US 20200264883A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2020/0264883 A1

Lichtenau et al. 43) Pub. Date: Aug. 20, 2020
(54) LOAD/STORE BYTES REVERSED (52) US. CL
ELEMENTS INSTRUCTIONS CPC GOG6F 9/30185 (2013.01); GOGF 9/30018
(2013.01)
(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION, 57 ABSTRACT
Armonk, NY (US) A single architected instruction to perform a data reversal
(72) Inventors: Cedric Lichtenau, Stuttgart (DE); operation is executed. The executing includes obtaining
" Jonathan D. Bra (ibury P oughke;:p sie input data and a modifier control of the instruction. The
NY (US); R;lzvan Petel,' Figuli ’ modifier control has one value of a plurality of values
Remechi n;% en (DE); Gregory ’ defined for the instruction and indicates an element size. The
Miaskovsky Ariei (IL) data reversal operation is performed on the input data. The
’ performing includes placing, in a selected location, an
lement of the input data, the element having the element
21) Appl. No.: 16/279,263 N P : 5
(1) Appl. No ’ size indicated by the modifier control; reversing an order of
(22) Filed: Feb. 19. 2019 the input data in the element; and repeating the placing and
) T the reversing, based on the input data having one or more
o . . other elements to be processed. The output of the performing
Publication Classification includes one or more elements of data that include output
(51) Int. CL data in a reversed order from the input data of the corre-
GOG6F 9/30 (2006.01) sponding one or more elements.
200 o CENTRAL ELECTRONICS COMPLEX (CEC)
reemmm————————————————————m——————m—m————————— =
10 | MEMORY |
DEVICE | |
240 1o 1 202~ LOGICAL 204~ CPUD |
— \ CONTROLY | PARTITIONS |
UNIT | - LOAD/STORE |
LOGICAL 260
o 7| 230 \1’\ o TCETY REVERSED \{r/
| |
240 1o
— I | sussy 220~Horss t
e e e O I |
| 2 |
110
LOAD/STORE
DEVICE 1o ‘(}, HYPERVISOR REVERSED '\%/260
240 aoonrroL | | LOCICAL 210 |
— ~ ONIT | 208~ PARTITION2 = |
230 | -APP. C |
o e | 220~+0/s2 lech 222 204 CPU2 !
DEVICE | |
240 | . »| LOADISTORE [| o6n
— | PROCESSOR REVERSED |
| LOGICAL FIRMIARE |
240 250 208~ PARTITION3 212 l
DATA STORAGE ! CPUn I
-APPA E
252 e | 220~{ois3] =- 222 LOADISTORE |
APP.F H 260
i |1
| |
COMPUTERREADABLE} b - - e -
PROGRAM
INSTRUCTIONS
254

N ————

Patent Application Publication Aug. 20, 2020 Sheet 1 of 13 US 2020/0264883 A1

100
132 1%4 106
PROCESSOR MEMORY INPUT / OUTPUT
138
FIG. 1A
102
PROCESSOR)
INSTRUCTION FETCH |~120
+ —136
LOAD/STORE
INSTRUCTION DECODE |45 REVERSED
OPERAND FETCH
‘ —124
—#= INSTRUCTION EXECUTE

—130

& ,—126
MEMORY ACCESS jat———

WRITE BACK jeg————

FIG. 1B

US 2020/0264883 Al

Aug. 20, 2020 Sheet 2 of 13

Patent Application Publication

d3SH3Ad
J40.18/av01

UNdo

1

d3sy3anad
Jd01S/avo

¢ NdO

~—~10¢

1

UER-EEL
J401S/av01

I NdO

~—~10¢

1

d3sy3andd
JHOLS/AVO

0NdO

™ SNOILONYLSNI

NV4O0dd
318vav3d 43LNdNOD
SAVYO0Yd [
¢S¢e

(030) X31dNOD SOINOYLOT T3 TVYINTD

| LoRroee 30IA30
JOVHOLS VLY
— ENOILILYYd | ~goz
¢he WOI901 05¢ ore
FeVMANIS ~
40SS300¥d . p
a°aav] |
30IA3Q
NNN.A g)omm N o
[0 ddV | || oz |
~
o7z Cowad - (~s0z | oo [T
HOSIAYAAAH 5_\4 on o
__ of
_
a°dav] ¢ |
<
22T I,m\o 1510 H~02z N3LSASENS m—
A [V ddV | ol “ ove
30IA3Q
INOILILNY] [~g0zZ)} W e
WOI901 " m_mm P I
SNOILILYYd | | 1081NOD —
W0I9071 70z “ o | mw_w/mo
AHONIN ~ ol
|||||||||||||||||||||||||||||||||||||| -
™00z

US 2020/0264883 Al

Aug. 20, 2020 Sheet 3 of 13

Patent Application Publication

Sblvr e la o] 6|8 | 2] 9] 6|+ z |1
ve 9ld
azoe vie Zle 0lE 80€ 90¢ t0€ BZ0E
))) |)
300040 | axd | W ‘q 9 | % | ‘A | 3002d0
L HaIA
00€

| ANVH3dO

(z ANVH3dO)
INILNOD AHOWIW)

US 2020/0264883 Al

Aug. 20, 2020 Sheet 4 of 13

Patent Application Publication

\
L | 0 L=
€ | ¢ =N
/ 9 €=
@3SH3IATY SINFNTTI AVOT HOLOIA - HITA
| ANVY3dO
(Z ANVY3dO)
Sblwb el | |oL]| 6 Llols | v | ez INILNOD AMOWAN
J
Vv 9Ol
azov viv 2Ly 0Ly g0y 90F vO¥ BZ0v
)) !)) 1)
300040 | axy | "W ‘q 9 | % | 'A | 300040
L I
00¥

US 2020/0264883 Al

Aug. 20, 2020 Sheet 5 of 13

Patent Application Publication

e L=
825 m N
925" ¢=N
¥25-+" LB €=
226+ I | M4 E 7=
SININTTI GISHIATY 3LAG FHOLS HOLIFA - HALSA
2 ANVY3dO
ozeam S e ool s s]9]|s|v]e]z]]o _\oz<mmam~\

VS 9Ol
azos v1S 2Z1S 0LS 80 90S +0S BZ0S
)) !)))))
300040 | axy | "W ‘a 9 | &% | 'A | 300240
. HgLSA
005

US 2020/0264883 Al

Aug. 20, 2020 Sheet 6 of 13

Patent Application Publication

memm>mm w._.zm_zm_;_m J40LS JOLO3A - 93 LSA

L | 0
o 4
L] 9
Sblwb el | |oL] 6 L9l s | v | e |z
Y9 Ol
azo9 v19 219 019 809 909 09 BZ09
)))) |)
300040 |axd | W ‘q 9 | % | ‘A | 300240
L H3LSA
009

¢ ANVH3dO

| ANVH3dO

J

Patent Application Publication

Aug. 20, 2020 Sheet 7 of 13

US 2020/0264883 Al

702
INSTRUCTION: T ext 700
H (
704
ISU Vv
ISSUE |~ 706
Q 708
7?0 el_endian
720
CACHE EXEC V S
< '
722
LITTLE » PERMUTE ™| BIG EXEC
ENDIAN e «—| ENDIAN
U730

S118 ¥3141IAOW NOILONYLSNI NO
y06~1 (d3SVEVLVQAY3LSIOIY FLNNYId

-
&
g 8 'Ol
S
S VB
5 6 Ol
z
aN3 808~ YH31SIHIY Ol V1vd INYS
e
,m 3
]
M 906 AHOYUVHAIH FHOVO 3HL O1 d3401S SIvlvd S119 Y3140 NOLLOMULSNI
72 008~ NOJ3IsSvYdvlivddLNWdgdd
Q
&
]
)
=1
-

¢NOISH3IANOD
NVIAON3 FT1LLIT

¢NOISHIANOD

ON NVIANT F1LLM

08~ AHOHVYH3IIH FHOVO FHL WOH4 @3avO1 Sl v.ivd

¢06

!

3dId NOILND3X3 OL 3dId NOILND3X3 OL
0067\ @3anssI NOILONYLSNI FHOLS 008 @3nsSI NOILONYLSNI AVOT

Patent Application Publication

Patent Application Publication Aug. 20, 2020 Sheet 9 of 13 US 2020/0264883 A1

EXECUTE AN INSTRUCTION TO PERFORM A DATA REVERSAL OPERATION—~1000
THE INSTRUCTION IS A SINGLE ARCHITECTED INSTRUCTION ~—1002

OBTAIN INPUT DATA ON WHICH THE DATA REVERSAL OPERATION IS TO BE
PERFORMED ~—1004

OBTAIN A MODIFIER CONTROL OF THE INSTRUCTION ~—1006

THE MODIFIER CONTROL HAS ONE VALUE OF A PLURALITY OF VALUES
DEFINED FOR THE INSTRUCTION ~—1008

THE MODIFIER CONTROL INDICATES AN ELEMENT SIZE ~—1010
PERFORM THE DATA REVERSAL OPERATION ON THE INPUT DATA ~—1012
PLACE, IN A SELECTED LOCATION, AN ELEMENT OF THE INPUT DATA,
THE ELEMENT HAVING THE ELEMENT SIZE INDICATED BY THE MODIFIER
CONTROL ~-1014
REVERSE AN ORDER OF THE INPUT DATA IN THE ELEMENT ~—1016

REPEAT THE PLACING AND THE REVERSING, BASED ON THE INPUT DATA
HAVING ONE OR MORE OTHER ELEMENTS TO BE PROCESSED ~-1018

AN OUTPUT OF THE PERFORMING INCLUDES ONE OR MORE ELEMENTS
OF DATA THAT INCLUDE OUTPUT DATA IN A REVERSED ORDER FROM THE
INPUT DATA OF THE CORRESPONDING ONE OR MORE ELEMENTS — 1020

1022

THE DATA REVERSAL OPERATION IS A LOAD DATA REVERSAL OPERATION ANU
THE ELEMENT OF THE INPUT DATA IS OBTAINED FROM A MEMORY LOCATION

THE MEMORY LOCATION IS DETERMINED USING ONE OR MORE FIELDS OF THE
INSTRUCTION, AND THE SELECTED LOCATION IS SPECIFIED USING ONE OR
MORE OTHER FIELDS OF THE INSTRUCTION ~1024

THE MODIFIER CONTROL IS AN INPUT TO THE INSTRUCTION SPECIFYING THE
ELEMENT SIZE OF ONE OR MORE ELEMENTS OF THE INPUT DATA TO BE LOADED
FROM MEMORY TO THE SELECTED LOCATION—~—-1026

FIG. 10A

Patent Application Publication Aug. 20, 2020 Sheet 10 of 13 US 2020/0264883 A1l

THE DATA REVERSAL OPERATION IS A STORE DATA REVERSAL OPERATION, THE
SELECTED LOCATION IN WHICH THE ELEMENT IS PLACED IS A MEMORY LOCATION,
AND THE ELEMENT OF THE INPUT DATA IS OBTAINED FROM ANOTHER SELECTED
LOCATION ~—1030

THE OTHER SELECTED LOCATION IS SPECIFIED USING ONE OR MORE FIELDS OF
THE INSTRUCTION, AND THE MEMORY LOCATION IS DETERMINED USING ONE OR
MORE OTHER FIELDS OF THE INSTRUCTION ~-1032

THE MODIFIER CONTROL IS AN INPUT TO THE INSTRUCTION SPECIFYING THE
ELEMENT SIZE OF ONE OR MORE ELEMENTS OF THE INPUT DATA TO BE STORED
INTO MEMORY ~_1034

THE MODIFIER CONTROL IS AN INPUT TO THE INSTRUCTION, AND THE PLURALITY
OF VALUES INCLUDES A FIRST VALUE INDICATING THE ELEMENT SIZE IS A
HALFWORD, A SECOND VALUE INDICATING THE ELEMENT SIZE IS A WORD, AND A
THIRD VALUE INDICATING THE ELEMENT SIZE IS A DOUBLEWORD ~—1036

THE PLURALITY OF VALUES INCLUDES A FOURTH VALUE INDICATING THE
ELEMENT SIZE IS A QUADWORD ~—1038 1040

THE MODIFIER CONTROL IS INCLUDED IN A MASK FIELD OF THE INSTRUCTION-J

THE INSTRUCTION INCLUDES AT LEAST ONE OPERATION CODE FIELD TO PROVIDE
AN OPERATION CODE INDICATING AN OPERATION TO BE PERFORMED; A
REGISTER FIELD AND A REGISTER EXTENSION FIELD TO BE USED TO SPECIFY A
REGISTER TO BE USED BY THE INSTRUCTION; AN INDEX REGISTER FIELD, A BASE
FIELD AND A DISPLACEMENT FIELD USED TO DETERMINE AN ADDRESS TO BE
USED BY THE INSTRUCTION; AND A MASK FIELD INCLUDING THE MODIFIER
CONTROL—~—1042

FIG. 10B

Patent Application Publication Aug. 20, 2020 Sheet 11 of 13 US 2020/0264883 A1l

10
1 e2 ’ g 1§
NATIVE CPU MEMORY
20—1{REGISTERS 3 EM&L)%TEOR INPUT / OUTPUT

ZZJ 18

FIG. 11A
/-14
jz MEMORY
| INSTRUGTION] i N
INSTRUCTION
— <l GUEST
1 FRI’E(-)I-SHIIII\IEG | INSTRUCTIONS
| |
| Y | 326
| [INSTRUCTION] !
34—/"\| TRANSLATION —I——l INSTNRAJé\ﬁONS
| __ROUTINE |
| + |
| |
EMULATION
40—~ CONTROL | |
. |_ROUTINE |
L _

FIG. 11B

Patent Application Publication Aug. 20, 2020 Sheet 12 of 13 US 2020/0264883 A1l

50

52
I

o) Hi
548
/
R A

54N

FIG. 12

54C

54A

1 -

< ¢l 9l4

o 09
& /
m ~19 29 SERMYOS PUE SeMpEH
S 89 QIEMYOS 9 !

S JENEN 99 c9 ! SJonieg 19

7 oEmyog uogeoyddy . ! ~ SIONOG cg OMOAMSN)

= aseqeleq yomaN DUMOMEN ogeipc opeig ol OSIY sewenuep

: @ < m=lll /-
s — /

= GL Vi~ e/ Z/ L/ uonezIenuiA

g ﬂJcm__o suogeaiddy @_@émz mm.m/‘_em m@%m

= [EnuA EIA [ENpIA [ENMIA [ENMIA

: = =0]

S

=3 _ C
ama GQ ¥ Z8 18 Juswebeuey
E ! { { {

8 €8
{
jusuwiyn4 pue swabeuepy [0 J3SN Buioud pue Buioisinoig
Buuueld yv1s R ERIVEN Buuslspy 50IN0S9Y 06

w w w — ~
96 G6 6 €6 6 16

=

8=

b /
5 SPEOPIOM
[~™

=

= Buisse001g Aonjeq Juswabeueyy

g pasianay co_w%%wwoi bussaoold / /) o,%wmmmwm mmw\vo&_._ cwowmmmmz

= 210}G/pe0T] . L / //sonfeuy ejeq A usudoprag pue 6ul

< IeM0S

=

=

=

[~™

US 2020/0264883 Al

LOAD/STORE BYTES REVERSED
ELEMENTS INSTRUCTIONS

BACKGROUND

[0001] One or more aspects relate, in general, to facilitat-
ing processing within a computing environment, and in
particular, to facilitating processing associated with loading
and storing data.

[0002] Data may be transmitted or stored in memory in
various data formats, including in a little-endian format or a
big-endian format. In the little-endian format, the least
significant byte of an element or operand is first (e.g., lowest
address of the element byte or operand byte) and the most
significant byte is last (e.g., highest address of the element
byte or operand byte). However, in the big-endian format,
the most significant byte is first, and the least significant byte
is last.

[0003] Computing environments are defined to use a par-
ticular format, such as little endian or big endian. For
instance, the x86 computing architecture is defined to use the
little-endian format, and thez/ Architecture® hardware archi-
tecture, offered by International Business Machines Corpo-
ration, Armonk, N.Y., is defined to use the big-endian
format. Therefore, if a system based on the z/Architecture
hardware architecture is to use data from a system that uses
the little-endian format, the data is to be converted to the
big-endian format. The converted data is processed and then
converted back to its original format. This is expensive in
terms of time and performance overhead.

[0004] To perform the conversion, in one example, a
permute instruction may be placed after each load instruc-
tion or before each store instruction to change the data
format of the loaded or stored data, adding overhead for the
load and store operations. In another example, source code
may be rewritten to provide the desired format.

SUMMARY

[0005] Shortcomings of the prior art are overcome, and
additional advantages are provided through the provision of
a computer program product for facilitating processing
within a computing environment. The computer program
product includes a computer readable storage medium read-
able by a processing circuit and storing instructions for
performing a method. The method includes executing an
instruction to perform a data reversal operation. The instruc-
tion is a single architected instruction. The executing
includes obtaining input data on which the data reversal
operation is to be performed and obtaining a modifier
control of the instruction. The modifier control has one value
of a plurality of values defined for the instruction and
indicates an element size. The data reversal operation is
performed on the input data. The performing includes plac-
ing, in a selected location, an element of the input data, the
element having the element size indicated by the modifier
control; reversing an order of the input data in the element;
and repeating the placing and the reversing, based on the
input data having one or more other elements to be pro-
cessed. An output of the performing includes one or more
elements of data that include output data in a reversed order
from the input data of the corresponding one or more
elements.

[0006] By using a single architected instruction to place
the data and permute the data, instead of separate instruc-

Aug. 20, 2020

tions to perform the placing and permuting, execution time
is decreased, and performance is improved. Further, by
using a single architected instruction having a selectable
element size, processing within the computing environment
is facilitated. The number of instructions to be defined and
implemented is reduced, as well as complexity of the
architecture. Memory is also saved.

[0007] In one embodiment, the data reversal operation is
a load data reversal operation and the element of the input
data is obtained from a memory location. The memory
location is determined, for instance, using one or more fields
of'the instruction, and the selected location is specified using
one or more other fields of the instruction. As an example,
the modifier control is an input to the instruction specitying
the element size of one or more elements of the input data
to be loaded from memory to the selected location.

[0008] By using a single architected instruction to perform
the load operation and the data reversal operation, instead of
separate instructions to perform the two operations, execu-
tion time is decreased, and performance is improved.
[0009] In another embodiment, the data reversal operation
is a store data reversal operation, the selected location in
which the element is placed is a memory location, and the
element of the input data is obtained from another selected
location. The other selected location is specified, for
instance, using one or more fields of the instruction, and the
memory location is determined using one or more other
fields of the instruction. As an example, the modifier control
is an input to the instruction specifying the element size of
one or more elements of the input data to be stored into
memory.

[0010] By using a single architected instruction to perform
the store operation and the data reversal operation, instead of
separate instructions to perform the two operations, execu-
tion time is decreased, and performance is improved.
[0011] In one example, the modifier control is an input to
the instruction, and the plurality of values includes a first
value indicating the element size is a halfword, a second
value indicating the element size is a word, and a third value
indicating the element size is a doubleword. In a further
example, the plurality of values includes a fourth value
indicating the element size is a quadword. As a particular
example, the modifier control is included in a mask field of
the instruction.

[0012] As an example, the instruction includes at least one
operation code field to provide an operation code indicating
an operation to be performed; a register field and a register
extension field to be used to specify a register to be used by
the instruction; an index register field, a base field and a
displacement field used to determine an address to be used
by the instruction; and a mask field including the modifier
control.

[0013] Computer-implemented methods and systems
relating to one or more aspects are also described and
claimed herein. Further, services relating to one or more
aspects are also described and may be claimed herein.
[0014] Additional features and advantages are realized
through the techniques described herein. Other embodi-
ments and aspects are described in detail herein and are
considered a part of the claimed aspects.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] One or more aspects are particularly pointed out
and distinctly claimed as examples in the claims at the

US 2020/0264883 Al

conclusion of the specification. The foregoing and objects,
features, and advantages of one or more aspects are apparent
from the following detailed description taken in conjunction
with the accompanying drawings in which:

[0016] FIG. 1A depicts one example of a computing
environment to incorporate and use one or more aspects of
the present invention;

[0017] FIG. 1B depicts further details of a processor of
FIG. 1A, in accordance with one or more aspects of the
present invention;

[0018] FIG. 2 depicts another example of a computing
environment to incorporate and use one or more aspects of
the present invention;

[0019] FIG. 3A depicts one example of a Vector Load Byte
Reversed Elements instruction, in accordance with an aspect
of the present invention;

[0020] FIG. 3B depicts examples of resulting byte posi-
tions based on executing the Vector Load Byte Reversed
Elements instruction, in accordance with an aspect of the
present invention;

[0021] FIG. 4A depicts one example of a Vector Load
Elements Reversed instruction, in accordance with an aspect
of the present invention;

[0022] FIG. 4B depicts examples of resulting byte posi-
tions based on executing the Vector Load Elements
Reversed instruction, in accordance with an aspect of the
present invention;

[0023] FIG. 5A depicts one example of a Vector Store
Byte Reversed Elements instruction, in accordance with an
aspect of the present invention;

[0024] FIG. 5B depicts examples of resulting byte posi-
tions based on executing the Vector Store Byte Reversed
Elements instruction, in accordance with an aspect of the
present invention;

[0025] FIG. 6A depicts one example of a Vector Store
Elements Reversed instruction, in accordance with an aspect
of the present invention;

[0026] FIG. 6B depicts examples of resulting byte posi-
tions based on executing the Vector Store Elements
Reversed instruction, in accordance with an aspect of the
present invention;

[0027] FIG. 7 depicts one example of executing an
instruction to place data in a selected location and to reverse
the data, in accordance with an aspect of the present inven-
tion;

[0028] FIG. 8 depicts one example of processing associ-
ated with executing the load instructions of FIGS. 3A and
4A, in accordance with one or more aspects of the present
invention;

[0029] FIG. 9 depicts one example of processing associ-
ated with executing the store instructions of FIGS. 5A and
6A, in accordance with one or more aspects of the present
invention;

[0030] FIGS. 10A-10B depict one example of facilitating
processing within a computing environment, in accordance
with an aspect of the present invention;

[0031] FIG. 11A depicts another example of a computing
environment to incorporate and use one or more aspects of
the present invention;

[0032] FIG. 11B depicts further details of the memory of
FIG. 11A;
[0033] FIG. 12 depicts one embodiment of a cloud com-

puting environment; and

Aug. 20, 2020

[0034] FIG. 13 depicts one example of abstraction model
layers.

DETAILED DESCRIPTION
[0035] In accordance with an aspect of the present inven-

tion, a capability is provided to facilitate processing within
a computing environment. In one example, the capability
includes reversing the order of data during a load or a store
operation. For instance, bytes (or other data units) within a
data element are reversed or data elements themselves are
reversed. This may occur while loading data from memory
or storing data to memory. By reversing the order of data,
certain operations are facilitated, including, but not limited
to, converting endianness. Endianness conversion is used,
for instance, in machine learning or other tasks that use
models to be executed on different machines having differ-
ent endianness. By converting the endianness, processing is
facilitated, and performance is improved.

[0036] As one example, the capability includes architected
instructions to perform, as part of execution of a single
architected instruction, the load/store operation and the data
reversal (referred to herein as load and/or store reversed
processing). For example, a Vector Load Byte Reversed
Elements instruction, a Vector Load Elements Reversed
instruction, a Vector Store Byte Reversed Elements instruc-
tion and a Vector Store Elements Reversed instruction are
provided. Each instruction is part of an instruction set
architecture (ISA). For instance, each instruction is a single
architected machine instruction (e.g., hardware instruction)
at the hardware/software interface. Each instruction is part
of a general-purpose processor instruction set architecture
(ISA), which is dispatched by a program (e.g., a user
program, operating system or other program) on a processot,
such as a general-purpose processor.

[0037] One embodiment of a computing environment to
incorporate and use one or more aspects of the present
invention is described with reference to FIG. 1A. A com-
puting environment 100 includes, for instance, a processor
102 (e.g., a central processing unit), a memory 104 (e.g.,
main memory; a.k.a., system memory, main storage, central
storage, storage), and one or more input/output (I/O) devices
and/or interfaces 106 coupled to one another via, for
example, one or more buses 108 and/or other connections.
[0038] In one example, processor 102 is based on the
7/Architecture hardware architecture offered by Interna-
tional Business Machines Corporation, Armonk, N.Y., and is
part of a server, such as an IBM Z® server, which is also
offered by International Business Machines Corporation and
implements the 7/Architecture hardware architecture. One
embodiment of the z/Architecture hardware architecture is
described in a publication entitled, “z/Architecture Prin-
ciples of Operation,” IBM Publication No. SA22-7832-11,
127 edition, September 2017, which is hereby incorporated
herein by reference in its entirety. The 7/ Architecture hard-
ware architecture, however, is only one example architec-
ture; other architectures and/or other types of computing
environments may include and/or use one or more aspects of
the present invention. In one example, the processor
executes an operating system, such as the zZOS® operating
system, also offered by International Business Machines
Corporation.

[0039] Processor 102 includes a plurality of functional
components used to execute instructions. As depicted in
FIG. 1B, these functional components include, for instance,

US 2020/0264883 Al

an instruction fetch component 120 to fetch instructions to
be executed; an instruction decode unit 122 to decode the
fetched instructions and to obtain operands of the decoded
instructions; an instruction execute component 124 to
execute the decoded instructions; a memory access compo-
nent 126 to access memory for instruction execution, if
necessary; and a write back component 130 to provide the
results of the executed instructions. One or more of these
components may, in accordance with one or more aspects of
the present invention, include at least a portion of or have
access to one or more other components used in load and/or
store reversed processing, as described herein. The one or
more other components include, for instance, a load/store
reversed component 136.

[0040] Another example of a computing environment to
incorporate and use one or more aspects of the present
invention is described with reference to FIG. 2. In one
example, the computing environment is based on the z/Ar-
chitecture hardware architecture; however, the computing
environment may be based on other architectures offered by
International Business Machines Corporation or others.

[0041] Referring to FIG. 2, in one example, the computing
environment includes a central electronics complex (CEC)
200. CEC 200 includes a plurality of components, such as,
for instance, a memory 202 (ak.a., system memory, main
memory, main storage, central storage, storage) coupled to
one or more processors (ak.a., central processing units
(CPUs)) 204, and to an input/output subsystem 206.

[0042] Memory 202 includes, for example, one or more
logical partitions 208, a hypervisor 210 that manages the
logical partitions, and processor firmware 212. One example
of hypervisor 210 is the Processor Resource/System Man-
ager (PR/SM™) hypervisor, offered by International Busi-
ness Machines Corporation, Armonk, N.Y. As used herein,
firmware includes, e.g., the microcode of the processor. It
includes, for instance, the hardware-level instructions and/or
data structures used in implementation of higher level
machine code. In one embodiment, it includes, for instance,
proprietary code that is typically delivered as microcode that
includes trusted software or microcode specific to the under-
lying hardware and controls operating system access to the
system hardware.

[0043] Each logical partition 208 is capable of functioning
as a separate system. That is, each logical partition can be
independently reset, run a guest operating system 220 such
as the z/OS operating system, or another operating system,
and operate with different programs 222. An operating
system or application program running in a logical partition
appears to have access to a full and complete system, but in
reality, only a portion of it is available.

[0044] Memory 202 is coupled to processors (e.g., CPUs)
204, which are physical processor resources that may be
allocated to the logical partitions. For instance, a logical
partition 208 includes one or more logical processors, each
of which represents all or a share of a physical processor
resource 204 that may be dynamically allocated to the
logical partition. In one example, processor 204 includes a
load/store reversed component 260 to perform load and/or
store reversed processing, as described herein.

[0045] Further, memory 202 is coupled to I/O subsystem
206. /O subsystem 206 may be a part of the central
electronics complex or separate therefrom. It directs the flow
of information between main storage 202 and input/output

Aug. 20, 2020

control units 230 and input/output (I/O) devices 240 coupled
to the central electronics complex.

[0046] Many types of 1/O devices may be used. One
particular type is a data storage device 250. Data storage
device 250 may store one or more programs 252, one or
more computer readable program instructions 254, and/or
data, etc. The computer readable program instructions may
be configured to carry out functions of embodiments of
aspects of the invention.

[0047] Computer readable program instructions config-
ured to carry out functions of embodiments of aspects of the
invention may also or alternatively be included in memory
202. Many variations are possible.

[0048] Central electronics complex 200 may include and/
or be coupled to removable/non-removable, volatile/non-
volatile computer system storage media. For example, it
may include and/or be coupled to a non-removable, non-
volatile magnetic media (typically called a “hard drive”), a
magnetic disk drive for reading from and writing to a
removable, non-volatile magnetic disk (e.g., a “floppy
disk™), and/or an optical disk drive for reading from or
writing to a removable, non-volatile optical disk, such as a
CD-ROM, DVD-ROM or other optical media. It should be
understood that other hardware and/or software components
could be used in conjunction with central electronics com-
plex 200. Examples include, but are not limited to: micro-
code, device drivers, redundant processing units, external
disk drive arrays, RAID systems, tape drives, and data
archival storage systems, etc.

[0049] Further, central electronics complex 200 may be
operational with numerous other general-purpose or special
purpose computing system environments or configurations.
Examples of well-known computing systems, environments,
and/or configurations that may be suitable for use with
central electronics complex 200 include, but are not limited
to, personal computer (PC) systems, server computer sys-
tems, thin clients, thick clients, handheld or laptop devices,
multiprocessor systems, microprocessor-based systems, set
top boxes, programmable consumer electronics, network
PCs, minicomputer systems, mainframe computer systems,
and distributed cloud computing environments that include
any of the above systems or devices, and the like.

[0050] Although various examples of computing environ-
ments are described herein, one or more aspects of the
present invention may be used with many types of environ-
ments. The computing environments provided herein are
only examples.

[0051] In accordance with an aspect of the present inven-
tion, a computing environment, such as computing environ-
ment 100 or central electronics complex 200, executes one
or more instructions to perform load and/or store reversed
processing. Examples of these instructions include a Vector
Load Byte Reversed Elements instruction, a Vector Load
Elements Reversed instruction, a Vector Store Byte
Reversed Elements instruction and a Vector Store Elements
Reversed instruction, each of which is described below.
Each instruction has, for instance, a vector register and index
storage operation and extended operation code (opcode)
field format (VRX).

[0052] In one embodiment, these instructions are part of a
vector facility; however, in other embodiments, the instruc-
tions are not part of the vector facility, but instead, may be
part of other facilities. The vector facility provides, for
instance, fixed size vectors ranging from one to sixteen

US 2020/0264883 Al

elements. Each vector includes data which is operated on by
vector operations/instructions, such as the instructions
described herein, in accordance with one or more aspects of
the present invention. In one embodiment, if a vector is
made up of multiple elements, then each element is pro-
cessed in parallel with the other elements. Instruction
completion does not occur until processing of all of the
elements is complete, in one example.

[0053] Vector data appears in storage, for instance, in the
same left-to-right sequence as other data formats. Bits of a
data format that are numbered 0-7 constitute the byte in the
leftmost (lowest-numbered) byte location in storage, bits
8-15 form the byte in the next sequential location, and so on.
In a further example, the vector data may appear in storage
in another sequence, such as right-to-left.

[0054] Further details relating to each of the instructions
are described below with reference to FIGS. 3A-6B. Each
instruction is executed, in one example, using a general-
purpose processor (e.g., processor 102 or 204). In the
description herein, specific locations, specific fields and/or
specific sizes of the fields are indicated (e.g., specific bytes
and/or bits). However, other locations, fields and/or sizes
may be provided. Further, although various fields and reg-
isters are described, one or more aspects of the present
invention may use other, additional or fewer fields or reg-
isters, or other sizes of fields, registers, etc. Many variations
are possible. For instance, implied registers may be used
instead of explicitly specified registers or fields of the
instruction and/or explicitly specified registers or fields may
be used instead of implied registers or fields. Other varia-
tions are also possible. Yet, further, although the setting of
a bit to a particular value, e.g., one or zero, may be specified,
this is only an example. The bit may be set to a different
value, such as the opposite value or to another value, in other
examples. Again, many variations are possible.

[0055] Referring initially to FIG. 3A, a Vector Load Byte
Reversed Elements (VLBR) instruction is described. This
instruction loads elements of data from memory (or other
source location) to another location (e.g., a register or other
location) and reverses the data (e.g., bytes) within each
element being loaded, as part of execution of the instruction.
In one example, a Vector Load Byte Reversed Elements
instruction 300 includes a plurality of operation code (op-
code) fields 302qa, 3025 (e.g., bits 0-7 and 40-47) including
an operation code specifying a vector load byte reversed
elements operation; a vector register field (V) 304 (e.g., bits
8-11) indicating a vector register designated operand; an
index field (X,) 306 (e.g., bits 12-15) indicating a general
register to be used by the instruction; a base field (B,) 308
(e.g., bits 16-19) indicating another general register to be
used by the instruction; a displacement field (D,) 310 (e.g.,
bits 20-31) including a displacement (e.g., a 12-bit unsigned
integer) added to the contents of the general registers
designated by the X, and B, fields to form an address of a
second operand (in memory) of the instruction; a mask field
(M;) 312 (e.g., bits 32-35) used by the instruction; and a
register extension bit (RXB) field 314 (e.g., bits 36-39) used
to extend one or more vector register designated operands
specified by the instruction (e.g., V). Each of the fields
304-314, in one example, is separate and independent from
the opcode field(s). Further, in one embodiment, they are
separate and independent from one another; however, in
other embodiments, more than one field may be combined.

Aug. 20, 2020

[0056] In other embodiments, the addresses of the oper-
ands may be determined or obtained in other ways. The
memory may be accessed using other registers, immediate
fields and/or any other mechanism. Further, in other embodi-
ments, RXB may not be provided and/or used. Other varia-
tions are possible.

[0057] In one example, the register extension bit or RXB
314, includes the most significant bit for the vector register
designated operand (e.g., V, in this example). Bits for
register designations not specified by the instruction are to
be reserved and set to zero.

[0058] In one example, the RXB field includes four bits
(e.g., bits 0-3), and the bits are defined as follows:

[0059] 0—Most significant bit for the first vector register
designation of the instruction.

[0060] 1—Most significant bit for the second vector reg-
ister designation of the instruction, if any.

[0061] 2—Most significant bit for the third vector register
designation of the instruction, if any.

[0062] 3—Most significant bit for the fourth vector reg-
ister designation of the instruction, if any.

[0063] Each bit is set to zero or one by, for instance, the
assembler depending on the register number. For instance,
for registers 0-15, the bit is set to 0; for registers 16-31, the
bit is set to 1, etc. In one embodiment, each RXB bit is an
extension bit for a particular location in an instruction that
includes one or more vector registers. For instance, in one or
more vector instructions, bit 0 of RXB in an extension bit for
location 8-11, which is assigned to e.g., V|; and so forth. In
a further embodiment, the RXB field includes additional
bits, and more than one bit is used as an extension for each
vector or location.

[0064] Inone example, the vector (V) field, along with its
corresponding extension bit specified by RXB, designates a
vector register. In particular, for vector registers, the register
containing the operand is specified using, for instance, a
four-bit field of the register field with the addition of the
register extension bit (RXB) as the most significant bit. For
instance, if the four-bit field is 0110 and the extension bit is
0, then the five bit field 00110 indicates register number 6.
[0065] The Mj; field (e.g., field 312), in one embodiment,
specifies the size of the element to be loaded. If a reserved
value is specified, a specification exception is recognized, in
one example. Example sizes are provided below (other sizes
are possible):

M; Element Size
0 Reserved
1 Halfword
2 Word
3 Doubleword
4 Quadword
5-15 Reserved

[0066] In execution of the Vector L.oad Byte Reversed
Elements instruction, in one example, the second operand
(e.g., 16-byte second operand located using, for instance, the
second operand address generated using the X,, B, and D,
fields) is loaded into the first operand location (e.g., the
vector register specified using the V, and RXB fields). For
each element of the second operand (the size of which
depends on M;), the byte order (or other order) is reversed
as that element is placed into the corresponding first operand

US 2020/0264883 Al

element location. For instance, the leftmost byte of an
element becomes the rightmost byte of that element, the
second byte from the left becomes the second byte from the
right, and so forth.

[0067] Example resulting byte positions from executing
the instruction, based on the element size, are shown in FIG.
3B. As depicted, operand 2 (320) includes data to be loaded
from memory (e.g., 16 bytes of data). If M; is equal to 4
(quadword), then the result in operand 1 is as shown at 322;
if M; is equal to 3 (doubleword), then the result is as shown
at 324; if Mj; is equal to 2 (word), then the result is as shown
at 326; and if M; is equal to 1 (halfword), then the result is
as shown at 328.

[0068] To further explain, assume in one example M;=2,
then the element size is word (e.g., 4 bytes). Thus, in
execution of VLBR, the first element of operand 2 (320) in
memory designated by the second operand address (e.g.,
bytes 0, 1, 2, 3) is placed in the first element of operand 1
(e.g., the vector register designated by V, and RXB) and the
bytes of the element are reversed in operand 1 (e.g., bytes 3,
2, 1, 0); the second element of operand 2 (e.g., bytes 4, 5, 6,
7) is placed in the second element of operand 1 and the bytes
of the element are reversed (e.g., bytes 7, 6, 5, 4); the third
element of operand 2 (e.g., bytes 8, 9, 10, 11) is placed in the
third element of operand 1 and the bytes of the element are
reversed (e.g., bytes 11, 10, 9, 8); and the fourth element of
operand 2 (e.g., bytes 12, 13, 14, and 15) is placed in the
fourth element of operand 1 and the bytes of the element are
reversed (e.g., bytes 15, 14, 13, 12). Similar processing is
performed for the other element sizes, which are selectable
via the modifier control.

[0069] In one example, the condition code resulting from
execution of VLBR remains unchanged, and example pro-
gram exceptions include, for instance: Access (fetch, oper-
and 2); Data with DXC FE, vector instruction; Operation (if
the vector enhancements facility 2 for the z/Architecture
hardware architecture is not installed); Specification; and
Transaction constraint.

[0070] Another instruction to load and reverse data is the
Vector Load Elements Reversed (VLER) instruction, an
example of which is described with reference to FIG. 4A.
This instruction loads elements of data from memory (or
other source location) to another location (e.g., a register or
other location) and reverses the elements being loaded, as
part of execution of the instruction. In one example, a Vector
Load Elements Reversed instruction 400 includes a plurality
of operation code (opcode) fields 402a, 4025 (e.g., bits 0-7
and 40-47) including an operation code specifying a vector
load elements reversed operation; a vector register field (V)
404 (e.g., bits 8-11) indicating a vector register designated
operand; an index field (X,) 406 (e.g., bits 12-15) indicating
a general register to be used by the instruction; a base field
(B,) 408 (e.g., bits 16-19) indicating another general register
to be used by the instruction; a displacement field (D,) 410
(e.g., bits 20-31) including a displacement (e.g., a 12-bit
unsigned integer) added to the contents of the general
registers designated by the X, and B, fields to form an
address of a second operand (in memory) of the instruction;
a mask field (M;) 412 (e.g., bits 32-35) used by the instruc-
tion; and a register extension bit (RXB) field 414 (e.g., bits
36-39) used to extend the vector register designated operand
(V) specified by the instruction, as described above. Each
of the fields 404-414, in one example, is separate and
independent from the opcode field(s). Further, in one

Aug. 20, 2020

embodiment, they are separate and independent from one
another; however, in other embodiments, more than one field
may be combined.

[0071] In other embodiments, the addresses of the oper-
ands may be determined or obtained in other ways. The
memory may be accessed using other registers, immediate
fields and/or any other mechanism. Further, in other embodi-
ments, RXB may not be provided and/or used. Other varia-
tions are possible.

[0072] The M, field, in one embodiment, specifies the size
of one or more elements to be loaded. If a reserved value is
specified, a specification exception is recognized, in one
example. Example sizes are provided below:

M; Element Size
0 Reserved
1 Halfword
2 Word
3 Doubleword
4-15 Reserved

[0073] Other sizes are also possible including, but not
limited to M;_, for quadword.

[0074] Inexecution of the Vector Load Elements Reversed
instruction, in one example, the second operand (e.g.,
16-byte second operand located using, for instance, the
second operand address generated using the X,, B, and D,
fields) is loaded into the first operand location (e.g., the
vector register specified using the V, and RXB fields). The
order of the elements is reversed when loading into the
vector register. For instance, element zero in storage
becomes the rightmost element in the vector register, ele-
ment one in storage becomes the second to last element, and
so forth. The bytes within the elements themselves are not
reversed, in this example.

[0075] Example resulting byte positions from executing
the instruction, based on the element size, are shown in FIG.
4B. As depicted, operand 2 (420) includes data to be loaded
from memory (e.g., 16 bytes of data). If M, is equal to 3
(doubleword), then the result is as shown at 422; if M; is
equal to 2 (word), then the result is as shown at 424; and if
M, is equal to 1 (halfword), then the result is as shown at
426.

[0076] To further explain, assume in one example M;_,,
then the element size is word (e.g., 4 bytes). Thus, in
execution of VLER, the first element of operand 2 (420) in
memory designated by the second operand address (e.g.,
bytes 0, 1, 2, 3) is placed in operand 1 (e.g., the vector
register designated by V, and RXB) in the rightmost element
of operand 1, thus reversing the elements in the output, but
not the bytes within the element; the second element of
operand 2 (e.g., bytes 4, 5, 6, 7) is placed in the second to
last element of operand 1; the third element of operand 2
(e.g., bytes 8, 9, 10, 11) is placed in the third to last element
of'operand 1; and the fourth element of operand 2 (e.g., bytes
12, 13, 14, and 15) is placed in the first element of operand
1. Similar processing is performed for the other element
sizes, which are selectable via the modifier control.

[0077] In one example, the condition code resulting from
execution of VLER remains unchanged, and example pro-
gram exceptions include, for instance: Access (fetch, oper-
and 2); Data with DXC FE, vector instruction; Operation (if

US 2020/0264883 Al

the vector enhancements facility 2 for the z/Architecture
hardware architecture is not installed); Specification; and
Transaction constraint.

[0078] In addition to the load reversed instructions, store
reversed instructions are provided, in accordance with an
aspect of the present invention. For instance, referring to
FIG. 5A, a Vector Store Byte Reversed Elements (VSTBR)
instruction is described. This instruction stores elements of
data into memory (or other location) from another location
(e.g., a register or other location) and reverses the data (e.g.,
bytes) within each element being stored, as part of execution
of the instruction. In one example, a Vector Store Byte
Reversed Elements instruction 500 includes a plurality of
operation code (opcode) fields 502a, 5025 (e.g., bits 0-7 and
40-47) including an operation code specifying a vector store
byte reversed elements operation; a vector register field (V)
504 (e.g., bits 8-11) indicating a vector register designated
operand; an index field (X,) 506 (e.g., bits 12-15) indicating
a general register to be used by the instruction; a base field
(B,) 508 (e.g., bits 16-19) indicating another general register
to be used by the instruction; a displacement field (D,) 510
(e.g., bits 20-31) including a displacement (e.g., a 12-bit
unsigned integer) added to the contents of the general
registers designated by the X, and B, fields to form the
address of a second operand (in memory) of the instruction;
a mask field (M) 512 (e.g., bits 32-35) used by the instruc-
tion; and a register extension bit (RXB) field 514 (e.g., bits
36-39) used to extend the vector register designated operand
(V) specified by the instruction, as described above. Each
of the fields 504-514, in one example, is separate and
independent from the opcode field(s). Further, in one
embodiment, they are separate and independent from one
another; however, in other embodiments, more than one field
may be combined.

[0079] In other embodiments, the addresses of the oper-
ands may be determined or obtained in other ways. The
memory may be accessed using other registers, immediate
fields and/or any other mechanism. Further, in other embodi-
ments, RXB may not be provided and/or used. Other varia-
tions are possible.

[0080] The M, field, in one embodiment, specifies the size
of the element to be stored. If a reserved value is specified,
a specification exception is recognized, in one example.
Example sizes are provided below (other sizes are possible):

M; Element Size
0 Reserved
1 Halfword
2 Word
3 Doubleword
4 Quadword
5-15 Reserved

[0081] In execution of the Vector Store Byte Reversed
Elements instruction, in one example, the first operand (e.g.,
contents of the vector register specified using the V, and
RXB fields) is stored into the second operand in memory
(e.g., 16-byte second operand located using, for instance, the
second operand address generated using the X,, B, and D,
fields). For each element of the first operand, the byte order
(or other order) is reversed as that element is placed into the
corresponding element of the 16-byte storage. For instance,
the leftmost byte of an element becomes the rightmost byte

Aug. 20, 2020

of that element, the second byte from the left becomes the
second byte from the right, and so forth.

[0082] Example resulting byte positions from executing
the instruction, based on the element size, are shown in FIG.
5B. As depicted, operand 1 (520) includes data to be stored
into memory (e.g., 16 bytes of data). If M; is equal to 4
(quadword), then the result in operand 2 is as shown at 522;
if M; is equal to 3 (doubleword), then the result is as shown
at 524; if M; is equal to 2 (word), then the result is as shown
at 526; and if M is equal to 1 (halfword), then the result is
as shown at 528.

[0083] To further explain, assume in one example M,_,,
then the element size is word (e.g., 4 bytes). Thus, in
execution of VSTBR, the first element of operand 1 (520) in,
e.g., the vector register designated by V, and RXB (e.g.,
bytes 0, 1, 2, 3) is placed in the first element of operand 2
(e.g., in memory starting at the second operand address) and
the bytes of the element are reversed in operand 2 (e.g., bytes
3,2, 1, 0); the second element of operand 1 (e.g., bytes 4, 5,
6, 7) is placed in the second element of operand 2 and the
bytes of the element are reversed (e.g., bytes 7, 6, 5, 4); the
third element of operand 1 (e.g., bytes 8, 9, 10, 11) is placed
in the third element of operand 2 and the bytes of the element
are reversed (e.g., bytes 11, 10, 9, 8); and the fourth element
of operand 1 (e.g., bytes 12, 13, 14, and 15) is placed in the
fourth element of operand 2 and the bytes of the element are
reversed (e.g., bytes 15, 14, 13, 12). Similar processing is
performed for the other element sizes, which are selectable
via the modifier control.

[0084] In one example, the condition code resulting from
execution of VSTBR remains unchanged, and example
program exceptions include, for instance: Access (fetch,
operand 2); Data with DXC FE, vector instruction; Opera-
tion (if the vector enhancements facility 2 for the z/Archi-
tecture hardware architecture is not installed); Specification;
and Transaction constraint.

[0085] Another store instruction to reverse data is the
Vector Store Flements Reversed (VSTER) instruction, an
example of which is described with reference to FIG. 6A.
This instruction stores elements of data into memory (or
other location) from another location (e.g., a register or other
location) and reverses the elements being stored, as part of
execution of the instruction. In one example, a Vector Store
Elements Reversed instruction 600 includes a plurality of
operation code (opcode) fields 602a, 6025 (e.g., bits 0-7 and
40-47) including an operation code specifying a vector store
elements reversed operation; a vector register field (V) 604
(e.g., bits 8-11) indicating a vector register designated oper-
and; an index field (X,) 606 (e.g., bits 12-15) indicating a
general register to be used by the instruction; a base field
(B,) 608 (e.g., bits 16-19) indicating another general register
to be used by the instruction; a displacement field (D,) 610
(e.g., bits 20-31) including a displacement (e.g., a 12-bit
unsigned integer) added to the contents of the general
registers designated by the X, and B, fields to form the
address of a second operand (in memory) of the instruction;
a mask field (M;) 612 (e.g., bits 32-35) used by the instruc-
tion; and a register extension bit (RXB) field 614 (e.g., bits
36-39) used to extend the vector register designated operand
(V,) specified by the instruction, as described above. Each
of the fields 604-614, in one example, is separate and
independent from the opcode field(s). Further, in one

US 2020/0264883 Al

embodiment, they are separate and independent from one
another; however, in other embodiments, more than one field
may be combined.

[0086] In other embodiments, the addresses of the oper-
ands may be determined or obtained in other ways. The
memory may be accessed using other registers, immediate
fields and/or any other mechanism. Further, in other embodi-
ments, RXB may not be provided and/or used. Other varia-
tions are possible.

[0087] The M, field, in one embodiment, specifies the size
of the element to be stored. If a reserved value is specified,
a specification exception is recognized, in one example.
Example sizes are provided below:

M; Element Size
0 Reserved
1 Halfword
2 Word
3 Doubleword
4-15 Reserved

[0088] Other sizes are also possible including, but not
limited to M;=4 for quadword.

[0089] Inexecution of the Vector Store Elements Reversed
instruction, in one example, the first operand (e.g., contents
of the vector register specified using the V, and RXB fields)
is stored into the second operand in memory (e.g., 16-byte
second operand located using, for instance, the second
operand address generated using the X,, B, and D, fields).
The order of the elements is reversed when storing into the
storage location. For instance, the rightmost element in the
vector register becomes element zero in storage, the second
to last element becomes element one in storage, and so forth.
The bytes within the elements themselves are not reversed,
in this example.

[0090] Example resulting byte positions from executing
the instruction, based on the element size, are shown in FIG.
6B. As depicted, operand 1 (620) includes data to be stored
into memory (e.g., 16 bytes of data). If M; is equal to 3
(doubleword), then the result is as shown at 622; if M; is
equal to 2 (word), then the result is as shown at 624; and if
M, is equal to 1 (halfword), then the result is as shown at
626.

[0091] To further explain, assume in one example M;=2,
then the element size is word (e.g., 4 bytes). Thus, in
execution of VSTER, the first element of operand 1 (620) in,
e.g., the vector register designated by V, and RXB (e.g.,
bytes 0, 1, 2, 3) is placed in operand 2 (e.g., in memory
located using the second operand address) in the rightmost
element of operand 2, thus reversing the elements in the
output, but not the bytes within the element; the second
element of operand 1 (e.g., bytes 4, 5, 6, 7) is placed in the
second to last element of operand 2; the third element of
operand 1 (e.g., bytes 8, 9, 10, 11) is placed in the third to
last element of operand 2; and the fourth element of operand
1 (e.g., bytes 12,13, 14, and 15) is placed in the first element
of operand 2. Similar processing is performed for the other
element sizes, which are selectable via the modifier control.

[0092] In one example, the condition code resulting from
execution of VSTER remains unchanged, and example
program exceptions include, for instance: Access (fetch,
operand 2); Data with DXC FE, vector instruction; Opera-

Aug. 20, 2020

tion (if the vector enhancements facility 2 for the z/Archi-
tecture hardware architecture is not installed); Specification;
and Transaction constraint.

[0093] Further details relating to execution of the load and
store reversed instructions are described with reference to
FIGS. 7-9. In this example, the instructions are discussed
with reference to converting between the little-endian format
and the big-endian format. However, the instructions
described herein can be used for other purposes.

[0094] Referring initially to FIG. 7, in one embodiment,
an instruction 700, such as a Vector Load Byte Reversed
Elements instruction, a Vector Load Elements Reversed
instruction, a Vector Store Byte Reversed Elements instruc-
tion or a Vector Store Elements Reversed instruction,
includes a plurality of fields, including a modifier control
field 702 (e.g., an M; field, such as M, field 312, 412, 512
or 612) and one or more fields 704 that include instruction
text (Itext). The instruction text includes, for instance, fields
used by the instruction, including, for instance, one or more
opcode fields (e.g., opcode fields 302a, 3025; 402a, 4025;
502a, 5025; or 602a, 6020), a vector register field (e.g., V,
304,V, 404, V, 504, or V, 604), an index field (e.g., X, 306,
X, 406,X, 506, or X, 606), abase field (e.g., B, 308, B, 408,
B, 508, or B, 608), a displacement field (e.g., D, 310, D,
410, D, 510, or D, 610) and/or a register bit extension field
(e.g., RXB 314, RXB 414, RXB 514, or RXB 614). Addi-
tional, fewer and/or other fields may be included in Itext
704. Field 702 may be included, in one example, as part of
the instruction text. Other variations are also possible.
[0095] In another embodiment, the modifier control (e.g.,
M,) is not in an explicit field of the instruction, but instead,
is included in an implied field or register of the instruction.
Further, in another embodiment, the modifier control is not
part of the instruction itself, but in a location (e.g., a register
or memory location) accessible to the instruction, or part of
another instruction (e.g., a prefix instruction) used to modify
the instruction to be executed. Other variations are possible.
[0096] Continuing with FIG. 7, the instruction (e.g.,
instruction 700) is dispatched to an issue queue 706 of an
instruction sequencing unit (ISU) 708 of the processor
where it may wait until, for instance, its operands are
available (e.g., first operand, second operand). When ready,
the instruction is issued to an appropriate functional execu-
tion unit 720 of an execution unit 722 of the processor. As
an example, since the instruction is a vector instruction, it is
issued to a vector unit that performs vector computations.
Other examples are possible.

[0097] Execution unit 720 receives the instruction to
execute, as well as the modifier control 702 (also referred to
as an M; bit or el_endian). Execution unit 720 is defined to
process data in a big-endian format. Therefore, if data is in
a little-endian format or is to be converted back to a
little-endian format, the data is permuted, using, for
instance, a permute component 730 (e.g., a hardware com-
ponent). For instance, if the received instruction indicates
that data is to be permuted (e.g., based on the opcode, such
as opcode 302a, 30256; 402a, 4025; 502a, 5025; or 602a,
6025), permute component 730 is used to permute the data
based on the opcode and modifier control, as described
herein.

[0098] For instance, if the opcode indicates a load
reversed instruction (either load byte reversed elements or
load elements reversed), permute component 730 obtains the
data to be loaded from memory (e.g., data in the little-endian

US 2020/0264883 Al

format from cache 740), as well as the modifier control (e.g.,
el_endian—indicating the element size) and the particular
operation to be performed (e.g., load byte reversed elements
or load elements reversed), and permutes the data, saving the
permuted data (e.g., in big-endian format) to a selected
location, such as a register. This is described further with
reference to FIG. 8.

[0099] In one example, referring to FIG. 8, a load instruc-
tion is issued to an execution unit of the processor (e.g.,
execution unit 722), STEP 800. The execution unit of the
processor begins executing the instruction, and data is
loaded from cache hierarchy 740 (using, e.g., the second
operand address), STEP 802. A determination is made as to
whether little endian conversion is to be performed,
INQUIRY 804. In one example, this is based on the opcode
of the instruction, which indicates whether this is a load and
data reverse instruction. If conversion is to be performed,
then in accordance with an aspect of the present invention,
permute component 730 is used to permute the data based on
the element size and the type of conversion to be performed
(e.g., load byte reversed elements or load elements reversed,
based on the opcode), STEP 806. Thereafter or if little
endian conversion is not to be performed, the data (either
original format or permuted) is saved to a register (e.g., as
specified by V, and RXB), STEP 808. In one example, the
data in memory is in the little-endian format, and the
permuted data stored to the register is in the big-endian
format. This is only one example. In other examples, the data
in memory is in the big-endian format and the permuted data
is in the little-endian format. Other variations are possible.

[0100] Similarly, returning to FIG. 7, if the opcode of the
instruction to be executed indicates a store reversed instruc-
tion (either store byte reversed elements or store elements
reversed), permute component 730 obtains the data (e.g., in
big-endian format) to be stored into memory from a selected
location (e.g., first operand), as well as the modifier control
(e.g., el_endian—indicating the element size) and the par-
ticular operation to be performed (e.g., store byte reversed
elements or store elements reversed), and permutes the data,
saving the permuted data (e.g., in little-endian format) to
memory, such as cache 740. This is described further with
reference to FIG. 9.

[0101] Inone example, referring to FIG. 9, a store instruc-
tion is issued to an execution unit of the processor (e.g.,
execution unit 722), STEP 900. The execution unit of the
processor begins executing the instruction, which includes
determining whether little endian conversion is to be per-
formed, INQUIRY 902. In one example, this is based on the
opcode of the instruction, which indicates whether this is a
store and data reverse instruction. If conversion is to be
performed, then in accordance with an aspect of the present
invention, permute component 730 is used to permute the
data in the register specified by, e.g., V, and RXB of the
instruction, based on the element size and the particular
operation to be performed (e.g., store byte reversed elements
or store elements reversed), STEP 904. Thereafter or if little
endian conversion is not to be performed, the data (either
original format or permuted) is stored to cache hierarchy 740
(using, e.g., the second operand address), STEP 906. In one
example, the data in the register is in the big-endian format,
and the permuted data stored to the cache is in the little-
endian format. This is only one example. In other examples,

Aug. 20, 2020

the data in the register is in the little-endian format and the
permuted data is in the big-endian format. Other variations
are possible.

[0102] Described above are load and store instructions that
can also permute the data while performing the load or the
store operation. By using a single architected instruction to
perform the load or store operation and to permute the data,
processing is facilitated, and performance is enhanced. By
using one instruction to perform the load/store and permute,
instead of separate instructions to perform the load/store and
permute (one instruction to perform the load/store and one
instruction to perform the permute), execution time is
decreased, and performance is enhanced, facilitating pro-
cessing within the computer itself, as well as tasks using
those operations.

[0103] Although various embodiments are shown and
described, other variations are possible. For instance, an
instruction may be used that reverses the elements, as well
as the bytes within the reversed elements. Other variations
are possible. Further, although in one example, bytes within
the elements are being reversed, in other examples, data
units of other sizes may be reversed. Yet further, units other
than elements may be reversed. Many variations are pos-
sible.

[0104] One or more aspects of the present invention are
inextricably tied to computer technology and facilitate pro-
cessing within a computer, improving performance thereof.
Processing is facilitated by, for instance, using the load or
store reverse instructions to switch endianness. This facili-
tates processing when a processor is operating in a different
endian format. By facilitating processing, performance is
improved, as well as tasks or operations that are to use
various endian formats.

[0105] The instructions may be used, for instance, in
machine learning, in which a model developed for one
endian format is to be used on machines with another endian
format. This provides compatibility among processors of
different endianness, improving processing and perfor-
mance. Many possibilities exist.

[0106] Further details of one embodiment of facilitating
processing within a computing environment, as it relates to
one or more aspects of the present invention, are described
with reference to FIGS. 10A-10B.

[0107] Referring to FIG. 10A, in one embodiment, an
instruction to perform a data reversal operation is executed
(1000) by, e.g., hardware of a processor (e.g., processor 102
or 204). The hardware may be within the processor or
coupled thereto for purposes of receiving the instruction
from the processor, which, e.g., obtains, decodes and sets-up
the instruction to execute on the hardware. Other variations
are possible. The instruction is, for instance, a single archi-
tected instruction (1002).

[0108] The executing includes obtaining input data on
which the data reversal operation is to be performed (1004)
and obtaining a modifier control of the instruction (1006).
The modifier control has one value of a plurality of values
defined for the instruction (1008) and indicates an element
size (1010). The data reversal operation is performed on the
input data (1012). The performing includes placing, in a
selected location, an element of the input data, the element
having the element size indicated by the modifier control
(1014); reversing an order of the input data in the element
(1016); and repeating the placing and the reversing, based on
the input data having one or more other elements to be

US 2020/0264883 Al

processed (1018). An output of the performing includes one
or more elements of data that include output data in a
reversed order from the input data of the corresponding one
or more elements (1020).

[0109] By using a single architected instruction having a
selectable element size, processing within the computing
environment is facilitated. The number of instructions to be
defined and implemented is reduced, as well as complexity
of the architecture. Memory is also saved.

[0110] In one embodiment, the data reversal operation is a
load data reversal operation and the element of the input data
is obtained from a memory location (1022). The memory
location is determined, for instance, using one or more fields
of'the instruction, and the selected location is specified using
one or more other fields of the instruction (1024). As an
example, the modifier control is an input to the instruction
specifying the element size of one or more elements of the
input data to be loaded from memory to the selected location
(1026). Based on the load data reversal operation, the bytes
within the elements being loaded are reversed.

[0111] By using a single architected instruction to perform
the load operation and the data reversal operation, instead of
separate instructions to perform the two operations, execu-
tion time is decreased, and performance is improved.
[0112] In another embodiment, referring to FIG. 10B, the
data reversal operation is a store data reversal operation, the
selected location in which the element is placed is a memory
location, and the element of the input data is obtained from
another selected location (1030). The other selected location
is specified, for instance, using one or more fields of the
instruction, and the memory location is determined using
one or more other fields of the instruction (1032). As an
example, the modifier control is an input to the instruction
specifying the element size of one or more elements of the
input data to be stored into memory (1034). Based on the
store data reversal operation, the bytes within the elements
being stored are reversed.

[0113] By using a single architected instruction to perform
the store operation and the data reversal operation, instead of
separate instructions to perform the two operations, execu-
tion time is decreased, and performance is improved.
[0114] In one example, the modifier control is an input to
the instruction, and the plurality of values includes a first
value indicating the element size is a halfword, a second
value indicating the element size is a word, and a third value
indicating the element size is a doubleword (1036). In a
further example, the plurality of values includes a fourth
value indicating the element size is a quadword (1038). As
a particular example, the modifier control is included in a
mask field of the instruction (1040).

[0115] As an example, the instruction includes at least one
operation code field to provide an operation code indicating
an operation to be performed; a register field and a register
extension field to be used to specify a register to be used by
the instruction; an index register field, a base field and a
displacement field used to determine an address to be used
by the instruction; and a mask field including the modifier
control (1042).

[0116] Other variations and embodiments are possible.
[0117] Aspects of the present invention may be used by
many types of computing environments. Another embodi-
ment of a computing environment to incorporate and use one
or more aspects of the present invention is described with
reference to FIG. 11A. In this example, a computing envi-

Aug. 20, 2020

ronment 10 includes, for instance, a native central process-
ing unit (CPU) 12, a memory 14, and one or more input/
output devices and/or interfaces 16 coupled to one another
via, for example, one or more buses 18 and/or other con-
nections. As examples, computing environment 10 may
include a PowerPC® processor offered by International
Business Machines Corporation, Armonk, N.Y.; an HP
Superdome with Intel Itanium II processors offered by
Hewlett Packard Co., Palo Alto, Calif.; and/or other
machines based on architectures offered by International
Business Machines Corporation, Hewlett Packard, Intel
Corporation, Oracle, or others. IBM, z/Architecture, IBM Z,
7z/OS, PR/SM and PowerPC are trademarks or registered
trademarks of International Business Machines Corporation
in at least one jurisdiction. Intel and Itanium are trademarks
or registered trademarks of Intel Corporation or its subsid-
iaries in the United States and other countries.

[0118] Native central processing unit 12 includes one or
more native registers 20, such as one or more general
purpose registers and/or one or more special purpose regis-
ters used during processing within the environment. These
registers include information that represents the state of the
environment at any particular point in time.

[0119] Moreover, native central processing unit 12
executes instructions and code that are stored in memory 14.
In one particular example, the central processing unit
executes emulator code 22 stored in memory 14. This code
enables the computing environment configured in one archi-
tecture to emulate another architecture. For instance, emu-
lator code 22 allows machines based on architectures other
than the z/Architecture hardware architecture, such as Pow-
erPC processors, HP Superdome servers or others, to emu-
late the z/Architecture hardware architecture and to execute
software and instructions developed based on the z/Archi-
tecture hardware architecture.

[0120] Further details relating to emulator code 22 are
described with reference to FIG. 11B. Guest instructions 30
stored in memory 14 comprise software instructions (e.g.,
correlating to machine instructions) that were developed to
be executed in an architecture other than that of native CPU
12. For example, guest instructions 30 may have been
designed to execute on a processor based on the z/Archi-
tecture hardware architecture, but instead, are being emu-
lated on native CPU 12, which may be, for example, an Intel
Ttanium II processor. In one example, emulator code 22
includes an instruction fetching routine 32 to obtain one or
more guest instructions 30 from memory 14, and to option-
ally provide local buffering for the instructions obtained. It
also includes an instruction translation routine 34 to deter-
mine the type of guest instruction that has been obtained and
to translate the guest instruction into one or more corre-
sponding native instructions 36. This translation includes,
for instance, identifying the function to be performed by the
guest instruction and choosing the native instruction(s) to
perform that function.

[0121] Further, emulator code 22 includes an emulation
control routine 40 to cause the native instructions to be
executed. Emulation control routine 40 may cause native
CPU 12 to execute a routine of native instructions that
emulate one or more previously obtained guest instructions
and, at the conclusion of such execution, return control to the
instruction fetch routine to emulate the obtaining of the next
guest instruction or a group of guest instructions. Execution
of the native instructions 36 may include loading data into

US 2020/0264883 Al

a register from memory 14; storing data back to memory
from a register; or performing some type of arithmetic or
logic operation, as determined by the translation routine.
[0122] Each routine is, for instance, implemented in soft-
ware, which is stored in memory and executed by native
central processing unit 12. In other examples, one or more
of the routines or operations are implemented in firmware,
hardware, software or some combination thereof. The reg-
isters of the emulated processor may be emulated using
registers 20 of the native CPU or by using locations in
memory 14. In embodiments, guest instructions 30, native
instructions 36 and emulator code 22 may reside in the same
memory or may be disbursed among different memory
devices.

[0123] The computing environments described above are
only examples of computing environments that can be used.
Other environments, including but not limited to, non-
partitioned environments, partitioned environments, and/or
emulated environments, may be used; embodiments are not
limited to any one environment.

[0124] Each computing environment is capable of being
configured to include one or more aspects of the present
invention. For instance, each may be configured to provide
load/store reversed processing, in accordance with one or
more aspects of the present invention.

[0125] One or more aspects may relate to cloud comput-
ing.
[0126] It is to be understood that although this disclosure

includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed.

[0127] Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.
[0128] Characteristics are as follows:

[0129] On-demand self-service: a cloud consumer can
unilaterally provision computing capabilities, such as server
time and network storage, as needed automatically without
requiring human interaction with the service’s provider.
[0130] Broad network access: capabilities are available
over a network and accessed through standard mechanisms
that promote use by heterogeneous thin or thick client
platforms (e.g., mobile phones, laptops, and PDAs).
[0131] Resource pooling: the provider’s computing
resources are pooled to serve multiple consumers using a
multi-tenant model, with different physical and virtual
resources dynamically assigned and reassigned according to
demand. There is a sense of location independence in that
the consumer generally has no control or knowledge over
the exact location of the provided resources but may be able
to specify location at a higher level of abstraction (e.g.,
country, state, or datacenter).

[0132] Rapid elasticity: capabilities can be rapidly and
elastically provisioned, in some cases automatically, to
quickly scale out and rapidly released to quickly scale in. To

Aug. 20, 2020

the consumer, the capabilities available for provisioning
often appear to be unlimited and can be purchased in any
quantity at any time.

[0133] Measured service: cloud systems automatically
control and optimize resource use by leveraging a metering
capability at some level of abstraction appropriate to the
type of service (e.g., storage, processing, bandwidth, and
active user accounts). Resource usage can be monitored,
controlled, and reported, providing transparency for both the
provider and consumer of the utilized service.

[0134]

[0135] Software as a Service (SaaS): the capability pro-
vided to the consumer is to use the provider’s applications
running on a cloud infrastructure. The applications are
accessible from various client devices through a thin client
interface such as a web browser (e.g., web-based email). The
consumer does not manage or control the underlying cloud
infrastructure including network, servers, operating systems,
storage, or even individual application capabilities, with the
possible exception of limited user-specific application con-
figuration settings.

[0136] Platform as a Service (PaaS): the capability pro-
vided to the consumer is to deploy onto the cloud infra-
structure consumer-created or acquired applications created
using programming languages and tools supported by the
provider. The consumer does not manage or control the
underlying cloud infrastructure including networks, servers,
operating systems, or storage, but has control over the
deployed applications and possibly application hosting envi-
ronment configurations.

[0137] Infrastructure as a Service (laaS): the capability
provided to the consumer is to provision processing, storage,
networks, and other fundamental computing resources
where the consumer is able to deploy and run arbitrary
software, which can include operating systems and applica-
tions. The consumer does not manage or control the under-
lying cloud infrastructure but has control over operating
systems, storage, deployed applications, and possibly lim-
ited control of select networking components (e.g., host
firewalls).

[0138]

[0139] Private cloud: the cloud infrastructure is operated
solely for an organization. It may be managed by the
organization or a third party and may exist on-premises or
off-premises.

[0140] Community cloud: the cloud infrastructure is
shared by several organizations and supports a specific
community that has shared concerns (e.g., mission, security
requirements, policy, and compliance considerations). It
may be managed by the organizations or a third party and
may exist on-premises or off-premises.

[0141] Public cloud: the cloud infrastructure is made
available to the general public or a large industry group and
is owned by an organization selling cloud services.

[0142] Hybrid cloud: the cloud infrastructure is a compo-
sition of two or more clouds (private, community, or public)
that remain unique entities but are bound together by stan-
dardized or proprietary technology that enables data and
application portability (e.g., cloud bursting for load-balanc-
ing between clouds).

[0143] A cloud computing environment is service oriented
with a focus on statelessness, low coupling, modularity, and

Service Models are as follows:

Deployment Models are as follows:

US 2020/0264883 Al

semantic interoperability. At the heart of cloud computing is
an infrastructure that includes a network of interconnected
nodes.

[0144] Referring now to FIG. 12, illustrative cloud com-
puting environment 50 is depicted. As shown, cloud com-
puting environment 50 includes one or more cloud comput-
ing nodes 52 with which local computing devices used by
cloud consumers, such as, for example, personal digital
assistant (PDA) or cellular telephone 54A, desktop com-
puter 54B, laptop computer 54C, and/or automobile com-
puter system 54N may communicate. Nodes 52 may com-
municate with one another. They may be grouped (not
shown) physically or virtually, in one or more networks,
such as Private, Community, Public, or Hybrid clouds as
described hereinabove, or a combination thereof. This
allows cloud computing environment 50 to offer infrastruc-
ture, platforms and/or software as services for which a cloud
consumer does not need to maintain resources on a local
computing device. It is understood that the types of com-
puting devices 54A-N shown in FIG. 12 are intended to be
illustrative only and that computing nodes 52 and cloud
computing environment 50 can communicate with any type
of computerized device over any type of network and/or
network addressable connection (e.g., using a web browser).
[0145] Referring now to FIG. 13, a set of functional
abstraction layers provided by cloud computing environ-
ment 50 (FIG. 12) is shown. It should be understood in
advance that the components, layers, and functions shown in
FIG. 13 are intended to be illustrative only and embodiments
of the invention are not limited thereto. As depicted, the
following layers and corresponding functions are provided:
[0146] Hardware and software layer 60 includes hardware
and software components. Examples of hardware compo-
nents include: mainframes 61; RISC (Reduced Instruction
Set Computer) architecture based servers 62; servers 63;
blade servers 64; storage devices 65; and networks and
networking components 66. In some embodiments, software
components include network application server software 67
and database software 68.

[0147] Virtualization layer 70 provides an abstraction
layer from which the following examples of virtual entities
may be provided: virtual servers 71; virtual storage 72;
virtual networks 73, including virtual private networks;
virtual applications and operating systems 74; and virtual
clients 75.

[0148] In one example, management layer 80 may provide
the functions described below. Resource provisioning 81
provides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or invoicing for
consumption of these resources. In one example, these
resources may include application software licenses. Secu-
rity provides identity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 84 provides cloud computing resource alloca-
tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provide pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement is
anticipated in accordance with an SLA.

Aug. 20, 2020

[0149] Workloads layer 90 provides examples of function-
ality for which the cloud computing environment may be
utilized. Examples of workloads and functions which may
be provided from this layer include: mapping and navigation
91; software development and lifecycle management 92;
virtual classroom education delivery 93; data analytics pro-
cessing 94; transaction processing 95; and load/store
reversed processing 96.

[0150] Aspects of the present invention may be a system,
a method, and/or a computer program product at any pos-
sible technical detail level of integration. The computer
program product may include a computer readable storage
medium (or media) having computer readable program
instructions thereon for causing a processor to carry out
aspects of the present invention.

[0151] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0152] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0153] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written in any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and

US 2020/0264883 Al

procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

[0154] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0155] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0156] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0157] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted

Aug. 20, 2020

in the Figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.
[0158] In addition to the above, one or more aspects may
be provided, offered, deployed, managed, serviced, etc. by a
service provider who offers management of customer envi-
ronments. For instance, the service provider can create,
maintain, support, etc. computer code and/or a computer
infrastructure that performs one or more aspects for one or
more customers. In return, the service provider may receive
payment from the customer under a subscription and/or fee
agreement, as examples. Additionally, or alternatively, the
service provider may receive payment from the sale of
advertising content to one or more third parties.

[0159] In one aspect, an application may be deployed for
performing one or more embodiments. As one example, the
deploying of an application comprises providing computer
infrastructure operable to perform one or more embodi-
ments.

[0160] As afurther aspect, a computing infrastructure may
be deployed comprising integrating computer readable code
into a computing system, in which the code in combination
with the computing system is capable of performing one or
more embodiments.

[0161] As yet a further aspect, a process for integrating
computing infrastructure comprising integrating computer
readable code into a computer system may be provided. The
computer system comprises a computer readable medium, in
which the computer medium comprises one or more
embodiments. The code in combination with the computer
system is capable of performing one or more embodiments.
[0162] Although various embodiments are described
above, these are only examples. For example, computing
environments of other architectures can be used to incorpo-
rate and use one or more embodiments. Further, different
instructions or operations may be used. Additionally, differ-
ent types of indicators may be specified. Many variations are
possible.

[0163] Further, other types of computing environments
can benefit and be used. As an example, a data processing
system suitable for storing and/or executing program code is
usable that includes at least two processors coupled directly
or indirectly to memory elements through a system bus. The
memory elements include, for instance, local memory
employed during actual execution of the program code, bulk
storage, and cache memory which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

[0164] Input/Output or I/O devices (including, but not
limited to, keyboards, displays, pointing devices, DASD,
tape, CDs, DVDs, thumb drives and other memory media,
etc.) can be coupled to the system either directly or through
intervening /O controllers. Network adapters may also be
coupled to the system to enable the data processing system
to become coupled to other data processing systems or
remote printers or storage devices through intervening pri-

US 2020/0264883 Al

vate or public networks. Modems, cable modems, and
Ethernet cards are just a few of the available types of
network adapters.

[0165] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting. As used herein, the singular forms “a”, “an”
and “the” are intended to include the plural forms as well,
unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising”, when used in this specification, specify the pres-
ence of stated features, integers, steps, operations, elements,
and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps,
operations, elements, components and/or groups thereof.
[0166] The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below, if any, are intended to include any structure,
material, or act for performing the function in combination
with other claimed elements as specifically claimed. The
description of one or more embodiments has been presented
for purposes of illustration and description but is not
intended to be exhaustive or limited to in the form disclosed.
Many modifications and variations will be apparent to those
of ordinary skill in the art. The embodiment was chosen and
described in order to best explain various aspects and the
practical application, and to enable others of ordinary skill
in the art to understand various embodiments with various
modifications as are suited to the particular use contem-
plated.

What is claimed is:

1. A computer program product for facilitating processing
within a computing environment, the computer program
product comprising:

a computer readable storage medium readable by a pro-

cessing circuit and storing instructions for performing
a method comprising:
executing an instruction to perform a data reversal
operation, the instruction being a single architected
instruction, and the executing including:
obtaining input data on which the data reversal
operation is to be performed;
obtaining a modifier control of the instruction, the
modifier control having one value of a plurality of
values defined for the instruction, the modifier
control indicating an element size; and
performing the data reversal operation on the input
data, wherein the performing comprising:
placing, in a selected location, an element of the
input data, the element having the element size
indicated by the modifier control;
reversing an order of the input data in the element;
and
repeating the placing and the reversing, based on
the input data having one or more other ele-
ments to be processed, wherein an output of the
performing includes one or more elements of
data that include output data in a reversed order
from the input data of the corresponding one or
more elements.

2. The computer program product of claim 1, wherein the
data reversal operation is a load data reversal operation and
the element of the input data is obtained from a memory
location.

Aug. 20, 2020

3. The computer program product of claim 2, wherein the
memory location is determined using one or more fields of
the instruction, and the selected location is specified using
one or more other fields of the instruction.

4. The computer program product of claim 2, wherein the
modifier control is an input to the instruction specifying the
element size of one or more elements of the input data to be
loaded from memory to the selected location.

5. The computer program product of claim 1, wherein the
data reversal operation is a store data reversal operation, the
selected location in which the element is placed is a memory
location, and the element of the input data is obtained from
another selected location.

6. The computer program product of claim 5, wherein the
other selected location is specified using one or more fields
of the instruction, and the memory location is determined
using one or more other fields of the instruction.

7. The computer program product of claim 5, wherein the
modifier control is an input to the instruction specifying the
element size of one or more elements of the input data to be
stored into memory.

8. The computer program product of claim 1, wherein the
modifier control is an input to the instruction, and wherein
the plurality of values comprises a first value indicating the
element size is a halfword, a second value indicating the
element size is a word, and a third value indicating the
element size is a doubleword.

9. The computer program product of claim 1, wherein the
modifier control is an input to the instruction, and wherein
the plurality of values comprises a fourth value indicating
the element size is a quadword.

10. The computer program product of claim 1, wherein
the modifier control is included in a mask field of the
instruction.

11. The computer program product of claim 1, wherein the
instruction includes at least one operation code field to
provide an operation code indicating an operation to be
performed; a register field and a register extension field to be
used to specify a register to be used by the instruction; an
index register field, a base field and a displacement field
used to determine an address to be used by the instruction;
and a mask field including the modifier control.

12. A computer system for facilitating processing within
a computing environment, the computer system comprising:

a memory; and

a processor coupled to the memory, wherein the computer

system is configured to perform a method comprising:
executing an instruction to perform a data reversal
operation, the instruction being a single architected
instruction, and the executing including:
obtaining input data on which the data reversal
operation is to be performed;
obtaining a modifier control of the instruction, the
modifier control having one value of a plurality of
values defined for the instruction, the modifier
control indicating an element size; and
performing the data reversal operation on the input
data, wherein the performing comprising:
placing, in a selected location, an element of the
input data, the element having the element size
indicated by the modifier control;
reversing an order of the input data in the element;
and

US 2020/0264883 Al

repeating the placing and the reversing, based on
the input data having one or more other ele-
ments to be processed, wherein an output of the
performing includes one or more elements of
data that include output data in a reversed order
from the input data of the corresponding one or
more elements.

13. The computer system of claim 12, wherein the data
reversal operation is a load data reversal operation and the
element of the input data is obtained from a memory
location.

14. The computer system of claim 12, wherein the data
reversal operation is a store data reversal operation, the
selected location in which the element is placed is a memory
location, and the element of the input data is obtained from
another selected location.

15. The computer system of claim 12, wherein the modi-
fier control is an input to the instruction, and wherein the
plurality of values comprises a first value indicating the
element size is a halfword, a second value indicating the
element size is a word, a third value indicating the element
size is a doubleword, and a fourth value indicating the
element size is a quadword.

16. The computer system of claim 12, wherein the modi-
fier control is included in a mask field of the instruction.

17. A computer-implemented method of facilitating pro-
cessing within a computing environment, the computer-
implemented method comprising:

executing an instruction to perform a data reversal opera-

tion, the instruction being a single architected instruc-
tion, and the executing including:

14

Aug. 20, 2020

obtaining input data on which the data reversal opera-
tion is to be performed;
obtaining a modifier control of the instruction, the
modifier control having one value of a plurality of
values defined for the instruction, the modifier con-
trol indicating an element size; and
performing the data reversal operation on the input
data, wherein the performing comprising:
placing, in a selected location, an element of the
input data, the element having the element size
indicated by the modifier control;
reversing an order of the input data in the element;
and
repeating the placing and the reversing, based on the
input data having one or more other elements to be
processed, wherein an output of the performing
includes one or more elements of data that include
output data in a reversed order from the input data
of the corresponding one or more elements.

18. The computer-implemented method of claim 17,
wherein the data reversal operation is a load data reversal
operation and the element of the input data is obtained from
a memory location.

19. The computer-implemented method of claim 17,
wherein the data reversal operation is a store data reversal
operation, the selected location in which the element is
placed is a memory location, and the element of the input
data is obtained from another selected location.

20. The computer-implemented method of claim 17,
wherein the modifier control is included in a mask field of
the instruction.

