US 20200267188A1

a2y Patent Application Publication o) Pub. No.: US 2020/0267188 A1

a9y United States

Burke et al.

43) Pub. Date: Aug. 20, 2020

(54) DYNAMIC GENERATION OF POLICY
ENFORCEMENT RULES AND ACTIONS
FROM POLICY ATTACHMENT SEMANTICS

(71) Applicant: INTERNATIONAL BUSINESS

MACHINES CORPORATION,
ARMONK, NY (US)

(72) Inventors: Thomas C. Burke, Durham, NC (US);

Mario E. De Armas, Wellington, FL,

(US); Oswaldo Gago, Margate, FL.

(US); Gaurang Shah, Cary, NC (US);

Maria E. Smith, Davie, FL. (US)

(21) Appl. No.: 16/868,946

(22) Filed: May 7, 2020

Related U.S. Application Data

Continuation of application No. 14/989,268, filed on
Jan. 6, 2016, now Pat. No. 10,693,911, which is a
continuation of application No. 14/224,456, filed on
Mar. 25, 2014, now Pat. No. 9,270,541, which is a
continuation of application No. 13/764,828, filed on
Feb. 12, 2013, now Pat. No. 9,258,198.

(63)

—
(@]

POLICY
REGISTRY
114

Publication Classification

(51) Int. CL
HO4L 29/06 (2006.01)
HO4L 12/24 (2006.01)
HO4L 12/813 (2006.01)
HO4L 12/927 (2006.01)
(52) US.CL
CPC ... HO4L 63/20 (2013.01); HO4L 63/0281
(2013.01); HO4L 41/5019 (2013.01); HO4L
637102 (2013.01); HO4L 47/20 (2013.01);
HO4L 47/805 (2013.01); HO4L 41/0893
(2013.01)
(57) ABSTRACT

At least one set of enforceable policy provisions is identified
within at least one defined service level policy to be enforced
during runtime by a policy enforcement point (PEP). Each
set of enforceable policy provisions includes a policy sub-
ject, a reference to a policy domain, and at least one
assertion. Each identified set of enforceable policy provi-
sions is transformed by the PEP into at least one runtime-
executable processing rule that each includes at least one
PEP processing action that each represents an atomic unit of
policy enforcement level behavior executable by the PEP to
enforce the respective at least one assertion against runtime
objects associated with the policy subject within an area of
runtime policy enforcement specified by the policy domain.

SERVICE SERVICE
PROVIDER PROVIDER
SERVER_1 * . _ | SERVER_M

116 118

POLICY
ENFORCEMENT POLICY
SERVER_1 * - | ENFORCEMENT
108 SERVER_T

COMPUTING 110
DEVICE_1 —

102

) 106

COMPUTING
DEVICE_N

104

Aug. 20,2020 Sheet 1 of 8 US 2020/0267188 Al

Patent Application Publication

901l

ort
IRSENVSEL
ININTDOHOANT
A2I10d

ST
NIRSELYSELR
H3AINO¥d

IDIAY3S

ol

- | 1 ¥3AY3S

43dINOYd
30INH3S

l Ol

o1
N 30IA3d
ONILNdINOD

801

. ARSENRYSEL
ININTDOHOANT
A2I10d

_or
L 30IA3d
ONILNdINOD

vl
Ad1SIO3Y
AQIT0d

o
—

US 2020/0267188 Al

[

1ININIOHO4NS
ADIT0d

[

d3ddVIN NOILOV
ONISS3ID0dd
OL NOILHISSY
NIVINOQ ADIT0d

[

(94d) YOLVYYINTD
31NY ONISSIAD0Yd

¢ 9ld

viL
AdLSIO3IY

AQIT0d

d3SdVd ADI70d

AHOMIANVES ADI10d

[~

NOILOV ANV
37Nd ONISS3O00dd
1ININIOHO4NS
ADIT0d

NOILVOINNINWOD

33IA3A LNdNI

AV1dSId

[~

ONISS3ID0dd
ADIT0d

AHJOW3IN

P2T ~—
. 222~
S

=]

(g\]

2

2 022 ~—_
<

S

& 81T~
<

(g\]

o 92 ~—_|
«

=

g

E

2 PLZ ~
[~™

=

g

S 21T~
j=3

< oLz

g B
-

[~™

T~z

Ndd

O
(QV

Aug. 20,2020 Sheet 3 of 8 US 2020/0267188 Al

Patent Application Publication

€ 9ld

8 vm/
Q00
0ce

- D DDD-
DD

143>

ale

| 07 N3YOL INYNYISN
zLe =T

SNOILYISSY d1S

| __-o0e
_ 680ZEVT
ore —T1 /A9110d™ALIINOAS
" IIdLLH / <o
SI NIVINOQ ADIT0d g
| ADI10d

mom\\\ NOILVHAdO | |y q3HovLLY 19 ADITOd / a1s

N ADINOd AXOdd

'

0’} NIXMOL JINVYNHESN

SNOILY3SSY d1S

_ 6e0cere
[AJIN0d ALIANOFS
/I d1LH

SINIYINOQ ADIT0d

— | 3OIAY3S |1y a3HoVLLY 18 ADIT0d

L ADITOd AXOdd

Aug. 20,2020 Sheet 4 of 8 US 2020/0267188 Al

Patent Application Publication

¥ Old

[~— ===]
N%A -~V)V)HV) e — -

€S
AJI0d
V1S

llllllllll 80 vov ZS

AJI10d
V1S

A4

O
o
N
A

llllllllll] V1S 30404NT
«+ (V)Y))-(V) HoLvin HOVI-HOA |A%A|

lllll duininin J 1S
AJI0d
rie O_\v\ cov V1S

N

|
AOIN0d
c0e ais

N

o
<

Aug. 20,2020 Sheet 5 of 8 US 2020/0267188 Al

Patent Application Publication

G 9Old

NOOO
Nmm\wrm\

DD [o
DD

A

\J

916

[42°AN

0lg
N\

v_\m/

809
N\

v_\m/

909
N

\N_\m
39VSSIN HLINS NHOT. |/ P —— —
1LdAYONI = ar¥3asn o0p. | =
SNOILY3SSY| | SIVIINIAIED /f ADI10d
€ ADIT0d AXO¥d V1S " VIS
vov/_/ =S
JOVSSIN 300 ANV, | L N A2I70d
INJOASNVYL SER N\ 1| vis
SNOILY3SSY| | swviINaazuo| | ¢ | =
I
Z ADI70d AXO¥d V1S _\ AdI10d
zor”) |L_v1s
3OVSSIN 400 NHOT | K _ T
31N0Y = arg3asn N2\ c L1 A9704d
SNOILY3SSY| | SIVIINIAIWD 20 \"\ ais

L ADITO0d AXOHd VIS

/

-

0’} NIXMOL JNVNHESN

SNOILY3ASSY dT1S

r0G A

6£0ceve
/i dL1IH

SI NIVINOQ ADIT10d

30IAYES |1V A3HOVLLY 18 ADIT70d

J

206
L A0I10d AXOdd \

Patent Application Publication Aug. 20, 2020 Sheet 6 of 8 US 2020/0267188 A1

00

OBTAIN, BY A PROCESSOR, AT LEAST

ONE DEFINED SERVICE POLICY TO BE /602
ENFORCED BY A POLICY

ENFORCEMENT POINT (PEP)

Y

PARSE THE OBTAINED AT LEAST ONE

DEFINED SERVICE POLICYTO | —604
IDENTIFY AT LEAST ONE SET OF

ENFORCEABLE POLICY PROVISIONS

Y

IDENTIFY THE AT LEAST ONE SET OF
ENFORCEABLE POLICY PROVISIONS,
WHERE EACH SET OF ENFORCEABLE
POLICY PROVISIONS COMPRISES A 606
POLICY SUBJECT, A POLICY DOMAIN,
AND AT LEAST ONE ASSERTION AS
THE ENFORCEABLE POLICY
PROVISIONS WITHIN THE AT LEAST
ONE DEFINED SERVICE POLICY

Y

CREATE AT LEAST ONE RUNTIME
PROCESSING RULE COMPRISING AT
LEAST ONE PROCESSING ACTION
USABLE BY THE PEP TO ENFORCE 608

THE POLICY SUBJECT, THE POLICY —
DOMAIN, AND THE AT LEAST ONE
ASSERTION OF EACH IDENTIFIED AT
LEAST ONE SET OF ENFORCEABLE
POLICY PROVISIONS

FIG. 6

Patent Application Publication Aug. 20, 2020 Sheet 7 of 8 US 2020/0267188 A1

700
702 704 706
NO YES | SELECT DEFINED .| PARSE SERVICE
A SERVICE POLICY POLICY
708 Y
DISTRIBUTE GENERATED POLICY | 732 N _ IDENTIFY
ENFORCEABLE RULE TO POLICY P~ ENFORCEABLE
ENFORCEMENT POINT(S) POLICY
PROVISIONS
722 1‘4 710 v
FORM SLD POLICY GENERATE PROXY
™ ENFORCEMENT RULE POLICY OBJECT FOR
EACH SET OF
ENFORCEABLE
APPEND SLA PROCESSING RULE(S) | 730 | by icY PROVISIONS
TO POLICY ENFORCEMENT RULE T
712
) N POPULATE EACH
FORM POLICY ENFORCEMENT RULE PROXY POLICY OBJECT
POPULATED WITH SLA CHECK ACTION, | 728 | \A1TH ENFORCEABLE
RUNTIME SLA PROCESSING LOGIC, }V~ POLICY PROVISIONS
AND SLD PROCESSING RULE AS
PARENT PROCESSING RULE ’L
+ 214 SELECT PROXY
GENERATE RUNTIME SLA 296 ™ POL%(SE,;,JECT
PROCESSING LOGIC TO IDENTIFY |~
MATCHING SLA PROCESSING Y
RULE(S) TO BE APPLIED TO DEFINE PROCESSING
OBJECTS DURING RUNTIME RULE(S) AND
3 /724 PROCESSING
CREATE SERVICE LEVEL AGREEMENT ﬁ%gg“ggﬁggfgg
(SLA) CHECK ACTION(S) PROXY POLICY
<<
716

Patent Application Publication

0

0

Aug. 20,2020 Sheet 8 of 8 US 2020/0267188 Al

808
802 806 CONFIGURE
YES_ [STORE POLICY ENFORCEMENT
ENFORCEMENT >
ENFORCEMENT OF POLICY
RULE(S) ENFORCEMENT
RULE(S)
OBJECT
A RECEIVED?
IDENTIFY POLICY ENFORCEMENT | 810
RULE(S) APPLICABLE TO OBJECT
812 814
NO PERFORM SLA CHECK ACTION TO
IDENTIFY SLA PROCESSING RULE(S)
YES 816
600 NO_—~MIATCHING SLA
N RULE(S)
PROCESS THE vES
OBJECT USING SLD
POLICY 818
ENFORCEMENT RULE PROCESS OBJECT USING /
EACH MATCHING SLA

AUTHORIZED?

PROCESSING RULE

- 824

GENERATE
NOTIFICATION

FORWARD OBJECT
TO DESTINATION

FIG. 8

US 2020/0267188 Al

DYNAMIC GENERATION OF POLICY
ENFORCEMENT RULES AND ACTIONS
FROM POLICY ATTACHMENT SEMANTICS

BACKGROUND

[0001] The present invention relates to service level agree-
ment (SLA) policy enforcement. More particularly, the
present invention relates to dynamic generation of policy
enforcement rules and actions from policy attachment
semantics.

[0002] Service level agreements (SLAs) are contracts for
services formed between consumers and service providers.
For example, a consumer may enter into a service level
agreement with a service provider to send and/or receive an
agreed number of messages (e.g., text messages) per month
for a contracted/set fee. The SLA may further specify that if
the consumer exceeds the agreed number of messages per
month associated with the contracted/set fee, an additional
per message fee will be charged for each additional message.

SUMMARY

[0003] A method includes, by a processor operating at a
policy enforcement point (PEP), identifying, within at least
one defined service level policy to be enforced during
runtime by the PEP, at least one set of enforceable policy
provisions that each specifies a policy subject, a reference to
a policy domain, and at least one assertion; and transforming
each identified set of enforceable policy provisions of the at
least one defined service level policy into at least one
runtime-executable processing rule that each includes at
least one PEP processing action that each represents an
atomic unit of policy enforcement level behavior executable
by the PEP to enforce the respective at least one assertion
against runtime objects associated with the policy subject
within an area of runtime policy enforcement specified by
the policy domain.

[0004] A system that performs the method and a computer
program product that causes a computer to perform the
method are also described.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 is a block diagram of an example of an
implementation of a system for dynamic generation of
policy enforcement rules and actions from policy attachment
semantics according to an embodiment of the present subject
matter;

[0006] FIG. 2 is a block diagram of an example of an
implementation of a core processing module capable of
performing dynamic generation of policy enforcement rules
and actions from policy attachment semantics according to
an embodiment of the present subject matter;

[0007] FIG. 3 is a diagram of an example of an imple-
mentation of a policy transformation flow for dynamic
generation of policy enforcement rules and actions from
policy attachment semantics for a service level definition
(SLD) according to an embodiment of the present subject
matter;

[0008] FIG. 4 is a diagram of an example of an imple-
mentation of a policy transformation flow for dynamic
generation of policy enforcement rules and actions from
policy attachment semantics for a service level definition

Aug. 20, 2020

(SLD) and service level agreements (SLAs), and runtime
enforcement according to an embodiment of the present
subject matter;

[0009] FIG. 5 is a diagram of an example of an imple-
mentation of a policy transformation flow for dynamic
generation of policy enforcement rules and actions from
policy attachment semantics for a service level definition
(SLD) and service level agreements (SL.As) based upon the
example SLD and SLAs described in FIG. 4 according to an
embodiment of the present subject matter;

[0010] FIG. 6 is a flow chart of an example of an imple-
mentation of a process for dynamic generation of policy
enforcement rules and actions from policy attachment
semantics according to an embodiment of the present subject
matter;

[0011] FIG. 7 is a flow chart of an example of an imple-
mentation of a process for dynamic generation of policy
enforcement rules and actions from policy attachment
semantics for both service level definitions (SLDs) and
service level agreements (SLAs) according to an embodi-
ment of the present subject matter; and

[0012] FIG. 8 is a flow chart of an example of an imple-
mentation of a process for dynamic deployment and enforce-
ment of policy enforcement rules and actions at policy
enforcement points (PEPs) according to an embodiment of
the present subject matter.

DETAILED DESCRIPTION

[0013] The examples set forth below represent the neces-
sary information to enable those skilled in the art to practice
the invention and illustrate the best mode of practicing the
invention. Upon reading the following description in light of
the accompanying drawing figures, those skilled in the art
will understand the concepts of the invention and will
recognize applications of these concepts not particularly
addressed herein. It should be understood that these con-
cepts and applications fall within the scope of the disclosure
and the accompanying claims.

[0014] The subject matter described herein provides
dynamic generation of policy enforcement rules and actions
from policy attachment semantics. The present technology
involves automated policy transformation and runtime
enforcement to allow policies within a policy domain (e.g.,
service provider policy domain, etc.) to be associated with
any runtime object (e.g., objects representing specific con-
sumers, organizations, service resources, etc.) that needs to
be controlled or regulated by that policy. Those policies may
be enforced against the runtime object(s) at policy enforce-
ment points (PEPs) that operate to provide proxy service
offerings including policy enforcement. Examples of run-
time objects against which policies may be enforced include
transactions, web requests, database requests, representa-
tional state transfer (REST) services, and web applications.
The control or regulation of the runtime object by policy
may be further determined based upon the content of that
object at runtime, such as user credentials. Policies may be
attached at an object level for an object, thereby enhancing
the specificity of policy enforcement based upon the granu-
larity of the respective objects (e.g., at the level of specific
consumers, organizations, service resources, etc.) and based
upon the content of those objects at runtime.

[0015] To implement the present technology, a device,
such as a PEP, programmatically and dynamically trans-
forms defined service policies, which are defined using

US 2020/0267188 Al

policy attachment semantics, into runtime processing rules
that encapsulate runtime processing actions (collectively
runtime “policy enforcement rules”) that are to be executed
against runtime objects to enforce the provisions (e.g.,
defined via the policy attachment semantics) of the defined
policies. To transform the defined service policies, the
device obtains one or more defined service policies to be
enforced by the PEP. The defined service policies that are
obtained are parsed to identify enforceable policy provi-
sions, such as policy constraints (e.g., number of messages
per agreement). A policy subject, a policy domain, and one
or more assertions are identified as the enforceable policy
provisions within each defined service policy. Additionally,
an optional policy schedule and policy effective dates may
be included in policy attachments. One or more runtime
processing rules that include at least one processing action
usable by the PEP to enforce the identified policy subject,
policy domain, and the assertion(s) of each defined service
policy are defined. The PEP may then apply the defined
processing rules and the encapsulated processing actions
against runtime objects to enforce the original service policy
definitions.

[0016] To transform the defined service policies into the
runtime processing rules and processing actions, intermedi-
ate proxy policy objects are created that operate as interme-
diate effective policies. The proxy policy objects support the
proxy service offerings and constraints for policy enforce-
ment provided by PEPs, as described herein. The creation of
policy enforcement rules that include runtime processing
rules and processing actions to support the runtime enforce-
ment of defined policies involves the creation of these
intermediate policy proxy objects that include information
from the original policy that is under transformation. These
intermediate policy proxy objects provide a framework and
foundation for creation of the actual runtime policy enforce-
ment rules including the processing rules and processing
actions.

[0017] The present technology may be applied, for
example, to implement service level agreements (SLAs)
within a service oriented architecture (SOA) network appli-
ance engine. The present technology may be implemented,
for example, using higher-level gateway platform actions
rather than low-level code. As such, implementation may be
performed at a layer of abstraction above the encoding level
for the respective appliance engines. It should be noted that
the present technology may be implemented with a variety
of policy constructs and is not limited to particular variations
of how policies are constructed. Accordingly, the present
technology may be flexibly applied across a variety of
service platforms.

[0018] It should be noted that conception of the present
subject matter resulted from recognition of certain limita-
tions associated with policy administration and enforcement.
For example, it was observed that policy administrators are
tasked with implementing and maintaining policies to sup-
port service level definitions (SLDs) and service level agree-
ments (SLAs), and that the domain of policy enforcement
has become increasingly complex as systems have increased
in size and feature sets. This process of having administra-
tors manually implement and maintain policies was
observed to be a time consuming task that is prone to errors,
particularly due to the increased size and complexity of the
systems and feature sets available within these systems. For
example, it was observed that where multiple SLAs are

Aug. 20, 2020

attached to a service, subsequent changes that affect multiple
consumers may require the identification and editing of
multiple configured policy enforcement rules and actions
associated with those policy enforcement rules, but that
identification of all applicable policy enforcement rules and
actions was difficult. It was further observed that manual
updating of the applicable policy enforcement rules that
were able to be identified may require extensive efforts, and
that this processing is again prone to errors. It was further
determined that there are several issues that have arisen with
the increased size and complexity of policy administration
and enforcement systems. For example, it was determined
that scalability cost, maintainability, agility, and operational
stability are all factors to be addressed within policy admin-
istration and enforcement for such system implementations.
As such, in view of the observations and determinations
described above, the present subject matter improves policy
administration and enforcement by providing for dynamic
generation of policy enforcement rules and actions from
policy attachment semantics, as described above and in
more detail below.

[0019] Several definitions are utilized within the following
description, and some are repeated and further defined
below. The term “service policy” or “policy” as utilized
herein represents any mediation enforcement provision,
routing provision, security provision, or any other custom
policy/provision that is written to a specification that a
policy enforcement system may implement. As such, a
service policy may be implemented as a web service (e.g.,
web services description language (WSDL)), as a represen-
tational state transfer (REST) implementation or service, as
a web application (e.g., plain old XML (PDX)) implemen-
tation, as a database request, or otherwise as appropriate for
the given implementation.

[0020] Regarding service policies, a service level agree-
ment (SLA) is a service policy that represents an agreement
(e.g., a contract for services) between a service provider and
a consumer where a level of service is formally defined and
agreed between the parties to the SLA. The SLA records a
common understanding about services, priorities, responsi-
bilities, guarantees, warranties, and any other particulars of
the agreement. Examples of SLLAs include business services
such as a web service, a REST service, and a web applica-
tion. The SLA may specify, for example, the levels of
availability, serviceability, performance, operation, or other
attributes of the service to be provided by the service
provider to the consumer. As a further example, an SLLA may
represent a processing agreement such as a transaction rate,
a processor utilization level, a disk utilization level, and a
memory utilization level for the business service.

[0021] A service level definition (SLD) represents a ser-
vice policy that protects the service provider infrastructure
access and utilization constraints, such as for example from
accesses by non-contracting entities for which an SLA has
not been established, or to limit a maximum resource
utilization to prevent service degradation (e.g., maximum
number of messages per minute). An SLD, when attached to
a policy subject, is enforced by a policy enforcement point
(PEP). A “policy subject” represents an entity with which a
policy (e.g., an SLA or SLD) may be associated, such as for
example, an endpoint of a transaction, a message, a resource,
an operation or other entity.

[0022] A policy administration point (PAP) represents a
location (e.g., repository, registry, etc.) where policies such

US 2020/0267188 Al

as SLAs and SLDs may be created, stored, accessed, and
modified. A WebSphere® service registry and repository
(WSRR) represents one possible example of a PAP. A policy
enforcement point (PEP) represents an intermediary system
that operates to enforce defined policies. The PEP provides
proxy service offerings including policy enforcement. A
“policy framework™ represents the infrastructure used to
convert supported policy vocabularies into processing
actions and processing rules.

[0023] Regarding transformation of service policies, as a
first phase of policy transformation, a service policy is
transformed into one or more intermediate (or local) policy
entities. The intermediate policy entities are termed herein in
the alternative as a “proxy policy,” a “proxy policy object,”
and an “effective policy.” Each of these terms represents an
intermediate policy entity created based upon information
within the original service policy (e.g., SLD or SLA, etc.)
that may be used to create runtime enforcement logic to
enforce the respective service policies.

[0024] As a second phase of policy transformation, the
intermediate proxy policy entities are transformed into one
or more “processing actions” that represents an atomic unit
of behavior defined based upon a policy to be implemented
by a PEP. A “processing rule” or “policy enforcement
processing rule” as described herein represents an ordered
sequence of processing actions defined based upon a policy
to be implemented by a PEP. One or more processing rules
may be collected into a “policy enforcement rule.” As such,
the term “policy enforcement rule” as used herein represents
one or more processing rules to be enforced to perform
policy enforcement. An “SLA check” represents a gateway
operation at a PEP that is used to determine the SLA policy
enforcement rules created from defined policies that are to
be implemented during runtime by that PEP and applied to
a particular transaction (e.g., to a message).

[0025] For example, a policy may be specified as an SLA
between a service provider and a consumer. Each consumer
may have its own selected service options. As such, for
purposes of the present example, it is assumed that two
consumers have selected different service plans for a par-
ticular service. Within this example, one consumer has
selected a “default” service level defined within the service
provider domain for this particular service offering at a level
of one hundred (100) allowed requests per hour. Similarly,
another consumer has selected a higher-tier service level,
identified within the present example as a “gold” service
level, with a service offering of five hundred (500) allowed
requests per hour. As such, enforcement of this SLA by a
PEP would involve identification of the respective consum-
ers, correlation of the respective consumers with their
selected service plans/levels, and monitoring of request rates
(e.g., message rates, transaction rates, etc.) for each con-
sumer based upon their respective selected plans. If a
threshold number of requests per hour associated with a
selected plan is reached, the PEP would then invoke pro-
cessing to identify any additional service requests as over-
ages relative to the plan or prevent the service requests, as
appropriate for a given implementation. Similarly, if a

Aug. 20, 2020

consumer issues a request that is authorized based upon the
selected service plan, the PEP is responsible for ensuring
that the request is satisfied for the consumer by the service
provider.

[0026] The present technology enhances policy enforce-
ment point (PEP) functionality to transform defined service
policies (e.g., SLAs and SLDs) associated with a policy
administration point (PAP) into policy enforcement rules
and actions that are enforced by the PEP. The automated
transformation of the defined policies involves transforma-
tion from the defined policy definitions/semantics to policy
enforcement rules and actions that are operable by the PEP
platform to enforce the defined policies. The policy enforce-
ment rules and actions are dynamically implemented and
enforced on a transactional basis during runtime as transac-
tions associated with the defined policies occur (e.g., as
messages are received).

[0027] Example transformations include transformation of
a defined service policy into one or more processing actions
in a normalized and interchangeable format. The normalized
and interchangeable format may include, for example, a
language such as extensible markup language (XML), XML
stylesheet language for transformations (XSLT), object-
oriented languages such as Java™ and C++ programming
languages, relational database management (RDBM) lan-
guages such as structured query language (SQL), and script-
ing languages/implementations such as PHP: Hypertext Pre-
processor (PHP) and Perl.

[0028] It should be noted that the PEP processing tech-
nology described herein operates as a proxy for both the
service providers and the consumers to enforce the various
provisions of defined SLLAs and SLDs. As such, the PEP
represents a proxy component/entity for both the service
provider(s) and for the consumer(s). Within this proxy
context for policy enforcement, the PEP operates to protect
the interests of the service providers to ensure that no
unauthorized consumers access the respective services pro-
vided by the service providers and to ensure that consumers
that are authorized do not exceed the defined SLDs associ-
ated with the services and service providers. Similarly, the
PEP operates to protect the interests of consumers and
service providers to ensure that the SLA(s) for which the
consumers and service providers have contracted are upheld/
enforced. To fulfill this dual-proxy role, the PEP operates as
a proxy intermediary for both of the respective entities to
analyze messages communicated between the respective
entities and to enforce policy enforcement rules that are
defined in association with the PEP based upon policies
associated with the respective services and agreements.
[0029] As described above, the present technology pro-
vides for the programmatic creation of policy enforcement
rules populated with processing actions from policies
defined in association with the respective services and
agreements. The following pseudo-syntax policy example
represents one possible implementation of a defined service
policy for which policy enforcement rules populated with
processing actions may be programmatically created, and
that may be enforced by a PEP.

<wsp:Policy>

<dpe:summary>

<description>

Implements WS Security Policy 1.1 - UsernameToken 1.0 support

</description>

US 2020/0267188 Al

-continued

Aug. 20, 2020

</dpe:summary>
<wsp:ExactlyOne>
<!--UsernameToken 10 -->
<wsp:All>
<sp:SupportingTokens>
<wsp:Policy>

<sp:UsernameToken sp:IncludeToken="IncludeToken/Always™>

<wsp:Policy>
<sp:WssUsernameTokenl10/>
</wsp:Policy>
</sp:UsernameToken>
<fwsp:Policy>
</sp:SupportingTokens>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

[0030] Based upon the pseudo-syntax policy example
above, a “UserNameToken 1.0” is defined with an “Exact-
lyOne” constraint (represented via a tag pair), such that only
one user name token may be present in any message proxied
by a PEP. Additionally, the pseudo-syntax policy example
above further specifies that the user name token must always
be present within any message by specitying the “Inclu-
deToken/Always™ constraint (represented via an additional
tag pair). A policy of “sp: WssUsernameToken10” represents
a policy to be enforced for all messages (also represented
within an additional tag pair) that identify the username
token version one (1.0) (“Basic Auth”) is required.

[0031] Attaching the “UserNameToken 1.0” policy to a
service that is proxied by a PEP results in a filter action being
programmatically created. The filter action may be imple-
mented to analyze incoming messages and to determine
whether the specified components are part of the incoming
message. If the specified components are not present within
a particular incoming message, the message is rejected. If
the specified components are present, the message is
allowed to continue. As such, it is by the creation and
implementation of the message filtering action from the
original policy that the “UserNameToken 1.0” policy is
enforced by the PEP.

[0032] The following pseudo-syntax policy enforcement
rule example may be programmatically created from the
pseudo-syntax policy example above for enforcement within
a PEP.

Service__18_ 6-1-2-request-rule-suptoken

mAdminState enabled

UserSummary handle-supporting-token
Type filter

Input INPUT

Transform store:///required-elements-filter.xsl
Output NULL
NamedInOutLocationType default

Transactional off

SOAPValidation body

SQLSourceType static

Asynchronous off

ResultsMode first-available
RetryCount 0

RetryInterval 1000

IteratorType XPATH

Timeout 0

-continued

Service__18__6-1-2-request-rule-suptoken

MethodRewriteType GET
MethodType POST
MethodType2 POST
[0033] As can be seen from the pseudo-syntax policy

enforcement rule example above, the policy enforcement
rule is “enabled” within the “mAdminState” field, a “Type”
of “filter” is specified, and the filtering action is applied to
the “INPUT” stream specified in the “Input” field. The
“Transform” field specifies a stylesheet to execute as part of
policy action. The “Output” field specifies the name of a
stream where the output of the action is to be stored.
[0034] As such, a policy framework, as described in more
detail below, consumes policies, such as the pseudo-syntax
policy example above for enforcement by a PEP. To enforce
the respective policies, the policy framework generates
policy enforcement rules that include processing actions,
such as the example filtering action described above for
messages to enforce the associated policy. It should be noted
that consumption of defined service policies and transfor-
mation of those service policies to enforceable processing
rules and processing actions may be repeated with consis-
tency of results. As such, one device, such as a PEP, may be
configured to consume and transform policies to create
processing rules, and to distribute the created processing
rules to other PEPs for enforcement along with enforcement
by the PEP that performed the transformation, which pro-
vides one possible option for consistent policy enforcement
results across multiple of PEPs. Alternatively, each PEP of
a multiple PEP environment may be configured to consume
and transform service policies into processing rules with
consistent transformation results across a set of PEPs, which
may also result in consistent policy enforcement results. As
such, a variety of policy transformation processing options
may be available and utilized based upon implementation
details as appropriate for the respective implementation.
[0035] Further, as policies change over time, the associ-
ated policy enforcement rules and processing actions may be
modified, added, deleted, or otherwise changed to imple-
ment any changes to the respective policies that have
changed. As such, the present technology may provide for
repeatability of implementation. The present technology
may further improve scalability of costs, maintainability,
agility, and operational stability.

US 2020/0267188 Al

[0036] The dynamic generation of policy enforcement
rules and actions from policy attachment semantics
described herein may be performed in real time to allow
prompt creation of policy enforcement rules and run-time
actions from registered SLA policy attachment semantics.
For purposes of the present description, real time shall
include any time frame of sufficiently short duration as to
provide reasonable response time for information processing
acceptable to a user of the subject matter described. Addi-
tionally, the term “real time” shall include what is commonly
termed “near real time”—generally meaning any time frame
of sufficiently short duration as to provide reasonable
response time for on-demand information processing
acceptable to a user of the subject matter described (e.g.,
within a portion of a second or within a few seconds). These
terms, while difficult to precisely define are well understood
by those skilled in the art.

[0037] FIG. 1 is a block diagram of an example of an
implementation of a system 100 for dynamic generation of
policy enforcement rules and actions from policy attachment
semantics. A computing device_1 102 through a computing
device_N 104 represent consumer client devices that utilize
services specified by SLAs. The computing device_1 102
through the computing device_N 104 may communicate
with one another and with other devices via a network 106.
A policy enforcement server_1 108 through a policy
enforcement server_T 110 represent policy enforcement
points (PEPs), as described above. The policy enforcement
server_1 108 through the policy enforcement server_T 110
communicate and interconnect via a network 112 with a
policy registry 114 that stores policies (e.g., SLDs and
SLAs) generated by one or more of a service provider
server_1 116 through a service provider server_ M 118. It
should be noted that the network 106 and the network 112
are illustrated as separate networks for ease of description,
and that any arrangement of interconnection may be utilized
as appropriate for a given implementation.

[0038] The service provider server_1 116 through the
service provider server M 118 represent service capable
devices (e.g., messaging devices for text messages, etc.).
The service provider server_1 116 through the service
provider server_M 118 also represent administrative devices
that may be utilized by service provider administrators for
policy creation, such as creation of SLDs and SLAs.
[0039] As described above, policies implemented by ser-
vice provider administrators via devices, such as the service
provider server_1 116 through the service provider
server_M 118, may be stored within the policy registry 114
for enforcement by PEPs, such as the policy enforcement
server_1 108 through the policy enforcement server_T 110.
The policy enforcement server_1 108 through the policy
enforcement server_T 110 each implement a policy frame-
work as described above and in more detail below for
transformation of defined service policies stored in the
policy registry 114 into policy enforcement rules that
include processing rules and processing actions that are to be
enforced during runtime against objects. The objects may be
of varying granularity (e.g., at the level of specific consum-
ers, organizations, service resources, etc., as described
above) based upon the particular scope and configuration of
the respective policies to be enforced for the respective
service providers and consumers.

[0040] A PEP may be implemented via each of the policy
enforcement server_1 108 through the policy enforcement

Aug. 20, 2020

server_T 110. The PEP has the role of enforcing policies
defined outside or within the PEP. The PEPs operate as
gateways that provide virtual services that proxy policy
enforcement operations for the real backend services. The
PEPs protect and optimize transactions flowing through the
respective network(s) on behalf of the backend services. As
such, the policy enforcement server_1 108 through the
policy enforcement server_T 110 each represent proxy gate-
ways that provide proxy services for the service providers
represented by the service provider server_1 116 through the
service provider server_M 118 and for consumers repre-
sented by the computing device_1 102 through the comput-
ing device_N 104.

[0041] It should be noted that there may be a many-to-one
relationship of PEPs to service providers. Each PEP may
create its own policy enforcement rules based upon policies
to be enforced for a given service provider. By use of the
present technology, the policy enforcement rule creation
from defined policies may be consistently repeated across
the set of PEPs that are designated to enforce the respective
policies.

[0042] As will be described in more detail below in
association with FIG. 2 through FIG. 8, the policy enforce-
ment server_1 108 through the policy enforcement server_T
110 may each provide automated dynamic generation of
policy enforcement rules and actions from policy attachment
semantics. The automated dynamic generation of policy
enforcement rules and actions from policy attachment
semantics is based upon creation of the policy enforcement
rules and actions to be enforced during runtime to fulfill the
respective SLDs and SLAs established for messaging man-
agement within the system 100. A variety of possibilities
exist for implementation of the present subject matter, and
all such possibilities are considered within the scope of the
present subject matter.

[0043] It should be noted that any of the respective com-
puting devices described in association with FIG. 1 may be
portable computing devices, either by a user’s ability to
move the respective computing devices to different loca-
tions, or by the respective computing device’s association
with a portable platform, such as a plane, train, automobile,
or other moving vehicle. It should also be noted that the
respective computing devices may be any computing
devices capable of processing information as described
above and in more detail below. For example, the respective
computing devices may include devices such as a personal
computer (e.g., desktop, laptop, etc.) or a handheld device
(e.g., cellular telephone, personal digital assistant (PDA),
email device, music recording or playback device, tablet
computing device, e-book reading device, etc.), a service
provider messaging server, a web server, application server,
or other data server device, or any other device capable of
processing information as described above and in more
detail below.

[0044] The network 106 and the network 112 may include
any form of interconnection suitable for the intended pur-
pose, including a private or public network such as an
intranet or the Internet, respectively, direct inter-module
interconnection, dial-up, wireless, or any other interconnec-
tion mechanism capable of interconnecting the respective
devices.

[0045] FIG. 2 is a block diagram of an example of an
implementation of a core processing module 200 capable of
performing dynamic generation of policy enforcement rules

US 2020/0267188 Al

and actions from policy attachment semantics. The core
processing module 200 may be associated with either the
policy enforcement server_1 108 through the policy enforce-
ment server_T 110 to implement the dynamic generation of
policy enforcement rules and actions from policy attachment
semantics described herein. It should, however, be noted that
components of the core processing module 200 may addi-
tionally or alternatively be associated with the computing
device_1 102 through the computing device_N 104 or with
the service provider server_1 116 through the service pro-
vider server_M 118, as appropriate for a given implemen-
tation. As such, the core processing module 200 is described
generally herein, though it is understood that many varia-
tions on implementation of the components within the core
processing module 200 are possible and all such variations
are within the scope of the present subject matter.

[0046] Further, the core processing module 200 may pro-
vide different and complementary processing of policy
enforcement rule creation and policy enforcement via the
created policy enforcement rules in association with each
implementation. As such, for any of the examples below, it
is understood that any aspect of functionality described with
respect to any one device that is described in conjunction
with another device (e.g., sends/sending, etc.) is to be
understood to concurrently describe the functionality of the
other respective device (e.g., receives/receiving, etc.).
[0047] A central processing unit (CPU) 202 provides
computer instruction execution, computation, and other
capabilities within the core processing module 200. A dis-
play 204 provides visual information to a user of the core
processing module 200 and an input device 206 provides
input capabilities for the user.

[0048] The display 204 may include any display device,
such as a cathode ray tube (CRT), liquid crystal display
(LCD), light emitting diode (LED), electronic ink displays,
projection, touchscreen, or other display element or panel.
The input device 206 may include a computer keyboard, a
keypad, a mouse, a pen, a joystick, touchscreen, or any other
type of input device by which the user may interact with and
respond to information on the display 204.

[0049] It should be noted that the display 204 and the input
device 206 may be optional components for the core pro-
cessing module 200 for certain implementations/devices.
Accordingly, the core processing module 200 may operate as
a completely automated embedded device without direct
user configurability or feedback. However, the core process-
ing module 200 may also provide user feedback and con-
figurability via the display 204 and the input device 206,
respectively, as appropriate for a given implementation.
[0050] A communication module 208 provides intercon-
nection capabilities that allow the core processing module
200 to communicate with other modules within the system
100. The communication module 208 may include any
electrical, protocol, and protocol conversion capabilities
useable to provide interconnection capabilities, appropriate
for a given implementation.

[0051] A memory 210 includes a policy processing storage
area 212 that provides memory space for the creation of
policies (e.g., SLAs and SLDs) in association with the core
processing module 200 when implemented, for example, in
association with one or more of the service provider
server_1 116 through the service provider server M 118.
Additionally, the policy processing storage area 212 pro-
vides memory space for the creation of policy enforcement

Aug. 20, 2020

rules and associated runtime processing actions to support
the runtime enforcement of defined policies (e.g., SLAs and
SLDs) in association with the core processing module 200
when implemented, for example, in association with one or
more of the policy enforcement server_1 108 through the
policy enforcement server_T 110.

[0052] The policy processing storage area 212 also pro-
vides storage for policy proxy objects that operate as inter-
mediate effective policies that encapsulate policy informa-
tion from repository service policies that is usable for
runtime policy enforcement. As described above, creation of
policy enforcement rules that include runtime processing
rules and processing actions to support the runtime enforce-
ment of defined policies involves the creation of intermedi-
ate policy proxy objects that include information from the
original policy that is under transformation. These interme-
diate policy proxy objects provide a framework and foun-
dation for creation of the actual runtime policy enforcement
rules including the processing rules and processing actions.
[0053] The memory 210 also includes a policy enforce-
ment processing rule and action storage arca 214 that
provides storage space for created policy enforcement rules
and associated runtime processing actions. As described
above, the created policy enforcement rules and associated
runtime processing actions may be utilized for runtime
enforcement of defined policies (e.g., SLAs and SLDs) in
association with the core processing module 200 when
implemented, for example, in association with one or more
of the policy enforcement server_1 108 through the policy
enforcement server_T 110.

[0054] It is understood that the memory 210 may include
any combination of volatile and non-volatile memory suit-
able for the intended purpose, distributed or localized as
appropriate, and may include other memory segments not
illustrated within the present example for ease of illustration
purposes. For example, the memory 210 may include a code
storage area, an operating system storage area, a code
execution area, and a data area without departure from the
scope of the present subject matter.

[0055] A policy framework module 216 is also illustrated.
The policy framework module 216 provides policy enforce-
ment rule creation and runtime enforcement of processing
actions for the core processing module 200, as described
above and in more detail below. The policy framework
module 216 implements the dynamic generation of policy
enforcement rules and actions from policy attachment
semantics of the core processing module 200.

[0056] The policy framework module 216 includes several
sub-components or sub-modules. A policy parser 218 parses
policy definitions for SLDs and SLAs to identify policy
constraints to be implemented during runtime processing of
messages. A processing rule generator (PRG) 220 generates
policy enforcement rules from the runtime constraints asso-
ciated with policies parsed by the policy parser 218. A policy
domain assertion to policy action mapper 222 provides
policy mapping to policy enforcement rules within the
policy framework module 216. Given a policy domain and
a list of assertions, the policy domain assertion to policy
action mapper 222 maps or converts each policy domain
assertion identified within the runtime constraints parsed by
the policy parser 218 to corresponding runtime processing
actions to be enforced for messages processed by the policy
framework module 216. The processing rule generator
(PRG) 220 then populates the respective created policy

US 2020/0267188 Al

enforcement rule with the created runtime processing
actions. The created policy enforcement rules and process-
ing actions may be stored within the policy enforcement
processing rule and action storage area 214 of the memory
210. A policy enforcement module 224 implements the
created policy enforcement rules and runtime processing
actions created from the original policy definitions.

[0057] It should also be noted that the policy framework
module 216 may form a portion of other circuitry described
without departure from the scope of the present subject
matter. Further, the policy framework module 216 may
alternatively be implemented as an application stored within
the memory 210. In such an implementation, the policy
framework module 216 may include instructions executed
by the CPU 202 for performing the functionality described
herein.

[0058] The CPU 202 may execute these instructions to
provide the processing capabilities described above and in
more detail below for the core processing module 200. The
policy framework module 216 may form a portion of an
interrupt service routine (ISR), a portion of an operating
system, a portion of a browser application, or a portion of a
separate application without departure from the scope of the
present subject matter.

[0059] The policy registry 114 is also shown associated
with the core processing module 200 within FIG. 2 to show
that the policy registry 114 may be coupled to the core
processing module 200 without requiring external connec-
tivity, such as via the network 106 or the network 112.
[0060] The CPU 202, the display 204, the input device
206, the communication module 208, the memory 210, the
policy framework module 216, and the policy registry 114
are interconnected via an interconnection 226. The intercon-
nection 226 may include a system bus, a network, or any
other interconnection capable of providing the respective
components with suitable interconnection for the respective
purpose.

[0061] Though the different modules illustrated within
FIG. 2 are illustrated as component-level modules for ease
of illustration and description purposes, it should be noted
that these modules may include any hardware, programmed
processor(s), and memory used to carry out the functions of
the respective modules as described above and in more
detail below. For example, the modules may include addi-
tional controller circuitry in the form of application specific
integrated circuits (ASICs), processors, antennas, and/or
discrete integrated circuits and components for performing
communication and electrical control activities associated
with the respective modules. Additionally, the modules may
include interrupt-level, stack-level, and application-level
modules as appropriate. Furthermore, the modules may
include any memory components used for storage, execu-
tion, and data processing for performing processing activi-
ties associated with the respective modules. The modules
may also form a portion of other circuitry described or may
be combined without departure from the scope of the present
subject matter.

[0062] Additionally, while the core processing module
200 is illustrated with and has certain components described,
other modules and components may be associated with the
core processing module 200 without departure from the
scope of the present subject matter. Additionally, it should be
noted that, while the core processing module 200 is
described as a single device for ease of illustration purposes,

Aug. 20, 2020

the components within the core processing module 200 may
be co-located or distributed and interconnected via a net-
work without departure from the scope of the present subject
matter. For a distributed arrangement, the display 204 and
the input device 206 may be located at a point of sale device,
kiosk, or other location, while the CPU 202 and memory 210
may be located at a local or remote server. Many other
possible arrangements for components of the core process-
ing module 200 are possible and all are considered within
the scope of the present subject matter. It should also be
understood that, though the policy registry 114 is illustrated
as a separate component for purposes of example, the
information stored within the policy registry 114 may also/
alternatively be stored within the memory 210 without
departure from the scope of the present subject matter.
Accordingly, the core processing module 200 may take
many forms and may be associated with many platforms.
[0063] FIG. 3 through FIG. 5 described below represent
example processing flows for transformation of different
policy types to policy enforcement rules. The example
processing flows for transformation of different policy types
to policy enforcement rules represented within FIG. 3
through FIG. 5 are described for purposes of example.
However, it should be noted that many possibilities exist for
policy transformation for enforcement in association with
one or more PEPs, and all such possibilities are considered
within the scope of the present technology.

[0064] FIG. 3 is a diagram of an example of an imple-
mentation of a policy transformation flow 300 for dynamic
generation of policy enforcement rules and actions from
policy attachment semantics for a service level definition
(SLD). As can be seen from FIG. 3, certain sub-components
of the policy framework module 216 are represented, spe-
cifically the policy parser 218, the processing rule generator
(PRG) 220, and the policy domain assertion to policy action
mapper 222. To avoid congestion within the drawing, the
reference numerals of the respective components are
depicted rather than associated text names.

[0065] A policy_B1 302 represents an SLD of a service
provider that is to be enforced by a PEP. The policy parser
218 consumes the original representation of the policy_B1
302 and generates/creates a number of policy proxy objects
from the original policy_B1 302. The generated policy
proxy objects within the present example include proxy
policy_1 304 through policy proxy_N 306. Each of the
proxy policy_1 304 through the proxy policy_N 306 con-
tains similar information, based upon information within the
original policy_B1 302. The effective policies represent
locally-created processing entities that specify policy
enforcement constraints (e.g., such as policy subjects, cre-
dentials, assertions, etc.) to be enforced by a PEP based upon
policy information and enforceable policy provisions within
the policy_B1 302. As such, the effective policies map the
policy information and enforceable policy provisions within
the policy_B1 302 to policy enforcement constraints from
which processing rules and processing actions may be
created.

[0066] A policy subject 308 is shown within the proxy
policy_1 304 to be attached to a “service” policy subject. In
the proxy policy_N 306, the policy subject 308 is shown to
be attached to an “operation” policy subject. As such, the
respective effective policies have been created from infor-
mation within the policy_B1 302 and have been attached to
different policy subjects for eventual enforcement.

US 2020/0267188 Al

[0067] A policy domain 310 within the proxy policy_1
304 identifies a uniform resource locator (URL) that repre-
sents, for purposes of example, a location of a policy domain
to be enforced. It should be noted that other forms of
identification of policy domains are possible and all such
possibilities are considered to be within the scope of the
present subject matter. Within the present example, the URL
is illustrated with ellipsis dots for convenience to represent
an accessible storage location that references a security
policy domain of “2432039.” A policy domain 310 within
the proxy policy_N 306 references the same policy domain
as the policy domain 310 within the proxy policy_1 304.
[0068] The proxy policy_1 304 also includes an SLD
assertions identifier 312 with a value of “USERNAME
TOKEN 1.0” that maps, for example, to a “sp:WssUserna-
meToken10” policy constraint associated within the policy_
B1 302. An example of such a policy was described in
association with the pseudo-syntax policy example above.
An SLD assertions identifier 312 within the proxy policy_N
306 includes a value of “USERNAME TOKEN 2.0.” As
such, each of the respective SLD assertion identifiers 312
may include different assertions, as specified by the SL.D
policy_B1 302.

[0069] Each of the effective policies parsed and generated
from the policy_B1 302 may then be processed one by one
by the processing rule generator (PRG) 220 to create a
processing rule for each proxy policy object. The collection/
set of processing rules that result are represented as a policy
enforcement rule 314. To generate the policy enforcement
rule 314 with its set of processing rules that include the
respective processing actions, the PRG 220 calls/invokes the
policy domain assertion to policy action mapper 222 sub-
component to process each proxy policy 304 through 306, as
represented for each of the proxy policy 304 through 306 by
the single arrow 316. The PRG 220 passes the policy domain
and list of assertions for that particular domain to the policy
domain assertion to policy action mapper 222.

[0070] In response to being invoked with the policy
domain and list of assertions for that particular domain, the
policy domain assertion to policy action mapper 222 maps
or converts (e.g., transforms) each of those assertions to
create corresponding processing actions 318. The policy
domain assertion to policy action mapper 222 returns the
created processing actions 318 to the PRG 220, as repre-
sented by the arrow 320. The PRG 220 then populates the
processing rule 314 with the created processing actions 318.
The PRG 220 iteratively processes each proxy policy 304
through 306 and creates a corresponding processing rule
within the policy enforcement rule 314. The PRG 220
outputs the created policy enforcement rule 314 to each PEP
that is tasked with policy enforcement for the particular
SLD(s) associated with the policy_B1 302. As such, the
policy framework module 216 generates policy enforcement
rules (processing rules for each proxy policy object that
include processing actions to be performed) from the run-
time constraints associated with policies and distributes the
created policy enforcement rules to the respective PEPs to
enforce. This processing may be performed for each policy
and for each SLD.

[0071] Additional complexities exist with respect to
enforcement of SLAs. For example, with SLAs, the task of
the policy framework module 216 described above is more
complicated. A policy subject may contain a number of
SLAs. These SLLAs are determined at runtime based upon

Aug. 20, 2020

the contents (e.g., user credentials, etc.) of the respective
objects being processed to determine which, if any, policy
enforcement rules are to be enforced.

[0072] FIG. 4 is diagram of an example of an implemen-
tation of a policy transformation flow 400 for dynamic
generation of policy enforcement rules and actions from
policy attachment semantics for a service level definition
(SLD) and service level agreements (SLAs), and runtime
enforcement. The policy framework module 216 is again
illustrated along with the policy_B1 302 as described above.
The policy enforcement rule 314 that defines processing
rules (and processing actions) for enforcement of the policy_
B1 302 is again illustrated.

[0073] Additionally, an SLA policy_S1 402, an SLA poli-
cy_S2 404, and an SLA policy_S3 406 are illustrated. The
policy framework 216 consumes the SLA policies 402
through 406. Within this example, the SLAs would be
attached at a “service” policy-subject. The policy framework
module 216 creates a parent processing rule for the “service”
policy subject. The parent processing rule includes an SLA
check action 408, and for-each match and enforce operation
(loop) logic 410 used to select processing rules to be applied
during runtime to enforce the respective SLA policies 402
through 406.

[0074] The SLA check action 408 includes requirements
specified in the SLA policies 402 through 406 to match
against during runtime, along with the corresponding pro-
cessing rule that contains the respective policy implemen-
tation. During runtime, the SLLA check action 408 outputs a
list of zero (0) or more processing rules 412 that match
content (e.g., user credentials, etc.) within the particular
message being processed. The for-each match and enforce
operation (loop) logic 410 may then take the list of matching
processing rules 412 and make a call to apply each of the
matching processing rules 412, one by one. The processing
actions from the SLD policy_B1 302, if any, may then be
enforced after the matching SLLA processing rules 412.
[0075] FIG. 5 is diagram of an example of an implemen-
tation of a policy transformation flow 500 for dynamic
generation of policy enforcement rules and actions from
policy attachment semantics for a service level definition
(SLD) and service level agreements (SL.As) based upon the
example SLD and SL As described in FIG. 4. As can be seen
from FIG. 5, again certain sub-components of the policy
framework module 216 are represented, specifically the
policy parser 218, the processing rule generator (PRG) 220,
and the policy domain assertion to policy action mapper 222
depicted. To avoid congestion within the drawing, the ref-
erence numerals of the respective components are depicted
rather than associated text names. As well, the policy_B1
302 that represents an SLD of a service provider, and the
SLA policy_S1 402, SLA policy_S2 404, and SLA policy_
S3 406 of FIG. 4 are again illustrated.

[0076] A proxy policy_1502 is illustrated. It is understood
that many effective policies may be created based upon a set
of policies represented by the SLD policy_B1 302 and the
SLA policies 402 through 406. However, because of the
detail illustrated within the proxy policy_1 502 in FIG. 5,
only this one proxy policy object is illustrated. The ellipsis
dots below the proxy policy_1 502 represent the continua-
tion of the created effective policies to include the additional
effective policies that may be created.

[0077] Within this example, the policy parser 218 anno-
tates each proxy policy object with additional information,

US 2020/0267188 Al

along with the associated SLD policy assertion(s) from the
Policy_B1 302, the credentials that are to be matched for
each SLA, and the corresponding assertions that are to be
used to enforce the respective policies. As can be seen from
FIG. 6, an SL.D proxy policy portion 504 represents a similar
effective policy as the proxy policy_1 304 of FIG. 3. As
such, additional description of this portion of the proxy
policy_1 502 may be obtained with reference to FIG. 3 as
described above.

[0078] Additionally, an effective proxy policy object for
each of the SLA policy_S1 402, SLA policy_S2 404, and
SLA policy_S3 406 is represented in association with the
proxy policy_1 502. The policy parser 218 creates an
effective SLA proxy policy_1 506 from the SLA policy_S1
402, creates an effective SLA proxy policy_2 508 from the
SLA policy_S2 404, and creates an effective SLA proxy
policy_3 510 from the SLLA policy_S3 406. As can be seen
within the effective SLA proxy policy_1 506, each of the
effective SLA proxy policy_1 506, the effective SLA proxy
policy_2 508, and the effective SLA proxy policy_3 510
form a portion of the proxy policy_1 502.

[0079] Each of the effective SLA proxy policy_1 506, the
effective SLA proxy policy_2 508, and the effective SLA
proxy policy_3 510 includes a credentials field 512 and an
assertions field 514. Within the effective SLA proxy
policy_1 506, the value of the credentials field 512 is
“USERID=JOHN DOE.” As such, messages that are pro-
cessed during runtime with a user identifier of “JOHN DOE”
will be identified, and the effective SLA proxy policy_1 506
selected for processing those messages. The value of the
assertions field 514 within the effective SLA proxy policy_1
506 is set to “ROUTE MESSAGE,” which indicates that
messages associated with this user identifier are to be routed
without any additional transformation or encoding. Addi-
tionally, it should be noted that the inclusion of the user
identifier for “JOHN DOE,” and only that user identifier,
also satisfies the “ExactlyOne” policy provision to be
enforced for the SLD policy_B1 302.

[0080] Within the effective SLA proxy policy_2 508, the
value of the credentials field 512 is “USERID=JANE DOE.”
As such, messages that are processed during runtime with a
user identifier of “JANE DOE” will be identified, and the
effective SLA proxy policy_2 508 selected for processing
those messages. The value of the assertions field 514 within
the effective SLA proxy policy_2 508 is set to “TRANS-
FORM MESSAGE,” which indicates that messages associ-
ated with this user identifier are to be transformed. Any
transformation appropriate for a given SLA and implemen-
tation may be utilized. Additionally, it should be noted that
the inclusion of the user identifier for “JANE DOE,” and
only that user identifier, also satisfies the “ExactlyOne”
policy provision to be enforced for the SLD policy_B1 302.
[0081] Within the effective SLA proxy policy_3 510, the
value of the credentials field 512 is “USERID=JOHN
SMITH.” As such, messages that are processed during
runtime with a user identifier of “JOHN SMITH” will be
identified, and the effective SLA proxy policy_3 510
selected for processing those messages. The value of the
assertions field 514 within the effective SLA proxy policy_3
510 is set to “ENCRYPT MESSAGE,” which indicates that
messages associated with this user identifier are to be
encrypted. Any encryption protocol/technique appropriate
for a given SLA and implementation may be utilized. For
example, a message may be encrypted using RSA, AES, or

Aug. 20, 2020

3DES, or other encryption protocols as appropriate for a
given implementation. Additionally, it should be noted that
the inclusion of the user identifier for “JOHN SMITH,” and
only that user identifier, also satisfies the “ExactlyOne”
policy provision to be enforced for the SLD proxy policy_
B1 302.

[0082] As described above in association with FIG. 3, the
processing rule generator (PR(G) 220 again interacts with the
policy domain assertion to policy action mapper 222. Each
of' the effective proxy policies generated from the policy_B1
302 and the SLA policies 402 through 406 (e.g., the SLA
proxy policy_1 502 and others) may then be processed one
by one by the processing rule generator (PRG) 220 to create
a processing rule for each proxy policy object (e.g., effective
policy). The collection/set of processing rules that result are
represented as a policy enforcement rule 516. To generate
the policy enforcement rule 516 with its set of processing
rules that include the respective processing actions, the PRG
220 calls/invokes the policy domain assertion to policy
action mapper 222 sub-component to process each proxy
policy object, as represented for each proxy policy object by
the single arrow 518. The PRG 220 passes the policy domain
and list of assertions for that particular domain to the policy
domain assertion to policy action mapper 222.

[0083] In response to being invoked with the policy
domain and list of assertions for that particular domain, the
policy domain assertion to policy action mapper 222 maps
or converts (e.g., transforms) each of those assertions to
create corresponding processing actions 520. The policy
domain assertion to policy action mapper 222 returns the
created processing actions 520 to the PRG 220, as repre-
sented by the arrow 522. The PRG 220 then populates the
processing rule 516 with the created processing actions 520.
The PRG 220 iteratively processes each proxy policy object
(e.g., the SLA proxy policy_1 502 and others) and creates a
corresponding processing rule within the policy enforce-
ment rule 516. The PRG 220 outputs the created policy
enforcement rule 516 to each PEP that is tasked with policy
enforcement for the particular SLD(s) associated with the
policy_B1 302 and the SLA policies 402 through 406. As
such, the policy framework module 216 generates policy
enforcement rules (processing rules for each proxy policy
object that include processing actions to be performed) from
the runtime constraints associated with policies, and distrib-
utes the created policy enforcement rules to the respective
PEPs to enforce. This processing may be performed for each
policy, for each SLD, and for each SLA.

[0084] Regarding additional details of the created policy
enforcement rule 516, the PRG 220 may again create the
parent rule (represented within the first row of the policy
enforcement rule 516). The PRG 220 may populate the
parent rule with an SLLA Check action (represented by the
“S” within the first row, first element of the policy enforce-
ment rule 516). Then, for each SLA policy, the PRG 220
may append the credentials match to the SLA check action,
create another empty rule, and append the rule name to the
SLA check action. This new processing rule may then be
populated with the processing actions that result from the
assertions of the respective SLA policy 402 through 406
(represented by the additional rows of the policy enforce-
ment rule 516).

[0085] Once processing to transform all the SLLA policies
to SLA processing rules and processing actions has been
completed, the for-each and enforce operation (represented

US 2020/0267188 Al

by the “F”” within the first row, second element, of the policy
enforcement rule 516) may be added to the parent process-
ing rule. The SLA processing rules may be added/appended
to the parent processing rule as child processing rules to
form a completed policy enforcement rule usable to enforce
the provision of the original policy.

[0086] During runtime enforcement, the loop construct
associated with the for-each and enforce operation takes in
as input the list of processing rule names for SLA processing
rules generated by the SLA check action. For each rule
name, the process iteratively calls or enforces the respective
processing rules, and thereby enforces the processing
actions contained within the respective processing rules. The
SLD processing rule(s) generated from the SLD assertions
may also be appended to the parent processing rule (repre-
sented by the remainder of the first row of the policy
enforcement rule 516). The SLD processing rule(s) may be
applied after the SLA processing rules have been applied.

[0087] As such, the policy framework 216 provides
dynamic rule creation and processing. As any change to a
policy is made, the processing rules and actions associated
with the respective policy may be recreated by the policy
framework 216, the previous processing rules and process-
ing actions may be removed and replaced by the newly-
created processing rules and processing actions. Accord-
ingly, policy implementation and enforcement, policy
maintenance, and policy adaptation to changes may be
improved by use of the present technology.

[0088] FIG. 6 through FIG. 8 described below represent
example processes that may be executed by devices, such as
the core processing module 200, to perform the dynamic
generation of policy enforcement rules and actions from
policy attachment semantics associated with the present
subject matter. Many other variations on the example pro-
cesses are possible and all are considered within the scope
of the present subject matter. The example processes may be
performed by modules, such as the policy framework mod-
ule 216 and/or executed by the CPU 202, associated with
such devices. It should be noted that time out procedures and
other error control procedures are not illustrated within the
example processes described below for ease of illustration
purposes. However, it is understood that all such procedures
are considered to be within the scope of the present subject
matter. Further, the described processes may be combined,
sequences of the processing described may be changed, and
additional processing may be added or removed without
departure from the scope of the present subject matter.

[0089] FIG. 6 is a flow chart of an example of an imple-
mentation of a process 600 for dynamic generation of policy
enforcement rules and actions from policy attachment
semantics. At block 602, the process 600 obtains, by a
processor, at least one defined service policy to be enforced
by a policy enforcement point (PEP). At block 604, the
process 600 parses the obtained at least one defined service
policy to identify at least one set of enforceable policy
provisions. At block 606, the process 600 identifies the at
least one set of enforceable policy provisions, where each set
of enforceable policy provisions comprises a policy subject,
a policy domain, and at least one assertion as the enforceable
policy provisions within the at least one defined service
policy. At block 608, the process 600 creates at least one
runtime processing rule comprising at least one processing
action usable by the PEP to enforce the policy subject, the

Aug. 20, 2020

policy domain, and the at least one assertion of each
identified at least one set of enforceable policy provisions.
[0090] FIG. 7 is a flow chart of an example of an imple-
mentation of a process 700 for dynamic generation of policy
enforcement rules and actions from policy attachment
semantics for both service level definitions (SLDs) and
service level agreements (SL.As). At decision point 702, the
process 700 makes a determination as to whether a request
to define processing rules and processing actions (collec-
tively policy enforcement rules) for one or more defined
service policies has been detected. A request to define policy
enforcement rules may be detected, for example, in response
to an addition of a new service policy definition or a change
to an existing service policy definition within a policy
repository, such as the policy registry 114, or may be
detected otherwise as appropriate for a given implementa-
tion.

[0091] In response to determining at decision point 702
that a request to define processing rules and processing
actions (collectively policy enforcement rules) for one or
more defined service policies has been detected, the process
700 selects/obtains a defined service policy to process at
block 704. The selected service policy may be, for example,
a service level definition (SLD) that protects service pro-
vider infrastructure access and utilization constraints, or
may be a service level agreement (SLA) that represents an
agreement for services and a level of service between a
service provider and a consumer.

[0092] At block 706, the process 700 parses the selected
service policy to identify enforceable policy provisions. At
block 708, the process 700 identifies enforceable policy
provisions within the parsed service policy. It should be
noted, that the identified enforceable policy provisions may
include a policy subject, a policy domain, and at least one
assertion. It should further be noted, that there may be one
or more sets of enforceable policy provisions within the
parsed service policy, as described above. At block 710, the
process 700 generates at least one local proxy policy object
that includes policy enforcement constraints based upon the
identified policy subject, policy domain, and at least one
assertion of the at least one defined service policy that
represent the enforceable policy provisions. At block 712,
the process 700 populates each proxy policy object with the
identified enforceable policy provisions.

[0093] At block 714, the process 700 begins iterative
processing of the generated proxy policy objects to map the
generated proxy policy objects to runtime-executable pro-
cessing rules and processing actions, and selects a proxy
policy object to map. At block 716, the process 700 defines/
creates at least one runtime processing rule that includes at
least one processing action usable by the PEP to enforce the
identified policy subject, policy domain, and at least one
assertion of the defined service policy represented by the
selected policy proxy object.

[0094] At decision point 718, the process 700 makes a
determination as to whether mapping of the generated proxy
policy objects to processing rules and processing actions is
completed. In response to determining that at least one
additional proxy policy object is available to map to run-
time-executable processing rules and processing actions
(i.e., the mapping is not completed), the process 700 returns
to block 714 and iterates as described above.

[0095] In response to determining at decision point 718
that all generated proxy policy objects have been mapped to

US 2020/0267188 Al

runtime-executable processing rules and processing actions,
the process 700 makes a determination at decision point 720
as to whether the mapped proxy policy objects represent one
or more SLD policies only, or whether the mapped proxy
policy objects additionally represent one or more SLAs. In
response to determining that the mapped proxy policy
objects represent one or more SLD policies only, the process
700 forms an SLD policy enforcement rule from the mapped
processing rules and processing actions at block 722.

[0096] Returning to the description of decision point 720,
in response to determining that the mapped proxy policy
objects additionally represent one or more SLAs, at block
724 the process 700 creates one or more service level
agreement (SLA) check actions usable to select SLA pro-
cessing rules during runtime based upon the contents of the
objects under processing during runtime. At block 726, the
process 700 generates runtime SLA processing logic to
identify matching SLA processing rules to be applied to
objects during runtime for SLA policy enforcement. As
described above, the generated runtime SLA processing
logic may include a for-each match loop that processes and
enforces each appropriate SLLA processing rule based upon
the contents of the object under processing during runtime.
At block 728, the process 700 forms a policy enforcement
rule populated with the SLLA check action and the runtime
SLA processing logic, and designates the SLA processing
rule as a parent processing rule within the policy enforce-
ment rule. At block 730, the process 700 appends one or
more processing rules that include one or more processing
actions mapped from the respective SLA policy proxy
objects. As described above, the processing rules and pro-
cessing actions mapped from the SLA policy proxy objects
are useable during runtime to enforce the defined SLA
policies.

[0097] In response to appending the SLA processing rules
to the policy enforcement rule at block 730, or in response
to forming the SLD policy enforcement rule at block 722,
the process 700 distributes the generated policy enforcement
rule to one or more policy enforcement points (PEPs) at
block 732. Where the process 700 is executed by a policy
enforcement point, distribution of the generated policy
enforcement rule may include locally implementing the
generated policy enforcement rule, and may also include
distribution of the generated policy enforcement rule to one
or more other PEPs. The process 700 returns to decision
point 702 and iterates as described above.

[0098] As such, the process 700 obtains defined service
policies reinforced by one or more PEPs, generates proxy
policy objects based upon the contents of the defined service
policies, maps generated proxy policy objects to processing
rules and processing actions, and generates policy enforce-
ment rules. The generated policy enforcement rules are
usable during runtime to enforce the original defined service
policies at one or more PEPs. The process 700 distributes the
generated policy enforcement rules for enforcement to one
or more PEPs to deploy the generated policy enforcement
rules. It should be noted that the process 700 is dynamic and
may be triggered at any time to update deployed policy
enforcement rules based upon changes to service policy
definitions and/or the addition or deletion of defined service
policies. Accordingly, the process 700 provides a flexible
and manageable platform by which to deploy and maintain
enforcement logic for defined service policies.

Aug. 20, 2020

[0099] FIG. 8 is a flow chart of an example of an imple-
mentation of a process 800 for dynamic deployment and
enforcement of policy enforcement rules and actions at
policy enforcement points (PEPs). The process 800 may be
implemented, for example, at a PEP. At decision point 802,
the process 800 makes a determination as to whether one or
more policy enforcement rules have been received or created
locally based upon defined service policies. It should be
noted, as described above, that the policy enforcement rules
may be created dynamically in response to changes to
defined service policies or additions and deletions of defined
service policies. A process such as the process 700 described
above in association with FIG. 7 may be used to dynamically
create policy enforcement rules and the output of such a
process may be provided to the process 800 for enforcement
of the dynamically created policy enforcement rules.
[0100] In response to determining that one or more policy
enforcement rules have not been received, the process 800
makes a determination at decision point 804 as to whether an
object for which runtime enforcement of policy enforcement
rules has been received. The respective object may be
received from a service provider or from a customer. As
described above, the object may include a service request
selected such as a transaction, a web request, a database
request, a representational state transfer (REST) service, and
a web application, a message, or any other object for which
policy enforcement may be enforced. As also described
above, a PEP that executes a process such as the process 800
acts as a proxy for both a service provider and a customer
between which the object is communicated. In response to
determining at decision point 804 that an object for which
runtime enforcement of policy enforcement rules has not
been received, the process 800 returns to decision point 802
and iterates as described above.

[0101] In response to determining at decision point 802
that one or more policy enforcement rules has been received
or created locally based upon defined service policies, the
process 800 stores the respective policy enforcement rule(s)
at block 806. At block 808, the process 800 configures
enforcement of the respective policy enforcement rule(s). As
such, the respective policy enforcement rules may be
enforced by the PEP. Returning to the description of decision
point 804, in response to determining that an object for
which runtime enforcement of policy enforcement rules has
been received, the process 800 identifies a defined policy
enforcement rule that includes the defined runtime process-
ing rule(s) applicable to enforce the defined service policy
for which the policy enforcement rule was created against
the object during runtime at block 810.

[0102] As described above, processing rules may include
SLD processing rules and may also include SLA processing
rules. Where both an SLD processing rule and one or more
SLA processing rules are included in the same policy
enforcement rule, the SLD processing rule is considered a
parent processing rule and is configured to be executed after
any child SLA processing rules. As such, at decision point
812, the process 800 makes a determination as to whether
the defined policy enforcement rule includes one or more
SLD processing rules for enforcement of a defined SLD
policy only, or whether the defined policy enforcement rule
includes processing rules for enforcement of one or more
SLAs in addition to an SLD.

[0103] In response to determining at decision point 812
that the defined policy enforcement rule additionally

US 2020/0267188 Al

includes at least one processing rule for enforcement of one
or more SLAs, the process 800 performs an SLA check
action on the object to identify the appropriate SLA pro-
cessing rule(s) at block 814. As also described above, the
processing for SLA enforcement is dynamic and is based
upon the contents of the object at runtime. As such, the
process 800 may, for example, determine a first SLA pro-
cessing rule associated with a first user credential for one
object and may determine a second/different SLA processing
rule associated with a second user credential for another
object. Accordingly, the process 800 may dynamically adjust
the processing actions of the defined processing rules
according to the first SLA processing rule of the first user
credential and according to the second SLLA processing rule
for the second user credential. Many other variations on
dynamic SLA processing rule selection and enforcement are
possible and all are considered to be within the scope of the
present subject matter.

[0104] At decision point 816, the process 800 makes a
determination as to whether the SLA check action identified
any matching SLA processing rules to be enforced against
the object. In response to determining that at least one
matching SLA processing rule has been identified to be
enforced against the object, the process 800 performs itera-
tive processing for each matching SLLA processing rule to
process the object using the respective matching SLLA pro-
cessing rule(s) at block 818.

[0105] In response to determining at decision point 816
that no matching SLLA processing rules have been identified
to be enforced against the object, or in response to process-
ing the object using each matching SLLA processing rule at
block 818, or in response to determining at decision point
812 that the defined policy enforcement rule only includes
one or more SLD processing rules for enforcement of a
defined SLD policy, the process 800 proceeds to process the
object using the SLD policy enforcement rule at block 820.
As described above, in the case of a policy enforcement rule
that includes both SLD and SLA processing rules, the SL.D
policy enforcement rule is considered the parent processing
rule and is configured to be executed after any child SLA
processing rules. As such, the process 800 enforces the
respective SLD processing rule(s) last after processing each
matching SLLA processing rule on the object, where appro-
priate.

[0106] At decision point 822, the process 800 makes a
determination as to whether the object is authorized to be
forwarded to the destination based upon the applied policy
enforcement rule. In response to determining that the object
is authorized to be forwarded to the destination based upon
the applied policy enforcement rule, the process 800 for-
wards the object to the destination at block 824. In response
to determining that the object is not authorized to be
forwarded to the destination based upon the applied policy
enforcement rule, the process 800 generates a notification
(e.g., error notification, log entry, etc.) at block 826, and
does not forward the object to the destination. In response to
either forwarding the object to the destination at block 824
or in response to generating the notification at block 826, the
process 800 returns to decision point 802 and iterates as
described above.

[0107] As such, policy enforcement within a policy
enforcement point (PEP) may be implemented using a
process such as the process 800 to dynamically process
objects based upon content of the objects during runtime.

Aug. 20, 2020

This processing may be based upon defined runtime pro-
cessing rules that include runtime processing actions that
enforce defined service policies for service providers and
contractual agreements between service providers and cus-
tomers.

[0108] As described above in association with FIG. 1
through FIG. 8, the example systems and processes provide
dynamic generation of policy enforcement rules and actions
from policy attachment semantics. Many other variations
and additional activities associated with dynamic generation
of policy enforcement rules and actions from policy attach-
ment semantics are possible and all are considered within
the scope of the present subject matter.

[0109] Those skilled in the art will recognize, upon con-
sideration of the above teachings, that certain of the above
examples are based upon use of a programmed processor,
such as the CPU 202. However, the invention is not limited
to such example embodiments, since other embodiments
could be implemented using hardware component equiva-
lents such as special purpose hardware and/or dedicated
processors. Similarly, general purpose computers, micropro-
cessor based computers, micro-controllers, optical comput-
ers, analog computers, dedicated processors, application
specific circuits and/or dedicated hard wired logic may be
used to construct alternative equivalent embodiments.
[0110] As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a
system, method or computer program product. Accordingly,
aspects of the present invention may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a
“circuit,” “module” or “system.” Furthermore, aspects of the
present invention may take the form of a computer program
product embodied in one or more computer readable medi-
um(s) having computer readable program code embodied
thereon.

[0111] Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), a portable compact
disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combi-
nation of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

[0112] A computer readable signal medium may include a
propagated data signal with computer readable program
code embodied therein, for example, in baseband or as part
of a carrier wave. Such a propagated signal may take any of
a variety of forms, including, but not limited to, electro-

US 2020/0267188 Al

magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

[0113] Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.
[0114] Computer program code for carrying out opera-
tions for aspects of the present invention may be written in
any combination of one or more programming languages,
including an object oriented programming language such as
JAVA™ Smalltalk, C++ or the like and conventional pro-
cedural programming languages, such as the “C” program-
ming language or similar programming languages. The
program code may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider).

[0115] Aspects of the present invention have been
described with reference to flowchart illustrations and/or
block diagrams of methods, apparatus (systems) and com-
puter program products according to embodiments of the
invention. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combina-
tions of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program
instructions. These computer program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks.
[0116] These computer program instructions may also be
stored in a computer-readable storage medium that can
direct a computer or other programmable data processing
apparatus to function in a particular manner, such that the
instructions stored in the computer-readable storage medium
produce an article of manufacture including instructions
which implement the function/act specified in the flowchart
and/or block diagram block or blocks.

[0117] The computer program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other devices to cause a series of opera-
tional steps to be performed on the computer, other pro-
grammable apparatus or other devices to produce a
computer implemented process such that the instructions
which execute on the computer or other programmable
apparatus provide processes for implementing the functions/
acts specified in the flowchart and/or block diagram block or
blocks.

[0118] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods and computer

Aug. 20, 2020

program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

[0119] A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local
memory employed during actual execution of the program
code, bulk storage, and cache memories which provide
temporary storage of at least some program code in order to
reduce the number of times code must be retrieved from bulk
storage during execution.

[0120] Input/output or /O devices (including but not
limited to keyboards, displays, pointing devices, etc.) can be
coupled to the system either directly or through intervening
1/O controllers.

[0121] Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers
or storage devices through intervening private or public
networks. Modems, cable modems and Ethernet cards are
just a few of the currently available types of network
adapters.

[0122] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting of the invention. As used herein, the singular
forms “a,” “an” and “the” are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises”
and/or “comprising,” when used in this specification, specify
the presence of stated features, integers, steps, operations,
elements, and/or components, but do not preclude the pres-
ence or addition of one or more other features, integers,
steps, operations, elements, components, and/or groups
thereof.

[0123] The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the
invention and the practical application, and to enable others
of ordinary skill in the art to understand the invention for

US 2020/0267188 Al

various embodiments with various modifications as are
suited to the particular use contemplated.

What is claimed is:

1. A computer-implemented method for generating at
least one policy enforcement rule from a service policy,
comprising:

generating one or more processing actions from a plural-

ity of policy proxy objects, wherein the plurality of
policy proxy objects is based, at least in part, on
information included in the service policy;

generating one or more policy enforcement rules based, at

least in part, on processing the one or more processing
actions, wherein the one or more policy enforcement
processing rules are an ordered sequence of the one or
more processing actions; and

generating the at least one policy enforcement rule based,

at least in part, on the one or more policy enforcement
processing rules and a plurality of semantics attached to
the service policy.
2. The computer-implemented method of claim 1, further
comprising an intermediary system that operates to enforce
the service policy, wherein the intermediary system is a
policy enforcement point (PEP).
3. The computer-implemented method of claim 2,
wherein the plurality of policy proxy objects are locally-
created processing entities that specify one or more policy
enforcement constraints by the PEP.
4. The computer-implemented method of claim 3,
wherein each of the one or more policy enforcement con-
straints include a policy domain, and a list of assertions.
5. The computer-implemented method of claim 4,
wherein generating the one or more processing actions
further comprises:
mapping the list of assertions for each of the plurality of
policy proxy objects, wherein the list of assertions are
mapped by a policy actions mapper to create one or
more processing actions for the policy domain corre-
sponding to the plurality of policy proxy objects.
6. The computer-implemented method of claim 5, further
comprising:
providing processing rules with the one or more process-
ing actions created by the policy action mapper for each
of the plurality of policy proxy objects; and

iteratively processing each of the plurality of policy proxy
objects to generate the at least one policy enforcement
rule.

7. The computer-implemented method of claim 6, further
comprising:

producing the at least one policy enforcement rule to each

PEP tasked with policy enforcement of the service
policy.

8. The computer-implemented method of claim 1,
wherein the service policy can be either a service level
definition (SDL) or a service level agreement (SLA).

9. The computer-implemented method of claim 4,
wherein the policy domain comprises a uniform resource
locator (URL) representing a location of the policy domain
enforced by the PEP.

10. The computer-implemented method of claim 1,
wherein the plurality of semantics further comprises at least
one of vocabularies and definitions supported by the service
policy.

11. A computer program product for generating at least
one policy enforcement rule from a service policy, the

Aug. 20, 2020

computer program product comprising one or more com-
puter readable storage media and program instructions
stored on the one or more computer readable storage media,
the program instructions including instructions to:
generate one or more processing actions from a plurality
of policy proxy objects, wherein the plurality of policy
proxy objects is based, at least in part, on information
included in the service policy;

generate one or more policy enforcement rules based, at

least in part, on processing the one or more processing
actions, wherein the one or more policy enforcement
processing rules are an ordered sequence of the one or
more processing actions; and

generate the at least one policy enforcement rule based, at

least in part, on the one or more policy enforcement
processing rules and a plurality of semantics attached to
the service policy.
12. The computer program product of claim 11, further
comprising an intermediary system that operates to enforce
the service policy, wherein the intermediary system is a
policy enforcement point (PEP).
13. The computer program product of claim 12, wherein
the plurality of policy proxy objects are locally-created
processing entities that specify one or more policy enforce-
ment constraints by the PEP.
14. The computer program product of claim 13, wherein
each of the one or more policy enforcement constraints
include a policy domain, and a list of assertions.
15. The computer program product of claim 14, wherein
generating the one or more processing actions further com-
prises:
mapping the list of assertions for each of the plurality of
policy proxy objects, wherein the list of assertions are
mapped by a policy actions mapper to create one or
more processing actions for the policy domain corre-
sponding to the plurality of policy proxy objects.
16. The computer program product of claim 15, further
comprising:
providing processing rules with the one or more process-
ing actions created by the policy action mapper for each
of the plurality of policy proxy objects; and

iteratively processing each of the plurality of policy proxy
objects to generate the at least one policy enforcement
rule.

17. The computer program product of claim 16, further
comprising:

producing the at least one policy enforcement rule to each

PEP tasked with policy enforcement of the service
policy.

18. The computer program product of claim 14, wherein
the policy domain comprises a uniform resource locator
(URL) representing a location of the policy domain enforced
by the PEP.

19. The computer program product of claim 11, wherein
the plurality of semantics further comprises at least one of
vocabularies and definitions supported by the service policy.

20. A computer system for generating at least one policy
enforcement rule from a service policy, the computer system
comprising:

one or more computer processors;

one or more computer readable storage media;

computer program instructions;

US 2020/0267188 Al Aug. 20, 2020
15

the computer program instructions being stored on the one
or more computer readable storage media for execution
by the one or more computer processors; and
the computer program instructions including instructions
to:
generate one or more processing actions from a plu-
rality of policy proxy objects, wherein the plurality
of policy proxy objects is based, at least in part, on
information included in the service policy;
generate one or more policy enforcement rules based,
at least in part, on processing the one or more
processing actions, wherein the one or more policy
enforcement processing rules are an ordered
sequence of the one or more processing actions; and
generate the at least one policy enforcement rule based,
at least in part, on the one or more policy enforce-
ment processing rules and a plurality of semantics
attached to the service policy.

#* #* #* #* #*

