Manufacture Of Unique Polyethylene Terephthalate Fiber

Munting March 21, 1

Patent Grant 3650879

U.S. patent number 3,650,879 [Application Number 04/852,915] was granted by the patent office on 1972-03-21 for manufacture of unique polyethylene terephthalate fiber. This patent grant is currently assigned to Akzona Incorporated. Invention is credited to Johannes Pieter Munting.


United States Patent 3,650,879
Munting March 21, 1972

MANUFACTURE OF UNIQUE POLYETHYLENE TEREPHTHALATE FIBER

Abstract

A fiber especially suitable for reinforcing bitumen-containing materials which comprises a fiber of polyethylene terephthalate having a tenacity of at least about 7.5 grams per denier, an elongation at break of at least about 9 percent, an elongation of not more than about 5 percent under a load of 5 grams per denier and a shrinkage of less than 4 percent when kept under a tension of 0.05 grams per denier for 4 minutes at about 160.degree. C. Also a process for producing this fiber and a bitumen-containing structure reinforced therewith are disclosed.


Inventors: Munting; Johannes Pieter (Emmen, NL)
Assignee: Akzona Incorporated (Enka, NC)
Family ID: 19804509
Appl. No.: 04/852,915
Filed: August 25, 1969

Foreign Application Priority Data

Aug 31, 1968 [NL] 6812442
Current U.S. Class: 442/149
Current CPC Class: D02G 3/447 (20130101); D06N 5/00 (20130101); D01F 6/62 (20130101); D10B 2331/04 (20130101); Y10T 442/2738 (20150401)
Current International Class: D02G 3/44 (20060101); D06N 5/00 (20060101); D01F 6/62 (20060101); D02G 3/22 (20060101); D02G 3/02 (20060101); B32b 011/02 ()
Field of Search: ;161/92,170,231,236 ;264/290

References Cited [Referenced By]

U.S. Patent Documents
3457136 July 1969 Zaadnoordijk
Primary Examiner: Van Balen; William J.

Claims



What is claimed is:

1. A fiber reinforced bitumen-containing material which comprises a bitumen-containing layer reinforced with a fiber of polyethylene terephthalate having a tenacity of at least about 7.5 grams per denier, an elongation at break of at least about 9 percent, an elongation of not more than 5 5 percent under a load of 5 grams per denier, and a shrinkage of less than 4 percent when kept under a tension of 0.05 grams per denier for 4 minutes at about 160.degree. C.

2. The fiber reinforced bitumen-containing material of claim 9 in which said fiber has a tenacity in a range of from about 7.5 to 9.5 grams per denier, an elongation at break of from about 9 to 15 percent, an elongation of about 2 to 5 percent at a load of 5 grams per denier, and a shrinkage of from about 1 to 4 percent when being heated for 4 minutes at 160.degree. C. under said tension.

3. The fiber reinforced bitumen-containing material of claim 1 in which the polyethylene terephthalate from which said fiber is made has a relative viscosity in the range of from about 1.5 to 1.70.

4. The fiber reinforced bitumen-containing material of claim 1 in which said fiber is in the form of a fabric woven from continuous multi-filament yarn.

5. The fiber reinforced bitumen-containing material of claim 1 in which said fiber is adhesively bonded to said bitumen-containing layer.

6. The fiber reinforced bitumen-containing material of claim 1 in which said fiber is laminated between two bitumen containing layers.

7. The fiber reinforced bitumen-containing material of claim 1 in which said fiber is coated with an adhesive promoting substance comprising a resinous material that has a softening point between 50.degree. and 160.degree. C., is miscible with bitumen, and acts as a wetting agent for the fiber.

8. The fiber reinforced bitumen-containing material of claim 7 in which said resinous material is selected from the group consisting of montan resin, tall resin, coumarone and indene resins, maleic resins, phenol resins, and rosin derivatives.
Description



This invention relates to reinforcing fibrillary material, e.g., fibers, threads, yarns or like threadlike products, of a polymer substantially made up of ethylene terephthalate units and more particularly to polyethylene terephthalate fibers having a combination of properties especially suitable for the reinforcing of bitumen-containing materials, to a process for producing such fibers and products reinforced thereby.

The term "fibers," as used throughout this specification is meant to include continuous monofilaments, nontwisted or entangled multifilament yarns, staple yarns and spun yarns. Such fibers may be used to form woven fabrics, knitted fabrics, fibrous webs, or any other fiber-containing structures.

Also the expression "a polymer substantially made up of ethylene terephthalate units" is meant to define polyethylene terephthalate and copolymers which have in their polymer chains not more than 10 mole percent of units other than the ethylene terephthalate units. For instance, the polymer may be prepared from a reaction mixture which in addition to terephthalic acid or derivatives thereof contains isophthalic acid or other dicarboxylic acid or derivatives thereof. Likewise, the reaction mixture may in addition to ethylene glycol contain one or more other diols such as propylene glycol. These copolymers are fully documented and described in the patent literature. The term "polyethylene terephthalate" used hereinafter for brevity is also to be understood to include such copolymers.

Reinforcing fibers of polyethylene terephthalate are known. These fibers are used, inter alia, for reinforcing rubber articles such as pneumatic tires and conveyor belts, as well as sheet material and layered material having a base of bitumen or asphalt. In these applications the fibers absorb part of the strain acting on the reinforced product. The higher the force which is required to elongate the fibers to a given extent, the smaller will be the deformation at a given force. Products such as automobile tires and road surfaces are subject to varying dynamic forces. The smaller the deformations as a result of these forces, the longer will be the service life, because the creep and fatigue properties of such products are to a high degree negatively influenced by deformation. For these applications it is therefore advantageous to use fibers having a high modulus. It has been found that for the reinforcing of asphalt road surfaces it is not the initial modulus of the fibers which is of decisive importance, but the modulus prevailing at a relatively high load. This modulus should be such that at a load of 5 grams per denier, the stretch or, in other words, elongation is not more than 5 percent.

Fibers that conform to this requirement are known, inter alia, from the disclosure of the British Pat. specification No. 848,811.

Although the known polyethylene terephthalate fibers are in many respects very suitable for reinforcing sheet material and layered material having a base of bitumen, these fibers have the following shortcoming. For many applications, it is desirable to use bitumen, or bitumen-containing materials having a high softening point. The application of such a material must be carried out in a liquid or molten state at temperatures up to 160.degree. C. or higher. It has been found that at 160.degree. C. the known polyethylene terephthalate fibers show a relatively high degree of shrinkage, which often gives rise to undue deformation in the reinforced product. For instance, during road construction, when a fabric is provided which is made of a known polyethylene terephthalate fiber and a bitumen coating heated up to about 160.degree. C. or higher is subsequently applied thereto, the fabric will shrink to such a degree that undulations and cracks will be formed in the bitumen coating.

It has been found that this drawback is not encountered when the polyethylene terephthalate fibers satisfy particular demands as to reduced shrinkage at high temperatures. Advantageously the present invention provides a polyethylene terephthalate fiber having a unique combination of properties including low shrinkage at elevated temperatures.

Thus this invention contemplates a reinforcing fiber which comprises a fiber of polyethylene terephthalate that has a tenacity of at least about 7.5 grams per denier, an elongation at break of at least about 9 percent and an elongation of not more than about 5 percent at a load of 5 grams per denier and that shrinks less than 4 percent when kept under a tension of 0.05 grams per denier for 4 minutes at a temperature of about 160.degree. C. (The tenacity and elongation of the fibers are determined at a temperature of 20.degree. C., a relative humidity of 65 percent and at a constant rate of extension of 30 centimeters per minute.)

The fiber of this invention is thus distinct from all known polyester fibers in that it satisfies a combination of requirements regarding tenacity, elongation at break, elongation at a load of 5 grams per denier, and low shrinkage at about 160.degree. C.

Known fibers that show a close resemblance to the fiber of this invention are described in the British Pat. specification No. 848,811. However, upon heating at 160.degree. C., these known fibers show a shrinkage which is considerably higher than 4 percent. From FIG. 4 of this patent specification it is evident that upon being heated for a short time at 135.degree. C. the fibers disclosed shrink considerably more than 5 percent. As may be inferred by extrapolation from the data shown in FIG. 4 of the British Specification, these fibers, heated at 160.degree. C. for 4 minutes, shrink at least 9 percent. It will be noted that the British Specification also mentions the possibility of preshrinking the fibers by subjecting the fibers to a heating treatment in order to reduce the shrinkage during processing. This treatment, however, has a very unfavorable influence on the other properties and the resulting preshrunk product no longer meets the combination of requirements as regards tenacity, elongation at break or elongation at a load of 5 grams per denier. This lack of properties is clearly demonstrated by the data illustrated in FIGS. 1, 2 and 3 of the British patent specification.

As already mentioned, the fiber of the invention is particularly suitable for reinforcing layered material and sheeted material having a base of bitumen. It is preferred that the fiber should be employed in the form of a continuous multifilament yarn. This yarn may be twisted or nontwisted. Alternatively, if a higher coherency of the filaments is required, use may be made of a tangled yarn. In such case, the filaments have been interlaced by turbulent air streams.

Another aspect of this invention is concerned with a process for producing the unique reinforcing fibers. Thus, the fiber of this invention may be obtained by subjecting an undrawn fiber of polyethylene terephthalate having a relative viscosity of about 1.50 to 1.70 to a two-stage drawing procedure, the drawing in the first stage taking place at a temperature of about 70.degree. to 100.degree. C., and at a draw ratio in the range of about 3.8 to 4.2, and the drawing in the second stage taking place in the presence of superheated steam at a temperature of about 210.degree. to 250.degree. C. and at such a draw ratio that the total draw ratio is in the range of about 5.6 to 6.0.

By the term "relative viscosity" it is meant the ratio of the rate of flow through a capillary of a 1 percent solution of the polymer in metacresol to the rate of flow of the pure solvent, measured at a temperature of 30.degree. C.

This process makes it possible to obtain fibers of this invention having a tenacity in the range of about 7.5 to 9.5 grams per denier, an elongation at break of about 9 to 15 percent, an elongation of about 2 to 5 percent at a load of 5 grams per denier, (determined under the heretofore-described testing conditions) and a shrinkage of about 1 to 4 percent upon being heated for 4 minutes at about 160.degree. C.

A similar two-stage process for drawing yarn of synthetic polyesters is known and disclosed in U.S. Pat. No. 2,556,295. From the disclosure of this patent it is apparent that the use of different draw ratios and temperatures in each of the drawing stages is known per se. However, this patent does not teach the specific combination of drawing conditions required, including the use of superheated steam to heat the fiber or yarn in the second stage of drawing. Moreover, although this patent mentions that the fibers described therein have a low shrinkage at an elevated temperature, it does not reveal a fiber having the properties of the fiber according to the present invention.

According to the U.S. Pat. No. 2,556,295, the yarns designated as "1 SD" and "3 DD" in Table VIII in column 12, have a particularly low shrinkage at 90.degree. C. (dry) and 100.degree. C. (wet). After these yarns were drawn, they were relaxed and upon being subjected to a load of 5 grams per denier show an elongation which is much higher than the maximum elongation of 5 percent exhibited by the fiber of the present invention.

It is also noted that upon being heated for 30 minutes at 90.degree. C. the "2 SD" and "4 DD" yarns in Table VIII of this patent show a shrinkage of only 0.52 and 1.3 percent, respectively. However, it has been found that upon being heated for 4 minutes at 160.degree. C., these yarns show a shrinkage which is considerably higher than 6 percent.

It should also be realized that the French Pat. No. 1,490,211 mentions that when fibers of polyethylene terephthalate having a relative viscosity in the range of 1.60 to 1.75 and a tenacity of 7 to 8 grams DENIER are subjected to a heat treatment at 210.degree. to 230.degree. C., with their length being kept constant, these fibers may be made into fibers having a shrinkage of about 4 percent when being heated up to 150.degree. C. without the heat treatment resulting in loss of tenacity or modulus.

It has been found that, although according to the French patent the heat setting treatment does not result in a loss of modulus, this result does not imply that at a load of 5 grams per denier the elongation of the fiber does not increase. As will be apparent from the following Examples III and IV, a fiber subjected to the proposed heat treatment of the French patent does not satisfy the demands made on a fiber according to the present invention, because at a load of 5 grams per denier the elongation is higher than the maximum permissible 5 percent.

The fibers according to the invention are of particular importance as reinforcing material of bituminous road surfaces. However, they also may serve to reinforce other materials. The fibers are particularly suitable for the purpose of reinforcing materials which are subjected to high temperatures as they are being formed into their desired shape.

Accordingly, this invention also is directed to sheet materials and layered materials which have a base of bitumen and are reinforced with the fibers according to the invention.

The invention will be further understood by reference to the following examples:

EXAMPLE I

A melt of polyethylene terephthalate having a relative viscosity of 1.59 is extruded through a spinnerette provided with 105 orifices measuring 250 .mu. in diameter, at a rate of 161 grams per minute and a temperature of 285.degree. C.

The polymer streams issuing from the spinnerette are cooled over a distance of 10 to 150 cm. from the spinnerette by directing a stream of cooling air on to them. The threads are wound at a speed of 500 meters per minute.

After having been provided with a finish, the threads obtained are passed over a drawpin having a temperature of 80.degree. C. and drawn to four times their original length. Subsequently, the threads are passed through a steam box 10 meters long in which the threads are drawn at a temperature of 230.degree. C. and a speed of 150 meters per minute to a total draw ratio of 5.8. The threads obtained in this way is doubled by plying it into a cord having a denier of 1,000, a tenacity of 7.8 grams per denier, an elongation at break of 9.7 percent, a shrinkage of 3.9 percent after heating for 4 minutes at 160.degree. C., and an elongation of 4.5 percent at a load of 5 grams per denier.

EXAMPLE II

A melt of polyethylene terephthalate having a relative viscosity of 1.62 is extruded through a spinnerette with 200 orifices measuring 250 .mu. in diameter at a rate of 325 grams per minute and a temperature of 290.degree. C.

The polymer streams issuing from the spinnerette are cooled over a distance of 10 to 150 cm. from the spinnerette by directing a stream of cooling air on to them. The threads are wound at a speed of 500 meters per minute.

After having been provided with a usual finish, the threads obtained are passed over a drawpin having a temperature of 80.degree. C. and drawn to four times their original length. Subsequently, the threads are passed through a steam box 10 meters long in which the threads are drawn at a temperature of 210.degree. C. and a speed of 150 meters per minute to a total draw ratio of 5.8. The thread thus made has a denier of 990, a tenacity of 8.15 grams per denier, an elongation at break of 11.0 percent, a shrinkage of 3.9 percent after being heated for 4 minutes at 160.degree. C., and an elongation of 4.5 percent at a load of 5 grams per denier.

EXAMPLE III

In order to establish whether a yarn similar to that of this invention may also be obtained by the process proposed in the French Pat. No. 1,490,211, a single layer of drawn polyethylene terephthalate yarn was wound on a rigid bobbin, which was subsequently heated for 30 minutes in air at 230.degree. C. After this treatment the denier of the yarn had not changed. The following table shows the values of several properties of the yarn before and after the treatment:

Before After 30 Minutes Yarn Properties Heat treatment Heating at 230.degree. C. __________________________________________________________________________ Heat Shrinkage (4min. at 160.degree. C.) 8.6% 0.4% Tenacity 7.7 g.p.d. 6.8 g.p.d. Elongation at Break 10.1% 12.8% Elongation at a load of 5 grams 5.0% 6.3% Initial Modulus 90 g.p.d. 90 g.p.d. __________________________________________________________________________

These results show that although the heat-relaxation does not change the initial modulus, the treatment does cause the tenacity to decrease from 7.7 g.p.d. (grams per denier) to 6.8 g.p.d. and also results in a considerable loss of modulus at a load of 5 grams.

EXAMPLE IV

It was also tried to obtain a yarn similar to that of the invention by heat-relaxing a yarn (i.e., heating the yarn while keeping it at a constant length) having a high heat-shrinkage to form a yarn having a low heat-shrinkage, in accordance with the teachings of the French Pat. No. 1,490,211.

To this end a polyethylene terephthalate yarn having a denier of 1,050 was passed through a chamber containing steam at 230.degree. C. The supply rate was equal to the discharge rate. These rates were varied in order to obtain different residence times in the hot steam. The results are listed in the following table. ##SPC1##

In these runs, too, the initial modulus did not change considerably. But, as appears from the data in the above table, the heat-relaxation causes the elongation at a load of 5 g.p.d. to increase, so that products are obtained which do not meet the requirements for a yarn according to the present invention.

It will be understood that a fiber according to the invention may in the usual way be provided with a finish and with a coating of a substance which promotes adhesion to the material to be reinforced. In the preparation of reinforced bitumen-containing structures such as roadways, it has been found that certain adhesive promoting substances are considerably more effective than others. Specifically, it is advantageous to employ adhesive substances comprising resinous materials that have a softening point between 50.degree. and 160.degree. C., are miscible with bitumen, and in the molten state act as wetting agents on the reinforcing fiber. Exemplary of the resinous materials that may be used as adhesive promoting substances with the fibers of this invention are montan resin, tall resin, the coumarone and indene resins, maleic resins, phenol resins, rosin derivatives, and the like.

EXAMPLE V

This example illustrates the use of the fibers of this invention to reinforce a bitumen-containing road surface. In construction of the test road, a foundation layer of a mineral mixture of 50 percent by weight of gravel and filler and 50 percent by weight sand with asphalt bitumen having a high softening point is applied at a depth of about 7 cm. to a sub-layer of compacted sand. About 5 to 6 percent by weight of the foundation layer consists of bitumen. This layer is applied at a temperature of about 160.degree. C. and rolled. Thereafter, an adhesive layer of an anionic 50 percent asphalt emulsion is provided over the foundation layer and a fabric made of the same type of polyethylene terephthalate fiber described in Example I is then rolled out over the adhesive layer. The fabric has a plain weave type and is charged with about 45 percent by weight of a montan resin having a solidifying point of 75.degree. to 76.degree. C., an acid number between 30 and 40 and a saponification number between 55 and 65.

After the fabric is stretched longitudinally and transversely over the foundation layer and pinned down, a second coating of the asphalt emulsion is applied by spraying and is allowed to break up. Then another asphalt layer having the same composition of gravel, sand, filler and asphalt bitumen as the foundation layer is applied at a temperature of about 160.degree. C. and rolled to a thickness of about 7 cm.

This road surface is compared with one, made in the same manner but using a fabric woven of a polyethylene terephthalate fiber having suitable tenacity and elongation properties, (but a shrinkage greater than 4 percent at 160.degree. C., i.e., 8 percent) and coated with a non-resinous adhesive promoting substance, i.e., solar oil. The comparison shows that the road surface containing the fiber of this invention has substantially no deformation caused by shrinkage of the fabric and that there is excellent adhesion between the reinforcing fabric and the bitumen layer; whereas the other road surface has cracks and undulations formed by the deformation of the bitumen-containing layer during shrinkage of the fabric and the fabric poorly adheres to the bitumen layer.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed