Device and method for modifying the shape of a body organ

Alferness , et al. May 8, 2

Patent Grant 8172898

U.S. patent number 8,172,898 [Application Number 12/719,758] was granted by the patent office on 2012-05-08 for device and method for modifying the shape of a body organ. This patent grant is currently assigned to Cardiac Dimensions, Inc.. Invention is credited to John M. Adams, Clifton A. Alferness, Cruz Beeson, Leonard Kowalsky, Mark L. Mathis, David G. Reuter.


United States Patent 8,172,898
Alferness ,   et al. May 8, 2012

Device and method for modifying the shape of a body organ

Abstract

An intravascular support device includes a support or reshaper wire, a proximal anchor and a distal anchor. The support wire engages a vessel wall to change the shape of tissue adjacent the vessel in which the intravascular support is placed. The anchors and support wire are designed such that the vessel in which the support is placed remains open and can be accessed by other devices if necessary. The device provides a minimal metal surface area to blood flowing within the vessel to limit the creation of thrombosis. The anchors can be locked in place to secure the support within the vessel.


Inventors: Alferness; Clifton A. (Port Orchard, OR), Adams; John M. (Kirkland, WA), Mathis; Mark L. (Fremont, CA), Reuter; David G. (Bothell, WA), Beeson; Cruz (Chico, CA), Kowalsky; Leonard (Bothell, WA)
Assignee: Cardiac Dimensions, Inc. (Kirkland, WA)
Family ID: 42294878
Appl. No.: 12/719,758
Filed: March 8, 2010

Prior Publication Data

Document Identifier Publication Date
US 20100168847 A1 Jul 1, 2010

Related U.S. Patent Documents

Application Number Filing Date Patent Number Issue Date
11467105 Aug 24, 2006 7674287
10429171 May 2, 2003 7179282

Current U.S. Class: 623/2.36; 623/1.11; 623/2.1; 623/2.37
Current CPC Class: A61F 2/2451 (20130101); A61F 2250/0059 (20130101); A61F 2250/001 (20130101)
Current International Class: A61F 2/24 (20060101); A61F 2/06 (20060101)
Field of Search: ;623/1.11,1.15,2.1,2.36,2.37

References Cited [Referenced By]

U.S. Patent Documents
3620212 November 1971 Fannon, Jr. et al.
3786806 January 1974 Johnson et al.
3890977 June 1975 Wilson
3974526 August 1976 Dardik et al.
3995623 December 1976 Black et al.
4055861 November 1977 Carpentier et al.
4164046 August 1979 Cooley
4485816 December 1984 Krumme
4550870 November 1985 Krumme et al.
4588395 May 1986 Lemelson
4830023 May 1989 de Toledo et al.
5061277 October 1991 Carpentier et al.
5099838 March 1992 Bardy
5104404 April 1992 Wolff
5250071 October 1993 Palermo
5261916 November 1993 Engelson
5265601 November 1993 Mehra
5350420 September 1994 Cosgrove et al.
5433727 July 1995 Sideris
5441515 August 1995 Khosravi et al.
5449373 September 1995 Pinchasik et al.
5454365 October 1995 Bonutti
5458615 October 1995 Klemm et al.
5474557 December 1995 Mai
5507295 April 1996 Skidmore
5507802 April 1996 Imran
5514161 May 1996 Limousin
5554177 September 1996 Kieval et al.
5562698 October 1996 Parker
5575818 November 1996 Pinchuk
5584867 December 1996 Limousin et al.
5601600 February 1997 Ton
5617854 April 1997 Munsif
5662703 September 1997 Yurek et al.
5676671 October 1997 Inoue
5733325 March 1998 Robinson et al.
5741297 April 1998 Simon
5752969 May 1998 Cunci et al.
5800519 September 1998 Sandock
5824071 October 1998 Nelson et al.
5836882 November 1998 Frazin
5871501 February 1999 Leschinsky et al.
5891193 April 1999 Robinson et al.
5895391 April 1999 Farnholtz
5899882 May 1999 Waksman et al.
5908404 June 1999 Elliot
5928258 July 1999 Khan et al.
5935161 August 1999 Robinson et al.
5954761 September 1999 Machek et al.
5961545 October 1999 Lentz et al.
5978705 November 1999 KenKnight et al.
5984944 November 1999 Forber
6007519 December 1999 Rosselli
6015402 January 2000 Sahota
6022371 February 2000 Killion
6027517 February 2000 Crocker et al.
6045497 April 2000 Schweich, Jr. et al.
6053900 April 2000 Brown et al.
6056775 May 2000 Borghi et al.
6077295 June 2000 Limon et al.
6077297 June 2000 Robinson et al.
6080182 June 2000 Shaw et al.
6086611 July 2000 Duffy et al.
6096064 August 2000 Routh
6099549 August 2000 Bosma et al.
6099552 August 2000 Adams
6129755 October 2000 Mathis et al.
6171320 January 2001 Monassevitch
6183512 February 2001 Howanec et al.
6190406 February 2001 Duerig et al.
6200336 March 2001 Pavcnik et al.
6210432 April 2001 Solem et al.
6228098 May 2001 Kayan et al.
6241757 June 2001 An et al.
6254628 July 2001 Wallace et al.
6267783 July 2001 Letendre et al.
6275730 August 2001 KenKnight et al.
6306141 October 2001 Jervis
6312446 November 2001 Huebsch et al.
6334864 January 2002 Amplatz et al.
6342067 January 2002 Mathis et al.
6345198 February 2002 Mouchawar et al.
6352553 March 2002 van der Burg et al.
6352561 March 2002 Leopold et al.
6358195 March 2002 Green et al.
6395017 May 2002 Dwyer et al.
6402781 June 2002 Langberg et al.
6419696 July 2002 Ortiz et al.
6442427 August 2002 Boute et al.
6464720 October 2002 Boatman et al.
6478776 November 2002 Rosenman et al.
6503271 January 2003 Duerig et al.
6537314 March 2003 Langberg et al.
6556873 April 2003 Smits
6562066 May 2003 Martin
6562067 May 2003 Mathis
6569198 May 2003 Wilson et al.
6589208 July 2003 Ewers et al.
6599314 July 2003 Mathis et al.
6602288 August 2003 Cosgrove et al.
6602289 August 2003 Colvin et al.
6623521 September 2003 Steinke et al.
6626899 September 2003 Houser et al.
6629534 October 2003 St. Goar et al.
6629994 October 2003 Gomez et al.
6643546 November 2003 Mathis et al.
6648881 November 2003 KenKnight et al.
6652538 November 2003 Kayan et al.
6656221 December 2003 Taylor et al.
6676702 January 2004 Mathis
6689164 February 2004 Seguin
6709425 March 2004 Gambale et al.
6716158 April 2004 Raman et al.
6718985 April 2004 Hlavka et al.
6721598 April 2004 Helland et al.
6723038 April 2004 Schroeder et al.
6733521 May 2004 Chobotov et al.
6743219 June 2004 Dwyer et al.
6764510 July 2004 Vidlund et al.
6773446 August 2004 Dwyer et al.
6776784 August 2004 Ginn
6790231 September 2004 Liddicoat et al.
6793673 September 2004 Kowalsky et al.
6797001 September 2004 Mathis et al.
6798231 September 2004 Iwasaki et al.
6800090 October 2004 Alferness et al.
6805128 October 2004 Pless et al.
6810882 November 2004 Langberg et al.
6821297 November 2004 Snyders
6824562 November 2004 Mathis et al.
6827690 December 2004 Bardy
6881220 April 2005 Edwin et al.
6899734 May 2005 Castro et al.
6908478 June 2005 Alferness et al.
6908482 June 2005 McCarthy et al.
6935404 August 2005 Duerig et al.
6949122 September 2005 Adams et al.
6955689 October 2005 Ryan et al.
6960229 November 2005 Mathis et al.
6964683 November 2005 Kowalsky et al.
6966926 November 2005 Mathis
6976995 December 2005 Mathis et al.
7004958 February 2006 Adams et al.
7152605 December 2006 Khairkhahan et al.
7175653 February 2007 Gaber
7179282 February 2007 Alferness et al.
7309354 December 2007 Mathis et al.
7311729 December 2007 Mathis et al.
7316708 January 2008 Gordon et al.
7364588 April 2008 Mathis et al.
7452375 November 2008 Mathis et al.
7591826 September 2009 Alferness et al.
2001/0018611 August 2001 Solem et al.
2001/0041899 November 2001 Foster
2001/0044568 November 2001 Langberg et al.
2001/0049558 December 2001 Liddicoat et al.
2002/0016628 February 2002 Langberg et al.
2002/0042621 April 2002 Liddicoat et al.
2002/0042651 April 2002 Liddicoat et al.
2002/0049468 April 2002 Streeter et al.
2002/0055774 May 2002 Liddicoat
2002/0065554 May 2002 Streeter
2002/0095167 July 2002 Liddicoat et al.
2002/0138044 September 2002 Streeter et al.
2002/0151961 October 2002 Lashinski et al.
2002/0156526 October 2002 Hlavka et al.
2002/0161377 October 2002 Rabkin et al.
2002/0183837 December 2002 Streeter et al.
2002/0183838 December 2002 Liddicoat et al.
2002/0183841 December 2002 Cohn et al.
2002/0188170 December 2002 Santamore et al.
2003/0018358 January 2003 Saadat
2003/0040771 February 2003 Hyodoh et al.
2003/0069636 April 2003 Solem et al.
2003/0078465 April 2003 Pai et al.
2003/0078654 April 2003 Taylor et al.
2003/0083613 May 2003 Schaer
2003/0088305 May 2003 Van Schie et al.
2003/0093148 May 2003 Bolling et al.
2003/0130730 July 2003 Cohn et al.
2003/0135267 July 2003 Solem et al.
2004/0019377 January 2004 Taylor et al.
2004/0039443 February 2004 Solem et al.
2004/0073302 April 2004 Rourke et al.
2004/0098116 May 2004 Callas et al.
2004/0102839 May 2004 Cohn et al.
2004/0102840 May 2004 Solem et al.
2004/0127982 July 2004 Machold et al.
2004/0133220 July 2004 Lashinski et al.
2004/0133240 July 2004 Adams et al.
2004/0133273 July 2004 Cox
2004/0138744 July 2004 Lashinski et al.
2004/0148019 July 2004 Vidlund et al.
2004/0148020 July 2004 Vidlund et al.
2004/0148021 July 2004 Cartledge et al.
2004/0153147 August 2004 Mathis
2004/0158321 August 2004 Reuter et al.
2004/0176840 September 2004 Langberg
2004/0193191 September 2004 Starksen et al.
2004/0193260 September 2004 Alferness et al.
2004/0220654 November 2004 Mathis et al.
2004/0220657 November 2004 Nieminen et al.
2004/0249452 December 2004 Adams et al.
2004/0260342 December 2004 Vargas et al.
2005/0004667 January 2005 Swinford et al.
2005/0010240 January 2005 Mathis et al.
2005/0021121 January 2005 Reuter et al.
2005/0027351 February 2005 Reuter et al.
2005/0027353 February 2005 Alferness et al.
2005/0033419 February 2005 Alferness et al.
2005/0038507 February 2005 Alferness et al.
2005/0060030 March 2005 Lashinski et al.
2005/0096666 May 2005 Gordon et al.
2005/0096740 May 2005 Langberg et al.
2005/0107810 May 2005 Morales et al.
2005/0119673 June 2005 Gordon et al.
2005/0137449 June 2005 Nieminen et al.
2005/0137450 June 2005 Aronson et al.
2005/0137451 June 2005 Gordon et al.
2005/0137685 June 2005 Nieminen et al.
2005/0149182 July 2005 Alferness et al.
2005/0187619 August 2005 Mathis et al.
2005/0197692 September 2005 Pai et al.
2005/0197693 September 2005 Pai et al.
2005/0197694 September 2005 Pai et al.
2005/0209690 September 2005 Mathis et al.
2005/0216077 September 2005 Mathis et al.
2005/0261704 November 2005 Mathis
2005/0272969 December 2005 Alferness et al.
2006/0020335 January 2006 Kowalsky et al.
2006/0030882 February 2006 Adams et al.
2006/0041305 February 2006 Lauterjung
2006/0116758 June 2006 Swinford et al.
2006/0142854 June 2006 Alferness et al.
2006/0161169 July 2006 Nieminen et al.
2006/0167544 July 2006 Nieminen et al.
2006/0173536 August 2006 Mathis et al.
2006/0191121 August 2006 Gordon
2006/0271174 November 2006 Nieminen et al.
2006/0276891 December 2006 Nieminen et al.
2007/0055293 March 2007 Alferness et al.
2007/0066879 March 2007 Mathis et al.
2007/0135912 June 2007 Mathis
2007/0239270 October 2007 Mathis et al.
2008/0015407 January 2008 Mathis et al.
2008/0015679 January 2008 Mathis et al.
2008/0015680 January 2008 Mathis et al.
2008/0097594 April 2008 Mathis et al.
2008/0109059 May 2008 Gordon et al.
2008/0140191 June 2008 Mathis et al.
2008/0319542 December 2008 Nieminen et al.
2010/0031793 February 2010 Hayner et al.
2010/0100175 April 2010 Reuter et al.
2010/0280602 November 2010 Mathis
2011/0106117 May 2011 Mathis et al.
Foreign Patent Documents
0893133 Jan 1999 EP
0903110 Mar 1999 EP
0968688 Jan 2000 EP
1050274 Nov 2000 EP
1095634 May 2001 EP
1177779 Feb 2002 EP
2181670 May 2010 EP
0741604 Dec 1955 GB
2754067 Mar 1998 JP
2000-308652 Nov 2000 JP
2001-503291 Mar 2001 JP
2003-503101 Jan 2003 JP
2003-521310 Jul 2003 JP
9902455 Dec 2000 SE
WO 98/56435 Dec 1998 WO
WO 00/44313 Aug 2000 WO
WO 00/60995 Oct 2000 WO
WO 00/74603 Dec 2000 WO
WO 01/00111 Jan 2001 WO
WO 01/19292 Mar 2001 WO
WO 01/50985 Jul 2001 WO
WO 01/54618 Aug 2001 WO
WO 01/87180 Nov 2001 WO
WO 02/00099 Jan 2002 WO
WO 02/01999 Jan 2002 WO
WO 02/05888 Jan 2002 WO
WO 02/19951 Mar 2002 WO
WO 02/34118 May 2002 WO
WO 02/47539 Jun 2002 WO
WO 02/053206 Jul 2002 WO
WO 02/060352 Aug 2002 WO
WO 02/062263 Aug 2002 WO
WO 02/062270 Aug 2002 WO
WO 02/062408 Aug 2002 WO
WO 02/076284 Oct 2002 WO
WO 02/078576 Oct 2002 WO
WO 02/096275 Dec 2002 WO
WO 03/015611 Feb 2003 WO
WO 03/037171 May 2003 WO
WO 03/049647 Jun 2003 WO
WO 03/049648 Jun 2003 WO
WO 03/055417 Jul 2003 WO
WO 03/059198 Jul 2003 WO
WO 03/063735 Aug 2003 WO
WO 2004/045463 Jun 2004 WO
WO 2004/084746 Oct 2004 WO

Other References

EL-Maasarany et al.; The coronary sinus conduit function: Anatomical study (relationship to adjacent structures); http://europace.oxfordjournals.org/cge/content/full/7/5/475. (accessed Sep. 9, 2008). cited by other .
Gray, H. Anatomy of the Human Body. The Systemic Veins. Philadelphia: Lea & Febiger, 1918; Bartleby.com. 2000. Available at www.bartleby.com/107/. Accessed Jun. 7, 2006. cited by other .
Heartsite.com. Echocardiogram, 1999; p. 1-4. A.S.M. Systems Inc. Available at: http://www.heartsite.com/html/echocardiogram.html. Accessed Jul. 1, 2005. cited by other .
Papageorgiou, P., et al. Coronary Sinus Pacing Prevents Induction of Atrial Fibrillation. Circulation. 1997; 96(6): 1893-1898. cited by other .
Pijls et al.; Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses; The New England J. of Med.; vol. 334; No. 26; pp. 1703-1708; Jun. 27, 1996. cited by other .
Pai, Suresh; U.S. Appl. No. 60/329,694 entitled "Percutaneous cardiac support structures and deployment means," filed Oct. 16, 2001. cited by other .
Yamanouchi, et al.; Activation Mapping from the coronary sinus may be limited by anatomic variations; vol. 21 pp. 2522-2526; Nov. 1998. cited by other .
Nieminen et al.; U.S. Appl. No. 12/907,907 entitled "Tissue Shaping Device," filed Oct. 19, 2010. cited by other .
Gordon et al.; U.S. Appl. No. 12/952,057 entitled "Percutaneous Mitral Valve Annuloplasty Delivery System," filed Nov. 22, 2010. cited by other .
Pelton et al. Medical uses of nitinol; Material Science Forum; vols. 327-328; pp. 63-70; 2000. cited by other .
Hayner et al.; U.S. Appl. No. 13/220,444 entitled "Catheter cutting tool," filed Aug. 29, 2011. cited by other.

Primary Examiner: Isabella; David
Assistant Examiner: Sharma; Yashita
Attorney, Agent or Firm: Shay Glenn LLP

Parent Case Text



CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 11/467,105, filed Aug. 24, 2006, now U.S. Pat. No. 7,674,287; which is a continuation of U.S. application Ser. No. 10/429,171 filed May 2, 2003, now U.S. Pat. No. 7,179,282, the disclosures of which are incorporated by reference in their entirety as if fully set forth herein.
Claims



What is claimed is:

1. A device for treating mitral valve regurgitation, comprising: a distal anchor having a collapsed configuration within a delivery device and an expanded configuration with an expanded diameter; a proximal anchor having a collapsed configuration within the delivery device and an expanded configuration with an expanded diameter; and a connecting element connecting the distal and proximal anchors, wherein the diameter of the proximal anchor in the expanded configuration is at least about 133% greater than the diameter of the distal anchor in the expanded configuration, wherein each of the distal and proximal anchors are adapted to have the expanded configurations with the expanded diameters external to a patient's body.

2. The device of claim 1 wherein the distal and proximal anchors each have collapsed diameters in their collapsed configurations, and wherein the collapsed diameter of the distal anchor within the delivery device is substantially the same as the collapsed diameter of the proximal anchor within the delivery device.

3. The device of claim 1 wherein the diameter of the proximal anchor in the expanded configuration is at least about 200% greater than the diameter of the distal anchor in the expanded configuration.

4. The device of claim 1 wherein the diameter of the proximal anchor in the expanded configuration is at least about 333% greater than the diameter of the distal anchor in the expanded configuration.

5. The device of claim 1 further comprising a distal lock adapted to lock the distal anchor in a locked configuration.

6. The device of claim 5 wherein the distal lock is adapted to lock the distal anchor in the expanded configuration.

7. The device of claim 1 further comprising a proximal lock adapted to lock the proximal anchor in a locked configuration.

8. The device of claim 7 wherein the proximal lock is adapted to lock the proximal anchor in the expanded configuration.
Description



FIELD OF THE INVENTION

The present invention relates to medical devices in general, and in particular to devices for supporting internal body organs.

BACKGROUND OF THE INVENTION

The mitral valve is a portion of the heart that is located between the chambers of the left atrium and the left ventricle. When the left ventricle contracts to pump blood throughout the body, the mitral valve closes to prevent the blood being pumped back into the left atrium. In some patients, whether due to genetic malformation, disease or injury, the mitral valve fails to close properly causing a condition known as regurgitation, whereby blood is pumped into the atrium upon each contraction of the heart muscle. Regurgitation is a serious, often rapidly deteriorating, condition that reduces circulatory efficiency and must be corrected.

Two of the more common techniques for restoring the function of a damaged mitral valve are to surgically replace the valve with a mechanical valve or to suture a flexible ring around the valve to support it. Each of these procedures is highly invasive because access to the heart is obtained through an opening in the patient's chest. Patients with mitral valve regurgitation are often relatively frail thereby increasing the risks associated with such an operation.

One less invasive approach for aiding the closure of the mitral valve involves the placement of a support structure in the cardiac sinus and vessel that passes adjacent the mitral valve. The support structure is designed to push the vessel and surrounding tissue against the valve to aid its closure. This technique has the advantage over other methods of mitral valve repair because it can be performed percutaneously without opening the chest wall. While this technique appears promising, some proposed supports appear to limit the amount of blood that can flow through the coronary sinus and may contribute to the formation of thrombosis in the vessel. Therefore, there is a need for a tissue support structure that does not inhibit the flow of blood in the vessel in which it is placed and reduces the likelihood of thrombosis formation. Furthermore, the device should be flexible and securely anchored such that it moves with the body and can adapt to changes in the shape of the vessel over time.

SUMMARY OF THE INVENTION

The present invention is an intravascular support that is designed to change the shape of a body organ that is adjacent to a vessel in which the support is placed. In one embodiment of the invention, the support is designed to aid the closure of a mitral valve. The support is placed in a coronary sinus and vessel that are located adjacent the mitral valve and urges the vessel wall against the valve to aid its closure.

The intravascular support of the present invention includes a proximal and distal anchor and a support wire or reshaper disposed therebetween. The proximal and distal anchors circumferentially engage a vessel in which the support is placed. A support wire is urged against the vessel by the proximal and distal anchors to support the tissue adjacent the vessel.

In one embodiment of the invention, the proximal and distal supports are made from a wire hoop that presents a low metal coverage area to blood flowing within the vessel. The wire hoops may allow tissue to grow over the anchors to reduce the chance of thrombosis formation. The wire hoops have a figure eight configuration and can expand to maintain contact with the vessel walls if no vessel expands or changes shape.

In another embodiment of the invention, the proximal and distal anchors of the intravascular support are rotationally offset from each other. Locks on the support wire allow a physician to ensure that the anchors have been successfully deployed and prevent the support wire from collapsing within a vessel.

INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:

FIG. 1 illustrates an intravascular support for changing the shape of an internal body organ in accordance with one embodiment of the present invention;

FIG. 2 illustrates one method of deploying an intravascular support in accordance with the present invention;

FIG. 3 illustrates one embodiment of the intravascular support in accordance with the present invention;

FIG. 4 illustrates a distal anchor of the embodiment shown in FIG. 3;

FIG. 5 illustrates a proximal anchor of the embodiment shown in FIG. 3;

FIGS. 6A-6C are cross-sectional views of crimp tubes for use with one embodiment of the present invention;

FIG. 7 illustrates a proximal lock at the proximal end of the intravascular support as shown in FIG. 3;

FIG. 8 illustrates how the embodiment of the intravascular support shown in FIG. 3 is deployed from a catheter;

FIG. 9 illustrates an intravascular support in accordance with another embodiment of the present invention;

FIG. 10 illustrates a distal anchor of the intravascular support shown in FIG. 9;

FIG. 11 illustrates a proximal anchor of the intravascular support shown in FIG. 9;

FIG. 12 illustrates yet another embodiment of an intravascular support in accordance with the present invention;

FIG. 13 illustrates a distal anchor of the intravascular support shown in FIG. 12;

FIG. 14 illustrates a proximal anchor of the intravascular support shown in FIG. 12;

FIG. 15 illustrates an anchor and strut according to another embodiment of the invention;

FIG. 16 illustrates a double loop anchor according to another embodiment of the invention;

FIG. 17 illustrates a double loop anchor with a cross strut according to another embodiment of the invention; and

FIG. 18 illustrates an anchor with torsional springs according to another embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

As indicated above, the present invention is a medical device that supports or changes the shape of tissue that is adjacent a vessel in which the device is placed. The present invention can be used in any location in the body where the tissue needing support is located near a vessel in which the device can be deployed. The present invention is particularly useful in supporting a mitral valve in an area adjacent a coronary sinus and vessel. Therefore, although the embodiments of the invention described are designed to support a mitral valve, those skilled in the art will appreciate that the invention is not limited to use in supporting a mitral valve.

FIG. 1 illustrates a mitral valve 20 having a number of flaps 22, 24, and 26 that should overlap and close when the ventricle of the heart contracts. As indicated above, some hearts may have a mitral valve that fails to close properly thereby creating one or more gaps 28 that allow blood to be pumped back into the left atrium each time the heart contracts. To add support to the mitral valve such that the valve completely closes, an intravascular support 50 is placed in a coronary sinus and vessel 60 that passes adjacent one side of the mitral valve 20. The intravascular support 50 has a proximal anchor 52, a distal anchor 54, and a support wire 56 or reshaper extending between the proximal and distal anchors. With the anchors 52 and 54 in place, the support wire 56 exerts a force through the coronary sinus wall on the postero-lateral mitral valve 20 thereby closing the one or more gaps 28 formed between the valve flaps. With the intravascular support 50 in place, the function of the mitral valve is improved.

As will be explained in further detail below, each of the proximal and distal anchors 52, 54 preferably circumferentially engages the wall of the vessel 60 in which it is placed. The support wire 56 is secured to a peripheral edge of the proximal and distal anchors such that the support wire is urged by the anchors against the vessel wall. Therefore, the support wire 56 and anchors 52, 54 present a minimal obstruction to blood flowing within the vessel.

FIG. 2 shows one possible method of delivering the intravascular support of the present invention to a desired location in a patient's body. An incision 80 is made in the patient's skin to access a blood vessel. A guide catheter 82 is advanced through the patient's vasculature until its distal end is positioned adjacent the desired location of the intravascular support. After positioning the guide catheter 82, a delivery catheter and advancing mechanism 84 are inserted through the guide catheter 82 to deploy the intravascular support at the desired location in the patient's body. Further detail regarding one suitable advancing mechanism 84 is described in commonly assigned U.S. patent application Ser. No. 10/313,914, filed Dec. 5, 2002, the disclosure of which is hereby incorporated by reference.

FIG. 3 illustrates one embodiment of an intravascular support in accordance with the present invention. The intravascular support 100 includes a support wire 102 having a proximal end 104 and a distal end 106. The support wire 102 is made of a biocompatible material such as stainless steel or a shape memory material such as nitinol wire.

In one embodiment of the invention, the support wire 102 comprises a double length of nitinol wire that has both ends positioned within a distal crimp tube 108. To form the support wire 102, the wire extends distally from the crimp tube 108 where it is bent to form a distal stop loop (see 121 in FIG. 4) having a diameter that is larger than the lumens within the distal crimp tube 108. After forming the distal stop loop, the wire returns proximally through the crimp tube 108 towards the proximal end of the support 100. Proximal to the proximal end of the crimp tube 108, is a distal lock 110 that is formed by the support wire bending away from the longitudinal axis of the support 102 and then being bent parallel to the longitudinal axis of the support before being bent again towards the longitudinal axis of the support. Therefore, the bends in the support wire form a half 110a of the distal lock that is used to secure the distal anchor in the manner described below. From the distal lock 110, the wire continues proximally through a proximal crimp tube 112. On exiting the proximal end of the proximal crimp tube 112, the wire is bent to form an arrowhead-shaped proximal lock 114. The wire of the support 102 then returns distally through the proximal crimp tube 112 to a position just proximal to the proximal end of the distal crimp tube 108 wherein the wire is bent to form a second half 110b of the distal lock 110.

Support wire 102 has a length that is selected based on its intended destination within a patient's vessel. For use in supporting a mitral valve, the support wire is preferably between one and six inches long and has a curved bend between its proximal end 104 and distal end 106 with a radius of curvature between 1 and 3 inches and most preferably with a radius of curvature of 1.8 inches. In addition, the wire used to form the support wire 102 is flexible enough to move with each heartbeat (thereby changing the force applied to the mitral valve annulus during the heartbeat) and stiff enough to support the mitral valve. In one embodiment, the wire used to form the support wire 102 is made of nitinol having a modulus of elasticity of 5-20.times.106 psi and a diameter of between 0.0110'' and 0.0150'' and most preferably 0.0140''. Other shape memory materials may be used for support wire as well.

At the distal end of the support wire 102 is a distal anchor 120 that is formed of a flexible wire such as nitinol or some other shape memory material. As is best shown in FIGS. 3 and 4, the wire forming the distal anchor has one end positioned within the distal crimp tube 108. After exiting the distal end of the crimp tube 108, the wire forms a figure eight configuration whereby it bends upward and radially outward from the longitudinal axis of the crimp tube 108. The wire then bends back proximally and crosses the longitudinal axis of the crimp tube 108 to form one leg of the figure eight. The wire is then bent to form a double loop eyelet or loop 122 around the longitudinal axis of the support wire 102 before extending radially outwards and distally back over the longitudinal axis of the crimp tube 108 to form the other leg of the figure eight. Finally, the wire is bent proximally into the distal end of the crimp tube 108 to complete the distal anchor 120.

The distal anchor is expanded by sliding the double eyelet 122 of the distal anchor from a position that is proximal to the distal lock 110 on the support wire to a position that is distal to the distal lock 110. The bent-out portions 110a and 110b of distal lock 110 are spaced wider than the width of double eyelet 122 and provide camming surfaces for the locking action. Distal movement of eyelet 122 pushes these camming surfaces inward to permit eyelet 122 to pass distally of the lock 110, then return to their original spacing to keep eyelet 122 in the locked position.

The dimensions of the distal anchor are selected so that the diameter of the distal anchor in a plane perpendicular to the axis of the lumen in which the anchor is deployed is preferably between 100% and 300%, most preferably between 130% and 200%, of the diameter of the lumen prior to deployment. When treating mitral valve regurgitation by placement of the device in the coronary sinus, the diameter of the coronary sinus may expand over time after deployment. Oversizing the anchor combined with the inherent deformability and recoverability properties of the anchor material (particularly nitinol or some other shape memory material) enables the anchor to continue to expand from its initial deployment size as the lumen distends and expands over time.

Upon expansion, the distal anchor circumferentially engages the vessel wall with a radially outwardly directed force that is distributed unequally around the circumference of the anchor by distending the vessel wall in variable amounts along the axial length of the anchor. The unequal distribution of force helps the anchor contact the lumen wall securely by creating bumps and ridges that are not parallel to the central axis of the lumen. In its expanded configuration, the distal anchor's diameter is at least 150%-500% and most preferably 150%-300% of the anchor's diameter in the unexpanded configuration. The open cross-sectional area of the lumen through the anchor is at least 50%, and most preferably 80%-100% of the lumen cross-sectional area prior to redeployment of the anchor.

In addition, the metal coverage of the anchor, as defined by the percentage of the lumen surface area through which the device extends that is exposed to a metal surface, is between 5% and 30% and most preferably 10%. The wire used to form the distal anchor 120 is preferably nitinol having a diameter of between 0.0110'' and 0.0150'' and most preferably 0.0140 inches. Other shape memory materials may be used as well.

During insertion, a physician can tactilely feel when the eyelet 122 has been slid over the distal lock 110 in order to determine when the distal anchor has been set within a vessel lumen. In addition, if the anchor is misplaced, it can be collapsed by pulling the eyelet 122 proximally over the distal lock 110 and repositioning the anchor in the unexpanded configuration. The force required to capture the distal anchor is preferably less than 20 lbs. and more preferably less than 10 lbs.

FIG. 4 also illustrates how the crimp tube 108 is held in place between the distal lock 110 on the proximal side and the stop loop 121 at the distal end of the support wire 102. The wires of the distal anchor 120 exit the distal end of the crimp tube 108 at an angle of approximately 45 degrees before looping back over the length of the distal crimp tube 108. Therefore, the distal end of the anchor is relatively atraumatic to avoid damage to a vessel during placement.

At the proximal end of the intravascular support is a proximal anchor 140 that is preferably formed of a biocompatible, elastic wire such as stainless steel or a shape memory material such as nitinol. As is best shown in FIGS. 3 and 5, the proximal anchor 140 in one embodiment is made of a single length of wire having a first end positioned within a proximal crimp tube 112. The wire extends distally from the crimp tube 112 and bends radially outward and away from the longitudinal axis of the crimp tube 112 before being bent proximally and crossing the longitudinal axis of the crimp tube 112 in order to form a first leg of a figure eight configuration. The wire then is bent to form a double eyelet or loop 142 around the longitudinal axis of the support wire 102 wherein the eyelet 142 has a diameter that allows it to be forced over the proximal lock 114. After forming the eyelet 142, the wire extends outwardly and away from the longitudinal axis of the crimp tube 112 before being bent distally over and across the longitudinal axis of the crimp tube 112 to form the second leg of a figure eight. Finally, the wire is bent proximally and extends into the distal end of the crimp tube 112.

Like the distal anchor, the proximal anchor is expanded and locked by sliding the double eyelet 142 of the proximal anchor from a position that is proximal to the proximal lock 114 on the support wire to a position that is distal to the proximal lock 114. As can be seen in FIG. 7, the proximal lock 114 has an "arrowhead" shape whereby the proximal end of the lock is bent away from the longitudinal axis of the support wire at an angle that is less steep than the distal end of the proximal lock. The less steep section makes it easier to advance the eyelet 142 over the lock in the distal direction than to retrieve the eyelet 142 over the proximal lock 114 in the proximal direction. Distal movement of eyelet 142 cams the less steep proximal surfaces inward to permit eyelet 142 to pass distally of the lock 114, then return to their original spacing to keep eyelet 142 in the locked position.

As can be seen by comparing the proximal anchor 140 with the distal anchor 120 in FIG. 3, the proximal anchor has a larger radius of curvature because it is designed to fit within a larger diameter portion of the coronary sinus. The dimensions of the proximal anchor are selected so that the diameter of the proximal anchor in a plane perpendicular to the axis of the lumen in which the anchor is deployed is preferably between 100% and 300%, most preferably between 130% and 200%, of the diameter of the lumen prior to deployment. As with the distal anchor, oversizing the proximal anchor combined with the inherent deformability and recoverability properties of the anchor material (particularly nitinol or some other shape memory material) enables the anchor to continue to expand from its initial deployment size as the lumen distends and expands over time.

Upon expansion, the proximal anchor circumferentially engages the vessel wall with a radially outwardly directed a force that is distributed unequally around the circumference of the anchor by distending the vessel wall in variable amounts along the axial length of the anchor. As with the distal anchor, the unequal distribution of force helps the proximal anchor contact the lumen wall securely by creating bumps and ridges that are not parallel to the central axis of the lumen. In its expanded configuration, the proximal anchor's diameter is at least 200%-500% and most preferably 200%-300% of the anchor's diameter in the unexpanded configuration. The open cross-sectional area of the lumen through the anchor is at least 50% and most preferably 80%-100% of the lumen cross sectional area prior to redeployment of the anchor.

FIG. 3 illustrates an embodiment external to a patient's body. That is, the anchors are shown in expanded configurations and in the absence of bodily forces acting on the anchors.

In one embodiment of the invention, the proximal and distal anchors are oriented such that the planes of the anchors are offset with respect to each other by an angle of approximately 30 degrees. The offset helps the intravascular support 100 seat itself in the coronary sinus and vessel surrounding the mitral valve in certain mammals. However, it will be appreciated that if the support is designed for other uses, the proximal and distal anchors may be offset by more or less depending upon the anatomy of the intended destination.

FIGS. 6A-6C illustrate cross-sectional views of the crimp tubes in which the wires that form the support wire 102 and proximal and distal anchors 120, 140 are threaded. In one embodiment, the crimp tubes comprise a biocompatible material such as titanium having a number of holes extending longitudinally through the tube through which the wires are threaded. In FIG. 6A, a tube 150 has four holes 152, 154, 156, 158 positioned in approximately a square configuration within the circumference of the tube 150. As shown in FIG. 6B, a tube 160 includes four holes 162, 164, 166, 168 therein that are positioned in a diamond configuration. FIG. 6C shows another tube 170 having four holes 172, 174, 176, 178. Here the holes 172, 174 lie in a first plane and the second pair of holes 176, 178 lie in a second plane that is offset from the plane of the holes 172, 174. By changing the orientation of the holes 176, 178 with respect to the holes 172, 174, the relative plane of wires passing through the holes can be adjusted. Thus in the example shown in FIG. 3, the proximal anchor may be formed with a crimp tube such as that shown in FIG. 6A or FIG. 6B while the proximal anchor may be formed in a crimp tube such as that shown in FIG. 6C in order to adjust the angular orientation between the proximal anchor and the distal anchor. In an alternative embodiment, the crimp tubes at the proximal and distal ends of the support wire 102 are the same and the angular offset between the proximal and distal anchor is achieved by bending the wires at the desired angle. Although the crimp tubes shown use one hole for each wire passing through the crimp tube, it will be appreciated that other configurations may be provided such as slots or other passages for the wires to pass through.

In another embodiment, the distal and proximal anchors are attached to the support wire by a wire, such as nitinol wire or other shape memory material. The attaching wire may be spiral wrapped around the base of each anchor and around the support wire. In another embodiment, each anchor may be attached to the support wire by wrapping the anchor wire around the support wire. In yet another embodiment, the two anchors and the support wire may be made from a single wire, such as nitinol wire or other shape memory material.

FIG. 8 illustrates one method for delivering an intravascular support 100 in accordance with the present invention to a desired location in the body. As indicated above, intravascular support 100 is preferably loaded into and routed to a desired location within a catheter 200 with the proximal and distal anchors in a collapsed or deformed condition. That is, the eyelet 122 of the distal anchor 120 is positioned proximally of the distal lock 110 and the eyelet 142 of the proximal anchor 140 is positioned proximal to the proximal lock 114. The physician ejects the distal end of the intravascular support from the catheter 200 into the lumen by advancing the intravascular support or retracting the catheter or a combination thereof. A pusher (not shown) provides distal movement of the intravascular support with respect to catheter 200, and a tether 201 provides proximal movement of the intravascular support with respect to catheter 200. Because of the inherent recoverability of the material from which it is formed, the distal anchor begins to expand as soon as it is outside the catheter. Once the intravascular support is properly positioned, the eyelet 122 of the distal anchor is pushed distally over the distal lock 110 so that the distal anchor 120 further expands and locks in place to securely engage the lumen wall and remains in the expanded condition. Next, the proximal end of the support wire 102 is tensioned by applying a proximally-directed force on the support wire and distal anchor to apply sufficient pressure on the tissue adjacent the support wire to modify the shape of that tissue. In the case of the mitral valve, fluoroscopy, ultrasound or other imaging technology may be used to see when the support wire supplies sufficient pressure on the mitral valve to aid in its complete closure with each ventricular contraction without otherwise adversely affecting the patient. A preferred method of assessing efficacy and safety during a mitral valve procedure is disclosed in copending U.S. patent application Ser. No. 10/366,585, filed Feb. 12, 2003, and titled "Method of Implanting a Mitral Valve Therapy Device," the disclosure of which is incorporated herein by reference. Once the proper pressure of the support wire has been determined, the proximal anchor is deployed from the catheter and allowed to begin its expansion. The eyelet 142 of the proximal anchor 140 is advanced distally over the proximal lock 114 to expand and lock the proximal anchor, thereby securely engaging the lumen wall and maintaining the pressure of the support wire against the lumen wall. Finally, the mechanism for securing the proximal end of the intravascular support can be released. In one embodiment, the securement is made with a braided loop 202 at the end of tether 201 and a hitch pin 204. The hitch pin 204 is withdrawn thereby releasing the loop 202 so it can be pulled through the proximal lock 114 at the proximal end of the intravascular support 100.

In many contexts, it is important for the device to occupy as little of the lumen as possible. For example, when using the device and method of this invention to treat mitral valve regurgitation, the device should be as open as possible to blood flow in the coronary sinus (and to the introduction of other medical devices, such as pacing leads) while still providing the support necessary to reshape the mitral valve annulus through the coronary sinus wall. The combination of the device's open design and the use of nitinol or some other shape memory material enables the invention to meet these goals. When deployed in the coronary sinus or other lumen, the device preferably occupies between about 1.5% and about 5.5% of the overall volume of the section of lumen in which it is deployed.

In many embodiments of the invention, the use of a shape memory material such as nitinol is particularly important. The percentage of shape memory material by volume in the device is preferably between about 30% and 100%, most preferably between about 40% and 60%.

In some instances, it may be necessary to move or remove an intravascular support after deployment by recapturing the device into a catheter. Prior to deployment of the proximal anchor, the distal anchor may be recaptured into the delivery catheter by simultaneously holding the device in place with tether 201 while advancing catheter distally over distal anchor 120 so that the entire device is once again inside catheter 200. The distally directed force of the catheter collapses distal anchor 120 into a size small enough to fit into catheter 200 again. Likewise, after deployment of both anchors but prior to releasing the securement mechanism as described above, the intravascular support may be recaptured into the delivery catheter by simultaneously holding the device in place with tether 201 while advancing catheter distally first over proximal anchor 140, over support wire 102, and finally over distal anchor 120. The distally directed forced of catheter 200 collapses anchors 120 and 140 into a size small enough to fit into catheter 200 again. If the securement mechanism has been detached from the device prior to recapture, the device still may be recaptured into the delivery catheter or another catheter by grasping the proximal end of the device with a grasper or tether and by advancing the catheter distally over the device.

In one embodiment of the invention, proximal anchor 140 includes a recapture guidance and compression element. In the embodiment shown in FIG. 5, the slope of the two proximal arms 143 and 144 of proximal anchor 140 is small in proximal portions 145 and 146 of the arms, then increases in more distal portions 147 and 148 of the arms. This shape guides the catheter to move distally over the anchor more easily and to help compress the anchor to a collapsed shape as the catheter advances during recapture.

Likewise, the two proximal arms 123 and 124 of distal anchor 120 have a shallower slope in their proximal portions 145 and 146 and an increased slope in more distal portions 147 and 148. While recapture of the distal anchor is somewhat easier due to its smaller size compared to the proximal anchor, this recapture guidance and compression feature enhances the ease with which recapture is performed.

FIG. 9 illustrates an alternative embodiment of the intravascular support of the present invention. In this embodiment, an intravascular support 250 has a support wire 252 and a distal anchor 254 and a proximal anchor 256. In the embodiment shown in FIG. 9, the distal anchor 254 is made from the same wire used to form the support wire 252. As best shown in FIG. 10, the wire used to form the support wire 252 extends distally through a distal crimp tube 260 before looping radially outward and returning proximally and across the longitudinal axis of the crimp tube 260 to form one leg of a figure eight. The wire then winds around the axis of the suspension wire 252 to form an eyelet 262. The wire then continues radially outward and distally across the longitudinal axis of the crimp tube 260 to form the second leg of a figure eight. After forming the figure eight, the wire enters the distal end of the crimp tube 260 in the proximal direction to form the other half of the support wire 252. A distal lock 264 is formed proximal to the distal crimp tube 260 by outwardly extending bends in the wires that form the support wire 252. The distal lock 264 prevents the double eyelet 262 from sliding proximally and collapsing the distal anchor 254 when positioned in a vessel.

As shown in FIG. 11, a proximal anchor 256 is constructed in a fashion similar to the proximal anchor 140 shown in FIG. 3. That is, the proximal anchor 256 is formed of a separate wire than the wire used to form the support wire 252 and distal anchor 254. The wire of the proximal anchor has one end within a proximal crimp tube 270. The wire extends distally out of the end of the crimp tube and bends radially outward before returning back and across the longitudinal axis of the crimp tube 270. At the proximal end of the crimp tube 270, the wire of the proximal anchor forms a double eyelet 272 around the longitudinal axis of the support wire 252. The wire then continues radially outward and distally over the longitudinal axis of the crimp tube 270 to form the second leg of the figure eight whereupon it is bent proximally into the distal end of the crimp tube 270.

FIG. 12 shows yet another embodiment of an intravascular support in accordance with the present invention. Here, an intravascular support 300 comprises a support wire 302, a distal anchor 304 and a proximal anchor 306. As in the embodiment shown in FIG. 9, the distal anchor 304 and the support wire 302 are formed of the same wire. To form the distal anchor, the wire extends distally through a distal crimp tube 310 and exits out the distal end before extending radially outward and bending back and across the longitudinal axis of the crimp tube 310 to form one leg of a figure eight. The loop then forms an eyelet 312 around the longitudinal axis of the support wire 302 before bending radially outward and distally across the longitudinal axis of the crimp tube 310 to form a second leg of the figure eight. The wire then enters the distal end of the crimp tube 310 in the proximal direction. The support wire 302 may have one or two outwardly extending sections that form a distal stop 314 to maintain the position of the eyelet 312 once the distal anchor is set in the expanded configuration.

The proximal anchor 306 is formed from a separate wire as shown in FIG. 14. The wire has one end positioned within the proximal crimp tube 320 that extends distally outward and radially away from the longitudinal axis of the crimp tube 320 before being bent proximally and across the longitudinal axis of the crimp tube 320 to form one leg of the figure eight. The wire then winds around the longitudinal axis of the support wire to form an eyelet 322 before being bent distally and across the longitudinal axis of the crimp tube 320 to enter the distal end of the crimp tube 320 in the proximal direction. As will be appreciated, the proximal crimp tube 320 of the embodiment shown in FIG. 12 holds four wires wherein the distal crimp tube 310 need only hold two wires.

FIGS. 15-18 show other embodiments of the invention. In the embodiment shown in FIG. 15, the intravascular support has an anchor 400 formed as a loop 404 emerging from a window 406 in a crimp tube 408. Extending from one end 411 of crimp tube 408 is a support strut 410 which connects with loop 404. Also extending from the crimp tube 408 is a support wire 412. Loop 404 and support 410 may be formed from nitinol, stainless steel, or any other appropriate material. The intravascular support includes another anchor. The intravascular support of this embodiment may be delivered and deployed in the manner discussed above with respect to the embodiment described above.

FIG. 16 shows another embodiment of an anchor 450 for an intravascular support. Anchor 450 is formed from two loops 452 and 454 emerging from a window 456 and an end 457 of a crimp tube 458. A support wire 462 also extends from the crimp tube. Loops 452 and 454 may be formed from nitinol, stainless steel, or any other appropriate material. The intravascular support includes another anchor. The intravascular support of this embodiment may be delivered and deployed in the manner discussed above with respect to the embodiment described above.

FIG. 17 shows yet another embodiment of an anchor 500 for an intravascular support according to this invention. Anchor 500 is formed from two loops 502 and 504 emerging from a window 506 and an end 507 of a crimp tube 508. A cross strut 505 connects the loops. A support wire 512 also extends from the crimp tube. Loops 502 and 504 and strut 505 may be formed from nitinol, stainless steel, or any other appropriate material. The intravascular support includes another anchor. The intravascular support of this embodiment may be delivered and deployed in the manner discussed above with respect to the embodiment described above.

FIG. 18 is a modification of the embodiment shown in FIGS. 3-7. In this embodiment, torsional springs 558 of proximal anchor 550 have been formed as single loops or eyelets in the anchor's wire 552. These springs make the anchor 550 more compliant by absorbing some of the force applied to the anchor during locking. While FIG. 18 shows a proximal anchor with two springs 558, any number of springs could be used on either the proximal or the distal anchor.

While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed