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METHODS AND APPARATUS FOR
MAINTAINING CHARACTERIZED
MEMORY DEVICES

RELATED APPLICATIONS

[0001] This application is related to co-owned and co-
pending U.S. patent application Ser. No. 16/211,029, filed
Dec. 5, 2018, and entitled “METHODS AND APPARATUS
FOR INCENTIVIZING PARTICIPATION IN FOG NET-
WORKS?”, Ser. No. 16/242,960, filed Jan. 8, 2019, and
entitled “METHODS AND APPARATUS FOR ROUTINE
BASED FOG NETWORKING”, 16/ , filed concur-
rently herewith on , and entitled “METHODS AND
APPARATUS FOR CHARACTERIZING MEMORY
DEVICES”, and 16/ , filed concurrently herewith on

, and entitled “METHODS AND APPARATUS FOR
CHECKING THE RESULTS OF CHARACTERIZED
MEMORY SEARCHES”, each of the foregoing incorpo-
rated herein by reference in its entirety.

COPYRIGHT

[0002] A portion of the disclosure of this patent document
contains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
files or records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND

1. Technological Field

[0003] The following disclosure relates generally to
memory devices. Various aspects of the present disclosure
are directed to, inter alia, validating memory search results
from characterized memory devices. Specifically, various
techniques for validating proof-of-work (POW) memory
searches are disclosed.

2. Description of Related Technology

[0004] A cryptocurrency is a virtual medium of exchange.
Examples of popular cryptocurrencies include Bitcoin (used
in the Bitcoin network) and Ether (used in the Ethereum
network). Each of these cryptocurrencies use proof-of-work
(POW) algorithms to process monetary transactions that are
recorded in ledgers that are shared or distributed among a
community of peers. Many cryptocurrencies use shared
ledgers based on a “blockchain” data structure: a chained
sequence of data blocks.

[0005] Cryptocurrency “mining” generally refers to cryp-
tocurrency activities that generate or are rewarded monetary
value based on proof-of-work (POW). For example, cryp-
tocurrency mining activities may include e.g., verifying and
securely adding transactions to the distributed ledger and/or
creating new units of cryptocurrency. Ether is considered a
“memory hard” or “memory bound” cryptocurrency because
their mining algorithms require large amounts of memory to
run. More directly, memory bandwidth is the means by
which memory hard cryptocurrencies demonstrate POW. In
other words, a memory hard cryptocurrency or memory hard
application is one in which memory bandwidth or usage is
a principal indicator of POW.

Aug. 20, 2020

[0006] As a brief aside, the virtual domain contains no
physical conservation laws. In the physical world, a token of
value (e.g., a physical coin) cannot be “double spent”.
Specifically, Alice cannot give a coin to Bob, and then give
the same coin to Charlie because of conservation of matter.
In contrast, there is nothing that prevents Alice from sending
the same digital token to both Bob and Charlie. Proof-of-
work (POW) is a virtualized representation of physical
entropy (e.g., computational work, memory searches, etc.).
A blockchain is a data structure that records accumulated
POW,; in modern use, blockchains accumulate POW at rates
that introduce physical conservation laws into the virtual
domain. More directly, a blockchain represents the accumu-
lation of entropy on scales that are physically impractical for
malicious parties to attack. For example, cryptocurrencies
use a blockchain that is continuously checked by a network
of miners to ensure that only valid transactions are added
within blocks to the blockchain. Although a malicious party
may attempt to generate a false POW, it is physically
infeasible to generate a valid POW for the ever expanding
blockchain (due to practical constraints on processing power
and/or memory). Invalid POW transactions can be identified
and rejected by the community of miners in the network.
Additionally, in some cases the node or IP address associated
with a misbehaving miner or malicious party can experience
undesirable consequences; for example, a miner that gener-
ates excessive amounts of invalid POW may be banned,
kicked from the network, waste resources, fined, and/or
penalized.

SUMMARY

[0007] The present disclosure provides, inter alia, methods
and apparatus for using characterized memories.

[0008] In one aspect, a method for accelerating a memory
hard application is disclosed. In one embodiment, the
method includes: selecting a characterized rate based on a
solution density function associated with the memory hard
application; searching a characterized memory at the char-
acterized rate with a first processor for one or more solutions
to the memory hard application; validating the one or more
solutions with a validation memory at a specified rate with
a second processor; and responsive to successful validation
of at least one solution, providing the at least one solution to
the memory hard application.

[0009] In one variant, the characterized rate is selected to
increase memory bandwidth of the characterized memory.

[0010] In one variant, the characterized rate is selected to
reduce power consumption of the characterized memory.

[0011] In one variant, the memory hard application has a
threshold of error-tolerance; and the characterized rate is
selected based on a bit error rate (BER) that does not exceed
the threshold of error-tolerance.

[0012] Inanother aspect, a memory apparatus is disclosed.
In one embodiment, the memory apparatus includes: a
plurality of non-transitory computer readable cells; a
memory interface; an error correction logic configured to
read data from the plurality of non-transitory computer
readable cells and provide corrected data via the memory
interface; where the memory apparatus is characterized by
an uncorrectable fault performance and a first performance
under a first operating parameter; and wherein the memory
apparatus stores one or more data that identify one or more
of: the first performance and the first operating parameter.
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[0013] In one variant, the first operating parameter
includes an overclocking rate and the first performance
includes a bit error rate (BER).

[0014] In another variant, the error correction logic cat-
egorizes data faults as probabilistic errors or hardware
failures. In one such variant, the uncorrectable fault perfor-
mance is based at least in part on probabilistic errors or
hardware failures that cannot be repaired or exceed the
limitations of error correcting capability. In other such
implementations, the first performance under the first oper-
ating parameter is based at least in part on second ones of the
data faults categorized as probabilistic errors.

[0015] In one aspect, a method for monitoring a perfor-
mance of characterized memories is disclosed. In one
embodiment, the method includes: accessing contents of a
characterized memory at a characterized rate with a proces-
sor, wherein the characterized memory has one or more
uncorrectable faults; where the characterized memory is
characterized by a target performance based on the one or
more uncorrectable faults; determining an actual perfor-
mance with the processor; and refreshing the contents of the
characterized memory with the processor when the actual
performance exceeds the target performance by a bound
amount.

[0016] In one variant, the refreshing the contents of the
characterized memory includes re-writing the contents of the
characterized memory with a pristine copy of the contents.
[0017] In one variant, the determining the actual perfor-
mance is based on monitoring an increase in uncorrectable
faults attributed to probabilistic errors.

[0018] In one variant, the accessing the contents of the
characterized memory includes a plurality of uniformly
distributed memory reads over a memory space.

[0019] In one variant, the determining the actual perfor-
mance includes calculating a bit error rate (BER) based on
the accessed contents and a pristine copy of the contents.
[0020] In one variant, the method further includes re-
characterizing the characterized memory with a new target
performance when the actual performance exceeds the target
performance by the bound amount.

[0021] In one variant, the determining the actual perfor-
mance includes determining a rate of change of faults.
[0022] In one variant, the determining the actual perfor-
mance includes determining a total accumulated number of
faults.

[0023] In one variant, the target performance is based on
a solution density function for an error-tolerant application.
[0024] In one aspect, a method for estimating a degrada-
tion of one or more characterized memories is disclosed. In
one embodiment, the method includes: accessing contents of
a characterized memory at a characterized rate with a
processor; wherein the characterized memory is character-
ized by a target performance; determining an actual perfor-
mance with the processor based on the accessed contents
and a pristine copy of the contents; and when the actual
performance exceeds the target performance by a bound
amount, triggering a remediation process.

[0025] In one variant, the determining the actual perfor-
mance with the processor based on the accessed contents
and the pristine copy of the contents further includes iden-
tifying uncorrectable faults.

[0026] In one variant, the remediation process includes
causing a replacement of the characterized memory when
the uncorrectable faults exceeds a threshold amount. In one
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such variant, the remediation process includes refreshing the
contents of the characterized memory when the uncorrect-
able faults do not exceed a threshold amount.

[0027] In one variant, the determining the actual perfor-
mance with the processor based on the accessed contents
and the pristine copy of the contents further includes iden-
tifying correctable faults. In one such variant, the method
further includes repairing the correctable faults.

[0028] In one aspect, an apparatus configured to remedy
faults in one or more characterized memories is disclosed. In
one embodiment, the apparatus includes: a characterized
memory including one or more uncorrectable faults; wherein
the characterized memory is configured to accumulate one
or more correctable faults probabilistically during use; a
processor configured to access the characterized memory at
a characteristic rate; controller logic configured to determine
a performance metric based on the one or more uncorrect-
able faults and the one or more correctable faults; wherein
the controller logic is configured to refresh the characterized
memory when a number of correctable faults exceed a
threshold; and wherein the controller logic is configured to
flag the characterized memory for replacement when a
number of uncorrectable faults exceed a threshold.

[0029] In one variant, the one or more uncorrectable faults
include probabilistic errors and hardware failures that cannot
be repaired or exceed the limitations of error correcting
capability.

[0030] In one variant, the controller logic is further con-
figured to fuse replacement cells to repair hardware failures.
[0031] In one variant, the controller logic is further con-
figured to correct errors with an error correcting code.
[0032] In one variant, the apparatus further includes a
pristine memory; and the controller logic is configured to
refresh the characterized memory with the pristine memory.
[0033] In another aspect of the disclosure, a computerized
wireless access node apparatus configured to dynamically
access a characterized memory is disclosed. In one embodi-
ment, the computerized wireless access node includes: a
wireless interface configured to transmit and receive RF
waveforms in the spectrum portion; digital processor appa-
ratus in data communication with the wireless interface; and
a characterized memory in data communication with the
digital processor apparatus and including at least one com-
puter program.

[0034] In an additional aspect of the disclosure, computer
readable apparatus is described. In one embodiment, the
apparatus includes a storage medium configured to store one
or more computer programs within or in conjunction with
characterized memory. In one embodiment, the apparatus
includes a program memory or HDD or SDD on a comput-
erized controller device. In another embodiment, the appa-
ratus includes a program memory, HDD or SSD on a
computerized access node.

[0035] These and other aspects shall become apparent
when considered in light of the disclosure provided herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0036] FIG. 1A is a graphical illustration of a prior art
Ethash algorithm.

[0037] FIG. 1B is a logical block diagram of a prior art
apparatus configured to search for proof-of-work (POW)
with the Ethash algorithm of FIG. 1A.

[0038] FIG. 1C is a graphical illustration of a prior art
process by which proof-of-work (POW) that is generated by
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an Ethereum miner can be used in the context of the
blockchain-based shared ledger.

[0039] FIG. 1D is a graphical illustration of a prior art
process by which proof-of-work (POW) that is generated by
an Ethereum miner cannot be used multiple times in the
context of the blockchain-based shared ledger.

[0040] FIG. 1E is a graphical illustration of a prior art
process by which proof-of-work (POW) that is verified by a
community of miners can be added to the blockchain-based
shared ledger.

[0041] FIGS. 2A-2C are graphical representations of cor-
rected Bit Error Rate (BER), useful to calculate a system
efficiency, in accordance with the various principles
described herein.

[0042] FIG. 3 is a logical block diagram of a first exem-
plary embodiment of an apparatus configured to search for
proof-of-work (POW) with the aforementioned Ethash algo-
rithm, in accordance with the present disclosure.

[0043] FIG. 4 is a logical block diagram of a second
exemplary embodiment of an apparatus configured to search
for proof-of-work (POW) with the aforementioned Ethash
algorithm, in accordance with the present disclosure.
[0044] FIG. 5A is a logical block diagram of a third
exemplary embodiment of an apparatus configured to search
for proof-of-work (POW) with the aforementioned Ethash
algorithm, in accordance with the present disclosure.
[0045] FIG. 5B is a side-by-side comparison of the exem-
plary embodiment of FIG. 5A and a group of prior art
apparatus (such as was described in FIG. 1B).

[0046] FIG. 6 is logical flow diagram of one embodiment
of a method for searching a characterized memory, in
accordance with the present disclosure.

[0047] FIG. 7 is logical flow diagram of one embodiment
of a method for monitoring and analyzing characterized
memory performance, in accordance with the present dis-
closure.

[0048] FIG. 8 is a logical block diagram of an exemplary
embodiment of an apparatus configured to search charac-
terized memory, in accordance with the present disclosure.
[0049] All figures © Copyright 2018-2019 Micron Tech-
nology, Inc. All rights reserved.

DETAILED DESCRIPTION

[0050] Reference is now made to the drawings wherein
like numerals refer to like parts throughout.

[0051] As used herein, the term “access node” refers
generally and without limitation to a network node which
enables communication between a user or client device and
another entity within a network, such as for example a 5G
NR gNB, an LTE eNB, a Wi-Fi AP, or a Wi-Fi-Direct
enabled client or other device acting as a Group Owner
(GO).

[0052] As used herein, the term “application” (or “app”)
refers generally and without limitation to a unit of execut-
able software that implements a certain functionality or
theme. The themes of applications vary broadly across any
number of disciplines and functions (such as cryptocurrency
mining, on-demand content management, e-commerce
transactions, brokerage transactions, home entertainment,
etc.), and an application may have more than one theme. The
unit of executable software generally runs in a predeter-
mined environment; for example, a processor architecture
may retrieve and execute instructions from a non-transitory
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computer-readable storage medium where the instructions
are compiled for the processor architecture.

[0053] As used herein, the terms “client device” or “user
device” or “UE” may include, but are not limited to, mobile
devices such as handheld computers, PDAs, personal media
devices (PMDs), tablets, “phablets”, smartphones, and
vehicle infotainment systems or portions thereof, as well as
set-top boxes (e.g., DSTBs), gateways, modems, personal
computers (PCs), and minicomputers, whether desktop, lap-
top, or otherwise.

[0054] As used herein, the term “computer program” or
“software” is meant to include any sequence or human or
machine cognizable steps which perform a function. Such
program may be rendered in virtually any programming
language or environment including, for example, C/C++,
Fortran, COBOL, PASCAL, assembly language, markup
languages (e.g., HTML, SGML, XML, VoXML), and the
like, as well as object-oriented environments such as the
Common Object Request Broker Architecture (CORBA),
Java™ (including J2ME, Java Beans, etc.), Register Trans-
fer Language (RTL), VHSIC (Very High Speed Integrated
Circuit) Hardware Description Language (VHDL), Verilog,
and the like.

[0055] As used herein, the terms “Internet” and “internet”
are used interchangeably to refer to inter-networks includ-
ing, without limitation, the Internet. Other common
examples include but are not limited to: a network of
external servers, “cloud” entities or “fog” networks (such as
memory or storage not local to a device, storage generally
accessible at any time via a network connection, and the
like), service nodes, access points, controller devices, client
devices, etc.

[0056] As used herein, the terms “5G NR, “5G,” and
“New Radio” refer without limitation to 3GPP Release 15
and TS 38. XXX Series and subsequent or related standards.
[0057] As used herein, the term “memory” includes any
type of integrated circuit or other storage device adapted for
storing digital data including, without limitation, random
access memory (RAM), pseudostatic RAM (PSRAM),
dynamic RAM (DRAM), synchronous dynamic RAM
(SDRAM) including double data rate (DDR) class memory
and graphics DDR (GDDR) and variants thereof, ferroelec-
tric RAM (FeRAM), magnetic RAM (MRAM), resistive
RAM (RRAM), read-only memory (ROM), programmable
ROM (PROM), electrically erasable PROM (EEPROM or
EPROM), DDR/2 SDRAM, EDO/FPMS, reduced-latency
DRAM (RLDRAM), static RAM (SRAM), “flash” memory
(e.g., NAND/NOR), phase change memory (PCM), 3-di-
mensional cross-point memory (3D Xpoint), and magne-
toresistive RAM (MRAM), such as spin torque transfer
RAM (STT RAM).

[0058] As used herein, the terms “microprocessor” and
“processor” or “digital processor” are meant generally to
include all types of digital processing devices including,
without limitation, digital signal processors (DSPs), reduced
instruction set computers (RISC), general-purpose (CISC)
processors, microprocessors, gate arrays (e.g., FPGAs),
PLDs, reconfigurable computer fabrics (RCFs), array pro-
cessors, graphics processors (e.g., GPUs), secure micropro-
cessors, and application-specific integrated circuits (ASICs).
Such digital processors may be contained on a single unitary
IC die, or distributed across multiple components.

[0059] As used herein, the terms “network™ and “bearer
network” refer generally to any type of telecommunications
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or data network including, without limitation, hybrid fiber
coax (HFC) networks, satellite networks, telco networks,
and data networks (including MANs, WANs, L[ANs,
WLAN:S, internets, and intranets). Such networks or portions
thereof may utilize any one or more different topologies
(e.g., ring, bus, star, loop, etc.), transmission media (e.g.,
wired/RF cable, RF wireless, millimeter wave, optical, etc.)
and/or communications or networking protocols (e.g.,
SONET, DOCSIS, IEEE Std. 802.3, ATM, X.25, Frame
Relay, 3GPP, 3GPP2, LTE/LTE-A/LTE-U/LTE-LAA, WAP,
SIP, UDP, FTP, RTP/RTCP, H.323, etc.).

[0060] As used herein, the term “network interface” refers
to any signal or data interface with a component or network
including, without limitation, those of the FireWire (e.g.,
FW400, FW800, etc.), USB (e.g., USB 2.0, 3.0. OTG),
Ethernet (e.g., 10/100, 10/100/1000 (Gigabit Ethernet),
10-Gig-E, etc.), MoCA, Coaxsys (e.g., TVnet™), radio
frequency tuner (e.g., in-band or OOB, cable modem, etc.),
LTE/LTE-A/LTE-U/LTE-LAA, Wi-Fi (802.11), WiMAX
(802.16), Z-wave, PAN (e.g., 802.15), or power line carrier
(PLC) families. As used herein, the term “server” refers to
any computerized component, system or entity regardless of
form which is adapted to provide data, files, applications,
content, or other services to one or more other devices or
entities on a computer network.

[0061] As used herein, the term “storage” refers to without
limitation computer hard drives, DVR device, memory,
RAID devices or arrays, optical media (e.g., CD-ROMs,
Laserdiscs, Blu-Ray, etc.), or any other devices or media
capable of storing content or other information.

[0062] As used herein, the term “wireless” means any
wireless signal, data, communication, or other interface
including without limitation Wi-Fi, Bluetooth/BLE, 3G
(3GPP/3GPP2), HSDPA/HSUPA, TDMA, CBRS, CDMA
(e.g., IS-95A, WCDMA, etc.), FHSS, DSSS, GSM, PAN/
802.15, WiMAX (802.16), 802.20, Zigbee®, Z-wave, nar-
rowband/FDMA, OFDM, PCS/DCS, LTE/LTE-A/LTE-U/
LTE-LAA, analog cellular, CDPD, satellite systems,
millimeter wave or microwave systems, acoustic, and infra-
red (i.e., IrDA).

[0063] As used herein, the term “class,” within the context
of memory, refers to memories which may exceed yet
minimally perform according to a specific requirement. For
example, current “general compute” memories are termed
“first-class” memories that guarantee a maximum bit error
rate (BER) of e.g., 1x10'® under standardized operating
conditions (e.g., room temperature, voltage, current, humid-
ity, etc.), whereas “second-class” memories can include
memories with a maximum BER of 1x107> under the same
standardized operating conditions. Notably, memories may
perform at significantly better or worse BER under other
environments; for example, a second class memory may
provide better than 1x10*® BER under ideal conditions, and
similarly a first class memory may perform worse than
1x107° BER under harsh conditions.

[0064] The foregoing terms of first class and second class
are purely used as relative measures of performance under a
fixed set of conditions for consumer applications, and are
purely arbitrary. Other classification schemes (e.g., military
specifications) may classify memories under different char-
acteristics and/or with other levels of gradation. For
example, memories may be classified according to environ-
mental tolerances (high temperatures/humidity, low tem-
peratures/humidity), performance ranges (e.g., different
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speed grades), and/or any other operational parameter. Vari-
ous other classification schemes will be readily appreciated
by those of ordinary skill given the contents of the present
disclosure.

Overview

[0065] Currently, memory hard cryptocurrency mining is
done with “general compute” memories. Given the explo-
sion of consumer interest in cryptocurrencies, there is a
substantial economic incentive to field more mining hard-
ware, as well as develop faster, more efficient mining
hardware. One proposed technique for increasing “memory
hard” mining hardware (i.e., for mining algorithms that
require large amounts of memory to run to support appli-
cations in which memory bandwidth is used as a POW) in
a cost effective manner would be to use memories that are
less reliable than general compute memories; however,
unreliable memories may output an excessive number of
invalid proof-of-work (POW) solutions that could result in
undesirable consequences (banning, kicking, etc.).

[0066] The traditional or “general compute” memory
paradigm attempts to avoid errors with e.g., expensive
manufacturing tolerances (e.g., very low bit error rates
(BER). However, many areas of modern computing have
explored error-tolerant techniques. Error-tolerant computing
(also sometimes referred to as “error-resilient”) refers to
computing which assumes and allows for the presence of
some noise and/or errors in memory and/or data. There are
many applications for probabilistic computing, stochastic
computing, and/or other types of error-tolerant computing.
[0067] To these ends, techniques for validating proof-of-
work (POW) memory search results for e.g., memory hard
cryptocurrencies are desired. More generally, error-tolerant
memory searches with unreliable memory devices may
enable faster, more efficient, and/or cost-effective solutions
compared to existing general compute memory techniques.
Error-tolerant memory searching may have broad applica-
bility to a range of probabilistic or stochastic computing
applications, machine learning, cryptography, and/or any
number of other error-tolerant applications.

[0068] The present disclosure describes, inter alia, tech-
niques and apparatus for using characterized memory to
enable faster, more efficient, cost-effective memory searches
compared to existing general compute memory searches.
Some embodiments described herein can be used without
validation in error-tolerant or stochastic computing systems;
e.g., systems that assume the presence of some noise and/or
errors in memory and/or data.

[0069] As a related variation, memory devices may be
selected from many different classes of memory based on the
degree of error-tolerance or stochasticity of a system. In
other variants, memory devices that have been characterized
with an error rate performance over a range of one or more
parameters (rather than a class based categorization) may be
selected for use based on the degree of error-tolerance or
stochasticity of a system. Various other combinations and
permutations of the foregoing are explored in greater detail
hereafter.

[0070] Some embodiments described herein implement a
validation stage so as to catch and remove memory errors
before the memory search result is returned. In one exem-
plary embodiment, improved methods and apparatus for
validating memory search results from a “pool” of charac-
terized memories with a validation memory are described.
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The validation stage can ensure a minimum level of perfor-
mance for the pool of characterized memories.

[0071] In one exemplary embodiment, a pool of charac-
terized memories can return memory search results for
memory hard proof-of-work (POW) solutions used in cryp-
tocurrency mining e.g., Ethereum mining. Advantageously,
the exemplary embodiment described herein can leverage
less expensive, defective, or otherwise unmarketable
memory that has been characterized with an error rate
performance over a range of one or more parameters. Such
characterized memories can expand and parallelize memory
searching in cryptocurrency mining in a cost efficient man-
ner. In some such variants, the use of a validation stage can
further ensure that invalid mining results are not returned to
the community of miners in the cryptocurrency network; in
this way, a mining node will not be penalized for using
memories that have a different characteristic than general
compute memory (e.g., the mining node will not be kicked
or banned).

[0072] Although the present disclosure uses cryptocur-
rency mining to illustrate the various techniques described
herein, those of ordinary skill in the related arts given the
contents of the present disclosure will readily appreciate that
the techniques described herein may be used for a variety of
other applications. For example, the techniques described
herein may be used in machine learning, artificial intelli-
gence, cloud and/or fog based computing, and any applica-
tion that involves and/or accounts for probabilistic errors,
noise and/or other sources of stochasticity.

[0073] As described in greater detail hereinafter, memory
devices may be tiered into many different tiers of class based
on their uncorrectable fault performance. In particular, so-
called “correctable” faults can be corrected with e.g., repair
and/or error correcting codes (ECC). However, “uncorrect-
able” faults cannot be corrected due to e.g., exhaustion of
repair resources and/or limitations of ECC capability. In one
such variant, memories with uncorrectable faults may be
validated (with a validation stage); such techniques may
enable cost efficient reuse of memories that otherwise might
be unmarketable and/or thrown away.

[0074] Furthermore, schemes for categorizing memory
faults into probabilistic errors in memory technology due to
stochastic sources, and hardware failures due to physical
defects, are disclosed. Various methods and apparatus are
described which, inter alia, monitor the degradation of
memory performance to provide a continuous in-use per-
formance characterization. Degradation of memory perfor-
mance attributed to stochastic errors and not physical defects
can be used to intelligently refresh the characterized
memory more or less frequently to optimize performance
and/or productive life. Degradation of memory performance
attributed to uncorrectable faults due to accumulating physi-
cal defects can be used to trigger hardware replacement. The
various described techniques ensure proper performance
(e.g., error rate) and/or efficiency of the characterized
memory.

Detailed Description of Exemplary Embodiments

[0075] Exemplary embodiments of the present disclosure
are now described in detail. While these exemplary embodi-
ments are described in the context of the previously men-
tioned memory-bound (or memory hard), proof-of-work
(POW)-based cryptocurrency mining utilizing a blockchain
(e.g., Ethereum mining), the general principles and advan-
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tages of the disclosure may be extended to other types of
systems involving sequential transactional databases, cryp-
tocurrencies, networks, architectures, and mechanisms, any
of which are configured to provide a distributed chain of
blocks or transaction data structures accessed by a network
of nodes (also referred to as a network of miners, in some
instances).

[0076] As of the filing date of the present disclosure,
Ethereum (and the cryptocurrency Ether) uses the proof-of-
work (POW) algorithm “FEthash™; however, there is some
interest in modifying Ethereum for a proof-of-stake algo-
rithm (e.g., where the network is secured by proof of
ownership of tokens, rather than a proof of work). Accord-
ingly, while the exemplary embodiments of the present
disclosure are described in the context of memory hard
POW, the present disclosure contemplates leveraging other
forms of POW as well as other proof-of schemes (including
proof-of-stake, proof-of-authority, proof-of-space, etc.).
[0077] The architectures, systems, apparatus, and methods
described herein can be utilized in any application involving
error-tolerance, noise, probability, and/or stochasticity. For
example, the present disclosure can apply to various proba-
bilistic or machine learning fields such as DNA sequencing,
retail inventory, disease prediction, pattern recognition, and/
or any other large scale pattern recognition. More generally,
as described in greater detail hereinafter, an “efficiency
curve” (or set of curves) can be used to characterize solution
density as a function of noise/errors. The efficiency curve
can be used to tradeoff requirements necessary to accom-
plish a desired performance, with other parameters (e.g.,
component cost, component quality, etc.). Such information
can be used to intelligently select and/or reuse a variety of
characterized memory devices (rather than “general com-
pute” memories).

[0078] Other features and advantages of the present dis-
closure will immediately be recognized by persons of ordi-
nary skill in the art with reference to the attached drawings
and detailed description of exemplary embodiments as given
below.

Exemplary Ethereum and Ethash Operation—

[0079] As previously noted, Ethereum is one exemplary
blockchain-based distributed computing platform and oper-
ating system. Ethereum networks create and transact Ether
as a cryptocurrency. FIG. 1A is a logical flow diagram of an
existing method for proof-of-work (POW) mining with the
Ethash algorithm useful for demonstrating memory hardness
in the context of Ethereum.

[0080] At step 102, the miner generates a short binary blob
(binary large object) “nonce”; a nonce is data that is only
used once (e.g., to avoid playback type attacks). Within the
context of Ethash, the nonce serves as an input to a mixing
process and algorithm. The miner combines the nonce with
unique header metadata (including timestamp and software
version) derived from the latest block of the blockchain. A
SHA3-like (Secure Hash Algorithm 3) algorithm is used to
combine the pre-process header and nonce to create an
initial 128 byte “mix™ (step 104).

[0081] At step 106, the 128 byte mix is used to identify a
128 byte page to retrieve from memory based on an Ethash
specific directed acyclic graph (DAG). As a brief aside, a
DAG provides a pseudorandom memory data set that is
computationally straightforward to generate. The DAG data-
set is generated as a linear function of the blockchain length,
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and is regenerated every 30,000 blocks (a so-called
“epoch”). As of the present disclosure, the DAG was
approximately 4 GB, and the DAG will continue grow in
size as the blockchain grows. Retrieving memory pages
from the DAG stored in memory is physically constrained
by memory bandwidth; thus, the periodically changing
Ethereum DAG provides a source of memory hardness for
Ethereum.

[0082] Referring back to FIG. 1A, once the 128 byte page
is retrieved from the DAG, it is combined with the initial 128
byte mix, yielding a new mix (step 108). The new mix is
then utilized to identify another DAG page to retrieve. Once
that new DAG page is retrieved, it is combined with the new
mix to generate yet another mix. This process is performed
64 times. After the 64” time of mixing, the resulting 128
byte mix is then post-processed to generate a shorter, 32 byte
digested mix (step 110).

[0083] After the mixing function and post-processing, the
32 byte digested mix is compared against a predefined 32
byte target threshold. If the 32 byte digested mix is less than
or equal to predefined 32 byte target threshold, then the
current nonce is considered valid, and can be broadcast with
the header as a POW to the Ethereum network. If the target
threshold is not met, the current nonce is considered invalid,
and the algorithm is re-run with a different nonce (either by
incrementing the current nonce, or picking a new one at
random).

[0084] While not expressly shown in FIG. 1A, it should be
emphasized that searching for a nonce and header combi-
nation that will result in a digested mix that satisfies the
target threshold may require many attempts; in other words,
searching for a valid nonce requires a substantial amount of
physical entropy in the form of memory bandwidth. How-
ever, once a nonce is successfully found, any peer entity can
straightforwardly verify that the nonce indeed results in a
value that satisfies the target threshold by checking that the
header/nonce combination and DAG lookups to generate the
digested mix. Moreover, since each header and nonce com-
bination can only be used once, the Ethash algorithm ensures
that only new nonce searches can be added to the block-
chain.

[0085] FIG. 1B is a logical block diagram of an existing
apparatus configured to search for proof-of-work (POW)
with the aforementioned Ethash algorithm of FIG. 1A. As
shown in FIG. 1B, the system includes a general compute
memory 152 and a processor 154. The general compute
memory 152 is “specified” for an identified performance
under standardized conditions (e.g., a RAM provides 3.6
Gb/s at 1x10'® BER, at a particular voltage, temperature,
humidity, etc.). The general compute memory 152 stores the
Ethash specific directed acyclic graph (DAG) and each
iteration of the Ethash algorithm requires 64 accesses to
generate a digested mix. Since the vast majority of header/
nonce combinations will not satisfy the target threshold, the
apparatus is likely to consume a significant amount of
memory bandwidth for each attempt.

[0086] FIG. 1C illustrates the process by which proof-of-
work (POW) that is generated by an Ethereum miner can be
used in the context of the blockchain-based shared ledger.

[0087] Each transactional block includes data representing
each transaction (e.g., a POW and record). The record
typically includes unique header metadata (including time-
stamp and software version) derived from the latest block.
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[0088] A proposed transaction (including a generated
POW and a record) is broadcast to the network and validated
by peers; for clarity, only a single P2P peer is shown in FIG.
1C. Specifically, the P2P peer receives a block that is
proposed to be added to the blockchain. If the POW is
successfully verified by the P2P peer node, then the pro-
posed block can be added to the blockchain. In some cases,
the miner may also receive a reward in the form of the digital
currency (e.g., Ether).

[0089] As previously alluded to, cryptocurrency mining is
designed to account for malicious parties and fake POW.
Transactions added erroneously or maliciously will not be
verified by other miners in the network and will not persist
in the blockchain. Furthermore, the Ethereum network
penalizes malicious behavior. Specifically, the node or IP
address associated with a misbehaving miner can experience
undesirable consequences, like being banned or temporarily
kicked from the network.

[0090] For example, as shown in FIG. 1D, a solution
(header/nonce combination) can only be used once. If the
same solution is repeated (e.g., in a playback type attack),
then the P2P node will reject the new solution. Since the
DAG is shared by all of the Ethereum miners and the DAG
is regenerated at 30,000 blocks, there are 30,000 unique
solutions that the miners of the Ethereum mining community
are in a race to find. More directly, a miners’ profitability
depends on their ability to generate valid header/nonce
combinations and the amount of computing power they
devote to the process in outputting valid blocks before other
miners.

[0091] Furthermore, the shared ledger nature of the
Ethereum blockchain also ensures that each of the peer
mining nodes of the Ethereum community cannot falsify a
record. As shown in FIG. 1E, when a peer node successfully
adds another block to the blockchain, the proposed block-
chain is provided to each of the other peer nodes. Only when
a majority of the peer nodes of the community have reached
consensus that the proposed addition is legitimate does the
proposed ledger become the shared ledger. If the peer
network does not reach consensus, then the proposed ledger
is ignored. When the shared ledger successfully adds another
block, then the miners will stop work on the current block
and start on the next block.

[0092] As a related corollary, the fact that a blockchain
accumulates entropy means that the rate at which entropy is
being added to a community is a “proof of cooperation”
without any central organizer. Specifically, one computer is
only capable of adding a certain amount of entropy, but a
million computers working together generate entropy addi-
tively (a Poisson process). In other words, the largest pool of
entropy is considered the valid state of the network (the
consensus of the community), and the largest pool of
entropy can only be generated by the network as a whole; it
cannot be generated by a single attacker or even a subset of
the pool. Thus, the ability to measure consensus or coop-
eration is as simple as validating the amount of entropy of
the system.

[0093] More generally, artisans of ordinary skill in the
related arts will appreciate that cryptocurrencies (like
Ethereum) that are based on a community of untrusted
parties which cooperate to share a public ledger must
implement barriers to malicious activity and/or penalize
malicious behaviors. The combined results of infeasibility of
attack, expense to attack, and the likelihood of penalty for a
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failed attack provide strong disincentive for malicious
behavior within cryptocurrency networks; in this manner,
cryptocurrency networks are able to ensure that the shared
ledger can be trusted, without vesting trust in any single

party.
Defining an Efficiency Curve for Ethereum Solutions—

[0094] As noted above, Ethereum mining is error intoler-
ant because the network paradigm is focused on eliminating
malicious activity within a community of untrusted peers.
However, there is no technical distinction between a mali-
cious fault and a hardware fault; more directly, both mali-
cious faults and hardware faults result in incorrect data.
Conventional wisdom would suggest that the difficulty of
finding a valid header/nonce solution and the penalties
assessed for invalid solutions favor careful and thorough
memory searching. Consequently, Ethereum mining is cur-
rently implemented within general compute memories; so-
called general compute memories impose a very high manu-
facturing tolerance (e.g., 1x10'® BER). By using general
compute memories, an Ethereum miner is assured that they
will not waste resources generating false positives (i.e.,
invalid solutions) and/or miss valid solutions (i.e., a false
negative) in the predefined space.

[0095] Consider a system where Ethereum mining is per-
formed by nodes that trust one another (i.e., no malicious
activity). Under such a scenario, errors may be attributed to
hardware faults rather than malicious activity and would not
be penalized. Instead, hardware faults can be handled with
a variety of error-tolerant techniques. For example, hard-
ware systems may use error-tolerant techniques such as
self-monitoring, analysis, and reporting technologies
(SMART). Additionally, memories could be used under
conditions that exceed normal operating parameters (e.g.,
over clocked for faster searching) and/or unreliable memo-
ries could be used at much lower cost.

[0096] Conceptually, using error-tolerant systems to per-
form proot-of-work (POW) searching may seem to provide
advantages over traditional general compute memory alter-
natives. However, the amount of error-tolerance that is
acceptable may be characterized in order to ensure that the
benefits outweigh the possible inefficiencies caused by false
positives and/or missed solutions.

[0097] A generalized mathematical representation to
express solution error rate (SER) (also referred to as “false
positives™) as a function of corrected bit error rate (BER) is
given by:

SER=1-(1-BER)*

[0098] Where:

[0099] BER is the bit error rate of the memory (after

ECC correction); and

[0100] M is the size of the solution (in bits).
[0101] FIG. 2A graphs an exemplary SER as a function of
the corrected BER of memory, using parameters that model
Ethash for Ethereum (e.g., M=64*128B (a 8 KB solution)).
Some valid solutions are also lost due to BER. However, the
solution loss rate (SLR) (“false negatives™) only occurs once
a valid solution is found but an error prevents its correct
identification. Very rarely, some errors that should cause
invalid solutions may also achieve a “lucky” outcome and be
valid. In other words, a false negative is the combination of:
(1) the error free condition (1-BER)™ and (ii) a lucky error
that causes the solution density function (SDF)) to be

EQN 1:
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serendipitously corrupted (1-(1-BER)™). Thus, a general-
ized mathematical representation to express solution loss
rate (SLR) as a function of corrected bit error rate (BER) is
given by the combination of the two foregoing scenarios (i)
and (ii):
SLR=1-((1-BER)+SFD*(1-(1-BER ™))

[0102] Where:
[0103] BER is the bit error rate of the memory (after
ECC correction);

EQN 2:

[0104] M is the size of the solution (in bits); and
[0105] SFD is the solution density function.
[0106] FIG. 2B graphs an exemplary SLR as a function of

the corrected BER of memory, using parameters that model
Ethash for Ethereum (e.g., for M=64*128B (a 8 KB solu-
tion) and SFD=1/1515456000). Here, the SFD represents a
“difficulty” ratio of valid solutions to total search space for
Ethash.

[0107] The system efficiency can be determined as a
function of false positives and false negatives; system effi-
ciency provides a relative measure to prior art systems
(which are assumed to have a 100% efficiency (1)). A
generalized mathematical representation based on the two
foregoing equations EQN 1 and EQN 2 is provided herein:

System Efficiency=((1-BER)*+SFD*(1-(1-BER)

M)-1 EQN 3:
[0108] Where:
[0109] BER is the bit error rate of the memory (after

ECC correction);
[0110] M is the size of the solution (in bits); and
[0111] SFD is the solution density function.

[0112] FIG. 2C graphs an exemplary system efficiency as
a function of the corrected BER of memory, based on the
Ethash parameters. As shown therein, even memories with
very high error rates can provide Ethash proof-of-work
(POW) that is almost as efficient as general compute
memory over a very broad range of BER performance. More
directly, FIG. 2C demonstrates that error-tolerant techniques
can be successfully used in Ethereum mining.

[0113] Artisans of ordinary skill in the related arts will
readily appreciate that although the efficiency curve of FIG.
2C shows an exemplary Ethereum POW system efficiency
curve as a function of corrected BER performance, the
Ethereum POW mining application is merely exemplary in
nature. Any application could be analyzed in the same
manner to generate an efficiency curve. Furthermore, the
“corrected BER” analysis is conservative. Most memories
(such as DRAM) include internal error-correcting code
(ECC) logic that provides a “corrected BER” with substan-
tially better performance than the raw BER of the DRAM.
The corrected BER of the forgoing discussion is a BER after
ECC, but does not account for the effects of other error
correcting logic that may be external to the memory.

Example Operation #1, Characterized Memory—

[0114] One inference that can be made in view of the
efficiency curve for Ethereum POW mining of FIG. 2C, is
that the solution density is very “sparse”. As used in the
present context, the term “sparse” refers to a solution space
that is very thinly populated with solutions. In other words,
the vast number of attempted header/nonce combinations are
not valid solutions; in fact, the sparsity of the Ethash
algorithm is an intentional property of proof-of-work algo-
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rithms. More directly, as specifically noted above, the prob-
ability that a valid solution is miscalculated and passes due
to luck is insignificant. However, in a related corollary, the
probability that an invalid solution is miscalculated and
believed to be valid (i.e., a false positive) may be more
common, however sufficiently rare as to offset other con-
siderations (such as cost or speed).

[0115] More directly, conventional wisdom has held that
mining with unreliable memory is not desirable, as it will
likely result in broadcasting invalid POW solutions, thereby
wasting resources (e.g., time and power), and perhaps being
banned from the network. However, the foregoing analysis
shows that some level of invalid POW may be tolerable and
in some cases, may even be preferable.

[0116] FIG. 3 illustrates one exemplary embodiment of a
first memory architecture according to the present disclo-
sure. As shown in FIG. 3, the exemplary apparatus is
configured to search for proof-of-work (POW) with the
aforementioned Ethash algorithm in a manner that does not
reject invalid solutions. The system includes a “character-
ized” memory 330 and a processor 320. As before, the
characterized memory 330 stores an Ethash specific directed
acyclic graph (DAG).

[0117] Within the present context, the term “character-
ized” is used to describe a memory device that has been
verified (empirically tested or otherwise) to provide at least
a specific level of performance over a range of conditions.
Typically, general compute memories are only “specified”
for an identified performance under standardized conditions
via factory run pass/fail memory test; there is no commercial
value to testing general compute memories beyond the
pass/fail test. In contrast, characterized memories may
include memories from experimental memory runs, refur-
bished memories, faulty memories, or other applications that
undergo a more comprehensive set of testing to assess
performance over a range of operating conditions.

[0118] For example, with respect to POW solutions, 99 of
100 attempted header/nonce combinations could be valid
with characterized memories. A low-end memory (e.g., a
memory device that is nominal rated or specified for lower
performance relative to higher-class devices) can be over-
clocked at higher speeds to generate sufficient POWs.
Memories may be overclocked using higher voltages to
achieve acceptable error rates. Moreover, since the memory
POW can tolerate much higher error rates than normal
computation, the memories can be overclocked at normal
voltages (resulting in longer overclocked lifetimes).

[0119] In other words, using characterized memory for
mining consistent with the present disclosure will intention-
ally tradeoff errors for other benefits e.g., improved perfor-
mance, reduced cost, improved memory life. For example, if
3% of results are invalid but the results are being generated
25% faster, the overall acceleration of the system is 21.25%
(e.g., 125% faster times 97% accuracy). The overall boost
may be even greater in “race” scenarios such as cryptocur-
rency mining (i.e., only the first miner to locate a solution is
rewarded, the second miner loses out even if he eventually
locates the same solution).

[0120] Referring back to FIG. 3, the characterized
memory is used at its characterized rate to achieve a per-
formance that is acceptable for its operation. For example,
within the context of the Ethash POW system efficiency
curve of FIG. 2C, a BER of 1x10~° provides a system
efficiency of approximately 90%. Consequently, the charac-
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terized memory 330 may be clocked at a rate that achieves
a 90% system efficiency (e.g., the rate characterized for BER
of 1x107%).

[0121] Inone such embodiment, a typical general compute
memory is “specified” for an identified performance under
standardized conditions; however the same memory may be
further characterized in subsequent testing to provide e.g.,
diminishing performance at higher speeds. Once sufficiently
characterized, the general compute memory may be used as
a characterized memory when run at its higher rate to
achieve much higher bandwidth. For example, consider a
GDDR DRAM that has been characterized to provide a
1x107*® BER at a first Gb/s rate, and is additionally char-
acterized at a 50% overclocked Gb/s rate that provides a
lower BER of 1x107>. In this manner, the memory may be
used at its 50% overclocked rate to achieve a performance
boost in memory bandwidth for Ethash mining.

[0122] In another such embodiment, the characterized
memory may be e.g., experimental memory, refurbished
memory, faulty memory, and/or second class (or even lower
class) memories. Such memory devices may be pressed into
Ethash mining at substantially lower cost than general
compute memories. For example, experimental memory
prototypes that cannot be sold may have been sufficiently
characterized to be acceptable for Ethash mining. Use of
such characterized memories would be beneficial for, e.g.,
memory manufacturers that have second-class memories
available en masse because of fabrication issues, and would
otherwise have limited or no use for them. Another such case
may be second class memory that does not meet commer-
cially relevant JEDEC memory standards, and therefore may
be sold to consumers at steep discounts. Accordingly, the
present disclosures sets forth another use for such second
class memory. Similarly, refurbished memory that otherwise
would be discarded may be suitable for Ethash mining.

[0123] Additionally, as is discussed in greater detail here-
inafter, the mathematical relationship between corrected
BER and system efficiency can be used to in reverse to infer
the corrected BER of a memory. In other words, memories
that have not been characterized or that have degraded in
performance since characterization, can be monitored to
infer a likely corrected BER.

[0124] Artisans of ordinary skill in the related arts given
the contents of the present disclosure will readily appreciate
that the foregoing example is purely illustrative; various
considerations may be considered in determining accept-
ability of operation. For example, the acceptable error rate
may be based on the amount of penalty imposed by the
network; shorter temporary bans may result in a higher
acceptable BER, longer or even permanent bans may require
much lower BER.

Example Operation #2, Validating Characterized Memory—

[0125] As discussed supra, characterized memories can be
directly used in Ethereum POW mining. However, as pre-
viously alluded to, broadcasting invalid solutions directly to
the network from a characterized memory could have unde-
sirable consequences or invoke countermeasures (e.g., the
submitter to be banned temporarily or permanently from the
network, or at a minimum, waste resources on generating
and broadcasting false POW solutions that will not result in
any rewards). Accordingly, as shown in FIG. 4, the present
disclosure also envisions a mechanism to validate POW
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solutions before they are broadcast, such that characterized
memory can be used without the risk of suffering undesir-
able consequences.

[0126] FIG. 4 depicts one exemplary embodiment of a
second memory architecture according to the present dis-
closure. As shown in FIG. 4, the memory architecture
includes a characterized memory 430 and processor 420
apparatus that includes a validation memory 410. During
operation, the second memory architecture uses the charac-
terized memory 430 to search for, and generate, POW
solutions in accordance with the aforementioned processes;
thereafter the validation memory 410 is used to validate the
generated POW solutions. For example, the processor 420
can execute a hash algorithm utilizing the characterized
memory 430 to find a POW solution using the characterized
rate (e.g., which may be overclocked for acceptable appli-
cation performance of e.g., 1x10~> BER), and then execute
a one-time look up verification of the POW solution utilizing
a general compute memory at its specified rate (e.g., 1x10'®
BER).

[0127] As previously alluded to, Ethash is asymmetric in
that a solution is difficult to find, but relatively easy to verify.
Within the context of FIG. 4, the validation memory 410 can
be used to verify the POW identified by the characterized
memory 430 with low processor utilization and a relatively
small amount of memory. For example, empirical experi-
ments show that the Ethash POW mining takes approxi-
mately 12-15 seconds to find a suitable header/nonce solu-
tion, whereas validation can occur almost instantaneously.

[0128] In one exemplary embodiment, the characterized
memory 430 is operated to maximize overall search speed
(even at the expense of accuracy), whereas the validation
memory 410 is used to accurately verify the search (which
does not need to be done quickly). A variety of techniques
can be used to maximize the search speed and/or minimize
costs of the characterized memory 430. For example, some
variants may overclock the characterized memory, other
variants may remove internal memory overhead (e.g., ECC,
eFuse, CRC, etc.) which take time and consume memory
bandwidth. In another such example, a very inexpensive
memory can be overclocked to achieve comparable rates to
much more expensive general compute alternatives.

[0129] Similarly, a variety of techniques can be used to
improve accuracy and/or reduce cost of the validation
memory 410. For example, the validation memory 410 can
use a very slow memory that has good BER. In other
variants, the validation memory 410 can use memory tech-
nologies that are optimized for other applications. For
example, a DRAM (which is volatile) can be used to quickly
and inexpensively mine for POW, whereas a flash memory
(which is non-volatile) can be used as a low-power valida-
tion memory.

[0130] Additionally, the memory architecture of FIG. 4
provides additional synergies which may be unavailable to
e.g., the simpler memory architectures. In one exemplary
embodiment of the present disclosure, the validation
memory 410 tracks the error rate of the characterized
memory 430 and monitors memory performance in view of
an expected solution density function. For example, within
the context of Ethereum POW mining, the validation
memory 410 can determine how well the characterized
memory 430 is performing over time. More directly, if the
rate for the characterized memory is expected to yield a
solution density of 90% (e.g., a BER of 1x107°), but the
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actual solution density is closer to 70%, then the memory is
underperforming (e.g., roughly equivalent to a BER of
~5x107°).

[0131] In some variants, the underperforming character-
ized memory may be re-characterized for a lower perfor-
mance. For example, by reducing clock frequency, the
memory performance may return to acceptable levels. In
other cases, the characterized memory may still offer suffi-
cient solution density to continue operation in its degraded
state. In still other implementations, the processor 420 may
initiate corrective action (such as more frequent refreshes, or
a rewrite of the DAG entries).

[0132] As abrief aside, DRAM memory technology stores
information as a charge in a capacitive cell; over time, the
charge in the DRAM cell decays, thus the DRAM cell must
periodically be “refreshed” with the proper value. In some
cases, a cell may have a “soft error” because the charge has
decayed to the improper value; soft errors may be a product
of manufacture (e.g., manufacturing tolerances may result in
slightly more or less capacitance for each cell), probabilis-
tically occur over time, and/or may even be intentionally
allowed to accumulate. For example, refresh consumes
memory bandwidth (the cell cannot be accessed during
refresh) thus refreshing may be reduced to increase memory
bandwidth. In contrast, malfunctioning cells are considered
“hard errors.” Common examples of hard errors include
memory cells that are stuck “high” or “low.” Analogous
functionality is present in other forms of memory (e.g.,
SRAM, Flash, etc.).

[0133] In some variants, correctable and uncorrectable
faults in the characterized memory 430 may be categorized
differently. As previously noted, so-called “correctable”
faults can be corrected with e.g., repair and/or error correct-
ing codes (ECC). However, “uncorrectable” faults cannot be
corrected due to e.g., exhaustion of repair resources and/or
limitations of ECC capability. More directly, the probabi-
listic accumulation of correctable errors during normal
operation can be remedied with e.g., a memory rewrite
and/or more frequent refresh intervals; in contrast an accu-
mulation of uncorrectable errors indicates that the charac-
terized memory 430 should be replaced.

[0134] In some variants, rewriting the characterized
memory 430 merely entails an entry-by-entry copy of the
validation memory 410. In other words, the validation
memory 410 has the “clean” copy of the Ethereum DAG.
The DAG need not be regenerated from scratch for the
characterized memory 430.

[0135] Artisans of ordinary skill in the related arts given
the contents of the present disclosure will readily appreciate
that the foregoing example is purely illustrative; various
implementations of the foregoing may be modified to adjust
a variety of parameters to more or less aggressively mine
POW without the risk of suffering undesirable consequences
(e.g., higher BER, higher clock rates, and/or lower cost
components).

Example Operation #3, Parallelized Characterized
Memories

[0136] As discussed supra, Ethash validation is highly
asymmetric in that a solution is difficult to find, but rela-
tively easy to verify. Additionally, the nonce selection for
Ethash is designed to allow any number of miners to search
for solutions in parallel (e.g., each miner randomly selects a
nonce). Thus, as shown in FIG. 5, the present disclosure also
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envisions architectures that can be used to heavily paral-
lelize characterized memory searching.

[0137] FIG. 5A is one exemplary embodiment of a paral-
lelized memory architecture according to the present disclo-
sure. As shown in FIG. 5A, the parallelized architecture
includes at least one validation controller apparatus 520,
which is in data communication with both (i) one or more
validation memory 510 and (ii) one or more searching
processor apparatus 530. Searching processor apparatus 530
can perform a memory search or hash algorithm utilizing a
plurality of search memory (characterized memories 540).
In some implementations, each of validation controller
apparatus 520 and searching processor apparatus 530 can be
any one of an application-specific integrated circuit (ASIC)
central processing unit (CPU), field-programmable gate
array (FPGA), or graphics processing unit (GPU), or yet
other types of devices.

[0138] With respect to an exemplary operation utilizing
the validated memory apparatus of FIG. 5A, each one of the
searching processor apparatus 530 can execute a memory
search algorithm (e.g., Ethash) to find a POW solution
within the memory space of their corresponding searching
memory 540. When a header/nonce solution is found, the
searching processor apparatus 530 forwards the POW solu-
tion to the validation controller apparatus 520. The valida-
tion controller apparatus 520 then validates the POW solu-
tion against the validation memory 510. If the header/nonce
combination is valid, then the valid solution can be broad-
cast to the network for validation by the peer nodes of the
network. If the solution is invalid then the solution can be
ignored or utilized in other ways as discussed in more detail
further below.

[0139] The highly asymmetric nature of Ethash allows for
high levels of parallelization; a single validation controller
apparatus 520 can validate results from an extensive number
of searching apparatus 530, 540 (e.g., thousands or tens of
thousands of searching apparatus) because empirically vali-
dation is ~1x10'° times faster than generating the POW. For
example as shown in FIG. 5B, a side-by-side comparison of
the exemplary embodiment of FIG. 5A and a group of prior
art apparatus (such as was described in FIG. 1B) are shown
for comparison. As shown in FIG. 5B, the general compute
memories 152 must operate at their specified rate to achieve
the general compute BER (1x107'®); in contrast, the search
memories 540 can be overclocked (e.g., a 50% memory
bandwidth improvement) according to their characterized
rates; the resulting higher BER (1x10~%) can be corrected for
with a validation memory 510 using its specified rate to
achieve the general compute BER (1x107'%).

[0140] Furthermore, it is noted that this exemplary aspect
of the present disclosure (i.e., validation of unreliable search
results before the broadcast thereof) is not known from the
existing art. Although it is well-known for peer nodes of a
network, such as the Ethereum network, to validate solutions
broadcast by miners, existing validation mechanisms are
focused on the untrusted nature of the actors and assume that
faults are malicious. In contrast, the disclosed validation
techniques described herein can assume that faults are
caused by soft’/hard errors of characterized memories that
may be unreliable (or operated out of normal operating
ranges). More directly, the processors 520 and 530 of the
exemplary embodiment are not concerned with trust.
[0141] Moreover, other solutions deter one from using
characterized memory for the reasons explained elsewhere
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herein (e.g., wasting resources, and possibly a ban from the
network); in fact, existing implementations assume that the
results from general compute memories are valid and need
not be checked before broadcasting the results to the net-
work. In other words, if the miner is not malicious and
assumes that their memory has a low (e.g., effectively zero)
error rate, then there is no motivation for the submitter to
check their own results before broadcasting them.

[0142] In one exemplary embodiment, each of the proces-
sors and/or memories are capable of isolated operation
without other processors in the processing system. In one
such variant, each search processor 530 can independently
throttle up or down its memory bandwidth to optimize its
performance. For instance, based on a determination that its
search memory can have a higher BER, one search processor
530 can throttle its clock rate up to increase performance and
(up to an acceptable BER). In contrast, another search
memory that has degraded with use may already have a high
BER; therefore, its associated processor would not change
its clock rate (or potentially even throttle down). Other
independent functionalities may include e.g., maintenance
(as described in detail further below), speed reduction,
and/or power consumption reduction.

[0143] In other embodiments, the search processors 530
and validation processors 530 may be dependent on one
another for one or more operational modes. For example, a
validation processor may centrally track error rates across
the entire parallelized memory apparatus and/or trigger
memory re-writes of the Ethash DAG when appropriate.
[0144] Artisans of ordinary skill in the related arts given
the contents of the present disclosure will readily appreciate
that the foregoing example is purely illustrative; various
implementations of the foregoing may be modified to adjust
a variety of different network topologies. While the illus-
trated embodiment is presented within the context of a single
operating entity, other distributed implementations may be
suitable where trust is established in other ways (or alto-
gether unnecessary). For example, a community of users that
establish trust collectively can mine Ethash. In other cases,
a community of users may not care about its miners being
malicious (and submitting many invalid header/nonce solu-
tions).

Methods for Searching Characterized Memory—

[0145] FIG. 6 is a logical flow diagram of one generalized
method 600 for searching a characterized memory. In one
exemplary embodiment, the characterized memory is used
with an application having an expected solution density.
[0146] At step 602 of the method 600, a memory device is
characterized. In one exemplary embodiment, memory
device characterization includes a determination of one or
more levels of actual or predicted performance over a range
of conditions and/or operational parameters. Common met-
rics for performance include without limitation: bit error rate
(BER), bandwidth, correctable/uncorrectable fault ratio,
data rate, latency, throughput, and/or any number of other
methods to characterize data generated by the memory.
Common conditions and/or operational parameters include
without limitation: refresh rate, clock rate, cycle time, volt-
age, temperature, humidity, and/or any other factor that can
be adjusted for memory operation.

[0147] While many of the discussions provided herein are
directed to memory reads, the techniques disclosed herein
may be applied with equivalent success to any memory
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bandwidth, usage, or access operations. For example, large
amounts of memory reads, writes, fuses, processor-in-
memory operation and/or any combinations or hybrids
thereof may be substituted or combined with equivalent
success.

[0148] In one exemplary embodiment, the characteriza-
tion is explicitly performed via e.g., a test process. For
example, a second-class memory device may be character-
ized to have a bit error rate (BER) performance over a range
of clock rates by writing a test pattern and then reading the
test pattern out of the memory device at increasing higher
clock rates.

[0149] In other embodiments, characterization may be
implicitly determined based on e.g., performance within an
application and/or historic data. For example, a memory that
is generating ~90% valid solutions with the Ethash algo-
rithm can be inferred to have a BER of approximately
1x107° based on the expected solution density for the Ethash
algorithm. In some variants, characterization may be inter-
polated or extrapolated from a subset of explicitly or implic-
itly derived performance data.

[0150] In some embodiments, characterization may be
determined based on comparisons to components of similar
technology and performance. For example, models of
“aged” memories are commonly used by memory manufac-
turers to predict the behavior of refurbished memories. In
some cases, even though there may not be identical memory
technologies, computer modeling may be able to predict
likely performance for substantially similar technologies
(e.g., as between different technology nodes or generations
of the same memory type). Still other statistical predictions
techniques may be used where there is a sufficient sample
size of a representative population of analogous memory
devices.

[0151] In some embodiments, characterization may start
with an initial estimate and dynamically update with infor-
mation over time. For example, experimental memory tech-
nologies may use an initial estimate of performance and
steadily improve on characterization models over time as
manufacturing is improved and/or firmware updates for the
memory are honed during development.

[0152] Various other techniques for -characterizing
memory performance over a range of operational parameters
will be readily appreciated by artisans of ordinary skill given
the contents of the present disclosure.

[0153] Inone exemplary embodiment, the memory device
can provide its characterization data to an external device
(such as a processor, programmable logic, or other logic). In
one embodiment, the memory device stores a data structure
that identifies one or more operating parameters and an
associated performance. The data structure may be stored
within the memory device itself (e.g., as part of the DRAM
memory array) or within a separate NOR, EPROM, fuse,
register or other readable medium. During operation, the
memory device may be queried for its data structure. For
example, the data structure may include a table of operating
voltages and/or clock rates and an associated bit error rate
(BER) performance. In other embodiments, the memory
device may be associated with a data structure that is
remotely stored identifying the memory device’s character-
ization. For example, the memory device may include a
unique identifier that can be queried within a centralized
database. In still other embodiments, the memory device
may be tested and marked with identifiers indicating a
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plurality of different characterizations. In one such imple-
mentation, a memory may be marked with a set of operating
parameters which provide first-class performance, second-
class performance, etc. Still other techniques for storing
and/or retrieving the characterization data may be used with
equivalent success.

[0154] At step 604 of the method 600, a solution density
function for an application is determined.

[0155] In one exemplary embodiment, a “solution density
function” defines the probability of finding a valid solution
for the application within a solution space. For example, a
solution density function for POW mining may describe the
probability of discovering a solution as a function of BER.
In some cases, the solution density function can be used to
determine an overall system efficiency i.e., the relative
efficiency of characterized memory performance relative to
general compute memory performance. More generally, the
solution density function and/or system efficiency curve may
be used to select a desired output for a memory bound
applications as a function of one or more memory perfor-
mance parameters. Moreover, while two dimensional math-
ematical relationships have been described supra, substan-
tially more complex mathematical functions may
incorporate e.g., multiple dimensions, statistical compo-
nents, systems of equations, non-linear behavior, piecewise
modeling, parametric modeling, geometric modeling, dif-
ferential analysis, and/or any other form of mathematical
expression.

[0156] Additionally, while the aforementioned examples
have been described in the context of a memory bound POW
algorithm for a cryptocurrency, the various techniques
described herein may be applied to any application that is
asymmetrically memory bound. As used in the context of a
memory hard or memory bound application, the term
“asymmetric” is characterized by using large amounts of
memory bandwidth (reads/writes) to generate a solution that
can be verified or used with small amounts of memory
bandwidth. Common examples of asymmetric memory
bound applications may include biometric searches (e.g.,
fingerprint searching through a fingerprint database, retinal
scanning, DNA record searching, etc.), environmental or
natural population characterization (e.g., characterizing
multipath fading effects for telecommunications, climate
prediction, biological population simulations, etc.), artificial
intelligence and/or machine learning applications (e.g.,
audio or visual image recognition, object recognition, etc.),
probabilistic and/or stochastic pattern recognition, and/or
any number of other memory based simulation and/or mod-
eling

[0157] In some embodiments, a solution density function
for an error-tolerant application may identify the number of
errors that can be tolerated before the error-tolerant appli-
cation fails. In still another embodiment, a solution density
function for a probabilistic or stochastic application may
identify the noise floor below which a signal of interest is
indistinguishable from noise. In still another embodiment, a
solution density function for a machine learning or artificial
intelligence system may identify the maximal sparsity of
information below which the processing complexity is infea-
sible to model. Similarly, system efficiency for error-tolerant
applications may be used to select and/or track performance;
dynamic performance metrics may be used to dynamically
adjust error-tolerant application parameters and/or infer
when system maintenance is required.
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[0158] Common examples of error-tolerant applications
include without limitation: SMART systems (Self-Monitor-
ing, Analysis and Reporting Technology), error detection
based systems (e.g., cyclic redundancy checks (CRC), etc.),
error correction schemes (e.g., hamming and parity codes,
etc.), consensus systems (e.g., majority voting schemes,
blockchain, etc.). More generally, as used herein, the terms
“error-tolerant” and/or “error-resilient” refer to systems that
identify when errors occur and correct or remove the source
of error such that the system remains error free.

[0159] Inone exemplary embodiment, the solution density
function may include analytically or mathematically deter-
mined components. For example, within the context of the
aforementioned cryptocurrency POW mining, the likelihood
of finding valid solutions within the solution space can be
mathematically derived based on assumptions as to the e.g.,
uniformity of search and a probability density. Other appli-
cations may assume non-uniform searching, varying prob-
ability densities, likelihood as a function of validity/inva-
lidity, and/or any number of other factors. Moreover, it is
further appreciated that solution density functions may
change over time. For example, in the context of the
aforementioned cryptocurrency POW mining the number of
valid solutions which are discovered but which have already
been claimed may affect success rates. Thus, some variants
may attempt to empirically account for successful results as
a historical function of solutions within an epoch (e.g., the
likelihood of finding the first solution in the epoch may be
high, the likelihood of finding the last unique (30,000%)
solution of the epoch may be substantially lower). In some
cases, such information may be useful to determine the
aggressiveness/conservativeness of characterized memory
use (e.g., throttling up or down search speeds based on the
epoch progress).

[0160] In other embodiments, the solution density func-
tion may include empirically determined components. For
example, in the context of the aforementioned cryptocur-
rency POW mining behavior may historically vary as a
function of cryptocurrency pricing. The population of active
miners significantly impacts the rate at which unique solu-
tions are claimed. While human behavior may be difficult to
mathematically model, historical data can provide suffi-
ciently adequate predictions to generate an empirical model
of the solution density function. Additionally, many appli-
cations are notoriously difficult to mathematically model
and/or infeasible to model (e.g., weather, large neural net-
works, large population simulations, etc.); in such applica-
tions, historical data may be used to determine an empirical
model of the solution density function, or otherwise inform
or modify a base solution density function.

[0161] In some embodiments, the solution density func-
tion may incorporate commercial interest or business model
considerations. Cryptocurrency speculation has been very
erratic since its inception; at some high points, proof-of-
work rewards could be substantial, for example, mining
during a cryptocurrency bubble could hypothetically com-
pletely offset the cost of e.g., a research and development
phase for an experimental memory technology. Similarly,
during lulls in prices, the return on cryptocurrency mining
may be worthless or even a net loss (when considering
alternative revenue streams for memory appliances). Con-
sequently, the solution density function may account for
commercial returns or other business considerations. Com-
mon examples of such considerations may include:
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[0162] profit/loss, expense/revenue, appreciation/depre-
ciation, contractual requirements, and/or any number of
other financial incentives and/or penalties.

[0163] At step 606 of the method 600, the characterized
memory is used to generate solutions based on a character-
ized rate based at least in part on the solution density
function. In one exemplary embodiment, a processor appa-
ratus executes a search or hash algorithm (such as, e.g., the
Ethash algorithm described supra) to generate an Ethereum
POW solution from one or more characterized memories. In
one such variant, the memory one or more characterized
memories are second-class memory, such as memory with
BER that is higher than permissible for first class memory
(e.g., 1x10'® BER). In one such variant, second-class
memory must minimally exceed a floor BER threshold (e.g.,
1x107° BER). In some implementations, the error rate can
being caused from defects (for instance, from fabrication
issues, experimental technologies, refurbished memory,
etc.). In other implementations, the error rate is intentionally
induced such as by e.g., overclocking the memory to
increase performance.

[0164] In the previously described implementations, solu-
tion generation is based on memory reads within a search
space. In alternative embodiments, solution generation may
use memory writes. For example, some applications may use
substantial memory bandwidth in a write process, where
subsequent accesses only require low bandwidth reads.
More generally, the various aspects of the present disclosure
may be used in any type of memory access (reads, writes,
fusing, processing-in-memory, etc.).

[0165] In one embodiment, the characterized rate is
selected to achieve a memory performance. For example, in
one such implementation, the characterized rate is selected
to achieve a bit error rate (BER). Other variants may select
a characterized rate to achieve a desired e.g., bandwidth,
correctable/uncorrectable fault ratio, data rate, latency,
throughput, etc. In alternative embodiments, the character-
ized rate is selected based on one or more operational
considerations.

[0166] While the foregoing examples are presented in the
context of a characterized rate, any operational parameter or
condition may be substituted with equivalent success. Com-
mon conditions and/or operational parameters include with-
out limitation: refresh rate, clock rate, cycle time, voltage,
temperature, humidity, and/or any other factor that can be
adjusted for memory operation. For example, memory
searching may be use a characterized voltage to achieve a
specific power consumption. In other examples, the memory
may be operated at specific extreme temperatures (e.g., heat,
cold, and/or humidity). For example, oil drilling applications
may collect copious amounts of data under extreme condi-
tions at the drill site; these data can be analyzed by machine
learning algorithms (under normal conditions) to identify
nearby deposits of oil or other precious materials. Other
common applications include space, and near-space data
collection. Moreover, many so-called cloud or fog based
applications can collect data in a distributed manner (in a
variety of different operating conditions) for subsequent
post-processing or data mining with error-tolerant/probabi-
listic computing.

[0167] In some such implementations, the characterized
parameters may be adjusted dynamically. For example,
memory search speeds can be throttled up or down so as to
tradeoff between bit error rate (BER) and power consump-
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tion. Dynamic adjustment of characterized parameters may
be used to adjust for a variety of different considerations. In
other such implementations, the characterized rate is
selected statically. For example, simple data mining appli-
ances may overclock all memories to the same rate, and
manage differences in BER with error-tolerant computing.
Still other variations of the foregoing may alternate between
dynamic and static parameterizations so as to determine the
most effective operation mode. For example, an apparatus
using experimental memory technologies may dynamically
adjust voltage (holding all other parameters constant) for
one iteration, and then dynamically adjust clock rate (hold-
ing voltage constant) for a subsequent iteration to determine
the ideal combination of voltage and clock rate.

[0168] While device performance was tied to solution
density in the illustrative examples, there may be situations
where there is no relationship (or only a slight relationship).
In one embodiment, the characterized parameter is selected
based on solution considerations. For example, a character-
ized rate may be selected to achieve a particular system
efficiency. In some such variations, different solution con-
siderations may be weighted differently. For example, false
positive solutions may be more or less heavily weighted than
false negatives.

[0169] In a related tangent, there may be applications that
are not dependent upon device performance. In such cases,
the characterized parameter may be selected based on appli-
cation considerations. For example, the application may
have specific processing, memory, or other resource consid-
erations that should be accounted for when using the char-
acterized memory. For example, an application may perform
both uniform searching and non-uniform searching; uniform
searching may allow for more lax refresh rates and higher
clock rates, whereas non-uniform searching may require
stricter refreshing and slower clocking.

[0170] In one embodiment, the characterized rate is
selected based on commercial interests and/or business
considerations. As previously noted, certain commercial
and/or business considerations may warrant more or less
aggressive memory use. For example, cryptocurrency
rewards may be sufficiently lucrative to operate memories at
rates and voltages high enough to be destructive. In other
examples, memory may be very expensive and worth keep-
ing functional as long as possible. Still other variations of
the foregoing may be substituted by artisans of ordinary skill
in the related arts with equivalent success given the contents
of the present disclosure, the foregoing being purely illus-
trative.

[0171] In one exemplary embodiment, a population of
characterized memories are used. In some variants, the
memories can be parallelized (e.g., using different nonces,
salts, hashes, or other forms of seeding). In some cases the
seeding may be randomized; in other cases, seeding may be
coordinated. In other variants, the memories may be
assigned to different portions of an application (e.g., differ-
ent search spaces). In still other embodiments, multiple
memories perform a common search and use a majority
“vote” to provide outputs.

[0172] In still other variants, the memories may be
“striped” (as in a RAID type configuration). In some striping
variants, the memories may include various portions of data,
redundancy information (parity), correction information
(e.g., hamming codes, CRC) and/or some combination
thereof.
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[0173] In some cases, different devices within a popula-
tion of devices may be individually configured to run with
different operational parameters and/or desired perfor-
mances. For example, in some cases it may be desirable to
run some devices at very high speeds and other devices at
lower BER. For example, a diverse population of devices
may excel in different aspects of an application; e.g., uni-
form searching over a large search area may be done with
many devices at high speed (e.g., redundancy of memory
searches), whereas non-uniform searching of a sub-sector
may be performed with a single device at lower BER (which
can be slower but must be accurate).

[0174] When a solution is found in step 606, some
embodiments may directly provide without further check-
ing. In other embodiments, solutions should be checked
before use (steps 608 of the method 600). In some variants,
an additional monitoring and analysis process 700 is per-
formed if the solution fails the checking procedure (de-
scribed in greater detail below).

[0175] In one exemplary embodiment, solutions from
multiple searching apparatuses can be checked with the
same checking apparatus, thereby providing a more distrib-
uted and efficient approach. In other embodiments, a search-
ing apparatus checks its own solutions. In one variant,
checking a solution takes much less time than finding the
solution; i.e., the application is asymmetric.

[0176] In the present context, the term “valid” and/or
“validation” refers to a solution which satisfies a require-
ment external to the memory device e.g., a validity check of
the application. For instance, a valid Ethash result is a
header/nonce combination for a directed acyclic graph
(DAG) that exceeds a predetermined target threshold. As
used herein, the term “verify” and/or “verification” refers to
a value that is checked to be true or accurate internal to the
memory (e.g., neither a soft or hard error). While validity
checks and verification checks are usually synonymous, not
all applications treat validity and verification identically.

[0177] In one exemplary embodiment, a validation appa-
ratus checks that the solution is valid for external use. In one
such implementation, the validation apparatus includes a
first-class memory, such as memory with general compute
BER (e.g., 1x10*® BER or better). In some implementations,
the validation process includes checking whether the header/
nonce solution is unique and verifying that the DAG tran-
sitions result in digested mix that exceeds a target threshold.
If the identified POW solution is valid, it is published/
broadcasted to the network to be validated by the peer nodes
of the network. Conversely, if the header/nonce solution is
invalid (for either lack of uniqueness or incorrect DAG
transitions) then the solution is ignored.

[0178] In some embodiments, a verification apparatus
verifies that the identified solution is an accurate memory
access. For example, if the solution was identified at a first
clock rate characterized with a first BER (e.g., 1x107°), then
the verification apparatus may re-read the memory locations
at a lower speed characterized by a more accurate BER (e.g.,
1x107'®). In some cases, re-reading the same memory
location may be counterproductive because the original read
may have refreshed the memory location (e.g., reading a
DRAM location results in re-charging (or discharging) the
capacitive cell); thus in some cases, the re-read may be
performed at the lower clock rate on a memory with mir-
rored data. If the identified solution is verified, then it can be
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used. Conversely, if the solution is not verified then the
identified solution may either be ignored or used in its
corrected form.

[0179] In some embodiments, a checking apparatus may
ensure that the returned result appears to be “sane.” Sanity
checking refers to checks which do not validate or verify, but
only filter values that are clearly incorrect based on some
predetermined expectation. Common examples of sanity
checks include checking e.g., that a value is within a range
of acceptable values, that the value complies with accepted
formats, that the value does not significantly deviate from
historic values, that the value does not deviate from expected
statistical behavior, and/or any number of other criteria. For
example, certain types of machine learning and/or artificial
intelligence applications may include limitations on data
ranges or results (e.g., an oil drill cannot be drilling beyond
a maximum or minimum value, certain DNA sequences do
not generate proteins, etc.)

[0180] Moreover, while the foregoing discussions are pre-
sented in the context of checking a solution using e.g., a
validation memory, other forms of checking may be based
on computation and/or external information. More gener-
ally, any technique for checking that the solution is accept-
able for use may be substituted with equivalent success.
Common examples of checking may include e.g., error
checking (CRC, hamming, parity), format checking, authen-
tication, authorization, error correction, and/or reformatting.

[0181] Per step 610, the solution can be used within the
application.
[0182] In one exemplary embodiment, the validation

apparatus transmits or broadcasts the validated solution to a
plurality of peers in an Ethereum network for validation by
at least some of the peer miners. Each data subset (e.g.,
transaction block) is stored on nodes of the system or nodes
that are in communication therewith. Once a peer miner in
the network puts forth processing effort to validate the block,
it circulates the block for the transaction to other nodes for
consensus. When a consensus is reached (e.g., that the block
is valid), the block is appended to the database (e.g., a
distributed ledger system such as blockchain). For example,
the valid block can be appended to the blockchain in a time
stamp order. In the context of Ethereum, once the block has
been validated and added to the blockchain, the submitter
can receive compensation for the work. For example, the
submitter can receive a digital redeemable token in
exchange for integration of the valid block as part of the
blockchain. The digital token would be virtual currency
(e.g., a digital coin, such as Ether, etc.). However, with
respect to other contemplated applications, other types of
compensation can be received, such as a fiat currency, a
coupon, an exchanged service, etc.

[0183] The present disclosure recognizes that blockchain
“blocks” can take on a broad spectrum of information, such
as data relating to financial transactions, non-monetary
transactions, and/or any other type of data record. In some
cases, blocks may include referential information e.g., point-
ers, etc. For example, pointers could include human readable
pointers, file names, file handles, uniform resource locator
(URLSs), uniform resource identifier (URIs), or other types of
text-based addresses. In some implementations, the pointers
may be document object identifiers (DOIs), which point to
documents, or pointers indicating permanent references that
index to supporting evidence, documents, etc. For example,
the pointers may reference an indexing system, which could
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include the pointer address indicative of the location (e.g.,
specific network locations, virtual/cloud-based storage loca-
tions) for such documents. In other implementations, the
blocks can include profile data, such that profiles can be
generated and added to the database with the validated
transaction block. Additionally, in some implementations,
the data included in the transaction block can be encrypted,
particularly in scenarios where the data is highly sensitive or
private, such as with medical records, etc.

[0184] In some embodiments, the solution may be pro-
vided to a peer entity for use within an application. The peer
entity may be trusted or untrusted. In other embodiments,
the solution may be provided to a centralized entity (e.g., a
cloud server), distributed among a number of entities (e.g.,
a fog based network) or otherwise used within a client side
application. Still other network topologies may be substi-
tuted with equivalent success, the foregoing being purely
illustrative.

[0185] As previously noted there are many envisioned
uses for the various principles described herein. For
example, the solutions may be used for e.g., biometric
searches, environmental or natural population characteriza-
tion (e.g., characterizing multipath fading effects for tele-
communications, climate prediction, biological population
simulations, etc.), artificial intelligence and/or machine
learning applications (e.g., audio or visual image recogni-
tion, object recognition, etc.), probabilistic and/or stochastic
pattern recognition, and/or any number of other memory
based simulation and/or modeling.

Methods for Monitoring and Analyzing Characterized
Memory Performance—

[0186] Referring now to FIG. 7, a logical flow diagram of
one generalized method 700 for monitoring and analyzing
characterized memory performance is presented. One syn-
ergistic aspect of characterized memories and solution den-
sity functions is that the device’s remaining usable life
and/or performance margins can be inferred from the fault
density. More directly, existing general compute memories
are required to be nearly “ideal” for practical use, thus errors
necessitate replacement regardless of the memory’s actual
usability. In fact, the unrealistically high performance
requirements for general compute memories leave ample
margin for many modern applications. By monitoring the
performance of a characterized memory during operation,
the gradual decay of hardware performance can be managed
s0 as to maximize usable memory lifetime.

[0187] In one exemplary embodiment, the method 700 is
initiated responsive to the detection of a fault (e.g., from the
aforementioned step of 608 of FIG. 6). In other embodi-
ments, the method 700 may continuously run as a monitor-
ing process. In still other embodiments, the method 700 may
be periodically performed on regular intervals (e.g., once
every minute, hour, day, week, etc.), or triggered by various
events. For example, event triggered monitoring may be
based on e.g., a penalty event (or a frequency of penalty
events). Other common examples of trigger events may
include: a number of faults exceeding a designated thresh-
old, a rate of change of faults exceeding a designated
threshold, a rate of accumulation of faults exceeding a
designated threshold, historic fault accumulation behavior
(for similar memory technologies), user or business consid-
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erations (e.g., triggered by miner queries, automated finan-
cial performance reporting, etc.), and/or any number of other
points of interest.

[0188] At step 702 of the method 700, performance is
compared to the expected solution density function. In other
embodiments, performance is compared to an expected
system efficiency.

[0189] As discussed elsewhere herein, POW algorithms,
like Ethash for example, are memory intensive, and there-
fore memory degradation will occur at a probabilistic rate.
Different kinds of memory have different degradation rates.
Accordingly, in one exemplary embodiment, each of the
memories degradation rates can be monitored or tracked. For
example, the degradation rate may be based on the rate of
accumulating memory errors (which will increase as the
memory drops off in accuracy). Once a memory has too
many failures (for instance, past a certain threshold), the
system can cause the degraded memory to refresh.

[0190] In one exemplary embodiment, a running proof-
of-work (POW) efficiency is compared to the BER that
should result from the current characterized memory oper-
ating at the characterized rate. For example, for a charac-
terized memory having a corrected BER of 1x10~> should
generate Ethereum POW with a system efficiency not below
90% (see FIG. 2C, supra). Thus, when system efficiency
falls below 90%, the characterized memory is performing
outside of the expected solution density.

[0191] More generally, a variety of different metrics can
be used to determine operation that requires remediation.
For example, a reduced data rate may indicate higher
internal bandwidth consumed by error correction. Similarly,
a reduced latency or throughput may indicate longer error
correction intervals and/or lower yields from error correc-
tion. Still other variants may be substituted with equivalent
success by artisans of ordinary skill, given the contents of
the present disclosure.

[0192] Inthe present context, the term “outside” a solution
density function or system efficiency refers to performance
that exceeds the bounds (either minimum or maximum) of
acceptable performance. As a related usage, the term
“inside” a solution density function or system efficiency
refers to solution performance that lies within the bounds of
acceptable performance.

[0193] In some implementations, a margin of tolerance is
implemented. For example, even though POW efficiency for
the characterized memory and characterized rate should be
90%, corrective action may not be undertaken until 85%
(e.g., a 5% margin). While the foregoing examples are
provided in view of a threshold value (e.g., a minimum or
maximum value), other forms of comparison may be used
including e.g., absolute ranges, relative ranges, statistical
analysis, rate of change, and/or any number of other such
analytics commonly used in the quality assurance arts.
[0194] Referring back to FIG. 7, the illustrated embodi-
ment takes no action if the performance is inside the
expected solution density function or system efficiency (for
example, the process can return to the aforementioned step
606 of F1G. 6). However, in other embodiments (not shown),
maintenance or other routine activities may be performed
even where the performance is inside the expected solution
density function or system efficiency. For example, when a
fault is incurred within the solution density function, the
memory may be refreshed and/or one or more entries may be
corrected.
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[0195] When performance is outside the expected solution
density function or system efficiency, then the faults may
additionally be characterized as either “correctable” faults
and/or “‘uncorrectable” faults (step 704). As previously
noted, “correctable” faults can be corrected with e.g., repair
and/or error correcting codes (ECC). However, “uncorrect-
able” faults cannot be corrected due to e.g., exhaustion of
repair resources and/or limitations of ECC capability. Thus,
for example, one technique for determining whether a fault
is a correctable or uncorrectable fault is to write one or more
sectors of the memory with the corresponding DAG section
and read back the contents; if the sector is correctly written
then the faults were correctable. If instead, the sector is
incorrectly written, then the incorrect writes uncorrectable
faults. In other variants, the memory may be removed from
service and tested via traditional memory testing methods
(e.g., reading and writing back a checkerboard pattern, an all
“ones” and all “zeroes”, a pseudorandom generator, etc.).
Other techniques for determining whether a memory fault is
correctable or uncorrectable will be readily appreciated by
those of ordinary skill in the related arts.

[0196] As shown in FIG. 7, when the memory has an
excessive amount of faults and the faults (or a significant
fraction thereof) can be corrected, then the memory can be
refreshed and/or re-characterized (step 706). As previously
noted, refreshing the memory may be performed by re-
writing the memory contents (e.g., the current DAG or a
portion thereof) to the memory. In one exemplary embodi-
ment, the memory contents are copied from a presumed
pristine copy (e.g., such as from the validation memory). In
other embodiments, the memory contents (or a portion
thereof) may be generated from scratch (e.g., such as where
there is no validation stage memory).

[0197] In some variants, the refreshed portion may be
identical to its prior contents. In other variants, the memory
may be written with a different pattern (e.g., to wear-level
memory usage). For example, within the context of an
Ethereum DAG, a refreshed sector of memory may receive
a different portion of the DAG. Juggling the Ethereum DAG
over the entire surface of a characterized memory may
further allow for longer usable life since each cell is proba-
bilistically allocated different values over time.

[0198] Furthermore, the memory may be re-characterized
where some faults are uncorrectable or where performance
can be improved by adjusting other operational parameters
(e.g., clock rate, voltage, etc.). For example, a memory that
only needs to operate at a BER of 1x10~> can be re-
characterized to run at a slower clock rate, higher voltages,
etc. By using less aggressive operational parameters, the
performance of the memory can be improved and/or the
usable life can be extended.

[0199] Moreover, artisans of ordinary skill in the related
arts will readily appreciate that a greater number of hard
errors merely reduces the acceptable margin of soft errors.
As arelated corollary, since the margin of soft errors reduces
as hard errors accumulate, the memory degradation can be
accurately managed throughout the entire duration of its
usable life. In other words, the frequency of memory
refreshing will increase as the memory degrades. When the
cost of refreshing and/or re-characterizing the memory
approaches (or outweighs) the benefits of keeping the
memory in service, then the memory can be removed from
service permanently.
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[0200] For example, assume that a memory is running at
1x107> BER (90% efficiency). Operational parameters for
the memory may be set aggressively until it falls below 85%
efficiency (indicating that the memory’s performance is
slipping down the curve of FIG. 2C). At that point, the
memory may be re-characterized for less aggressive clock
rates and/or voltages (returning to the 90% efficiency).
[0201] At step 708 of the method 700, when the memory
has an excessive amount of faults and the faults (or a
significant portion thereof) are uncorrectable, then the
memory should be replaced.

[0202] While the foregoing discussion is presented within
the context of DRAM memory technologies, artisans of
ordinary skill in the related arts given the contents of the
present disclosure will readily appreciate that other memory
technologies may be substituted with equivalent success.
For example, Flash memory is non-volatile memory that
does not “refresh”, however Flash memory designates a set
of sectors to replace broken cells; the replacement cells can
be “fused” in. The Flash memory usable life ends when all
of the fuses have been consumed. Analogous techniques can
be used within other memory technologies such as FeRAM
and/or 3D memories.

Searching Apparatus—

[0203] FIG. 8 illustrates an exemplary apparatus 800
configured according to the present disclosure. As shown,
the exemplary apparatus 800 includes, inter alia, one or
more search processor apparatus or subsystem 802 and
corresponding non-transitory computer readable medium
804 that stores instructions configured to implement a
search. Additionally the exemplary apparatus 800 may
include, inter alia, one or more validation and/or verification
processor apparatus or subsystem 806 and corresponding
non-transitory computer readable medium 808 that stores
instructions configured to validate and/or verify the results
of the searches.

[0204] In one exemplary embodiment, the exemplary
apparatus 800 includes one or more front end network
interfaces 814 for communication with network entities
(e.g., other miners). In one such variant, the network inter-
face 814 is a wired network interface. In another such
variant, the network interface 814 includes a radio frequency
(RF) device having, inter alia, antenna and one or more RF
tuners.

[0205] The RF antenna(s) are configured to detect and
transmit and receive signals from radio access technologies
(RATSs) in the service area or venue with which the valida-
tion apparatus is associated. For example, LTE (including,
e.g., LTE, LTE-A, LTE-U, LTE-LAA) signals may be used
as the basis of communication between the validation appa-
ratus (806, 808) and the various other devices (e.g., other
miners). The antenna(s) may include multiple spatially
diverse individual elements in e.g., a MIMO- or MISO-type
configuration, such that spatial diversity of the transmitted
and/or received signals can be utilized.

[0206] In one such implementation, the radio interface(s)
include one or more LTE-based radios compliant with 3GPP.
Additional unlicensed, licensed, or quasi-licensed air inter-
faces may also be used within the exemplary apparatus 800,
including e.g., Wi-Fi, non-CBRS band LTE, 5G NR, or
others. Moreover, the LTE radio functionality may be
extended to incipient 3GPP-based 5G NR protocols; e.g., at
maturation of LTE deployment and when 5G NR-enabled
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handsets are fielded, such adaptation being accomplished by
those of ordinary skill given the contents of the present
disclosure.

[0207] As a brief aside, NG-RAN or “NextGen RAN
(Radio Area Network)” is part of the 3GPP “5G” next
generation radio system. 3GPP is currently specifying
Release 15 NG-RAN, its components, and interactions
among the involved nodes including so-called “gNBs” (next
generation Node B’s or eNBs). NG-RAN will provide very
high-bandwidth, very low-latency (e.g., on the order of 1 ms
or less “round trip” time for sending a communication and
receiving a response) wireless communication and effi-
ciently utilize, depending on application, both licensed and
unlicensed spectrum of the type described supra in a wide
variety of deployment scenarios, including indoor “spot”
use, urban “macro” (large cell) coverage, rural coverage, use
in vehicles, and “smart” grids and structures. NG-RAN will
also integrate with 4G/4.5G systems and infrastructure, and
moreover new LTE entities are used (e.g., an “evolved” LTE
eNB or “eL.TE eNB” which supports connectivity to both the
EPC (Evolved Packet Core) and the NR “NGC” (Next
Generation Core).

[0208] As a brief aside, the memory bound techniques
described herein are particularly synergistic in the context of
wireless applications (and other processor and/or power
limited environments). “Processor hard” and “processor
bound” algorithms inherently require abundant processing
cycles (and power). Unfortunately, wireless devices often
time share processing power for communication protocol
stacks and applications. Moreover, most wireless devices
run on battery power, which imposes very strict power
consumption limitations. In contrast, memory hard algo-
rithms can be performed with relatively little computational
complexity and likely less power.

[0209] Incipient wireless technologies have expanded
with each iteration (e.g., 3G, 4G, and 5G) to cover a broader
and broader ecosystem of devices; modern wireless tech-
nologies will span from commodity type modems (e.g., in
Internet-of-Things (IoT)) to high-end modems. Additionally,
many intended use-cases that are under discussion for e.g.,
5G are based on the passive collection of data by many
commodity type modems, often under circumstances that
are noisy, untrusted, prone to malicious attack. Blockchain
algorithms are designed for exactly these untrusted sce-
narios. Consequently, the memory hard blockchain solutions
described herein will enable a variety of incipient and future
wireless applications.

[0210] In an exemplary embodiment, the processors 802
and/or 806 may include one or more of a digital signal
processor, microprocessor, field-programmable gate array,
or plurality of processing components mounted on one or
more substrates. The processor 802 and/or 806 may also
include an internal cache memory, and is in communication
with a memory subsystems 804 and/or 808, which can
include, e.g., SRAM, DRAM, flash and/or SDRAM com-
ponents. The memory subsystems may implement one or
more of DMA type hardware, so as to facilitate data accesses
as is well known in the art.

[0211] In one embodiment, the search memory 810 is
characterized to provide a range of performances over a
range of operating parameters. In some embodiments, the
search memories may be second-class (or even lower class)
memories which suffer from defects (due to fabrication, or
refurbishment). In other embodiments, the search memories



US 2020/0265915 Al

may be first-class memories that are characterized for a
range of operating parameters. In some variants, the search
memories may be overclocked and/or operated at higher
voltages to increase performance.

[0212] Additionally, it is noted that although the exem-
plary apparatus of FIG. 8 shows single unified structure 800
that includes both searching apparatus (802, 804) and vali-
dation/verification apparatus (806, 808), other embodiments
of the present disclosure may further separate such entities
within multiple devices in data communication with each
other.

[0213] Insome embodiments, the validation processor 806
utilizes memory 808 or other storage to temporarily hold a
number of data reports or files to monitor and analyze
performances of the searching apparatus (802, 804). Data
stored may relate for example to performance metrics (e.g.,
error rates, efficiency, etc.) useful to analyze performance,
and in one exemplary embodiment, issue a maintenance
command to various ones of the searching processors 802 to
cause, e.g., a system refresh and/or trigger replacement.
[0214] In one exemplary embodiment, processors (802,
806) may be in data communication with a display (not
shown). For example, a touch screen display can be used to
send and receive user input. Common examples of user input
may include e.g., changes to operational parameters,
replacement notifications, hot-swapping notifications, solu-
tion generation parameters, solution notifications, monitor-
ing and/or other analysis. In such embodiment, the display
may include a touch screen and a touch screen controller.
Other user interfaces can be included, such as a keyboard
and a mouse, which may be coupled via an embedded
controller to a communications hub.

[0215] Insome implementations, the exemplary apparatus
800 can be configured with application-specific agents,
adapters, packagers, decryptor’s/encryptors, or other com-
ponents configured to process the data of the block such that
the data is adapted for presentation or viewing, according to
the specific formats if desired. For example, the validation
apparatus can use a local adapter to convert, if necessary, the
data of the block from its format to a presentation format
(e.g., HTMLS, Flash, etc.) that is consumable by another
miner (or viewable by a human observer).

[0216] Various implementations of the foregoing may be
used in conjunction with the methods and apparatus
described in co-owned and co-pending U.S. patent applica-
tion Ser. No. 16/242,960, filed Jan. 8, 2019, and entitled
“METHODS AND APPARATUS FOR ROUTINE BASED
FOG NETWORKING?”, incorporated supra. As described
therein, multiple devices may be assigned routine rules
and/or routine trigger conditions that establish a fog net-
work. Memory hard applications can be used to generate,
secure, and/or record such transactions via a ledger-based
control plane operation; these variants do not require central
network management. As a result, characterized memory
operation may be used to greatly accelerate and/or reduce
the expense of such systems described therein.

[0217] Still other implementations of the foregoing may
be used in conjunction with the methods and apparatus
described in co-owned and co-pending U.S. patent applica-
tion Ser. No. 16/211,029, filed Dec. 5, 2018, and entitled
“METHODS AND APPARATUS FOR INCENTIVIZING
PARTICIPATION IN FOG NETWORKS?”, incorporated
supra. As described therein, devices of a fog network may
provide for example, computational, storage, and/or network
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resources in exchange for fungible tokens. The user contri-
butions are recorded in e.g., a memory hard blockchain data
structure, thereby enabling users to be compensated for their
contributions of resources to the network at a later time.
Some variants described therein may also use asymmetric
memory hard verification and/or validation of work per-
formed by peer devices. Characterized memory operation
described herein may synergistically be combined therewith.

Alternative Applications for Memory Searching—

[0218] As explained above, validating results from unre-
liable memory for POW-based mining of cryptocurrencies
(e.g., Ethereum) is just one exemplary application contem-
plated by the present disclosure. The various techniques
described hereinafter may be suitable for a range of appli-
cations.

Exemplary Blockchain Operation—

[0219] While the foregoing discussion has been directed to
the use of blockchains within cryptocurrencies, artisans of
ordinary skill in the related arts will readily appreciate, given
this disclosure, that blockchain based data structures may be
useful in any scenario where many untrusted peer devices
trust a common shared ledger of transactions. More directly,
by providing memory hard POW techniques that can be
implemented within a wide variety of characterized memory
devices (e.g., at low cost or no cost), the various techniques
described herein may enable an entirely new ecosystem of
trusted device-to-device transactions. For example, the
blockchain technology described above may be readily used
in any fog-based wireless network (e.g., where many devices
at the edge of the network directly communicate with one
another without the benefit of a centralized network entity)
or other “mesh” type networks.

[0220] In one exemplary embodiment, fog-networking or
the Internet-of-Things (IoT) can be used with the validation/
searching systems described herein. For example, the vali-
dating and searching apparatuses/memories described herein
can include fog-based or cloud-based devices. Trusted local-
ized data transactions can enable communications to devices
in close proximity, enable dense geographical distributions
(e.g., rather than bottlenecking communications through a
central communications hub), and allow for local resource
pooling (sharing memory and processing resources with
blockchain based transactions). Moreover, edge based com-
munication can reduce latency and reliance on network
backhaul bandwidth to achieve better quality of service
(QoS), and/or edge analytics/stream mining. The foregoing
features improve the user-experience directly and can also
indirectly provide redundancy in case of failure.

[0221] For example, rather than downloading a media file
(e.g., a TV show, popular songs, etc.) from a central content
database, a device may be able to obtain the media file
directly from a nearby peer-device that has already down-
loaded the media file. The direct transaction can be
encrypted with asymmetric key encryption, and the entire
transaction can be captured in a blockchain. The blockchain
can later be reviewed by the central content database to
appropriately charge and/or implement digital rights man-
agement (DRM) techniques.

[0222] Artisans of ordinary skill in the related arts given
the contents of the present disclosure will readily appreciate
that the foregoing example is purely illustrative; the various
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techniques described herein may find broad applicability in
any applications for memory hard blockchain data struc-
tures.

Exemplary Social Media Network Operations

[0223] As noted above, the potential applications for
blockchain data structures may be very wide ranging. One
such application is social networking, where the computing
power and/or memory of the apparatus/system of the present
disclosure can be used to store a user’s data in blockchain
repositories that can be trusted, encrypted, and widely
disseminated.

[0224] In one exemplary embodiment, a social media
network based on blockchain data structures could be dis-
seminated and held by many parties in an open ledger type
format in exchange for e.g., cryptocurrency or other com-
pensation. Unlike centralized social networking platforms
that sell user data for profit, the distributed social media
network may be privacy-focused such that a user would be
provided with control over how their data is used, mined,
and/or sold. Moreover, the user may have the ability to
opt-in or opt-out of how data is collected.

[0225] In contrast to advertisement or data selling
schemes, the present disclosure contemplates users earning
and spending cryptocurrency or other financial instruments
(which can be unique to the social media network). In some
variants, the user may be able to earn money for viewing
targeted advertisements, patronizing businesses, and/or
“taste making”. In some variants, the user may be able to
buy and/or sell goods and/or pay for services (regardless of
whether it the transaction is user-to-user, user-to-business,
business-to-business, or business-to-user or charity-based).
Such a social network may utilize memory hard databases
and provide fluid virtualized transactions for e.g., publishers
(e.g., journalists) and content creators.

[0226] Moreover, in some embodiments, a digital cur-
rency mined using the systems of the present disclosure
could be used to run/financed the social media network, as
well as be used for transactions made through the social
media network. Such a cryptocurrency could even be created
specifically for, and unique to, the social media network.
[0227] Artisans of ordinary skill in the related arts given
the contents of the present disclosure will readily appreciate
that the foregoing example is purely illustrative; the various
techniques described herein may find broad applicability in
any applications for de-centralized user controlled social
networking.

Exemplary Probabilistic Computing or Machine Learning
Operation—

[0228] Artisans of ordinary skill in the related arts will
readily appreciate that memory searches in data structures
may be useful in any scenario which is error-tolerant, or
otherwise accounts for errors. As more and more data that is
gathered to further automate tasks, much of this data may
include noise. Error-tolerant techniques are commonly used
in probabilistic computing or machine learning applications.
More directly, probabilistic computing or machine learning
expects, and is designed to tolerate, noisy data.

[0229] Consider an exemplary scenario of a machine
learning traffic light that dynamically adjusts traffic flow
based on a variety of use considerations (e.g., the flow of
cars, bicycles and pedestrians, the time of day, the day of the
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week, etc.). Under such a scenario, the traffic light may have
an associated solution density function that maximizes effi-
ciency (e.g., wait time) as a function of usage (e.g., number
of cars, bicycles, and/or pedestrians). The machine learning
traffic light can collect data from multiple sensors relating to
the aforementioned considerations (for example, crosswalk
use, pressure plate sensors, etc.) Due to the inexpensive
nature of sensors as well as errant human behavior, data
capture is also likely to capture noise as well (e.g., incor-
rectly identifying bicycles as cars, or pedestrians as bicycles,
etc.)

[0230] During operation, the machine learning traffic light
can infer patterns of use and dynamically adjust for differ-
ences in data and/or noise associated with cars, bicyclists
and pedestrians collected over long periods of time. Histori-
cal patterns may be used to estimate a certain number of
bicyclists at a particular intersection at a moment (e.g., a
given day and at a given time) within probabilistic ranges.
Additionally, however, errant or noisy data can be identified
and ignored or otherwise adjusted. For example, when 500
bicyclists are expected to pass through a particular intersec-
tion on an afternoon and roughly that number are measured
by a first detector. A second detector that reports 7000
(during the same interval) can be flagged as being inaccu-
rate. More generally, since traffic use is optimized with a
solution density function, data that deviates significantly
from the expected solution density function can be flagged
and ignored/remedied.

[0231] Artisans of ordinary skill in the related arts given
the contents of the present disclosure will readily appreciate
that the foregoing example is purely illustrative; the various
techniques described herein may find broad applicability in
any applications for probabilistic and/or machine learning
computations.

Other Exemplary Uses for Invalid Solutions—

[0232] In the prior discussions, valid POW solutions were
broadcasted to the network and invalid solutions were
ignored. As noted above, invalid solutions would be con-
strued by untrusting peer miners as e.g., a failed malicious
attempt. However, in a community of miners that trust one
another, invalid POW solutions may be used in proving that
actual work was being done (e.g., mining was being per-
formed) even though no valid solutions were found. More
directly, “near misses” may still have significantly less value
than a valid solution, but they may have some value more
than nothing. More directly, a “near miss™ solution is still
evidence of real work that was done; however, because it
cannot be validated by an external party, it is not fungible
outside of the trusted context.

[0233] Consider the exemplary scenario where Company
A hires Company B for X duration (e.g., an epoch) to mine
for solutions, and the expected outcome for that task is that
Y valid solutions (e.g., 20) should be found in that X
duration, within a certain predefined space of memory. As
previously noted, mining is a probabilistic process and it is
possible that Company B only finds half of the valid
solutions that were contracted for. Under such conditions,
Company A might assume Company B only did half of the
contracted work or worked for half of the contracted time,
unless Company B can prove otherwise.

[0234] One way to prove that actual work was performed
is for Company B to provide Company A with the “near
misses”. A randomly generated string of random numbers
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and letters (representative of the hash function) cannot be
verified and would be easily debunked, however near misses
can be verified (even where they cannot be validated).
Additionally, the density function of a “near miss” can be
used to determine how much work was actually done and the
“exchange rate” for near misses to valid solutions. As a brief
aside, artisans of ordinary skill in the probability arts will
recognize that the density function of the solution is low
(i.e., it is difficult to find a solution) when there is a lot of
variance. A “near miss” may have a density function vari-
ance that may be ten times or a hundred times greater than
valid solutions (a near miss is easier to find), but it is more
than zero (i.e., better than no credit).

[0235] In the aforementioned scenario, Company B may
show that they have not breached any contractual obliga-
tions to Company A and acted in good faith. As a result
Company A could provide Company B with contractual
compensation for the POW solutions that were found and
possibly a prorated compensation for the showing of their
good faith work effort during the contracted time. More
directly, the ability to use near misses as a lesser form of
POW reduces the contractual uncertainty of probabilistic
activities, thereby improving the negotiation of terms.
[0236] Artisans of ordinary skill in the related arts given
the contents of the present disclosure will readily appreciate
that the foregoing example is purely illustrative; the various
techniques described herein may find broad applicability in
any applications for evidencing memory hard work and/or
business models that contractually specify memory hard
work obligations.

[0237] It will be recognized that while certain aspects of
the disclosure are described in terms of a specific sequence
of steps of a method, these descriptions are only illustrative
of the broader methods of the disclosure, and may be
modified as required by the particular application. Certain
steps may be rendered unnecessary or optional under certain
circumstances. Additionally, certain steps or functionality
may be added to the disclosed embodiments, or the order of
performance of two or more steps permuted. All such
variations are considered to be encompassed within the
disclosure disclosed and claimed herein.

[0238] While the above detailed description has shown,
described, and pointed out novel features of the disclosure as
applied to various embodiments, it will be understood that
various omissions, substitutions, and changes in the form
and details of the device or process illustrated may be made
by those skilled in the art without departing from the
disclosure. This description is in no way meant to be
limiting, but rather should be taken as illustrative of the
general principles of the disclosure. The scope of the dis-
closure should be determined with reference to the claims.
[0239] It will be further appreciated that while certain
steps and aspects of the various methods and apparatus
described herein may be performed by a human being, the
disclosed aspects and individual methods and apparatus are
generally computerized/computer-implemented. Computer-
ized apparatus and methods are necessary to fully implement
these aspects for any number of reasons including, without
limitation, commercial viability, practicality, and even fea-
sibility (i.e., certain steps/processes simply cannot be per-
formed by a human being in any viable fashion).

What is claimed is:

1. A method for monitoring a performance of character-
ized memories, the method comprising:
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accessing contents of a characterized memory at a char-
acterized rate with a processor, wherein the character-
ized memory has one or more uncorrectable faults;

where the characterized memory is characterized by a

target performance based on the one or more uncor-
rectable faults;

determining an actual performance with the processor;

and

refreshing the contents of the characterized memory with

the processor when the actual performance exceeds the
target performance by a bound amount.

2. The method of claim 1, wherein the refreshing the
contents of the characterized memory comprises re-writing
the contents of the characterized memory with a pristine
copy of the contents.

3. The method of claim 1, wherein the determining the
actual performance is based on monitoring an increase in
uncorrectable faults attributed to probabilistic errors.

4. The method of claim 1, wherein the accessing the
contents of the characterized memory comprises a plurality
of uniformly distributed memory reads over a memory
space.

5. The method of claim 1, wherein the determining the
actual performance comprises calculating a bit error rate
(BER) based on the accessed contents and a pristine copy of
the contents.

6. The method of claim 1, further comprising re-charac-
terizing the characterized memory with a new target perfor-
mance when the actual performance exceeds the target
performance by the bound amount.

7. The method of claim 1, wherein the determining the
actual performance comprises determining a rate of change
of faults.

8. The method of claim 1, wherein the determining the
actual performance comprises determining a total accumu-
lated number of faults.

9. The method of claim 1, wherein the target performance
is based on a solution density function for an error-tolerant
application.

10. A method for estimating a degradation of one or more
characterized memories, the method comprising:

accessing contents of a characterized memory at a char-

acterized rate with a processor;

wherein the characterized memory is characterized by a

target performance;

determining an actual performance with the processor

based on the accessed contents and a pristine copy of
the contents; and

when the actual performance exceeds the target perfor-

mance by a bound amount, triggering a remediation
process.

11. The method of claim 10, wherein the determining the
actual performance with the processor based on the accessed
contents and the pristine copy of the contents further com-
prises identifying uncorrectable faults.

12. The method of claim 11, wherein the remediation
process comprises causing a replacement of the character-
ized memory when the uncorrectable faults exceeds a
threshold amount.

13. The method of claim 11, wherein the remediation
process comprises refreshing the contents of the character-
ized memory when the uncorrectable faults do not exceed a
threshold amount.
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14. The method of claim 10, wherein the determining the
actual performance with the processor based on the accessed
contents and the pristine copy of the contents further com-
prises identifying correctable faults.

15. The method of claim 14, further comprising repairing
the correctable faults.

16. An apparatus configured to remedy faults in one or
more characterized memories, the apparatus comprising:

a characterized memory comprising one or more uncor-

rectable faults;

wherein the characterized memory is configured to accu-

mulate one or more correctable faults probabilistically
during use;

a processor configured to access the characterized

memory at a characteristic rate;

controller logic configured to determine a performance

metric based on the one or more uncorrectable faults
and the one or more correctable faults;

wherein the controller logic is configured to refresh the

characterized memory when a number of correctable
faults exceed a threshold; and
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wherein the controller logic is configured to flag the
characterized memory for replacement when a number
of uncorrectable faults exceed a threshold.

17. The apparatus of claim 16, wherein the one or more
uncorrectable faults comprise probabilistic errors and hard-
ware failures that cannot be repaired or exceed a limitation
of error correcting capability.

18. The apparatus of claim 16, wherein the controller
logic is further configured to fuse replacement cells to repair
hardware failures.

19. The apparatus of claim 16, wherein the controller
logic is further configured to correct errors with an error
correcting code.

20. The apparatus of claim 16, further comprising a
pristine memory; and

wherein the controller logic is configured to refresh the
characterized memory with the pristine memory.

#* #* #* #* #*



