocal parameter and resulting depth-dependent light collection efficiency. The signal power traces obtained from FIG. 11, section b, d, and f (darker lines) clearly demonstrate the benefit of the pulsed and swept source in terms of reducing motion-induced signal fading.

The time gated pulses may provide a factor 8.6 reduction in signal integration time, from 24.4 .mu.s to 2.85 .mu.s. For the swept source with an instantaneous linewidth of 0.4 nm, individual CCD pixels may be illuminated for only 75 ns per each A-line acquisition representing a 325-fold reduction in signal integration time. Theoretical curves based on Eq. (1) show good correspondence with the experimental results with the following exceptions. The experimental noise floor can prohibit detection of signal loss greater than -14 dB; the small discrepancy between the blue and black curves in FIG. 12(c), by up to 3 dB, is attributed to the uneven probe collection efficiency at different depths of the two samples.

An exemplary SNR analysis indicates that the pulsed ASE source produced essentially the same noise characteristics as cw ASE of the same average optical power. However, images which may be acquired using the wavelength swept laser exhibited a noise floor that can be 10-20 dB higher, depending on depth, than that observed when using the ASE source of the same average power. We attribute this increased noise floor to the RIN of the swept laser in the frequency band from DC to 41 kHz corresponding to a reciprocal of the CCD integration time. The best sensitivity obtained with the swept source may be approximately -95 dB at a reference-arm power of 1-2 .mu.W.

Exemplary SD-OCT imaging of a human coronary artery in vitro may be conducted by use of a fiber-optic catheter. The fiber-optic catheter comprised a graded-index lens and a 90-degree prism at its distal end and was connected to the interferometer through a high-speed rotational joint which could provide a rotational speed of up 100 revolutions per second (rps). FIG. 13 shows exemplary images obtained with the cw ASE source (see images A and B of FIG. 13) and the swept source (see images C and D of FIG. 13) at the same A-line acquisition rate of 18.94 kHz. The difference between images of images A and B and images C and D is the rotational speed of the catheter, which was 9.5 rps for images A and C, corresponding to 2000 A-lines per image, and 37.9 rps for images B and D, corresponding to 500 A-lines per image. Zero delay of the interferometer was positioned between the sample and the outer prism surface, resulting in a circular artifact superimposed on the image of the tissue (marked asp).

Image A may represent a typical OCT image of a vessel. In contrast, Image B can exhibit distinct radial streaks due to loss of signal This image fading may be attributed mainly to catheter-induced modulation in path length, increasing with the rotational speed. The path length modulation can result from three mechanisms: (a) rotational beam scanning of an off-center object inevitably results in axial path length variation of the probe beam, as if the probe was retracting or approaching to the sample; (b) the tip of a rotating catheter can wobble in a protection sheath to modulate the distance between the probe and the sample; (c) mechanical vibration from a rotation joint can modulate the length of the optical fiber inside the catheter by twist or strain. Such third mechanism was thought to a dominant cause in this particular experiment, since the circle (p) corresponding to the prism surface also suffers from significant loss of contrast at the same radial locations. Images C and D of FIG. 13 are exemplary SD-OCT images obtained with the swept source. The signal fading is not noticeable in image D, demonstrating clearly the benefit of the pulsed-source approach.

Thus, multiple strategies can be applied to realize the benefit of pulsed or gated illumination. Traditional light sources include cw SLD's, supercontinuum sources, or mode-locked lasers. Each of these sources can be converted into a pulsed source by use of an external intensity modulation scheme. As an intensity modulator or switch, one may consider electro-optic or acousto-optic modulators or injection current modulation. Alternatively, CCD cameras with built-in electrical shutters may be used. This external gating approach, however, has a main drawback in that it results in a loss of optical power and therefore may degrade the detection sensitivity. However, in situations where motion causes significant signal fading through fringe washout, external gating can lead to a better sensitivity despite the loss of optical power. In other applications, however, the usable optical power in the system is often limited by the maximum permissible exposure of the sample. In this case, external gating would be an effective way to attenuate the power level entering the system from a powerful source. For example, ophthalmologic retinal imaging has been performed with SD-OCT at a wavelength of 800-nm. At this wavelength, the maximum permissible cw exposure to the eyes is limited to approximately 600-700 .mu.W according to American National Standards Institute (ANSI). For this application, one could gate the output from a commercially available mode-locked Ti:Sapphire laser and, while still providing sufficient power to the system, reduce sensitivity to motion by more than an order of magnitude.

Instead of external gating, various power-efficient internal modulation techniques may be employed. For example, Q-switching and cavity dumping are well known techniques applicable to ultrashort pulsed lasers. Q-switched supercontinuum sources with repetition rates of a few to tens of kHz have been reported and may be suitable for use in the exemplary SD-OCT systems. Beside the benefit of reducing motion artifacts, the reduced fringe washout of the pulsed source approach may also facilitate quadrature fringe detection based on sequential phase dithering.

The use of a wavelength swept source as described in this manuscript is essentially a hybrid between the OFDI and SD-OCT techniques that may permit otherwise less-flexible OFDI source requirements including narrow instantaneous linewidth and tuning linearity to be relaxed. In this case, the high resolution and linearity of the spectrometer can accommodate a swept laser with a nonlinear tuning element such as a resonantly scanned Fabry-Perot filter or a tunable source based on soliton self-frequency shifting in nonlinear fibers. Furthermore, the relaxed requirement on the instantaneous linewidth of a swept laser may facilitate the generation of higher output powers.

In another exemplary embodiment of the system according to the present invention, each of the CCD arrays can be a 2-dimensional array. Two dimensional simultaneous scanning can be performed by using the 2-dimensional array, where along one axis of the array spectral information is encoded, while across the second dimension spatial information is encoded. FIG. 14 shows a block diagram of such exemplary system which may include a line source 600, lens 604, beam splitter 610, and a two-dimensional CCD array 620. The tissue is preferably illuminated by a line beam, and the illuminated portion in the sample is imaged on one dimension of the array, while the light is spectrally dispersed in the other direction of the array. As previously discussed, long integration times with a continuous source lead to motion artifacts and fringe washout. Also, read-out times of 2-dimensional arrays are larger that of 1-dimensional arrays. By using a pulsed source, motion artifacts and fringe wash-out can be avoided, where the exposure time of the array is significantly shorter than the frame transfer rate. Since the light intensity is distributed over a line, more power is allowed to be incident on the tissue. When using a pulsed source with pulse durations longer than 100 femtoseconds, the source can be treated as semi-continuous in ophthalmic applications. Thus, high peak power can be used over short periods of time, while the average power is in compliance with ANSI standards for light exposure of tissue. In addition, a swept source can be used in combination with line illumination, where the detector can be a 1 or 2 dimensional array. In case of a one dimensional array, the tissue information over a full line is acquired for each wavelength consecutively by a 1-dimensional array. By using a 2-dimensional array, the wavelength is encoded along the second dimension of the array.

As yet another exemplary embodiment of the present invention, a pulsed source can be employed in full-field optical coherence tomography, as depicted in FIG. 15 as a block diagram. The detector array is typically a 2-dimensional CCD array. The operating principle and generic system architecture for full-field OCT is well known in the art. Full-field OCT typically produces en face images. As with the earlier description of SD-OCT, the pulsed-source approach effectively reduces the effective signal acquisition time in a CCD array which is typically two dimensional. The repetition rate is matched to the frame readout rate of the CCD array. Since a typical full-field OCT technique is not based on spectral-domain interferometry, the swept source approach does not provide an advantage in full-field OCT in terms of motion artifacts. Nevertheless, a swept source whose sweep repetition rate is matched to the CCD readout rate may be still usable for full-field OCT as an alternative source to conventional broadband source. This is because of the fact that a swept spectrum seen by the CCD in a time-integrated manner is identical to a broadband spectrum of a same spectral envelope. The light source 700 is preferably spatially incoherent source, such as Halogen or Tungsten lamp in Kohler configuration, but operated in a pulsed regime to reduce the motion artifacts in full-field imaging. The source beam is divided into a reference and a sample by a beam splitter. High-NA objective lenses 710 are typically used. The reference mirror 540 may be attached to a mechanical actuator such as PZT for phase dithering to realize heterodyne detection.

The invention disclosed here may be used in various imaging applications, ranging from coronary artery imaging, GI tract, ophthalmologic imaging, to monitoring of dynamic biological or chemical process, moving materials and components, where high-sensitivity, high-speed, motion-artifact-free imaging is preferred.

The foregoing merely illustrates the principles of the invention. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. For example, the invention described herein is usable with the exemplary methods, systems and apparatus described in U.S. Provisional Patent Application No. 60/514,769 filed Oct. 27, 2003, and International Patent Application No. PCT/US03/02349 filed on Jan. 24, 2003, the disclosures of which are incorporated by reference herein in their entireties. It will thus be appreciated that those skilled in the art will be able to devise numerous systems, arrangements and methods which, although not explicitly shown or described herein, embody the principles of the invention and are thus within the spirit and scope of the present invention. In addition, all publications, patents and patent applications referenced above are incorporated herein by reference in their entireties.

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed