Anti-viral pyrimidine nucleoside analogues

McGuigan , et al. October 26, 2

Patent Grant 7820631

U.S. patent number 7,820,631 [Application Number 10/257,855] was granted by the patent office on 2010-10-26 for anti-viral pyrimidine nucleoside analogues. This patent grant is currently assigned to Rega Foundation, University College Cardiff Consultants Limited. Invention is credited to Jan Balzarini, Christopher McGuigan.


United States Patent 7,820,631
McGuigan ,   et al. October 26, 2010
**Please see images for: ( Certificate of Correction ) **

Anti-viral pyrimidine nucleoside analogues

Abstract

A nucleoside analogue compound is provided which has a six-membered aromatic ring system, the aromatic ring system being substituted in the para position with an unbranched unsubstituted alkyl or alkoxy moiety, wherein the alkyl or alkoxy moiety, in total, has from 3 to 8 carbon atoms. This compound shows anti-vira1 activity, for example with respect to varicella zoster virus and can thus be used in therapeutic methods for the prophylaxis and treatment of viral infections such as varicella zoster virus.


Inventors: McGuigan; Christopher (Cardiff, GB), Balzarini; Jan (Heverlee, BE)
Assignee: Rega Foundation (Leuven, BE)
University College Cardiff Consultants Limited (Cardiff, GB)
Family ID: 9890100
Appl. No.: 10/257,855
Filed: April 12, 2001
PCT Filed: April 12, 2001
PCT No.: PCT/GB01/01694
371(c)(1),(2),(4) Date: October 17, 2002
PCT Pub. No.: WO01/83501
PCT Pub. Date: November 08, 2001

Prior Publication Data

Document Identifier Publication Date
US 20030148967 A1 Aug 7, 2003

Foreign Application Priority Data

Apr 17, 2000 [GB] 0009486.2
Current U.S. Class: 514/43; 514/258.1; 514/265.1; 514/52; 544/244; 536/27.2; 514/49; 536/27.13; 544/279; 544/278; 514/260.1
Current CPC Class: A61K 31/4985 (20130101); C07D 498/04 (20130101); C07H 19/14 (20130101); C07H 19/24 (20130101); A61P 31/12 (20180101); C07H 19/06 (20130101); A61K 31/498 (20130101); C07D 403/02 (20130101); C07H 19/10 (20130101); C07D 491/04 (20130101); C07D 487/04 (20130101); A61K 31/706 (20130101); C07H 19/23 (20130101); C07D 405/04 (20130101)
Current International Class: A61K 31/7048 (20060101); A61K 31/517 (20060101); C07H 19/073 (20060101); C07H 19/09 (20060101); C07H 19/10 (20060101); C07H 19/14 (20060101); C07D 491/048 (20060101); C07H 19/06 (20060101); C07H 19/067 (20060101); A61K 31/7056 (20060101); A61K 31/7068 (20060101); A61K 31/519 (20060101); C07D 239/70 (20060101); C07D 495/04 (20060101); C07C 247/02 (20060101)
Field of Search: ;514/260.1,265.1

References Cited [Referenced By]

U.S. Patent Documents
6573247 June 2003 McGuigan et al.
Foreign Patent Documents
WO 96/29336 Sep 1996 WO
WO 98/49177 Nov 1998 WO

Other References

De Clercq et al., "Antiviral Drugs in Current Clinical Use" Journal of Clinical Virology (2004) vol. 30, pp. 115-133. cited by examiner .
U.S. Appl. No. 12/226,044, filed Oct. 2008, McGuigan, Christopher. cited by examiner .
Silverman, R. The Organic Chemistry of Drug Design and Drug Action, "Chapter 8: Prodrugs and Drug Delivery Systems" Published 1992 by Academic Press, pp. 352-397. cited by examiner .
Crisp, G.T., et al., "Palladium-catalyzed coupling of terminal alkynes with 5-(trifluoromethanesulfonyloxy) pyrimidine nucleosides," J. Org. Chem., 1993, 58(24), 6614-6619 (Chemical Abstract No. 119:271599, 3 pages). cited by other .
Malakhova, E.V., et al., "Reagents for introducing a fluorescent deoxyuridine 2-phenylbenzoxazola derivative into oligonucleotides," Bioorg. Khim., 1998, 24(9), 688-695 (Chemical Abstract No. 130:352490, 2 pages). cited by other .
Tolstikov, G.A., et al., "Novel type of interaction of 5-iodopyrimidinonucleosides with alkynes," Izv. Akad. Nauk, Ser. Khim., 1992, 6, 1449-1450 (Chemical Abstract No. 118:124938, 2 pages). cited by other .
Tolstikov, G.A., et al., "New type of reaction of 5-idopyrimidine nucleosides with alkynes," Izv. Akad. Nauk, Ser. Khim., 1993, 3, 596-598 (Chemical Abstract No. 124:87652, 2 pages). cited by other .
Brancale, A. et al., "Synthesis and anti-varicella-zoster virus activity of some nove bicyclic nucleoside inhibitors; effect of enhanced aqueous solubility", Antiviral Chem. Chemother, 2000, 11(6), 383-393. cited by other .
Crisp, G.T. et al., "Palladium-Catalyzed Coupling of Terminal Alkynes with 5(Trifluoromethanesulfonyloxy) Pyrimidine Nucleosides", Journal of Organic Chemistry, 1993, 58(24), 6614-6619. cited by other .
DeClercq, E. et al., "(E)-5-(2-Bromovinyl)-2'-deoxyuridine: A potent and selective anti-herpes agent", Proc. Natl. Acad. Sci., USA, 1979, 76(6), 2947-2951. cited by other .
Kerr, C.E. et al., "Synthesis of N, N-dialkylaniline-2'-deoxyuridine conjugates for DNA-mediated electron transfer studies", Nucleosides, Nucleotides Nucleic Acids, 2000, 19(5&6), 851-866. cited by other .
Malakhova, E.V. et al., "Reagents for introducing a fluorescent deoxyuridine 2-phenylbenzoxazole derivative into oligonucleotides", Bioorg. Khim, 1998, 24(9), 688-695. cited by other .
McGuigan, C. et al., "Potent and Selective Inhibition of Varicella-Zoster Virus(VZV) by Nucleoside Analogues with Unusual Bicyclic Base", J. Med. Chem, 1999, 42(22), 4479-4484. cited by other .
McGuigan, C. et al., "Highly Potent and Selective Inhibition of Varicella-Zoster Viru by Bicyclic Furopyrimidine Nucleosides Bearing an Aryl Side Chain", J. Med. Chem, 2000, 43(26), 4993-4997. cited by other.

Primary Examiner: Olson; Eric S
Attorney, Agent or Firm: Schulman; B. Aaron Stites & Harbison PLLC

Claims



The invention claimed is:

1. A compound having the formula: ##STR00019## wherein Ar is a substituted aromatic ring system, the aromatic ring system comprising one six-membered aromatic ring, the aromatic ring system being substituted in the para position with an unbranched unsubstituted alkyl or alkoxy moiety, wherein the alkyl or alkoxy moiety, in total, comprises from 3 to 8 carbon atoms; R.sub.8 and R.sub.9 are each independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, halogens, amino, alkylamino, dialkylamino, nitro, cyano, alkoxy, aryloxy, thiol, alkylthiol, arylthiol, and aryl; Q is selected from the group consisting of O, S and CY.sub.2, where Y may be the same or different and is selected from H, alkyl and halogens; X is selected from the group consisting of O, NH, S, N-alkyl, (CH.sub.2).sub.m where m is 1 to 10, and CY.sub.2 where Y may be the same or different and is selected from hydrogen, alkyl and halogens; Z is selected from the group consisting of O, S, NH, and N-alkyl; U'' is H and U' is selected from H and CH.sub.2T, or U' and U'' are joined so as to form a ring moiety including Q wherein U'--U'' together is respectively selected from the group consisting of --CTH--CT'T'' and --CT'--CT'-, so as to provide ring moieties selected from the group consisting of: ##STR00020## wherein: T is selected from the group consisting of OH, H, halogens, O-alkyl, O-acyl, O-aryl, CN, NH.sub.2 and N.sub.3; T' is selected from the group consisting of H and halogens and, where more than one T' is present, they may be the same or different; T'' is selected from the group consisting of H and halogens; and W is selected from the group consisting of H, a phosphate group and a pharmacologically acceptable salt thereof.

2. A compound according to claim 1 wherein said alkyl or alkoxy moiety substituted on the aromatic ring system comprises one or more straight chain, saturated alkyl or alkoxy moieties.

3. A compound according to claim 1 wherein said alkyl moiety substituted on the aromatic ring system comprises, in total, from 4 to 7 carbon atoms.

4. A compound according to claim 3 wherein said alkyl moiety comprises, in total, from 5 to 6 carbon atoms.

5. A compound according to claim 1 wherein said alkyl moiety substituted on the aromatic ring system is selected from the group consisting of C.sub.5 alkyl moieties, C.sub.6 alkyl moieties and mixtures thereof.

6. A compound according to claim 1 wherein said alkoxy moiety substituted on the aromatic ring system comprises, in total, from 3 to 7 carbon atoms.

7. A compound having the formula: ##STR00021## wherein Ar is a substituted aromatic ring system, the aromatic ring system comprising one six-membered aromatic ring, the aromatic ring system being substituted with an optionally substituted alkyl or alkoxy moiety, wherein the alkyl or alkoxy moiety, in total, comprises from 3 to 8 carbon atoms, calculated excluding any substituents that may be present on the said alkyl or alkoxy moiety, wherein said alkyl or alkoxy moiety is optionally substituted with substituents selected from the group consisting of chlorine, bromine, iodine, CN, CO.sub.2alkyl (C.sub.1 to C.sub.6), CONH.sub.2, CONH alkyl (C.sub.1 to C.sub.6), SH, S alkyl (C.sub.1 to C.sub.6) and NO.sub.2; R.sub.8 and R.sub.9 are each independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, halogens, amino, alkylamino, dialkylamino, nitro, cyano, alkoxy, aryloxy, thiol, alkylthiol, arylthiol, and aryl; Q is selected from the group consisting of O, S and CY.sub.2, where Y may be the same or different and is selected from H, alkyl and halogens; X is selected from the group consisting of O, NH, S, N-alkyl, (CH.sub.2).sub.m where m is 1 to 10, and CY.sub.2 where Y may be the same or different and is selected from hydrogen, alkyl and halogens; Z is selected from the group consisting of O, S, NH, and N-alkyl; U'' is H and U' is selected from H and CH.sub.2T, or U' and U'' are joined so as to form a ring moiety including Q wherein U'--U'' together is respectively selected from the group consisting of --CTH--CT'T'' and --CT'=CT'-, so as to provide ring moieties selected from the group consisting of: ##STR00022## wherein: T is selected from the group consisting of OH, H, halogens, O-alkyl, O-acyl, O-aryl, CN, NH.sub.2 and N.sub.3; T' is selected from the group consisting of H and halogens and, where more than one T' is present, they may be the same or different; T'' is selected from the group consisting of H and halogens; and W is selected from the group consisting of H, a phosphate group and a pharmacologically acceptable salt thereof; and wherein the compound is selected from the group consisting of: 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-propylphenyl)-2,3-dihydrofuro-- [2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-butylphenyl)-2,3-dihydrofuro-[- 2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-pentylphenyl)-2,3-dihydrofuro-- [2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-hexylphenyl)-2,3-dihydrofuro-[- 2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-heptylphenyl)-2,3-dihydrofuro-- [2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-octylphenyl)-2,3-dihydrofuro-[- 2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-isobutylphenyl)-2,3-dihydrofuro-- [2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-isopentylphenyl)-2,3-dihydrofuro- -[2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-(-5-(4-chlorobutoxy)pentyl)pheny- l)-2,3-dihydrofuro-[2,3-d]pyrimidin-2-one and mixtures thereof.

8. A compound selected from the group consisting of: 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-propoxyphenyl)-2,3-dihydrofuro- -[2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-pentoxyphenyl)-2,3-dihydrofuro- -[2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-hexoxyphenyl)-2,3-dihydrofuro-- [2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-heptoxyphenyl)-2,3-dihydrofuro- -[2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-isobutylphenyl)-2,3-dihydrofuro-- [2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-isopentylphenyl)-2,3-dihydrofuro- -[2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-(-5-(4-chlorobutoxy)pentyl)pheny- l)-2,3-dihydrofuro-[2,3-d]pyrimidin-2-one mixtures thereof; and mixtures thereof with any compound or compounds according to claim 7.

9. A method for preparing compounds according to claim 1 wherein a 5-halo nucleoside analogue is contacted with a terminal alkyne in the presence of a catalyst, or a 5-alkynyl nucleoside is cyclised in the presence of a catalyst.

10. A method for the treatment of a varicella zoster virus infection comprising administering to a patient in need of such treatment an effective dose of a compound having the formula: ##STR00023## wherein Ar is a substituted aromatic ring system, the aromatic ring system comprising one six-membered aromatic ring, the aromatic ring system being substituted in the para position with an unbranched unsubstituted alkyl or alkoxy moiety, wherein the alkyl or alkoxy moiety, in total, comprises from 3 to 8 carbon atoms; R.sub.8 and R.sub.9 are each independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, halogens, amino, alkylamino, dialkylamino, nitro, cyano, alkoxy, aryloxy, thiol, alkylthiol, arylthiol, and aryl; Q is selected from the group consisting of O, S and CY.sub.2, where Y may be the same or different and is selected from H, alkyl and halogens; X is selected from the group consisting of O, NH, S, N-alkyl, (CH.sub.2).sub.m where m is 1 to 10, and CY.sub.2 where Y may be the same or different and is selected from hydrogen, alkyl and halogens; Z is selected from the group consisting of O, S, NH, and N-alkyl; U'' is H and U' is selected from H and CH.sub.2T, or U' and U'' are joined so as to form a ring moiety including Q wherein U'--U'' together is respectively selected from the group consisting of --CTH--CT'T'' and --CT'=CT'-, so as to provide ring moieties selected from the group consisting of: ##STR00024## wherein T is selected from the group consisting of OH, H, halogens, O-alkyl, O-acyl, O-aryl, CN, NH.sub.2 and N.sub.3; T' is selected from the group consisting of H and halogens and, where more than one T' is present, they may be the same or different; T'' is selected from the group consisting of H and halogens; and W is selected from the group consisting of H, a phosphate group and a pharmacologically acceptable salt thereof.

11. A composition comprising a compound having the formula: ##STR00025## wherein Ar is a substituted aromatic ring system, the aromatic ring system comprising one six-membered aromatic ring, the aromatic ring system being substituted in the para position with an unbranched unsubstituted alkyl or alkoxy moiety, wherein the alkyl or alkoxy moiety, in total, comprises from 3 to 8 carbon atoms; R.sub.8 and R.sub.9 are each independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, halogens, amino, alkylamino, dialkylamino, nitro, cyano, alkoxy, aryloxy, thiol, alkylthiol, arylthiol, and aryl; Q is selected from the group consisting of O, S and CY.sub.2, where Y may be the same or different and is selected from H, alkyl and halogens; X is selected from the group consisting of O, NH, S, N-alkyl, (CH.sub.2).sub.m where m is 1 to 10, and CY.sub.2 where Y may be the same or different and is selected from hydrogen, alkyl and halogens; Z is selected from the group consisting of O, S, NH, and N-alkyl; U'' is H and U' is selected from H and CH.sub.2T, or U' and U'' are joined so as to form a ring moiety including Q wherein U'--U'' together is respectively selected from the group consisting of --CTH--CT'T'' and --CT'=CT'-, so as to provide ring moieties selected from the group consisting of: ##STR00026## wherein: T is selected from the group consisting of OH, H, halogens, O-alkyl, O-acyl, O-aryl, CN, NH.sub.2 and N.sub.3; T' is selected from the group consisting of H and halogens and, where more than one T' is present, they may be the same or different; T'' is selected from the group consisting of H and halogens; and W is selected from the group consisting of H, a phosphate group and a pharmacologically acceptable salt thereof; in combination with a pharmaceutically acceptable excipient.

12. A method of preparing a pharmaceutical composition comprising the step of combining a compound having the formula: ##STR00027## wherein Ar is a substituted aromatic ring system, the aromatic ring system comprising one six-membered aromatic ring, the aromatic ring system being-substituted in the para position with an unbranched unsubstituted alkyl or alkoxy moiety, wherein the alkyl or alkoxy moiety, in total, comprises from 3 to 8 carbon atoms; R.sub.8 and R.sub.9 are each independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, halogens, amino, alkylamino, dialkylamino, nitro, cyano, alkoxy, aryloxy, thiol, alkylthiol, arylthiol, and aryl; Q is selected from the group consisting of O, S and CY.sub.2, where Y may be the same or different and is selected from H, alkyl and halogens; X is selected from the group consisting of O, NH, S, N-alkyl, (CH.sub.2).sub.m where m is 1 to 10, and CY.sub.2 where Y may be the same or different and is selected from hydrogen, alkyl and halogens; Z is selected from the group consisting of O, S, NH, and N-alkyl; V'' is H and U' is selected from H and CH.sub.2T, or U' and V'' are joined so as to form a ring moiety including Q wherein U'--V'' together is respectively selected from the group consisting of --CTH--CT'T'' and --CT'=CT'-, so as to provide ring moieties selected from the group consisting of: ##STR00028## wherein: T is selected from the group consisting of OH, H, halogens, O-alkyl, O-acyl, O-aryl, CN, NH.sub.2 and N.sub.3; T' is selected from the group consisting of H and halogens and, where more than one T' is present, they may be the same or different; T'' is selected from the group consisting of H and halogens; and W is selected from the group consisting of H, a phosphate group and a pharmacologically acceptable salt thereof; with a pharmaceutically acceptable excipient.

13. A compound according to claim 1 wherein said alkyl moiety substituted on the aromatic ring system are selected from the group consisting of C.sub.4 alkyl moieties, C.sub.5 alkyl moieties, C.sub.6 alkyl moieties, C.sub.7 alkyl moieties, and mixtures thereof.

14. A compound according to claim 1 wherein the aromatic ring system comprises a carbocyclic aromatic ring system.

15. A compound having the formula: ##STR00029## wherein Ar is a substituted aromatic ring system, the aromatic ring system comprising one six-membered aromatic ring, the aromatic ring system being substituted with an optionally substituted, alkyl or alkoxy moiety, wherein the alkyl or alkoxy moiety, in total, comprises from 3 to 8 carbon atoms, calculated excluding any substituents that may be present on the said alkyl or alkoxy moiety, wherein said alkyl or alkoxy moiety is optionally substituted with substituents selected from the group consisting of chlorine, bromine, iodine, CN, CO.sub.2alkyl (C.sub.1 to C.sub.6), CONH.sub.2, CONH alkyl (C.sub.1 to C.sub.6), SH, S alkyl (C.sub.1 to C.sub.6) and NO.sub.2; R.sub.8 and R.sub.9 are each independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, halogens, amino, alkylamino, dialkylamino, nitro, cyano, alkoxy, aryloxy, thiol, alkylthiol, arylthiol, and aryl; Q is selected from the group consisting of O, S and CY.sub.2, where Y may be the same or different and is selected from H, alkyl and halogens; X is selected from the group consisting of O, NH, S, N-alkyl, (CH.sub.2).sub.m where m is 1 to 10, and CY.sub.2 where Y may be the same or different and is selected from hydrogen, alkyl and halogens; Z is selected from the group consisting of O, S, NH, and N-alkyl; U'' is H and U' is selected from H and CH.sub.2T, or U' and U'' are joined so as to form a ring moiety including Q wherein U'--U'' together is respectively selected from the group consisting of --CTH--CT'T'' and --CT'=CT'-, so as to provide ring moieties selected from the group consisting of: ##STR00030## wherein: T is selected from the group consisting of OH, H, halogens, O-alkyl, O-acyl, O-aryl, CN, NH.sub.2 and N.sub.3; T' is selected from the group consisting of H and halogens and, where more than one T' is present, they may be the same or different; T'' is selected from the group consisting of H and halogens; and W is selected from the group consisting of H, a phosphate group and a pharmacologically acceptable salt thereof; and wherein the compound is 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-pentylphenyl)-2,3-dihydrofuro-- [2,3-d]pyrimidin-2-one.

16. A compound selected from the group consisting of: 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-propylphenyl)-2,3-dihydrofuro-- [2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-butylphenyl)-2,3-dihydrofuro-[- 2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-pentylphenyl)-2,3-dihydrofuro-- [2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-hexylphenyl)-2,3-dihydrofuro-[- 2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-heptylphenyl)-2,3-dihydrofuro-- [2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-octylphenyl)-2,3-dihydrofuro-[- 2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-isobutylphenyl)-2,3-dihydrofuro-- [2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-isopentylphenyl)-2,3-dihydrofuro- -[2,3-d]pyrimidin-2-one; 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-(-5-(4-chlorobutoxy)pentyl)pheny- l)-2,3-dihydrofuro-[2,3-d]pyrimidin-2-one and mixtures thereof.

17. A compound, which compound is 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-pentylphenyl)-2,3-dihydrofuro-- [2,3-d]pyrimidin-2-one.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national stage application of PCT/GB01/01694, filed Apr. 12, 2001, which claims priority to foreign application GB0009486.2, filed Apr. 17, 2000.

The present invention relates to a class of nucleoside analogues and to their therapeutic use in the prophylaxis and treatment of viral infection for example by varicella zoster virus (VZV). Varicella zoster virus is the aetiological agent in chickenpox and shingles which can cause considerable human illness and suffering.

WO 98/49177 describes a class of nucleoside analogues demonstrating anti-viral properties. A representative of the compounds disclosed in WO 98/49177 is 3-(2-deoxy-.beta.-D-ribofuranosyl)-6-decyl-2,3-dihydrofuro [2,3-d]pyrimidin-2-one.

"Acyclovir" is a compound known to have anti-viral properties. It is described in The Merck Index 12th Edition.

BVDU is (E)-5-(2-bromo-vinyl)-2'-deoxyuridine and is described in De Clercq et al. Proc. Natl. Acad. Sci., USA 1979, 76, 2947.

G. T. Crisp and B. L. Flynn, J. Org. Chem. 1993, 58, 6614 describes palladium catalysed couplings of terminal alkynes with a variety of oxyuridines. One coupling described is that between 5-ethynyl-2-deoxyuridine and a range of fluorinated aryl compounds.

E. V. Malakhova et al. Bioorg. Khim. (1998), 24(9), 688-695 describes reagents for introducing a fluorescent deoxyuridine 2-phenylbenzoxazole derivative into oligonucleotides.

It is the object of the present invention to provide a novel class of nucleoside analogues.

It is a further object of the present invention to provide a class of nucleoside analogues for therapeutic use in the prophylaxis and treatment of a viral infection, for example a varicella zoster virus (VZV).

According to the first aspect of the present invention there is provided a compound having formula I as follows:

##STR00001## wherein: Ar is an, optionally substituted, aromatic ring system, the aromatic ring system comprising one six-membered aromatic ring or two fused six-membered aromatic rings; R.sub.8 and R.sub.9 are each independently selected from H, alkyl, aryl, cycloalkyl, halogen, amino, nitro, thiol, cyano, alkylamino, dialkylamino, alkoxy, aryloxy, alkylthiol, and arylthiol; Q is selected from the group comprising O, S, and CY.sub.2, where Y may be the same or different and is selected from H, alkyl, and halogen; X is selected from the group comprising O, NH, S, N-alkyl, (CH.sub.2).sub.m where m is 1 to 10, and CY.sub.2, where Y may be the same or different and is selected from H, alkyl, and halogen; Z is selected from the group comprising O, S, NH, and N-alkyl; U'' is H and U' is selected from H and CH.sub.2T, or U' and U'' are joined so as to provide a ring moiety including Q wherein U'--U'' together is respectively selected from the group comprising CTH--CT'T'' and CT'=CT', so as to provide the following ring moiety options:

##STR00002## wherein T is selected from the group comprising OH, H, halogens, O-alkyl, O-acyl, Q-aryl, CN, NH.sub.2, and N.sub.3; T' is selected from the group comprising H and halogens and where more than one T' is present, they may be the same or different; T'' is selected from the group comprising H and halogens; and W is selected from the group comprising H, a phosphate group, and a phosphonate group; with the proviso that when T is OAc and T' and T'' are present and are H, Ar is not 4-(2-benzoxazolyl)phenyl.

It is to be understood that the present invention extends to compounds according to formula I wherein the group W is modified to provide any pharmacologically acceptable salt or derivative of H, phosphate, or phosphonate. The present invention also includes any compound which is a pro-drug of the compound according to formula (I), any such pro-drug being provided by modification of the moiety W, wherein W is selected from phosphates and derivatives thereof, and phosphonates and derivatives thereof.

The aromatic ring system present in Ar may contain one, two, three or four suitable ring heteroatoms, whose position may be varied. Any ring heteroatoms present may be the same or different and can, for example, be O, S or N.

Preferably the aromatic ring system in Ar is carbocyclic. The aromatic ring system in Ar is thus preferably selected from the group comprising, optionally substituted, phenyl and naphthyl radicals. More preferably, the aromatic ring system in Ar comprises one six-membered carbocyclic ring and is thus phenyl or a substituted derivative of phenyl.

When the aromatic ring system is naphthyl or a substituted derivative of naphthyl, the naphthyl radical is preferably bonded to the nucleoside ring system at a position adjacent the fused bond in the naphthyl radical.

Preferably the aromatic ring system in Ar is substituted. Preferably the aromatic ring system in Ar is substituted by one or more moieties independently selected from the group comprising H, alkyl, aryl, and cycloalkyl, chlorine, bromine, iodine, cyano, alkylamino, dialkylamino, alkoxy, aryloxy, alkylthiol and arylthiol. Suitable moieties for use as substituents on the aromatic ring system of Ar include C.sub.1-C.sub.10 alkyl, C.sub.3-C.sub.10 cycloalkyl, C.sub.1-C.sub.10 alkylamino, C.sub.3-C.sub.10 dialkylamino, C.sub.1-C.sub.10 alkoxy, C.sub.6-C.sub.10 aryloxy, C.sub.1-C.sub.10 alkylthiol, and C.sub.6-C.sub.10 aryl.

Any alkyl, cycloalkyl, aryl or alkoxy substituents on the aromatic ring system of Ar may themselves be substituted. Preferably such substituents on the said alkyl, cycloalkyl, aryl and alkoxy substituents comprise one or more members independently selected from the group comprising chlorine, bromine, iodine, CN, CO.sub.2 alkyl (C.sub.1 to C.sub.6), CONH.sub.2, CONH alkyl (C.sub.1 to C.sub.6), SH, S alkyl (C.sub.1 to C.sub.6) and NO.sub.2.

Preferably any substituent present in or on the aromatic ring system of Ar is at least substantially non-polar. Preferably any such substituent is hydrophobic.

Preferably any substituent or substituents on the aromatic ring system of the Ar comprise one or more alkoxy moieties and/or one or more, optionally substituted, alkyl moieties.

Any alkyl or alkoxy moiety present on the aromatic ring system of Ar is preferably straight chained, unsubstituted and saturated. Branched, substituted and/or unsaturated alkyl or alkoxy groups may however be employed. The term `alkyl` with respect to any substituent present on the aromatic ring system thus comprises any aliphatic non-cyclic hydrocarbyl radical, including alkenyl and alkynyl. The nature, position, and number of any substituents and unsaturation may be varied.

Preferably any such alkyl or alkoxy moiety or moieties, in total, comprise 3 to 8 carbon atoms, calculated excluding any substituents that may be present on the said alkyl or alkoxy moiety or moieties. The remainder of any substituent positions on the aromatic ring system of Ar are preferably H. More preferably any alkyl moiety or moieties present on the aromatic ring system of Ar comprise, in total, from 4 to 7 carbon atoms, even more preferably from 5 to 6 carbon atoms, calculated excluding any substituents that may be present on the said alkyl moiety or moieties. More preferably any alkoxy moiety or moieties present on the aromatic ring system of Ar comprise, in total, from 3 to 7 carbon atoms, calculated excluding any substituents that be present on the said alkoxy or alkoxy moieties.

Any alkyl moiety or moieties present on the aromatic ring system of Ar is preferably selected from the group comprising C.sub.1, C.sub.2, C.sub.3, C.sub.4, C.sub.5, C.sub.6, C.sub.7 and C.sub.8 alkyl moieties and mixtures thereof, more preferably from the group comprising C.sub.3, C.sub.4, C.sub.5, C.sub.6, C.sub.7 and C.sub.8 alkyl moieties and mixtures thereof, even more preferably from the group comprising C.sub.4, C.sub.5, C.sub.6 and C.sub.7 alkyl moieties and mixtures thereof. Preferably an alkyl moiety or moieties is selected from the group comprising C.sub.5 and C.sub.6 alkyl moieties and mixtures thereof.

Where the substituent present on the aromatic ring system is an aryl moiety, it is preferably phenyl. Such aryl substituents can be substituted. Preferably any such substituents are selected from the group set out above.

Any substituent on the aromatic ring system of Ar can be at any position. Any of the meta, ortho or para positions can therefore be occupied by a substituent. Preferably any single substituent, particularly where the aromatic ring system comprises a phenyl derivative, is a para substituent with respect to the bond between the aromatic ring system and the nucleoside fused ring system. Preferably the aromatic ring system of Ar is a six-membered carbocyclic ring system and comprises one alkyl or one alkoxy substituent at the para position.

Each of R.sub.8 and R.sub.9 may be substituted or unsubstituted, and may be branched or unbranched as appropriate to their structure. When either of R.sub.8 and R.sub.9 are alkyl or cycloalkyl they may be saturated or unsaturated. The nature, position, and number of any substituents and unsaturation present may be varied.

When either of R.sub.8 and R.sub.9 is alkyl or cycloalkyl, suitable substituents that may optionally be present include OH, halogen, amino, CN, CO.sub.2H, CO.sub.2 alkyl, CONH.sub.2, CONH alkyl, SH, S alkyl, and NO.sub.2, wherein alkyl in a substituent is suitably C.sub.1-C.sub.6. Suitably, any substituent is non-polar, more suitably any such substituent is hydrophobic.

Suitably R.sub.8 is selected from the group comprising H, C.sub.1-C.sub.10 alkyl, C.sub.3-C.sub.10 cycloalkyl, C.sub.1-C.sub.10 alkylamino, C.sub.1-C.sub.10 dialkylamino, C.sub.1-C.sub.10 alkyloxy, C.sub.6-C.sub.10 aryloxy, C.sub.1-C.sub.10 alkylthiol, and C.sub.6-C.sub.10 aryl.

Suitably R.sub.9 is selected from the group H, C.sub.1-C.sub.10 alkyl, C.sub.3-C.sub.10 cycloalkyl, C.sub.1-C.sub.10 alkylamino, C.sub.1-C.sub.10 dialkylamino, C.sub.1-C.sub.10 alkyloxy, C.sub.6-C.sub.10 aryloxy, C.sub.1-C.sub.10 alkylthiol, and C.sub.6-C.sub.10 aryl.

Preferably each of R.sub.8 and R.sub.9 is a small alkyl, ie. a C.sub.1-C.sub.2 alkyl group, or H. More preferably, each of R.sub.8 and R.sub.9 is H.

Throughout the present specification `halogen` is taken to include F, Cl, Br and I. Unless otherwise stated, chlorine and bromine are preferred.

Unless otherwise stated, throughout the present specification `alkyl` is taken to include C.sub.1-C.sub.10 alkyl, preferably C.sub.1-C.sub.5 alkyl, and saturated and unsaturated, branched and unbranched, and substituted and unsubstituted aliphatic hydrocarbyl.

Unless otherwise stated, throughout the present specification `cycloalkyl` is taken to include C.sub.3-C.sub.10, preferably C.sub.5-C.sub.8, and saturated and unsaturated and substituted and unsubstituted cyclic aliphatic hydrocarbyl.

Unless otherwise stated, throughout the present specification `aryl` is taken to include C.sub.5-C.sub.10 single ring or fused bi-ring aryl, substituted and unsubstituted aryl, and aryl containing 1 to 4 heteroatoms, which may be the same or different and may be selected from, for example, O, N and S.

Suitable substituents for `alkyl`, `cycloalkyl` and `aryl`, other than when an alkyl, cycloalkyl or aryl moiety is present as a substituent on the aromatic ring system in Ar, include one or more members independently selected from the group comprising OH, halogen, amino, CN, CO.sub.2H, CO.sub.2 alkyl(C.sub.1 to C.sub.6), CONH.sub.2, CONH alkyl(C.sub.1 to C.sub.6), SH, S alkyl(C.sub.1 to C.sub.6) and NO.sub.2.

Preferably Q is CH.sub.2, S, or O. More preferably Q is O. Where Q is CY.sub.2 and includes a halogen, it is preferably F. Y is preferably H.

Preferably X is O, S, or NH. More preferably X is O. Where X is (CH).sub.n, n is preferably 1 or 2, most preferably 1. Suitably, when X is N-alkyl, alkyl is C.sub.1-C.sub.5, and when X is CY.sub.2, at least one Y is C.sub.1-C.sub.5 alkyl. Most preferably, X is O.

Preferably Z is O. Where Z is N-alkyl, suitably the alkyl is C.sub.1-C.sub.5.

Preferably U' and U'' are joined to provide the saturated ring moiety including T, T' and T''. Preferably T, T', and T'' in such a ring moiety are respectively OH, H, and H.

Preferably T is OH. When T is halogen it is preferably F.

Preferably each of T' and T'' is H. When either or both of T' and T'' is halogen, it is preferably F.

When W is a moiety which renders the compound a pro-drug of the compound according to Formula (I) it is to be understood that the term pro-drug includes the corresponding free base of each of the nucleosides described.

It is also to be understood that the term `phosphate` includes diphosphates and triphosphates. Hence, W includes pharmacologically acceptable salts and derivatives of phosphates, diphosphates, and triphosphates, and of phosphonates, diphosphonates, and triphosphonates. It also includes any moiety which provides a compound which is a pro-drug of the compound according to formula (I), wherein W is selected from phosphates, diphosphates, and triphosphates, and derivatives thereof, and phosphonates, diphosphonates, and triphosphonates, and derivatives thereof.

Each compound of the present invention may be a pure stereoisomer coupled at each of its chiral centres or it may be inverted at one or more of its chiral centres. It may be a single stereoisomer or a mixture of two or more stereoisomers. If it is a mixture the ratio may or may not be equimolar. Preferably the compound is a single stereoisomer. The compound may be in either enantiomeric form i.e. it may be either the D or L enantiomer either as a single stereoisomer or as a mixture of the two enantiomers. More preferably the compounds has a stereochemistry resembling natural deoxy nucleosides derived from .beta.-D-2-deoxyribose. However other enantiomers particularly the L enantiomers may be employed.

It is to be understood that the present invention extends to compounds wherein the sugar moiety and phosphate if present have either together or separately been modified as well known to a person skilled in art. For example the sugar substituent on the nucloeside may be usefully phosphonated.

It is also possible for a compound embodying the present invention to be in a sugar form as for example modified and derived from a D-xylo sugar system.

Particularly preferred compounds embodying the present invention have the following formulae:

##STR00003##

According to a further aspect of the present invention there is provided a method for preparing compounds having Formula I above wherein a 5-halo nucleoside analogue is contracted with a terminal alkyne in the present of a catalyst. Alternatively 5-alkynyl nucleoside can be cyclised in the presence of a catalyst. Suitably the catalyst is a copper catalyst. The 5-alkynyl nucleoside has the general formula:

##STR00004##

Compounds embodying the present invention can show antiviral activity. In particular it has surprisingly been found that compounds embodying the present invention can show antiviral activity against for example varicella zoster virus.

According to a further aspect of the present invention there is provided a compound according to the present invention for use in a method of treatment, suitably in the prophylaxis or treatment of a viral infection.

According to a further aspect of the present invention there is provided use of a compound according to the present invention in the manufacture of a medicament for the prophylaxis or treatment of viral infection.

According to a further aspect of the present invention there is provided a method of prophylaxis or treatment of viral infection comprising administration to a patient in need of such treatment an effective dose of a compound according to the present invention

According to a further aspect of the present invention there is provided use of a compound of the present invention in the manufacture of a medicament for use in the prophylaxis or treatment of a viral infection, particularly an infection with the varicella zoster virus.

According to a further aspect of the present invention there is provided a pharmaceutical composition comprising a compound of the present invention in combination with a pharmaceutically acceptable excipient.

Medicaments embodying the present invention can be administered by oral or parenteral routes, including intravenous, intramuscular, intraperitoneal, subcutaneous, transdermal, airway (aerosol), rectal, vaginal and topical (including buccal and sublingual) administration.

For oral administration, compounds embodying the present invention will generally be provided in the form of tablets or capsules, as a powder or granules, or as an aqueous solution or suspension.

Tablets for oral use may include the active ingredient mixed with pharmaceutically acceptable excipients such as inert diluents, disintegrating agents, binding agents, lubricating agents, sweetening agents, flavouring agents, colouring agents and preservatives. Suitable inert diluents include sodium and calcium carbonate, sodium and calcium phosphate, and lactose, while corn starch and alginic acid are suitable disintegrating agents. Binding agents may include starch and gelatin, while the lubricating agent, if present, will generally be magnesium stearate, stearic acid or talc. If desired, the tablets may be coated with a material such as glyceryl monostearate or glyceryl distearate, to delay absorption in the gastrointestinal tract.

Capsules for oral use include hard gelatin capsules in which the active ingredient is mixed with a solid diluent, and soft gelatin capsules wherein the active ingredient is mixed with water or an oil such as peanut oil, liquid paraffin or olive oil.

Formulations for rectal administration may be presented as a suppository with a suitable base comprising for example cocoa butter or a salicylate.

Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate.

For intramuscular, intraperitoneal, subcutaneous and intravenous use, compounds embodying the present invention will generally be provided in sterile aqueous solutions or suspensions, buffered to an appropriate pH and isotonicity. Suitable aqueous vehicles include Ringer's solution and isotonic sodium chloride. Aqueous suspensions embodying the invention may include suspending agents such as cellulose derivatives, sodium alginate, polyvinyl-pyrrolidone and gum tragacanth, and a wetting agent such as lecithin. Suitable preservatives for aqueous suspensions include ethyl and n-propyl p-hydroxybenzoate.

Compounds embodying the present invention can be presented as liposome formulations.

In general, a suitable dose will be in the range of 0.001 to 300 mg per kilogram body weight of the recipient per day, preferably in the range of 0.01 to 25 mg per kilogram body weight per day and most preferably in the range 0.05 to 10 mg per kilogram body weight per day. The desired dose is preferably presented as two, three, four, five or six or more sub-doses administered at appropriate intervals throughout the day. These sub-doses may be administered in unit dosage forms, for example, containing 0.1 to 1500 mg, preferably 0.2 to 1000 mg, and most preferably 0.5 to 700 mg of active ingredient per unit dosage form.

Embodiments of the present invention will now be described by way of example only.

EXAMPLE 1

Preparation of 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-propylphenyl)-2,3dihydrofuro-[- 2,3-d]pyrimidin-2-one

##STR00005##

To a solution of 5-(4-n-propyl-phenylacetylene)-2'-deoxyuridine (200 mg, 0.54 mmol) in methanol and triethylamine (7:3) (20 ml), was added copper iodide (20 mg, 0.102 mmol). The mixture was refluxed for 4 hours. The solvent was removed in vacuo, and the crude product as purified by flash column chromatography (initial eluent: ethyl acetate, followed by: ethyl acetate/methanol (9:1)). The combined fractions were combined and the solvent was removed in vacuo to give the crude product, which was recrystallised from methanol to give pure 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-propylphenyl)-2,3-dihydrofuro-- [2,3-d]pyrimidin-2-one (86 mg, 43%)

.sup.1H-NMR (d.sub.6-DMSO; 300 MHz); 8.72 (1H, s, H-4), 7.43 (2H, H.sub.a) -7.28 (2H, H.sub.b) (AB system, .sup.3J=7.89 Hz, .sup.4J=2.3 Hz), 7.15 (1H, s, H-5), 6.18 (1H, dd, .sup.3J=6.15 Hz, H-1'), 5.31 (1H, d, .sup.3J=4.0 Hz, 3'-OH), 5.12 (1H, t, .sup.3J=5.01 Hz, 5'-OH), 4.31 (1H, m, H-3'), 3.89 (1H, m, H-4'), 3.51 (2H, m, H-5'), 2.65 (2H, t, .sup.3J=6.9 Hz, .alpha.-CH.sub.2), 2.31 and 2.12 (2H, m, 2-H'a and 2-H'b), 1.58 (2H, sxt, CH.sub.2, .sup.3J=6.9 Hz), 0.85 (3H, t, .sup.3J=6.9 Hz, CH.sub.3). .sup.13C-NMR (d.sub.6-DMSO; 75 MHz): 13.2 (CH.sub.3), 20.1, 22.3, (C.sub.2H.sub.4), 41.5 (C-2'), 62.3 (C-5'), 71.6 (C-3'), 83.2, 88.4 (C-1', C-4'), 100.4 (C-5), 104.6 (C-4a), 125.3 (C--H.sub.b), 128.4 (ipso-C), 131.8 (C--H.sub.a), 141.2 para-C), 138.5 (C-4), 154.6 (C-6), 159.1 (C-2), 172.3 (C-7a).

General Procedure for the Preparation of 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-alkylphenyl)-2,3-dihydrofuro-[- 2,3-d]pyrimidin-2-one Analogues

To a stirred solution of 5-iodo-2'-deoxyuridine (800 mg, 2.26 mmol) in anhydrous dimethylformamide (8 ml), was added diisopropylethylamine (584 mg, 0.8 ml, 4.52 mmol), the 4-n-alkyl-phenylacetylene (6.76 mmol), tetrakis(triphenylphoshine)palladium (0) (261 mg, 0.266 mmol) and copper (I) iodide (86 mg, 0.452 mmol). The mixture was stirred for 18 hours, at room temperature, under a nitrogen atmosphere, after which time tlc (ethyl acetate/methanol 9:1), showed complete conversion of the starting material. Copper (I) iodide (80 mg, 0.40 mmol), triethylamine (15 ml) and methanol (20 ml) were then added to the mixture, which was subsequently refluxed for 4 hours. The reaction mixture was then concentrated in vacuo, and the resulting residue was dissolved in dichloromethane and methanol (1:1) (6 ml), whereupon an excess of Amberlite IRA400 (HCO.sub.3.sup.- form) was added and stirred for 30 minutes. The resin was filtered and washed with methanol, and the combined filtrate was evaporated to dryness. The crude product was purified by flash column chromatography (Initial eluent: ethyl acetate, followed by: ethyl acetate/methanol (9:1)). The appropriate fractions were combined, where the solvent was removed in vacuo, to give the pure product.

EXAMPLE 2

Preparation of 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-butylphenyl)-2,3dihydrofuro-[2- ,3-d]pyrimidin-2-one

##STR00006##

The above general procedure was carried out using 4-n-butyl-phenylacetylene (1.072 g, 6.76 mmol), which gave 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-butylphenyl)-2,3-dihydrofuro-[- 2,3-d]pyrimidin-2-one (140 mg, 16%), after purification by column chromatography.

.sup.1H-NMR (d.sub.6-DMSO; 300 MHz); 8.76 (1H, s, H-4), 7.46 (2H, H.sub.a) -7.31 (2H, H.sub.b) (AB system, .sup.3J=7.89 Hz, .sup.4J=2.3 Hz), 7.20 (1H, s, H-5), 6.21 (1H, dd, .sup.3J=6.15 Hz, H-1'), 5.37 (1H, d, .sup.3J=4.0 Hz, 3'-OH), 5.31 (1H, t, .sup.3J=5.01 Hz, 5'-OH), 4.31 (1H, m, H-3'), 3.75 (1H, m, H-4'), 3.48 (2H, m, H-5'), 2.65 (2H, t, .sup.3J=6.9 Hz, .alpha.-CH.sub.2), 2.31 and 2.12 (2H, m, 2-H'a and 2-H'b), 1.62 (4H, m, CH.sub.2), 0.87 (3H, t, .sup.3J=6.9 Hz, CH.sub.3). .sup.13C-NMR (d.sub.6-DMSO; 75 MHz): 13.2 (CH.sub.3), 20.1, 22.3, 27.9 (C.sub.3H.sub.6), 42.5 (C-2'), 63.7 (C-5'), 73.6 (C-3'), 83.5, 88.7 (C-1', C-4'), 100.8 (C-5), 108.4 (C-4a), 125.3 (C--H.sub.b), 128.4 (ipso-C), 131.8 (C--H.sub.a), 141.2 (para-C), 138.5 (C-4), 154.6 (C-6), 159.1 (C-2), 170.9 (C-7a).

EXAMPLE 3

Preparation of 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-pentylphenyl)-2,3-dihydrofuro-- [2,3-d]pyrimidin-2-one

##STR00007##

The above general procedure was carried out using 4-n-pentyl-phenyllacetylene (1.15 g, 6.76 mmol), which gave 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-pentylphenyl)-2,3-dihydrofuro[- 2,3-d]pyrimidin-2-one (137 mg, 15%), after purification by column chromatography.

.sup.1H-NMR (d.sub.6-DMSO; 300 MHz); 8.81 (1H, s, H-4), 7.51 (2H, H.sub.a) -7.35 (2H, H.sub.b) (AB system, .sup.3J=7.89 Hz, .sup.4J=2.3 Hz), 7.18 (1H, s, H-5), 6.23 (1H, dd, .sup.3J=6.15 Hz, H-1'), 5.37 (1H, d, .sup.3J=4.0 Hz, 3'-OH), 5.31 (1H, t, .sup.3J=5.01 Hz, 5'-OH), 4.34 (1H, m, H-3'), 3.79 (1H, m, H-4'), 3.41 (2H, m, H-5'), 2.67 (2H, t, .sup.3J=6.9 Hz, .alpha.-CH.sub.2), 2.34 and 2.14 (2H, m, 2-H'a and 2-H'b), 1.67 (2H, m, CH.sub.2), 1.51-1.32 (4H, m, CH.sub.2), 0.84 (3H, t, .sup.3J=6.9 Hz, CH.sub.3). .sup.13C-NMR (d.sub.6-DMSO; 75 MHz): 13.2 (CH.sub.3), 20.1, 22.3, 27.9, 28.4, (C.sub.4H.sub.8), 41.3 (C-2'), 62.6 (C-5'), 71.8 (C-3'), 83.4, 86.4 (C-1', C-4'), 100.4 (C-5), 107.4 (C-4a), 125.4 (C--H.sub.b), 127.4 (ipso-C), 131.8 (C--H.sub.a), 138.5 (C-4), 141.3 para-C), 154.6 (C-6), 161.1 (C-2), 170.9 (C-7a).

EXAMPLE 4

Preparation of 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-hexylphenyl)-2,3dihydrofuro-[2- ,3-d]pyrimidin-2-one

##STR00008##

The above general procedure was carried out using 4-n-hexyl-phenylacetylene (1.25 g, 6.76 mmol), which gave 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-hexylphenyl)-2,3-dihydrofuro-[- 2,3-d]pyrimidin-2-one (124 mg, 13%), after purification by column chromatography.

.sup.1H-NMR (d.sub.6-DMSO; 300 MHz); 8.85 (1H, s, H-4), 7.53 (2H, H.sub.a) -7.29 (2H, H.sub.b) (AB system, .sup.3J=7.89 Hz, .sup.4J=2.3 Hz), 7.23 (1H, s, H-5), 6.24 (1H, dd, .sup.3J=6.15 Hz, H-1'), 5.58 (1H, d, .sup.3J=4.0 Hz, 3'-OH), 5.29 (1H, t, .sup.3J=5.01 Hz, 5'-OH), 4.54 (1H, m, H-3'), 3.79 (1H, m, H-4'), 3.51 (2H, m, H-5'), 2.72 (2H, t, .sup.3J=6.9 Hz, .alpha.-CH.sub.2), 2.31 and 2.10 (2H, m, 2-H'a and 2-H'b), 1.62 (2H, m, CH), 1.42-1.22 (6H, m, CH.sub.2), 0.87 (3H, t, .sup.3J=6.9 Hz, CH.sub.2). .sup.13C-NMR (d.sub.6-DMSO; 75 MHz): 13.2 (CH.sub.3), 20.1, 22.3, 27.9, 29.5, 30.2 (C.sub.5H.sub.10), 41.6 (C-2'), 62.3 (C-5'), 769.8 (C-3'), 83.5, 88.7 (C-1', C-4'), 99.1 (C-5), 107.2 (C-4a), 124.3 (C--H.sub.b), 126.4 (ipso-C), 129.3 (C--H.sub.a), 138.5 (C-4), 141.2 para-C), 154.6 (C-6), 160.9 (C-2), 171.3 (C-7a).

EXAMPLE 5

Preparation of 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-heptylphenyl)-2,3-dihydrofuro-- [2,3-d]pyrimidin-2-one

##STR00009##

The above general procedure was carried out using 4-n-heptyl-phenylacetylene (1.25 g, 6.76 mmol), which gave 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-heptylphenyl)-2,3-dihydrofuro-- [2,3-d]pyrimidin-2-one (129 mg, 13%), after purification by column chromatography.

.sup.1H-NMR (d.sub.6-DMSO; 300 MHz); 8.91 (1H, s, H-4), 7.62 (2H, H.sub.a) -7.35 (2H, H.sub.b) (AB system, .sup.3J=7.89 Hz, .sup.4J=2.3 Hz), 7.26 (1H, s, H-5), 6.28 (1H, dd, .sup.3J=6.17 Hz, H-1'), 5.62 (1H, d, .sup.3J=4.1 Hz, 3'-OH), 5.32 (1H, t, .sup.3J=5.12 Hz, 5'-OH), 4.52 (1H, m, H-3'), 3.81 (1H, m, H-4'), 3.62 (2H, m, H-5'), 2.71 (2H, t, .sup.3J=6.9 Hz, .alpha.-CH.sub.2), 2.35 and 2.14 (2H, m, 2-H'a and 2-H'b), 1.59 (2H, m, CH.sub.2), 1.48-1.21 (8H, m, CH.sub.2), 0.82 (3H, t, .sup.3J=6.9 Hz, CH.sub.3). .sup.13C-NMR (d.sub.6-DMSO; 75 MHz): 13.2 (CH.sub.3), 20.1, 22.3, 27.9, 28.5, 29.5, 30.2 (C.sub.6H.sub.12), 41.6 (C-2'), 61.5 (C-5'), 69.8 (C-3'), 87.9, 88.5 (C-1', C-4'), 99.1 (C-5), 107.2 (C-4a), 124.3 (C--H.sub.b), 126.2 (ipso-C), 129.3 (C--H.sub.a), 138.2 (C-4), 144.2 para-C), 154.6 (C-6), 160.7 (C-2), 170.6 (C-7a).

EXAMPLE 6

Preparation of 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-octylphenyl)-2,3-dihydrofuro-[- 2,3-d]pyrimidin-2-one

##STR00010##

The above general procedure was carried out using 4-n-octyl-phenylacetylene (1.45 g, 6.76 mmol), which gave 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-octylphenyl)-2,3 dihydrofuro[-2,3-d]pyrimidin-2-one (111 mg, 11%), after purification by column chromatography. .sup.1H-NMR (d.sub.6-DMSO; 300 MHz); 8.92 (1H, s, H-4), 7.61 (2H, H.sub.a) -7.33 (2H, H.sub.b) (AB system, .sup.3J=7.89 Hz, .sup.4J=2.3 Hz), 7.25 (1H, s, H-5), 6.21 (1H, dd, .sup.3J=6.19 Hz, H-1'), 5.59 (1H, d, .sup.3J=4.1 Hz, 3'-OH), 5.272 (1H, t, .sup.3J=5.12 Hz, 5'-OH), 4.39 (1H, m, H-3'), 3.75 (1H, m, H-4'), 3.62 (2H, m, H-5'), 2.71 (2H, t, .sup.3J=6.9 Hz, .alpha.-CH.sub.2), 2.34 and 2.13 (2H, m, 2-H'a and 2-H'b), 1.61 (2H, m, CH.sub.2), 1.51-1.19 (10H, m, CH.sub.2), 0.82 (3H, t, .sup.3J=6.9 Hz, CH.sub.3). .sup.13C-NMR (d.sub.6-DMSO; 75 MHz): 13.2 (CH.sub.3), 20.1, 21.39, 22.3, 27.9, 28.5, 29.5, 30.2 (C.sub.7H.sub.14), 41.7 (C-2'), 61.1 (C-5'), 69.8 (C-3'), 87.9, 88.7 (C-1', C-4'), 99.0 (C-5), 107.2 (C-4a), 124.8 (C--H.sub.b), 126.2 (ipso-C), 129.3 (C--H.sub.a), 138.2 (C-4), 144.2 para-C), 154.2 (C-6), 160.7 (C-2), 171.6 (C-7a).

EXAMPLES 7 TO 10 AND 13

The above general procedure was carried out using the appropriate starting materials to produce each of the following respective compounds:

EXAMPLE 7

3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(phenyl)-2,3-dihydrofuro-[2,3-d]pyr- imidin-2-one

EXAMPLE 8

3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-methylphenyl)-2,3-dihydrofuro-[2- ,3-d]pyrimidin-2-one

EXAMPLE 9

3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-ethylphenyl)-2,3-dihydrofuro-[2,- 3-d]pyrimidin-2-one

EXAMPLE 10

3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-fluorophenyl)-2,3-dihydrofuro-[2- ,3-d]pyrimidin-2-one.

EXAMPLE 13

3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-phenylphenyl)-2,3-dihydrofuro-[2- ,3-d]pyrimidin-2-one.

General Procedure for the Preparation of 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-alkoxyphenyl)-2,3-dihydrofuro-- [2,3-d]pyrimidin-2-one and 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-halophenyl)-2,3-dihydrofuro-[2,3- -d]pyrimidin-2-one Analogues

To a stirred solution of 5-iodo-2'-deoxyuridine (800 mg, 2.26 mmol) in anhydrous dimethylformamide (8 ml), was added diisopropylethylamine (584 mg, 0.8 ml, 4.52 mmol), the 4-n-alkoxy-phenylacetylene or 4-n-halo-phenylacetylene (6.76 mmol), tetrakis(triphenylphosphine)palladium(0) (261 mg, 0.266 mmol) and copper (I) iodide (86 mg, 0.452 mmol). The mixture was stirred for 18 hours, at room temperature, under a nitrogen atmosphere, after which time tlc (ethyl acetate/methanol 9:1), showed complete conversion of the starting material. Copper (I) iodide (80 mg, 0.40 mmol), triethylamine (15 ml) and methanol (20 ml) were then added to the mixture, which was subsequently refluxed for 4 hours. The reaction mixture was then concentrated in vacuo, and the resulting residue was dissolved in dichloromethane and methanol (1:1) (6 ml), and an excess of Amberlite IRA400 (HCO.sub.3.sup.- form) was added and stirred for 30 minutes. The resin was filtered and washed with methanol, and the combined filtrate was evaporated to dryness. The crude product was purified by flash column chromatography (initial eluent: ethyl acetate, followed by ethyl acetate/methanol (9:1). The appropriate fractions were combined and the solvent removed in vacuo, to give the pure product.

EXAMPLE 11

3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-chlorophenyl)-2,3-dihydrofuro-[2- ,3-d]pyrimidin-2-one

##STR00011##

The procedure was carried out using 4-chlorophenylacetylene (0.92 g, 6.76 mmol), which gave 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-chlorophenylacetylene)-2,3-dihyd- rofuro-[2,3-d]pyrimidin-2-one (474 mg, 58%), after purification by column chromatography.

.sup.1H-NMR (d.sub.6-DMSO; 300 MHz); 8.91 (1H, s, H-4), 7.88 (2H, H.sub.a) -7.57 (2H, H.sub.b) (AB system, .sup.3J=7.89 Hz, .sup.4J=2.3 Hz), 7.37 (1H, s, H-5), 6.19 (1H, dd, .sup.3J=6.17 Hz, H-1'), 5.35 (1H, d, .sup.3J=4.1 Hz, 3'-OH), 5.24 (1H, t, .sup.3J=5.12 Hz, 5'-OH), 4.26 (1H, m, H-3'), 3.95 (1H, m, H-4), 3.70 (2H, m, H-5'), 2.41 and 2.13 (2H, m, 2-H'a and 2-H'b). .sup.13CNMR (d.sub.6-DMSO; 75 MHz): 41.6 (C-2'), 60.9 (C-5'), 69.8 (C-3'), 88.0, 88.5, (C-1', C-4'), 100.8 (C-5), 107.0 (C-4a), 126.6 (C--H.sub.b), 127.6 (ipso-C), 129.6 (C--H.sub.a), 134.2 (C-4), 152.8 (para-C), 154.1 (C-6), 161.2 (C-2), 171.8 (C-7a). MS (ES.sup.+) m/e 385 (MNa.sup.+, 100%), 269 (baseNa.sup.+,

EXAMPLE 12

3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-bromophenyl)-2,3-dihydrofuro-[2,- 3-d]pyrimidin-2-one

##STR00012##

The procedure was carried out using 4-bromophenylacetylene (1.22 g, 6.76 mmol), which gave 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-bromophenylacetylene)-2,3-dihydr- ofuro-[2,3-d]pyrimidin-2-one (174 mg, 19%), after purification by column chromatography.

.sup.1H-NMR (d.sub.6-DMSO; 300 MHz); 8.88 (1H, s, H-4), 7.78 (2H, H.sub.a) -7.66 (2H, H.sub.b) (AB system, .sup.3J=7.89 Hz, .sup.4J=2.3 Hz), 7.34 (1H, s, H-5), 6.14 (1H, dd, .sup.3J=6.17 Hz, H-1'), 5.31 (1H, d, .sup.3J=4.1 Hz, 3'-OH), 5.19 (1H, t, .sup.3J=5.12 Hz, 5'-OH), 4.65 (1H, m, H-3'), 3.92 (1H, m, H-4), 3.67 (2H, m, H-5'), 2.48 and 2.19 (2H, m, 2-H'a and 2-H'b). .sup.13CNMR (d.sub.6-DMSO; 75 MHz): 41.6 (C-2'), 60.9 (c-5'), 69.8 (C-3'), 88.1, 88.5, (C-1', C-4'), 100.9 (C-5), 107.0 (C-4a), 122.9 (C-Hb), 126.8 (ipso-C), 127.9 (C-Ha), 139.0 (C-4), 152.8 (para-C), 154.1 (C-6), 160.9 (C-2), 171.3 (C-7a). MS (ES.sup.+) m/e 429 (MNa.sup.+, 100%), 431 (MNa.sup.+, 100%), 313 (baseNa.sup.+, 25%), 315 (baseNa.sup.+, 25%). Accurate mass: C.sub.17H.sub.15N.sub.2O.sub.5.sup.79BrNa requires: 429.0062; found: 429.0061; C.sub.17H.sub.15N.sub.2O.sub.5.sup.81BrNa requires 431.0042; found: 431.0052. Found: C, 49.89%; H, 3.88%; N, 6.63%. C.sub.17H.sub.15BrN.sub.2O.sub.5.0.5H.sub.2O requires: C, 49.04%; H, 3.88%, N, 6.73%.

EXAMPLE 14

3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-methoxyphenyl)-2,3-dihydrofuro-[- 2,3d]pyrimidin-2-one

##STR00013##

The procedure was carried out using 4-methoxyphenylacetylene (0.893 g, 6.76 mmol), which gave 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-methoxyphenylacetylene)-2,3-dihy- drofuro-[2,3-d]pyrimidin-2-one (353 mg, 43%), after purification by column chromatography.

.sup.1H-NMR (d.sub.6-DMSO; 300 MHz); 8.81 (1H, s, H-4), 7.77 (2H, H.sub.a) -7.12 (2H, H.sub.b) (AB system, .sup.3J=7.89 Hz, .sup.4J=2.3 Hz), 7.06 (1H, s, H-5), 6.20 (1H, dd, .sup.3J=6.17 Hz, H1'), 5.32 (1H, d, .sup.3J=4.1 Hz, 3'-OH), 5.20 (1H, t, .sup.3J=5.12 Hz, 5'-OH), 4.05 (1H, m, H-3'), 3.93 (1H, m, H-4'), 3.83 (3H, s, OCH.sub.3), 3.69 (2H, m, H-5'), 2.39 and 2.12 (2H, m, 2-H'a and 2-H'b). .sup.13CNMR (d.sub.6-DMSO; 75 MHz): 41.6 (C-2'), 55.7 (OCH.sub.3), 61.0 (C-5'), 69.8 (C-3'), 88.5, 87.9 (C-1', C-4'), 97.7 (C-5), 107.5 (C-4a), 114.9 (C-Hb), 121.3 (ipso-C), 126.6 (C-Ha), 137.6 (C-4), 154.1 (para-C), 154.2 (C-6), 160.5 (C-2), 171.4 (C-7a). MS (ES.sup.+) m/e 381 (MNa.sup.+, 100%), 265 (baseNa.sup.+, 20%), Accurate mass: C.sub.18H.sub.18N.sub.2O.sub.6Na requires: 381.1063; found: 381.1069; Found: C, 59.83%; H, 5.29%; N, 7.83%. C.sub.18H.sub.18N.sub.2O.sub.6 requires: C, 60.33%; H, 5.06%, N, 7.82%.

EXAMPLE 15

3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-ethoxyphenyl)-2,3-dihydrofuro-[2- ,3-d]pyrimidin-2-one

##STR00014##

The procedure was carried out using 4-ethoxyphenylacetylene (0.988 g, 6.76 mmol), which gave 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-ethoxyphenylacetylene)-2,3-dihyd- rofuro-[2,3-d]pyrimidin-2-one (256 mg, 30%), after purification by column chromatography.

.sup.1H-NMR (d.sub.6-DMSO; 300 MHz); 8.80 (1H, s, H-4), 7.77 (2H, H.sub.a) -7.11 (2H, H.sub.b) (AB system, .sup.3J=7.89 Hz, .sup.4J=2.3 Hz), 7.06 (1H, s, H-5), 6.19 (1H, dd, .sup.3J=6.17 Hz, H1'), 5.32 (1H, d, .sup.3J=4.1 Hz, 3'-OH), 5.20 (1H, t, .sup.3J=5.12 Hz, 5'-OH), 4.26 (1H, m, H-3'), 4.08 (2H, q, OCH.sub.2), 3.92 (1H, m, H-4), 3.69 (2H, m, H-5'), 2.40 and 2.09 (2H, m, 2-H'a and 2-H'b), 1.35 (3H, t, CH.sub.3) .sup.13CNMR (d.sub.6-DMSO; 75 MHz): 14.9 (CH.sub.3), 41.6 (C-2'), 61.0 (C-5'), 63.7 (OCH.sub.2), 69.8 (C-3'), 87.9, 88.5, (C-1', C-4'), 97.6 (C-5), 107.5 (C-4a), 115.3 (C-Hb), 121.1 (ipso-C), 126.6 (C-Ha), 137.6 (C-4), 154.1 (para-C), 154.3 (C-6), 159.8 (C-2), 171.4 (C-7a). MS (ES.sup.+) m/e 395 (MNa.sup.+, 100%), 279 (baseNa.sup.+, 20%). Accurate mass: C.sub.19H.sub.20N.sub.2O.sub.6Na requires: 395.1219; found: 395.1216. Found: C, 60.97%; H, 5.67%; N, 7.29%. C.sub.19H.sub.20N.sub.2O.sub.6 requires: C, 61.28%; H. 5.41%, N, 7.52%

EXAMPLE 16

3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-propoxyphenyl)-2,3-dihydrofuro- -[2,3d]pyrimidin-2-one

##STR00015##

The procedure was carried out using 4-n-propoxyphenylacetylene (1.08 g, 6.76 mmol), which gave 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-propoxyphenylacetylene)-2,3-di- hydrofuro-[2,3-d]pyrimidin-2-one (552 mg, 59%), after purification by column chromatography.

.sup.1H-NMR (d.sub.6-DMSO; 300 MHz); 8.80 (1H, s, H-4), 7.78 (2H, H.sub.a) -7.12 (2H, H.sub.b) (AB system, .sup.3J=7.89 Hz, .sup.4J=2.3 Hz), 7.07 (1H, s, H-5), 6.19 (1H, dd, .sup.3J=6.17 Hz, H1'), 5.31 (1H, d, .sup.3J=4.1 Hz, 3'-OH), 5.19 (1H, t, .sup.3J=5.12 Hz, 5'-OH), 4.26 (1H, m, H-3'), 4.00 (2H, t, OCH.sub.2), 3.98 (1H, m, H-4'), 3.67 (2H, m, H-5'), 2.40 and 2.12 (2H, m, 2-H'a and 2-H'b), 1.80 (2H, m, CH.sub.2), 1.03 (3H, t, CH.sub.3) .sup.13CNMR (d.sub.6-DMSO; 75 MHz): 10.7 (CH.sub.3), 22.3 (CH.sub.2), 41.6 (C-2'), 61.0 (C-5'), 69.5 (OCH.sub.2), 69.8 (C-3'), 87.9, 88.5, (C-1', C-4'), 97.6 (C-5), 107.5 (C-4a), 115.4 (C-Hb), 121.1 (ipso-C), 126.6 (C-Ha), 137.6 (C-4), 154.1 para-C), 154.3 (C-6), 160.0 (C-2), 171.3 (C-7a). MS (ES.sup.+) m/e 409 (MNa.sup.+, 100%), 293 (baseNa.sup.+, 25%). Accurate mass: C.sub.20H.sub.22N.sub.2O.sub.6Na requires: 409.1376; found: 409.1374; Found: C, 61.97%; H, 5.67%; N, 7.29%. C.sub.19H.sub.20N.sub.2O.sub.6 requires: C, 62.17%; H, 5.74%, N, 7.25%.

EXAMPLE 17

3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-pentoxyphenyl)-2,3-dihydrofuro- -[2,3-d]pyrimidin-2-one

##STR00016##

The procedure was carried out using 4-n-pentoxyphenylacetylene (1.27 g, 6.76 mmol), which gave 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-pentoxyphenylacetylene)-2,3-di- hydrofuro-[2,3-d]pyrimidin-2-one (503 mg, 53%), after purification by column chromatography.

.sup.1H-NMR (d.sub.6-DMSO; 300 MHz); 8.80 (1H, s, H-4), 7.78 (2H, H.sub.a) -7.07 (2H, H.sub.b) (AB system, .sup.3J=7.89 Hz, .sup.4J=2.3 Hz), 7.04 (1H, s, H-5), 6.20 (1H, dd, .sup.3J=6.17 Hz, H1'), 5.31 (1H, d, .sup.3J=4.1 Hz, 3'-OH), 5.19 (1H, t, .sup.3J=5.12 Hz, 5'-OH), 4.27 (1H, m, H-3'), 4.02 (2H, t, OCH.sub.2), 3.93 (1H, m, H-4), 3.69 (2H, m, H-5'), 2.39 and 2.13 (2H, m, 2-H'a and 2-H'b), 1.73 (2H, m, CH.sub.2), 1.38 (4H, m, 2CH.sub.2), 0.91 (3H, t, CH.sub.3). .sup.13CNMR (d.sub.6-DMSO; 75 MHz): 14.3 (CH.sub.3), 22.2 (CH.sub.2CH.sub.3), 28.0 (CH.sub.2CH.sub.2CH.sub.3), 28.6 (CH.sub.2CH.sub.2CH.sub.2CH.sub.3) 41.6 (C-2'), 61.0 (C-5'), 68.0 (OCH.sub.2), 69.8 (C-3'), 87.9, 88.5, (C-1', C-4'), 97.6 (C-5), 107.5 (C-4a), 115.4 (C-Hb), 121.1 (ipso-C), 126.6 (C-Ha), 137.6 (C-4), 154.1 (para-C), 154.3 (C-6), 160.0 (C-2), 171.4 (C-7a). MS (ES.sup.+) m/e 437 (MNa.sup.+, 100%), 321 (baseNa.sup.+, 20%). Accurate mass: C.sub.22H.sub.26N.sub.2O.sub.6Na requires: 437.1689; found: 437.1695. Found: C, 60.07%; H, 6.63%; N, 6.27%. C.sub.22H.sub.26N.sub.2O.sub.6.1.5H20 requires: C, 59.85%; H, 6.62%, N, 6.35%.

EXAMPLE 18

3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-hexoxyphenyl)-2,3-dihydrofuro-- [2,3-d]pyrimidin-2-one

##STR00017##

The procedure was carried out using 4-n-hexoxyphenylacetylene (1.37 g, 6.76 mmol), which gave 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-hexoxyphenylacetylene)-2,3-dih- ydrofuro-[2,3-d]pyrimidin-2-one (540 mg, 55%), after purification by column chromatography.

.sup.1H-NMR (d.sub.6-DMSO; 300 MHz); 8.80 (1H, s, H-4), 7.77 (2H, H.sub.a) -7.11 (2H, H.sub.b) (AB system, .sup.3J=7.89 Hz, .sup.4J=2.3 Hz), 7.07 (1H, s, H-5), 6.20 (1H, dd, .sup.3J=6.17 Hz, H1'), 5.31 (1H, d, .sup.3J=4.1 Hz, 3'-OH), 5.19 (1H, t, .sup.3J=5.12 Hz, 5'-OH), 4.26 (1H, m, H-3'), 4.02 (2H, t, OCH.sub.2), 3.94 (1H, m, H-4), 3.70 (2H, m, H-5'), 2.41 and 2.12 (2H, m, 2-H'a and 2-H'b), 1.73 (2H, m, OCH.sub.2CH.sub.2), 1.43 (2H, t, OCH.sub.2CH.sub.2CH.sub.2), 1.32 (4H, m, 2CH.sub.2), 0.89 (3H, t, CH.sub.3). .sup.13CNMR (d.sub.6-DMSO; 75 MHz): 14.3 (CH.sub.3), 22.4 (CH.sub.2CH.sub.3), 25.5 (CH.sub.2CH.sub.2CH.sub.3), 28.9 (CH.sub.2CH.sub.2CH.sub.2CH.sub.3), 31.3 (CH.sub.2CH.sub.2CH.sub.2CH.sub.2CH.sub.3), 41.6 (C-2'), 60.9 (C-5'), 68.0 (OCH.sub.2), 69.8 (C-3'), 88.0, 88.5, (C-1', C-4'), 100.8 (C-5), 107.0 (C-4a), 115.3 (C-Hb), 121.1 (ipso-C), 126.6 (C-Ha), 137.5 (C-4), 154.2 (para-C), 154.5 (C-6), 161.2 (C-2), 171.8 (C-7a). MS (ES.sup.+) m/e 451 (MNa.sup.+, 100%), 335 (baseNa.sup.+, 10%). Accurate mass: C.sub.23H.sub.28N.sub.2O.sub.6Na requires: 451.1845; found: 451.1843. Found: C, 64.28%; H, 6.74%; N, 6.35%. C.sub.23H.sub.28N.sub.2O.sub.6 requires: C, 64.47%; H, 6.59%, N, 6.54%.

EXAMPLE 19

3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-heptoxyphenyl)-2,3-dihydrofuro- -[2,3-d]pyrimidin-2-one

##STR00018##

The procedure was carried out using 4-n-heptoxyphenylacetylene (1.46 g, 6.76 mmol), which gave 3-(2'-deoxy-.beta.-D-ribofuranosyl)-6-(4-n-heptoxyphenylacetylene)-2,3-di- hydrofuro-[2,3-d]pyrimidin-2-one (193 mg, 19%), after purification by column chromatography.

.sup.1H-NMR (d.sub.6-DMSO; 300 MHz); 8.80 (1H, s, H-4), 7.78 (2H, H.sub.a) -7.11 (2H, H.sub.b) (AB system, .sup.3J=7.89 Hz, .sup.4J=2.3 Hz), 7.07 (1H, s, H-5), 6.20 (1H, dd, .sup.3J=6.17 Hz, H1'), 5.31 (1H, d, .sup.3J=4.1 Hz, 3'-OH), 5.19 (1H, t, .sup.3J=5.12 Hz, 5'-OH), 4.26 (1H, m, H-3'), 4.02 (2H, t, OCH.sub.2), 4.00 (1H, m, H-4'), 3.92 (2H, m, H-5'), 2.51 and 2.09 (2H, m, 2-H'a and 2-H'b), 1.73 (2H, m, OCH.sub.2CH.sub.2), 1.33 (8H, m, 4CH.sub.2), 0.87 (3H, t, CH.sub.3). 13CNMR (d.sub.6-DMSO; 75 MHz): 14.3 (CH.sub.3), 22.4 (CH.sub.2CH.sub.3), 25.8 (CH.sub.2CH.sub.2CH.sub.3), 28.8 (CH.sub.2CH.sub.2CH.sub.2CH.sub.3), 31.6 (CH.sub.2CH.sub.2CH.sub.2CH.sub.2CH.sub.3), 33.7 (CH.sub.2CH.sub.2CH.sub.2CH.sub.2CH.sub.2CH.sub.3), 41.6 (C-2'), 61.2 (C-5'), 68.8 (OCH.sub.2), 69.8 (C-3'), 88.1, 88.7, (C-1', C-4'), 99.7 (C-5), 107.0 (C-4a), 115.3 (C-Hb), 121.1 (ipso-C), 126.8 (C-Ha), 137.5 (C-4), 154.2 para-C), 154.5 (C-6), 161.2 (C-2), 171.8 (C-7a). MS (ES.sup.+) m/e 465 (MNa.sup.+, 100%), 349 (baseNa.sup.+, 10%). Accurate mass: C.sub.24H.sub.30N.sub.2O.sub.6Na requires: 465.2002; found: 465.2001. Found: C, 62.74%; H, 7.08%; N, 6.06%. C.sub.24H.sub.30N.sub.2O.sub.6.H.sub.2O requires: C, 62.59%; H, 7.01%, N, 6.08%.

10%). Accurate mass: C.sub.17H.sub.15N.sub.2O.sub.5ClNa requires: 385.0567; found: 385.0575. Found: C, 56.02%; H, 4.39%; N, 7.67%. C.sub.17H.sub.15ClN.sub.2O.sub.5 requires: C, 56.29%; H, 4.17%, N, 7.72%.

Biological Activity

The compounds of each the present examples 1 to 19 were tested in vitro in tissue culture assays for potent anti-viral action with respect to varicella zoster virus (VZV). The results in terms of EC.sub.50, which was defined as the drug concentration (in .mu.M) required to reduce virus-induced cytopathicity by 50%, are given in the Table below. The column titles in the table stand for:

R, for compounds embodying the present invention, is Ar as in formula I above.

EC50 VZV OKA .mu.M stands for "50% effective concentration" and is the compound concentration required to reduce viral plaque formation after 5 days by 50%, compared to an untreated control, using OKA viral strain.

EC50 VZV YS .mu.M stands for "50% effective concentration" and is the compound concentration required to reduce viral plaque formation after 5 days by 50%, compared to untreated control, using YS viral strain.

EC50 VZV TK.sup.- 07 .mu.M stands for "50% effective concentration" and is the compound concentration required to reduce viral plaque formation after 5 days by 50%, compared to untreated control, using viral strain 07; TK deficient.

EC50 VZV TK.sup.- YS .mu.M stands for "50% effective concentration" and is the compound concentration required to reduce viral plaque formation after 5 days by 50%, compared to untreated control, using viral strain YS; TK deficient.

MCC .mu.M is the minimum cytotoxic concentration to human embryonic lung cells.

CC50 .mu.M is 50% cytotoxic concentration to human embryonic lung cells.

Further details of the methodology employed can be found in McGuigan et al. J. Med. Chem., 1999, 42, 4479-4484.

TABLE-US-00001 TABLE EC50 EC50 EC50 VZV EC50 VZV VZV OKA VZV YS TK-07 TK-YS MCC CC50 Example R .mu.M .mu.M .mu.M .mu.M .mu.M .mu.M 7 --C.sub.6H.sub.5 <0.5 <0.5 >200 162 >200 >200 8 --pC.sub.6H.sub.4--CH.sub.3 <0.5 <0.5 103 >200 >200 >200- 9 --pC.sub.6H.sub.4--C.sub.2H.sub.5 <0.5 <0.5 >50 >50 200 123- 1 --pC.sub.6H.sub.4--nC.sub.3H.sub.7 0.011 0.009 >50 >20 .gtoreq.50- 188 2 --pC.sub.6H.sub.4--nC.sub.4H.sub.9 0.0032 0.0002 13 >20 3 --pC.sub.6H.sub.4--nC.sub.5H.sub.11 0.00006 0.00005 >20 >5 4 --pC.sub.6H.sub.4--nC.sub.6H.sub.13 0.00011 0.00007 >5 >5 5 --pC.sub.6H.sub.4--nC.sub.7H.sub.15 0.0034 0.0009 >5 >5 5 18 6 --pC.sub.6H.sub.4--nC.sub.8H.sub.17 0.015 0.005 >20 >20 .gtoreq.2- 0 >200 Acyclovir 2.9 1 74 125 >200 >200 BVDU 0.003 Ex2 WO --nC.sub.10H.sub.21 0.015 0.008 >50 >50 >50 >50 98/49177 10 --pC.sub.6H.sub.4--F >50 >50 >50 >50 200 171 11 --pC.sub.6H.sub.4--Cl 0.1 0.08 >20 >20 .gtoreq.20 >200 12 --pC.sub.6H.sub.4--Br 0.29 0.2 >5 >5 >2 96 13 --pC.sub.6H.sub.4--C.sub.6H.sub.4 0.031 0.032 >5 >5 >200 >2- 00 14 --pC.sub.6H.sub.4--OCH.sub.3 0.05 0.05 >50 >50 200 >200 15 --pC.sub.6H.sub.4--OC.sub.2H.sub.5 0.01 0.01 50 >50 200 >200 16 --pC.sub.6H.sub.4--OnC.sub.3H.sub.7 0.002 0.002 11 >50 .gtoreq.200 &- gt;200 17 --pC.sub.6H.sub.4--OnC.sub.5H.sub.11 0.002 0.002 3.7 >20 >50 >- 200 18 --pC.sub.6H.sub.4--OnC.sub.6H.sub.13 0.002 0.002 >5 >20 >20 &g- t;200 19 --pC.sub.6H.sub.4--OnC.sub.7H.sub.15 0.002 0.002 >50 >20 .gtoreq.- 50 >200

As can be seen from the data contained in the above Table, compounds comprising Examples 2 to 5 and 15 to 19 embodying the present invention demonstrate increased potency having regard to the known potency of the prior art compounds contained in the Table. Optimum compounds can be seen to those of Examples 2 to 5 and 16 to 19 exemplifying the present invention. Compounds displaying the greatest increase in potency can be seen to be those of Examples 3 and 4 of the present invention.

Increased potency of the compounds of the present invention permit effective reduced doses to be administered to a patient in need thereof. Reduced dosage, either in terms of the number of doses required or the quantity required per dose or both, can enhance the convenience to, and hence compliance by, the patient and can permit a commensurate reduction in likely host toxicity and any side effects.

Compounds comprising Examples 1, 6 and 11 to 14 demonstrate comparable potency having regard to the known potency of the prior art compounds contained in the Table.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed